Topology-Aware LTL Planning for Cooperative Navigation Tasks

AACoE Semiannual Review, April 2023

Dan P. Guralnik, Yu Wang

University of Florida

April 26, 2023



PART ONE

CONNECTIVITY MAINTENANCE IN GENERAL ENVIRONMENTS
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PnP Cooperative Navigation: control objective
This is a brief update on the submitted TAC paper [1], following the previous ACC 2022 report in [2].

Provided:
> MAS with %, = up, p € V, in a compact domain Q C R¢,

» Distance-limited comms: p,q € V may communicate <

[xo — xql| <R,
» Prescribed communication graph G = (V, &),
» Obstacles of general shape,
» Solution to single-agent navigation in €2,
Task:
» The MAS follows a leader £ € V, while maintaining ||x, — x4|| < R for all pg € £.
> ‘“Lazy” agents: distances between neighbors should not be contracted indefinitely.
Method:

» Require a prescriptive solution—a formula—extending single-agent navigation know-how to
graph-preserving MAS-navigation (‘Plug-and-Play’).
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PnP Cooperative Navigation: control objective

Exaggerated contractive interaction:

No interaction between neighbors if close enough:

Lazy P convale i acton
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PnP Cooperative Navigation: what a single agent knows

What is an acceptable single-agent navigation solution?

Definition (Navigation Field [2], inspired by [3, 4])

Let Q C RY, d > 2 be a compact domain given by Q £ [3 > 0], where 3 is a C*-smooth function of
R with regular value 0. A navigation field on € is a locally Lipschitz-continuous map n: Q x Q — R
satisfying the following conditions for every y € int(2):

1. (n(y,z),V:8(z)) > 0 almost everywhere on 9;

2. z =y is the only stable equilibrium of n(y, —);

3. For almost all initial conditions x(0) € €, solutions x(t) of x = n(y, x) converge to y as t — oo;
4

. There is a continuous « : int(2) — (0, c0) such that ||n(y, z)|| > a(y)|ly — z|| for all z near y.
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PnP Cooperative Navigation: what a single agent knows

What is an acceptable single-agent navigation solution?

Definition (Navigation Field [2], inspired by [3, 4])
Let Q C RY, d > 2 be a compact domain given by Q £ [3 > 0], where 3 is a C*-smooth function of

R with regular value 0. A navigation field on € is a locally Lipschitz-continuous map n: Q x Q — R
satisfying the following conditions for every y € int(2):

jursy

. {n(y, z),V:8(z)) > 0 almost everywhere on 9;
2. z =y is the only stable equilibrium of n(y, —);
3. For almost all initial conditions x(0) € €, solutions x(t) of x = n(y, x) converge to y as t — oo;
4

. There is a continuous « : int(2) — (0, c0) such that ||n(y, z)|| > a(y)|ly — z|| for all z near y.

v

Removes the need for discussing specific €;

v

All known solutions are of this form, many with a(y) = 1;

v

Consistent with imposing Rantzer-type dual-Lyapunov conditions [5].
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PnP Cooperative Navigation: formal objective

Configurations.

» Configurations/Ensemble States
x £ (xp)pev € (RY)Y, Ax £ (xg — xp)pgee € (RY)* (1)

~ need to be careful about edge orientation

» s-Available edges of a configuration x, for s > 0, are
£:(x) 2 {pa € (3): Ixg — %l < s}. (2)
» s-Valid Configurations for G are the ones in €s(G), where

%(G) 2 {xeQV: £ C &)} (3)

Problem (Weak Invariance Problem for Graph Maintenance (WIP))

For any o™ € (0, R), construct controllers u such that every solution of X = u emanating from
x(0) € €,+(G) remains in €r(G) for all time.
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PnP Cooperative Navigation: holonomic solution

» The PnP field is a superposition of navigation fields aimed at moving MAS neighbors,
Up 2 Y RS 4 Ve, RE(X) 2 n(xg %), (4)

> Asymmetric Rescaling Factors, £7(x) £ &(xq, Xp) given by

r(lly = zIDlly = zII?
&y z) = . 5
LA T s ) ®)
» Edge Tension Function. r : [0,00) — [0,00), > 0, w > 0, « € [0, 1],
i, if s €0, g],
r(s) £ pAw(s — o), ifo € o, R] (6)
0, if o € (R, o).

Where ¢ € (0, R) is a safety distance, m £ % and M £ :((5)) are characteristics of the tension.

» The task component, v, is zero for all p but the leader ¢, with
ve £ yn(x, x) = Y Eqng, (7
q~L

to keep the leader navigate to x* while unaffected by the network.
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PnP Cooperative Navigation: quality requirements of n(y, z)

So why the particular rescaling from (5)?

» u — v is related to the consensus controller, u, 2 —(L,, ® ly)x with wpg £ r(|lxq — Xp]|).

~~ note how ||uy || may drop to zero, with r not bounded away from zero, even when x is not in consensus!
Definition
Let 6 € (0,1]. A navigation field n on Q is (R, d)-good, if for all y,z € Q with ||y — z|| < R one has

(n(y,2),y — 2) = éllnly, 2)llly — |- (8)

> nis “well-aligned” with the radial field for nearby targets: n(.z)
cosZ(n(y,z),y - Z) > 57

imposing a tradeoff between obstacle curvature and
communication radius.

> This also means that U,(z) £ ||z — y||? is a strict Lyapunov
function for n(y,z) at y in y + RB.
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PnP Cooperative Navigation: results

We have already proved:

» In the contractive case, ;1 > 0, The PnP controller u solves the WIP, for appropriate parameter
choices, and sufficient slow-down of the leader.
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PnP Cooperative Navigation: results

We have already proved:

» In the contractive case, ;1 > 0, The PnP controller u solves the WIP, for appropriate parameter
choices, and sufficient slow-down of the leader.

» This was based on a property of the total tension potential,
Va(x) £ 3 ce Voa(X) = 3 X pen gy PllIxa = 1), 9)
where each edge contributes
Via(x ) P(llxq — xol1), fo s)sds. (10)

One shows that if |€] P(0*) < P(R), then any controller satisfying Vg < 0 over r(G) \ €, (G) is
a solution to the WIP.
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PnP Cooperative Navigation: results

We have already proved:

» In the contractive case, > 0, The PnP controller u solves the WIP, for appropriate parameter
choices, and sufficient slow-down of the leader.

» This was based on a property of the total tension potential,

Vo (x) £ X gee Voa (%) = 3 Xpev 2gnp PUIXa = %l1); (9)

where each edge contributes
Via(x ) P(llxq — xol1), fo s)sds. (10)

One shows that if |€] P(0*) < P(R), then any controller satisfying Vg < 0 over r(G) \ €, (G) is
a solution to the WIP.

» To prove that u satisfies this, one bounds Vg as
Vg (x) < —Xa(G, w)?||Ax|% + 4V NA(G)Rr(R) x {stuff we can handle} (11)

by decomposing all the £/nf orthogonally into wpq(xq — x,) and an orthogonal vector of bounded
length. When ;o = 0 this bound is worthless: from where L,, stands, the weights w,, disconnect G
even if the distances don't!
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PnP Cooperative Navigation: results

Main Observation for the case of 1 = 0:

» Replacing the graph G with the collection € of its connected components taking into account null
weights yields

Va(x) < — > (G, wle )[lproj ¢ Ax||% + 4V NA(G)Rr(R) x {stuff we can handle}, (9)
G*eC

» leading to similar inequalities allowing to select parameter values satisfying the WIP criterion.

» This was THE most important case to handle, since there is little point in sequentially composing
MAS controllers which individually tend to bring the MAS to near-rendezvous.
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» Replacing the graph G with the collection € of its connected components taking into account null
weights yields

Va(x) < — > (G, wle )[lproj ¢ Ax||% + 4V NA(G)Rr(R) x {stuff we can handle}, (9)
Grec
» leading to similar inequalities allowing to select parameter values satisfying the WIP criterion.

» This was THE most important case to handle, since there is little point in sequentially composing
MAS controllers which individually tend to bring the MAS to near-rendezvous.

Additional contributions:
» (R, d)-goodness bounds on SOTA navigation fields;

» Working MATLAB implementations of SOTA navigation fields tested with PnP in challenging
environments (multiple star-convex obstacles).
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PnP Cooperative Navigation: future work

Applications:

» Sequential and parallel compositions framework for connecting/disconnecting distance-limited
networks in the presence of large obstacles.

> Obstacle-aware LTL-based MAS-planning (some news on laying down the foundations from Yu
Wang in Part 2)

Further Development:

» Non-holonomic extensions, e.g. differential drive (with Patrick Amy and Ishan Agrawal);
~~ Run PnP on robot dogs and huskies!

» |mproved bounds on Vg for less conservative control / adaptation;

» PnP extensions for other problems, e.g. optimal controllers???
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PArT TwWO

TOPOLOGICALLY-AWARE PLANNING

Dan P. Guralnik, Yu Wang and Warren E. Dixon
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Overview

» Motivation: How to systematically solve planning and control problems for complex
tasks in spaces and with atomic propositions that are not convex or even contractible
Euclidean domains?

» Topology offers a paradigm: Present the workspace as the union of multiple
contractible sub-spaces; then, patching local controllers together results in a global
controller.

» Open question: How to plan for complex objectives over this “patchified” topological
space?
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Recap: Linear temporal logic (LTL)

» LTL formulae can include two temporal operators, next () and until (U), and any
recursive combinations of the operators captured by the syntax

pi=true|alpi A2 || O | piUp2

where a is a boolean variable.

» Example: X = $! with an open cover indexed by AP = {a, b, c}.

C
m o Problem: Plan for aUb,
~» ¢ A\ —a A —b is an implicit obstacle for this task

a b

» Planning and control for LTL objectives can be solved algorithmically on finite-state
discrete transition systems.

» Question. Assuming holonomic dynamics, how to systematically generalize these
methods to spaces that are not necessarily copies of Euclidean space, while avoiding rigid
methods such as polyhedral decompositions [6]?
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The Nerve Simplicial Complex (SCX) and Good Covers

Let (X,.7) be a nice! topological space.
» Indexed Covers are maps U: AP — .7 such that X = [J cap U(a).

le.g., (X, 7) is completely regular, II-countable, connected, and locally contractible.
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Let (X,.7) be a nice! topological space.
» Indexed Covers are maps U: AP — .7 such that X = [J cap U(a).

> Aset o C AP is U-consistent, if U(c) 2 N, ., U(a) # 2.
» The Nerve of U is the scx N(U) of all U-consistent sets o C AP.

b a b a pr b

Theorem (Nerve Lemma)

If every U(c), o € N(U) is contractible, then X is homotopy-equivalent to the geometric
realization of N(U). An open cover with this property is called a good cover.

le.g., (X, 7) is completely regular, Il-countable, connected, and locally contractible.
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The Nerve vs. 24F: the Shtan’ko-Shtogrin map [7]

» The geometric realization |N(U)| of the nerve is constructed in RAF, as a union of
geometric simplices spanned by the e,, a € AP

IND) & [ A7, A7E2{Y o taea €RAT: Y ot =1, (Vaco)(ta > 0)}
ceN(U)
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The Nerve vs. 24F: the Shtan’ko-Shtogrin map [7]

» The geometric realization |N(U)| of the nerve is constructed in RAF, as a union of
=1, (Vaeo)(ta > 0)}

geometric simplices spanned by the e,, a € AP
VU= U A7 AT R Y taea ERATE Yo, t

ceN(U)
» The nerve is mapped homeomorphically into the positive boundary of the unit cube
DFF 2 {¢ e 04 3, ¢(a) = 13,

DAP AL [07 1]AP C ]R,AP,

u
uvw’ R
uvw
uvcw_\ { AAP — D:‘?P
h c:
<
§ 7 M

w
~~ each d-simplex is made of (d + 1) d-cubes meeting in its barycenter and creating a ‘corner’

realizing the natural map of N(U) into 2AF.
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An Example LTL Planning Problem

LTL-based planning in discrete transition systems is done in the product of an appropriate
Buchi automaton with the transition system. We solve the problem from the preceding slide:

0

c

bc
pr—
b

a

ac
a

PN
@/\

1

c

S \|®bc

XA b
C Nab

product
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Realizability as a Challenge to Nerve-Based Planning

» Main Challenge: Not all o € N(U) are witnessed by a point of X.

Definition (Realizability)

For x € X, one has o(x) £ {a € AP: x € U(a)} € N(U). A simplex o € N(U) is said to be
U-realized, if 0 = o(x) for some x € X.
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1 1 1 C 1 1

i EOL————i——L* e {c} is not realized;
@l b e {a, b} is not realized.
x oy X W

» Unrealized simplices are an obstruction to planning using N(U):

e Not every path in |[N(U)]| is realizable as a path in X;
e Homotoping an unrealizable plan to a realizable one may violate task constraints.
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The Reduced Nerve

» Recall, if K is a scx, then Sd(K) is the scx of all T C K that are (C)-chains.?

{a,ac,abc}

a® a b

There is no way to access a from abc except via ac, so the red simplex of SA(N(U)) in the center should not be deemed
realizable, yielding a “reduced nerve” as in the diagram on the right (red).

2T € Sd(K) iff, for all 0,7 € T onehasa C T or 7 C 0.
17/19
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a b

There is no way to access a from abc except via ac, so the red simplex of SA(N(U)) in the center should not be deemed
realizable, yielding a “reduced nerve” as in the diagram on the right (red).

Definition (Realized Simplex in SA(N(U)))

Let T ={o0,...,04} be a d-simplex in SA(N(U)), where g;_; Co; foralli=1,...,d. Tis
realized if all the o in T are realized, and there exists a continuous map s : AT — X such that

o (s (Zligen))) =07 = §>0 A (Vi) &=0,

where (&, . ..,&q) are the barycentric coordinates on AT

2T € Sd(K) iff, for all 0,7 € T one has o C T or 7 C 0.
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The Reduced Nerve

» We are after the following result (strong form):

Theorem (Nerve Lemma for Reduced Nerve?)

Let N,.,(U) be the sub-complex of SA(N(U)) consisting of its realized simplices. Let
Y =|SA(N(U))|, Yied = [N.o(U)|. If U is a good cover, then Y,eq is a strong deformation
retract of Y — there is a continuous deformation H : Y x [0,1] — Y such that:
1. H(y,t) =y forall y € Yied;
2. H(y,1) € Yieq forally € Y;
3. H(y, 0) =y for all yey. ~> the full nerve gets deformed to the real nerve
In particular, Y,eg = |N.o(U)| has the homotopy type of X.

~~ the deformation fixes the real nerve pointwise

~~ the target of the deformation is the real nerve
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Theorem (Nerve Lemma for Reduced Nerve?)

Let N,.,(U) be the sub-complex of SA(N(U)) consisting of its realized simplices. Let

Y =|SA(N(U))|, Yied = [N.o(U)|. If U is a good cover, then Y,eq is a strong deformation
retract of Y — there is a continuous deformation H : Y x [0,1] — Y such that:
1. H(y, t) =y for all y € Yied; ~~ the deformation fixes the real nerve pointwise
2. H(y, 1) € Yred for all y € Y,’ ~~ the target of the deformation is the real nerve
3. H(y, 0) =y for all yey. ~> the full nerve gets deformed to the real nerve

In particular, Y,eg = |N.o(U)| has the homotopy type of X.

”

> It would suffice to obtain the weaker (“In particular. ..
> APPLICATIONS:

) statement.

LTL planning as discussed above: paths in the real nerve form realizable plans in X;
Enable the use of computational algebraic topology (CAT) tools in LTL planning;
Access to problems with complex combinatorial structure (e.g. coordinated navigation);
An avenue for unification with discrete Conley theory [8]?
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THANK YoOu!
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