
DEEP LEARNING AND GRAPH NEURAL 
NETWORKS FOR AUTONOMY

DR. WARREN E. DIXON

Department of Mechanical and Aerospace Engineering, 
University of Florida

April 7th, 2025



THE INTERMITTENT JOY OF INTERMITTENT FEEDBACK
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 Causes of temporary feedback loss 
 Task definition
 Communication restricted operations

 Operating environment
 Intermittent occlusions of sensor signals
 GPS denied regions

 Sensor modality
 Limited camera field-of-view

 Cyber Effects

Topological Transition Guarantee



RELAY-EXPLORER PROBLEMS
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HIERARCHAL ADP
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ADAPTIVE BARRIER FUNCTIONS
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WHY DEEP LEARNING?
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WHY DEEP LEARNING?
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UNCERTAINTY: DEEP LEARNING
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 Deep Learning is a machine learning method that has shown significant 
advances in pattern matching tasks – but not well suited for feedback control
 Requires massive amounts of training data
 Significant training time
 Closed training sets, with no guarantees of convergence or stability
 Implemented in open-loop – no online adaptation

 We recently developed a series of Deep Learning methods that can be 
applied in real-time, with no prior data, no training phase, with feedback-
based (continuous) learning
 …but more data and training is better
 Stability analysis derived adaptation laws (with proof of convergence)
 Assured Learning



FULLY CONNECTED DEEP LEARNING
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 Fully-Connected DNN with some input 𝜂𝜂

 Recursive Representation

Accelerated Gradient



TAILORING THE DNN ARCHITECTURES
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Graph neural network (GNN)

12

43

Convolutional neural network (CNN)

𝜙𝜙 
0.1 Bulldog
0.3 Tiger
0.6 Gator

Feedforward NN Classification
Task
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MOTIVATION

 MASs must communicate to 
accomplish cooperative goals

 Use estimates from neighboring 
agents to reach goal effectively
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Credit: Boston DynamicsCredit: FAST Lab Credit: NCR Lab

https://www.youtube.com/watch?v=wlkCQXHEgjA
https://www.youtube.com/watch?v=L0fJ0EHHfOA
https://www.youtube.com/watch?v=HyxTTsRqGwY


GNNS PRESERVE UNDERLYING GRAPH STRUCTURE
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GNNS PRESERVE UNDERLYING GRAPH STRUCTURE
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GOOGLE MAPS USERS = GNN ENJOYERS

 Node-level info: anonymized historical segment 
travel speeds, segment length, and segment type 
(highway, state road, etc.)

 Train GNN to predict traversal time from A to B 
given the time of day [1]

 Global traversal time loss function 
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[1] Derrow-Pinion, A., et al, "Eta prediction with graph neural 
networks in google maps," in Proc. 30th ACM Int. Conf. Inf. 
Knowl. Manag., 2021, pp. 3767–3776.



GRAPH ISOMORPHISM
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These graphs are 
isomorphic!

 There exists a permutation that relates the 
nodes of graphs 1,2, and 3

 How can we test for this?

Open problem: 
Development of 
polynomial time 
algorithm to 
determine whether 
two graphs are 
isomorphic



COLOR REFINEMENT = HEURISTIC TEST
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 1-WL (Weisfeiler-Lehman) test
 Any two graphs that are isomorphic will have the same color distribution after 

1-WL are isomorphic (but not the other way around!)
 Generalize to higher dimensions with k-WL (uses pairs, triples, …)



FUNCTION APPROXIMATION CAPABILITIES

 Invariant function = function output the 
same, regardless of node order

 Equivariant function = function output 
respects node order

 Message-passing GNNs can distinguish 
up to 2-WL equivalence [2]
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[2] W. Azizian and M. Lelarge, “Expressive power of invariant and 
equivariant graph neural networks,” Proc. Int. Conf. Learn. 
Represent., 2020.

Continuous functions of each 
node’s features on a graph are 

equivariant. GNN can’t tell the difference!

NON-TOXIC

TOXIC



UNRAVELING THE GNN ARCHITECTURE

 Message passing structure 
introduced challenges in GNN 
derivative w.r.t. weights 
calculation

 Need to “chase down” your 
own weights in update law
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[3] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. 
Bengio, “Graph attention networks,” Int. Conf. Learn. Represent., 
2018.

 Graph attention network (GAT) architecture [3]

 Rank importance of messages12
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𝑐𝑐𝑖𝑖,ℓ = 𝑎𝑎𝑖𝑖

𝑗𝑗 ⊤ 𝑊𝑊𝑖𝑖
𝑗𝑗 ⊤𝜙𝜙𝑖𝑖

(𝑗𝑗−1) ⊕ 𝑊𝑊𝑖𝑖
𝑗𝑗 ⊤𝜙𝜙ℓ

(𝑗𝑗−1)

Typically normalized 
using softmax

𝜕𝜕𝜙𝜙𝑖𝑖
𝜕𝜕vec 𝑊𝑊𝑖𝑖

(𝑗𝑗) = 𝑊𝑊𝑖𝑖
𝑘𝑘 ⊤𝜑𝜑𝑖𝑖

(𝑘𝑘−1)

𝜑𝜑
𝑚𝑚 ℓ+1
(ℓ) ≜

Δ
𝑚𝑚 ℓ+1
(ℓ) 𝜑𝜑𝑚𝑚 ℓ

ℓ−1 ⊤

𝒎𝒎(ℓ)

⊤
, ℓ = 𝑘𝑘 − 1, … , 𝑗𝑗 + 1,

𝛿𝛿𝑖𝑖,𝑚𝑚 ℓ+1 𝜋𝜋𝑚𝑚 ℓ+1
ℓ 𝜄𝜄𝑚𝑚 ℓ+1

ℓ , ℓ = 𝑗𝑗. 

Recursively defined 
term in partial 
derivative w.r.t. weights



PROBLEM SETUP

 Want network of agents to track target with unknown, 
unstructured dynamics

 Position tracking error (𝑒𝑒𝑖𝑖) “How far am I from the target?”
 State estimation error (�̂�𝑒𝑖𝑖) “How far am I from my estimate?”
 State estimation regulation error ( �𝑞𝑞𝑖𝑖) “How far is my estimate 

from the target?”
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�̈�𝑞0 = 𝑓𝑓 𝑄𝑄0 ,  𝑄𝑄0 = 𝑞𝑞0⊤, �̇�𝑞0⊤ ⊤ ∈ ℝ2𝑛𝑛

Approximate together using GNNs

𝑒𝑒𝑖𝑖 ≜ 𝑞𝑞0 − 𝑞𝑞𝑖𝑖

�̂�𝑒𝑖𝑖 ≜ �𝑞𝑞0,𝑖𝑖 − 𝑞𝑞𝑖𝑖

�𝑞𝑞𝑖𝑖 ≜ 𝑞𝑞0 − �𝑞𝑞0,𝑖𝑖

𝑞𝑞0

𝑞𝑞𝑖𝑖

�𝑞𝑞0,𝑖𝑖

�̈�𝑞𝑖𝑖 = 𝑔𝑔 𝑅𝑅𝑖𝑖 + 𝑢𝑢𝑖𝑖

�𝑞𝑞𝑖𝑖 = 𝑒𝑒𝑖𝑖 − �̂�𝑒𝑖𝑖

Signals 𝑒𝑒𝑖𝑖 , �𝑞𝑞i are 
measurable iff 𝑏𝑏𝑖𝑖 = 1. 
That is, if agent 𝑖𝑖 is 
connected to the 
target.

𝑟𝑟1,𝑖𝑖 = �̇𝑞𝑞𝑖𝑖 + 𝛼𝛼1 �𝑞𝑞𝑖𝑖 𝑟𝑟2,𝑖𝑖 = ̇�̂�𝑒𝑖𝑖 + 𝛼𝛼2�̂�𝑒𝑖𝑖



KEEPING ALL NODES ON THE SAME PAGE

 Nodes cannot perform backpropagation at the same time with the same set of info
 Every node has its own unique set of weights
 We want them to converge to the same values (we are all approximating the same unknown function!)
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�̇𝜃𝜃1,𝑖𝑖 ≜ proj Γ𝑖𝑖 −𝑘𝑘3 �
𝑗𝑗∈𝒩𝒩𝑖𝑖

�𝜃𝜃1,𝑖𝑖 − �𝜃𝜃1,𝑗𝑗 + �𝜃𝜃𝑖𝑖 + �
𝑗𝑗∈ �𝒩𝒩𝑖𝑖

𝑘𝑘−1

𝜕𝜕𝜙𝜙1,𝑖𝑖

𝜕𝜕 �𝜃𝜃1,𝑗𝑗

⊤

�
𝑗𝑗∈𝒩𝒩𝑖𝑖

�̇𝑞𝑞0,𝑗𝑗 − �̇𝑞𝑞0,𝑖𝑖 + 𝑏𝑏𝑖𝑖 �̇𝑞𝑞𝑖𝑖 + 𝛼𝛼1 �
𝑗𝑗∈𝒩𝒩𝑖𝑖

�𝑞𝑞0,𝑗𝑗 − �𝑞𝑞0,𝑖𝑖 + 𝛼𝛼1𝑏𝑏𝑖𝑖 �𝑞𝑞𝑖𝑖  

“Distributed Adaptation Law”

Distributed Adaptation:
Performs “consensus in the 
weights” between nodes of 

the GNN. 

𝝈𝝈-Modification Term:

Grants parameter convergence to within a 
neighborhood of ideal values.

NN Derivative w.r.t. Weights:
Closed-form derivative of 
GNN or GAT architecture 

w.r.t. weights.

Loss function:
Multiplies NN partial derivative by an implementable 
form of the auxiliary state estimation regulation error 
(“How far is my estimate from the target?”). This is a 

term we wish to minimize.

Projection Operator:
Ensures that updated NN 

weights are bounded wrt �̅�𝜃.



CONTROLLER AND OBSERVER DEVELOPMENT

 Observer = drive estimate to the target
 Controller = drive agent to estimate
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�̈𝑞𝑞0,𝑖𝑖 ≜ 𝜙𝜙1,𝑖𝑖 �𝑄𝑄0,𝑖𝑖 + �
𝑗𝑗∈ �𝒩𝒩𝑖𝑖

𝑘𝑘

𝜕𝜕𝜙𝜙1,𝑖𝑖

𝜕𝜕�̂�𝜃1,𝑗𝑗

⊤

+ 𝑘𝑘1 �
𝑗𝑗∈𝒩𝒩𝑖𝑖

�̇𝑞𝑞0,𝑗𝑗 − �̇𝑞𝑞0,𝑖𝑖 + 𝑏𝑏𝑖𝑖 �̇𝑞𝑞𝑖𝑖 + 𝛼𝛼1 �
𝑗𝑗∈𝒩𝒩𝑖𝑖

�𝑞𝑞0,𝑗𝑗 − �𝑞𝑞0,𝑖𝑖 + 𝛼𝛼1𝑏𝑏𝑖𝑖 �𝑞𝑞𝑖𝑖

Observer 
Update Law

GNN Output:
Used to approximate 

unknown target dynamics at 
each node.

Observer:

Accounts for GNN estimate of 
target motion to inform control 

update.

Error signal:
Implementable form of the auxiliary 

state estimation regulation error. 
(“How far is my estimate from the 

target?”)

�𝑄𝑄0,𝑖𝑖 ≜ �𝑞𝑞0,𝑖𝑖
⊤ , �̇𝑞𝑞0,𝑖𝑖

⊤ ⊤
∈ ℝ2𝑛𝑛

𝑢𝑢𝑖𝑖 ≜ �̈𝑞𝑞0,𝑖𝑖 − 𝜙𝜙2,𝑖𝑖 𝑅𝑅𝑖𝑖 − �
𝑗𝑗∈ �𝒩𝒩𝑖𝑖

𝑘𝑘

𝜕𝜕𝜙𝜙2,𝑖𝑖

𝜕𝜕�̂�𝜃2,𝑗𝑗

⊤

+ 𝑘𝑘2 �
𝑗𝑗∈𝒩𝒩𝑖𝑖

̇�̂�𝑒𝑖𝑖 − ̇�̂�𝑒𝑗𝑗 + 𝑏𝑏𝑖𝑖 ̇�̂�𝑒𝑖𝑖 + 𝛼𝛼1 �
𝑗𝑗∈𝒩𝒩𝑖𝑖

�̂�𝑒𝑖𝑖 − �̂�𝑒𝑗𝑗 + 𝛼𝛼1𝑏𝑏𝑖𝑖�̂�𝑒𝑖𝑖

Error signal:
Implementable form of the 
auxiliary state estimation 

error. (“How far am I from my 
estimate?”)

Control Law

𝑅𝑅𝑖𝑖 ≜ 𝟏𝟏 �𝒩𝒩𝑖𝑖 𝑚𝑚 𝑄𝑄𝑚𝑚⊤  
𝑚𝑚∈𝑉𝑉
⊤ ∈ ℝ2𝑛𝑛𝑁𝑁

Distributed Adaptation:
Cancel Taylor expansion terms 

due to influence of neighboring 
weights.



SKETCH OF ANALYSIS

 Consider a candidate Lyapunov function
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𝑉𝑉 = 1
2
�𝑞𝑞⊤ �𝑞𝑞 + 1

2
�̂�𝑒⊤�̂�𝑒 + 1

2
𝑟𝑟1⊤ℋ𝑟𝑟1 + 1

2
𝑟𝑟2⊤𝑟𝑟2 + 1

2
�𝜃𝜃1⊤Γ1−1 �𝜃𝜃1+ 1

2
�𝜃𝜃2⊤Γ2−1 �𝜃𝜃2

For agent and target dynamics described on Slide 18 and initial conditions of the states 𝜁𝜁 𝑡𝑡0 ∈ 𝒮𝒮, the 
observer, controller, and adaptive update law guarantee that 𝜁𝜁 exponentially converges to 𝒰𝒰  where

for all 𝑡𝑡 ∈ ℝ≥0 given that the constants and control gains 𝛼𝛼1,𝛼𝛼2, 𝜖𝜖1, 𝜖𝜖2,𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, and 𝜆𝜆3 are chosen 
according to their respective sufficient conditions. 

Theorem 1 (Stability Result)

𝜁𝜁(𝑡𝑡)  ≤
𝜆𝜆2
𝜆𝜆1

𝜐𝜐
𝜆𝜆4

+ 𝑒𝑒−
𝜆𝜆4
𝜆𝜆2

𝑡𝑡−𝑡𝑡0 𝜁𝜁 𝑡𝑡0 2 − 𝜐𝜐
𝜆𝜆4

1
2

,



SIMULATED RESULTS

 𝑁𝑁 = 6 agents, 3 agents 
connected to target agent

 Unknown target dynamics of 
the form

 Unknown inter-agent dynamics 
of the form

24

�̈�𝑥0
�̈�𝑦0
�̈�𝑧0

=

cos �̇�𝑥0 − sin �̇�𝑦0 + cos(2�̇�𝑧0)

�̇�𝑥0 − �̇�𝑦0 + �̇�𝑧0 +
𝑦𝑦0

1 + 𝑦𝑦0
sin �̇�𝑦0 − �̇�𝑥0�̇�𝑧0

�̈�𝑥𝑖𝑖
�̈�𝑦𝑖𝑖
�̈�𝑧𝑖𝑖

=

∑𝑗𝑗∈𝒩𝒩𝑖𝑖
1

20,000 𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗
2

∑𝑗𝑗∈𝒩𝒩𝑖𝑖
�̇�𝑧𝑖𝑖 − �̇�𝑧𝑗𝑗 cos(�̇�𝑥𝑖𝑖)

∑𝑗𝑗∈𝒩𝒩𝑖𝑖

cos �̇�𝑧𝑖𝑖�̇�𝑧𝑗𝑗 (�̇�𝑥𝑖𝑖− ̇𝑥𝑥𝑗𝑗)

1+ �̇�𝑥𝑖𝑖− ̇𝑥𝑥𝑗𝑗

+ 𝑢𝑢𝑖𝑖 

Architecture 𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅 �̇�𝑒𝑅𝑅𝑅𝑅𝑅𝑅 �Φ1,𝑅𝑅𝑅𝑅𝑅𝑅[0: 10] �Φ1,𝑅𝑅𝑅𝑅𝑅𝑅[10: 60] �Φ2,𝑅𝑅𝑅𝑅𝑅𝑅[0: 10] �Φ2,𝑅𝑅𝑅𝑅𝑅𝑅[10: 60] 𝑢𝑢𝑅𝑅𝑅𝑅𝑅𝑅

DNN+DNN 0.4844 0.4355 1.049 0.7635 2.430 0.1296 1.305

GNN+GNN 0.3952 0.4250 1.138 0.7580 2.169 0.0805 1.405

GAT+GNN 0.2912 0.3899 2.676 0.5684 2.246 0.0649 1.570

49% improvement in tracking error performance over DNN baseline!

Architecture 𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅 �̇�𝑒𝑅𝑅𝑅𝑅𝑅𝑅 �Φ1,𝑅𝑅𝑅𝑅𝑅𝑅[0: 10] �Φ1,𝑅𝑅𝑅𝑅𝑅𝑅[10: 60] �Φ2,𝑅𝑅𝑅𝑅𝑅𝑅[0: 10] �Φ2,𝑅𝑅𝑅𝑅𝑅𝑅[10: 60] 𝑢𝑢𝑅𝑅𝑅𝑅𝑅𝑅

DNN+DNN 0.4844 0.4355 1.049 0.7635 2.430 0.1296 1.305

GNN+GNN 0.3952 0.4250 1.138 0.7580 2.169 0.0805 1.405

GAT+GNN 0.2912 0.3899 2.676 0.5684 2.246 0.0649 1.570



Thank you! Any questions?
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