Two-Player Zero-Sum Hybrid Games

Santiago J. Leudo and Ricardo G. Sanfelice

University of California, Santa Cruz, USA

Assured Autonomy in Contest Environments (AACE) Spring 2023 Review

April 26, 2023

Game Theory + Control Theory

Multiple players with conflicting interests (noncooperative)

- Multiple players with conflicting interests (noncooperative)
- Decision making process. Optimization problem with dynamic constraints

- Multiple players with conflicting interests (noncooperative)
- Decision making process. Optimization problem with dynamic constraints
- Challenges: Both continuous and discrete behavior

Modeling Hybrid Dynamics

Modeling Hybrid Dynamics

Modeling Hybrid Dynamics

 \mathbb{R}^{n}

A hybrid system \mathcal{H} with state x and input $u = (u_C, u_D)$ as in [Goebel, et.al., PUP 2012]:

$$\mathcal{H} \begin{cases} \dot{x} = F(x, u_C) & (x, u_C) \in C \\ x^+ = G(x, u_D) & (x, u_D) \in D \end{cases}$$

C is the flow set

F is the flow map

- D is the jump set
- ▶ G is the *jump map*

A hybrid system \mathcal{H} with state x and input $u = (u_C, u_D)$ as in [Goebel, et.al., PUP 2012]:

$$\mathcal{H} \begin{cases} \dot{x} = F(x, u_C) & (x, u_C) \in C \\ x^+ = G(x, u_D) & (x, u_D) \in D \end{cases}$$

C is the flow set

- ► *D* is the *jump set*
- ► G is the jump map

► F is the *flow map*

Solutions parametrized by (t, j):

- ▶ $t \in [0, \infty)$, time elapsed during flows
- ▶ $j \in \{0, 1, ...\}$, number of jumps that have occurred

A hybrid system \mathcal{H} with state x and input $u = (u_C, u_D)$ as in [Goebel, et.al., PUP 2012]:

$$\mathcal{H} \begin{cases} \dot{x} = F(x, u_C) & (x, u_C) \in C \\ x^+ = G(x, u_D) & (x, u_D) \in D \end{cases}$$

- *C* is the *flow set D* is the *jump set G* is the *jump map*
- Solutions parametrized by (t, j):
 - ▶ $t \in [0,\infty)$, time elapsed during flows
 - ▶ $j \in \{0, 1, ...\}$, number of jumps that have occurred

Domain of a solution of the form

$$([0, t_1] \times \{0\}) \cup ([t_1, t_2] \times \{1\}) \cup \dots,$$

where $t_1 \leq t_2 \leq \ldots$ are the *jump times*.

Domain of a solution of the form

 $([0, t_1] \times \{0\}) \cup ([t_1, t_2] \times \{1\}) \cup \dots,$

where $t_1 \leq t_2 \leq \ldots$ are the *jump times*.

Connections to Other Frameworks

Switched Systems

$$\dot{x} = f_{\sigma(t)}(x)$$

$$\sigma(t) \in \{1, 2, \dots\}$$

$$\dot{x} = f(x(t))$$

 $x(t^+) = g(x(t)) \quad t \in \{t_1, t_2, \dots\}$

Differential-Algebraic Equations

$$\dot{x} = f(x, w)$$
$$0 = \eta(x, w)$$

Hybrid Automata

Two-player game: $u_C = (u_{C1}, u_{C2})$ and $u_D = (u_{D1}, u_{D2})$

▶ Player P_1 selects (u_{C1}, u_{D1}) ▶ Player P_2 selects (u_{C2}, u_{D2})

• \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ .

Two-player game: $u_C = (u_{C1}, u_{C2})$ and $u_D = (u_{D1}, u_{D2})$

▶ Player P_1 selects (u_{C1}, u_{D1}) ▶ Player P_2 selects (u_{C2}, u_{D2})

• \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ .

Solve

minimize maximize
$$\mathcal{J}(\xi, u_{C1}, u_{C2}, u_{D1}, u_{D2})$$

 (u_{C1}, u_{D1}) (u_{C2}, u_{D2})

over **the set of complete input actions** as a two-player zero-sum hybrid game.

Two-player game: $u_C = (u_{C1}, u_{C2})$ and $u_D = (u_{D1}, u_{D2})$

▶ Player P_1 selects (u_{C1}, u_{D1}) ▶ Player P_2 selects (u_{C2}, u_{D2})

• \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ .

Solve

```
 \begin{array}{ll} \underset{(u_{C1},u_{D1})}{\text{minimize}} & \underset{(u_{C2},u_{D2})}{\text{minimize}} \mathcal{J}(\xi,u_{C1},u_{C2},u_{D1},u_{D2}) \end{array}
```

over **the set of complete input actions** as a two-player zero-sum hybrid game.

Robust Control Problem

```
Find the control input (u_{C1}, u_{D1}) that upper bounds \mathcal{J} for a disturbance (u_{C2}, u_{D2}).
```

Two-player game: $u_C = (u_{C1}, u_{C2})$ and $u_D = (u_{D1}, u_{D2})$

▶ Player P_1 selects (u_{C1}, u_{D1}) ▶ Player P_2 selects (u_{C2}, u_{D2})

• \mathcal{J} cost functional associated to the solution to \mathcal{H} from ξ .

Solve

```
 \begin{array}{ll} \underset{(u_{C1},u_{D1})}{\text{minimize}} & \underset{(u_{C2},u_{D2})}{\text{minimize}} \mathcal{J}(\xi,u_{C1},u_{C2},u_{D1},u_{D2}) \end{array}
```

over **the set of complete input actions** as a two-player zero-sum hybrid game.

Robust Control Problem

Find the control input (u_{C1}, u_{D1}) that **upper bounds** \mathcal{J} for a disturbance (u_{C2}, u_{D2}) .

Security Problem

Ensure the control input (u_{C1}, u_{D1}) minimizes \mathcal{J} under an attack (u_{C2}, u_{D2}) designed to harm \mathcal{H} as much as possible.

General framework

General framework

 Sufficient conditions for optimality to evaluate the value function

General framework

- Sufficient conditions for optimality to evaluate the value function
- Sufficient conditions to attain saddle-point equilibrium

General framework

- Sufficient conditions for optimality to evaluate the value function
- Sufficient conditions to attain saddle-point equilibrium
- Application in a security scenario

Following the formulation in [Başar and Olsder, SIAM 1999], for each $i\in\{1,2\},$ the i-th player P_i

Following the formulation in [Başar and Olsder, SIAM 1999], for each $i\in\{1,2\},$ the i-th player P_i

- Dynamics \mathcal{H}_i with data (C_i, F_i, D_i, G_i)
- State $x_i \in \mathbb{R}^{n_i}$
- Hybrid input $u_i = (u_{Ci}, u_{Di}) \in \mathbb{R}^{m_{Ci}} \times \mathbb{R}^{m_{Di}}$
- Set of hybrid inputs $U_i = U_{Ci} \times U_{Di}$

Following the formulation in [Başar and Olsder, SIAM 1999], for each $i\in\{1,2\},$ the i-th player P_i

- Dynamics \mathcal{H}_i with data (C_i, F_i, D_i, G_i)
- State $x_i \in \mathbb{R}^{n_i}$
- Hybrid input $u_i = (u_{Ci}, u_{Di}) \in \mathbb{R}^{m_{Ci}} \times \mathbb{R}^{m_{Di}}$
- Set of hybrid inputs $U_i = U_{Ci} \times U_{Di}$

Elements of a two-player zero-sum hybrid game

1. The state
$$x = (x_1, x_2) \in \mathbb{R}^n$$
.

 The set of joint input actions U = U₁ × U₂ with elements u = (u₁, u₂). Each player selects its action independently from the action of the other player.

cont'd

3. The dynamics of the game, denoted by \mathcal{H} , with data

$$C := C_1 \times C_2$$

$$F(x, u_C) := (F_1(x, u_C), F_2(x, u_C)) \quad \forall (x, u_C) \in C$$

$$D := \{(x, u_D) \in \mathbb{R}^n \times \mathbb{R}^{m_D} : (x_i, u_{Di}) \in D_i, i \in \{1, 2\}\}$$

$$G(x, u_D) := \{\hat{G}_i(x, u_D) : (x_i, u_{Di}) \in D_i, i \in \{1, 2\}\} \quad \forall (x, u_D) \in D$$

where
$$\hat{G}_1(x, u_D) = (G_1(x, u_D), I_{n_2})$$
, and $\hat{G}_2(x, u_D) = (I_{n_1}, G_2(x, u_D))$.

cont'd

3. The dynamics of the game, denoted by \mathcal{H} , with data

$$C := C_1 \times C_2$$

$$F(x, u_C) := (F_1(x, u_C), F_2(x, u_C)) \quad \forall (x, u_C) \in C$$

$$D := \{(x, u_D) \in \mathbb{R}^n \times \mathbb{R}^{m_D} : (x_i, u_{D_i}) \in D_i, i \in \{1, 2\}\}$$

$$G(x, u_D) := \{\hat{G}_i(x, u_D) : (x_i, u_{D_i}) \in D_i, i \in \{1, 2\}\} \quad \forall (x, u_D) \in D$$

where $\hat{G}_1(x, u_D) = (G_1(x, u_D), I_{n_2})$, and $\hat{G}_2(x, u_D) = (I_{n_1}, G_2(x, u_D))$.

 The strategy space of the game K = K₁ × K₂. Collection of mappings κ = (κ₁, κ₂). Each κ_i ∈ K_i is said to be a permissible strategy for P_i.

cont'd

3. The dynamics of the game, denoted by \mathcal{H} , with data

$$C := C_1 \times C_2$$

$$F(x, u_C) := (F_1(x, u_C), F_2(x, u_C)) \quad \forall (x, u_C) \in C$$

$$D := \{(x, u_D) \in \mathbb{R}^n \times \mathbb{R}^{m_D} : (x_i, u_{D_i}) \in D_i, i \in \{1, 2\}\}$$

$$G(x, u_D) := \{\hat{G}_i(x, u_D) : (x_i, u_{D_i}) \in D_i, i \in \{1, 2\}\} \quad \forall (x, u_D) \in D$$

where $\hat{G}_1(x, u_D) = (G_1(x, u_D), I_{n_2})$, and $\hat{G}_2(x, u_D) = (I_{n_1}, G_2(x, u_D))$.

- The strategy space of the game K = K₁ × K₂. Collection of mappings κ = (κ₁, κ₂). Each κ_i ∈ K_i is said to be a permissible strategy for P_i.
- 5. The cost associated to P_i , $(\xi, u) \mapsto \mathcal{J}_i(\xi, u)$. Single cost functional $\mathcal{J} = \mathcal{J}_1 = -\mathcal{J}_2$ associated to the **unique** solution to \mathcal{H} from ξ for u.

Saddle-Point Equilibrium

Solution of a zero-sum hybrid game [Başar and Olsder, SIAM 1999]

Consider a two-player zero-sum game with dynamics ${\cal H}$ and ${\cal J}_1={\cal J},~{\cal J}_2=-{\cal J}.$

Saddle-Point Equilibrium

Solution of a zero-sum hybrid game [Başar and Olsder, SIAM 1999] Consider a two-player zero-sum game with dynamics \mathcal{H} and $\mathcal{J}_1 = \mathcal{J}, \ \mathcal{J}_2 = -\mathcal{J}.$ A strategy $\kappa = (\kappa_1, \kappa_2) \in K$ is a saddle-point equilibrium if for each $\xi \in \Pi(\overline{C} \cup D)$, every u^* rendering a maximal response ϕ^* to \mathcal{H} from ξ , with

$$u^* = (u_1^*, u_2^*) = (\kappa_1(\phi^*), \kappa_2(\phi^*))$$

satisfies

$$\mathcal{J}(\xi, (u_1^*, u_2)) \le \mathcal{J}(\xi, u^*) \le \mathcal{J}(\xi, (u_1, u_2^*))$$
(1)

for all u_1 and all u_2 that render maximal solutions.

Saddle-Point Equilibrium

Solution of a zero-sum hybrid game [Başar and Olsder, SIAM 1999] Consider a two-player zero-sum game with dynamics \mathcal{H} and $\mathcal{J}_1 = \mathcal{J}, \ \mathcal{J}_2 = -\mathcal{J}.$ A strategy $\kappa = (\kappa_1, \kappa_2) \in K$ is a saddle-point equilibrium if for each $\xi \in \Pi(\overline{C} \cup D)$, every u^* rendering a maximal response ϕ^* to \mathcal{H} from ξ , with

$$u^* = (u_1^*, u_2^*) = (\kappa_1(\phi^*), \kappa_2(\phi^*))$$

satisfies

$$\mathcal{J}(\xi, (u_1^*, u_2)) \le \mathcal{J}(\xi, u^*) \le \mathcal{J}(\xi, (u_1, u_2^*))$$
(1)

for all u_1 and all u_2 that render maximal solutions.

 $\Pi(C)$ denotes the projection of the set C onto \mathbb{R}^n .

A equilibrium solution to the zero-sum two-player game is a strategy in K. A solution to a hybrid system \mathcal{H} is a hybrid arc, and it is maximal if it cannot be extended.

Consider a two-player zero-sum hybrid game with dynamics \mathcal{H} . Given $\xi \in \mathbb{R}^n$ and a joint input action $u = (u_C, u_D) \in \mathcal{U}$ rendering a **unique** maximal complete solution (ϕ, u) to \mathcal{H} from ξ , the cost associated to it

Value Function

Given $\xi \in \mathbb{R}^n$, the value function at ξ is given by

$$\mathcal{J}^*(\xi) := \min_{u_1} \max_{u_2} \mathcal{J}(\xi, (u_1, u_2)) = \max_{u_2} \min_{u_1} \mathcal{J}(\xi, (u_1, u_2))$$

over the set of joint input actions yielding complete solutions to ${\mathcal H}$

Theorem [J. Leudo and Sanfelice, HSCC 2022]

Given a two-player zero-sum hybrid game with

- ▶ dynamics *H*,
- costs L_C, L_D and q,

Theorem [J. Leudo and Sanfelice, HSCC 2022]

Given a two-player zero-sum hybrid game with

- ▶ dynamics *H*,
- costs L_C, L_D and q,

if there exists a function \boldsymbol{V} satisfying regularity conditions (see paper) and

Theorem [J. Leudo and Sanfelice, HSCC 2022]

Given a two-player zero-sum hybrid game with

▶ dynamics *H*,

 u_{C2} u_{C1}

• costs L_C, L_D and q,

if there exists a function \boldsymbol{V} satisfying regularity conditions (see paper) and

 $0 = \min_{u_{C1}} \max_{u_{C2}} \left\{ L_C(x, (u_{C1}, u_{C2})) + \langle \nabla V(x), F(x, (u_{C1}, u_{C2})) \rangle \right\}$ = max min { $L_C(x, (u_{C1}, u_{C2})) + \langle \nabla V(x), F(x, (u_{C1}, u_{C2})) \rangle$ } $\forall x \in \Pi(C)$

Theorem [J. Leudo and Sanfelice, HSCC 2022]

Given a two-player zero-sum hybrid game with

- ▶ dynamics *H*,
- costs L_C, L_D and q,

if there exists a function \boldsymbol{V} satisfying regularity conditions (see paper) and

$$0 = \min_{u_{C1}} \max_{u_{C2}} \left\{ L_C(x, (u_{C1}, u_{C2})) + \langle \nabla V(x), F(x, (u_{C1}, u_{C2})) \rangle \right\}$$

=
$$\max_{u_{C2}} \min_{u_{C1}} \left\{ L_C(x, (u_{C1}, u_{C2})) + \langle \nabla V(x), F(x, (u_{C1}, u_{C2})) \rangle \right\} \quad \forall x \in \Pi(C)$$

 $\begin{array}{l} \text{Optimizer: } (u_{C1}^{*}, u_{C2}^{*}) \\ 0 = \underbrace{L_{C}(x, (u_{C1}^{*}, u_{C2}^{*}))}_{\text{Cost of flowing}} + \underbrace{\nabla V(x)F(x, (u_{C1}^{*}, u_{C2}^{*}))}_{\text{Change of } V \text{ along flow}} \end{array}$

Theorem [J. Leudo and Sanfelice, HSCC 2022]

Given a two-player zero-sum hybrid game with

- ▶ dynamics *H*,
- costs L_C, L_D and q,

if there exists a function \boldsymbol{V} satisfying regularity conditions (see paper) and

$$0 = \min_{u_{C1}} \max_{u_{C2}} \left\{ L_C(x, (u_{C1}, u_{C2})) + \langle \nabla V(x), F(x, (u_{C1}, u_{C2})) \rangle \right\}$$

=
$$\max_{u_{C2}} \min_{u_{C1}} \left\{ L_C(x, (u_{C1}, u_{C2})) + \langle \nabla V(x), F(x, (u_{C1}, u_{C2})) \rangle \right\} \quad \forall x \in \Pi(C)$$

$$V(x) = \min_{u_{D1}} \max_{u_{D2}} \{ L_D(x, (u_{D1}, u_{D2})) + V(G(x, (u_{D1}, u_{D2}))) \}$$

=
$$\max_{u_{D2}} \min_{u_{D1}} \{ L_D(x, (u_{D1}, u_{D2})) + V(G(x, (u_{D1}, u_{D2}))) \} \quad \forall x \in \Pi(D)$$

(Hamilton-Jacobi-Isaacs hybrid equations)

Theorem [J. Leudo and Sanfelice, HSCC 2022]

Given a two-player zero-sum hybrid game with

• costs L_C, L_D and q,

if there exists a function \boldsymbol{V} satisfying regularity conditions (see paper) and

Optimizer: (u_{D1}^*, u_{D2}^*) $0 = \underbrace{L_D(x, (u_{D1}^*, u_{D2}^*))}_{\text{Cost of jumping}} + \underbrace{V(G(x, (u_{D1}^*, u_{D2}^*))) - V(x)}_{\text{Change of } V \text{ along jump}}$

 $V(x) = \min_{u_{D1}} \max_{u_{D2}} \{ L_D(x, (u_{D1}, u_{D2})) + V(G(x, (u_{D1}, u_{D2}))) \}$

 $= \max_{u_{D2}} \min_{u_{D1}} \{ L_D(x, (u_{D1}, u_{D2})) + V(G(x, (u_{D1}, u_{D2}))) \} \quad \forall x \in \Pi(D)$

(Hamilton-Jacobi-Isaacs hybrid equations)

cont'd

and each complete solution (ϕ, u) satisfies

$$\limsup_{\substack{t+j\to\infty\\t,j)\in\operatorname{dom}\phi}} V(\phi(t,j)) = \limsup_{\substack{t+j\to\infty\\(t,j)\in\operatorname{dom}\phi}} q(\phi(t,j))$$

then

(2)

cont'd

and each complete solution (ϕ, \boldsymbol{u}) satisfies

$$\limsup_{\substack{t+j\to\infty\\t,j)\in \mathsf{dom}\phi}} V(\phi(t,j)) = \limsup_{\substack{t+j\to\infty\\(t,j)\in \mathsf{dom}\phi}} q(\phi(t,j)) \tag{2}$$

then

$$\mathcal{J}^*(\xi) = V(\xi) \qquad \forall \xi \in \Pi(\overline{C} \cup D), \tag{3}$$

cont'd

and each complete solution (ϕ, u) satisfies

$$\limsup_{\substack{t+j\to\infty\\t,j)\in \mathsf{dom}\phi}} V(\phi(t,j)) = \limsup_{\substack{t+j\to\infty\\(t,j)\in \mathsf{dom}\phi}} q(\phi(t,j)) \tag{2}$$

then

$$\mathcal{J}^*(\xi) = V(\xi) \qquad \qquad \forall \xi \in \Pi(\overline{C} \cup D), \tag{3}$$

and any stationary feedback law $\kappa := (\kappa_C, \kappa_D)$ with values

$$\kappa_C(x) \in \arg\min_{u_{C1}} \max_{u_{C2}} \left\{ L_C(x, u_C) + \langle \nabla V(x), F(x, u_C) \rangle \right\} \quad \forall x \in \Pi(C)$$

 $\kappa_D(x) \in \arg\min_{u_{D1}} \max_{u_{D2}} \left\{ L_D(x, u_D) + V(G(x, u_D)) \right\} \quad \forall x \in \Pi(D)$

is a **pure strategy saddle-point equilibrium** for the two-player infinite-horizon hybrid game with $\mathcal{J}_1 = \mathcal{J}$, $\mathcal{J}_2 = -\mathcal{J}$.

J. Leudo and Sanfelice - UCSC - 13/17

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0 \\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0 \\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

- \blacktriangleright x_1 height of the ball
- \blacktriangleright x_2 velocity of the ball
- $\lambda \in [0,1)$ coefficient of restitution
- u_{D1} control and u_{D2} attack

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0\\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

- x₁ height of the ball
- x₂ velocity of the ball
- $\lambda \in [0,1)$ coefficient of restitution
- u_{D1} control and u_{D2} attack

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0\\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

- x₁ height of the ball
- x₂ velocity of the ball
- $\lambda \in [0,1)$ coefficient of restitution
- u_{D1} control and u_{D2} attack

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0 \\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

- x₁ height of the ball
- x₂ velocity of the ball
- $\lambda \in [0,1)$ coefficient of restitution
- u_{D1} control and u_{D2} attack

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0\\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

- x₁ height of the ball
- x₂ velocity of the ball
- $\lambda \in [0, 1)$ coefficient of restitution
- u_{D1} control and u_{D2} attack

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0 \\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

- x₁ height of the ball
- x₂ velocity of the ball
- $\lambda \in [0, 1)$ coefficient of restitution
- u_{D1} control and u_{D2} attack

Goal: Optimally stabilize a bouncing ball actuated at jumps under attacks

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0\\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

- x₁ height of the ball
- x_2 velocity of the ball
- $\lambda \in [0,1)$ coefficient of restitution
- u_{D1} control and u_{D2} attack

Under the worst-case attack at jumps, Player P_1 selects the strategy that minimizes the energy and regulates the ball as time increases. The optimal cost is computed by evaluating the function V at the initial state.

J. Leudo and Sanfelice - UCSC - 14/17

Example: Juggling System

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0\\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

Security Problem as a Zero-Sum Game

- u_{D1} : P_1 minimizes a cost functional \mathcal{J}
- u_{D2} : the worst-case attack by P_2
- No cost to flow $L_C(x, u_C) := 0$
- $\blacktriangleright L_D(x, u_D) := x_2^2 Q_D + u_D^\top R_D u_D$
- Terminal cost $q(x) := \frac{1}{2}x_2^2 + x_1$

 $V(x) := \frac{1}{2}x_2^2 + x_1$ solves HJI hybrid equations.

Example: Juggling System

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0\\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

Security Problem as a Zero-Sum Game

- u_{D1} : P_1 minimizes a cost functional \mathcal{J}
- u_{D2} : the worst-case attack by P_2
- No cost to flow $L_C(x, u_C) := 0$
- $\blacktriangleright L_D(x, u_D) := x_2^2 Q_D + u_D^\top R_D u_D$
- Terminal cost $q(x) := \frac{1}{2}x_2^2 + x_1$

 $V(x):=\frac{1}{2}x_2^2+x_1$ solves HJI hybrid equations. Using our Theorem, the value function at $\xi=(\xi_1,\xi_2)$ is

$$\mathcal{J}^*(\xi_1,\xi_2) := \frac{\xi_2^2}{2} + \xi_1,$$

Example: Juggling System

$$\begin{cases} (\dot{x_1}, \dot{x_2}) &= (x_2, -1) & x_1 \ge 0\\ (x_1^+, x_2^+) &= (0, \lambda x_2 + u_{D1} + u_{D2}) & x_1 = 0 \text{ and } x_2 \le 0 \end{cases}$$

Security Problem as a Zero-Sum Game

- u_{D1} : P_1 minimizes a cost functional \mathcal{J}
- ▶ u_{D2}: the worst-case attack by P₂
- No cost to flow $L_C(x, u_C) := 0$
- $\blacktriangleright L_D(x, u_D) := x_2^2 Q_D + u_D^\top R_D u_D$
- Terminal cost $q(x) := \frac{1}{2}x_2^2 + x_1$

 $V(x):=\frac{1}{2}x_2^2+x_1$ solves HJI hybrid equations. Using our Theorem, the value function at $\xi=(\xi_1,\xi_2)$ is

$$\mathcal{J}^*(\xi_1,\xi_2) := \frac{\xi_2^2}{2} + \xi_1,$$

and attained by

$$\kappa_{D1}(x) = \frac{R_{D2}\lambda}{R_{D1} + R_{D2} + 2R_{D1}R_{D2}}x_2$$

$$\kappa_{D2}(x) = \frac{R_{D1}\lambda}{R_{D1} + R_{D2} + 2R_{D1}R_{D2}}x_2$$

then, κ_D is the saddle-point equilibrium.

J. Leudo and Sanfelice - UCSC - 15/17

Conclusion

- General framework to model hybrid games
- Sufficient conditions for optimality to evaluate value function
- Sufficient conditions to attain saddle-point equilibrium
- Application in security scenario
 - S. J. Leudo, K. Garg, R.G. Sanfelice, A. Cardenas. An Observer-based Switching Algorithm for Safety under Sensor Denial-of-Service Attacks, to appear in the 2023 American Control Conference.
 - S. J. Leudo, and R.G. Sanfelice. Sufficient Conditions for Optimality in Finite-Horizon Two-Player Zero-Sum Hybrid Games, 2022 IEEE Conference on Decision and Control, December 2022.
 - S.J. Leudo, and R.G. Sanfelice. Sufficient Conditions for Optimality and Asymptotic Stability in Two-Player Zero-Sum Hybrid Games, the ACM International Conference on Hybrid Systems: Computation and Control, 2022.
 - S.J. Leudo, F. Ferrante, and R.G. Sanfelice. Upper Bounds and Cost Evaluation in Dynamic Two-player Zero-Sum Games, IEEE Conference on Decision and Control, December, 2020.

This research has been partially supported by

- the National Science Foundation under Grant no. ECS-1710621, Grant no. CNS- 2039054, and Grant no. CNS-2111688,
- the Air Force Office of Scientific Research under Grant no. A9550-19-1-0053, Grant no. FA9550-19-1-0169, and Grant no. FA9550-20-1-023,
- the Army Research Office under Grant no. W911NF-20-1-0253,
- and by Fulbright Colombia MinTIC.