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,g\.g./, uman-Machine Interaction

Current state of deployed UASs involve significant human interaction (<=L3
autonomy)

* Autonomous systems will potentially learn from simulation data informed by
human interaction

* Augmented reality (AR) systems can assist near-term operations while virtual reality
(VR) simulators are standard for training

* What risks to privacy are incurred in
these systems?
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Re-ldentification Risk

Re-identification Attacks using Age/Gender +
Eye-tracking

Gaze Datasets:
e ET-DK2 (N =18)
e 360 _em (N=13)
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Attack Success Rate

Attack Success Rate s gnonymized age and gender, not anonymized gaze
data

 Raw gaze data ,
anonymized age, gender, and gaze data

* Anonymized gaze data
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kaleido-DP [Li et al., USENIX 2021]
Spatial Differential Privacy (DP)
Can be applied in real-time or to dataset

This Work: Synthetic samples
Dataset, Privacy Guarantee

Past Work: Noisy samples
Real-time, No Privacy Guarantee

Foveated Rer_1dering Foveated Rendering
Gaze Prediction Gaze Position, Train Gaze Model
User Identification e.g., (%Y, 1) User Identification

Gaze Position,
e.g., (X, y,t

Embedded
Camera Gaze
estimation

: Recorded
Privacy Activity Recognition . N |nteraction
Mechanism |, op o Classification Poiiatiz::ns kalsido Tune Gaze Model

\_User Identification J User Identification

R‘:Ea"tiftne 1720 =P Intent Prediction Offline k-same-synth Intent Prediction
NE Mechanism Classification Event event-synth-PD Train Intent Model
Detection \_User Identification __J Detection User Identification
Eye Position w/ label, ~ Gaze Position w/ label,
e.g. (x,y, t, F/SISP) Redirected Walking e.g., (x, v, t, F/SISP) XR Training

Detect Saccades Expertise Model
User Identification ) User Identification

[David-John et al., TVCG 2021] —
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DGaze dataset (N = 43)
, 3D Scene

Mechanism Identification Runtime

Rate () (1)
Raw Data 2% N/A

k-same 1.1% 52 sec
synth

Event-synth-1.3% 4 min
PD

kalsido-DP [2.1%
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Evaluation of XR Applications

EHTask dataset (N = 30)
, 360° Video

Mechanism Identification Runtime

Rate (|) (1)
Raw Data 28% N/A

k-same 7.5% 2 min
synth

Event-synth-19.2% 15 min
PD

kalsido-DP [6.0% 5 min
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\ Evaluation of XR Applications
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,g\.:./’, Hard-Label Attacks

Hard-label adversarial machine learning attacks are a “grand-prize”:

* Adversary only needs query access to generate “label-flipped” samples (e.g.,
through compromised user)

» Hard-label attacks are gaining popularity, but not well characterized apart from
convergence guarantees.

@g ? "EE}'

Adversary Autonomous
Agent
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,%,‘\,3'/', ampling and query efficiency

* Questions we sought to answer:
* What advantages does search subsampling give the adversary?
* How can we generalize the idea of search subsampling?

* We addressed this as an information-theoretic problem, leveraging the data
processing inequality to derive a close—form solution of manifold-gradient
mutual information

xT —1,z
(G, M). =2 /W p(1,™) 1og(pg€’1()]2';M (l+) )dzt 42 /M+ p(=1,2%) log(pg?_(l)];M—;;+) ) dart.

(o — )
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(x4 0)°
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N S of Dimensionality Reduction

HSJA BiLN+HSJA AE+Sign-OPT

Adversarial

Diff

TEXAS

The University of Texas at Austin
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Protecting Satellite Proximity Operations

via Secure Multi-Party Computation
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4:\.3./) ’ Project Overview

General goal: provide evaluation of secure satellite proximity operations
using privacy-preserving computation

Demonstrate use of secure multiparty computation (SMC), a method of operating on encrypted
data, allowing satellite operations to be conducted between mutually-distrustful agents without
leaking information about satellites’ capabilities

* Investigating existing tools and SMC approaches with which to implement SMC

» Determining relevant problems in space/satellite research where privacy is a concern

* Prototyping SMC setup for satellites on embedded boards for autonomous operations

e Evaluating algorithms with and without SMC: matrix multiplication, RPO algorithms

* Benchmarking overhead added by SMC

e Broader characterization problems

@[, SANTA CAUL
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4«\,.,/} Motivation: RPO

Rendezvous and Proximity Operations (RPO): RPO example: docking

o On-board trajectory operation and replanning ”

o E.g.docking, on-orbit servicing/refueling, formation flying

as

o RPO occurs on-board, autonomously

o housed in guidance navigation and control (GNC) unit

o Needed at scales of < 500km between satellites

Ground station vs On-board Control

Distance between 1-10 Mm <500 km
satellites
Time needed Days-weeks <1 day
Speed km /sec m /sec
Approach conjunction analysis RPO

256 SANTRH CRU
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4:\.;./} Problem: Capability Inference

Example: Collision Avoidance in RPO
Error margin = 10-15 km

e Minimum data to share with other satellites A

r |
* position, velocity{ covariance T e
‘ / AN
/ \\

Stochastic systems

* Probabilistic, not deterministic \
\ 1
* Covariance matrices = quantify uncertainty ‘ Y / s
« defined by ellipsoid Y36 accuracy ~._ il

-
S~ -

* Measure of TRUST, decisions based on accuracy

Problem: knowledge of error margins (covariance matrices) can lead to inferences on satellite
capabilities, purpose, etc.

» Solution: protect error margins using privacy-preserving computation
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ag\\.g./), IVacy-Preserving Computation

Privacy-Preserving Computation (PPC)
* Allows for data to remain encrypted during computation

* Protects physical integrity of satellite during RPO and data privacy keeping data encrypted

Secure Multiparty Computation (SMC):
* Promising, well-developed method of PPC

* Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a
function on their inputs, without revealing information about inputs (millionaire’s problem)

* uses a) garbled circuits (2 parties) or b) linear secret sharing (>2 parties)

Linear Secret Sharing (LSS) scheme:
* keyless distributed encryption process.

e divides the “secret” (inputs) into randomly-generated shares
and distributes to computing parties.
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4«\4} Background: What is SMC?

Secret Sharing Donors
Distribute secret (input) among n parties, i.e. covariance matrices

of 2 satellites. Predefined authorized subsets of n can reconstruct skl
secret and return to user
Miners
Threshold Secret Sharing
* k-out-of-n scheme
* secret Sdivided into n shares: S={(s,,...,s,) Input
«  S=element of finite field P Ry =y
* shares = mapping to S + several random elements ' SMC protocol execution
* compromise of k-1 shares gives no info about S Output

W=u®v d— wy

wa
Secret Sharing on Satellites
* Donors/data users = satellites participating in collision Miners § §
avoidance (at least 2)

*  Miners = 3 computation servers
* Challenges: latency, bandwidth, small overhead on
limited-resource system

G -

Data user
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4.\,3,/) Methodology: Software

input/output SMC servers » Testing different algorithms

o Matrix multiplication
o Atrtificial potential function

o Attitude Optimization
output
o2 Software toolkit
e Sharemind MPC platform

o 3-party linear secret sharing

o Provides host for SMC operations

o System of libraries compatible with
C/C++ and proprietary SecreC code

UF [FL. ORIDA
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‘\/’, Methodology: hardware

Finding hardware for deployment in space
* Considerations:

o Commercial off-the-shelf (COTS)

o Sufficient radiation tolerance

o Sufficient power & efficiency with limited resources

*  Current findings:
o NVIDIA TX2/nano boards (ARM processors)
o AMD Ryzen embedded boards (x86 processors)

Emulate satellite cluster

* Prototype with 3 Intel NUC boards

* Networked to communicate with each other

Cluster of satellites (Hawkeye 360)

Press Release, 2020. https://www.he360.com/hawkeye-360-completes-milestone-in-preparation-to-launch-second-cluster/

I SNTA LA

e 3 satellites minimum needed for SMC
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Docking Algorithm

Another example: Artificial Potential Function (APF) Keep-out zone potential
* Scenario: docking & collision avoidance at close »
range

* On-board trajectory control “

. .f:z:, f'y,‘r
subsystem inputs

(vehicle dynamics) I

control parameters '

(static table)
Zd

human control el

(on-board flexibility)

UF [FL. ORIDA

Linear (relative) equations of motion

N T
output to Teo;NiTeo;
p ¢,=Zw,-exp[— o N
ctrl im1 o
10.1109/TCST.2018.2866963

: Dl = apf(fz, fy, T, x4, ..., static params)
v

encrypted values
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RPO example: Attitude Optimization

Optimization Algorithm

 Example scenario: inspecting o.lowned satellite satellite setup Deputy 1
for sake of servicing, cooperation between JUUPEEEE RO
satellites of different agencies/countries il

 command torque to guide attitude of system

to zero Object of ‘\\

* Blended cost approach: investigation

e Optimize fuel & ending state

e m—
\\
~
\\
=
F N
N
N
N
\N
\-———_—

\
Privatized shared parameters Deputy 2. %
* Initial states: wq, Wy, W3, V1, Vo, V3 %ﬂ
[ " Deputy 3

* Principle inertia: ], J,, /3

20 SANTA CRUZ
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,.;\,./'J valuation: Matrix Multiplication

Matrix Multiplication

100000
y= 4E-11.)§‘_‘;5,2.3.4..-0
0000 e
o .
1000 y= 4611540653,
+ w00 | et e ® nonsmc
g [ Y
= ® smc
()]
£ .
0'... -'....
) ’
1 S
0 500 1000 1500 2000 2500
* 4 SMC increases time to
0.1 .
. perform algorithm on each
o matrix by 1-1.5 orders of
0.01 .
matrix size (bytes) magnitude
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Artificial Potential Function
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Evaluation: APF

732697

14

force values

SMC increases time to
perform algorithm on
each function by 4-5
orders of magnitude,
still < 1s to execute

Reasonable since
algorithm refreshes
every 30 sec— 15 min
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dg\w/'). Evaluation: Optimization

Attitude optimization

1000

3> 301 340 268
100 55

2 40 SMC increases time to
24 perform algorithm on

each function by ~1

10 order of magnitude

Algorithm refreshes
every 10 seconds, still

1 2 3 4

reasonable to use SMC

Time (log ms)

different combinations of initial states (input parameters)

Hnon SMC mSMC
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,%f\,:’/, Results and Next Steps

Results: Next Steps:
 SMC adds 1-1.5 orders of magnitude of * Test prototype on space-related hardware,
overhead in matrix multiplication i.,e. NVIDIA and/or AMD boards

SMC adds 4-5 orders of magnitude in Look into efficiency improvements

APF algorithm functions o parallelization to increase efficiency

* Each operation is still <1 second o SIMD vectorization to improve scalability
in this environment, promising
for SMC in practice

Investigate characterization problem

beyond covariance matrices...
* SMC adds ~1 order of magnitude in

attitude optimization code

L SINTA CALL
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From Hardware

Characterization Problem

. I .
From Filters I From Learning

)
)

Concrete Observables

» Trajectory/Pose
» Reflectance/IR

IIIIIIIIII
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Inferred Properties

* Propulsion System
* Material Properties

Inferred Application

* Science
* Position, Nav, & Timing

Computation Computation
n n

|
Secure Information To Protect Capability
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Impact

Action:

* Testing prototype of different satellite
operations, specifically in RPO settings

* Integrating SMC into relevant space applications

Impact:

* Enhancing security in space, specifically
problems where privacy is a concern

* Expanding applied cryptography/SMC to a new
domain with these space applications

Source: verdict.co.uk
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