Topology-Aware LTL Planning for Cooperative Navigation Tasks

AACoE Semiannual Review, April 2023

Dan P. Guralnik, Yu Wang

University of Florida

April 26, 2023

Part One

Connectivity Maintenance in General Environments

Dan P. Guralnik, Peter F. Stiller, Federico M. Zegers and Warren E. Dixon

PnP Cooperative Navigation: control objective

This is a brief update on the submitted TAC paper [1], following the previous ACC 2022 report in [2].

Provided:

- ▶ MAS with $\dot{x}_p = u_p$, $p \in \mathcal{V}$, in a compact domain $\Omega \subset \mathbb{R}^d$,
- ▶ Distance-limited comms: $p, q \in V$ may communicate $\Leftrightarrow ||x_p x_q|| \le R$,
- Prescribed communication graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$,
- Obstacles of general shape,
- Solution to single-agent navigation in Ω ,

Task:

- ▶ The MAS follows a leader $\ell \in \mathcal{V}$, while maintaining $||x_p x_q|| \leq R$ for all $pq \in \mathcal{E}$.
- "Lazy" agents: distances between neighbors should not be contracted indefinitely.

Method:

Require a prescriptive solution—a formula—extending single-agent navigation know-how to graph-preserving MAS-navigation ('Plug-and-Play').

PnP Cooperative Navigation: control objective

Exaggerated contractive interaction:

No interaction between neighbors if close enough:

What is an acceptable single-agent navigation solution?

Definition (Navigation Field [2], inspired by [3, 4])

- 1. $\langle \mathfrak{n}(y,z), \nabla_z \beta(z) \rangle > 0$ almost everywhere on $\partial \Omega$;
- 2. z = y is the only stable equilibrium of n(y, -);
- 3. For almost all initial conditions $x(0) \in \Omega$, solutions x(t) of $\dot{x} = \mathfrak{n}(y, x)$ converge to y as $t \to \infty$;
- 4. There is a continuous $\alpha : int(\Omega) \to (0,\infty)$ such that $\|\mathfrak{n}(y,z)\| \ge \alpha(y)\|y-z\|$ for all z near y.

What is an acceptable single-agent navigation solution?

Definition (Navigation Field [2], inspired by [3, 4])

- 1. $\langle \mathfrak{n}(y,z), \nabla_z \beta(z) \rangle > 0$ almost everywhere on $\partial \Omega$;
- 2. z = y is the only stable equilibrium of n(y, -);
- 3. For almost all initial conditions $x(0) \in \Omega$, solutions x(t) of $\dot{x} = \mathfrak{n}(y, x)$ converge to y as $t \to \infty$;
- 4. There is a continuous $\alpha : int(\Omega) \to (0,\infty)$ such that $\|\mathfrak{n}(y,z)\| \ge \alpha(y)\|y-z\|$ for all z near y.

What is an acceptable single-agent navigation solution?

Definition (Navigation Field [2], inspired by [3, 4])

- 1. $\langle \mathfrak{n}(y,z), \nabla_z \beta(z) \rangle > 0$ almost everywhere on $\partial \Omega$;
- 2. z = y is the only stable equilibrium of n(y, -);
- 3. For almost all initial conditions $x(0) \in \Omega$, solutions x(t) of $\dot{x} = \mathfrak{n}(y, x)$ converge to y as $t \to \infty$;
- 4. There is a continuous $\alpha : int(\Omega) \to (0,\infty)$ such that $\|\mathfrak{n}(y,z)\| \ge \alpha(y)\|y-z\|$ for all z near y.

What is an acceptable single-agent navigation solution?

Definition (Navigation Field [2], inspired by [3, 4])

- 1. $\langle \mathfrak{n}(y,z), \nabla_z \beta(z) \rangle > 0$ almost everywhere on $\partial \Omega$;
- 2. z = y is the only stable equilibrium of n(y, -);
- 3. For almost all initial conditions $x(0) \in \Omega$, solutions x(t) of $\dot{x} = \mathfrak{n}(y, x)$ converge to y as $t \to \infty$;
- 4. There is a continuous $\alpha : int(\Omega) \to (0,\infty)$ such that $\|\mathfrak{n}(y,z)\| \ge \alpha(y)\|y-z\|$ for all z near y.

What is an acceptable single-agent navigation solution?

Definition (Navigation Field [2], inspired by [3, 4])

- 1. $\langle \mathfrak{n}(y,z), \nabla_z \beta(z) \rangle > 0$ almost everywhere on $\partial \Omega$;
- 2. z = y is the only stable equilibrium of n(y, -);
- 3. For almost all initial conditions $x(0) \in \Omega$, solutions x(t) of $\dot{x} = \mathfrak{n}(y, x)$ converge to y as $t \to \infty$;
- 4. There is a continuous $\alpha : int(\Omega) \to (0,\infty)$ such that $\|\mathfrak{n}(y,z)\| \ge \alpha(y)\|y-z\|$ for all z near y.
- Removes the need for discussing specific Ω;
- All known solutions are of this form, many with $\alpha(y) \equiv 1$;
- Consistent with imposing Rantzer-type dual-Lyapunov conditions [5].

PnP Cooperative Navigation: formal objective

Configurations.

Configurations/Ensemble States

$$\mathbf{x} \triangleq (x_p)_{p \in \mathcal{V}} \in (\mathbb{R}^d)^{\mathcal{V}}, \ \Delta \mathbf{x} \triangleq (x_q - x_p)_{pq \in \mathcal{E}} \in (\mathbb{R}^d)^{\mathcal{E}}$$
(1)

 \rightsquigarrow need to be careful about edge orientation

• *s*-Available edges of a configuration \mathbf{x} , for s > 0, are

$$\mathcal{E}_{s}(\mathbf{x}) \triangleq \{ pq \in \binom{\mathcal{V}}{2} : \|x_{q} - x_{p}\| \leq s \}.$$
(2)

▶ *s*-Valid Configurations for \mathcal{G} are the ones in $\mathscr{C}_s(\mathcal{G})$, where

$$\mathscr{C}_{s}(\mathcal{G}) \triangleq \{ \mathbf{x} \in \Omega^{\mathcal{V}} \colon \mathcal{E} \subseteq \mathcal{E}_{s}(\mathbf{x}) \}.$$
(3)

Problem (Weak Invariance Problem for Graph Maintenance (WIP))

For any $\varrho^* \in (0, R)$, construct controllers **u** such that every solution of $\dot{\mathbf{x}} = \mathbf{u}$ emanating from $\mathbf{x}(0) \in \mathscr{C}_{\varrho^*}(\mathcal{G})$ remains in $\mathscr{C}_R(\mathcal{G})$ for all time.

PnP Cooperative Navigation: holonomic solution

The PnP field is a superposition of navigation fields aimed at moving MAS neighbors,

$$u_{\rho} \triangleq \sum_{q \sim p} \xi_{q}^{p} \mathfrak{n}_{q}^{p} + v_{\rho}, \quad \mathfrak{n}_{q}^{p}(\mathbf{x}) \triangleq \mathfrak{n}(x_{q}, x_{\rho}).$$
(4)

• Asymmetric Rescaling Factors, $\xi_q^p(\mathbf{x}) \triangleq \xi(x_q, x_p)$ given by

$$\xi(y,z) \triangleq \frac{r(\|y-z\|)\|y-z\|^2}{\langle \mathfrak{n}(y,z), y-z \rangle}.$$
(5)

► Edge Tension Function. $r : [0, \infty) \rightarrow [0, \infty), \mu \ge 0, \omega > 0, \alpha \in [0, 1],$

$$r(s) \triangleq \begin{cases} \mu, & \text{if } s \in [0, \varrho], \\ \mu + \omega(s - \varrho)^{1 + \alpha}, & \text{if } \sigma \in [\varrho, R] \\ 0, & \text{if } \sigma \in (R, \infty]. \end{cases}$$
(6)

Where $\rho \in (0, R)$ is a safety distance, $m \triangleq \frac{R}{\rho}$ and $M \triangleq \frac{r(R)}{r(\rho)}$ are characteristics of the tension. • The task component, v_p is zero for all p but the leader ℓ , with

$$\mathbf{v}_{\ell} \triangleq \gamma \, \mathfrak{n}(\mathbf{x}^*, \mathbf{x}_{\ell}) - \sum_{q \sim \ell} \xi_q^{\ell} \mathfrak{n}_q^{\ell}, \tag{7}$$

to keep the leader navigate to x^* while unaffected by the network.

PnP Cooperative Navigation: quality requirements of n(y, z)

So why the particular rescaling from (5)?

▶ $\mathbf{u} - \mathbf{v}$ is related to the consensus controller, $\mathbf{u}_w \triangleq -(\mathbf{L}_w \otimes \mathbf{I}_d)\mathbf{x}$ with $w_{pq} \triangleq r(||x_q - x_p||)$.

 \rightsquigarrow note how $\|\mathbf{u}_w\|$ may drop to zero, with r not bounded away from zero, even when x is not in consensus!

Definition

Let $\delta \in (0, 1]$. A navigation field \mathfrak{n} on Ω is (R, δ) -good, if for all $y, z \in \Omega$ with $||y - z|| \le R$ one has $\langle \mathfrak{n}(y, z), y - z \rangle \ge \delta ||\mathfrak{n}(y, z)|| ||y - z||.$ (8)

n is "well-aligned" with the radial field for nearby targets:

$$\cos \angle (\mathfrak{n}(y,z), y-z) \ge \delta,$$

imposing a tradeoff between obstacle curvature and communication radius.

► This also means that $U_y(z) \triangleq ||z - y||^2$ is a strict Lyapunov function for n(y, z) at y in $y + R\mathbb{B}$.

We have already proved:

In the contractive case, $\mu > 0$, The PnP controller **u** solves the WIP, for appropriate parameter choices, and sufficient slow-down of the leader.

We have already proved:

- In the contractive case, $\mu > 0$, The PnP controller **u** solves the WIP, for appropriate parameter choices, and sufficient slow-down of the leader.
- This was based on a property of the total tension potential,

$$V_{\mathcal{G}}(\mathbf{x}) \triangleq \sum_{pq \in \mathcal{E}} V_{pq}(\mathbf{x}) = \frac{1}{2} \sum_{p \in \mathcal{V}} \sum_{q \sim p} P(\|x_q - x_p\|), \tag{9}$$

where each edge contributes

$$V_{\rho q}(\mathbf{x}) \triangleq P(||x_q - x_\rho||), \ P(\rho) \triangleq \int_0^\rho r(s) s ds.$$
(10)

One shows that if $|\mathcal{E}| P(\varrho^*) < P(R)$, then any controller satisfying $\dot{V}_{\mathcal{G}} \leq 0$ over $\mathscr{C}_{R}(\mathcal{G}) \setminus \mathscr{C}_{\varrho^*}(\mathcal{G})$ is a solution to the WIP.

We have already proved:

- In the contractive case, $\mu > 0$, The PnP controller **u** solves the WIP, for appropriate parameter choices, and sufficient slow-down of the leader.
- This was based on a property of the total tension potential,

$$V_{\mathcal{G}}(\mathbf{x}) \triangleq \sum_{pq \in \mathcal{E}} V_{pq}(\mathbf{x}) = \frac{1}{2} \sum_{p \in \mathcal{V}} \sum_{q \sim p} P(\|x_q - x_p\|), \tag{9}$$

where each edge contributes

$$V_{\rho q}(\mathbf{x}) \triangleq P(\|x_q - x_p\|), \ P(\rho) \triangleq \int_0^\rho r(s) s ds.$$
(10)

One shows that if $|\mathcal{E}| P(\varrho^*) < P(R)$, then any controller satisfying $\dot{V}_{\mathcal{G}} \leq 0$ over $\mathscr{C}_{R}(\mathcal{G}) \setminus \mathscr{C}_{\varrho^*}(\mathcal{G})$ is a solution to the WIP.

• To prove that **u** satisfies this, one bounds $\dot{V}_{\mathcal{G}}$ as

$$\dot{V}_{\mathcal{G}}(\mathbf{x}) \leq -\lambda_2(G, w)^2 \|\Delta \mathbf{x}\|_{\infty}^2 + 4\sqrt{N}\Delta(\mathcal{G})Rr(R) \times \{\text{stuff we can handle}\}$$
(11)

by decomposing all the $\xi_q^p \mathfrak{n}_q^p$ orthogonally into $w_{pq}(x_q - x_p)$ and an orthogonal vector of bounded length. When $\mu = 0$ this bound is worthless: from where \mathbf{L}_w stands, the weights w_{pq} disconnect \mathcal{G} even if the distances don't!

Main Observation for the case of $\mu = 0$:

Replacing the graph G with the collection C of its connected components taking into account null weights yields

$$\dot{\mathcal{V}}_{\mathcal{G}}(\mathbf{x}) \leq -\sum_{G^* \in \mathcal{C}} \lambda_2 (G^*, w|_{G^*})^2 \|\operatorname{proj}_{G^*} \Delta \mathbf{x}\|_{\infty}^2 + 4\sqrt{N} \Delta(\mathcal{G}) Rr(R) \times \{\operatorname{stuff we can handle}\},$$
(9)

- ▶ leading to similar inequalities allowing to select parameter values satisfying the WIP criterion.
- This was THE most important case to handle, since there is little point in sequentially composing MAS controllers which individually tend to bring the MAS to near-rendezvous.

Main Observation for the case of $\mu = 0$:

Replacing the graph G with the collection C of its connected components taking into account null weights yields

$$\dot{\mathcal{V}}_{\mathcal{G}}(\mathbf{x}) \leq -\sum_{G^* \in \mathcal{C}} \lambda_2 (G^*, w|_{G^*})^2 \|\operatorname{proj}_{G^*} \Delta \mathbf{x}\|_{\infty}^2 + 4\sqrt{N} \Delta(\mathcal{G}) Rr(R) \times \{\operatorname{stuff we can handle}\},$$
(9)

- ▶ leading to similar inequalities allowing to select parameter values satisfying the WIP criterion.
- This was THE most important case to handle, since there is little point in sequentially composing MAS controllers which individually tend to bring the MAS to near-rendezvous.

Additional contributions:

- (R, δ) -goodness bounds on SOTA navigation fields;
- Working MATLAB implementations of SOTA navigation fields tested with PnP in challenging environments (multiple star-convex obstacles).

PnP Cooperative Navigation: future work

Applications:

- Sequential and parallel compositions framework for connecting/disconnecting distance-limited networks in the presence of large obstacles.
- Obstacle-aware LTL-based MAS-planning (some news on laying down the foundations from Yu Wang in Part 2)

Further Development:

Non-holonomic extensions, e.g. differential drive (with Patrick Amy and Ishan Agrawal);

~ Run PnP on robot dogs and huskies!

- Improved bounds on $\dot{V}_{\mathcal{G}}$ for less conservative control / adaptation;
- PnP extensions for other problems, e.g. optimal controllers???

Part Two

TOPOLOGICALLY-AWARE PLANNING

Dan P. Guralnik, Yu Wang and Warren E. Dixon

Overview

- Motivation: How to systematically solve planning and control problems for complex tasks in spaces and with atomic propositions that are not convex or even contractible Euclidean domains?
- Topology offers a paradigm: Present the workspace as the union of multiple contractible sub-spaces; then, patching local controllers together results in a global controller.
- Open question: How to plan for complex objectives over this "patchified" topological space?

Recap: Linear temporal logic (LTL)

▶ LTL formulae can include two temporal operators, next (○) and until (U), and any recursive combinations of the operators captured by the syntax

```
\varphi \coloneqq \operatorname{true} \mid \boldsymbol{a} \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \mathsf{U} \varphi_2
```

where *a* is a boolean variable.

• Example: $X = S^1$ with an open cover indexed by $AP = \{a, b, c\}$.

- Problem: Plan for *a*U*b*.
 - $\rightsquigarrow c \land \neg a \land \neg b$ is an implicit obstacle for this task
- Planning and control for LTL objectives can be solved algorithmically on finite-state discrete transition systems.
- Question. Assuming holonomic dynamics, how to systematically generalize these methods to spaces that are not necessarily copies of Euclidean space, while avoiding rigid methods such as polyhedral decompositions [6]?

Let (X, \mathscr{T}) be a nice¹ topological space.

▶ Indexed Covers are maps $\mathbb{U} : \mathrm{AP} \to \mathscr{T}$ such that $X = \bigcup_{\alpha \in \mathrm{AP}} \mathbb{U}(\alpha)$.

¹e.g., (X, \mathscr{T}) is completely regular, *II*-countable, connected, and locally contractible.

Let (X, \mathscr{T}) be a nice¹ topological space.

- ▶ Indexed Covers are maps $\mathbb{U} : \mathrm{AP} \to \mathscr{T}$ such that $X = \bigcup_{\alpha \in \mathrm{AP}} \mathbb{U}(\alpha)$.
- ▶ A set $\sigma \subset AP$ is U-consistent, if $\widetilde{\mathbb{U}}(\sigma) \triangleq \bigcap_{\alpha \in \sigma} \mathbb{U}(\alpha) \neq \emptyset$.

¹e.g., (X, \mathscr{T}) is completely regular, *II*-countable, connected, and locally contractible.

Let (X, \mathscr{T}) be a nice¹ topological space.

- ▶ Indexed Covers are maps $\mathbb{U} : \mathrm{AP} \to \mathscr{T}$ such that $X = \bigcup_{\alpha \in \mathrm{AP}} \mathbb{U}(\alpha)$.
- A set $\sigma \subset AP$ is U-consistent, if $\widetilde{\mathbb{U}}(\sigma) \triangleq \bigcap_{\alpha \in \sigma} \mathbb{U}(\alpha) \neq \emptyset$.
- **•** The Nerve of \mathbb{U} is the scx $N(\mathbb{U})$ of all \mathbb{U} -consistent sets $\sigma \subset AP$.

¹e.g., (X, \mathscr{T}) is completely regular, *II*-countable, connected, and locally contractible.

Let (X, \mathscr{T}) be a nice¹ topological space.

- ▶ Indexed Covers are maps $\mathbb{U} : \mathrm{AP} \to \mathscr{T}$ such that $X = \bigcup_{\alpha \in \mathrm{AP}} \mathbb{U}(\alpha)$.
- A set $\sigma \subset AP$ is U-consistent, if $\widetilde{\mathbb{U}}(\sigma) \triangleq \bigcap_{\alpha \in \sigma} \mathbb{U}(\alpha) \neq \emptyset$.
- **•** The Nerve of \mathbb{U} is the scx $N(\mathbb{U})$ of all \mathbb{U} -consistent sets $\sigma \subset AP$.

Theorem (Nerve Lemma)

If every $\widetilde{\mathbb{U}}(\sigma)$, $\sigma \in N(\mathbb{U})$ is contractible, then X is homotopy-equivalent to the geometric realization of $N(\mathbb{U})$. An open cover with this property is called a good cover.

¹e.g., (X, \mathscr{T}) is completely regular, *II*-countable, connected, and locally contractible.

The Nerve vs. 2^{AP}: the Shtan'ko-Shtogrin map [7]

The geometric realization |N(U)| of the nerve is constructed in ℝ^{AP}, as a union of geometric simplices spanned by the e_α, α ∈ AP

$$|\mathsf{N}(\mathbb{U})| \triangleq \bigcup_{\sigma \in \mathsf{N}(\mathbb{U})} \dot{\Delta}^{\sigma}, \quad \dot{\Delta}^{\sigma} \triangleq \left\{ \sum_{\alpha \in \sigma} t_{\alpha} e_{\alpha} \in \mathbb{R}^{\mathrm{AP}} \colon \sum_{\alpha \in \sigma} t_{\alpha} = 1, \, (\forall_{\alpha \in \sigma})(t_{\alpha} > 0) \right\}$$

The Nerve vs. 2^{AP}: the Shtan'ko-Shtogrin map [7]

The geometric realization |N(U)| of the nerve is constructed in ℝ^{AP}, as a union of geometric simplices spanned by the e_α, α ∈ AP

$$|\mathcal{N}(\mathbb{U})| riangleq igcup_{\sigma \in \mathcal{N}(\mathbb{U})} \dot{\Delta}^{\sigma}, \quad \dot{\Delta}^{\sigma} riangleq \left\{ \sum_{lpha \in \sigma} t_{lpha} e_{lpha} \in \mathbb{R}^{\mathrm{AP}} \colon \sum_{lpha \in \sigma} t_{lpha} = 1, \, (orall_{lpha \in \sigma})(t_{lpha} > 0)
ight\}$$

▶ The nerve is mapped *homeomorphically* into the positive boundary of the unit cube:

realizing the natural map of $N(\mathbb{U})$ into $\mathbf{2}^{AP}$.

 \rightsquigarrow each d-simplex is made of (d + 1) d-cubes meeting in its barycenter and creating a 'corner'

An Example LTL Planning Problem

LTL-based planning in discrete transition systems is done in the product of an appropriate Büchi automaton with the transition system. We solve the problem from the preceding slide:

Realizability as a Challenge to Nerve-Based Planning

▶ Main Challenge: Not all $\sigma \in N(\mathbb{U})$ are witnessed by a point of X.

Definition (Realizability)

For $x \in X$, one has $\sigma(x) \triangleq \{\alpha \in AP : x \in \mathbb{U}(\alpha)\} \in N(\mathbb{U})$. A simplex $\sigma \in N(\mathbb{U})$ is said to be \mathbb{U} -realized, if $\sigma = \sigma(x)$ for some $x \in X$.

Realizability as a Challenge to Nerve-Based Planning

▶ Main Challenge: Not all $\sigma \in N(\mathbb{U})$ are witnessed by a point of X.

Definition (Realizability)

For $x \in X$, one has $\sigma(x) \triangleq \{\alpha \in AP : x \in \mathbb{U}(\alpha)\} \in N(\mathbb{U})$. A simplex $\sigma \in N(\mathbb{U})$ is said to be \mathbb{U} -realized, if $\sigma = \sigma(x)$ for some $x \in X$.

Realizability as a Challenge to Nerve-Based Planning

▶ Main Challenge: Not all $\sigma \in N(\mathbb{U})$ are witnessed by a point of X.

Definition (Realizability)

For $x \in X$, one has $\sigma(x) \triangleq \{\alpha \in AP : x \in \mathbb{U}(\alpha)\} \in N(\mathbb{U})$. A simplex $\sigma \in N(\mathbb{U})$ is said to be \mathbb{U} -realized, if $\sigma = \sigma(x)$ for some $x \in X$.

• Unrealized simplices are an obstruction to planning using $N(\mathbb{U})$:

- Not every path in $|N(\mathbb{U})|$ is realizable as a path in X;
- Homotoping an unrealizable plan to a realizable one may violate task constraints.

▶ Recall, if K is a scx, then Sd(K) is the scx of all $T \subset K$ that are (⊆)-chains.²

There is no way to access a from abc except via ac, so the red simplex of $\mathrm{Sd}(N(\mathbb{U}))$ in the center should not be deemed realizable, yielding a "reduced nerve" as in the diagram on the right (red).

 $^{{}^{2}}T \in \mathrm{Sd}(K)$ iff, for all $\sigma, \tau \in T$ one has $\sigma \subseteq \tau$ or $\tau \subseteq \sigma$.

▶ Recall, if K is a scx, then Sd(K) is the scx of all $T \subset K$ that are (⊆)-chains.²

There is no way to access a from abc except via ac, so the red simplex of $Sd(N(\mathbb{U}))$ in the center should not be deemed realizable, yielding a "reduced nerve" as in the diagram on the right (red).

Definition (Realized Simplex in Sd(N(U)))

Let $T = \{\sigma_0, \ldots, \sigma_d\}$ be a *d*-simplex in $\mathrm{Sd}(N(\mathbb{U}))$, where $\sigma_{i-1} \subset \sigma_i$ for all $i = 1, \ldots, d$. *T* is *realized* if all the σ_i in *T* are realized, and there exists a continuous map $s : \Delta^T \to X$ such that

$$\sigma\left(s\left(\sum_{i=1}^{d}\xi_{i}e_{\sigma_{i}}\right)\right)=\sigma_{j}\iff \xi_{j}>0 \land (\forall_{i>j}) \ \xi_{i}=0,$$

where (ξ_0, \ldots, ξ_d) are the barycentric coordinates on Δ^T .

 ${}^{2}T \in \mathrm{Sd}(\mathcal{K})$ iff, for all $\sigma, \tau \in T$ one has $\sigma \subseteq \tau$ or $\tau \subseteq \sigma$.

• We are after the following result (strong form):

Theorem (Nerve Lemma for Reduced Nerve?)

Let $N_{red}(\mathbb{U})$ be the sub-complex of $\mathrm{Sd}(N(\mathbb{U}))$ consisting of its realized simplices. Let $Y = |\mathrm{Sd}(N(\mathbb{U}))|$, $Y_{red} = |N_{red}(\mathbb{U})|$. If \mathbb{U} is a good cover, then Y_{red} is a strong deformation retract of Y— there is a continuous deformation $H : Y \times [0, 1] \rightarrow Y$ such that:

1.
$$H(y,t) = y$$
 for all $y \in Y_{red}$,

2.
$$H(y,1) \in Y_{red}$$
 for all $y \in Y$;

3.
$$H(y,0) = y$$
 for all $y \in Y$.

 \rightsquigarrow the deformation fixes the real nerve pointwise

- \rightsquigarrow the target of the deformation is the real nerve
- \rightsquigarrow the full nerve gets deformed to the real nerve

In particular, $Y_{red} = |N_{red}(\mathbb{U})|$ has the homotopy type of X.

• We are after the following result (strong form):

Theorem (Nerve Lemma for Reduced Nerve?)

Let $N_{red}(\mathbb{U})$ be the sub-complex of $\mathrm{Sd}(N(\mathbb{U}))$ consisting of its realized simplices. Let $Y = |\mathrm{Sd}(N(\mathbb{U}))|$, $Y_{red} = |N_{red}(\mathbb{U})|$. If \mathbb{U} is a good cover, then Y_{red} is a strong deformation retract of Y— there is a continuous deformation $H : Y \times [0, 1] \rightarrow Y$ such that:

1.
$$H(y, t) = y$$
 for all $y \in Y_{red}$;

2.
$$H(y,1) \in Y_{red}$$
 for all $y \in Y$;

3.
$$H(y,0) = y$$
 for all $y \in Y$.

 \rightsquigarrow the deformation fixes the real nerve pointwise \rightsquigarrow the target of the deformation is the real nerve \rightsquigarrow the full nerve gets deformed to the real nerve

In particular, $Y_{red} = |N_{red}(\mathbb{U})|$ has the homotopy type of X.

▶ It would suffice to obtain the weaker ("In particular...") statement.

• We are after the following result (strong form):

Theorem (Nerve Lemma for Reduced Nerve?)

Let $N_{red}(\mathbb{U})$ be the sub-complex of $\mathrm{Sd}(N(\mathbb{U}))$ consisting of its realized simplices. Let $Y = |\mathrm{Sd}(N(\mathbb{U}))|$, $Y_{red} = |N_{red}(\mathbb{U})|$. If \mathbb{U} is a good cover, then Y_{red} is a strong deformation retract of Y— there is a continuous deformation $H : Y \times [0, 1] \rightarrow Y$ such that:

1.
$$H(y, t) = y$$
 for all $y \in Y_{red}$;

2.
$$H(y,1) \in Y_{red}$$
 for all $y \in Y$;

3.
$$H(y,0) = y$$
 for all $y \in Y$.

 \rightsquigarrow the deformation fixes the real nerve pointwise \rightsquigarrow the target of the deformation is the real nerve \rightsquigarrow the full nerve gets deformed to the real nerve

In particular, $Y_{red} = |N_{red}(\mathbb{U})|$ has the homotopy type of X.

It would suffice to obtain the weaker ("In particular...") statement.

► Applications:

- LTL planning as discussed above: paths in the real nerve form realizable plans in X;
- Enable the use of computational algebraic topology (CAT) tools in LTL planning;
- Access to problems with complex combinatorial structure (e.g. coordinated navigation);
- An avenue for unification with discrete Conley theory [8]?

Thank You!

- D. Guralnik, P. Stiller, F. Zegers, and W. E. Dixon, "Plug-and-play cooperative navigation: From single-agent navigation fields to graph-maintaining distributed mas controllers," *TAC (submitted)*, Dec. 2022.
- [2] D. Guralnik, P. Stiller, F. Zegers, and W. E. Dixon, "Distributed cooperative navigation with communication graph maintenance using single-agent navigation fields," in *Proc. Am. Control Conf.*, June 2022.
- [3] O. Arslan and D. E. Koditschek, "Sensor-based reactive navigation in unknown convex sphere worlds," *Intl. J. Robot. Res.*, vol. 38, no. 2-3, pp. 196–223, 2019.
- [4] V. Vasilopoulos and D. E. Koditschek, "Reactive navigation in partially known non-convex environments," in *Proc. Intl. Workshop Algo. Found. Robot.*, pp. 406–421, 2018.

- [5] A. Rantzer, "A dual to Lyapunov's stability theorem," Syst. Control Lett., vol. 42, no. 3, pp. 161–168, 2001.
- [6] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, "Temporal logic motion planning for dynamic robots," *Automatica*, vol. 45, no. 2, pp. 343–352, 2009.
- [7] M. A. Shtan'ko and M. I. Shtogrin, "On the embedding of cubic manifolds and complexes in a cubic lattice," *Russian Mathematical Surveys*, vol. 47, p. 267, feb 1992.
- [8] R. Van der vorst and W. Kalies, "Computational Conley Theory," Nieuw archief voor de wiskunde, vol. 17, no. 3, pp. 200–206, 2016.