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Human-Machine Interaction

• Current state of deployed UASs involve significant human interaction (<=L3 
autonomy)

• Autonomous systems will potentially learn from simulation data informed by 
human interaction

• Augmented reality (AR) systems can assist near-term operations while virtual reality 
(VR) simulators are standard for training

• What risks to privacy are incurred in 
these systems?



Gaze Datasets:
• ET-DK2 (N = 18) 
• 360_em (N = 13)

360○ VR Viewing

k-anonymity: 1 / k

Attack Success Rate
• Raw gaze data
• Anonymized gaze data
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Re-identification Attacks using Age/Gender + 
Eye-tracking 

anonymized age and gender, not anonymized gaze
data
anonymized age, gender, and gaze data

1 / k

Re-Identification Risk



Scope
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Past Work: Noisy samples
Real-time, No Privacy Guarantee

This Work: Synthetic samples
Dataset, Privacy Guarantee

kalεido-DP [Li et al., USENIX 2021]
Spatial Differential Privacy (DP)

Can be applied in real-time or to dataset

[David-John et al., TVCG 2021]

Intent Prediction
Classification
User Identification

Foveated Rendering
Gaze Prediction
User Identification Eye 

Image

Gaze Position, 
e.g., (x, y, t)

Camera
Embedded 

Gaze 
estimation

Privacy 
Mechanism

Activity Recognition
Classification
User Identification 

Redirected Walking
Detect Saccades
User Identification 

Real-time 
Event 

Detection
Privacy 

Mechanism

Eye Position w/ label, 
e.g., (x, y, t, F/S/SP)

Streaming gaze data Real-time Applications

De-identified Data

De-identified Data

Intent Prediction
Train Intent Model
User Identification

Foveated Rendering
Train Gaze Model
User Identification

Gaze Position, 
e.g., (x, y, t)

Recorded 
Gaze 

Positions
kalεido Interaction

Tune Gaze Model
User Identification

XR Training
Expertise Model
User Identification 

Offline 
Event 

Detection

k-same-synth
event-synth-PD

Gaze Position w/ label, 
e.g., (x, y, t, F/S/SP)

Datasets Offline Applications

De-identified Data

De-identified Data

[David-John et al., TVCG 2023]



Evaluation of XR Applications
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EHTask dataset (N = 30)
Activity Classification, 360○ Video

DGaze dataset (N = 43)
Gaze Prediction (100 ms), 3D Scene

Mechanism Identification 
Rate (↓)

Runtime 
(↓)

Raw Data 28% N/A
k-same 
synth (ours)

7.5% 2 min

Event-synth-
PD (ours)

9.2% 15 min

kalεido-DP 6.0% 5 min

Mechanism Identification 
Rate (↓)

Runtime 
(↓)

Raw Data 2% N/A

k-same 
synth (ours)

1.1% 52 sec

Event-synth-
PD (ours)

1.3% 4 min

kalεido-DP 2.1% 2 min

Evaluation of XR Applications
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Evaluation of XR Applications



Hard-label adversarial machine learning attacks are a “grand-prize”:
• Adversary only needs query access to generate “label-flipped” samples (e.g., 

through compromised user)

• Hard-label attacks are gaining popularity, but not well characterized apart from 
convergence guarantees.

Sample

Label

Adversary Autonomous 
Agent

Hard-Label Attacks



Subsampling and query efficiency

• Questions we sought to answer:
• What advantages does search subsampling give the adversary?
• How can we generalize the idea of search subsampling?

• We addressed this as an information-theoretic problem, leveraging the data 
processing inequality to derive a close—form solution of manifold-gradient 
mutual information



Results of Dimensionality Reduction

Adversarial

Diff

HSJA BiLN+HSJA AE+Sign-OPT



Geometric Interpretation





Protecting Satellite Proximity Operations 

via Secure Multi-Party Computation

Caroline Fedele
PhD student, University of Florida

26 April 2023
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Project Overview 

Demonstrate use of secure multiparty computation (SMC), a method of operating on encrypted 
data, allowing satellite operations to be conducted between mutually-distrustful agents without 
leaking information about satellites’ capabilities

General goal: provide evaluation of secure satellite proximity operations 
using privacy-preserving computation

• Investigating existing tools and SMC approaches with which to implement SMC

• Determining relevant problems in space/satellite research where privacy is a concern

• Prototyping SMC setup for satellites on embedded boards for autonomous operations 

• Evaluating algorithms with and without SMC: matrix multiplication, RPO algorithms

• Benchmarking overhead added by SMC

• Broader characterization problems
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Motivation: RPO

Rendezvous and Proximity Operations (RPO):

o On-board trajectory operation and replanning
o E.g. docking, on-orbit servicing/refueling, formation flying

o RPO occurs on-board, autonomously
o housed in guidance navigation and control (GNC) unit 

o Needed at scales of < 500km between satellites
10.1109/TCST.2018.2866963

RPO example: docking

Ground station vs On-board Control

Ground station On-Board
Distance between 

satellites
1-10 Mm < 500 km

Time needed Days-weeks < 1 day

Speed km /sec m /sec

Approach conjunction analysis RPO
14



Problem: Capability Inference

Example: Collision Avoidance in RPO
• Minimum data to share with other satellites
• position, velocity, covariance

Stochastic systems

• Probabilistic, not deterministic
• Covariance matrices = quantify uncertainty

• defined by ellipsoid

• Measure of TRUST, decisions based on accuracy

Error margin = 10-15 km

Problem: knowledge of error margins (covariance matrices) can lead to inferences on satellite 
capabilities, purpose, etc.

⁄! "# accuracy

Solution:  protect error margins using privacy-preserving computation
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Privacy-Preserving Computation

Secure Multiparty Computation (SMC):

• Promising, well-developed method of PPC

• Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a 
function on their inputs, without revealing information about inputs (millionaire’s problem)

• uses a) garbled circuits (2 parties) or b) linear secret sharing (>2 parties) 

Linear Secret Sharing (LSS) scheme:

• keyless distributed encryption process.

• divides the “secret” (inputs) into randomly-generated shares 
and distributes to computing parties.

Privacy-Preserving Computation (PPC)

• Allows for data to remain encrypted during computation

• Protects physical integrity of satellite during RPO and data privacy keeping data encrypted
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Background: What is SMC?

Secret Sharing
Distribute secret (input) among n parties, i.e. covariance matrices 
of 2 satellites. Predefined authorized subsets of n can reconstruct 
secret and return to user

DOI 10.1007/s10207-014-0271-8

Threshold Secret Sharing
• k-out-of-n scheme
• secret S divided into n shares: S = (s1,…,sn)

• S = element of finite field 
• shares = mapping to S + several random elements

• compromise of k-1 shares gives no info about S

Secret Sharing on Satellites
• Donors/data users = satellites participating in collision 

avoidance (at least 2)
• Miners = 3 computation servers
• Challenges: latency, bandwidth, small overhead on 

limited-resource system
17



Methodology: Software

• Sharemind MPC platform

o 3-party linear secret sharing

o Provides host for SMC operations

o System of libraries compatible with 
C/C++ and proprietary SecreC code

Sat 2

Sat 1 and 2 = 
input/output sources

Sat 1, 2, 3 = 
SMC servers

input
𝒊𝟏, 𝒊𝟐

output
𝒊𝟏⨀ 𝒊𝟐
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Integrating SMC into satellite operations

• Testing different algorithms

o Matrix multiplication

o Artificial potential function

o Attitude Optimization

Software toolkit

Sat 3



Methodology: hardware

Emulate satellite cluster
• Prototype with 3 Intel NUC boards

• Networked to communicate with each other

• 3 satellites minimum needed for SMC

Finding hardware for deployment in space
• Considerations:

o Commercial off-the-shelf (COTS)

o Sufficient radiation tolerance

o Sufficient power & efficiency with limited resources

Hardware setup

Press Release, 2020. https://www.he360.com/hawkeye-360-completes-milestone-in-preparation-to-launch-second-cluster/

Cluster of satellites (Hawkeye 360)

• Current findings:

o NVIDIA TX2/nano boards (ARM processors)

o AMD Ryzen embedded boards (x86 processors)
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Docking Algorithm

Another example: Artificial Potential Function (APF)

• Scenario: docking & collision avoidance at close 
range
• On-board trajectory control

• Linear (relative) equations of motion

GNC

APF

subsystem inputs
(vehicle dynamics)

control parameters
(static table)

human control
(on-board flexibility)

encrypted values

Keep-out zone potential

10.1109/TCST.2018.2866963

output to
ctrl
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Optimization Algorithm

satellite setup

Object of 
investigation

Deputy 3

Deputy 2

Deputy 1

RPO example: Attitude Optimization
• Example scenario: inspecting downed satellite 

for sake of servicing, cooperation between 
satellites of different agencies/countries

• command torque to guide attitude of system 
to zero

• Blended cost approach:
• Optimize fuel & ending state

Privatized shared parameters 
• Initial states: 𝜔!, 𝜔$, 𝜔", 𝑣!, 𝑣$, 𝑣"
• Principle inertia: 𝐽, 𝐽$, 𝐽"
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Evaluation: Matrix Multiplication

SMC increases time to 
perform algorithm on each 
matrix by 1-1.5 orders of 
magnitude
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Evaluation: APF 

SMC increases time to 
perform algorithm on 
each function by 4-5 
orders of magnitude, 
still < 1s to execute

23

Reasonable since 
algorithm refreshes 
every 30 sec– 15 min



Evaluation: Optimization 
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Attitude optimization

non SMC SMC

SMC increases time to 
perform algorithm on 
each function by ~1 
order of magnitude

Algorithm refreshes 
every 10 seconds, still 
reasonable to use SMC



Results and Next Steps

Results:
• SMC adds 1-1.5 orders of magnitude of 

overhead in matrix multiplication

Next Steps:
• Test prototype on space-related hardware, 

i.e. NVIDIA and/or AMD boards
• Look into efficiency improvements

o parallelization to increase efficiency

o SIMD vectorization to improve scalability

• Investigate characterization problem 
beyond covariance matrices...

• SMC adds 4-5 orders of magnitude in 
APF algorithm functions

• Each operation is still <1 second 
in this environment, promising 
for SMC in practice
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• SMC adds ~1 order of magnitude in 
attitude optimization code



Characterization Problem

Characterization graphic 
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Impact

Source: verdict.co.uk

Action:

• Testing prototype of different satellite 
operations, specifically in RPO settings

• Integrating  SMC into relevant space applications

Impact:

• Enhancing security in space, specifically 
problems where privacy is a concern

• Expanding applied cryptography/SMC to a new 
domain with these space applications
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