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Overview

• Focusing on problems that required joint 
optimization across:
• Sensing
• Communications and Networks
• Control and Navigation



Big Picture



Reinforcement Learning (RL)

• Problems are inherently:
• Stochastic

• Noise, interference, jamming
• Mobility

• Partially observable
• State is only known through noisy and/or delayed measurements
• GPS may not be available for localization

• Multi-objective
• Network used by diverse control, sensing, and communication 

systems
• Distributed

• No centralized base stations for communications
• Sensors and control agents may have to operate with limited 

coordination



Example: Optimal Jamming

• Early work: jamming to disrupt static networks

• Objective: Place mobile jammers to partition a 
wireless network “as much as possible” so its nodes 
can no longer cooperate
• → Number of clusters should be bounded below
• Want to avoid leaving large connected subgraph in which 

most nodes can still cooperate
• → Cluster size should be bounded above

• Formulate as optimization problem on graph:



• Problem formulation — specify:
• Minimum number of clusters
• Maximum cluster size 

• Solutions:
• Linear program (NP-Hard) if jammers limited to locations 

of network devices
• Optimal search across real plane by developing set of 

“candidate jammer locations” – similar complexity
• Fast solutions: spectral clustering, multilevel graph-cuts



Multiresolution Graph Cuts





Reinforcing Networks Against Jammer Attacks

• Use mobile routers to reduce vulnerability of network 
to partitioning
• Place routers to maximize number of jammers needed to 

partition network
• Find router placement via heuristic search

Helper Node Pacement Problem

The helper node placement problem is

P̂ = arg max
P2(R2)Nh

⌘(H(V 0, E 0,G,P))). (11)



Jamming for Mobile Networks

• Adapting jamming to disrupt mobile networks is 
challenging
• Small changes to positions of mobile nodes can have large 

impact on network connectivity

• Focus on simpler scenario: Protect a region from 
surveillance by drones
• Jammers use steerable antennas to disrupt drone 

communication
• Jammers may have limited ability to coordinate – 

consider distributed decision making 



• With distributed decision 
making, need way to allow 
jammers to make separate 
decision
• Example: 2 jammers 

protecting against 1 drone 
with fixed beam 
directions
• If both jammers point at 

same location, drone may 
move out of predicted 
beam and be able to 
establish communications



• Our approach: use 
RL to learn 
stochastic policies
• In each state, learn 

PMF over actions
• Action taken is 

randomly chosen 
according to PMF



• Stochastic policies provide for weak form of cooperation, 
needed with distributed decision making and partial 
observability



Performance with 2 Jammers, 2 Drones

Fig. 8. Average reward curves for simulations of varied momentum values (µ)
where each agent has knowledge of his fellow agent’s beam position. Solid
lines represent stochastic policies and dashed lines represent deterministic-
only policies.

Fig. 9. Average reward curves for simulations of varied momentum values
(µ) where each agent does not have knowledge of his fellow agent’s beam
position. Solid lines represent stochastic policies and dashed lines represent
deterministic-only policies.

This is explained by the beams using stochasticity to cover
the adversary split or currently tracking the adversaries. The
other results represent policies being adjusted to cover the
probability of the adversaries occupying different positions.
For instance, for µ = 0.9, the next action is never equally
likely (i.e., maximum entropy).

V. CONCLUSION

We considered the problem of distributed jamming to pro-
tect an area from intrusion by mobile adversaries. The problem
was formulated as a distributed multi-agent Markov decision
process. We showed that in a simplified version of the problem
that admits mathematical analysis, the use of a stochastic
policy can provide cooperative benefit over deterministic poli-

Fig. 10. Relative frequency of PMF entropies for various momentum values
µ for states in which the beams have identical symmetrical positions and the
adversary is confined within one angle position of the center point.

cies in several scenarios. These include where adversaries are
evasively “splitting up” or where they are individually taking
random movements. In the latter, we demonstrate that the
agents are able to achieve a strong form of cooperation that
drives the system to a recurrent set of jamming states. We
then consider a more realistic jamming scenario in which the
evaders are traversing a rectangular region to evade jamming
and show that tabular Q-learning with stochastic policies
offers a significant performance advantage over Q-learning
with deterministic policies. Our work motivates the use of
stochastic policies in other distributed MAMDP problems, and
our analysis in Section III of this paper show that in some
problems, stochastic policies can be used to achieve optimal
coordination among agents, even in the absence of centralized
control or communication.
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• Solid = stochastic
• Dashed = deterministic

• µ = momentum 

• Rewards:
• 100 if both drones 

are jammed
• 25 if one drone 

jammed
• -100 if neither 

drone jammed 



Effects of Momentum on Policies

Fig. 8. Average reward curves for simulations of varied momentum values (µ)
where each agent has knowledge of his fellow agent’s beam position. Solid
lines represent stochastic policies and dashed lines represent deterministic-
only policies.

Fig. 9. Average reward curves for simulations of varied momentum values
(µ) where each agent does not have knowledge of his fellow agent’s beam
position. Solid lines represent stochastic policies and dashed lines represent
deterministic-only policies.

This is explained by the beams using stochasticity to cover
the adversary split or currently tracking the adversaries. The
other results represent policies being adjusted to cover the
probability of the adversaries occupying different positions.
For instance, for µ = 0.9, the next action is never equally
likely (i.e., maximum entropy).

V. CONCLUSION

We considered the problem of distributed jamming to pro-
tect an area from intrusion by mobile adversaries. The problem
was formulated as a distributed multi-agent Markov decision
process. We showed that in a simplified version of the problem
that admits mathematical analysis, the use of a stochastic
policy can provide cooperative benefit over deterministic poli-
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evasively “splitting up” or where they are individually taking
random movements. In the latter, we demonstrate that the
agents are able to achieve a strong form of cooperation that
drives the system to a recurrent set of jamming states. We
then consider a more realistic jamming scenario in which the
evaders are traversing a rectangular region to evade jamming
and show that tabular Q-learning with stochastic policies
offers a significant performance advantage over Q-learning
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Implementations at UF Autonomy Park

• Undergrad researchers 
working on:
• Mobile jamming of ground 

networks using UAVs
• Jammer payloads consist of 
• Raspberry Pi
• USRP B210 SDR
• LP directional antenna



Implementations at UF Autonomy Park

• Building algorithms for 
drone detection based on 
propagation characteristics 
of drone channel
• Observed time-varying deep 

nulls in frequency domain

• Working on new real-time 
detection algorithms using 
RFSoC boards



Distributed Sensing and Delivery

• Data from sensors often must be delivered to sensor 
fusion centers (SFCs) for processing
• We consider two main scenarios
• For fixed sensor networks, a field of sensors must deliver 

data to SFC(s) over a wireless channel
• For mobile sensing platforms, the mobile agents may have 

to collect data and then travel within the comms range of  
one or more access points (APs)

• In the fixed sensor network, sensors must decide how 
to use wireless channel
• Ex: whether or when to transmit to AP



Distributed Sensing and Delivery

• Mobile sensing platforms must decide
• When to collect data vs deliver data
• Where to collect data and where to deliver data
• How to use wireless channel (such as which AP to associate 

with)



Fixed Sensing Network



Sensing Model

• Example: use distributed sensors to localize a moving 
vehicle
• Sensors listen to channel for signal energy (e.g., 

audio or RF) 
• Received signal energy decreases with distance
• Signal energy measurements corrupted by noise 

and/or interference

• Sensors relay data to a single SFC over a shared 
wireless channel
• collisions occur if two sensors transmit simultaneously



Optimization Formulation

• Assume slotted time
• Sensors decide individually whether to transmit in each 

slot 
• Cooperative goal: minimize the mean-squared error of 

the location estimate at the SFC

• Optimal rule is likely stochastic:
• For example, always transmitting from sensor with highest SNR 

prevents ability to triangulate vehicle

• Problem formulated as a decentralized, partially-
observable Markov decision process 
(DEC-POMDP)



Fusion Model

• Sensor network updates beliefs in each interval 
(using data or model-based)



MAC Transmission Control

• Information agents may use in making this decision:
• Received signal strength 
• Result of last channel access (success/failure)
• Current beliefs (need to be broadcast by fusion agent)
• # slots since last (successful) transmission by this agent

• Use RL to learn probability node should transmit 
given current state and received energy
• For current results, use tabular Q-learning where 

beliefs are compressed into MAP state estimate and 
quantized entropy



Baseline Algorithms

• Compare performance to non-ML approaches:
• Optimal slotted-ALOHA: equal probability of transmission 

of 1/m for all m sensors
• Threshold-based policy: transmit if received power greater 

than threshold; optimal threshold is found via search



Fig. 2. Average localization error for different transmission policy types in
the distributed sensor network with communication to a sensor fusion center
over a shared channel. The performance is shown as a function of the noise
variances (ω2) and for different buffer lengths (ε). DTQ = distributed TQ-
learning, the algorithm we develop in this paper.

of TQ-learning and the power-thresholding scheme become
similar as the noise variance, ω

2, becomes large. However,
for smaller values of ω2, distributed TQ-learning significantly
outperforms both the optimized thresholding policy and the
uniform random TX policy.

Increasing the buffer length generally improves the local-
ization error, and this effect is more significant at higher noise
variances. The performance improvement for the distributed
TQ-learning policy and power-thresholding policy are more
significant than for the uniform-random transmission policy.
The performance improvement at ω2 = 1 is most significant
for the power-thresholding policy. Overall, the performance
difference from sending information about past sensor mea-
surements is relatively small at about 5.5% at the most. One
reason for this is that under the motion model considered in
this paper, there is no probability that the target will remain
in the same position for more than one time unit. This signif-
icantly reduces the benefit of having multiple measurements.

Next we present some performance results at the link/MAC
layer to provide insights into how each algorithm balances the
trade-offs between communication efficiency and localization
accuracy. These include:

• Average Successful Transmission Rate: the percentage
of time steps in which exactly one sensor transmitted to
the SFC.

• Collision Rate: the percentage of time steps in which
more than one sensor transmitted to the SFC, resulting
in a MAC collision.

• No-Transmission Rate: the percentage of time steps in
which no sensor transmitted to the SFC.

Figure 3 shows results for the average successful trans-
mission rate as a function of the noise variance and for
different buffer lengths (ε). The uniform-random policy has the
lowest successful transmission rate. Even though the uniform-

Fig. 3. Successful transmission rates (%) for different transmission policy
types in the distributed sensor network with communication to a sensor fusion
center over a shared channel. The performance is shown as a function of the
noise variances (ω2) and for different buffer lengths (ε). DTQ = distributed
TQ-learning, the algorithm we develop in this paper.

Fig. 4. Collision rates (%) for different transmission policy types in the
distributed sensor network with communication to a sensor fusion center
over a shared channel. The performance is shown as a function of the noise
variances (ω2) and for different buffer lengths (ε). DTQ = distributed TQ-
learning, the algorithm we develop in this paper.

random policy maximizes the probability of successful trans-
mission when all sensors are competing for the channel,
the power-threshold and distributed TQ-learning algorithms
achieve higher successful transmission rates by limiting the
number of sensors attempting to access the channel. For
low noise, the variance, distributed TQ-learning achieves a
successful transmission rate of up to 77.8%, significantly
surpassing the thresholding policy’s 60.2% and the uniform
random approach’s 42.4%. Interestingly, DTQ has a lower
successful transmission rate for ω

2
> 0.1 but still achieves

a lower average localization error.
Figure 4 and Figure 5 give additional insight into the causes

of no successful transmission. Both the power-threshold and
the distributed TQ-learning policies are able to significantly

Fig. 2. Average localization error for different transmission policy types in
the distributed sensor network with communication to a sensor fusion center
over a shared channel. The performance is shown as a function of the noise
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Data Collection and Delivery

• In this scenario, mobile agents monitor an area for 
some phenomena of interest and then deliver the 
data to one of multiple access points (Aps)



• Agents work independently but may observe same or 
related phenomena
• Thus, agents with data to deliver may be in same 

geographic area
• For a single agent, choice of AP is simple because will 

travel to whatever AP achieves fastest data delivery 
(depending on distance and supported data rates)
• For multiple agents, selfish choice leads to 

overloading of best AP
• Agents can use a stochastic approach to avoid all choosing 

the same AP



• Example scenario: 6 agents and 2 APs
• APs and agents have long-range, low-rate data link to 

share affiliation information 

Q-learning, the set of tuples is quantized to the following
set: {(0.0, 1.0), (0.1, 0.9), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3) ,
(0.9, 0.1), (1.0.0.0)}. This results in 7 distinct action PMFs
for each agent to choose from in each state. We also note
that for all actions, each agent does not consider its position
xj in order to efficiently reduce complexity in the Q-learning
implementation.

The reward function is chosen to encourage an agent to
deliver its payload to one of the APs promptly. If an agent is
within the communication radius ri of AP i, it will receives a
communication reward of Rc,i/u

2
i , where Rc,i > 0 represents

the reward when a single agent is connected to AP i. The
reward decreases as more agents associate with the same AP.
When an agent is in return mode and is not associated with an
AP, the waiting reward is Rw < 0. For all the results presented
here, the APs are sufficiently separated that an agent cannot
be within the communication radii of both APs.

We present results for a region that is 50 → 50 units on
each side, with grid points separated by one unit. This area
is partitioned into upper and lower halves. The two APs are
positioned near the top of the upper half, 45 units above the
bottom of the grid. The APs are separated by dAP , and their
x-coordinates are at 25 ± dAP /2. The bottom half of the
environment contains four regions in which phenomena can
occur: R1, R2, R3, and R4. In this paper, the regions are
rectangles that occupy one-quarter of the bottom half of the
environment, as shown in Fig. 3
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Fig. 3. System environment containing two APs and six agents. Phenomena
of interest can be observed whenever multiple agents are in one of the regions
R1, R2, R3, or R4.

Tabular Q-learning is used to learn actions to maximize
the expected long-term reward for a scenario with Nma = 6
mobile agents. We train a single MARL strategy that is used
by all agents; agents that are in the same state will have the
same action choice. The hyperparameters used for learning
are shown in Table II. An exponentially decreasing ω-greedy
strategy was employed. The total number of training epochs
is 5 million.

TABLE II
HYPERPARAMETERS USED IN Q-LEARNING TO SELECT AGENTS’ POLICIES

FOR CHOOSING APS.

Hyperparameter Value Hyperparameter Value

Discount 0.99 Learning Rate 0.3

Initial ω 0.99 Final ω 1→ 10→8

Epochs 5→ 106 Decay Rate (ω-greedy) 5→ 10→6

For the results in Fig. 4, the performance is evaluated as
we change the relative rewards for mobile agents that are
communicating to the two APs, where dAP = 4. We set the
reward for AP 1 to Rc,1 = 200, and Rc,2 = 200ε, where we
present results for ε = 0.25, 0.5, 0.75, and 1.0. The reward
Rc,i is received when a mobile agent is at a distance of rc = 1
or rc = 0 from AP i. When an agent has a payload but is not
connected to an AP, the reward (cost) is Rw = ↑1. The results
show that stochastic policies achieve over five times the reward
of the deterministic policies when ε = 1.0. The difference in
performance is most pronounced when the rewards between
the APs are equal, indicating that the stochastic policy is
able to distribute the traffic across the APs, whereas the
deterministic policy tends to concentrate agents at one of the
APs. In fact, for ε = 1, the average difference between the
number of agents connected to the two base stations is 1.35
for the deterministic policy but only 1.0 for the stochastic
policy. As the disparity in communication rewards increases
(i.e., smaller ε), the optimal distribution of traffic across the
APs shifts more towards the AP with the higher rewards. Since
the deterministic algorithm likely assigns mobile agents to
the AP with higher Rc,i in most states, the performance gap
between the stochastic and deterministic policies shrinks as ε

is reduced. An interesting aspect of Fig. 4 is that the rewards
decrease over the training epochs for the deterministic policies.
This is because in the early stages of training (when ω is large),
the actual policy that is being evaluated is closer to a stochastic
policy.

To further analyze the stochastic policies, we evaluated the
entropies of the policies in different combinations of states. If
the action in a particular state selects a PMF Pi(k), then the
entropy (in bits) is calculated in the usual way, as

Hi = ↑
∑

k

Pi(k) log2 [Pi(k)] .

An entropy of 0 corresponds to a deterministic PMF, and an
entropy of 1 bit corresponds to choosing randomly between
the APs. In Fig. 5, we present results for the trained policy
when ε = 1.0. We partition the states into three subsets to see
how the policy changes in different scenarios:

• states where the numbers of agents who have connected
to each AP are equal;

• states where the numbers of agents who have connected
to each AP are uneven, which we define as the number
of connected agents differing by 1 or 2; and

• states where the agents all together are connected to only
one of the APs.



Deterministic
policies

Stochastic
policies



Related Research  

• Other research using RL discussed at previous Center 
meetings:
• Dynamic spectrum sharing
• Distributed timing synchronization for localization in

GPS-denied areas



Conclusions

• DEC-POMDPs offer good model for many systems 
involving sensing, communications, and control
• However, all POMDPs are hard to solve
• Optimal policies for DEC-POMDPs are not 

necessarily deterministic
• Have shown in several scenarios of interest that 

stochastic policies can significantly outperform 
deterministic policies
• Because all POMDPs have continuous state spaces 

(beliefs), solutions via function approximation (NNs) 
are appropriate
• Ongoing work on developing new approaches to learn 

stochastic policies using policy gradient approaches



Thank you!


