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Impulsive Coupling Systems



Formation Control w/ Intermittency



Impulsive Coupling Systems



Communication Events

Intermittent events at time instances t1  t2  · · ·  tj  . . .
can be generated by an autonomous hybrid inclusion

Idea: To capture all possible event sequences {ti`}
1
`=1 while

removing dependency on time and stochastic dynamics, define

I ⌧i is a timer that, when expires, generates the communication
events from the neighbors of the i-th agent
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Synchronization Over a Network

Let the dynamics of the i-th node of the network be

żi = f̃(zi, ui)

Design of a feedback controller for zi that runs at each agent
using local information transmitted at communication event times
{ti`}

1
`=1 satisfying T i

1  ti`+1 � ti`  T i
2 where

I T i
1 defines the fastest communication rate (> 0)

I T i
2 is the Maximum Allowable Transfer Time (MATI)

Hybrid State-Feedback Control: Assign ui = ⌘i with dynamics

⌘̇i = fc(⌘i, zi) when t /2 {ti`}
1
`=1

⌘+i =
NX

k=1

gikGik(zi, zk, ⌘i, ⌘k) when t 2 {ti`}
1
`=11

where gains fc and Gik are to be designed and gik are the
elements of the adjacency matrix.
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Synchronization of a Network of Oscillators

Four 2-D systems

I Comm. Parameters:

T1 = 0.2, T2 = 0.6

I i-th Controller Gain:

K = �[0.4; 1.7] and

E = �1.2

I i-th Network Graph:

G =
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Synchronization in a Small-World Network

Small-world networks:
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Nominal Robustness For Networked Systems

Assured robust autonomy: ⇢i > 0

I Parameter uncertainty
I Skewed clocks

⌧̇i = �1 ! ⌧̇i 2 � 1 + ⇢iB
I Rate uncertainty

[T i
1, T

i
2] ! [T i

1 � ⇢i, T i
2 + ⇢i]

I Unmodeled dynamics
I Additive dynamics

żi = f̃i(zi, ui) ! żi 2 f̃i(zi, ui) + ⇢iB
I Event conditions

⌧i = 0 ! ⌧i 2 ⇢iB
I Disturbances

I Actuator noise (ISS)

I Measurement noise (ISS)

I Information dropouts



Modeling Hybrid Systems: Closed Loop

Hybrid closed-loop systems are given by hybrid inclusions

H

⇢
ẋ = F (x) x 2 C
x+ = G(x) x 2 D

where x is the state

I C is the flow set

I F is the flow map

I D is the jump set

I G is the jump map

Solutions are functions parameterized by hybrid time (t, j):
I Flows parameterized by t 2 R�0 := [0,+1)
I Jumps parameterized by j 2 N�0 := {0, 1, 2, . . .}

Then, solutions to H are given by hybrid arcs x defined on

([0, t1]⇥ {0}) [ ([t1, t2]⇥ {1}) [ . . . ([tj , tj+1]⇥ {j}) [ . . .

The state x can have logic, memory, and timer components.The hybrid system H satisfies the hybrid basic conditions if
C, D are closed and F , G are “continuous”
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From Robust Asymptotic Stability to ....

I Forward invariance and safety properties:
I Tangent cone conditions and barrier functions
I Optimal invariance-based control
I Applications: vehicle control, security



From Robust Asymptotic Stability to ....

I Optimality guarantees:
I Hybrid heavy ball and Nesterov methods
I Constrained optimization
I Applications: distributed optimization with intermittency,

multi-agent systems



From Robust Asymptotic Stability to ....

I Advanced feedback control:
I Model predictive control
I Learning-based control
I Applications: all of the above

Dynamic optimization:

Mayer form:
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Modeling Hybrid Systems: Hybrid Plant

Hybrid closed-loop systems are given by hybrid inclusions with
inputs

H

⇢
ẋ 2 F (x, u) (x, u) 2 C
x+ 2 G(x, u) (x, u) 2 D

where x is the state and u the input,

I C is the flow set

I F is the flow map

I D is the jump set

I G is the jump map

Solutions are functions parameterized by hybrid time (t, j):

I Flows parameterized by t 2 R�0 := [0,+1)

I Jumps parameterized by j 2 N�0 := {0, 1, 2, . . .}

Then, solutions to H are given by hybrid arcs x defined on

([0, t1]⇥ {0}) [ ([t1, t2]⇥ {1}) [ . . . ([tj , tj+1]⇥ {j}) [ . . .

The state x can have logic, memory, and timer components.



Modeling Hybrid Systems: Hybrid Plant

Hybrid Feedback Control

Princeton University Press

2021



Research Areas during AFOSR CoE

1. Intermittent Information
I Estimation
I Synchronization

2. Safety

I Safety Certificates
I Reinforcement Learning

3. Optimization
I Hybrid Model Predictive Control
I Distributed Optimization
I Optimization with Computational Constraints

4. Security
I Attack Detection
I Hybrid Control for Attack Recovery

During this project, we published 91 conference papers, 44 journal papers, 4 book
chapters, and 1 textbook related to these topics.



HyRRT/HySST: Sampling-based 
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Motivation
Hybrid system exhibits combined 
continuous and discrete behaviors 
within respective constraint sets.

[2] Duncan W. Haldane et al. Robotic vertical jumping agility via series-elastic power modulation.Sci. Robot.1,eaag 
2048(2016).DOI:10.1126/scirobotics.aag2048

[1] J. Zha and M. W. Mueller, "Exploiting collisions for sampling-based multicopter motion planning," 2021 IEEE 

International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021, pp. 7943-7949, doi: 
10.1109/ICRA48506.2021.9561166.

Collision-resilient aerial vehicle [1]Jumping insect robot [2]

[3] Sanfelice, Ricardo G. Hybrid feedback control. Princeton University Press, 2021.

Motion planning considering tire changing or 
recharging

Robotic systems with multimodal structure

ℋ[3]:  ቊ
ሶ𝑥 = 𝑓 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐶 

𝑥+ = 𝑔 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐷 

➢ 𝐶 is the flow set

➢ 𝑓 is the flow map

➢ 𝐷 is the jump set

➢ 𝑔 is the jump map
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Problem Formulation: Feasible Motion 
Planning Problem

Problem 1: (Feasible motion planning 
problem  for hybrid systems) Given a hybrid 
system ℋ as in (1) with state 𝑥 ∈ ℝ𝑛 and 
input u ∈  ℝ𝑚 , the initial state set 𝑋0 ⊂ ℝ𝑛 , 
the final state set 𝑋𝑓 ⊂ ℝ𝑛 , the unsafe set 
𝑋𝑢 ⊂ ℝ𝑛 × ℝ𝑚 , find a pair (𝜙, 𝑢) such that 
for some 𝑇, 𝐽 ∈ dom 𝜙, 𝑢 , the following 
hold:

➢ 𝜙 0, 0 ∈ 𝑋0;

➢ 𝜙 𝑇, 𝐽 ∈ 𝑋𝑓;

➢ (𝜙, 𝑢) is a solution pair to ℋ;

➢ For any 𝑡, 𝑗 ∈ dom 𝜙, 𝑢  such that 𝑡 +
𝑗 ≤ 𝑇 + 𝐽, 𝜙 𝑡, 𝑗 , 𝑢 𝑡, 𝑗 ∉ 𝑋𝑢.

ℋ:  ቊ
ሶ𝑥 = 𝑓 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐶 

𝑥+ = 𝑔 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐷 
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HyRRT [1]

ℋ:  ቊ
ሶ𝑥 = 𝑓 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐶 

𝑥+ = 𝑔 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐷 

ℋ𝛿: ቊ
ሶ𝑥 = 𝑓𝛿 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐶𝛿

𝑥+ = 𝑔𝛿 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐷𝛿

Create clearance!

Step 2: Randomly select from 
flow or jump scheme

Step 1. Inflation of hybrid 
systems

[1] Wang, Nan, and Ricardo G. Sanfelice. "Motion planning for hybrid dynamical systems: Framework, algorithm template, 
and a sampling-based approach." The International Journal of Robotics Research (2025)

Step 3: Find the closest 
vertex in the search tree to 
the random state
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HyRRT

Theorem 1. (Probabilistic Completeness of HyRRT [1]) 
Suppose there exists a motion plan (𝜙, 𝑢) to 𝒫 =
(𝑋0, 𝑋𝑓, 𝑋𝑢, (𝐶, 𝑓, 𝐷, 𝑔)). When HyRRT is used to solve 𝒫 =

(𝑋0, 𝑋𝑓, 𝑋𝑢, (𝐶𝛿, 𝑓𝛿, 𝐷𝛿, 𝑔𝛿)), the probability that HyRRT 
fails to find a motion plan (𝜙′, 𝑢′) such that 𝜙′ is close to 
𝜙 after 𝑘 iterations is at most a𝑒−𝑏𝑘, where 𝑎, 𝑏 > 0.

Step 4: Random propagation via flow or jump

ℋ:  ቊ
ሶ𝑥 = 𝑓 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐶 

𝑥+ = 𝑔 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐷 

ℋ𝛿: ቊ
ሶ𝑥 = 𝑓𝛿 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐶𝛿

𝑥+ = 𝑔𝛿 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐷𝛿

Create clearance!

[1] Wang, Nan, and Ricardo G. Sanfelice. "Motion planning for hybrid dynamical systems: Framework, algorithm 
template, and a sampling-based approach." The International Journal of Robotics Research (2025)
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ℋ:  ቊ
ሶ𝑥 = 𝑓 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐶 

𝑥+ = 𝑔 𝑥, 𝑢  (𝑥, 𝑢) ∈ 𝐷 

Problem 2: (Optimal motion planning 
problem for hybrid systems) Given Problem 
1 and a cost functional 𝑐, find a feasible 
motion plan (𝜙∗, 𝑢∗) to Problem 1 such that 
(𝜙∗, 𝑢∗) = arg min

(𝜙,𝑢)
𝑐(𝜙).

Problem Formulation: Optimal Motion 
Planning Problem
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HySST [1]

HySST finds the vertex with the 
minimal cost within the neighborhood 
of the random state

HyRRT finds the closest vertex 
in the search tree to the random 
state

[1] Wang, Nan, and Ricardo G. Sanfelice. "HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion 

Planning Algorithm for Hybrid Dynamical Systems.” IEEE 62nd Conference on Decision and Control (CDC). IEEE, 2023.
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HySST

Theorem 2. (Asymptotic Near-Optimality of 
HySST [2]) Suppose there exists an optimal  motion 
plan (𝜙∗, 𝑢∗) to 𝒫∗ = (𝑋0, 𝑋𝑓, 𝑋𝑢, 𝐶, 𝑓, 𝐷, 𝑔 , 𝑐). 
When HySST is used to solve 𝒫 =
(𝑋0, 𝑋𝑓, 𝑋𝑢, (𝐶𝛿, 𝑓𝛿, 𝐷𝛿, 𝑔𝛿), c), the probability that 
HySST finds a motion plan (𝜙′, 𝑢′) such that 𝑐 𝜙′ <
1 + 𝑎𝛿 𝑐(𝜙∗) converges to 1 as the number of 

iterations approaches infinity.

Sparsify the vertices by maintaining a static set of 
witnesses.

[1] Wang, Nan, and Ricardo G. Sanfelice. "HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion 

Planning Algorithm for Hybrid Dynamical Systems." to appear in 2023 IEEE 62nd Conference on Decision and Control 
(CDC). IEEE, 2023.
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Takeaways
• We formulate a general motion planning problem for 

hybrid systems.

• We propose a probabilistically complete HyRRT to 
solve feasible motion planning problems for hybrid 
systems.

• We propose an asymptotically near-optimal HySST 
to solve optimal motion planning problems for 
hybrid systems.

HyRRT

HySST

Email me at nanwang@ucsc.edu
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Motivation

Control Theory

Quadruped Robot. Mutiple time domains.

▶ Synthesis of controllers for safety of hybrid systems under disturbances is yet to be
explored.

▶ Existing methods only apply to limited classes of systems and fall short of
guaranteeing safety and optimality for hybrid systems.

▶ Challenges: Hybrid systems pose additional challenges due to interaction of
discrete and continuous dynamics

Montenegro G., J. Leudo, and Sanfelice - UCSC - 2/12
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Motivation

Control Theory

Quadruped Robot. Mutiple time domains.

▶ Synthesis of controllers for safety of hybrid systems under disturbances is yet to be
explored.

▶ Existing methods only apply to limited classes of systems and fall short of
guaranteeing safety and optimality for hybrid systems.

▶ Challenges: Hybrid systems pose additional challenges due to interaction of
discrete and continuous dynamics

Thus, we propose a framework to certify safety and optimality for systems
with such complex dynamics even under disturbances.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 2/12



Modeling Hybrid Dynamics
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Hybrid Systems

A hybrid system H with state x as in [Goebel, et.al., PUP 2012]:

H
{

ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

▶ C is the flow set

▶ F is the flow map

▶ D is the jump set

▶ G is the jump map

Solutions parametrized by (t, j):

▶ t ∈ [0,∞), time elapsed during flows

▶ j ∈ {0, 1, . . . }, number of jumps that have occurred

Domain of a solution of the form

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ,

where t1 ≤ t2 ≤ . . . are the jump times.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 4/12
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ẋ = F (x) x ∈ C
x+ = G(x) x ∈ D

▶ C is the flow set

▶ F is the flow map

▶ D is the jump set

▶ G is the jump map

Solutions parametrized by (t, j):

▶ t ∈ [0,∞), time elapsed during flows

▶ j ∈ {0, 1, . . . }, number of jumps that have occurred

Domain of a solution of the form

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ,

where t1 ≤ t2 ≤ . . . are the jump times. Montenegro G., J. Leudo, and Sanfelice - UCSC - 4/12



Connections to Other Frameworks

Switched Systems

ẋ =fσ(t)(x)

σ(t) ∈{1, 2, . . . }

Differential-Algebraic Equations

ẋ =f(x,w)

0 =η(x,w)

Impulsive Systems

ẋ =f(x(t))

x(t+) =g(x(t)) t ∈ {t1, t2, . . . }

Hybrid Automata

Montenegro G., J. Leudo, and Sanfelice - UCSC - 5/12
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Differential-Algebraic Equations

ẋ =f(x,w)

0 =η(x,w)

Impulsive Systems

ẋ =f(x(t))

x(t+) =g(x(t)) t ∈ {t1, t2, . . . }

Hybrid Automata

To the best of our knowledge, there does not exist previous work to synthesize
safety controllers that are also optimal for hybrid systems under disturbances
modeled in such framework.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 5/12



Input-to-State Safety

Consider the following hybrid system H on R affine in the input w ∈ Rm:

H :

{
ẋ = F (x,wC) := f(x) + fw(x)wC (x,wC) ∈ C
x+ = G(x,wD) := g(x) + gw(x)wD (x,wD) ∈ D

Input-to-State Safety for Hybrid Systems

Consider a closed set K ⊂ Rn defined as the 0-sublevel set of a function B : domB → R, and
a hybrid system H. If there exist w̄ ≥ 0 and ρ ∈ K∞ such that

(ϕ,w) ∈ SH(K), ||w||# ≤ w̄

⇒ B(ϕ(t, j)) ≤ ρ(w̄) ∀(t, j) ∈ domϕ

where the function ρ is referred to as the ISSf gain, then the system H is w̄-small-input
input-to-state safe (w̄-small-input ISSf) with respect to the disturbance w and the set K.
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Input-to-State Safety

Safety and invariance

It is immediate that the system H is w̄-small-input ISSf with respect to w and K if and only if
there exist w̄ ≥ 0 and ρ ∈ K∞ such that the set Kd(w̄)⊃K defined as

Kd(w̄) := {x ∈ Π(C) ∪Π(D) : B(x)− ρ(w̄) ≤ 0}

is conditionally pre-invariant for H with respect to w and K.

Theorem. ISSf under a barrier function candidate.

Given a hybrid system H and a closed set K ⊂ Rn, suppose B is an ISSf-BF candidate for H
with respect to (K,Kd(w̄)), where Kd(w̄) is defined for some ρ ∈ K∞ and w̄ ≥ 0. Let V be an
open neighborhood of Kd(w̄). If there exist αC ≥ 0 and αD ∈ [0, 1] such that

⟨∇B(x), F (x,wC)⟩ ≤ −αCB(x) ∀(x,wC) ∈ C : x ∈ V\Kd(w̄), |wC | ≤ w̄

B(G(x,wD))−B(x) ≤ −αD(B(x)− ρ(w̄)) ∀(x,wD) ∈ D : x ∈ Kd(w̄), |wD| ≤ w̄
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Input-to-State Safety QP Filter

But we love control! Let’s bring it back:
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H :

{
ẋ = F (x,wC) := f(x) + fu(x)uC + fw(x)wC (x, (uC , wC)) ∈ C
x+ = G(x,wD) := g(x) + gu(x)uD + gw(x)wD (x, (uD, wD)) ∈ D

Montenegro G., J. Leudo, and Sanfelice - UCSC - 8/12
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But we love control! Let’s bring it back:

H :

{
ẋ = F (x,wC) := f(x) + fu(x)uC + fw(x)wC (x, (uC , wC)) ∈ C
x+ = G(x,wD) := g(x) + gu(x)uD + gw(x)wD (x, (uD, wD)) ∈ D

Assumption. Control-affine jumps.

Consider a hybrid system H, a feedback law κ := (κC , κD) = (κ̄C + κ̂C , κ̄D + κ̂D),
and a scalar function B. Suppose that there exist functions B̂Lu and B̂Lw such that,
for all (x, (κD(x), wD)) ∈ D,

B (G(x, (κD(x), wD))) = B
(
g(x) + gu(x)κD(x) + gw(x)wD

)
≤ B

(
g(x) + gu(x)κ̄D(x)

)
+ B̂Lu(x)κ̂D(x) + B̂Lw(x)wD.
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Input-to-State Safety QP Filter

But we love control! Let’s bring it back:

H :

{
ẋ = F (x,wC) := f(x) + fu(x)uC + fw(x)wC (x, (uC , wC)) ∈ C
x+ = G(x,wD) := g(x) + gu(x)uD + gw(x)wD (x, (uD, wD)) ∈ D

Given κ̄C and αC ≥ 0, we define

ωC(x) := Lf+fuκ̄C
B(x)

+ |LfwB(x)|ρ−1(B(x)) + αCB(x)

and introduce the following QP

κ̂CQP
(x) = argmin

v∈RmCu

|v|2

subject to LfuB(x)v ≤ −ωC(x)

for all x ∈ V ∩Π(C).

Given κ̄D and αD ∈ [0, 1], we define

ωD(x) := B
(
g(x) + gu(x)κ̄D(x)

)
−B(x)

+ |B̂Lw(x)|w̄ + αD(B(x)−ρ(w̄))

and introduce the following QP

κ̂DQP
(x) = argmin

v∈RmDu

|v|2

subject to B̂Lu(x)v ≤ −ωD(x)

for all x ∈ Kd(w̄) ∩Π(D).
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(x) = argmin

v∈RmDu

|v|2

subject to B̂Lu(x)v ≤ −ωD(x)

for all x ∈ Kd(w̄) ∩Π(D).

Theorem. The QP filter κ̂QP := (κ̂CQP
, κ̂DQP

) renders the hybrid closed-loop system
Hκ w̄-small-input ISSf w.r.t. (K,w).
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Two-Player Zero-Sum Hybrid Game

Given ξ ∈ K, an input action (u,w) = ((uC , uD), (wC , wD)), the stage cost for flows
LC , the stage cost for jumps LD, and the terminal cost q, we define the cost
associated to the solution (ϕ, (u,w)) to H from ξ as

J (ξ, (u,w)) :=

supj dom ϕ∑
j=0

∫ tj+1

tj

LC(ϕ(t, j), (uC(t, j), wC(t, j)))dt

+

supj dom ϕ−1∑
j=0

LD(ϕ(tj+1, j), (uD(tj+1, j), wD(tj+1, j)))

+ lim sup
t+j→supt dom ϕ+supj dom ϕ

(t,j)∈dom ϕ

q(ϕ(t, j))
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+ lim sup
t+j→supt dom ϕ+supj dom ϕ

(t,j)∈dom ϕ

q(ϕ(t, j))

Definition. (Value function). Given ξ ∈ K and a nominal feedback law κ̄, the
value function at ξ is given by

J ∗(ξ) := min
u

max
w

u=(u,w)∈UH(κ̄,w̄)

J (ξ, (u,w)).
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value function at ξ is given by

J ∗(ξ) := min
u

max
w

u=(u,w)∈UH(κ̄,w̄)

J (ξ, (u,w)).

Theorem. The QP filter κ̂QP := (κ̂CQP
, κ̂DQP

) minimizes J , under the worst
case disturbacen, for some LC , LD, and q. In addition, the CBF B is the value
function for the hybrid game.
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Two-Player Zero-Sum Hybrid Game

For more details:

C. A. Montenegro G., S. Leudo, and R. G. Sanfelice, “Inverse-Optimal Safety
Control for Hybrid Systems”, in Proceedings of the 28th ACM International
Conference on Hybrid Systems: Computation and Control, Irvine, CA, USA, 2025.
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