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Intermittent events at time instances t; <y < --- <t; < ...
can be generated by an autonomous hybrid inclusion
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Idea: To capture all possible event sequences {t;}°; while
removing dependency on time and stochastic dynamics, define
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7
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Intermittent events at time instances t; <y < --- <t; < ...
can be generated by an autonomous hybrid inclusion

Idea: To capture all possible event sequences {¢;}2°, while
removing dependency on time and stochastic dynamics, define
» 7, is a timer that, when expires, generates the communication
events from the neighbors of the i-th agent
with dynamics

{Tg = -1 7 € [0, T3]




Let the dynamics of the i-th node of the network be

zi = f(zi,u;)
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Let the dynamics of the i-th node of the network be

‘\/’,

zi = f(zi,wi)

Design of a feedback controller for z; that runs at each agent
using local information transmitted at communication event times
{t}52, satisfying T} <), | —t; < T where

» T defines the fastest communication rate (> 0)

» Ti is the Maximum Allowable Transfer Time (MATI)
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zi = f(zi,wi)

Design of a feedback controller for z; that runs at each agent
using local information transmitted at communication event times
{t}52, satisfying T} <), | —t; < T where

» T defines the fastest communication rate (> 0)

» Ti is the Maximum Allowable Transfer Time (MATI)

Hybrid State-Feedback Control: Assign u; = 7; with dynamics

i = fe(ni, 2i) whent ¢ {t;}32,
N .

n = ginGik(zi, 2k min k) whent € {t;}72,1
k=1

where gains f. and G;; are to be designed and g;; are the
elements of the adjacency matrix.



A Smstranization of « Network of OF N

Four 2-D systems

» {-th Controller Gain:

K = —[0.4;1.7] and
E=-12
» i-th Network Graph:
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Small-world networks:
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Assured robust autonomy:
> Parameter uncertainty
> Skewed clocks
Fi=—1
P Rate uncertainty
11, T3]
» Unmodeled dynamics
> Additive dynamics
4 = filzi, )
> Event conditions
T = 0
» Disturbances
> Actuator noise (ISS)

> Measurement noise (ISS)

» Information dropouts

_)

pi >0

7 eE—14p;B

[T§ — pi, T4 + pi]

i € filzi,wi) + piB

T € piB



Hybrid closed-loop systems are given by hybrid inclusions

2y z = F(x) reC
zt = G(2) reD
where z is the state
» (' is the flow set » D is the jump set
» F'is the flow map » G is the jump map

Solutions are functions parameterized by hybrid time (¢, j):
» Flows parameterized by ¢ € R>q := [0, +00)
» Jumps parameterized by j € N>¢ :={0,1,2,...}
Then, solutions to H are given by hybrid arcs x defined on

([0, 1] x {OH) LU ([tas to] x {1H) U ([t tja] x {71 U

The hybrid system H satisfies the hybrid basic conditions if
C, D are closed and F', GG are “continuous”
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\j, From Robust

> Forward invariance and safety properties:
> Tangent cone conditions and barrier functions
> Optimal invariance-based control
> Applications: vehicle control, security

K" (2) £ arg min Q (z,u) )
ueR™ g o

sit. T(z,u) < —y(z),
b (zv u) <0,

2|
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\~Z, From Robust

» Optimality guarantees:
> Hybrid heavy ball and Nesterov methods
> Constrained optimization
> Applications: distributed optimization with intermittency,
multi-agent systems

Effect of Network Size on Convergence Rate
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j, From Robust

» Advanced feedback control:

> Model predictive control
> Learning-based control
> Applications: all of the above

Dynamic optimization:

Given an initial condition z( € R™,
minimize  J(z,u) Algorithm 1 Hybrid MPC Implementation
(eSu(zo) 1: i =0, (To, Jo) = (0,0), 29 = (0,0).
subject o (T,J)eT 2 while tgugdg) 0,0). 20 ©.0
2(T,J) € X, 3 Solve Problem 3.2 to obtain an optimal pair (z},u}).
4 while (t — T;) < 7/2 and j — J; <1 do
5 Apply u] to H to generate the state trajectory x.
6: end while
7
8:

Mayer form:

i=i+1, (T, J;) = (4,4), @0 = (T, J)-
minimize J(z(0,0), (T, J),z(T, J)) end while

TESH

subject to  ((0,0), (T, J),z(T,J)) € Q,




» Advanced feedback control:
> Model predictive control
> Learning-based control
> Applications: all of the above



\~Z, From Robust
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» Advanced feedback control:
» Model predictive control
> Learning-based control
> Applications: all of the above
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’g\‘*'/, From Robust

» Advanced feedback control:
» Model predictive control
> Learning-based control
> Applications: all of the above
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Hybrid closed-loop systems are given by hybrid inclusions with

inputs
2 t € F(z,u) (z,u) e C
zt e G(z,u) (x,u) € D
where x is the state and u the input,
» (' is the flow set » D is the jump set
» F'is the flow map » G is the jump map

Solutions are functions parameterized by hybrid time (¢, 7):
» Flows parameterized by t € R>( := [0, +00)
» Jumps parameterized by j € N> :={0,1,2,...}

Then, solutions to H are given by hybrid arcs x defined on

([0, 1] x {0} U ([trs to] x {1H) U (s ] x {71 V-

The state = can have logic, memory, and timer components.
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Hybrid Feedback Control
Princeton University Press
2021



1. Intermittent Information
> Estimation
> Synchronization

2. Safety

> Safety Certificates
> Reinforcement Learning

3. Optimization

» Hybrid Model Predictive Control

> Distributed Optimization

> Optimization with Computational Constraints
4. Security

> Attack Detection
» Hybrid Control for Attack Recovery

During this project, we published 91 conference papers, 44 journal papers, 4 book
chapters, and 1 textbook related to these topics.
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Motion Planning Algorithms for
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Motivation

Hybrid system exhibits combined
continuous and discrete behaviors
within respective constraint sets.

lx=f(x,uw) (xuec
2015l { =g(x,u) (x,u) €D

> Cisthe flow set
> f isthe flow map
» D isthe jump set
» g isthe jump map

Colusimingsisitent et ihicle [1]
Robotic systems with multimodal structure
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Problem Formulation: Feasible Motion
Planning Problem

o x = f(x,u) (x,u) € C
xt =g, u)  (x,u) €D

Problem 1: (Feasible motion planning .
problem for hybrid systems) Given a hybrid
system 7 as in (1) with state x € R" and
input u € R™, theinitial state set X, c R",
the final state set X, c R", the unsafe set
X, € R" x R™, find"a pair qu, u) such that
Lorlgome (T,]) € dom(¢, u), thé following
old:

> (¢, u) is a solution pair to

» Forany (t,j) € dom( u)) such that t +
j<T+], (o, ), ult,))) ¢ X,.




unsafe set

< jump set

< jump set

initial state

flow set

unsafe set

Step 1. Inflation of hybrid
systems

final state

initial state

2. {a'c=f(x,u) (x,u) € C

xt=g,u) (x,u)€D

flow set

fx=fsx,u) (x,u) €ECs Step2: Randomly select from
xT =gs(,u) (x,u) €Ds floworjumpscheme

[1] Wang, Nan, and Ricardo G. Sanfelice. "Motion planning for hybrid dynamical systems: Framework, algorithm template,

and a sampling-based approach." The International Journal of Robotics Research (2025)

_ _ random state
N,
s

/éu rrent vertex

Step 3: Find the closest
vertex in the search tree to
the random state

A



. x = f(x,u) (x,u) € C
xt=g(x,u) (x,u)€ED

HyRRT

1 Create clearance!

o x = fs(x,u) (x,u) € Cs
O lxt = gs(x,u)  (x,u) € Ds

unsafe set unsafe set

-— final state

initial state

initial state

flow set

flow set

Step 4: Random propagation via flow or jump

Theorem 1. (Probabilistic Completeness of HyRRT [1])
Suppose there exists a motion plan (¢, u) to P =

(X0, X7, Xy, (C, f, D, g)). When HyRRT is used to solve P =
(XO,Xf, Xy (Cs,fs,Ds, gs)), the probability that HyRRT
fails to find a motion plan (¢',u") such that ¢' is close to
@ after k iterations is at most ae "%, where a, b > 0.

unsafe set

initial state

flow set

[1] Wang, Nan, and Ricardo G. Sanfelice. "Motion planning for hybrid dynamical systems: Framework, algorithm
template, and a sampling-based approach.” The International Journal of Robotics Research (2025) 5



Problem Formulation: Optimal Motion
Planning Problem

Problem 2: (Optimal motion planning i=flow) (o) €C
problem for hybrid systems) Given Problem H: {x+ = g(x,w) (Lu)€ED
1 and a cost functional ¢, find a feasible

motion plan (¢*, u™) to Problem 1 such that

(¢*,u*) = arg (rg,ilg c(p).

unsafe set

/ / 4 <— final state
/ .
/ / <« jump set
initial state C/—\/

flow set




HySST [1]

current vertex

= random state
~ -
P ~ ~ neighborhood
N\
random state / ndom state \

O N
A
éurrent vertex |

HyRRT finds the closest vertex HySST finds the vertex with the
in the search tree to the random minimal cost within the neighborhood
state of the random state

[1] Wang, Nan, and Ricardo G. Sanfelice. "HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion
Planning Algorithm for Hybrid Dynamical Systems.” IEEE 62nd Conference on Decision and Control (CDC). IEEE, 2023. 7



HySST

witness's neighborhood

unsafe set

<— final state

initial state

flow set

Sparsify the vertices by maintaining a static set of
withesses.

Theorem 2. (Asymptotic Near-Optimality of
HySST [2]) Suppose there exists an optimal motion
plan (¢*,u*) to P* = (Xo, X¢, Xy, (C, f, D, g), €).
When HySST is used to solve P =

(X0, X, Xy, (Cs, f5, Ds» 95), €), the probability that
HySST finds a motion plan (¢', u") such that c(¢") <
(1 + ad)c(¢™) converges to 1 as the number of
iterations approaches infinity.

[1] Wang, Nan, and Ricardo G. Sanfelice. "HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion
Planning Algorithm for Hybrid Dynamical Systems." to appear in 2023 IEEE 62nd Conference on Decision and Control

(CDC). IEEE, 2023.




Takeaways

» We formulate a general motion planning problem for
hybrid systems.

» We propose a probabilistically complete HyRRT to
solve feasible motion planning problems for hybrid

systems. SN
* We propose an asymptotically near-optimal HySST T

to solve optimal motion planning problems for %:«::9

hybrid systems. -é)s*-fa-': 0%

Email me at nanwang@ucsc.edu



Inverse-Optimal Safety Control for Hybrid
Systems

Carlos A. Montenegro G., Santiago J. Leudo, and Ricardo G. Sanfelice
University of California, Santa Cruz, USA

AACE Program Review
April 7, 2025

_Baskin
Engineering

Montenegro G., J. Leudo, and Sanfelice - UCSC - 1/12



Motivation

Control Theory

Quadruped Robot. Mutiple time domains.
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Motivation

Control Theory

Quadruped Robot. Mutiple time domains.

» Synthesis of controllers for safety of hybrid systems under disturbances is yet to be
explored.

> Existing methods only apply to limited classes of systems and fall short of
guaranteeing safety and optimality for hybrid systems.

» Challenges: Hybrid systems pose additional challenges due to interaction of
discrete and continuous dynamics
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Motivation

Control Theory

<0.25 . 'Lk.‘.; m

Quadruped Robot. Mutiple time domains.

» Synthesis of controllers for safety of hybrid systems under disturbances is yet to be
explored.

Thus, we propose a framework to certify safety and optimality for systems
with such complex dynamics even under disturbances.

discrete and continuous dynamics

Montenegro G., J. Leudo, and Sanfelice - UCSC - 2/12
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Hybrid Systems

A hybrid system H with state x as in [Goebel, et.al., PUP 2012]:

24 T = F(z) zeC
v = G(x) z€D
» (' is the flow set > D is the jump set
» F'is the flow map > (G is the jump map
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Hybrid Systems

A hybrid system H with state x as in [Goebel, et P, 7)

x = F(z

s -
vt o= Gl t1 ta  t3 =ty
v t

» (' is the flow set =
» [ is the flow map %
Solutions parametrized by (t, j): ¢ : Solution to H

» t € [0,00), time elapsed during flows
» je€{0,1,...}, number of jumps that have occurred

Domain of a solution of the form

([0,t1] x {0H) U ([ta. t2] x {IH V...,
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Switched Systems

z :fU(t)<x)
o(t) €{1,2,...}

Differential-Algebraic Equations

:f(wi)
0 =n(z,w

Impulsive Systems

& =f(z(t))
z(tT) =g(z(t)) te€ {t1,t2,...}

Hybrid Automata

) &)
D

Montenegro G., J. Leudo, and Sanfelice - UCSC - 5/12



Switched Systems Impulsive Systems

& =fo ) () & =f(x(t))
g {12 ! z(tT) =qlz(t) te{tito.. ..}

To the best of our knowledge, there does not exist previous work to synthesize
safety controllers that are also optimal for hybrid systems under disturbances
modeled in such framework.

(a0 DD
0 =n(z,w) %
)

Montenegro G., J. Leudo, and Sanfelice - UCSC - 5/12




Input-to-State Safety

Consider the following hybrid system 4 on R affine in the input w € R™:

i =F(x,wc):
Tt {er = G(z,wp)
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Input-to-State Safety

Consider the following hybrid system 4 on R affine in the input w € R™:

1y {x = F(x,we) = f(x) + fw(z)we

(x,wc) € C
xt = G(z,wp) := g(x) + guw(x)wp

(x,wp) € D

Input-to-State Safety for Hybrid Systems

Consider a closed set K C R™ defined as the O-sublevel set of a function B : dom B — R, and
a hybrid system . If there exist w > 0 and p € K, such that

(¢, w) € Su(K), [[w]l4 <w

= B(¢(t,)) < p(w) V(t,j) € dom¢

where the function p is referred to as the ISSf gain, then the system H is w-small-input
input-to-state safe (w-small-input ISSf) with respect to the disturbance w and the set K.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 6/12



Input-to-State Safety

Safety and invariance

It is immediate that the system H is w-small-input ISSf with respect to w and K if and only if
there exist w > 0 and p € Ko, such that the set K4(w) D K defined as

Kq4() = {o € I(C) UTI(D) : B(x) - p(®) < 0}

is conditionally pre-invariant for H with respect to w and K.

Montenegro G., J. Leudo, and Sanfelice - UCSC - 7/12
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Input-to-State Safety

Safety and invariance

It is immediate that the system H is w-small-input ISSf with respect to w and K if and only if
there exist w > 0 and p € Ko, such that the set K4(w) D K defined as

Kq(w) :={z € II(C)UII(D) : B(x) — p(w) < 0}
is conditionally pre-invariant for H with respect to w and K.

Theorem. ISSf under a barrier function candidate.
Given a hybrid system H and a closed set K C R", suppose B is an ISSf-BF candidate for ‘H

with respect to (K, Ky4(w)), where K4(w) is defined for some p € Ko, and @w > 0. Let V be an
open neighborhood of K (w). If there exist ac > 0 and ap € [0, 1] such that
(VB(z), F(z,wc)) < —acB(z) V(z,wc) € C: x € V\K4(0), |lwc| <@
B(G(z,wp)) — B(z) < —ap(B(z) — p(w)) Y(z,wp) € D: x € K4(w), |lwp| <

Montenegro G., J. Leudo, and Sanfelice - UCSC - 7/12



But we love control! Let's bring it back:
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But we love control! Let's bring it back:

2 {x = F(z,we) = f(x) + ful@)uc + fu(z)we (z, (uc,we)) € C
"2t = G(z,wp) = g(z) + gu(z)up + guw(x)wp (z,(up,wp)) € D
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But we love control! Let's bring it back:

2 {x = F(z,wc) := (@) + fu(@)uc + fu(@)we (2, (uc,wc)) € C
' T =G(z,wp) = g(x) + gu(x)up + guw(x)wp (z, (up,wp)) € D

Assumption. Control-affine jumps.

Consider a hybrid system #, a feedback law « := (kc, kp) = (Fc + K¢, kp + Ep),
and a scalar function B. Suppose that there exist functions BLU and BLw such that,
for all (z, (kp(z),wp)) € D,

B (G(z, (kp(x), wp))) = B(g(2) + gu(z)kp(x) + guw(@)wp)
B(g(z) + gu()&p(x)) + Bru(z)Rp(z) + Brw(z)wp.
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Consider a hybrid system #, a feedback law « := (kc, kp) = (Fc + K¢, kp + Ep),
and a scalar function B. Suppose that there exist functions BLU and BLw such that,
for all (z, (kp(z),wp)) € D,

B (G(z, (kp(x), wp))) = B(g(2) + gu(z)kp(x) + guw(@)wp)
B(g(z) + gu()&p(x)) + Bru(z)Rp(z) + Brw(z)wp.
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But we love control! Let's bring it back:

2 - {x = F(z,we) = f(x) + ful@)uc + fu(z)we
"zt =Gz, wp) = g(x) + gulx)up + guw(z)wp

Given k¢ and a¢ > 0, we define
we(x) == Lftg,reBlx)
+|Ly, B(x)|p~ (B(x)) + acB(x)
and introduce the following QP
Rogp(z) = argmin  |v[?
’UGR/"LCH

subject to Ly, B(z)v < —we(x)

for all z € VNII(C).

(z, (uc,we)) € C
(z, (up,wp)) € D

Given ip and ap € [0,1], we define
wp(x) == B(g(x) + gu(2)kp(z)) — B(x)
+ |Brw(z)|w + ap(B(x)—p(w))
and introduce the following QP
Kpop(z) = argmin  |v|?
vER™ Du
subject to By (z)v < —wp(z)

for all z € Kq(w) NII(D).
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But we love control! Let's bring it back:

2 - {x = F(z,we) = f(x) + ful@)uc + fu(@)we
"2t =Gz, wp) = g(x) + gu(x)up + guw(z)wp

(z, (uc,we)) € C
(z, (up,wp)) € D

H,, w-small-input ISSf w.r.t. (K, w).

Theorem. The QP filter Kgp := (K¢, FD,,,») renders the hybrid closed-loop system

+ Ly, B()|p " (B(7)) + acb(7T)
and introduce the following QP
Rogp(z) = argmin  |v[?
’UGRT'LCU

subject to Ly, B(z)v < —we(x)

for all z € VNII(C).

+BLw(2)[w + ap(B(z)—p(w))
and introduce the following QP
Kpop(z) = argmin  |v|?
vER™ Du

subject to By (z)v < —wp(z)

for all z € Kq(w) NII(D).
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Given £ € K, an input action (u,w) = ((uc,up), (we,wp)), the stage cost for flows
L¢, the stage cost for jumps Lp, and the terminal cost ¢, we define the cost
associated to the solution (¢, (u,w)) to H from £ as
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Given £ € K, an input action (u,w) = ((uc,up), (we,wp)), the stage cost for flows
L¢, the stage cost for jumps Lp, and the terminal cost ¢, we define the cost
associated to the solution (¢, (u,w)) to H from £ as

supj dom ¢

T, (u,w)) == / " Le(6(t, ), (ue t,5), wo b, 5)))dt

sup; dom ¢—1
+ > Lp((tis,5); (wp(tisn, ), wp(tjs, 1))
j=0
+ lim sup q(o(t, 7))
t+j—rsup, dom ¢+sup; dom ¢
(t,j)edom
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Given £ ¢ K an innut action (o o0) = ((e un) (ne nn)) the stace cast for flows

Definition. (Value function). Given £ € K and a nominal feedback law &, the
value function at £ is given by

J*(&):= minmax J(, (u,w)).

u w
u=(u,w) €Uz (R, @)

7=0 =
sup; dom ¢—1
+ > Lp((tis,5); (wp(tisn, ), wp(tjs, 1))
7=0
+ lim sup a(e(t, j))
t+j—rsup, dom ¢+sup; dom ¢
(t.j)€dom ¢
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Given £ ¢ K an innut action (o o0) = ((e un) (ne nn)) the stace cast for flows

Definition. (Value function). Given £ € K and a nominal feedback law &, the
value function at £ is given by

J*(&):= minmax J(, (u,w)).

u w
u=(u,w) €Uz (R, @)

]ZU vJ

sup,dom ¢—1

Theorem. The QP filter Kgp = (ECQP,EDQP) minimizes J, under the worst
case disturbacen, for some L¢, Lp, and ¢. In addition, the CBF B is the value
function for the hybrid game.

(t,j)€dom ¢
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For more details:
C. A. Montenegro G., S. Leudo, and R. G. Sanfelice, “Inverse-Optimal Safety

Control for Hybrid Systems”, in Proceedings of the 28th ACM International
Conference on Hybrid Systems: Computation and Control, Irvine, CA, USA, 2025.
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