Two-Player Zero-Sum Hybrid Games

Santiago J. Leudo and Ricardo G. Sanfelice

University of California, Santa Cruz, USA

Assured Autonomy in Contest Environments (AACE) Spring 2023 Review April 26, 2023

UC SANTI CRIUZ
Baskin
Engineering

Motivation

Game Theory + Control Theory

Motivation

Game Theory + Control Theory

- Multiple players with conflicting interests (noncooperative)

Motivation

Game Theory + Control Theory

- Multiple players with conflicting interests (noncooperative)
- Decision making process. Optimization problem with dynamic constraints

Motivation

Game Theory + Control Theory

- Multiple players with conflicting interests (noncooperative)
- Decision making process. Optimization problem with dynamic constraints
- Challenges: Both continuous and discrete behavior

Motivation

Game Theory + Control Theory

- Multiple players with conflicting interests (noncooperative)

$$
\begin{array}{rc}
\underset{u_{1}}{\operatorname{minimize}} & \mathcal{J}\left(u_{1}, u_{2}\right) \\
\text { subject to } & \text { hybrid dynamics }
\end{array}
$$

Motivation

Game Theory + Control Theory

- Multiple players with conflicting interests (noncooperative)

$$
\begin{array}{rc}
\underset{u_{1}}{\operatorname{minimize}} \underset{u_{2}}{\operatorname{maximize}} & \mathcal{J}\left(u_{1}, u_{2}\right) \\
\text { subject to } & \text { hybrid dynamics }
\end{array}
$$

Motivation

Game Theory + Control Theory

\mathbb{R}^{n}

\mathbb{R}^{n}

Modeling Hybrid Dynamics

\mathbb{R}^{n}

Hybrid Systems with Inputs

A hybrid system \mathcal{H} with state x and input $u=\left(u_{C}, u_{D}\right)$ as in [Goebel, et.al., PUP 2012]:

$$
\mathcal{H} \begin{cases}\dot{x}=F\left(x, u_{C}\right) & \left(x, u_{C}\right) \in C \\ x^{+}=G\left(x, u_{D}\right) & \left(x, u_{D}\right) \in D\end{cases}
$$

- C is the flow set
- F is the flow map
- D is the jump set
- G is the jump map

Hybrid Systems with Inputs

A hybrid system \mathcal{H} with state x and input $u=\left(u_{C}, u_{D}\right)$ as in [Goebel, et.al., PUP 2012]:

$$
\mathcal{H} \begin{cases}\dot{x}=F\left(x, u_{C}\right) & \left(x, u_{C}\right) \in C \\ x^{+}=G\left(x, u_{D}\right) & \left(x, u_{D}\right) \in D\end{cases}
$$

- C is the flow set
- F is the flow map
- D is the jump set
- G is the jump map

Solutions parametrized by (t, j) :

- $t \in[0, \infty)$, time elapsed during flows
- $j \in\{0,1, \ldots\}$, number of jumps that have occurred

Hybrid Systems with Inputs

A hybrid system \mathcal{H} with state x and input $u=\left(u_{C}, u_{D}\right)$ as in [Goebel, et.al., PUP 2012]:

$$
\mathcal{H} \begin{cases}\dot{x}=F\left(x, u_{C}\right) & \left(x, u_{C}\right) \in C \\ x^{+}=G\left(x, u_{D}\right) & \left(x, u_{D}\right) \in D\end{cases}
$$

- C is the flow set
- D is the jump set
- F is the flow map
- G is the jump map

Solutions parametrized by (t, j) :

- $t \in[0, \infty)$, time elapsed during flows
- $j \in\{0,1, \ldots\}$, number of jumps that have occurred

Domain of a solution of the form

$$
\left(\left[0, t_{1}\right] \times\{0\}\right) \cup\left(\left[t_{1}, t_{2}\right] \times\{1\}\right) \cup \ldots,
$$

where $t_{1} \leq t_{2} \leq \ldots$ are the jump times.

Hybrid Systems with Inputs

A hybrid system \mathcal{H} with sté [Goebel, et.al., PUP 2012]:

$$
\mathcal{H}\left\{\begin{array}{l}
\dot{x}=i \\
x^{+}=1
\end{array}\right.
$$

- C is the flow set
- F is the flow map

Solutions parametrized by

ϕ : Solution to \mathcal{H}

- $t \in[0, \infty)$, time elapsed during flows
- $j \in\{0,1, \ldots\}$, number of jumps that have occurred

Domain of a solution of the form

$$
\left(\left[0, t_{1}\right] \times\{0\}\right) \cup\left(\left[t_{1}, t_{2}\right] \times\{1\}\right) \cup \ldots,
$$

where $t_{1} \leq t_{2} \leq \ldots$ are the jump times.

Connections to Other Frameworks

Switched Systems

$$
\begin{aligned}
\dot{x} & =f_{\sigma(t)}(x) \\
\sigma(t) & \in\{1,2, \ldots\}
\end{aligned}
$$

Differential-Algebraic Equations

$$
\begin{aligned}
\dot{x} & =f(x, w) \\
0 & =\eta(x, w)
\end{aligned}
$$

Impulsive Systems

$$
\begin{aligned}
\dot{x} & =f(x(t)) \\
x\left(t^{+}\right) & =g(x(t)) \quad t \in\left\{t_{1}, t_{2}, \ldots\right\}
\end{aligned}
$$

Hybrid Automata

J. Leudo and Sanfelice - UCSC - 5/17

Two-Player Zero-Sum Games

Two-player game: $u_{C}=\left(u_{C 1}, u_{C 2}\right)$ and $u_{D}=\left(u_{D 1}, u_{D 2}\right)$

- Player P_{1} selects $\left(u_{C 1}, u_{D 1}\right)$
- Player P_{2} selects $\left(u_{C 2}, u_{D 2}\right)$
- \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ.

Two-Player Zero-Sum Games

Two-player game: $u_{C}=\left(u_{C 1}, u_{C 2}\right)$ and $u_{D}=\left(u_{D 1}, u_{D 2}\right)$

- Player P_{1} selects $\left(u_{C 1}, u_{D 1}\right)$
- Player P_{2} selects $\left(u_{C 2}, u_{D 2}\right)$
- \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ.

Solve

$$
\underset{\left(u_{C 1}, u_{D 1}\right)}{\operatorname{minimize}} \underset{\left(u_{C 2}, u_{D 2}\right)}{\operatorname{maximize}} \mathcal{J}\left(\xi, u_{C 1}, u_{C 2}, u_{D 1}, u_{D 2}\right)
$$

over the set of complete input actions as a two-player zero-sum hybrid game.

Two-Player Zero-Sum Games

Two-player game: $u_{C}=\left(u_{C 1}, u_{C 2}\right)$ and $u_{D}=\left(u_{D 1}, u_{D 2}\right)$
\checkmark Player P_{1} selects $\left(u_{C 1}, u_{D 1}\right) \quad \triangleright$ Player P_{2} selects $\left(u_{C 2}, u_{D 2}\right)$

- \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ.

Solve

$$
\underset{\left(u_{C 1}, u_{D 1}\right)}{\operatorname{minimize}} \underset{\left(u_{C 2}, u_{D 2}\right)}{\operatorname{maximize}} \mathcal{J}\left(\xi, u_{C 1}, u_{C 2}, u_{D 1}, u_{D 2}\right)
$$

over the set of complete input actions as a two-player zero-sum hybrid game.

Robust Control Problem
Find the control input ($u_{C 1}, u_{D 1}$) that upper bounds \mathcal{J} for a disturbance $\left(u_{C 2}, u_{D 2}\right)$.

Two-Player Zero-Sum Games

Two-player game: $u_{C}=\left(u_{C 1}, u_{C 2}\right)$ and $u_{D}=\left(u_{D 1}, u_{D 2}\right)$
\checkmark Player P_{1} selects $\left(u_{C 1}, u_{D 1}\right) \quad \rightarrow$ Player P_{2} selects $\left(u_{C 2}, u_{D 2}\right)$

- \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ.

Solve

$$
\underset{\left(u_{C 1}, u_{D 1}\right)}{\operatorname{minimize}} \underset{\left(u_{C 2}, u_{D 2}\right)}{\operatorname{maximize}} \mathcal{J}\left(\xi, u_{C 1}, u_{C 2}, u_{D 1}, u_{D 2}\right)
$$

over the set of complete input actions as a two-player zero-sum hybrid game.
Robust Control Problem
Find the control input ($u_{C 1}, u_{D 1}$) that upper bounds \mathcal{J} for a disturbance $\left(u_{C 2}, u_{D 2}\right)$.

Security Problem

Ensure the control input ($u_{C 1}, u_{D 1}$) minimizes \mathcal{J} under an attack $\left(u_{C 2}, u_{D 2}\right)$ designed to harm \mathcal{H} as much as possible.

Two-Player Zero-Sum Games

- General framework

Two-Player Zero-Sum Games

- General framework
- Sufficient conditions for optimality to evaluate the value function

Two-Player Zero-Sum Games

- General framework
- Sufficient conditions for optimality to evaluate the value function
- Sufficient conditions to attain saddle-point equilibrium
- General framework
- Sufficient conditions for optimality to evaluate the value function
- Sufficient conditions to attain saddle-point equilibrium
- Application in a security scenario

Formulation of Two-Player Zero-Sum Hybrid Games

Following the formulation in [Başar and Olsder, SIAM 1999], for each $i \in\{1,2\}$, the i-th player P_{i}

Formulation of Two-Player Zero-Sum Hybrid Games

Following the formulation in [Başar and Olsder, SIAM 1999], for each $i \in\{1,2\}$, the i-th player P_{i}

- Dynamics \mathcal{H}_{i} with data $\left(C_{i}, F_{i}, D_{i}, G_{i}\right)$
- State $x_{i} \in \mathbb{R}^{n_{i}}$
- Hybrid input $u_{i}=\left(u_{C i}, u_{D i}\right) \in \mathbb{R}^{m_{C i}} \times \mathbb{R}^{m_{D i}}$
- Set of hybrid inputs $\mathcal{U}_{i}=\mathcal{U}_{C i} \times \mathcal{U}_{D i}$

Formulation of Two-Player Zero-Sum Hybrid Games

Following the formulation in [Bașar and Olsder, SIAM 1999], for each $i \in\{1,2\}$, the i-th player P_{i}

- Dynamics \mathcal{H}_{i} with data $\left(C_{i}, F_{i}, D_{i}, G_{i}\right)$
- State $x_{i} \in \mathbb{R}^{n_{i}}$
- Hybrid input $u_{i}=\left(u_{C i}, u_{D i}\right) \in \mathbb{R}^{m_{C i}} \times \mathbb{R}^{m_{D i}}$
- Set of hybrid inputs $\mathcal{U}_{i}=\mathcal{U}_{C i} \times \mathcal{U}_{D i}$

Elements of a two-player zero-sum hybrid game

1. The state $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{n}$.
2. The set of joint input actions $\mathcal{U}=\mathcal{U}_{1} \times \mathcal{U}_{2}$ with elements $u=\left(u_{1}, u_{2}\right)$.
Each player selects its action independently from the action of the other player.

Formulation of Two-Player Zero-Sum Hybrid Games

cont'd

3. The dynamics of the game, denoted by \mathcal{H}, with data

$$
\begin{array}{cl}
C & :=C_{1} \times C_{2} \\
\qquad F\left(x, u_{C}\right) & :=\left(F_{1}\left(x, u_{C}\right), F_{2}\left(x, u_{C}\right)\right) \quad \forall\left(x, u_{C}\right) \in C \\
D & :=\left\{\left(x, u_{D}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m_{D}}:\left(x_{i}, u_{D i}\right) \in D_{i}, i \in\{1,2\}\right\} \\
G\left(x, u_{D}\right) & :=\left\{\hat{G}_{i}\left(x, u_{D}\right):\left(x_{i}, u_{D i}\right) \in D_{i}, i \in\{1,2\}\right\} \quad \forall\left(x, u_{D}\right) \in D \\
\text { where } \hat{G}_{1}\left(x, u_{D}\right)=\left(G_{1}\left(x, u_{D}\right), I_{n_{2}}\right) \text {, and } \hat{G}_{2}\left(x, u_{D}\right)=\left(I_{n_{1}}, G_{2}\left(x, u_{D}\right)\right) \text {. }
\end{array}
$$

Formulation of Two-Player Zero-Sum Hybrid Games

cont'd

3. The dynamics of the game, denoted by \mathcal{H}, with data

$$
\begin{aligned}
C & :=C_{1} \times C_{2} \\
F\left(x, u_{C}\right) & :=\left(F_{1}\left(x, u_{C}\right), F_{2}\left(x, u_{C}\right)\right) \quad \forall\left(x, u_{C}\right) \in C \\
D & :=\left\{\left(x, u_{D}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m_{D}}:\left(x_{i}, u_{D i}\right) \in D_{i}, i \in\{1,2\}\right\} \\
G\left(x, u_{D}\right) & :=\left\{\hat{G}_{i}\left(x, u_{D}\right):\left(x_{i}, u_{D i}\right) \in D_{i}, i \in\{1,2\}\right\} \quad \forall\left(x, u_{D}\right) \in D
\end{aligned}
$$

where $\hat{G}_{1}\left(x, u_{D}\right)=\left(G_{1}\left(x, u_{D}\right), I_{n_{2}}\right)$, and $\hat{G}_{2}\left(x, u_{D}\right)=\left(I_{n_{1}}, G_{2}\left(x, u_{D}\right)\right)$.
4. The strategy space of the game $K=K_{1} \times K_{2}$. Collection of mappings $\kappa=\left(\kappa_{1}, \kappa_{2}\right)$. Each $\kappa_{i} \in K_{i}$ is said to be a permissible strategy for P_{i}.

Formulation of Two-Player Zero-Sum Hybrid Games

cont'd

3. The dynamics of the game, denoted by \mathcal{H}, with data

$$
\begin{aligned}
C & :=C_{1} \times C_{2} \\
F\left(x, u_{C}\right) & :=\left(F_{1}\left(x, u_{C}\right), F_{2}\left(x, u_{C}\right)\right) \quad \forall\left(x, u_{C}\right) \in C \\
D & :=\left\{\left(x, u_{D}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m_{D}}:\left(x_{i}, u_{D i}\right) \in D_{i}, i \in\{1,2\}\right\} \\
G\left(x, u_{D}\right) & :=\left\{\hat{G}_{i}\left(x, u_{D}\right):\left(x_{i}, u_{D i}\right) \in D_{i}, i \in\{1,2\}\right\} \quad \forall\left(x, u_{D}\right) \in D
\end{aligned}
$$

where $\hat{G}_{1}\left(x, u_{D}\right)=\left(G_{1}\left(x, u_{D}\right), I_{n_{2}}\right)$, and $\hat{G}_{2}\left(x, u_{D}\right)=\left(I_{n_{1}}, G_{2}\left(x, u_{D}\right)\right)$.
4. The strategy space of the game $K=K_{1} \times K_{2}$. Collection of mappings $\kappa=\left(\kappa_{1}, \kappa_{2}\right)$. Each $\kappa_{i} \in K_{i}$ is said to be a permissible strategy for P_{i}.
5. The cost associated to $P_{i},(\xi, u) \mapsto \mathcal{J}_{i}(\xi, u)$.

Single cost functional $\mathcal{J}=\mathcal{J}_{1}=-\mathcal{J}_{2}$ associated to the unique solution to \mathcal{H} from ξ for u.

Saddle-Point Equilibrium

Solution of a zero-sum hybrid game [Bașar and Olsder, SIAM 1999]
Consider a two-player zero-sum game with dynamics \mathcal{H} and $\mathcal{J}_{1}=\mathcal{J}, \mathcal{J}_{2}=-\mathcal{J}$.

Saddle-Point Equilibrium

Solution of a zero-sum hybrid game [Başar and OIsder, SIAM 1999]
Consider a two-player zero-sum game with dynamics \mathcal{H} and $\mathcal{J}_{1}=\mathcal{J}, \mathcal{J}_{2}=-\mathcal{J}$.
A strategy $\kappa=\left(\kappa_{1}, \kappa_{2}\right) \in K$ is a saddle-point equilibrium if for each $\xi \in \Pi(\bar{C} \cup D)$, every u^{*} rendering a maximal response ϕ^{*} to \mathcal{H} from ξ, with

$$
u^{*}=\left(u_{1}^{*}, u_{2}^{*}\right)=\left(\kappa_{1}\left(\phi^{*}\right), \kappa_{2}\left(\phi^{*}\right)\right)
$$

satisfies

$$
\begin{equation*}
\mathcal{J}\left(\xi,\left(u_{1}^{*}, u_{2}\right)\right) \leq \mathcal{J}\left(\xi, u^{*}\right) \leq \mathcal{J}\left(\xi,\left(u_{1}, u_{2}^{*}\right)\right) \tag{1}
\end{equation*}
$$

for all u_{1} and all u_{2} that render maximal solutions.

Saddle-Point Equilibrium

Solution of a zero-sum hybrid game [Bașar and OIsder, SIAM 1999]
Consider a two-player zero-sum game with dynamics \mathcal{H} and $\mathcal{J}_{1}=\mathcal{J}, \mathcal{J}_{2}=-\mathcal{J}$.
A strategy $\kappa=\left(\kappa_{1}, \kappa_{2}\right) \in K$ is a saddle-point equilibrium if for each $\xi \in \Pi(\bar{C} \cup D)$, every u^{*} rendering a maximal response ϕ^{*} to \mathcal{H} from ξ, with

$$
u^{*}=\left(u_{1}^{*}, u_{2}^{*}\right)=\left(\kappa_{1}\left(\phi^{*}\right), \kappa_{2}\left(\phi^{*}\right)\right)
$$

satisfies

$$
\begin{equation*}
\mathcal{J}\left(\xi,\left(u_{1}^{*}, u_{2}\right)\right) \leq \mathcal{J}\left(\xi, u^{*}\right) \leq \mathcal{J}\left(\xi,\left(u_{1}, u_{2}^{*}\right)\right) \tag{1}
\end{equation*}
$$

for all u_{1} and all u_{2} that render maximal solutions.
$\Pi(C)$ denotes the projection of the set C onto \mathbb{R}^{n}.
A equilibrium solution to the zero-sum two-player game is a strategy in K. A solution to a hybrid system \mathcal{H} is a hybrid arc, and it is maximal if it cannot be extended.

Problem Statement

Consider a two-player zero-sum hybrid game with dynamics \mathcal{H}. Given $\xi \in \mathbb{R}^{n}$ and a joint input action $u=\left(u_{C}, u_{D}\right) \in \mathcal{U}$ rendering a unique maximal complete solution (ϕ, u) to \mathcal{H} from ξ, the cost associated to it

$$
\begin{aligned}
& \mathcal{J}(\xi, u):= \overbrace{\sum_{j=0}^{\sup _{j} \operatorname{dom} \phi} \int_{t_{j}}^{t_{j+1}} L_{C}\left(\phi(t, j), u_{C}(t, j)\right) d t}^{\text {Cost-to-flow }} \\
&+\underbrace{\sup _{j} \sum_{j=0}^{\operatorname{dom} \phi-1}}_{\text {Cost-to-jump }} L_{D}\left(\phi\left(t_{j+1}, j\right), u_{D}\left(t_{j+1}, j\right)\right) \\
& \underbrace{\lim _{j=0}(\phi(t, j))}_{\substack{\operatorname{limsip}_{t+j \rightarrow \infty} \\
(t, j) \in \operatorname{dom} \phi}}
\end{aligned}
$$

Problem Statement

Consider a two-player zero-sum hybrid gar $\xi \in \mathbb{R}^{n}$ and a joint input action $u=\left(u_{C}\right.$, maximal complete solution (ϕ, u) to \mathcal{H} frc
$\mathcal{J}(\xi, u):=\overbrace{\sum_{\sup _{j} \operatorname{dom} \phi} \int_{t_{j}}^{t_{j+1}} L_{C}\left(\phi(t, j), u_{C}(\right.}^{\text {Cost-to-flow }}$

$$
+\underbrace{\sup _{j} \sum_{j=0}^{\operatorname{dom} \phi-1} L_{D}\left(\phi\left(t_{j+1}, j\right), u_{D}\left(t_{j+1}, j\right)\right)}_{\text {Cost-to-jump }}+\underbrace{\operatorname{limsip}_{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} q(\phi(t, j))}_{\text {Terminal cost }}
$$

Problem Statement

Consider a two-player zero-sum hybrid gar $\xi \in \mathbb{R}^{n}$ and a joint input action $u=\left(u_{C}\right.$, maximal complete solution (ϕ, u) to \mathcal{H} frc

$\sup _{j} \operatorname{dom} \phi-1$

$$
+\underbrace{\sum_{j=0} L_{D}\left(\phi\left(t_{j+1}, j\right), u_{D}\left(t_{j+1}, j\right)\right)}_{\text {Cost-to-jump }}+\underbrace{\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} q(\phi(t, j))}_{\text {Terminal cost }}
$$

Problem (\diamond): Given $\xi \in \mathbb{R}^{n}$, solve

$$
\underset{u_{1}}{\operatorname{minimize}} \underset{u_{2}}{\operatorname{maximize}} \quad \mathcal{J}\left(\xi,\left(u_{1}, u_{2}\right)\right)
$$

over the set of input actions yielding complete solutions to \mathcal{H}.

Problem Statement

Consider a two-player zero-sum hybrid gar $\xi \in \mathbb{R}^{n}$ and a joint input action $u=\left(u_{C}\right.$, maximal complete solution (ϕ, u) to \mathcal{H} frc

$\sup _{j} \operatorname{dom} \phi-1$
$+\underbrace{\sum_{j=0} L_{D}\left(\phi\left(t_{j+1}, j\right), u_{D}\left(t_{j+1}, j\right)\right)}_{\text {Cost-to-jump }}+\underbrace{\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} q(\phi(t, j))}_{\text {Terminal cost }}$

Value Function

Given $\xi \in \mathbb{R}^{n}$, the value function at ξ is given by

$$
\mathcal{J}^{*}(\xi):=\min _{u_{1}} \max _{u_{2}} \mathcal{J}\left(\xi,\left(u_{1}, u_{2}\right)\right)=\max _{u_{2}} \min _{u_{1}} \mathcal{J}\left(\xi,\left(u_{1}, u_{2}\right)\right)
$$

over the set of joint input actions yielding complete solutions to \mathcal{H}

Design of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with

- dynamics \mathcal{H},
- costs L_{C}, L_{D} and q,

Design of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with

- dynamics \mathcal{H},
- costs L_{C}, L_{D} and q,
if there exists a function V satisfying regularity conditions (see paper) and

Design of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with

- dynamics \mathcal{H},
- costs L_{C}, L_{D} and q,
if there exists a function V satisfying regularity conditions (see paper) and

$$
\begin{aligned}
0 & =\min _{u_{C 1}}^{\max _{C 2}}\left\{L_{C}\left(x,\left(u_{C 1}, u_{C 2}\right)\right)+\left\langle\nabla V(x), F\left(x,\left(u_{C 1}, u_{C 2}\right)\right)\right\rangle\right\} \\
& =\max _{u_{C 2}} \min _{u_{C 1}}\left\{L_{C}\left(x,\left(u_{C 1}, u_{C 2}\right)\right)+\left\langle\nabla V(x), F\left(x,\left(u_{C 1}, u_{C 2}\right)\right)\right\rangle\right\} \quad \forall x \in \Pi(C)
\end{aligned}
$$

Design of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with

- dynamics \mathcal{H},
- costs L_{C}, L_{D} and q,
if there exists a function V satisfying regularity conditions (see paper) and

$$
\begin{aligned}
0 & =\min _{u_{C 1}} \max _{u_{C 2}}\left\{L_{C}\left(x,\left(u_{C 1}, u_{C 2}\right)\right)+\left\langle\nabla V(x), F\left(x,\left(u_{C 1}, u_{C 2}\right)\right)\right\rangle\right\} \\
& =\max _{u_{C 2}} \min _{u_{C 1}}\left\{L_{C}\left(x,\left(u_{C 1}, u_{C 2}\right)\right)+\left\langle\nabla V(x), F\left(x,\left(u_{C 1}, u_{C 2}\right)\right)\right\rangle\right\} \quad \forall x \in \Pi(C)
\end{aligned}
$$

Optimizer: $\left(u_{C 1}^{*}, u_{C 2}^{*}\right)$

$$
0=\underbrace{L_{C}\left(x,\left(u_{C 1}^{*}, u_{C 2}^{*}\right)\right)}_{\text {Cost of flowing }}+\underbrace{\nabla V(x) F\left(x,\left(u_{C 1}^{*}, u_{C 2}^{*}\right)\right)}_{\text {Change of } V \text { along flow }}
$$

Design of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with

- dynamics \mathcal{H},
- costs L_{C}, L_{D} and q,
if there exists a function V satisfying regularity conditions (see paper) and

$$
\begin{array}{rlrl}
0 & =\min _{u_{C 1}} \max _{u_{C 2}}\left\{L_{C}\left(x,\left(u_{C 1}, u_{C 2}\right)\right)+\left\langle\nabla V(x), F\left(x,\left(u_{C 1}, u_{C 2}\right)\right)\right\rangle\right\} & & \\
& =\max _{u_{C 2}} \min _{u_{C 1}}\left\{L_{C}\left(x,\left(u_{C 1}, u_{C 2}\right)\right)+\left\langle\nabla V(x), F\left(x,\left(u_{C 1}, u_{C 2}\right)\right)\right\rangle\right\} & & \forall x \in \Pi(C) \\
V(x) & =\min _{u_{D 1}} \max _{u_{D 2}}\left\{L_{D}\left(x,\left(u_{D 1}, u_{D 2}\right)\right)+V\left(G\left(x,\left(u_{D 1}, u_{D 2}\right)\right)\right)\right\} & \\
& =\max _{u_{D 2} u_{u_{D 1}}}\left\{L_{D}\left(x,\left(u_{D 1}, u_{D 2}\right)\right)+V\left(G\left(x,\left(u_{D 1}, u_{D 2}\right)\right)\right)\right\} \quad \forall x \in \Pi(D)
\end{array}
$$

(Hamilton-Jacobi-Isaacs hybrid equations)

Design of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with

- dynamics \mathcal{H},
- costs L_{C}, L_{D} and q,
if there exists a function V satisfying regularity conditions (see paper) and

Optimizer: $\left(u_{D 1}^{*}, u_{D 2}^{*}\right)$

$$
0=\underbrace{L_{D}\left(x,\left(u_{D 1}^{*}, u_{D 2}^{*}\right)\right)}_{\text {Cost of jumping }}+\underbrace{V\left(G\left(x,\left(u_{D 1}^{*}, u_{D 2}^{*}\right)\right)\right)-V(x)}_{\text {Change of } V \text { along jump }}
$$

$$
\begin{aligned}
V(x) & =\min _{u_{D 1}} \max _{u_{D 2}}\left\{L_{D}\left(x,\left(u_{D 1}, u_{D 2}\right)\right)+V\left(G\left(x,\left(u_{D 1}, u_{D 2}\right)\right)\right)\right\} \\
& =\max _{u_{D 2}} \min _{u_{D 1}}\left\{L_{D}\left(x,\left(u_{D 1}, u_{D 2}\right)\right)+V\left(G\left(x,\left(u_{D 1}, u_{D 2}\right)\right)\right)\right\} \quad \forall x \in \Pi(D)
\end{aligned}
$$

(Hamilton-Jacobi-Isaacs hybrid equations)

Design of Saddle-Point Equilibrium

cont'd and each complete solution (ϕ, u) satisfies

$$
\begin{equation*}
\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} V(\phi(t, j))=\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} q(\phi(t, j)) \tag{2}
\end{equation*}
$$

then

Design of Saddle-Point Equilibrium

cont'd
and each complete solution (ϕ, u) satisfies

$$
\begin{equation*}
\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} V(\phi(t, j))=\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} q(\phi(t, j)) \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{J}^{*}(\xi)=V(\xi) \quad \forall \xi \in \Pi(\bar{C} \cup D) \tag{3}
\end{equation*}
$$

Design of Saddle-Point Equilibrium

cont'd
and each complete solution (ϕ, u) satisfies

$$
\begin{equation*}
\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} V(\phi(t, j))=\limsup _{\substack{t+j \rightarrow \infty \\(t, j) \in \operatorname{dom} \phi}} q(\phi(t, j)) \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{J}^{*}(\xi)=V(\xi) \quad \forall \xi \in \Pi(\bar{C} \cup D) \tag{3}
\end{equation*}
$$

and any stationary feedback law $\kappa:=\left(\kappa_{C}, \kappa_{D}\right)$ with values

$$
\begin{gathered}
\kappa_{C}(x) \in \arg \min _{u_{C 1}} \max _{u_{C 2}}\left\{L_{C}\left(x, u_{C}\right)+\left\langle\nabla V(x), F\left(x, u_{C}\right)\right\rangle\right\} \quad \forall x \in \Pi(C) \\
\kappa_{D}(x) \in \arg \min _{u_{D 1}} \max _{u_{D 2}}\left\{L_{D}\left(x, u_{D}\right)+V\left(G\left(x, u_{D}\right)\right)\right\} \quad \forall x \in \Pi(D)
\end{gathered}
$$

is a pure strategy saddle-point equilibrium for the two-player infinite-horizon hybrid game with $\mathcal{J}_{1}=\mathcal{J}, \mathcal{J}_{2}=-\mathcal{J}$.

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

- x_{1} height of the ball
- x_{2} velocity of the ball
- $\lambda \in[0,1)$ coefficient of restitution
- u.

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

- x_{1} height of the ball
- x_{2} velocity of the ball
- $\lambda \in[0,1)$ coefficient of restitution
- $u_{D 1}$ control and $u_{D 2}$ attack

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

- x_{1} height of the ball
- x_{2} velocity of the ball
- $\lambda \in[0,1)$ coefficient of restitution
- $u_{D 1}$ control and $u_{D 2}$ attack

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

- x_{1} height of the ball
- x_{2} velocity of the ball
- $\lambda \in[0,1)$ coefficient of restitution
- $u_{D 1}$ control and $u_{D 2}$ attack

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

- x_{1} height of the ball
- x_{2} velocity of the ball
- $\lambda \in[0,1)$ coefficient of restitution
- $u_{D 1}$ control and $u_{D 2}$ attack

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

- x_{1} height of the ball
$-x_{2}$ velocity of the ball
- $\lambda \in[0,1)$ coefficient of restitution
- $u_{D 1}$ control and $u_{D 2}$ attack

Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

- x_{1} height of the ball
$-x_{2}$ velocity of the ball
- $\lambda \in[0,1)$ coefficient of restitution
$-u_{D 1}$ control and $u_{D 2}$ attack

Under the worst-case attack at jumps, Player P_{1} selects the strategy that minimizes the energy and regulates the ball as time increases. The optimal cost is computed by evaluating the function V at the initial state.

Example: Juggling System

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

Security Problem as a Zero-Sum Game

- $u_{D 1}: P_{1}$ minimizes a cost functional \mathcal{J}
- $u_{D 2}$: the worst-case attack by P_{2}
- No cost to flow $L_{C}\left(x, u_{C}\right):=0$
- $L_{D}\left(x, u_{D}\right):=x_{2}^{2} Q_{D}+u_{D}^{\top} R_{D} u_{D}$
- Terminal cost $q(x):=\frac{1}{2} x_{2}^{2}+x_{1}$
$V(x):=\frac{1}{2} x_{2}^{2}+x_{1}$ solves HJI hybrid equations.

Example: Juggling System

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

Security Problem as a Zero-Sum Game

- $u_{D 1}: P_{1}$ minimizes a cost functional \mathcal{J}
- $u_{D 2}$: the worst-case attack by P_{2}
- No cost to flow $L_{C}\left(x, u_{C}\right):=0$
- $L_{D}\left(x, u_{D}\right):=x_{2}^{2} Q_{D}+u_{D}^{\top} R_{D} u_{D}$
- Terminal cost $q(x):=\frac{1}{2} x_{2}^{2}+x_{1}$
$V(x):=\frac{1}{2} x_{2}^{2}+x_{1}$ solves HJl hybrid equations.
Using our Theorem, the value function at $\xi=\left(\xi_{1}, \xi_{2}\right)$ is

$$
\mathcal{J}^{*}\left(\xi_{1}, \xi_{2}\right):=\frac{\xi_{2}^{2}}{2}+\xi_{1}
$$

Example: Juggling System

$$
\left\{\begin{aligned}
\left(\dot{x_{1}}, \dot{x_{2}}\right) & =\left(x_{2},-1\right) & & x_{1} \geq 0 \\
\left(x_{1}^{+}, x_{2}^{+}\right) & =\left(0, \lambda x_{2}+u_{D 1}+u_{D 2}\right) & & x_{1}=0 \text { and } x_{2} \leq 0
\end{aligned}\right.
$$

Security Problem as a Zero-Sum Game

- $u_{D 1}: P_{1}$ minimizes a cost functional \mathcal{J}
- $u_{D 2}$: the worst-case attack by P_{2}
- No cost to flow $L_{C}\left(x, u_{C}\right):=0$
- $L_{D}\left(x, u_{D}\right):=x_{2}^{2} Q_{D}+u_{D}^{\top} R_{D} u_{D}$
- Terminal cost $q(x):=\frac{1}{2} x_{2}^{2}+x_{1}$
$V(x):=\frac{1}{2} x_{2}^{2}+x_{1}$ solves HJI hybrid equations. Using our Theorem, the value function at $\xi=\left(\xi_{1}, \xi_{2}\right)$ is

$$
\mathcal{J}^{*}\left(\xi_{1}, \xi_{2}\right):=\frac{\xi_{2}^{2}}{2}+\xi_{1}
$$

and attained by

$$
\kappa_{D 1}(x)=\frac{R_{D 2} \lambda}{R_{D 1}+R_{D 2}+2 R_{D 1} R_{D 2}} x_{2}
$$

$$
\kappa_{D 2}(x)=\frac{R_{D 1} \lambda}{R_{D 1}+R_{D 2}+2 R_{D 1} R_{D 2}} x_{2}
$$

then, κ_{D} is the saddle-point equilibrium.

Conclusion

- General framework to model hybrid games
- Sufficient conditions for optimality to evaluate value function
- Sufficient conditions to attain saddle-point equilibrium
- Application in security scenario
- S. J. Leudo, K. Garg, R.G. Sanfelice, A. Cardenas. An Observer-based Switching Algorithm for Safety under Sensor Denial-of-Service Attacks, to appear in the 2023 American Control Conference.
- S. J. Leudo, and R.G. Sanfelice. Sufficient Conditions for Optimality in Finite-Horizon Two-Player Zero-Sum Hybrid Games, 2022 IEEE Conference on Decision and Control, December 2022.
- S.J. Leudo, and R.G. Sanfelice. Sufficient Conditions for Optimality and Asymptotic Stability in Two-Player Zero-Sum Hybrid Games, the ACM International Conference on Hybrid Systems: Computation and Control, 2022.
- S.J. Leudo, F. Ferrante, and R.G. Sanfelice. Upper Bounds and Cost Evaluation in Dynamic Two-player Zero-Sum Games, IEEE Conference on Decision and Control, December, 2020.

Aknowledgements

This research has been partially supported by

- the National Science Foundation under Grant no. ECS-1710621, Grant no. CNS- 2039054, and Grant no. CNS-2111688,
- the Air Force Office of Scientific Research under Grant no. A9550-19-1-0053, Grant no. FA9550-19-1-0169, and Grant no. FA9550-20-1-023,
- the Army Research Office under Grant no. W911NF-20-1-0253,
- and by Fulbright Colombia - MinTIC.

