
Recent Advancements in
Optimal and Deep Learning

Wanjiku A. Makumi, Omkar Sudhir Patil, Rebecca G. Hart, Emily
J. Griffis, and Warren E. Dixon

Deep Nonlinear Adaptive Control for UAS

Lyapunov-Based Deep Neural
Network-Based Value Function
Approximation for Approximate

Dynamic Programming

W. A. Makumi, M. L. Greene., Z. I. Bell, W. E. Dixon, “Lyapunov-Based Deep Neural Network-Based
Value Function Approximation for Approximate Dynamic Programming,” In preparation.

•Dynamic system

•Control objective
• Find a controller, 𝜇, which minimizes the cost function

•Cost function

•Hamilton Jacobi Bellman (HJB) equation

Optimal Control Problem Formulation

ሶ𝜁 = 𝐹 𝜁 + 𝐺 𝜁 𝜇ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢 ⟶

0 = 𝑄 𝜁 + 𝜇∗ 𝜁 𝑇𝑅𝜇∗ 𝜁 + 𝛻𝜁𝑉
∗ 𝜁 𝐹 𝜁 + 𝐺 𝜁 𝜇∗ 𝜁

𝐽 𝜁, 𝜇 = න
0

∞

𝑄 𝜁 𝜏 + 𝜇 𝜏 𝑇𝑅𝜇 𝜏 𝑑𝜏

𝜁 = 𝑒𝑇 , 𝑥𝑑
𝑇 𝑇

𝐹 𝜁 =
𝑓 𝑒 + 𝑥𝑑 − ℎ𝑑 𝑥𝑑 + 𝑔 𝑒 + 𝑥𝑑 𝑢𝑑 𝑥𝑑

ℎ𝑑 𝑥𝑑

𝐺 𝜁 = 𝑔 𝑒 + 𝑥𝑑
𝑇 , 𝟎𝑚×𝑛

𝑇

𝜇 = 𝑢 − 𝑢𝑑 𝑥𝑑

R. Kamalapurkar, H. Dinh, S. Bhasin, W. E. Dixon, "Approximate Optimal Trajectory Tracking for Continuous-Time Nonlinear
Systems," Automatica, Vol. 51, pp. 40-48 (2015).

https://ncr.mae.ufl.edu/papers/auto15.pdf

•Dynamic system

•Control objective
• Find a controller, 𝜇, which minimizes the cost function

•Cost function

•Hamilton Jacobi Bellman (HJB) equation

Optimal Control Problem Formulation

ሶ𝜁 = 𝐹 𝜁 + 𝐺 𝜁 𝜇ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢 ⟶

0 = 𝑄 𝜁 + 𝜇∗ 𝜁 𝑇𝑅𝜇∗ 𝜁 + 𝛻𝜁𝑉
∗ 𝜁 𝐹 𝜁 + 𝐺 𝜁 𝜇∗ 𝜁

𝐽 𝜁, 𝜇 = න
0

∞

𝑄 𝜁 𝜏 + 𝜇 𝜏 𝑇𝑅𝜇 𝜏 𝑑𝜏

𝜁 = 𝑒𝑇 , 𝑥𝑑
𝑇 𝑇

𝐹 𝜁 =
𝑓 𝑒 + 𝑥𝑑 − ℎ𝑑 𝑥𝑑 + 𝑔 𝑒 + 𝑥𝑑 𝑢𝑑 𝑥𝑑

ℎ𝑑 𝑥𝑑

𝐺 𝜁 = 𝑔 𝑒 + 𝑥𝑑
𝑇 , 𝟎𝑚×𝑛

𝑇

𝜇 = 𝑢 − 𝑢𝑑 𝑥𝑑

R. Kamalapurkar, H. Dinh, S. Bhasin, W. E. Dixon, "Approximate Optimal Trajectory Tracking for Continuous-Time Nonlinear
Systems," Automatica, Vol. 51, pp. 40-48 (2015).

https://ncr.mae.ufl.edu/papers/auto15.pdf

DNN System Identification

•Previously: Linear parameterization & single-layer
NNs

•Lyapunov-based multi-timescale deep neural network
(DNN) system identifier

•DNN drift dynamics

•Drift dynamics approximation

R. Sun, M. Greene, D. Le, Z. Bell, G. Chowdhary, and W. E.
Dixon, "Lyapunov-Based Real-Time and Iterative
Adjustment of Deep Neural Networks," IEEE Control
Systems Letters, Vol. 6, pp. 193-198 (2022).

M. Greene, Z. Bell, S. Nivison, and W. E. Dixon, "Deep Neural
Network-based Approximate Optimal Tracking for Unknown
Nonlinear Systems," IEEE Transactions on Automatic Control, to
appear.

𝑓 𝑥 = 𝜃𝑇𝜙 Φ 𝑥 + 𝜖𝜃 𝑥

መ𝑓𝑖 𝑥 = መ𝜃𝑇𝜙 ෡Φ𝑖 𝑥

about:blank

Multi-timescale Updates

•Output-layer weight updates
• Online, real-time, adaptive

• Concurrent learning-based update law

• Inner-layer feature updates
• Iterative, optimization algorithm, batch updates

• Loss function

ሶመ𝜃 = Γ𝜃𝜙 ෡Φ𝑖 𝑥𝑗 ෤𝑥𝑇 + 𝑘𝜃Γ𝜃෍

𝑗=1

𝑀

𝜙 ෡Φ𝑖 𝑥𝑗 ሶ𝑥𝑗 − 𝑔𝑗 𝑥𝑗 𝑢𝑗 − መ𝜃𝑇𝜙 ෡Φ𝑖 𝑥𝑗

ℒ𝑖+1 𝑡 =
1

𝑀
෍

𝑗=1

𝑀

ሶ𝑥𝑗 − 𝑔𝑗 𝑥𝑗 𝑢𝑗 − ෠𝜃𝑇𝜙 ෡Φ𝑖 𝑥𝑗
2

Approximate Dynamic Programming

•Optimal value function (cost-to-go)

•Optimal control policy

𝑉∗ 𝑥 = min
𝜇 𝜏 𝜖𝑈

න
𝑡

∞

𝑄 𝜁 𝜏 + 𝜇 𝜏 𝑇𝑅𝜇 𝜏 𝑑𝜏

𝜇∗ 𝜁 = −
1

2
𝑅−1𝐺 𝜁 𝑇 𝛻𝜁𝑉

∗ 𝜁
𝑇

DNN Value Function Approximation

෡𝑊𝑐 = Critic weight estimate
෡𝑊𝑎 = Actor weight estimate

DNN Optimal Value Function and DNN Optimal Control Policy

𝑉∗ 𝜁 = 𝑊𝑇𝜓 Ψ∗ 𝜁 + 𝜖𝑣 𝜁

Ƹ𝜇 𝜁, ෡𝑊𝑎 = −
1

2
𝑅−1𝑔 𝜁 𝑇 ෢𝑾𝒂

𝑇
𝛻𝜁𝜓 ෡Ψ𝑖 𝜁

𝑇

Optimal Value Function and Optimal Control Policy Approximation

𝜇∗ 𝜁 = −
1

2
𝑅−1𝑔 𝜁 𝑇 𝑊𝑇𝛻𝜁𝜓 Ψ∗ 𝜁 + 𝛻𝜁𝜖𝑣 𝜁 𝑇

DNN Value Function Approximation

෠𝑉 𝜁, ෡𝑊𝑐 = ෢𝑾𝒄
𝑇
𝜓 ෡Ψ𝑖 𝜁

•Bellman Error (BE)

•BE extrapolation
• Evaluation over user-defined, off trajectory points

• Satisfies persistence of excitation

መ𝛿 𝜁, ෡𝑊𝑐 , ෡𝑊𝑎 , መ𝜃 ≜ 𝑄 𝜁 + Ƹ𝜇 𝜁, ෡𝑊𝑎
𝑇
𝑅 Ƹ𝜇 𝜁, ෡𝑊𝑎 + 𝛻𝜁 ෠𝑉 𝜁, ෡𝑊𝑐

෠𝐹𝑖 𝜁, መ𝜃 + 𝐺 𝜁 Ƹ𝜇 𝜁, ෡𝑊𝑎

Actor Environment x

Control
InputState State

Critic

Bellman Error
𝛿

•Critic Weight Update Law

•Learning Gain Update Law

•Actor Weight Update Law

ሶ෡𝑊𝑐 𝑡 = −𝜂𝑐1Γ
𝜔 𝑡

𝜌 𝑡
𝛿 𝑡 − 𝜂𝑐2

1

𝑁
෍

𝑒=1

𝑁 𝜔𝑒 𝑡

𝜌𝑒 𝑡
𝛿𝑒 𝑡

ሶΓ 𝑡 = 𝜆Γ 𝑡 −
𝜂𝑐1Γ 𝑡 𝜔 𝑡 𝜔 𝑡 𝑇Γ 𝑡

𝜌 𝑡
− 𝜂𝑐2Γ 𝑡

1

𝑁
෍

𝑒=1

𝑁 𝜔𝑒 𝑡 𝜔𝑒
𝑇 𝑡

𝜌𝑒 𝑡
Γ 𝑡 𝟏 Γ≤ Γ ≤Γ

ሶ෡𝑊𝑎 𝑡 = −𝜂𝑐1 ෡𝑊𝑎 𝑡 − ෡𝑊𝑐 𝑡 − 𝜂𝑎2 ෡𝑊𝑎 𝑡 +
𝜂𝑐1𝐺෡𝜓

𝑇 𝑡 ෡𝑊𝑎 𝑡 𝜔 𝑡 𝑇

4𝜌 𝑡
෡𝑊𝑐 𝑡

+
𝜂𝑐2
𝑁

෍
𝑖=1

𝑁 𝐺෡𝜓𝑒
𝑇 ෡𝑊𝑎 𝑡 𝜔𝑒 𝑡

4𝜌𝑒 𝑡
෡𝑊𝑐 𝑡

On-trajectory
points

Off-trajectory
points

Output-Layer Weight Update

Inner-Layer Feature Update

•Loss function

ℒ𝛿𝑘+1 𝑡 =
1

𝑁
෍

𝑘=1

𝑁

መ𝛿𝑒
2

Fully Connected Layer
(Updated in real-time)

෡Φ𝑖 𝑥

𝑥1

𝑥2

𝑥𝑛

∙∙∙

መ𝑓1

𝜙1

𝜙2

𝜙𝐿

∙∙∙

෡𝑊𝑇

𝜙3

መ𝑓2

መ𝑓𝑛

∙∙∙

1

2

3

𝑝

∙∙∙
DNN (Trained Offline)

Stability Analysis

Theorem 1. Provided the necessary assumptions, gain conditions, and initial
conditions hold, then the tracking error 𝑒(𝑡), weight estimation errors ෩𝑊𝑐(𝑡) and
෩𝑊𝑎(𝑡), system ID DNN output-layer weight estimation errors ෨𝜃(𝑡), state estimator

error ෤𝑥(𝑡), and control policy 𝜇 𝑡 are uniformly ultimately bounded (UUB).

• While iteratively retraining DNN terms:
• 𝑒 converges to a neighborhood around zero

• ෨𝜃 , ෤𝑥 converge to a neighborhood around zero

• ෩𝑊𝑐 , ෩𝑊𝑎 converge to a neighborhood around zero

• 𝜇 𝑡 is an approximation of the optimal control policy

Simulations

Pursing agent (blue) herding an
evading agent (orange) to a goal
location via interaction dynamics

DNN function approximation for
system identification where the
true values are shown with solid
lines and the estimated values are
shown with dashed lines

The evader tracking error steadily
decays after the evader initially
flees. The auxiliary errors also
converge to a small radius of the
goal.

Summary

•DNN 1: Approximate the dynamics
• CL-based adaptive update law

• CL loss function

•DNN 2: Approximate the value function
• Actor-critic weight update laws

• BE loss function

• Future work includes updating the inner-layer features of the
DNNs in real-time.

Deep Residual Neural Network
(ResNet)-Based Adaptive Control: A

Lyapunov-Based Approach
O. Patil, D.M. Le, E.J. Griffis, W. E. Dixon, “Deep Residual Neural Network (ResNet)-Based Adaptive Control:
A Lyapunov-Based Approach,” In Proc IEEE Conf. Decis. Control, 2022.

O. Patil, D.M. Le, E.J. Griffis, W. E. Dixon, “Deep Residual Neural Network (ResNet)-Based Adaptive Control:
A Lyapunov-Based Approach,” Automatica, Under Review.

Introduction

Consider the dynamic model

Unknown drift vector field approximated using a
DNN

Background

• Open-loop in weights
• Richness of data
• Required knowledge of state-derivative

• Lewis et. al. (1996) provided real-time adaptation laws for a single-
hidden-layer neural network-based adaptive controller

• Our recent work (Patil et. al., 2022) provided Lyapunov-derived
adaptation laws for fully-connected DNNs with an arbitrary number of
layers

• However, fully-connected DNNs are susceptible to the problem of
vanishing or exploding gradients

• Challenges with offline methods

Introduction

Fully-Connected DNN Controller

• Given the DNN architecture

the control and adaptation law in Patil et. al. (2022) is given by

where

ResNet Architecture

• ResNets contain shortcut connections

• A ResNet can be modeled using
fully-connected blocks as

• Each fully-connected block can be
expressed using the recursive relation

where 𝑘𝑝 denotes the depth of the 𝑝𝑡ℎ block

Adaptation Law

where can be computed using the chain rule as

Prevents vanishing
gradients

Simulations

• Dynamics

• Reference Trajectory

• ResNet configuration is selected with 20 hidden layers, a shortcut
connection across each hidden layer, and 10 neurons in each
layer.

• For a fair comparison, weights are initialized using Monte Carlo
approach with 10,000 iterations to minimize

Simulations

Plot of weight estimates with ResNet and
fully-connected DNN

Plot of tracking and function approximation errors
with ResNet and fully-connected DNN

Conclusions and Future Work

• ResNet-based adaptive controller was developed for control-
affine nonlinear systems

• ResNet provided twofold improvement in tracking and function
approximation performance in comparison to an equivalent
fully-connected DNN

• Future work may involve concurrent learning-based adaptation
for DNNs

Deep Lyapunov-Based Physics-
Informed Neural Networks (DeLb-
PINN) for Adaptive Control Design

Rebecca G. Hart, Omkar Sudhir Patil, Emily J. Griffis, and Warren E. Dixon, “Deep Lyapunov-
Based Physics-Informed Neural Networks (DeLb-PINN) for Adaptive Control Design”,IEEE
Conf. Decis. Control, Under Review.

Physics Informed Machine Learning

Motivation: To impose constraints derived from known physical laws on the
learning algorithm to reduce the possible solution space and eliminate invalid
solutions resulting from noisy data

M

v Fair

Aristotle (~330 B.C)
The speed of a falling
object is proportional to
the weight of the object

[1] de Silva BM, Higdon DM, Brunton SL, Kutz JN. Discovery of Physics From Data: Universal Laws and Discrepancies. Front Artif Intell. 2020 Apr 28

A model based purely on measurement
would yield the Aristotelian theory of
gravitation for a falling object [1].

A challenge in machine learning and
artificial intelligence it’s heavy reliance on
data which can be noisy or scarce

Historical Example Connection to Machine Learning

Galileo (~1589)
All objects fall at the
same rate irrespective
of their mass

Contribution

Many physics inspired learning algorithms have been shown to be useful
to approximate solution to various forms of differential equations

• Many are not constructed for control applications

Deep Neural Networks which have high function approximation
capabilities, have been integrated in control algorithms and yielded an
improvement in tracking capabilities

• These DNNs are still data-based algorithms

Deep Lyapunov-Based Physics Informed Neural Network (DeLb-PINN)
architecture combines the function approximation performance of DNNs
while leveraging knowledge of the system

Contribution

Previous continuous-time adaptation laws for all layers DNN-based
controllers do not leverage known physics of the system.

Using the Data Based Approach:
The entire function is approximated by a DNN

Contribution

DeLb-PINN architecture uses the structure of a governing Euler-
Lagrange and uses DNN representations to approximate unknown
matrix structures.

Using the Physics Inspired Approach:
Only unknown matrices are approximated using DNNs

DNNs can only approximate vectors, not matrices

System Dynamics and Control Objective

System Dynamics

Consider a general uncertain Euler-Lagrange system modeled as

Design a controller to track a desired trajectory

Closed Loop Error System after some algebraic manipulation can be written as

Mathematical Challenges

Using the universal function approximation
property, the unknown terms can be modeled as

Recall

Properties

Control Design

Using the DeLb-PINN architecture the control input is designed as

Where the DNN estimates adapt in real time according to the following
update laws

Stability Result

Theorem. For the general Euler-Lagrange system, the developed
controller and adaptation laws ensure global asymptotic tracking in the
sense that and as provided sufficient
gain conditions are met.

Simulations

The developed method was implemented on a two-link planer revolute
robot and compared to a baseline Lyapunov-based DNN adaptive
controller

For a fair comparison, the same number of
neurons was used in each architecture and
the control gains were kept the same

Simulations

Note: Larger robustifying control gains could yield improved tracking error convergence for the DNN
adaptive method, but would likely lead to high-gain oscillatory behavior in the control input

Conclusion

A DeLb-PINN adaptive controller leverages knowledge of the system and
the function approximation capabilities of DNNs.

Simulations showed that the developed DeLb-PINN adaptive controller
yielded a 19.91% improvement in RMS tracking error compared to a
baseline adaptive DNN controller.

Future work would include constraining the output of the DNN to
further respect physical properties of the matrices such as positive
definiteness.

Lyapunov-Based Long Short-
Term Memory (Lb-LSTM)

Neural Network-Based Control
Emily Griffis, Omkar Sudhir Patil, Zachary I. Bell, and Warren E. Dixon, “Lyapunov-Based Long
Short-Term Memory (Lb-LSTM) Neural Network-Based Control”, IEEE Control Systems
Letters, Under Review.

Neural Networks (NNs)

• Most adaptive NN control
methods are restricted to
feedforward NNs
• static structures

• only have access to current state
information

• The presence of a memory
capable of accessing previous
state information both reduces
the required data set for training
and leads to faster learning.

Flow of information
(no memory loop)

Recurrent Neural Networks (RNNs)

• RNNs can capture the temporal dynamic behavior of an
unknown system.

• RNNs have an internal memory that can leverage
dependencies in a sequence and increase approximation
capabilities, thus improving performance.

Internal
memory loop

Long Short-Term Memory (LSTMs)

• The structure of traditional RNNs inhibits their ability to learn
long-term time dependencies.

• LSTMs have a better ability to learn long term dependencies,
and therefore, have improved memory capability when
compared to traditional RNNs.

Long Short-Term Memory (LSTMs)

• LSTMs regulate the flow of the gradient along long time
sequences by adding an explicit memory through three gate
units: the input, forget, and output gates.
• Retain relevant information and forget irrelevant information stored in

the internal memory.

Contribution

• Previous LSTM-based control results use offline optimization
techniques to train the LSTM weights.
• No online learning of the LSTM

• An adaptive Lyapunov-based LSTM (Lb-LSTM) controller is
developed for general Euler-Lagrange systems.
• A continuous-time Lb-LSTM NN is developed to adaptively estimate

uncertain model dynamics.

• Stability-driven adaptation laws adjust the Lb-LSTM weights in real-
time.

System Dynamics and Control Objective

• Consider a general uncertain Euler-Lagrange system
𝑀 𝑞 ሷ𝑞 + 𝑉𝑚 𝑞 ሶ𝑞 + 𝐹 ሶ𝑞 + 𝐺 𝑞 = 𝜏

• Design a controller to track a desired trajectory 𝑞𝑑 ∈ ℝ 𝑛

𝑒 ≜ 𝑞𝑑 − 𝑞
𝑟 ≜ ሶ𝑒 + 𝛼𝑒

• Design an Lb-LSTM to adaptively learn unknown system
dynamics 𝑔 𝑥 = 𝑀 𝑞 ሷ𝑞𝑑 + 𝛼 ሶ𝑒 + 𝑉𝑚 𝑞, ሶ𝑞 (ሶ𝑞𝑑 + 𝛼𝑒) + 𝐹 ሶ𝑞 +
𝐺(𝑞).

𝑀 𝑞 ሶ𝑟 = 𝑔 𝑥 − 𝜏 − 𝑉𝑚 𝑞, ሶ𝑞 𝑟

LSTM Model

An LSTM NN can be modeled in continuous-time as

𝑓 𝑧,𝑊𝑓 = 𝜎𝑔 ∘ 𝑊𝑧
⊤𝑧

𝑜 𝑧,𝑊𝑜 = 𝜎𝑔 ∘ 𝑊𝑜
⊤𝑧

𝑖 𝑧,𝑊𝑖 = 𝜎𝑔 ∘ 𝑊𝑖
⊤𝑧

𝑐∗ 𝑧,𝑊𝑐 = 𝜎𝑐 ∘ 𝑊𝑐
⊤𝑧

𝑧 ≜ [𝑥⊤ℎ⊤]⊤ for some input 𝑥

ሶ𝑐 = −𝑏𝑐𝑐 + 𝑏𝑐Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃

ሶℎ = −𝑏ℎℎ + 𝑏ℎΨℎ(𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜)

Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 = 𝑓 𝑧,𝑊𝑓 ⊙ 𝑐 + 𝑖 𝑧,𝑊𝑖 ⊙ 𝑐∗ 𝑧,𝑊𝑐

Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 = 𝑜 𝑧,𝑊𝑜 ⊙ (𝜎𝑐 ∘ Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃)

LSTM Model

An LSTM NN can be modeled in continuous-time as

𝑓 𝑧,𝑊𝑓 = 𝜎𝑔 ∘ 𝑊𝑧
⊤𝑧

𝑜 𝑧,𝑊𝑜 = 𝜎𝑔 ∘ 𝑊𝑜
⊤𝑧

𝑖 𝑧,𝑊𝑖 = 𝜎𝑔 ∘ 𝑊𝑖
⊤𝑧

𝑐∗ 𝑧,𝑊𝑐 = 𝜎𝑐 ∘ 𝑊𝑐
⊤𝑧

𝑧 ≜ [𝑥⊤ℎ⊤]⊤ for some input 𝑥

ሶ𝑐 = −𝑏𝑐𝑐 + 𝑏𝑐Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃

ሶℎ = −𝑏ℎℎ + 𝑏ℎΨℎ(𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜)

Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 = 𝑓 𝑧,𝑊𝑓 ⊙ 𝑐 + 𝑖 𝑧,𝑊𝑖 ⊙ 𝑐∗ 𝑧,𝑊𝑐

Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 = 𝑜 𝑧,𝑊𝑜 ⊙ (𝜎𝑐 ∘ Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃)

Internal
memory loops

LSTM Model

An LSTM NN can be modeled in continuous-time as

𝑓 𝑧,𝑊𝑓 = 𝜎𝑔 ∘ 𝑊𝑧
⊤𝑧

𝑜 𝑧,𝑊𝑜 = 𝜎𝑔 ∘ 𝑊𝑜
⊤𝑧

𝑖 𝑧,𝑊𝑖 = 𝜎𝑔 ∘ 𝑊𝑖
⊤𝑧

𝑐∗ 𝑧,𝑊𝑐 = 𝜎𝑐 ∘ 𝑊𝑐
⊤𝑧

𝑧 ≜ [𝑥⊤ℎ⊤]⊤ for some input 𝑥

ሶ𝑐 = −𝑏𝑐𝑐 + 𝑏𝑐Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃

ሶℎ = −𝑏ℎℎ + 𝑏ℎΨℎ(𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜)

Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 = 𝑓 𝑧,𝑊𝑓 ⊙ 𝑐 + 𝑖 𝑧,𝑊𝑖 ⊙ 𝑐∗ 𝑧,𝑊𝑐

Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 = 𝑜 𝑧,𝑊𝑜 ⊙ (𝜎𝑐 ∘ Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃)

Gate units
regulate flow of

information
across cell

LSTM Model

• LSTM Output

• Fully-connected output layer ensures appropriate dimensions

• Feedforward component adds generality

• Model unknown system dynamics using LSTM

Φ = 𝑊ℎ
𝑇(Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 + 𝜎 ∘𝑊𝐹𝐹

𝑇 𝑥)

𝑔 𝑥 = Φ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜,𝑊ℎ,𝑊𝐹𝐹 + 𝜖(𝑥)

Control Design

• Using the adaptive Lb-LSTM term ෡Φ =
Φ(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃, ෡𝑊𝑜, ෡𝑊ℎ, ෡𝑊𝐹𝐹), the control input is designed as

• The estimated cell and hidden states evolve as
ሶƸ𝑐 = −𝑏𝑐 Ƹ𝑐 + 𝑏𝑐(𝑓 Ƹ𝑧, ෡𝑊𝑓 ⊙ 𝑐 + 𝑖 Ƹ𝑧, ෡𝑊𝑖 ⊙ 𝑐∗ Ƹ𝑧, ෡𝑊𝑐)

ሶ෠ℎ = −𝑏ℎ ෠ℎ + 𝑏ℎ(𝑜 Ƹ𝑧, ෡𝑊𝑜 ⊙𝜎𝑐 ∘ Ψ𝑐(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃)

where Ƹ𝑧 ≜ 𝑥⊤ ෠ℎ⊤
⊤

and ෠𝜃 ≜ ෡𝑊𝑐
⊤ ෡𝑊𝑖

⊤ ෡𝑊𝑓
⊤ ⊤

.

𝜏 ≜ ෡Φ + 𝑘𝑟𝑟 − 𝐾2,𝑐𝜂𝑐 − 𝐾2,ℎ𝜂ℎ + 𝑒

Control Design

𝜏 ≜ ෡Φ + 𝑘𝑟𝑟 − 𝐾2,𝑐𝜂𝑐 − 𝐾2,ℎ𝜂ℎ + 𝑒

• Using the adaptive Lb-LSTM term ෡Φ =
Φ(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃, ෡𝑊𝑜, ෡𝑊ℎ, ෡𝑊𝐹𝐹), the control input is designed as

• The estimated cell and hidden states evolve as
ሶƸ𝑐 = −𝑏𝑐 Ƹ𝑐 + 𝑏𝑐(𝑓 Ƹ𝑧, ෡𝑊𝑓 ⊙ 𝑐 + 𝑖 Ƹ𝑧, ෡𝑊𝑖 ⊙ 𝑐∗ Ƹ𝑧, ෡𝑊𝑐)

ሶ෠ℎ = −𝑏ℎ ෠ℎ + 𝑏ℎ(𝑜 Ƹ𝑧, ෡𝑊𝑜 ⊙𝜎𝑐 ∘ Ψ𝑐(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃)

where Ƹ𝑧 ≜ 𝑥⊤ ෠ℎ⊤
⊤

and ෠𝜃 ≜ ෡𝑊𝑐
⊤ ෡𝑊𝑖

⊤ ෡𝑊𝑓
⊤ ⊤

.

Weight
Estimates

Weight Adaptation Laws

• The weight adaptation laws are designed as

vec ሶ෠𝜃 ≜ proj(Γ𝜃(𝑏𝑐 ෡Ψ𝑐
′⊤𝜂𝑐 + 𝑏ℎ ෡Ψℎ,𝜃

′⊤ 𝜂ℎ + ෡Φ𝜃
′⊤𝑟 − 𝛾𝜃vec(෠𝜃))

vec ሶ෡𝑊𝑜 ≜ proj(Γ𝑜(𝑏ℎ ෡Ψℎ,𝑊𝑜

′⊤ 𝜂ℎ + ෡Φ𝑊𝑜

′⊤ 𝑟 − 𝛾𝑜vec ෡𝑊𝑜)

vec ሶ෡𝑊ℎ ≜ proj(Γℎ(෡Φ𝑊ℎ

′⊤ 𝑟 − 𝛾ℎvec(෡𝑊ℎ))

vec ሶ෡𝑊𝐹𝐹 ≜ proj(Γ𝐹𝐹(෡Φ𝑊𝐹𝐹

′⊤ 𝑟 − 𝛾𝐹𝐹vec(෡𝑊𝐹𝐹))

• The weight adaptation laws are designed as

vec ሶ෠𝜃 ≜ proj(Γ𝜃(𝑏𝑐 ෡Ψ𝑐
′⊤𝜂𝑐 + 𝑏ℎ ෡Ψℎ,𝜃

′⊤ 𝜂ℎ + ෡Φ𝜃
′⊤𝑟 − 𝛾𝜃vec(෠𝜃))

vec ሶ෡𝑊𝑜 ≜ proj(Γ𝑜(𝑏ℎ ෡Ψℎ,𝑊𝑜

′⊤ 𝜂ℎ + ෡Φ𝑊𝑜

′⊤ 𝑟 − 𝛾𝑜vec ෡𝑊𝑜)

vec ሶ෡𝑊ℎ ≜ proj(Γℎ(෡Φ𝑊ℎ

′⊤ 𝑟 − 𝛾ℎvec(෡𝑊ℎ))

vec ሶ෡𝑊𝐹𝐹 ≜ proj(Γ𝐹𝐹(෡Φ𝑊𝐹𝐹

′⊤ 𝑟 − 𝛾𝐹𝐹vec(෡𝑊𝐹𝐹))

Weight Adaptation Laws

Jacobian-based terms

σ-mod terms

Main Stability Result

Theorem 1. The adaptive LSTM-based controller and weight
adaptation laws ensure the states 𝜁 ≜ [𝑒⊤𝑟⊤𝜂𝑐

⊤ ǁ𝑐⊤ 𝜂ℎ
⊤ ෨ℎ⊤

vec(෨𝜃)⊤ vec(෩𝑊𝑜)
⊤ vec(෩𝑊𝐹𝐹)

⊤]⊤ are uniformly ultimately
bounded (UUB) in the sense that

𝜁 ≤
𝛽2
𝛽1

𝜁 0 2𝑒
−
𝛿𝛽1
𝜆

𝑡
+
𝛿

𝜆
1 − 𝑒

−
𝛿𝛽1
𝜆

𝑡

Simulation Results

• Adaptive feedforward DNN used for
comparison†

• 𝑞𝑑(𝑡) = 1 − exp −0.1𝑡

𝜋

3
sin(

𝜋

2
𝑡)

𝜋

3
sin(

𝜋

2
𝑡)

[rad]

• 𝑞 0 = [1.0472, −0.5236]⊤ [rad] and ሶ𝑞 0 =
[0,0]⊤ [rad/s]

† O. Patil, D. Le, M. Greene, and W. E. Dixon, “Lyapunov-derived control and adaptive update laws for inner and outer layer weights of a deep neural
network,” IEEE Control Syst Lett., vol. 6, pp. 1855–1860, 2022.

Simulation Results

Simulation Results

Conclusions

• Formulated a continuous-time LSTM model for control of
continuous-time systems.

• Developed the Lb-LSTM architecture to capture time-varying
effects in the system.

• Stability-driven weight adaptation laws for real-time learning.

• Simulation results yield fourfold improvement in function
approximation performance compared to a baseline DNN
controller.

Future Work

• Extend developed Lb-LSTM architecture for black-box
estimation.

• Develop Lb-LSTM-based observer for uncertain, nonlinear
systems.

• Investigate developing Lyapunov-based adaptive architectures
for other neural network models
• Transformers

Thank you

	Slide 1: Recent Advancements in Optimal and Deep Learning
	Slide 2: Deep Nonlinear Adaptive Control for UAS
	Slide 3: Lyapunov-Based Deep Neural Network-Based Value Function Approximation for Approximate Dynamic Programming
	Slide 4: Optimal Control Problem Formulation
	Slide 5: Optimal Control Problem Formulation
	Slide 6: DNN System Identification
	Slide 7: Multi-timescale Updates
	Slide 8: Approximate Dynamic Programming
	Slide 9: DNN Value Function Approximation
	Slide 10
	Slide 11
	Slide 12: Inner-Layer Feature Update
	Slide 13: Stability Analysis
	Slide 14: Simulations
	Slide 15: Summary
	Slide 16: Deep Residual Neural Network (ResNet)-Based Adaptive Control: A Lyapunov-Based Approach
	Slide 17: Introduction
	Slide 18: Background
	Slide 19: Fully-Connected DNN Controller
	Slide 20: ResNet Architecture
	Slide 21: Adaptation Law
	Slide 22: Simulations
	Slide 23: Simulations
	Slide 24: Conclusions and Future Work
	Slide 25: Deep Lyapunov-Based Physics-Informed Neural Networks (DeLb-PINN) for Adaptive Control Design
	Slide 26: Physics Informed Machine Learning
	Slide 27: Contribution
	Slide 28: Contribution
	Slide 29: Contribution
	Slide 30: System Dynamics and Control Objective
	Slide 31: Mathematical Challenges
	Slide 32: Control Design
	Slide 33: Stability Result
	Slide 34: Simulations
	Slide 35: Simulations
	Slide 36: Conclusion
	Slide 37: Lyapunov-Based Long Short-Term Memory (Lb-LSTM) Neural Network-Based Control
	Slide 38: Neural Networks (NNs)
	Slide 39: Recurrent Neural Networks (RNNs)
	Slide 40: Long Short-Term Memory (LSTMs)
	Slide 41: Long Short-Term Memory (LSTMs)
	Slide 42: Contribution
	Slide 43: System Dynamics and Control Objective
	Slide 44: LSTM Model
	Slide 45: LSTM Model
	Slide 46: LSTM Model
	Slide 47: LSTM Model
	Slide 48: Control Design
	Slide 49: Control Design
	Slide 50: Weight Adaptation Laws
	Slide 51: Weight Adaptation Laws
	Slide 52: Main Stability Result
	Slide 53: Simulation Results
	Slide 54: Simulation Results
	Slide 55: Simulation Results
	Slide 56: Conclusions
	Slide 57: Future Work
	Slide 58: Thank you

