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Stochastic Optimization Problems

Given a data distribution of interest ξ ∼ P∗(Ξ) (testing distribution), a

learning parameter θ ∈ Θ, and a loss function l(ξ, θ), the goal of many

stochastic optimization problems is to minimize the expected loss:

inf
θ∈Θ

Eξ∼P∗(Ξ) [l(ξ, θ)]
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Given a data distribution of interest ξ ∼ P∗(Ξ) (testing distribution), a

learning parameter θ ∈ Θ, and a loss function l(ξ, θ), the goal of many

stochastic optimization problems is to minimize the expected loss:

inf
θ∈Θ

Eξ∼P∗(Ξ) [l(ξ, θ)]

Empirical Risk Minimization

Given finite i.i.d. samples ξ1, ξ2, ..., ξn ∼ P0(Ξ) (training distribution),

denoted the empirical distribution as P̂0(Ξ), the empirical risk

minimization (ERM) minimizes the empirical loss:

inf
θ∈Θ

Eξ∼P̂0(Ξ)
[l(ξ, θ)] = inf

θ∈Θ

1

n

n∑
i=1

[l(ξi , θ)]

Ideal goal: ERM → θ̂ → Eξ∼P∗(Ξ)

[
l(ξ, θ̂)

]
≈ Eξ∼P̂0(Ξ)

[
l(ξ, θ̂)

]
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Failures: ERM Goes Wrong

ERM can go wrong even when the size of the training set goes to infinity

due to distribution shifts.

Distribution shifts: P∗(Ξ) ̸= P0(Ξ)

Figure 1: Sample images showing erroneous behaviors detected by DeepTest1 using synthetic

images. For original images the arrows are marked in blue, while for the synthetic images they are

marked in red.

1[1] Tian, Yuchi, et al. “Deeptest: Automated testing of deep-neural-network-driven autonomous

cars.”
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Failures: ERM Goes Wrong

ERM can go wrong even when the size of the training set goes to infinity

due to distribution shifts.

Distribution shifts: P∗(Ξ) ̸= P0(Ξ)

Figure 2: Human AI collaboration: volunteers (training population) who are willing to participate

and provide the data (sample) do not represent the whole population (target population). 2

2image credit: www.simplypsychology.org/sampling.html 4



Distributionally Robust Optimization (DRO)

Recall, empirical Risk Minimization minimizes the following loss:

ERM: inf
θ∈Θ

Eξ∼P̂0
[l(ξ, θ)]

Distributionally robust optimization aims to find a robust solution by

solving the following problem:

DRO: inf
θ∈Θ

sup
Q∈B(P̂0)

Eξ∼Q [l(ξ, θ)] ,

where B(P̂0) is the ambiguity set (uncertainty ball) around the empirical

distribution P̂0.

We design the ambiguity set B(P̂0) such that it includes the testing

distribution, i.e., P∗ ∈ B(P̂0).
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Ambiguity Set Selection

The ambiguity set is usually defined by a radius ϵ ball around the

emperical distribution P̂0, i.e.,

Bϵ(P̂0) : {Q : dist(Q, P̂0) ≤ ϵ}.

Two popular distribution distance (divergence) metrics

• The f -divergence between distribution P and Q is

Df (P||Q) :=

∫
f (dP/dQ) dQ,

where f is a convex function with f (1) = 0, e.g., Kullback-Leibler

(KL) divergence by taking f (x) = x log x 3.

• The 1-wasserstein distance between distribution P and Q is

W (P,Q) := inf
π∈M(Ξ,Ξ)

E(ξ,ξ′)∼π [∥ξ − ξ′∥] , s.t. π1 = P, π2 = Q.

3The popular conditional value at risk (CVaR) can also be derived from the dual of a DRO

problem under a special uncertainty set.
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Ambiguity Set Selection

• The KL-divergence between distribution P and Q is

DKL(P||Q) :=

∫
f (dP/dQ)dQ,

where f (x) = x log x .

• The 1-wasserstein distance between distribution P and Q is

W (P,Q) := inf
π∈M(Ξ,Ξ)

E(ξ,ξ′)∼π [∥ξ − ξ′∥] , s.t. π1 = P, π2 = Q.

Figure 3: Distances of two discrete distributions g and h under different metrics.4

4JS is the Jensen–Shannon divergence. DJS (P||Q) = 1/2DKL(P||M) + 1/2DKL(Q||M), where

M = 1/2P + 1/2Q is a mixture distribution of P and Q. Image credit: medium.com/@sunil7545 7



Wasserstein DRO

When both P and Q are discrete, the wasserstein distance W (Q,P) can

be solved by a linear program.

W-DRO:

inf
θ∈Θ

sup
Q∈Bϵ(P̂0)

Eξ∼Q [l(ξ, θ)] , where Bϵ(P̂0) : {Q : W (Q, P̂0) ≤ ϵ}.

The wasserstein distance is hard to solve when the target distribution Q

is continuous.

The wasserstein DRO problem is harder (in general, intractable) as it

is optimizing over all distributions (infinite-dimensional) inside the

ambiguity set!
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Wasserstein Distributionally

Robust Offline Contextual Bandit



W-DRO for Offline Contextual Bandit

Problem Setup (robotic navigation in unknown and varying

terrains)

1. the robot observes a type of terrain i with contextual information

Xi :=

{percentages of the terrain of sand, gravel, mud, rocky surfaces},

Xi ∼ P0
x ;

2. the robot selects one policy from a set of pre-learned locomotion

policies advisor recommends according to a policy π0(·|Xi ), e.g.,

Ai ∼ π0(·|Xi ) and Ai ∈ { High-frequency stepping (good for mud),

Low-frequency, energy-efficient gait (good for flat surfaces), etc., };

3. a cost is revealed after executing the policy for a period of time

Yi ∼ P0
Xi ,Ai

, e.g., energy consumption, penalty for falls or unsafe

states ;

4. an offline dataset Dn := {(Xi ,Ai ,Yi )}ni=1 is collected by running

steps 1-3 n times.
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Policy Evaluation and Learning

Given the offline dataset Dn := {(Xi ,Ai ,Yi )}ni=1, we study offline policy

evaluation (OPE) and offline policy learning (OPL)

• OPE returns the expected return of a given policy,

• OPL finds the optimal policy that maximized the expected return.

OPE and OPL problems have been studied in causal inference [2]5 and

offline reinforcement learning [3]6. Yet, most of the works do not

consider distribution shifts.

Why distributional robustness?

1. avoid overfitting due to the finite dataset Dn;

2. selection biases: offline datasets are collected in a specfic funding

office that do not represent the population of interests;

3. cost (reward) shifts.

5Athey, Susan, and Guido W. Imbens. ”The state of applied econometrics: Causality and policy

evaluation.” Journal of Economic perspectives.
6Jiang, Nan, and Lihong Li. ”Doubly robust off-policy value evaluation for reinforcement

learning.” ICML 2016. 10



Distributionally Robust Policy Evaluation and Learning [4]7

Structures in the offline dataset Dn := {(Xi ,Ai ,Yi )}ni=1

The first trick: P(X ,A,Y ) = P(X ) × P(A|X ) × P(Y |X ,A)

Q: Where should we add the ambiguity sets?

DR-OPE: For given ϵx , ϵc > 0 and policy π, we define the

distributionally robust policy value V (π) as:

V (π) = sup
Px∈U(ϵx ;P0

x )

Ex∼Px

[
Ea∼π(·|x)

[
sup

Px,a∈U(ϵc ;P0
x,a)

EPx,a [Y ]

]]
(1)

DR-OPL: Given a learning policy space Π, we define the distributionally

robust policy learning problem:

infπ∈ΠV (π) = infθ∈ΘV (πθ)

= infθ∈Θ sup
Px∈U(ϵx ;P0

x )

Ex∼Px

[
Ea∼πθ(·|x)

[
sup

Px,a∈U(ϵc ;P0
x,a)

EPx,a [Y ]

]]
(2)

7Shen, Xu, Zavlanos, Wasserstein distributionally robust policy evaluation and learning for

contextual bandits, TMLR 2024 11



Distributionally Robust Policy Evaluation and Learning

Q: Can you define the DR-OPE and DR-OPL by using KL ambiguity set?

A: Yes, [5, 6] 8 study DR-OPE and DR-OPL with KL ambiguity set.

However, the KL ambiguity set will only include supports that have been

observed in the offline set and does not consider the geometry of the

support set.

Figure 4: Distances of two discrete distributions g and h under different metrics.

8Si, Nian, et al. ”Distributionally robust batch contextual bandits.” Management Science; Mu,

Tong, et al. ”Factored DRO: Factored distributionally robust policies for contextual bandits.”

NeurIPS (2022)
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Regularized Wasserstein DRO

DR-OPE: V (π) = sup
Px∈U(ϵx ;P0

x )

Ex∼Px

[
Ea∼π(·|x)

[
sup

Px,a∈U(ϵc ;P0
x,a)

EPx,a [Y ]

]]
By duality, we have that:

V (π) = inf
λ≥0

{
ϵxλ + Ex∼P0

x

[
sup
ζ∈X

(
Ea∼π(·|ζ) [m(ζ, a)] − λ(x − ζ)2

) ]}
,

m(x , a) = inf
λ≥0

{
ϵcλ + Eξ∼P0

Ξx,a
sup

ζ∈Ξx,a

(
yx,a(ζ) − λ(ξ − ζ)2

)}
,∀x ∈ X , a ∈ A.

Computational challenges

1. two inner maximization problems: discretized space is large

2. when considering policy learning θ, we might use different numerical

optimization packages, e.g., pytorch for θ on GPUs while GUROBI

for maximization on CPUs.
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Regularized Wasserstein DRO

The second trick: smoothing

(WDRO) = inf
λ≥0

{
ϵλ + Eξ∼P0

[
sup
ζ∈Ξ

(
l(ζ) − λ(ξ − ζ)2

) ]}
.

We define the smoothed dual problem as:

(WDROη) := inf
λ≥0

{
ϵλ + Eξ∼P0

[1

η
log
(∑

ζ∈Ξ
1
|Ξ|e

η(l(ζ)−λ(ξ−ζ)2)
)]}

,

where η > 0 is a hyper-parameter that controls the distance between

the “softmax” and the maximum.

Now, the (WDROη) problem is a smoothed problem and we can use

stochastic gradient descent (SGD) to solve it!

14



Outlier-robust Wasserstein

Distributionally Robust

Optimization



DRO with Outliers

Figure 5: The long tail: Intermittent demand and “unforecastable” SKUs (hard machine learning

training samples in general). 9

9Image credit: www.microsoft.com/en-us/industry/blog/manufacturing-and-

mobility/2018/08/15/the-three-primary-pains-of-modern-inventory-optimization/
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DRO with Outliers

Figure 6: Wasserstein ball fails to include distirbutions of interests when outliers exist.
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DRO with Outliers

Figure 7: Wasserstein ball fails to include distirbutions of interests when outliers exist.

17



DRO with Outliers

Figure 8: Wasserstein ball fails to include distirbutions of interests when outliers exist.

18



DRO with Outliers

Figure 9: Wasserstein ball fails to include distirbutions of interests when outliers exist.

Task: design a distribution distance metric such that the distributions of

interests are close to the training distribution (with outliers). 19



DRO with Outliers

If the offline dataset contains outliers, then any ambiguity set around the

empirical distribution will include the outliers.

(a) Two discrete distributions (b) Unbalanced optimal transport

Figure 10: An visualization of optimal transport plans using unbalanced optimal transport. 10

10Image credit: pythonot.github.io
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DRO with Outliers

Recall, the Wasserstein distance between P and Q is given by

W (P,Q) := inf
π∈M(Ξ,Ξ)

E(ξ,ξ′)∼π [∥ξ − ξ′∥] , s.t. π1 = P, π2 = Q.

The unbalanced wasserstein distance is defined as [7]

UW(P,Q) = inf
π∈M(Ξ,Ξ)

E(ξ,ξ′)∼π [∥ξ − ξ′∥] + Dφ1(π1|P) + Dφ2(π2|Q),

where Dφ1 and Dφ2 are given f -divergence metrics.

For ease of analysis and computation, we select φ1 = ι{1} (i.e., φ1(1) = 0

and ∞ otherwise) and φ2(x) = x log x − x + 1 (KL divergence).

21



DRO with Outliers

Recall, we have the Wasserstein DRO as

(W-DRO) = inf
λ≥0

{
ϵλ + Eξ∼P0

[
sup
ζ∈Ξ

(
l(ζ) − λ(ξ − ζ)2

) ]}
.

By taking the unbalanced wasserstein divergence as the ambiguity set

metric, in [8] 11 we show that

(UW-DRO) = inf
λ≥0

{
ϵλ + λ logEξ∼P0

[
exp

(
sup
ζ∈Ξ

(
l(ζ) − λ(ξ − ζ)2

)
/λ

)]}
.

11Wang, Shen, Zavalnos, Johansson, Outlier-Robust Distributionally Robust Optimization via

Unbalanced Optimal Transport, NeurIPS 2024
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DRO with Outliers
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(UW-DRO) = inf
λ≥0

{
ϵλ + λ logEξ∼P0

[
exp

(
sup
ζ∈Ξ

(
l(ζ) − λ(ξ − ζ)2

)
/λ

)]}
.

Problem:

The UW distance allows distributions without outliers to be close to the

training distribution. However, distributions that contains outliers are

still close to the training distribution. As a result, both W-DRO and

UW-DRO may fail as the inner-max term supζ∈Ξ

(
l(ζ) − λ(ξ − ζ)2

)
could be very large due to the existence of outliers, e.g., l(outlier) = ∞.

11Wang, Shen, Zavalnos, Johansson, Outlier-Robust Distributionally Robust Optimization via

Unbalanced Optimal Transport, NeurIPS 2024
22



DRO with Outliers

Assumption

We are given a function h(ζ) s.t. it penalizes outliers.

The (UW-DRO) becomes

inf
λ≥0

{
ϵλ + λ logEξ∼P0

[
exp

(
sup
ζ∈Ξ

(
l(ζ) − h(ζ) − λ(ξ − ζ)2

)
/λ

)]}
.
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DRO with Outliers

Assumption

We are given a function h(ζ) s.t. it penalizes outliers.

The (UW-DRO) becomes

inf
λ≥0

{
ϵλ + λ logEξ∼P0

[
exp

(
sup
ζ∈Ξ

(
l(ζ) − h(ζ) − λ(ξ − ζ)2

)
/λ

)]}
.

Wait! Can’t you do the same for WDRO? For example:

(W-DRO) = inf
λ≥0

{
ϵλ + Eξ∼P0

[
sup
ζ∈Ξ

(
l(ζ) − h(ζ) − λ(ξ − ζ)2

) ]}
.

Question: Does this work?

Answer: No! Recall, ϵ is the uncertainty ball radius, to include the

testing distribution P∗, the radius for WDRO needs to be set very large!

As a result, WDRO will provide overly conservative results.

In contrast, a small radius uncertainty ball can include P∗ due to UOT.
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Conclusion



Summary

1. We can apply Wasserstein DRO to address distribution shifts in

decision-making problems.

2. The Wasserstein DRO problem is in general computationally

intractable. 1. Dataset structures should be considered when placing

ambiguity sets (conditional probability). 2. Approximation methods,

e.g, smoothing, can be used to enable an end-to-end training.

3. Wasserstein DRO may provide overly conservative results when

outliers exist. Unbalanced optimal transport can help.

4. Robustness is the core of assured autonomy. Distributional

robustness provides one solution to data-driven assured autonomy

problems.
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OPE/L for healthcare

The International Stroke Trial (IST) [9] is a randomized controlled trial

that aims to study the effects of early administration of aspirin and/or

heparin on the clinical course of acute ischaemic stroke.

The IST dataset [10] includes 19,435 patients with:

• contextual information: age, gender, and level of consciousness

before treatment admissions, as well as follow-up results on day 14,

including the occurrence of recurrent stroke, pulmonary embolism,

and death.

• actions: prescribing both aspirin and heparin (high or medium doses)

(a1) and the control action of of not administering any treatment,

neither aspirin or heparin (a2). The behavioral policy

π0(a = a1) = 0.5.

• cost: the cost function is calculated based on the recorded follow-up

events on day 14.
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OPE/L for healthcare

The International Stroke Trial (IST) [9] is a randomized controlled trial

that aims to study the effects of early administration of aspirin and/or

heparin on the clinical course of acute ischemic stroke.

Distribution shift: we split the offline dataset into a training set and a

testing set, and we introduce a selection bias into the training set.

Specifically, we randomly remove 50% of the patients in the training set

who are not fully conscious. This creates a difference in the context

distribution between the training set and the testing set, with the

patients in the testing set being more likely to be unconscious before

treatment than those in the training set.
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OPE/L for healthcare

Q: How is the uncertainty set radius ϵ selected?

A: We can split the training set into two parts and calculate the

Wasserstein distance between them, which yields the uncertainty set

ϵw = 0.03.

Table 1: Policy evaluation and learning results

Method / Uncertainty set radius (ϵW) 0.03 0.05 0.1

OPE: KL DRO (ϵKL) 0.30 (0.01) 0.374 (0.1) 0.74 (1.0)

OPE: Wasserstein DRO (LP on sub-support) 0.53 0.61 0.79

OPE: Regulated Wasserstein DRO (BSGD) 0.59 0.76 1.05

OPL: KL DRO (ϵKL) 0.28 (0.01) 0.368 (0.1) 0.69 (1.0)

OPL: Regulated Wasserstein DRO (BSGD) 0.54 0.62 0.92

Expectation under P̂ (training set, random policy) 0.28

Expectation under Q (testing set, random policy) 0.38
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Optimal transport (exact matching)

Figure 11: Python code example.
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Outlier-robust W-DRO for Linear Regression

Consider a linear regression problem with the loss l(ξ, θ) =: |θ⊺x − y |,
where a data point ξ = (x , y) includes features x and a label y .

Clean data {Xi , θ
⊺
∗Xi}ni=1, where X1, . . . ,Xn are i.i.d. from N (0, Id).

Drawing a uniform random subset S ⊂ [n] of size ⌊0.1n⌋, the corrupted

data distribution P̂0 is defined to be uniform over{(
C 1{i∈S}Xi ,

(
−C 2

)1{i∈S}
θ⊺∗Xi + ρ

)}n

i=1
,

where C = 8 is a corruption scaling coefficient and ρ = 0.1 is a shift

coefficient.

We consider prior knowledge on the mean of the clean distribution,

denoted as ξ̄, and design the function h(ξ) = λ2

∥∥ξ − ξ̄
∥∥.
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Wasserstein DRO in practice v.s. KL DRO

(WDRO) = inf
λ≥0

{
ϵλ + Eξ∼P0

[
sup
ζ∈Ξ

(
l(ζ) − λ(ξ − ζ)2

) ]}
.

Benefits of using Wasserstein DRO

1. extra tuning parameters via the choice of distance metric in OT, e.g,

2-norm as above

2. the ambiguity set radius ϵ can be estimated if testing set is given; it

can be lower bounded if testing set is not given
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Outlier-robust W-DRO for Linear Regression
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(a) Excess risk with various samples.
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(b) Excess risk with varied dimensions.

Figure 12: Excess risk (performance gap compared to θ∗) of standard DRO, OR-WDRO [11], and

UOT-DRO [8] 14 with varied sample size and dimension for linear regression. The error bar denotes

± standard deviation.

14Wang, Shen, Zavalnos, Johansson, Outlier-Robust Distributionally Robust Optimization via

Unbalanced Optimal Transport, NeurIPS 2024
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Outlier-robust W-DRO for Linear Regression

Table 2: Comparison of running time and excess risk of different methods for linear regression.

The symbol ‘*’ indicates that running time is over 12000 seconds.

Sample Size n Standard DRO OR-WDRO [11] UOT-DRO [8] 15

Time Excess risk Time Excess risk Time Excess risk

80 0.1 3.230 0.4 0.103 2.7 0.060

200 0.2 2.298 1.3 0.064 3.4 0.040

2000 3.3 0.441 29.8 0.050 4.7 0.038

5000 9.2 0.371 259.5 0.040 7.7 0.034

10000 28.9 0.352 1438.7 0.033 11.9 0.033

20000 110.8 0.380 * * 22.2 0.031

15Wang, Shen, Zavalnos, Johansson, Outlier-Robust Distributionally Robust Optimization via

Unbalanced Optimal Transport, NeurIPS 2024
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Wasserstein Distributionally

Robust Linear Regression



W-DRO for Linear Regression

Consider a linear regression problem with the loss l(ξ, θ) =: |θ⊺x − y |,
where a data point ξ = (x , y) includes features x and a label y .

classic robust optimization via regularization

inf
θ∈Θ

Eξ∼P̂0
[l(ξ, θ)] = inf

θ∈Θ

1

N

N∑
i=1

|θ⊺xi − yi | + λ ∥θ∥

W-DRO as regularization [12, 13]

(P) = inf
θ∈Θ

sup
Q∈Bϵ(P̂0)

Eξ∼Q [l(ξ, θ)] , where Bϵ(P̂0) : {Q : W (Q, P̂0) ≤ ϵ}

Q: How can you express the expectation in Q using offline data points?
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W-DRO for Linear Regression

classic robust optimization via regularization

inf
θ∈Θ

Eξ∼P̂0
[l(ξ, θ)] = inf

θ∈Θ

1

N

N∑
i=1

|θ⊺xi − yi | + λ ∥θ∥

W-DRO as regularization [12, 13]

(P) = inf
θ∈Θ

sup
Q∈Bϵ(P̂0)

Eξ∼Q [l(ξ, θ)] , where Bϵ(P̂0) : {Q : W (Q, P̂0) ≤ ϵ}

(D) = inf
θ∈Θ

inf
λ≥0,si

λϵ +
1

N

N∑
i=1

si , s.t. sup
ζ∈X×Y

l(ζ, θ) − λ ∥ζ − ξi∥ ≤ si , ∀i

zero duality gap (P)=(D),

(D) = inf
θ∈Θ

ϵ ∥(−θ, 1)∥∗ +
1

N

N∑
i=1

|θ⊺xi − yi | this is a special case!
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What We Learned from W-DRO for Linear Regression

• W-DRO for linear regression is similar to classic regression methods

with a regularization term.

• W-DRO in general involves an inner-maximization problem and is

computationally challenging (linear regression has a closed-form

solution to its inner-maximization problem).

sup
ζ∈X×Y

l(ζ, θ) − λ ∥ζ − ξi∥ ≤ si .

NO CLOSED-FORM SOLUTION!
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