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Motivation

Game Theory + Control Theory

▶ Multiple players with conflicting interests (noncooperative)

▶ Decision making process. Optimization problem with dynamic
constraints

▶ Challenges: Both continuous and discrete behavior

J (u1, u2)

subject to hybrid dynamics
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Modeling Hybrid Dynamics
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Modeling Hybrid Dynamics
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Hybrid Systems with Inputs

A hybrid system H with state x and input u = (uC , uD) as in
[Goebel, et.al., PUP 2012]:

H

{
ẋ = F (x, uC) (x, uC) ∈ C

x+ = G(x, uD) (x, uD) ∈ D

▶ C is the flow set

▶ F is the flow map

▶ D is the jump set

▶ G is the jump map

Solutions parametrized by (t, j):

▶ t ∈ [0,∞), time elapsed during flows

▶ j ∈ {0, 1, . . . }, number of jumps that have occurred

Domain of a solution of the form

([0, t1]× {0}) ∪ ([t1, t2]× {1}) ∪ . . . ,

where t1 ≤ t2 ≤ . . . are the jump times.
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Connections to Other Frameworks

Switched Systems

ẋ =fσ(t)(x)

σ(t) ∈{1, 2, . . . }

Differential-Algebraic Equations

ẋ =f(x,w)

0 =η(x,w)

Impulsive Systems

ẋ =f(x(t))

x(t+) =g(x(t)) t ∈ {t1, t2, . . . }

Hybrid Automata
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Two-Player Zero-Sum Games
Two-player game: uC = (uC1, uC2) and uD = (uD1, uD2)

▶ Player P1 selects (uC1, uD1) ▶ Player P2 selects (uC2, uD2)

▶ J cost functional associated to the solution to H from ξ.

Solve
minimize
(uC1,uD1)

maximize
(uC2,uD2)

J (ξ, uC1, uC2, uD1, uD2)

over the set of complete input actions as a two-player zero-sum
hybrid game.

Robust Control Problem

Find the control input (uC1, uD1) that upper bounds J for a
disturbance (uC2, uD2).

Security Problem

Ensure the control input (uC1, uD1) minimizes J under an attack
(uC2, uD2) designed to harm H as much as possible.
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Two-Player Zero-Sum Games

▶ General framework

▶ Sufficient conditions for optimality to evaluate the value
function

▶ Sufficient conditions to attain saddle-point equilibrium

▶ Application in a security scenario
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Formulation of Two-Player Zero-Sum Hybrid Games

Following the formulation in [Başar and Olsder, SIAM 1999], for each
i ∈ {1, 2}, the i -th player Pi

▶ Dynamics Hi with data (Ci, Fi, Di, Gi)

▶ State xi ∈ Rni

▶ Hybrid input ui = (uCi, uDi) ∈ RmCi × RmDi

▶ Set of hybrid inputs Ui = UCi × UDi

Elements of a two-player zero-sum hybrid game

1. The state x = (x1, x2) ∈ Rn.

2. The set of joint input actions U = U1 × U2 with elements
u = (u1, u2).
Each player selects its action independently from the action of
the other player.
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Formulation of Two-Player Zero-Sum Hybrid Games

cont’d

3. The dynamics of the game, denoted by H, with data

C := C1 × C2

F (x, uC) := (F1(x, uC), F2(x, uC)) ∀(x, uC) ∈ C

D := {(x, uD) ∈ Rn × RmD : (xi, uDi) ∈ Di, i ∈ {1, 2}}
G(x, uD) := {Ĝi(x, uD) : (xi, uDi) ∈ Di, i ∈ {1, 2}} ∀(x, uD) ∈ D

where Ĝ1(x, uD) = (G1(x, uD), In2), and Ĝ2(x, uD) = (In1 , G2(x, uD)).

4. The strategy space of the game K = K1 ×K2. Collection of
mappings κ = (κ1, κ2). Each κi ∈ Ki is said to be a
permissible strategy for Pi.

5. The cost associated to Pi, (ξ, u) 7→ Ji(ξ, u).
Single cost functional J = J1 = −J2 associated to the
unique solution to H from ξ for u.
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Saddle-Point Equilibrium

Solution of a zero-sum hybrid game [Başar and Olsder, SIAM 1999]

Consider a two-player zero-sum game with dynamics H and
J1 = J , J2 = −J .

A strategy κ = (κ1, κ2) ∈ K is a saddle-point equilibrium if for
each ξ ∈ Π(C ∪D), every u∗ rendering a maximal response ϕ∗ to
H from ξ, with

u∗ = (u∗1, u
∗
2) = (κ1(ϕ

∗), κ2(ϕ
∗))

satisfies

J (ξ, (u∗1, u2)) ≤ J (ξ, u∗) ≤ J (ξ, (u1, u
∗
2)) (1)

for all u1 and all u2 that render maximal solutions.

Π(C) denotes the projection of the set C onto Rn.
A equilibrium solution to the zero-sum two-player game is a strategy in K.
A solution to a hybrid system H is a hybrid arc, and it is maximal if it cannot
be extended.
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Problem Statement
Consider a two-player zero-sum hybrid game with dynamics H. Given
ξ ∈ Rn and a joint input action u = (uC , uD) ∈ U rendering a unique
maximal complete solution (ϕ, u) to H from ξ, the cost associated to it

J (ξ, u) :=

Cost-to-flow︷ ︸︸ ︷
supj domϕ∑

j=0

∫ tj+1

tj

LC(ϕ(t, j), uC(t, j))dt

+

supj domϕ−1∑
j=0

LD(ϕ(tj+1, j), uD(tj+1, j))︸ ︷︷ ︸
Cost-to-jump

+ lim sup
t+j→∞

(t,j)∈domϕ

q(ϕ(t, j))

︸ ︷︷ ︸
Terminal cost

Problem (⋄): Given ξ ∈ Rn, solve

minimize
u1

maximize
u2

J (ξ, (u1, u2))

over the set of input actions yielding complete solutions to H.

Value Function

Given ξ ∈ Rn, the value function at ξ is given by

J ∗(ξ) := min
u1

max
u2

J (ξ, (u1, u2)) = max
u2

min
u1

J (ξ, (u1, u2))

over the set of joint input actions yielding complete solutions to H
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Design of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]

Given a two-player zero-sum hybrid game with

▶ dynamics H,

▶ costs LC , LD and q,

if there exists a function V satisfying regularity conditions (see paper)
and

0 = min
uC1

max
uC2

{LC(x, (uC1, uC2)) + ⟨∇V (x), F (x, (uC1, uC2))⟩}

= max
uC2

min
uC1

{LC(x, (uC1, uC2)) + ⟨∇V (x), F (x, (uC1, uC2))⟩} ∀x ∈ Π(C)

V (x) = min
uD1

max
uD2

{LD(x, (uD1, uD2)) + V (G(x, (uD1, uD2)))}

= max
uD2

min
uD1

{LD(x, (uD1, uD2)) + V (G(x, (uD1, uD2)))} ∀x ∈ Π(D)

(Hamilton-Jacobi-Isaacs hybrid equations)
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Design of Saddle-Point Equilibrium
cont’d

and each complete solution (ϕ, u) satisfies

lim sup
t+j→∞

(t,j)∈domϕ

V (ϕ(t, j)) = lim sup
t+j→∞

(t,j)∈domϕ

q(ϕ(t, j)) (2)

then

J ∗(ξ) = V (ξ) ∀ξ ∈ Π(C ∪D), (3)

and any stationary feedback law κ := (κC , κD) with values

κC(x) ∈ argmin
uC1

max
uC2

{LC(x, uC) + ⟨∇V (x), F (x, uC)⟩} ∀x ∈ Π(C)

κD(x) ∈ argmin
uD1

max
uD2

{LD(x, uD) + V (G(x, uD))} ∀x ∈ Π(D)

is a pure strategy saddle-point equilibrium for the two-player
infinite-horizon hybrid game with J1 = J , J2 = −J .
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Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under
attacks{

(ẋ1, ẋ2) = (x2,−1) x1 ≥ 0
(x+

1 , x
+
2 ) = (0, λx2 + uD1 + uD2) x1 = 0 and x2 ≤ 0

▶ x1 height of the ball

▶ x2 velocity of the ball

▶ λ ∈ [0, 1) coefficient of
restitution

▶ uD1 control and uD2 attack
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(ẋ1, ẋ2) = (x2,−1) x1 ≥ 0
(x+

1 , x
+
2 ) = (0, λx2 + uD1 + uD2) x1 = 0 and x2 ≤ 0

▶ x1 height of the ball

▶ x2 velocity of the ball

▶ λ ∈ [0, 1) coefficient of
restitution

▶ uD1 control and uD2 attack

J. Leudo and Sanfelice - UCSC - 14/17



Example: Security of Juggling System

Goal: Optimally stabilize a bouncing ball actuated at jumps under
attacks{
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(x+

1 , x
+
2 ) = (0, λx2 + uD1 + uD2) x1 = 0 and x2 ≤ 0

▶ x1 height of the ball

▶ x2 velocity of the ball

▶ λ ∈ [0, 1) coefficient of
restitution

▶ uD1 control and uD2 attack

Under the worst-case attack at jumps, Player P1 selects the strategy
that minimizes the energy and regulates the ball as time increases.
The optimal cost is computed by evaluating the function V at the
initial state.
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Example: Juggling System

{
(ẋ1, ẋ2) = (x2,−1) x1 ≥ 0
(x+

1 , x
+
2 ) = (0, λx2 + uD1 + uD2) x1 = 0 and x2 ≤ 0

Security Problem as a Zero-Sum Game

▶ uD1: P1 minimizes a cost functional J
▶ uD2: the worst-case attack by P2

▶ No cost to flow LC(x, uC) := 0

▶ LD(x, uD) := x2
2QD + u⊤

DRDuD

▶ Terminal cost q(x) := 1
2
x2
2 + x1

V (x) := 1
2
x2
2 + x1 solves HJI hybrid equations.

Using our Theorem, the value function at
ξ = (ξ1, ξ2) is

J ∗(ξ1, ξ2) :=
ξ22
2

+ ξ1,

and attained by

κD1(x) =
RD2λ

RD1 +RD2 + 2RD1RD2
x2

κD2(x) =
RD1λ

RD1 +RD2 + 2RD1RD2
x2

then, κD is the saddle-point
equilibrium.
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Conclusion

▶ General framework to model hybrid games
▶ Sufficient conditions for optimality to evaluate value function
▶ Sufficient conditions to attain saddle-point equilibrium
▶ Application in security scenario

▶ S. J. Leudo, K. Garg, R.G. Sanfelice, A. Cardenas. An Observer-based
Switching Algorithm for Safety under Sensor Denial-of-Service
Attacks, to appear in the 2023 American Control Conference.

▶ S. J. Leudo, and R.G. Sanfelice. Sufficient Conditions for Optimality
in Finite-Horizon Two-Player Zero-Sum Hybrid Games, 2022 IEEE
Conference on Decision and Control, December 2022.

▶ S.J. Leudo, and R.G. Sanfelice. Sufficient Conditions for Optimality
and Asymptotic Stability in Two-Player Zero-Sum Hybrid Games, the
ACM International Conference on Hybrid Systems: Computation and
Control, 2022.

▶ S.J. Leudo, F. Ferrante, and R.G. Sanfelice. Upper Bounds and Cost
Evaluation in Dynamic Two-player Zero-Sum Games, IEEE
Conference on Decision and Control, December, 2020.
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