Reinforcement Learning for
Joint Optimization of
Sensing, Communications,
and Control




\ 72 .
P4 ’ Overview

* Focusing on problems that required joint
optimization across:
 Sensing
e Communications and Networks
 Control and Navigation

UF [FLORIDA



UF

UNIVERSITY of

FLORIDA

Time-va rying\\\
Topologies ‘-~

/éongestion Fading/
~~ Shadowing

=




» Problems are inherently:

» Stochastic
 Noise, interference, jamming
« Mobility
e Partially observable
« State is only known through noisy and/or delayed measurements
« GPS may not be available for localization
« Multi-objective

« Network used by diverse control, sensing, and communication
systems

 Distributed

e No centralized base stations for communications

« Sensors and control agents may have to operate with limited
coordination
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4,\‘:’/’ Example: Optimal Jamming

 Early work: jamming to disrupt static networks

* Objective: Place mobile jammers to partition a
wireless network “as much as possible” so its nodes
can no longer cooperate

« — Number of clusters should be bounded below

« Want to avoid leaving large connected subgraph in which
most nodes can still cooperate

 — Cluster size should be bounded above

» Formulate as optimization problem on graph:
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* Problem formulation — specify:
« Minimum number of clusters
e Maximum cluster size

e Solutions:

 Linear program (NP-Hard) if jammers limited to locations
of network devices

« Optimal search across real plane by developing set of
“candidate jammer locations” — similar complexity

 Fast solutions: spectral clustering, multilevel graph-cuts
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\/ ’ mming for Mobile Networks

« Adapting jamming to disrupt mobile networks is
challenging

- Small changes to positions of mobile nodes can have large
impact on network connectivity

» Focus on simpler scenario: Protect a region from
surveillance by drones

« Jammers use steerable antennas to disrupt drone
communication

« Jammers may have limited ability to coordinate —
consider distributed decision making
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» With distributed decision
making, need way to allow
jammers to make separate
decision

« Example: 2 jammers
protecting against 1 drone
with fixed beam
directions

o If both jammers point at
same location, drone may
move out of predicted
beam and be able to
establish communications

UF|FLORIDA
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» OQur approach: use
RL to learn
stochastic policies

* In each state, learn -
PMF over actions

e Action taken is
randomly chosen _
according to PMF B
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» Stochastic policies provide for weak form of cooperation,
needed with distributed decision making and partial
observability
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N7 ’ mance with 2 Jammers, 2 Drones
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\\/)J ementations at UF Autonomy Park

* Undergrad researchers
working on:

* Mobile jamming of ground
networks using UAVs

« Jammer payloads consist of
 Raspberry Pi
« USRP B210 SDR
« LP directional antenna

The University of Texas at Austin
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4:\.3’/} ntations at UF Autonomy Park

Fading Pattern (inverted color)

 Building algorithms for
drone detection based on
propagation characteristics
of drone channel

» Observed time-varying deep
nulls in frequency domain

* Working on new real-time

detection algorithms using
RFSoC boards
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\/, ibuted Sensing and Delivery

e Data from sensors often must be delivered to sensor
fusion centers (SFCs) for processing

« We consider two main scenarios

« For fixed sensor networks, a field of sensors must deliver
data to SFC(s) over a wireless channel

« For mobile sensing platforms, the mobile agents may have
to collect data and then travel within the comms range of
one or more access points (APs)

 In the fixed sensor network, sensors must decide how
to use wireless channel

e Ex: whether or when to transmit to AP

UF|FLORIDA



\/’ ributed Sensing and Delivery

» Mobile sensing platforms must decide
* When to collect data vs deliver data

« Where to collect data and where to deliver data

« How to use wireless channel (such as which AP to associate
with)
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Fixed Sensing Network

Distributed Sensing and Coordination: Who senses and
transmits? = Partially observable, multi-agent MDP
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,%,\w/’ Sensing Model

- Example: use distributed sensors to localize a moving
vehicle

 Sensors listen to channel for signal energy (e.g.,
audio or RF)

» Received signal energy decreases with distance

» Signal energy measurements corrupted by noise
and/or interference

 Sensors relay data to a single SFC over a shared
wireless channel

» collisions occur if two sensors transmit simultaneously

UF|FLORIDA



,%,\‘3’/’ Optimization Formulation

e Assume slotted time

 Sensors decide individually whether to transmit in each
slot

« Cooperative goal: minimize the mean-squared error of
the location estimate at the SFC

« Optimal rule is likely stochastic:

* For example, always transmitting from sensor with highest SNR
prevents ability to triangulate vehicle

« Problem formulated as a decentralized, partially-

observable Markov decision process
(DEC-POMDP)
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4,\,3’/, Fusion Model

» Sensor network updates beliefs in each interval
(using data or model-based)
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4,\/’ MAC Transmission Control

 Information agents may use in making this decision:
 Received signal strength
 Result of last channel access (success/failure)
 Current beliefs (need to be broadcast by fusion agent)
« # slots since last (successful) transmission by this agent

» Use RL to learn probability node should transmit
given current state and received energy

 For current results, use tabular Q-learning where
beliefs are compressed into MAP state estimate and
quantized entropy
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,%,\w/’ Baseline Algorithms

» Compare performance to non-ML approaches:

« Optimal slotted-ALOHA: equal probability of transmission
of 1/m for all m sensors

» Threshold-based policy: transmit if received power greater
than threshold; optimal threshold is found via search

UF|FLORIDA
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,%f\w/’ Data Collection and Delivery

* In this scenario, mobile agents monitor an area for
some phenomena of interest and then deliver the
data to one of multiple access points (Aps)
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» Agents work independently but may observe same or
related phenomena

» Thus, agents with data to deliver may be in same
geographic area
* For a single agent, choice of AP is simple because will
travel to whatever AP achieves fastest data delivery
(depending on distance and supported data rates)

« For multiple agents, selfish choice leads to
overloading of best AP

« Agents can use a stochastic approach to avoid all choosing
the same AP
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- Example scenario: 6 agents and 2 APs

» APs and agents have long-range, low-rate data link to
share affiliation information
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4,\,3’/, Related Research

 Other research using RL discussed at previous Center
meetings:
* Dynamic spectrum sharing

* Distributed timing synchronization for localization in
GPS-denied areas
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4,\‘.’/> Conclusions

« DEC-POMDPs offer good model for many systems
involving sensing, communications, and control

« However, all POMDPs are hard to solve

» Optimal policies for DEC-POMDPs are not
necessarily deterministic

- Have shown in several scenarios of interest that
stochastic policies can significantly outperform
deterministic policies

» Because all POMDPs have continuous state spaces
(beliefs), solutions via function approximation (NNs)
are appropriate

» Ongoing work on developing new approaches to learn
stochastic policies using policy gradient approaches
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Thank you!




