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A hybrid system H with state x and input u = (uc,up) as in
[Goebel, et.al., PUP 2012]:

» (' is the flow set > D is the jump set
» [ is the flow map > G is the jump map
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A hybrid system H with state x and input u = (uc,up) as in
[Goebel, et.al., PUP 2012]:

» (' is the flow set > D is the jump set

» [ is the flow map > G is the jump map
Solutions parametrized by (t, j):

» t € [0,00), time elapsed during flows

» je€{0,1,...}, number of jumps that have occurred

Domain of a solution of the form

([0, t1] x {0} U ([tr, 2] x {1H U,

where t; <9 < ... are the jump times.
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Hvbrid S ith |

A hybrid system H with ste ¢(t, )
[Goebel, et.al., PUP 2012]:
H v t1 to tz=14
x+ ( — 1
» (' is the flow set —~
» [ is the flow map .
Solutions parametrized by ( ¢ : Solution to H

» t € [0,00), time elapsed during flows
» je€{0,1,...}, number of jumps that have occurred

Domain of a solution of the form
([0, 1] x {0}) U ([t1, 2] x {1}) U,

where t; <9 < ... are the jump times.
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_____Connections to Other Frameworks

Switched Systems

T =fo ()
o(t) €{1,2,...}

Differential-Algebraic Equations

T =f(z,w)

0 =n(z,w)

Impulsive Systems

f(z(1))
z(tT) =g(x(t)) te {t1,ta,...}

T

Hybrid Automata

() €n)
D
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Two-Player Zero-Sum Games

Two-player game: uc = (uc1, uce2) and up = (up1,up2)
> Player P; selects (uc1,up1) > Player P; selects (uca, up2)

» 7 cost functional associated to the solution to H from &.
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Two-player game: uc = (uc1, uce2) and up = (up1,up2)
> Player P; selects (uc1,up1) > Player P; selects (uca, up2)

» 7 cost functional associated to the solution to H from &.

Solve

minimize maximize J (&, uc1, uc2, Upi, up2)
(uc1,up1) (uc2,up2)

over the set of complete input actions as a two-player zero-sum
hybrid game.

Robust Control Problem
Find the control input (uc1,up1) that upper bounds 7 for a

disturbance (uc2,up2).
Security Problem

Ensure the control input (uc1,up1) minimizes J under an attack
(uc2,upsz) designed to harm H as much as possible.
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Two-Player Zero-Sum Games

» General framework

» Sufficient conditions for optimality to evaluate the value
function

» Sufficient conditions to attain saddle-point equilibrium

» Application in a security scenario
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E lation of Two-Plaver Zero-Sum Hybrid G

Following the formulation in [Basar and Olsder, SIAM 1999], for each
i € {1,2}, the i-th player P;
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E lation of Two-Plaver Zero-Sum Hybrid G

Following the formulation in [Basar and Olsder, SIAM 1999], for each
i € {1,2}, the i-th player P;

» Dynamics H; with data (C;, F;, D;, G;)

> State z; € R™

» Hybrid input u; = (ucyi, up;) € R x RMDi

» Set of hybrid inputs U; = Uc; X Up;

Elements of a two-player zero-sum hybrid game

1. The state x = (z1,x2) € R™.
2. The set of joint input actions U = U1 x Us with elements

u = (u,ug).
Each player selects its action independently from the action of
the other player.
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E lati f Two-Pl Zero-S Hvbrid G
cont'd

3. The dynamics of the game, denoted by H, with data

C = 01 X CQ
F(z,uc) :=(Fi(z,uc), F2(z,uc)) V(z,uc) € C
D = {(z,up) ER" x R™P : (z;,up;) € D;,i € {1,2}}

G(z,up) = {Gi(x,up): (i, upi) € Ds,i € {1,2}} V(z,up) € D

where G (z,up) = (G1(x,up), Iny), and Ga(z,up) = (In,, G2(z,up)).
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3. The dynamics of the game, denoted by H, with data

C = 01 X CQ
F(z,uc) :=(Fi(z,uc), F2(z,uc)) V(z,uc) € C
D = {(z,up) ER" x R™P : (z;,up;) € D;,i € {1,2}}
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where G (z,up) = (G1(x,up), Iny), and Ga(z,up) = (In,, G2(z,up)).
4. The strategy space of the game K = Ky x Ks. Collection of

mappings k = (K1, k2). Each k; € K; is said to be a
permissible strategy for P;.
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E lati f Two-Pl Zero-S Hvbrid G
cont'd

3. The dynamics of the game, denoted by H, with data

C = 01 X CQ
F(z,uc) :=(Fi(z,uc), F2(z,uc)) V(z,uc) € C
D = {(z,up) ER" x R™P : (z;,up;) € D;,i € {1,2}}

G(z,up) = {Gi(x,up): (i, upi) € Ds,i € {1,2}} V(z,up) € D

where G (z,up) = (G1(x,up), Iny), and Ga(z,up) = (In,, G2(z,up)).

4. The strategy space of the game K = Ky x Ks. Collection of
mappings k = (K1, k2). Each k; € K; is said to be a
permissible strategy for P;.

5. The cost associated to P;, (&,u) — J;(&,u).
Single cost functional J = J1 = —J> associated to the
unique solution to H from £ for u.
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Solution of a zero-sum hybrid game [Basar and Olsder, SIAM 1999]

Consider a two-player zero-sum game with dynamics H and

h=J F=-J.
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Saddle-Point Equilibri

Solution of a zero-sum hybrid game [Basar and Olsder, SIAM 1999]

Consider a two-player zero-sum game with dynamics H and
h=J, J=-J.

A strategy k = (k1,k2) € K is a saddle-point equilibrium if for
each £ € TI(C'U D), every u* rendering a maximal response ¢* to
H from &, with

u* = (Uj{vuz) = (K/l(gb*)v"i?((ﬁ*))

satisfies

for all uy; and all uy that render maximal solutions.
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Solution of a zero-sum hybrid game [Basar and Olsder, SIAM 1999]

Consider a two-player zero-sum game with dynamics H and
h=J, J=-J.

A strategy k = (k1,k2) € K is a saddle-point equilibrium if for
each £ € TI(C'U D), every u* rendering a maximal response ¢* to
H from &, with

u* = (Uj{vuz) = (K/l(gb*)v"i?((ﬁ*))

satisfies

for all uy; and all uy that render maximal solutions.

TI(C) denotes the projection of the set C' onto R™.
A equilibrium solution to the zero-sum two-player game is a strategy in K.
A solution to a hybrid system H is a hybrid arc, and it is maximal if it cannot

be extended.
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__ Problem Statemept

Consider a two-player zero-sum hybrid game with dynamics H. Given
¢ € R™ and a joint input action u = (uc,up) € U rendering a unique
maximal complete solution (¢, u) to H from &, the cost associated to it

Cost-to-flow

sup; dom ¢ tis1

JEwi= 3 [ Lottt
=0 Ji;
sup,; dom ¢—1
+ Z Lp(¢(tj+1,7),up(tjv1,7)) + ltifl_sup a(e(t, 7))
j—o00

=0 ,
(t,j)€domg

Cost-to-jump
Terminal cost
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& € R™ and a joint input action u = (uc,:
maximal complete solution (¢, u) to H fro

Cost-to-flow

S . 0
sup; dom ¢ tis1

JEewi= > [ Lot ucl

j=0 i

¢ : Solution to H

supjdomqul
+ D Lo(@(tje.d) up(tier.g) + limsup q(@(t, )
t+j—00
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(t,j)€domg
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__ Problem Statemept

Consider a two-player zero-sum hybrid gan
& € R™ and a joint input action u = (uc,:
maximal complete solution (¢, u) to H fro

Cost-to-flow

sup.. dom ¢
2 tit1

JEewi= > [ Lot ucl

Jtj

=0

¢ : Solution to H

sup,; dom ¢—1
+ Z Lp(¢(tjt1.7),up(tj1,7)) + limsup q(¢(t, 7))
i=0 t+j—00
: (t,5)€domg

Cost-to-jump
Terminal cost

Problem (¢): Given £ € R", solve

minimize maximize J (&, (u1,u2))
U1 Uz

over the set of input actions yielding complete solutions to H.
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__ Problem Statemept

Consider a two-player zero-sum hybrid gan
& € R™ and a joint input action u = (uc,:
maximal complete solution (¢, u) to H fro

Cost-to-flow

sup; dom ¢ tis1

JEewi= > [ Lot ucl

Jtj

=0

¢ : Solution to H

sup,; dom ¢—1
+ > Lp(é(tjs1,d).up(tivr.g)) + limsup q(e(t,5))
i=0 t+j—00
: (t,5)€domg

Cost-to-jump
Terminal cost

Value Function
Given £ € R", the value function at £ is given by

J*(€) ;== minmaxJ (&, (u1,usz)) = maxminJ (&, (u1, us))

U1 Uz U2 U1

over the set of joint input actions yielding complete solutions to H
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Desi f Saddle-Point Equilibrium
Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with
» dynamics H,

» costs Lo, Lp and ¢,
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Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with
» dynamics H,
» costs Lo, Lp and ¢,

if there exists a function V satisfying regularity conditions (see paper)
and

0 = minmax {L¢c (z, (uct, uc2)) + (VV(x), F(z, (uci,uc2)))}

uci1 uc2

= maxmin {Lc(z, (uc1,uce)) + (VV(z), F(z, (uc1,uc2)))} vz € II(C)
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Desien of Saddle-Point Equilibrium

Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with
» dynamics H,
» costs Lo, Lp and ¢,

if there exists a function V satisfying regularity conditions (see paper)
and

0 = minmax {Lc(z, (uc1, uce)) + (VV(x), F(z, (uci,uc2)))}

uci1 uc2

= maxmin {Lc(z, (uc1,uce)) + (VV(z), F(z, (uc1,uc2)))} vz € II(C)

uc2 uci

Optimizer: (ugy, ugs)

0= Le(x, (uc, uc2)) + VV(2)F(x, (uct, ucs))

Cost of flowing Change of V along flow
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Desi f Saddle-Point Equilibrium
Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with
» dynamics H,
» costs Lo, Lp and ¢,

if there exists a function V satisfying regularity conditions (see paper)
and

0 = minmax {L¢c (z, (uct, uc2)) + (VV(x), F(z, (uci,uc2)))}

uci1 uc2

= maxmin {Lc(z, (uc1,uce)) + (VV(z), F(z, (uc1,uc2)))} vz € II(C)

uc2 uci

V(z) = minmax {Lp(z, (up1,up2)) + V(G(z, (up1,upn2)))}

up1 up2
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Desi f Saddle-Point Equilibrium
Theorem [J. Leudo and Sanfelice, HSCC 2022]
Given a two-player zero-sum hybrid game with
» dynamics H,
» costs Lo, Lp and ¢,

if there exists a function V satisfying regularity conditions (see paper)
and

Optimizer: (up,uhs)

0= Lp(z,(upi,ups)) + V(G(z, (up1,ups))) — V()

Cost of jumping Change of V along jump

V(z) = minmax {Lp(z, (up1,up2)) + V(G(z, (up1,un2)))}

uUp1 Up

= maxmin {Lp(z, (upi,up2)) + V(G(z, (upi,up2)))} vz € TI(D)

Uup2 Upi1

(Hamilton-Jacobi-Isaacs hybrid equations)
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cont'd
and each complete solution (¢, ) satisfies

limsup V(¢(t,5)) = limsup q((t, 7)) (2)
t+j—o00 t+j—o0
(t,j)€dome (t,j)Edome

then
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cont'd
and each complete solution (¢, ) satisfies

limsup V(é(t,j)) = limsup q(¢(t, 7)) (2)
t+j—00 t+j—00
(t,j)€Edome (t,j)Edome
then
T*(&) =V (&) V¢ e I(C U D), (3)
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cont'd

and each complete solution (¢, ) satisfies

limsup V(é(t,j)) = limsup q(¢(t, 7)) (2)
t+j—00 t+j—00
(t,j)€Edome (t,j)Edome
then
T*(&) =V (&) V¢ e I(C U D), (3)

and any stationary feedback law k := (k¢, kp) with values

ro(x) € argminmax {Lo(x, uc) + (VV(z), F(z,uc))} Vo € II(C)

uci1 uc2

kp(x) € argminmax {Lp(z,up) + V(G(z,up))} Va elIl(D)

Up1 UpD2

is a pure strategy saddle-point equilibrium for the two-player
infinite-horizon hybrid game with /1 = J, Jo = —J.
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E le: Security of Juseling S

Goal: Optimally stabilize a bouncing ball actuated at jumps under
attacks

(@1,22) = (x2,—-1) 120
("ﬁrﬂj{) = (0, \z2+ups +up2) x1 =0 and z2 <0
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Goal: Optimally stabilize a bouncing ball actuated at jumps under
attacks

z1 height of the ball

(Ig,fl) I Z O
(0, \z2 +up1 +up2) 1 =0 and 22 <0

xzo velocity of the ball

A € ]0,1) coefficient of
restitution

u.
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Goal: Optimally stabilize a bouncing ball actuated at jumps under
attacks

($2,—1) 1 >0
(0, \z2 + up1 +up2) 1 =0 and 2 <0

1 height of the ball 1 \
0.5
o velocity of the ball 0 =
1(J 2 4 6 8 10 12 14
X € [0,1) coefficient of L oF
restitution 51
-2
upq control and upo attack 0_05q 2 4 6 8 10 12 14
< 0
-0.05
0 5 10
. 0.02
S 0
-0.02+
0 5 10
V(2(0,0)
’ 0.5

0 2 4 6 8 10 12 14
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Goal: Optimally stabilize a bouncing ball actuated at jumps under

attacks
{ (x.lvl:Q)
(=1, 23)

1 height of the ball

o velocity of the ball

X € ]0,1) coefficient of
restitution

upq control and upo attack

($2, _1)
(0, Az2 +up1 + up2)

33‘120

x1=0and 25 <0

41 6 8 10

12 14
12 14
12 14
lé 14
lé 14
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Goal: Optimally stabilize a bouncing ball actuated at jumps under

attacks
{ (x.lvl:Q)
(=1, 23)

1 height of the ball

X € ]0,1) coefficient of

restitution

upq control and upo attack

-1

0.5

o velocity of the ball 0
2

0

(x27_1) 1 >0
(0, \z2 + up1 +up2) 1 =0 and 2 <0

0 2 4 6 8 10 12 14
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Goal: Optimally stabilize a bouncing ball actuated at jumps under

attacks
{ ('T.lvl:Q)
(=1, 23)

1 height of the ball

0 2 4 6 8 10 12 14
X € [0,1) coefficient of N N * ‘
restitution = 2\\
upi control and ups attack 0.059 2, 4 *6 8 10 12 14
0 \
-0.05} N . !
0 2 4 6 8 10 12 14

-1
T05
x2 velocity of the ball 0 : -
2
0r

(x27_1) 1 >0
(0, \z2 + up1 +up2) 1 =0 and 2 <0

0 2 4 6 8 10 12 14
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Goal: Optimally stabilize a bouncing ball actuated at jumps under
attacks

(1‘2,—1) 1 >0
(0, \z2 + up1 +up2) 1 =0 and 2 <0

a1 height of the ball 1 W
805
o velocity of the ball 0 el s
2
X € ]0,1) coefficient of o
restitution 0 \\\*\\*\‘*\
-2
upq control and upo attack 0‘059 * ;
0 5 10
., 0.02f ! ‘ :
S0 3 3 L *%%
% 002 ////*/9‘/*/
0 5 10
V(2(0,0))

0 L n L L

0 2 4 6 8 10 12 14
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Goal: Optimally stabilize a bouncing ball actuated at jumps under
attacks

($2,—1) 1 >0
(0, \z2 + up1 +up2) 1 =0 and 2 <0

x1 height of the ball -1
S 0.5+

o velocity of the ball 0 Kk
2

X € [0,1) coefficient of o \

restitution O\ *\*\%\‘X\‘
2

upq control and upo attack 005

3]
0

Under the worst-case attack at jumps, Player P; selects the strategy
that minimizes the energy and regulates the ball as time increases.
The optimal cost is computed by evaluating the function V' at the
initial state.

U E3 0 [e] T0 T TF
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14/17



_ Example: Juggling System

(%1, 72) (2, -1) z1 >0
(val’;) = (0, \z2+up1+up2) x1=0and z2 <0

Security Problem as a Zero-Sum Game

» wupi: P; minimizes a cost functional J
up2: the worst-case attack by P»
No cost to flow Le(z,uc) :==0
Lp(z,up) = 23Qp + u)p, Rpup

Terminal cost g(z) := 223 + 21

V(z) := 123 4 21 solves HJI hybrid equations.
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_ Example: Juggling System

(%1, 72) (2, -1) z1 >0
(val’;) = (0, \z2+up1+up2) x1=0and z2 <0

Security Problem as a Zero-Sum Game
» wupi: P; minimizes a cost functional J
» wupa: the worst-case attack by P»
» No cost to flow Lo (z,uc) :=0
» Lp(z,up) :=x3Qp + ubRpup
> Terminal cost q(z) := 223 + 21
V(z) := 123 4 21 solves HJI hybrid equations.

Using our Theorem, the value function at

5 = (51752) is

_ &
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_ Example: Juggling System

(3517‘77.2) (3727—1) z1 20
(val’;) = (0, z2+upi +up2) x1=0and 22 <0

Security Problem as a Zero-Sum Game and attained by
» wupi: Pi minimizes a cost functional J Rpa)
KuD1($) = i)

> wups: the worst-case attack by P» Rp1 + Rp2 +2Rp1Rp2
» No cost to flow Lo (z,uc) :=0 RpiA

2 T w028 = Rpa + 21 R
> Lp(z,up) :=22Qp +upbRpup D1+ Fp2 +2Rp1fip2
» Terminal cost q(x) := 123 + x1 the'.]'. D 1S the saddle-point

2 equilibrium.

V(z) := 123 4 21 solves HJI hybrid equations.
Using our Theorem, the value function at

§= (51752) is

_ &

\7*(51752) . 5 +£17
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Conclusion

» General framework to model hybrid games

» Sufficient conditions for optimality to evaluate value function
> Sufficient conditions to attain saddle-point equilibrium

» Application in security scenario
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