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Deep Nonlinear Adaptive Control for UAS



Lyapunov-Based Deep Neural 
Network-Based Value Function 
Approximation for Approximate 

Dynamic Programming

W. A. Makumi, M. L. Greene.,  Z. I. Bell, W. E. Dixon, “Lyapunov-Based Deep Neural Network-Based 
Value Function Approximation for Approximate Dynamic Programming,” In preparation.



•Dynamic system

•Control objective
• Find a controller, 𝜇, which minimizes the cost function

•Cost function

•Hamilton Jacobi Bellman (HJB) equation

Optimal Control Problem Formulation

ሶ𝜁 = 𝐹 𝜁 + 𝐺 𝜁 𝜇ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 𝑢 ⟶

0 = 𝑄 𝜁 + 𝜇∗ 𝜁 𝑇𝑅𝜇∗ 𝜁 + 𝛻𝜁𝑉
∗ 𝜁 𝐹 𝜁 + 𝐺 𝜁 𝜇∗ 𝜁

𝐽 𝜁, 𝜇 = න
0

∞

𝑄 𝜁 𝜏 + 𝜇 𝜏 𝑇𝑅𝜇 𝜏 𝑑𝜏

𝜁 = 𝑒𝑇 , 𝑥𝑑
𝑇 𝑇

𝐹 𝜁 =
𝑓 𝑒 + 𝑥𝑑 − ℎ𝑑 𝑥𝑑 + 𝑔 𝑒 + 𝑥𝑑 𝑢𝑑 𝑥𝑑

ℎ𝑑 𝑥𝑑

𝐺 𝜁 = 𝑔 𝑒 + 𝑥𝑑
𝑇 , 𝟎𝑚×𝑛

𝑇

𝜇 = 𝑢 − 𝑢𝑑 𝑥𝑑

R. Kamalapurkar, H. Dinh, S. Bhasin, W. E. Dixon, "Approximate Optimal Trajectory Tracking for Continuous-Time Nonlinear 
Systems," Automatica, Vol. 51, pp. 40-48 (2015).

https://ncr.mae.ufl.edu/papers/auto15.pdf
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DNN System Identification

•Previously: Linear parameterization & single-layer 
NNs

•Lyapunov-based multi-timescale deep neural network 
(DNN) system identifier

•DNN drift dynamics

•Drift dynamics approximation

R. Sun, M. Greene, D. Le, Z. Bell, G. Chowdhary, and W. E. 
Dixon, "Lyapunov-Based Real-Time and Iterative 
Adjustment of Deep Neural Networks," IEEE Control 
Systems Letters, Vol. 6, pp. 193-198 (2022).

M. Greene, Z. Bell, S. Nivison, and W. E. Dixon, "Deep Neural 
Network-based Approximate Optimal Tracking for Unknown 
Nonlinear Systems," IEEE Transactions on Automatic Control, to 
appear.

𝑓 𝑥 = 𝜃𝑇𝜙 Φ 𝑥 + 𝜖𝜃 𝑥

መ𝑓𝑖 𝑥 = መ𝜃𝑇𝜙 ෡Φ𝑖 𝑥

about:blank


Multi-timescale Updates

•Output-layer weight updates
• Online, real-time, adaptive

• Concurrent learning-based update law

• Inner-layer feature updates
• Iterative, optimization algorithm, batch updates

• Loss function

ሶመ𝜃 = Γ𝜃𝜙 ෡Φ𝑖 𝑥𝑗 ෤𝑥𝑇 + 𝑘𝜃Γ𝜃෍

𝑗=1

𝑀

𝜙 ෡Φ𝑖 𝑥𝑗 ሶ𝑥𝑗 − 𝑔𝑗 𝑥𝑗 𝑢𝑗 − መ𝜃𝑇𝜙 ෡Φ𝑖 𝑥𝑗

ℒ𝑖+1 𝑡 =
1

𝑀
෍

𝑗=1

𝑀

ሶ𝑥𝑗 − 𝑔𝑗 𝑥𝑗 𝑢𝑗 − ෠𝜃𝑇𝜙 ෡Φ𝑖 𝑥𝑗
2



Approximate Dynamic Programming

•Optimal value function (cost-to-go)

•Optimal control policy

𝑉∗ 𝑥 = min
𝜇 𝜏 𝜖𝑈

න
𝑡

∞

𝑄 𝜁 𝜏 + 𝜇 𝜏 𝑇𝑅𝜇 𝜏 𝑑𝜏

𝜇∗ 𝜁 = −
1

2
𝑅−1𝐺 𝜁 𝑇 𝛻𝜁𝑉

∗ 𝜁
𝑇



DNN Value Function Approximation

෡𝑊𝑐 = Critic weight estimate
෡𝑊𝑎 = Actor weight estimate

DNN Optimal Value Function and DNN Optimal Control Policy

𝑉∗ 𝜁 = 𝑊𝑇𝜓 Ψ∗ 𝜁 + 𝜖𝑣 𝜁

Ƹ𝜇 𝜁, ෡𝑊𝑎 = −
1

2
𝑅−1𝑔 𝜁 𝑇 ෢𝑾𝒂

𝑇
𝛻𝜁𝜓 ෡Ψ𝑖 𝜁

𝑇

Optimal Value Function and Optimal Control Policy Approximation

𝜇∗ 𝜁 = −
1

2
𝑅−1𝑔 𝜁 𝑇 𝑊𝑇𝛻𝜁𝜓 Ψ∗ 𝜁 + 𝛻𝜁𝜖𝑣 𝜁 𝑇

DNN Value Function Approximation

෠𝑉 𝜁, ෡𝑊𝑐 = ෢𝑾𝒄
𝑇
𝜓 ෡Ψ𝑖 𝜁



•Bellman Error (BE)

•BE extrapolation
• Evaluation over user-defined, off trajectory points

• Satisfies persistence of excitation

መ𝛿 𝜁, ෡𝑊𝑐 , ෡𝑊𝑎 , መ𝜃 ≜ 𝑄 𝜁 + Ƹ𝜇 𝜁, ෡𝑊𝑎
𝑇
𝑅 Ƹ𝜇 𝜁, ෡𝑊𝑎 + 𝛻𝜁 ෠𝑉 𝜁, ෡𝑊𝑐

෠𝐹𝑖 𝜁, መ𝜃 + 𝐺 𝜁 Ƹ𝜇 𝜁, ෡𝑊𝑎

Actor Environment x

Control 
InputState State

Critic

Bellman Error 
𝛿



•Critic Weight Update Law

•Learning Gain Update Law

•Actor Weight Update Law

ሶ෡𝑊𝑐 𝑡 = −𝜂𝑐1Γ
𝜔 𝑡

𝜌 𝑡
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Inner-Layer Feature Update

•Loss function

ℒ𝛿𝑘+1 𝑡 =
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Stability Analysis

Theorem 1. Provided the necessary assumptions, gain conditions, and initial 
conditions hold, then the tracking error 𝑒(𝑡), weight estimation errors ෩𝑊𝑐(𝑡) and 
෩𝑊𝑎(𝑡), system ID DNN output-layer weight estimation errors ෨𝜃(𝑡), state estimator 

error ෤𝑥(𝑡), and control policy 𝜇 𝑡 are uniformly ultimately bounded (UUB).

• While iteratively retraining DNN terms:
• 𝑒 converges to a neighborhood around zero

• ෨𝜃 , ෤𝑥 converge to a neighborhood around zero

• ෩𝑊𝑐 , ෩𝑊𝑎 converge to a neighborhood around zero

• 𝜇 𝑡 is an approximation of the optimal control policy



Simulations

Pursing agent (blue) herding an 
evading agent (orange) to a goal 
location via interaction dynamics

DNN function approximation for 
system identification where the 
true values are shown with solid 
lines and the estimated values are 
shown with dashed lines

The evader tracking error steadily 
decays after the evader initially 
flees. The auxiliary errors also 
converge to a small radius of the 
goal.



Summary

•DNN 1: Approximate the dynamics
• CL-based adaptive update law

• CL loss function

•DNN 2: Approximate the value function
• Actor-critic weight update laws

• BE loss function

• Future work includes updating the inner-layer features of the 
DNNs in real-time.



Deep Residual Neural Network 
(ResNet)-Based Adaptive Control: A 

Lyapunov-Based Approach
O. Patil, D.M. Le, E.J. Griffis, W. E. Dixon, “Deep Residual Neural Network (ResNet)-Based Adaptive Control: 
A Lyapunov-Based Approach,” In Proc IEEE Conf. Decis. Control, 2022.

O. Patil, D.M. Le, E.J. Griffis, W. E. Dixon, “Deep Residual Neural Network (ResNet)-Based Adaptive Control: 
A Lyapunov-Based Approach,” Automatica, Under Review.



Introduction

Consider the dynamic model

Unknown drift vector field approximated using a 
DNN 



Background

• Open-loop in weights
• Richness of data
• Required knowledge of state-derivative

• Lewis et. al. (1996) provided real-time adaptation laws for a single-
hidden-layer neural network-based adaptive controller

• Our recent work (Patil et. al., 2022) provided Lyapunov-derived 
adaptation laws for fully-connected DNNs with an arbitrary number of 
layers 

• However, fully-connected DNNs are susceptible to the problem of 
vanishing or exploding gradients 

• Challenges with offline methods

Introduction



Fully-Connected DNN Controller

• Given the DNN architecture

the control and adaptation law in Patil et. al. (2022) is given by 

where



ResNet Architecture

• ResNets contain shortcut connections

• A ResNet can be modeled using 
fully-connected blocks as

• Each fully-connected block can be 
expressed using the recursive relation

where 𝑘𝑝 denotes the depth of the 𝑝𝑡ℎ block 



Adaptation Law

where can be computed using the chain rule as 

Prevents vanishing 
gradients



Simulations

• Dynamics

• Reference Trajectory

• ResNet configuration is selected with 20 hidden layers, a shortcut 
connection across each hidden layer, and 10 neurons in each 
layer.

• For a fair comparison, weights are initialized using Monte Carlo 
approach with 10,000 iterations to minimize 



Simulations

Plot of weight estimates with ResNet and 
fully-connected DNN

Plot of tracking and function approximation errors 
with ResNet and fully-connected DNN



Conclusions and Future Work

• ResNet-based adaptive controller was developed for control-
affine nonlinear systems

• ResNet provided twofold improvement in tracking and function 
approximation performance in comparison to an equivalent 
fully-connected DNN

• Future work may involve concurrent learning-based adaptation 
for DNNs



Deep Lyapunov-Based Physics-
Informed Neural Networks (DeLb-
PINN) for Adaptive Control Design

Rebecca G. Hart, Omkar Sudhir Patil, Emily J. Griffis, and Warren E. Dixon, “Deep Lyapunov-
Based Physics-Informed Neural Networks (DeLb-PINN) for Adaptive Control Design”,IEEE
Conf. Decis. Control, Under Review.



Physics Informed Machine Learning 

Motivation: To impose constraints derived from known physical laws on the 
learning algorithm to reduce the possible solution space and eliminate invalid 
solutions resulting from noisy data

M

v Fair

Aristotle (~330 B.C) 
The speed of a falling 
object is proportional to 
the weight of the object 

[1] de Silva BM, Higdon DM, Brunton SL, Kutz JN. Discovery of Physics From Data: Universal Laws and Discrepancies. Front Artif Intell. 2020 Apr 28

A model based purely on measurement 
would yield the Aristotelian theory of 
gravitation for a falling object [1].

A challenge in machine learning and 
artificial intelligence it’s heavy reliance on 
data which can be noisy or scarce

Historical Example Connection to Machine Learning

Galileo (~1589) 
All objects fall at the 
same rate irrespective 
of their mass



Contribution

Many physics inspired learning algorithms have been shown to be useful 
to approximate solution to various forms of differential equations

• Many are not constructed for control applications

Deep Neural Networks which have high function approximation 
capabilities, have been integrated in control algorithms and yielded an 
improvement in tracking capabilities

• These DNNs are still data-based algorithms

Deep Lyapunov-Based Physics Informed Neural Network (DeLb-PINN) 
architecture combines the function approximation performance of DNNs 
while leveraging knowledge of the system



Contribution

Previous continuous-time adaptation laws for all layers DNN-based 
controllers do not leverage known physics of the system.

Using the Data Based Approach:
The entire function is approximated by a DNN



Contribution

DeLb-PINN architecture uses the structure of a governing Euler-
Lagrange and uses DNN representations to approximate unknown 
matrix structures.

Using the Physics Inspired Approach:
Only unknown matrices are approximated using DNNs

DNNs can only approximate vectors, not matrices



System Dynamics and Control Objective

System Dynamics

Consider a general uncertain Euler-Lagrange system modeled as

Design a controller to track a desired trajectory 

Closed Loop Error System after some algebraic manipulation can be written as



Mathematical Challenges

Using the universal function approximation 
property, the unknown terms can be modeled as 

Recall 

Properties 



Control Design

Using the DeLb-PINN architecture the control input is designed as 

Where the DNN estimates adapt in real time according to the following 
update laws



Stability Result

Theorem. For the general Euler-Lagrange system, the developed 
controller and adaptation laws ensure global asymptotic tracking in the 
sense that and as provided sufficient 
gain conditions are met.  



Simulations

The developed method was implemented on a two-link planer revolute 
robot and compared to a baseline Lyapunov-based DNN adaptive 
controller

For a fair comparison, the same number of 
neurons was used in each architecture and 
the control gains were kept the same 



Simulations

Note: Larger robustifying control gains could yield improved tracking error convergence for the DNN 
adaptive method, but would likely lead to high-gain oscillatory behavior in the control input



Conclusion

A DeLb-PINN adaptive controller leverages knowledge of the system and 
the function approximation capabilities of DNNs.

Simulations showed that the developed DeLb-PINN adaptive controller 
yielded a 19.91% improvement in RMS tracking error compared to a 
baseline adaptive DNN controller.

Future work would include constraining the output of the DNN to 
further respect physical properties of the matrices such as positive 
definiteness.



Lyapunov-Based Long Short-
Term Memory (Lb-LSTM) 

Neural Network-Based Control
Emily Griffis, Omkar Sudhir Patil, Zachary I. Bell, and Warren E. Dixon, “Lyapunov-Based Long 
Short-Term Memory (Lb-LSTM) Neural Network-Based Control”, IEEE Control Systems 
Letters, Under Review.



Neural Networks (NNs)

• Most adaptive NN control 
methods are restricted to 
feedforward NNs
• static structures 

• only have access to current state 
information 

• The presence of a memory 
capable of accessing previous 
state information both reduces 
the required data set for training 
and leads to faster learning. 

Flow of information 
(no memory loop)



Recurrent Neural Networks (RNNs)

• RNNs can capture the temporal dynamic behavior of an 
unknown system.

• RNNs have an internal memory that can leverage 
dependencies in a sequence and increase approximation 
capabilities, thus improving performance.

Internal 
memory loop



Long Short-Term Memory (LSTMs)

• The structure of traditional RNNs inhibits their ability to learn 
long-term time dependencies. 

• LSTMs have a better ability to learn long term dependencies, 
and therefore, have improved memory capability when 
compared to traditional RNNs. 



Long Short-Term Memory (LSTMs)

• LSTMs regulate the flow of the gradient along long time 
sequences by adding an explicit memory through three gate 
units: the input, forget, and output gates.
• Retain relevant information and forget irrelevant information stored in 

the internal memory.



Contribution

• Previous LSTM-based control results use offline optimization 
techniques to train the LSTM weights.
• No online learning of the LSTM

• An adaptive Lyapunov-based LSTM (Lb-LSTM) controller is 
developed for general Euler-Lagrange systems.
• A continuous-time Lb-LSTM NN is developed to adaptively estimate 

uncertain model dynamics.

• Stability-driven adaptation laws adjust the Lb-LSTM weights in real-
time.



System Dynamics and Control Objective

• Consider a general uncertain Euler-Lagrange system
𝑀 𝑞 ሷ𝑞 + 𝑉𝑚 𝑞 ሶ𝑞 + 𝐹 ሶ𝑞 + 𝐺 𝑞 = 𝜏

• Design a controller to track a desired trajectory 𝑞𝑑 ∈ ℝ 𝑛

𝑒 ≜ 𝑞𝑑 − 𝑞
𝑟 ≜ ሶ𝑒 + 𝛼𝑒

• Design an Lb-LSTM to adaptively learn unknown system 
dynamics 𝑔 𝑥 = 𝑀 𝑞 ሷ𝑞𝑑 + 𝛼 ሶ𝑒 + 𝑉𝑚 𝑞, ሶ𝑞 ( ሶ𝑞𝑑 + 𝛼𝑒) + 𝐹 ሶ𝑞 +
𝐺(𝑞).

𝑀 𝑞 ሶ𝑟 = 𝑔 𝑥 − 𝜏 − 𝑉𝑚 𝑞, ሶ𝑞 𝑟



LSTM Model

An LSTM NN can be modeled in continuous-time as

𝑓 𝑧,𝑊𝑓 = 𝜎𝑔 ∘ 𝑊𝑧
⊤𝑧

𝑜 𝑧,𝑊𝑜 = 𝜎𝑔 ∘ 𝑊𝑜
⊤𝑧

𝑖 𝑧,𝑊𝑖 = 𝜎𝑔 ∘ 𝑊𝑖
⊤𝑧

𝑐∗ 𝑧,𝑊𝑐 = 𝜎𝑐 ∘ 𝑊𝑐
⊤𝑧

𝑧 ≜ [𝑥⊤ℎ⊤]⊤ for some input 𝑥

ሶ𝑐 = −𝑏𝑐𝑐 + 𝑏𝑐Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃

ሶℎ = −𝑏ℎℎ + 𝑏ℎΨℎ(𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜)

Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 = 𝑓 𝑧,𝑊𝑓 ⊙ 𝑐 + 𝑖 𝑧,𝑊𝑖 ⊙ 𝑐∗ 𝑧,𝑊𝑐

Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 = 𝑜 𝑧,𝑊𝑜 ⊙ (𝜎𝑐 ∘ Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 )



LSTM Model

An LSTM NN can be modeled in continuous-time as

𝑓 𝑧,𝑊𝑓 = 𝜎𝑔 ∘ 𝑊𝑧
⊤𝑧

𝑜 𝑧,𝑊𝑜 = 𝜎𝑔 ∘ 𝑊𝑜
⊤𝑧

𝑖 𝑧,𝑊𝑖 = 𝜎𝑔 ∘ 𝑊𝑖
⊤𝑧

𝑐∗ 𝑧,𝑊𝑐 = 𝜎𝑐 ∘ 𝑊𝑐
⊤𝑧

𝑧 ≜ [𝑥⊤ℎ⊤]⊤ for some input 𝑥

ሶ𝑐 = −𝑏𝑐𝑐 + 𝑏𝑐Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃

ሶℎ = −𝑏ℎℎ + 𝑏ℎΨℎ(𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜)

Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 = 𝑓 𝑧,𝑊𝑓 ⊙ 𝑐 + 𝑖 𝑧,𝑊𝑖 ⊙ 𝑐∗ 𝑧,𝑊𝑐

Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 = 𝑜 𝑧,𝑊𝑜 ⊙ (𝜎𝑐 ∘ Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 )

Internal 
memory loops



LSTM Model

An LSTM NN can be modeled in continuous-time as

𝑓 𝑧,𝑊𝑓 = 𝜎𝑔 ∘ 𝑊𝑧
⊤𝑧

𝑜 𝑧,𝑊𝑜 = 𝜎𝑔 ∘ 𝑊𝑜
⊤𝑧

𝑖 𝑧,𝑊𝑖 = 𝜎𝑔 ∘ 𝑊𝑖
⊤𝑧

𝑐∗ 𝑧,𝑊𝑐 = 𝜎𝑐 ∘ 𝑊𝑐
⊤𝑧

𝑧 ≜ [𝑥⊤ℎ⊤]⊤ for some input 𝑥

ሶ𝑐 = −𝑏𝑐𝑐 + 𝑏𝑐Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃

ሶℎ = −𝑏ℎℎ + 𝑏ℎΨℎ(𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜)

Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 = 𝑓 𝑧,𝑊𝑓 ⊙ 𝑐 + 𝑖 𝑧,𝑊𝑖 ⊙ 𝑐∗ 𝑧,𝑊𝑐

Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 = 𝑜 𝑧,𝑊𝑜 ⊙ (𝜎𝑐 ∘ Ψ𝑐 𝑥, 𝑐, ℎ, 𝜃 )
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LSTM Model

• LSTM Output

• Fully-connected output layer ensures appropriate dimensions

• Feedforward component adds generality

• Model unknown system dynamics using LSTM

Φ = 𝑊ℎ
𝑇(Ψℎ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜 + 𝜎 ∘𝑊𝐹𝐹

𝑇 𝑥)

𝑔 𝑥 = Φ 𝑥, 𝑐, ℎ, 𝜃,𝑊𝑜,𝑊ℎ,𝑊𝐹𝐹 + 𝜖(𝑥)



Control Design

• Using the adaptive Lb-LSTM term ෡Φ =
Φ(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃, ෡𝑊𝑜, ෡𝑊ℎ, ෡𝑊𝐹𝐹), the control input is designed as 

• The estimated cell and hidden states evolve as
ሶƸ𝑐 = −𝑏𝑐 Ƹ𝑐 + 𝑏𝑐(𝑓 Ƹ𝑧, ෡𝑊𝑓 ⊙ 𝑐 + 𝑖 Ƹ𝑧, ෡𝑊𝑖 ⊙ 𝑐∗ Ƹ𝑧, ෡𝑊𝑐 )

ሶ෠ℎ = −𝑏ℎ ෠ℎ + 𝑏ℎ(𝑜 Ƹ𝑧, ෡𝑊𝑜 ⊙𝜎𝑐 ∘ Ψ𝑐(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃)

where Ƹ𝑧 ≜ 𝑥⊤ ෠ℎ⊤
⊤

and ෠𝜃 ≜ ෡𝑊𝑐
⊤ ෡𝑊𝑖

⊤ ෡𝑊𝑓
⊤ ⊤

.

𝜏 ≜ ෡Φ + 𝑘𝑟𝑟 − 𝐾2,𝑐𝜂𝑐 − 𝐾2,ℎ𝜂ℎ + 𝑒



Control Design

𝜏 ≜ ෡Φ + 𝑘𝑟𝑟 − 𝐾2,𝑐𝜂𝑐 − 𝐾2,ℎ𝜂ℎ + 𝑒

• Using the adaptive Lb-LSTM term ෡Φ =
Φ(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃, ෡𝑊𝑜, ෡𝑊ℎ, ෡𝑊𝐹𝐹), the control input is designed as 

• The estimated cell and hidden states evolve as
ሶƸ𝑐 = −𝑏𝑐 Ƹ𝑐 + 𝑏𝑐(𝑓 Ƹ𝑧, ෡𝑊𝑓 ⊙ 𝑐 + 𝑖 Ƹ𝑧, ෡𝑊𝑖 ⊙ 𝑐∗ Ƹ𝑧, ෡𝑊𝑐 )

ሶ෠ℎ = −𝑏ℎ ෠ℎ + 𝑏ℎ(𝑜 Ƹ𝑧, ෡𝑊𝑜 ⊙𝜎𝑐 ∘ Ψ𝑐(𝑥, Ƹ𝑐, ෠ℎ, ෠𝜃)

where Ƹ𝑧 ≜ 𝑥⊤ ෠ℎ⊤
⊤

and ෠𝜃 ≜ ෡𝑊𝑐
⊤ ෡𝑊𝑖

⊤ ෡𝑊𝑓
⊤ ⊤

.

Weight 
Estimates



Weight Adaptation Laws

• The weight adaptation laws are designed as

vec ሶ෠𝜃 ≜ proj(Γ𝜃(𝑏𝑐 ෡Ψ𝑐
′⊤𝜂𝑐 + 𝑏ℎ ෡Ψℎ,𝜃

′⊤ 𝜂ℎ + ෡Φ𝜃
′⊤𝑟 − 𝛾𝜃vec( ෠𝜃))

vec ሶ෡𝑊𝑜 ≜ proj(Γ𝑜(𝑏ℎ ෡Ψℎ,𝑊𝑜

′⊤ 𝜂ℎ + ෡Φ𝑊𝑜

′⊤ 𝑟 − 𝛾𝑜vec ෡𝑊𝑜 )

vec ሶ෡𝑊ℎ ≜ proj(Γℎ(෡Φ𝑊ℎ

′⊤ 𝑟 − 𝛾ℎvec( ෡𝑊ℎ))

vec ሶ෡𝑊𝐹𝐹 ≜ proj(Γ𝐹𝐹(෡Φ𝑊𝐹𝐹

′⊤ 𝑟 − 𝛾𝐹𝐹vec( ෡𝑊𝐹𝐹))



• The weight adaptation laws are designed as

vec ሶ෠𝜃 ≜ proj(Γ𝜃(𝑏𝑐 ෡Ψ𝑐
′⊤𝜂𝑐 + 𝑏ℎ ෡Ψℎ,𝜃

′⊤ 𝜂ℎ + ෡Φ𝜃
′⊤𝑟 − 𝛾𝜃vec( ෠𝜃))

vec ሶ෡𝑊𝑜 ≜ proj(Γ𝑜(𝑏ℎ ෡Ψℎ,𝑊𝑜

′⊤ 𝜂ℎ + ෡Φ𝑊𝑜

′⊤ 𝑟 − 𝛾𝑜vec ෡𝑊𝑜 )

vec ሶ෡𝑊ℎ ≜ proj(Γℎ(෡Φ𝑊ℎ

′⊤ 𝑟 − 𝛾ℎvec( ෡𝑊ℎ))

vec ሶ෡𝑊𝐹𝐹 ≜ proj(Γ𝐹𝐹(෡Φ𝑊𝐹𝐹

′⊤ 𝑟 − 𝛾𝐹𝐹vec( ෡𝑊𝐹𝐹))

Weight Adaptation Laws

Jacobian-based terms

σ-mod terms



Main Stability Result

Theorem 1. The adaptive LSTM-based controller and weight 
adaptation laws ensure the states 𝜁 ≜ [𝑒⊤𝑟⊤𝜂𝑐

⊤ ǁ𝑐⊤ 𝜂ℎ
⊤ ෨ℎ⊤

vec( ෨𝜃)⊤ vec( ෩𝑊𝑜)
⊤ vec( ෩𝑊𝐹𝐹)

⊤]⊤ are uniformly ultimately 
bounded (UUB) in the sense that

𝜁 ≤
𝛽2
𝛽1

𝜁 0 2𝑒
−
𝛿𝛽1
𝜆

𝑡
+
𝛿

𝜆
1 − 𝑒

−
𝛿𝛽1
𝜆

𝑡



Simulation Results

• Adaptive feedforward DNN used for 
comparison†

• 𝑞𝑑(𝑡) = 1 − exp −0.1𝑡

𝜋

3
sin(

𝜋

2
𝑡)

𝜋

3
sin(

𝜋

2
𝑡)

[rad] 

• 𝑞 0 = [1.0472, −0.5236]⊤ [rad] and ሶ𝑞 0 =
[0,0]⊤ [rad/s]

† O. Patil, D. Le, M. Greene, and W. E. Dixon, “Lyapunov-derived control and adaptive update laws for inner and outer layer weights of a deep neural 
network,” IEEE Control Syst Lett., vol. 6, pp. 1855–1860, 2022.



Simulation Results



Simulation Results



Conclusions

• Formulated a continuous-time LSTM model for control of 
continuous-time systems. 

• Developed the Lb-LSTM architecture to capture time-varying 
effects in the system.

• Stability-driven weight adaptation laws for real-time learning.

• Simulation results yield fourfold improvement in function 
approximation performance compared to a baseline DNN 
controller. 



Future Work

• Extend developed Lb-LSTM architecture for black-box 
estimation.

• Develop Lb-LSTM-based observer for uncertain, nonlinear 
systems. 

• Investigate developing Lyapunov-based adaptive architectures 
for other neural network models
• Transformers



Thank you
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