DEEP LEARNING AND GRAPH NEURAL NETWORKS FOR AUTONOMY

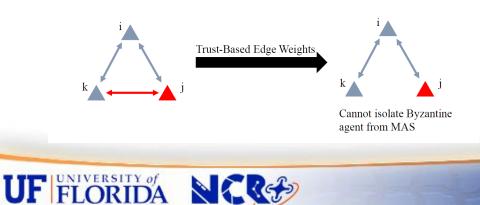
DR. WARREN E. DIXON

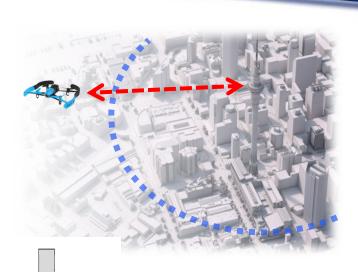
Department of Mechanical and Aerospace Engineering, University of Florida

April 7th, 2025

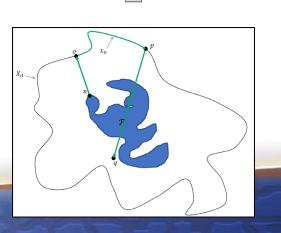
THE INTERMITTENT JOY OF INTERMITTENT FEEDBACK

- Causes of temporary feedback loss
 - Task definition
 - Communication restricted operations
 - Operating environment
 - Intermittent occlusions of sensor signals
 - GPS denied regions
 - Sensor modality
 - Limited camera field-of-view
 - Cyber Effects

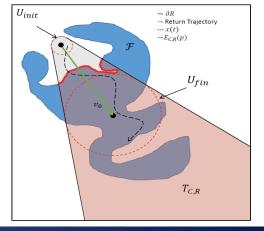




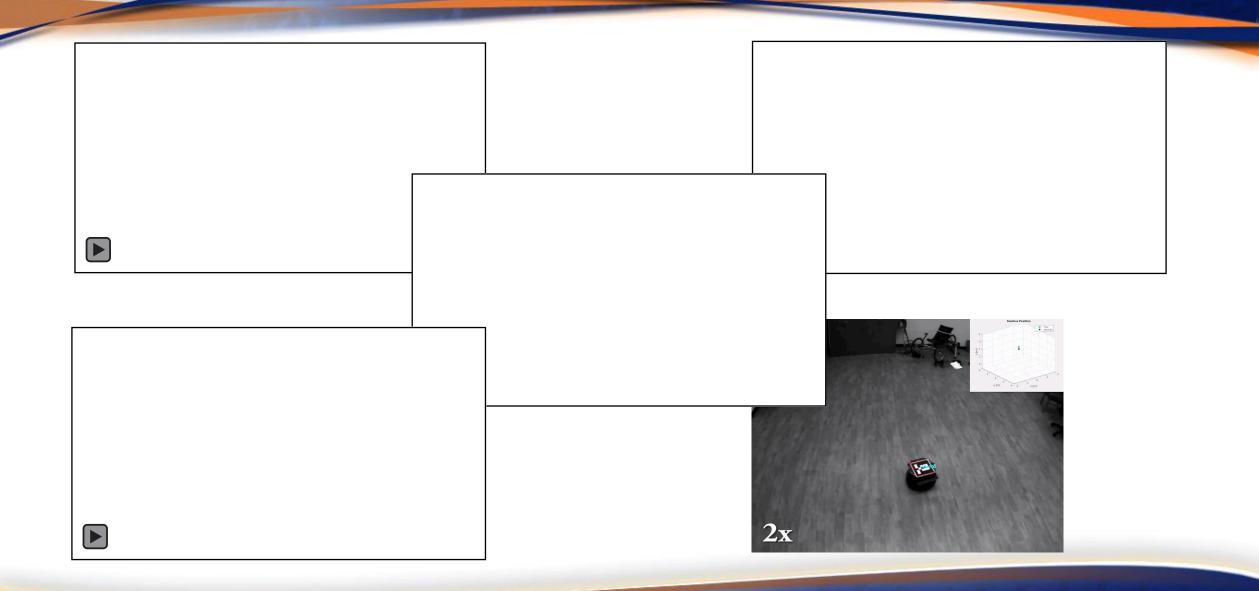
Topological Transition Guarantee



• > A



RELAY-EXPLORER PROBLEMS

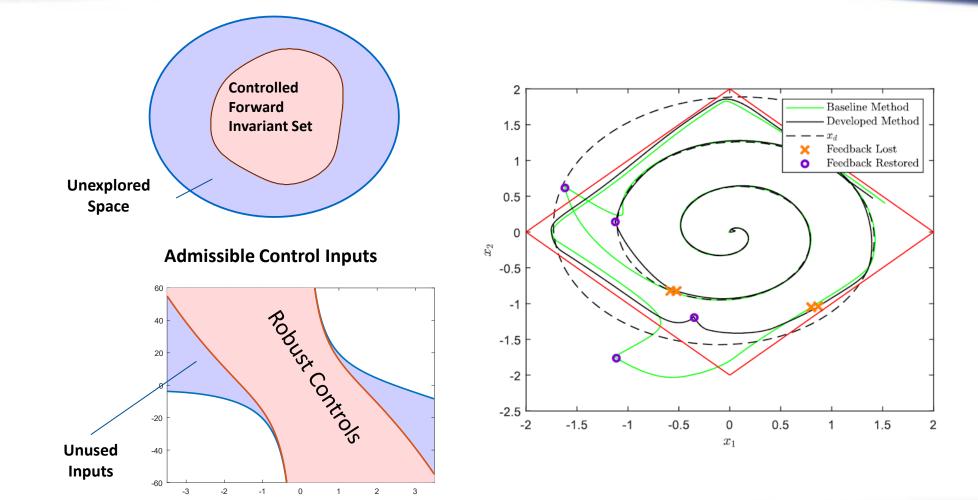


HIERARCHAL ADP



UF FLORIDA NCC

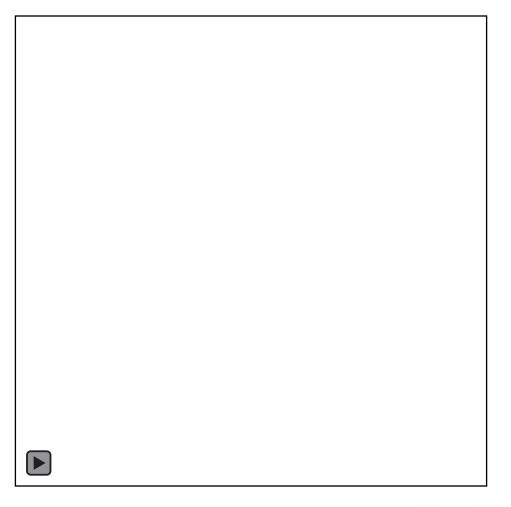
ADAPTIVE BARRIER FUNCTIONS



WHY DEEP LEARNING?



WHY DEEP LEARNING?



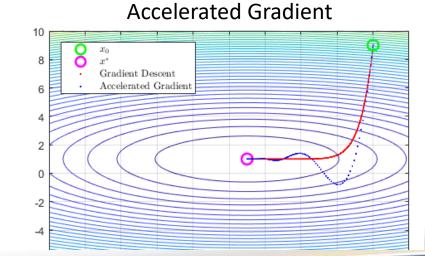
- Deep Learning is a machine learning method that has shown significant advances in pattern matching tasks – but not well suited for feedback control
 - Requires massive amounts of training data
 - Significant training time
 - Closed training sets, with no guarantees of convergence or stability
 - Implemented in open-loop no online adaptation
- We recently developed a series of Deep Learning methods that can be applied in real-time, with no prior data, no training phase, with feedbackbased (continuous) learning
 - ...but more data and training is better
 - Stability analysis derived adaptation laws (with proof of convergence)
 - Assured Learning

FULLY CONNECTED DEEP LEARNING

- Fully-Connected DNN with some input η $\Phi(\eta, V_0, V_1, \dots, V_k) \triangleq \left(V_k^T \phi_k \circ \dots \circ V_1^T \phi_1\right) \left(V_0^T \eta\right)$
- Recursive Representation

$$\Phi = V_k^T \varphi_k \qquad \varphi_j \triangleq \begin{cases} \phi_j \left(V_{j-1}^T \varphi_{j-1} \right), & j \in \{1, \dots, k\}, \\ \eta, & j = 0. \end{cases}$$

UF FLORIDA



TAILORING THE DNN ARCHITECTURES

 Φ^{θ}

 $\sum \phi_{q,p}(x_p)$

 Φ_3

Φ.

 Φ_1

learnable activation functions

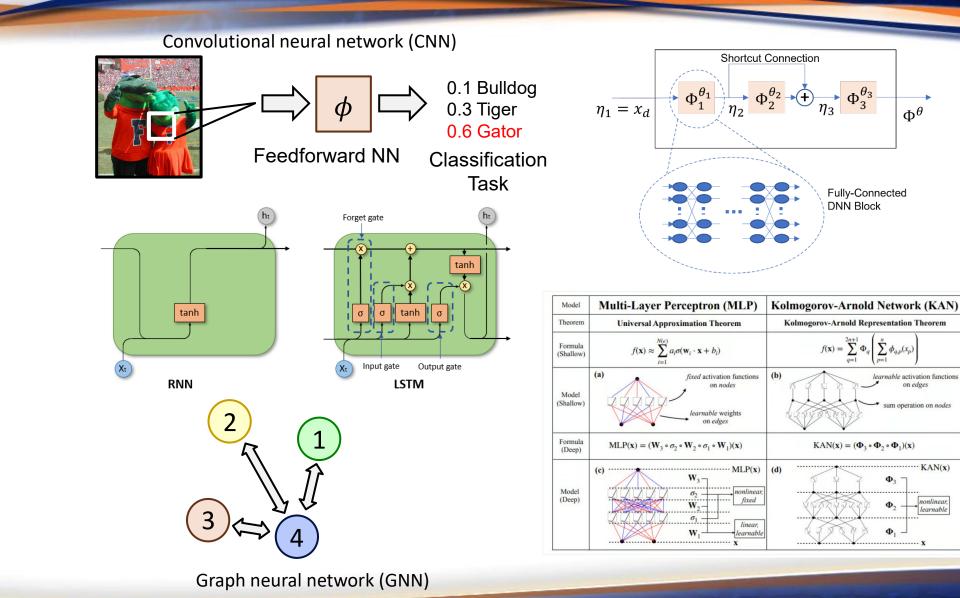
on edges

sum operation on nodes

· KAN(x)

nonlinear

learnable



UF FLORIDA

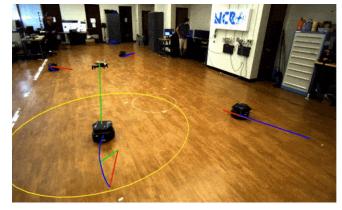
LYAPUNOV-BASED GRAPH NEURAL NETWORKS FOR MULTI-AGENT ADAPTIVE CONTROL

BRANDON C. FALLIN, CRISTIAN F. NINO, OMKAR SUDHIR PATIL, AND WARREN E. DIXON

Department of Mechanical and Aerospace Engineering, University of Florida

April 7th, 2025

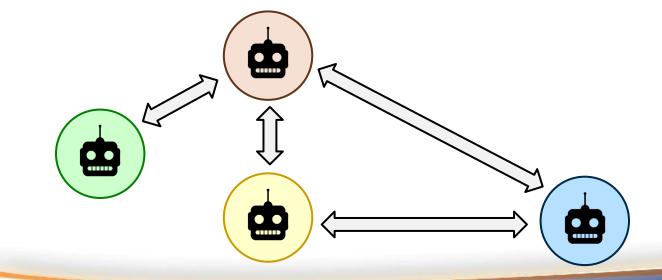
MOTIVATION



Credit: FAST Lab

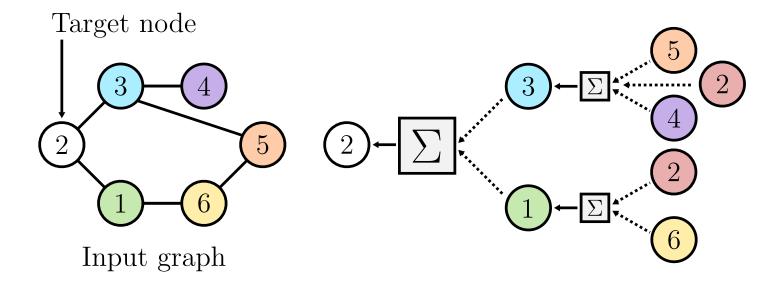
UF FLORIDA

Credit: Boston Dynamics

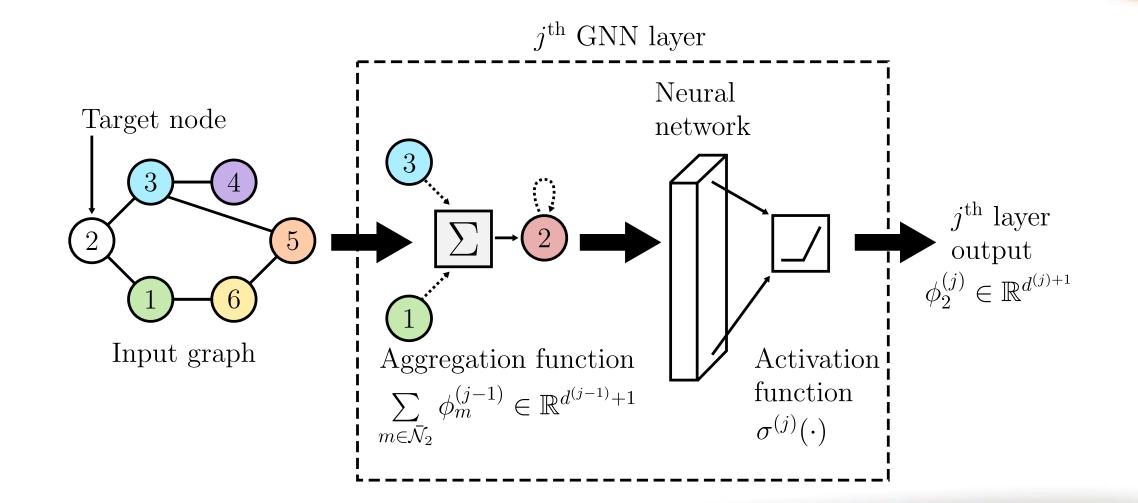


- MASs must communicate to accomplish cooperative goals
- Use estimates from neighboring agents to reach goal effectively

GNNs PRESERVE UNDERLYING GRAPH STRUCTURE



GNNs PRESERVE UNDERLYING GRAPH STRUCTURE

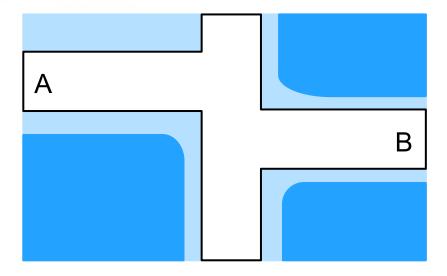


GOOGLE MAPS USERS = GNN ENJOYERS

B

B

11

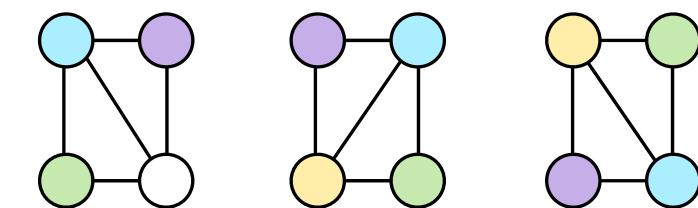


- Node-level info: anonymized historical segment travel speeds, segment length, and segment type (highway, state road, etc.)
- Train GNN to predict traversal time from A to B given the time of day [1]
- Global traversal time loss function

UF FLORIDA

[1] Derrow-Pinion, A., et al, "Eta prediction with graph neural networks in google maps," in *Proc. 30th ACM Int. Conf. Inf. Knowl. Manag.*, 2021, pp. 3767–3776.

GRAPH ISOMORPHISM

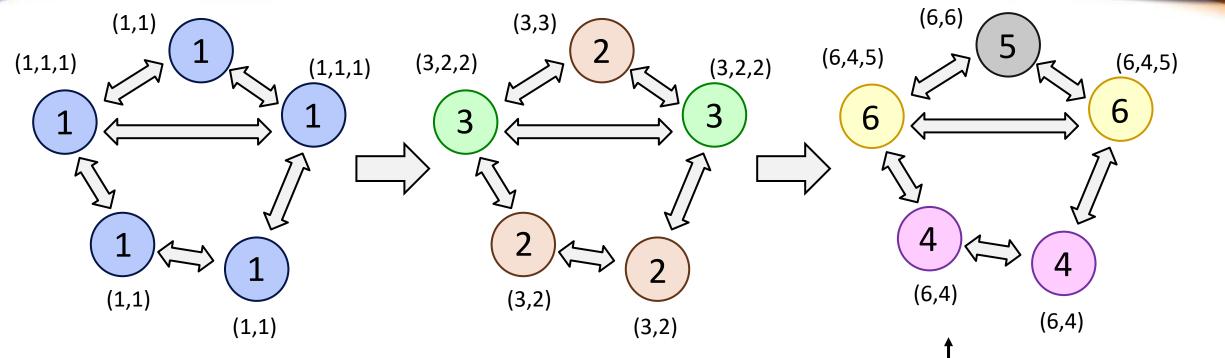


- There exists a permutation that relates the nodes of graphs 1,2, and 3
- How can we test for this?

These graphs are **isomorphic**!

Open problem: Development of polynomial time algorithm to determine whether two graphs are isomorphic

COLOR REFINEMENT = HEURISTIC TEST



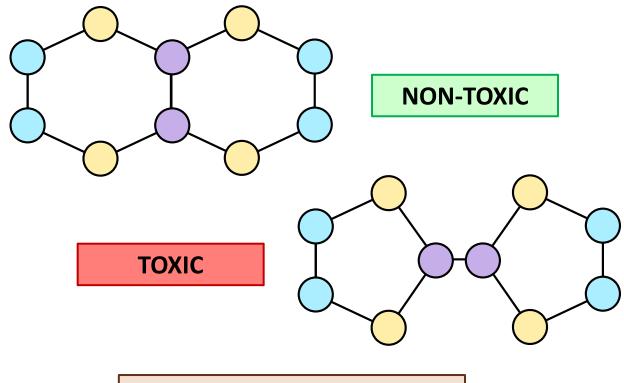
1-WL (Weisfeiler-Lehman) test

NCRED

UF FLORIDA

- Any two graphs that are isomorphic will have the same color distribution after 1-WL are isomorphic (but not the other way around!)
- Generalize to higher dimensions with k-WL (uses pairs, triples, ...)

FUNCTION APPROXIMATION CAPABILITIES



GNN can't tell the difference!

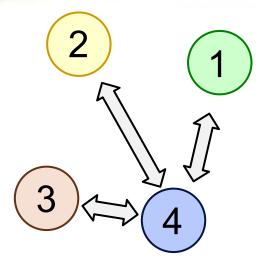
UF FLORIDA

- Invariant function = function output the same, regardless of node order
- Equivariant function = function output
 respects node order
- Message-passing GNNs can distinguish up to 2-WL equivalence [2]

Continuous functions of each node's features on a graph are **equivariant**.

[2] W. Azizian and M. Lelarge, "Expressive power of invariant and equivariant graph neural networks," *Proc. Int. Conf. Learn. Represent.*, 2020.

UNRAVELING THE GNN ARCHITECTURE



- Graph attention network (GAT) architecture [3]
- Rank importance of messages

[3] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, "Graph attention networks," *Int. Conf. Learn. Represent.*, 2018.

$$C_{i,\ell} = a_i^{(j)\mathsf{T}} \left(\left(W_i^{(j)\mathsf{T}} \phi_i^{(j-1)} \right) \oplus \left(W_i^{(j)\mathsf{T}} \phi_\ell^{(j-1)} \right) \right)$$

Typically normalized

using softmax

- Message passing structure introduced challenges in GNN derivative w.r.t. weights calculation
- Need to "chase down" your own weights in update law

N K KG

UF FLORIDA

$$\begin{split} & \frac{\partial \phi_i}{\partial \text{vec}\left(W_i^{(j)}\right)} = W_i^{(k)\top} \varphi_i^{(k-1)} & \text{Recursively defined} \\ & \varphi_{m^{(\ell+1)}}^{(\ell)} \triangleq \begin{cases} \Delta_{m^{(\ell+1)}}^{(\ell)} \left[\left(\varphi_{m^{(\ell)}}^{(\ell-1)}\right)^\mathsf{T} \right]_{m^{(\ell)}}^\mathsf{T}, & \ell = k-1, \dots, j+1, \\ \delta_{i,m^{(\ell+1)}} \pi_{m^{(\ell+1)}}^{(\ell)} \iota_{m^{(\ell+1)}}^{(\ell)}, & \ell = j. \end{cases} \end{split}$$

(

PROBLEM SETUP

Want network of agents to track target with unknown, unstructured dynamics

$$\ddot{q}_0 = f(Q_0), \ Q_0 = [q_0^\top, \quad \dot{q}_0^\top]^\top \in \mathbb{R}^{2n}$$

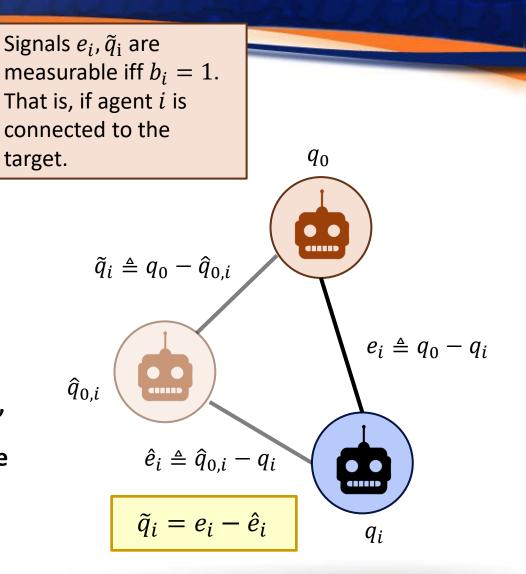
$$\ddot{q}_i = g(R_i) + u_i$$
Approximate together using GNNs

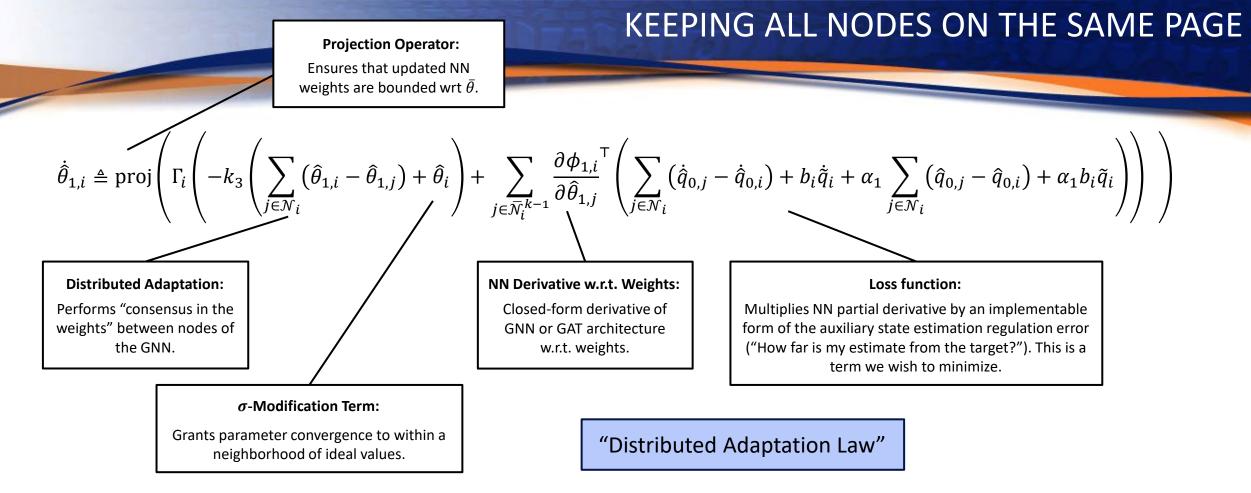
$$r_{1,i} = \dot{\tilde{q}}_i + \alpha_1 \tilde{q}_i \qquad r_{2,i} = \dot{\hat{e}}_i + \alpha_2 \hat{e}_i$$

Position tracking error (e_i) "How far am I from the target?"

UF FLORIDA NCCC

- State estimation error (\hat{e}_i) "How far am I from my estimate?"
- State estimation regulation error (*q̃_i*) "How far is my estimate from the target?"





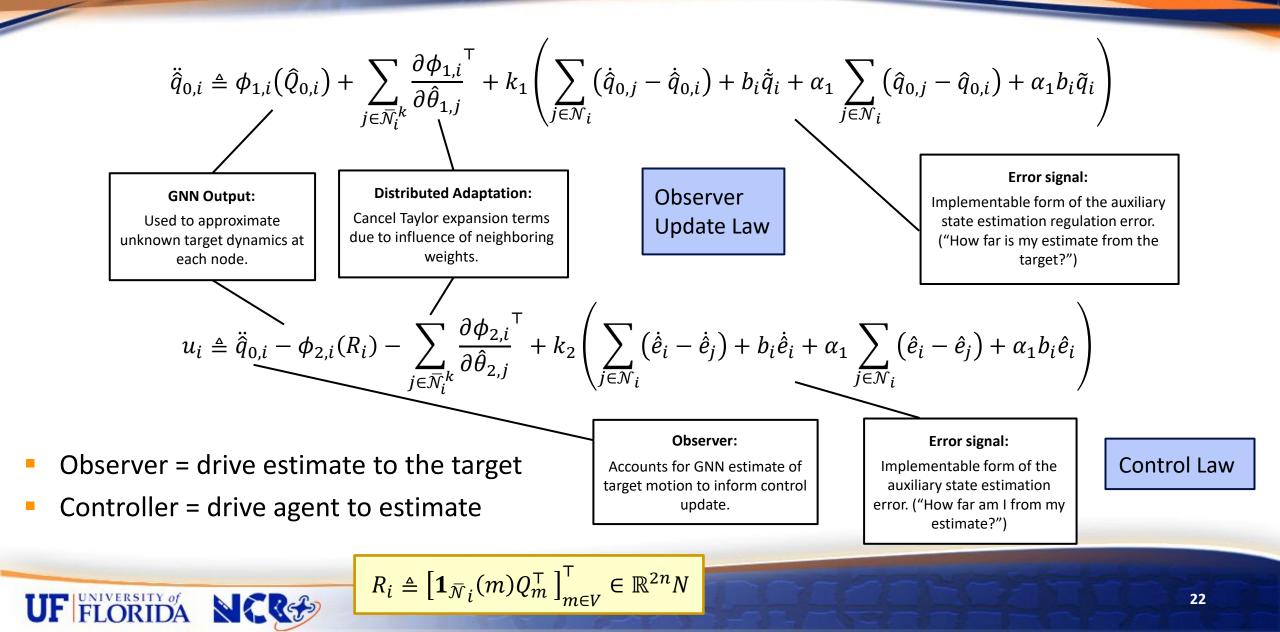
- Nodes cannot perform backpropagation at the same time with the same set of info
- Every node has its own unique set of weights

UF FLORIDA

We want them to converge to the same values (we are all approximating the same unknown function!)

$\hat{Q}_{0,i} \triangleq \left[\hat{q}_{0,i}^{\mathsf{T}}, \dot{\hat{q}}_{0,i}^{\mathsf{T}} \right]^{\mathsf{T}} \in \mathbb{R}^{2n}$

CONTROLLER AND OBSERVER DEVELOPMENT



SKETCH OF ANALYSIS

Consider a candidate Lyapunov function

$$V = \frac{1}{2}\tilde{q}^{\mathsf{T}}\tilde{q} + \frac{1}{2}\hat{e}^{\mathsf{T}}\hat{e} + \frac{1}{2}r_1^{\mathsf{T}}\mathcal{H}r_1 + \frac{1}{2}r_2^{\mathsf{T}}r_2 + \frac{1}{2}\tilde{\theta}_1^{\mathsf{T}}\Gamma_1^{-1}\tilde{\theta}_1 + \frac{1}{2}\tilde{\theta}_2^{\mathsf{T}}\Gamma_2^{-1}\tilde{\theta}_2$$

Theorem 1 (Stability Result)

For agent and target dynamics described on Slide 18 and initial conditions of the states $\zeta(t_0) \in S$, the observer, controller, and adaptive update law guarantee that ζ exponentially converges to \mathcal{U} where

$$\|\zeta(t)\| \leq \left(\frac{\lambda_2}{\lambda_1} \left(\frac{v}{\lambda_4} + e^{-\frac{\lambda_4}{\lambda_2}(t-t_0)} \left(\|\zeta(t_0)\|^2 - \frac{v}{\lambda_4}\right)\right)\right)^{\frac{1}{2}},$$

for all $t \in \mathbb{R}_{\geq 0}$ given that the constants and control gains $\alpha_1, \alpha_2, \epsilon_1, \epsilon_2, k_1, k_2, k_3$, and λ_3 are chosen according to their respective sufficient conditions.

SIMULATED RESULTS

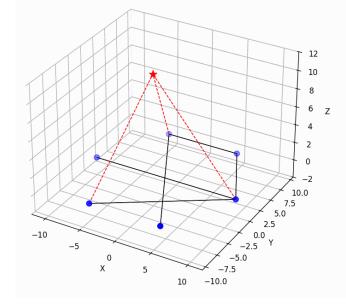
- N = 6 agents, 3 agents connected to target agent
- Unknown target dynamics of the form

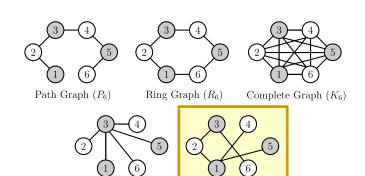
 $\begin{bmatrix} \ddot{x}_0 \\ \ddot{y}_0 \\ \ddot{z}_0 \end{bmatrix} = \begin{bmatrix} \cos(\dot{x}_0) - \sin(\dot{y}_0) + \cos(2\dot{z}_0) \\ \dot{x}_0 - \dot{y}_0 + \dot{z}_0 + \frac{y_0}{\sqrt{1 + |y_0|}} \\ \sin(\dot{y}_0) - \dot{x}_0\dot{z}_0 \end{bmatrix}$

 Unknown inter-agent dynamics of the form

$$\begin{bmatrix} \ddot{x}_i \\ \ddot{y}_i \\ \ddot{z}_i \end{bmatrix} = \begin{bmatrix} \sum_{j \in \mathcal{N}_i} \frac{1}{20,000(y_i - y_j)^2} \\ \sum_{j \in \mathcal{N}_i} (\dot{z}_i - \dot{z}_j) \cos(\dot{x}_i) \\ \sum_{j \in \mathcal{N}_i} \frac{\cos(\dot{z}_i \dot{z}_j)(\dot{x}_i - \dot{x}_j)}{\sqrt{1 + |\dot{x}_i - \dot{x}_j|}} \end{bmatrix} + u_i$$

UF FLORIDA NCC





Acyclic Graph

Star Graph (S_6)

Architecture	e _{RMS}	ė _{RMS}	$\widetilde{\Phi}_{1,RMS}[0:10]$	$\widetilde{\Phi}_{1,RMS}[10:60]$	$\widetilde{\Phi}_{2,RMS}[0:10]$	$\widetilde{\Phi}_{2,RMS}[10:60]$	u _{RMS}
DNN+DNN	0.4844	0.4355	1.049	0.7635	2.430	0.1296	1.305
GNN+GNN	0.3952	0.4250	1.138	0.7580	2.169	0.0805	1.405
GAT+GNN	0.2912	0.3899	2.676	0.5684	2.246	0.0649	1.570

49% improvement in tracking error performance over DNN baseline!

Thank you! Any questions?

