AACOE Updates on Protecting Information and Computation Privacy

Kevin Butler, University of Florida AACOE Program Review 26 April 2023

- Current state of deployed UASs involve significant human interaction (<=L3 autonomy)
- Autonomous systems will potentially learn from simulation data informed by human interaction
- Augmented reality (AR) systems can assist near-term operations while virtual reality (VR) simulators are standard for training
- What risks to privacy are incurred in these systems?

Re-Identification Risk

Gaze Datasets:

- ET-DK2 (N = 18)
- 360_em (N = 13)

 360° VR Viewing

```
k-anonymity: 1 / k
```

Attack Success Rate

- Raw gaze data
- Anonymized gaze data

- anonymized age and gender, not anonymized gaze data
 - anonymized age, gender, and gaze data

— —1 / k

DGaze dataset (**N** = 43) **Gaze** Prediction (100 ms), 3D Scene

Mechanism	Identification Rate (↓)	Runtime (↓)
Raw Data	2%	N/A
<i>k</i> -same synth (ours)	1.1%	52 sec
Event-synth- PD (ours)	1.3%	4 min
kalɛido-DP	2.1%	2 min

EHTask dataset (N = 30) Activity Classification, 360° Video			
Mechanism	Identification Rate (↓)	Runtime (↓)	
Raw Data	28%	N/A	
<i>k</i> -same synth (ours)	7.5%	2 min	
Event-synth- PD <mark>(ours</mark>)	9.2%	15 min	
kalɛido-DP	6.0%	5 min	

uke

Evaluation of XR Applications

Hard-label adversarial machine learning attacks are a "grand-prize":

- Adversary only needs *query access* to generate "label-flipped" samples (e.g., through compromised user)
- Hard-label attacks are gaining popularity, but not well characterized apart from convergence guarantees.

- Questions we sought to answer:
 - What advantages does search subsampling give the adversary?
 - How can we generalize the idea of search subsampling?
- We addressed this as an information-theoretic problem, leveraging the data processing inequality to derive a close—form solution of manifold-gradient mutual information

$$I(\mathcal{G}, \mathcal{M})_{\epsilon} = 2 \int_{\mathcal{M}^{+}} p(1, x^{+}) \log(\frac{p(1, x^{+})}{p_{\mathcal{G}}(1)p_{\mathcal{M}}(x^{+})}) dx^{+} + 2 \int_{\mathcal{M}^{+}} p(-1, x^{+}) \log(\frac{p(-1, x^{+})}{p_{\mathcal{G}}(-1)p_{\mathcal{M}}(x^{+})}) dx^{+}.$$

$$I(\mathcal{G}, \mathcal{M})_{\epsilon} = \frac{2}{\sqrt{2\pi}\sigma^{2}} \sum_{i=1}^{||\mathcal{M}^{+}||} \exp(-\frac{(x_{i}^{*} - \theta)^{2}}{2\sigma^{2}}) \cdot \beta_{i}^{+} \Delta_{i} + \frac{2}{\sqrt{2\pi}\sigma^{2}} \sum_{i=1}^{||\mathcal{M}^{+}||} \exp(-\frac{(x_{i}^{*} + \theta)^{2}}{2\sigma^{2}}) \cdot \beta_{i}^{-} \Delta_{i}.$$

Adversarial

Results of Dimensionality Reduction

HSJA

BiLN+HSJA

AE+Sign-OPT

Diff

Geometric Interpretation

Duke

Protecting Satellite Proximity Operations via Secure Multi-Party Computation

Caroline Fedele PhD student, University of Florida 26 April 2023

General goal: provide evaluation of secure satellite proximity operations using privacy-preserving computation

Demonstrate use of **secure multiparty computation (SMC)**, a method of operating on encrypted data, allowing **satellite operations** to be conducted between mutually-distrustful agents without leaking information about satellites' capabilities

- Investigating existing tools and SMC approaches with which to implement SMC
- Determining relevant problems in space/satellite research where privacy is a concern
- Prototyping SMC setup for satellites on embedded boards for autonomous operations
- Evaluating algorithms with and without SMC: matrix multiplication, RPO algorithms
- Benchmarking overhead added by SMC
- Broader characterization problems

Rendezvous and Proximity Operations (RPO):

- o On-board trajectory operation and replanning
 - E.g. docking, on-orbit servicing/refueling, formation flying
- RPO occurs on-board, autonomously
 - \circ $\$ housed in guidance navigation and control (GNC) unit
- Needed at scales of < 500km between satellites

Ground station vs On-board Control

RPO example: docking

	Ground station	On-Board
Distance between satellites	1-10 Mm	< 500 km
Time needed	Days-weeks	< 1 day
Speed	km /sec	m /sec
Approach	conjunction analysis	RPO

Problem: Capability Inference

Example: Collision Avoidance in RPO

- Minimum data to share with other satellites
 - position, velocity covariance

Stochastic systems

- Probabilistic, not deterministic
- Covariance matrices = quantify uncertainty
 - defined by ellipsoid
- Measure of TRUST, decisions based on accuracy

Problem: knowledge of error margins (covariance matrices) can lead to inferences on satellite capabilities, purpose, etc.

Solution: protect error margins using privacy-preserving computation

Privacy-Preserving Computation (PPC)

- Allows for data to remain encrypted during computation
- Protects **physical integrity** of satellite during RPO and **data privacy** keeping data encrypted

Secure Multiparty Computation (SMC):

- Promising, well-developed method of PPC
- Cryptographic protocol that allows set of mutually-distrusting parties to jointly compute a function on their inputs, without revealing information about inputs (millionaire's problem)
- uses a) garbled circuits (2 parties) or b) linear secret sharing (>2 parties)

Linear Secret Sharing (LSS) scheme:

- keyless distributed encryption process.
- divides the "secret" (inputs) into randomly-generated shares and distributes to computing parties.

Background: What is SMC?

Donors

Secret Sharing

Distribute secret (input) among *n* parties, i.e. covariance matrices of 2 satellites. Predefined authorized subsets of *n* can reconstruct secret and return to user

Threshold Secret Sharing

- k-out-of-n scheme
- secret S divided into n shares: $S = (s_1, ..., s_n)$
 - S = element of finite field
 - shares = mapping to S + several random elements
- compromise of k-1 shares gives no info about S

Secret Sharing on Satellites

NIVERSITY of

- Donors/data users = satellites participating in collision avoidance (at least 2)
- Miners = 3 computation servers
- Challenges: latency, bandwidth, small overhead on limited-resource system

Methodology: Software

Integrating SMC into satellite operations

- Testing different algorithms
 - o Matrix multiplication
 - o Artificial potential function
 - Attitude Optimization

Software toolkit

- Sharemind MPC platform
 - 3-party linear secret sharing
 - Provides host for SMC operations
 - System of libraries compatible with C/C++ and proprietary SecreC code

Finding hardware for deployment in space

- Considerations:
 - Commercial off-the-shelf (COTS)
 - Sufficient radiation tolerance
 - Sufficient power & efficiency with limited resources
- Current findings:
 - NVIDIA TX2/nano boards (ARM processors)
 - AMD Ryzen embedded boards (x86 processors)

Emulate satellite cluster

- Prototype with 3 Intel NUC boards
- Networked to communicate with each other
- 3 satellites minimum needed for SMC

Hardware setup

Cluster of satellites (Hawkeye 360)

Press Release, 2020. https://www.he360.com/hawkeye-360-completes-milestone-in-preparation-to-launch-second-cluster/

Docking Algorithm

Another example: Artificial Potential Function (APF)

- Scenario: docking & collision avoidance at close range
 - On-board trajectory control
- Linear (relative) equations of motion

Keep-out zone potential

Optimization Algorithm

RPO example: Attitude Optimization

- Example scenario: inspecting downed satellite for sake of servicing, cooperation between satellites of different agencies/countries
- command torque to guide attitude of system to zero
- Blended cost approach:
 - Optimize fuel & ending state

Privatized shared parameters

- Initial states: $\omega_1, \omega_2, \omega_3, v_1, v_2, v_3$
- Principle inertia: J, J_2 , J_3

NIVERSITY O

The University of Texas at Austi:

Matrix Multiplication

SMC increases time to perform algorithm on each matrix by 1-1.5 orders of magnitude

Evaluation: APF

Evaluation: Optimization

Attitude optimization

non SMC SMC

Results:

- SMC adds 1-1.5 orders of magnitude of overhead in matrix multiplication
- SMC adds 4-5 orders of magnitude in APF algorithm functions
 - Each operation is still <1 second in this environment, promising for SMC in practice
- SMC adds ~1 order of magnitude in attitude optimization code

Next Steps:

- Test prototype on space-related hardware, i.e. NVIDIA and/or AMD boards
- Look into **efficiency** improvements
 - o parallelization to increase efficiency
 - SIMD vectorization to improve scalability
- Investigate characterization problem beyond covariance matrices...

Characterization Problem

Secure Information To Protect Capability

Source: verdict.co.uk

Action:

- Testing prototype of different satellite operations, specifically in RPO settings
- Integrating SMC into relevant space applications

Impact:

- Enhancing security in space, specifically problems where privacy is a concern
- Expanding applied cryptography/SMC to a new domain with these space applications

Kevin Butler

Tyler Lovelly

Chris Petersen

Harsh Avathale & Shivam Gupta

FICS lab (UF)

SPACER lab (AFRL)

nke

