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Lyapunov-Based Deep Neural
Network-Based Value Function
Approximation for Approximate
Dynamic Programming

W. A. Makumi, M. L. Greene., Z. I. Bell, W. E. Dixon, “Lyapunov-Based Deep Neural Network-Based
Value Function Approximation for Approximate Dynamic Programming,” In preparation.




.g\.;,j’ ontrol Problem Formulation

* Dynamic system
Xx=fx)+g)u — =FQO+6QDu

¢=[eml]" u=1u—uq(xq)

F(Q) = [f(e +Xq) — hd(;clz)(;;f(e + xg)uq(xq)

* Control objective ey T
 Find a controller, u, which minimizes the cost function

e Cost function

Cco

16w = [ (e(@) +r@TRu(®)) do

0

e Hamilton Jacobi Bellman (HJB) equation
0=0Q()+u (OTRu* () + VV*(D(F() + G(Du (D))

R. Kamalapurkar, H. Dinh, S. Bhasin, W. E. Dixon, "Approximate Optimal Trajectory Tracking for Continuous-Time Nonlinear
Systems," Automatica, Vol. 51, pp. 40-48 (2015).
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\/’ DNN System Identification

 Previously: Linear parameterization & single-layer

NNs
* Lyapunov-based multi-timescale deep neural network
(DNN) system identifier

* DNN drift dynamics f(x) = 87¢(@(x)) + €5(x)
 Drift dynamics approximation  £,(x) = 67¢ (3,(x))

Simple Neural Network Deep Learning Neural Network

@ nput Layer () Hidden Layer @ Output Layer

M. Greene, Z. Bell, S. Nivison, and W. E. Dixon, "Deep Neural
Network-based Approximate Optimal Tracking for Unknown
Nonlinear Systems," IEEE Transactions on Automatic Control, to

appear.

R. Sun, M. Greene, D. Le, Z. Bell, G. Chowdhary, and W. E.
Dixon, "Lyapunov-Based Real-Time and Iterative
Adjustment of Deep Neural Networks," IEEE Control
Systems Letters, Vol. 6, pp. 193-198 (2022).
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d%,\‘:’/’ Multi-timescale Updates

* Output-layer weight updates
* Online, real-time, adaptive
 Concurrent learning-based update law

6= To0 (Bi(x))) 2" + kol Z b (®:1(%)) (5 — 95 (x)y) — 07 (B:()))

 Inner-layer feature updates
» [terative, optimization algorithm, batch updates
* Loss function

M
Lon® =22 || = 0 () — 70 (8()||
j=1
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-ﬂ%"\wj, imate Dynamic Programming

« Optimal value function (cost-to-go)

v = min [ Q@) + @ Ru(@) do
t

u(t)eUu

« Optimal control policy
1

W(Q) = 5 RGQT (%Y @)

H System J Rew

State

ard

‘?q kvq")
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lue Function Approximation

DNN Optimal Value Function and DNN Optimal Control Policy
1
V@) =W () + () 1 =—5RTTg@OT(WTT(W(D) + Veen (D)

W, = Critic weight estimate
W, = Actor weight estimate

Optimal Value Function and Optimal Control Policy Approximation

I 1 — _
g We) = =R g (@)" (waTw (%, (())T>

VW) =W v (%)

UF [FLORIDA




Ny e

* Bellman Error (BE)

8(¢, W., We, 8) 2 Q) + A8, Wa) RA(S, Wa) + 7oV (3, W) (Fi(2,8) + G(DAS, W)
* BE extrapolation

 Evaluation over user-defined, off trajectory points
» Satisfies persistence of excitation

<Y Control

—otate Actor Input Environment State [x]

N

Bellman Error
o)

A

......

A
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Y4 ’ Layer Weight Update

* Critic Weight Update Law

On-trajectory
t points
we (t) 5.(0)
e=1p e(t)

Wot) = “al 2300 gy ). |
Off-trajectory
points

 Learning Gain Update Law

: Nl w@®)w(®)TT(E) IOV we(Dwg (1)
I'(t) = (AF(t) — = (0 — 12T (1) (Nzezl 0 )F(t)) 1{£s||1"||sf}

» Actor Weight Update Law

Ne1 Gy (OWa (D ()T 0
4p(t) ‘

Neg SN G%eWa(t)a)e(t) _
* (W Zi=1 4p,(t) We(®)

Wa(t) = —1e1 (Wa(t) = We(t)) = 102 Wa (1) +

UF [FLORIDA



..g-\.;,j, Inner-Layer Feature Update

e Loss function

Fully Connvected Layer
(Updated in real-time)

?““@m%
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-%"\wj ’ Stability Analysis

Theorem 1. Provided the necessary assumptions, gain conditions, and initial
conditions hold, then the tracking error e(t), weight estimation errors W.(t) and
W, (t), system ID DNN output-layer weight estimation errors 8(t), state estimator
error X(t), and control policy u(t) are uniformly ultimately bounded (UUB).
* While iteratively retraining DNN terms:

* ||e]| converges to a neighborhood around zero
6|, |1%|| converge to a neighborhood around zero

W, || converge to a neighborhood around zero

We
» u(t) is an approximation of the optimal control policy

)
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* DNN 1: Approximate the dynamics
» CL-based adaptive update law
* CL loss function

* DNN 2: Approximate the value function
» Actor-critic weight update laws
* BE loss function

 Future work includes updating the inner-layer features of the
DNNSs in real-time.

UFiisiiva €



Deep Residual Neural Network
(ResNet)-Based Adaptive Control: A
Lyapunov-Based Approach

O. Patil, D.M. Le, E.J. Griffis, W. E. Dixon, “Deep Residual Neural Network (ResNet)-Based Adaptive Control:
A Lyapunov-Based Approach,” In Proc IEEE Conf. Decis. Control, 2022.

O. Patil, D.M. Le, E.J. Griffis, W. E. Dixon, “Deep Residual Neural Network (ResNet)-Based Adaptive Control:
A Lyapunov-Based Approach,” Automatica, Under Review.
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Consider the dynamic model

© = f(x) +u SRR
Unknown drift vector field approximated using a S
DNN . P S S S

Control objective : ¢ 2 x — x4(t) — 0 as t — oo where x4(t) € Q, a known
compact set

UFsioRich &)
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« Challenges with offline methods
« Open-loop in weights
* Richness of data
* Required knowledge of state-derivative

« Lewis et. al. (1996) provided real-time adaptation laws for a single-
hidden-layer neural network-based adaptive controller

* Our recent work (Patil et. al., 2022) provided Lyapunov-derived
adaptation laws for fully-connected DNNs with an arbitrary number of

layers
« However, fully-connected DNNs are susceptible to the problem of

vanishing or exploding gradients

UFfiokiva &



..g\.,,/ , y-Connected DNN Controller

« Given the DNN architecture
o/ (n) & (Vi oro...oViér) (Vifn)
the control and adaptation law in Patil et. al. (2022) is given by
u =g — p(|le])e — ke — kgsgn (e) — ®%(xq)

UFsioRich &)



-%'\'.;.j , ResNet Architecture

e ResNets contain shortcut connections

« A ResNet can be modeled using ResNet Arciociuro
fully-connected blocks as I R »é% Y
15F ’ ™0l
(1) £ m + 77 (1) R
IS iBuiIding Block
0., _ L 6 :
n, = Mp—1 + (I)pp—l1 (T]P—l) , DE {27 R ,m}, Np q)” Np+1 =??p+q’zp(??p)
’ td; p=1 ,:LF_'W_:_.J'__T_'_‘_:'.:::ti:_\?‘.‘?fff:
» Each fully-connected block can be : ‘:x:::: e :>::;=: Fuly.Connected
expressed using the recursive relation “ :Xt 1?&
), = Vk]:p(lokap
S pr,j (‘/jt?j,;—lsppaj_l) ? J S {1:"°vkp}a
Pp.j — .
Mp, 7 =0.

where k,, denotes the depth of the p*"* block

(9L Di
P
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dg%:{', Adaptation Law

6 2 proj (To7e)

where ¢’ 2 % can be computed using the chain rule as

~kp
o' =] 0, ..., O ] @L—(Hz=1(fn+5z))f\p
'
Prevents vanishing
~kp gradients
Ap,O — (Hz=1 qu,}@;,z) (Ip,Lp,l & “ff)
~kp R
Ap,j — Hl:j—l—l V]fl@;,z (Ip,Lp,j+1 ® @f,j)

?q“@nm&,%
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* Dynamics n =10
flz) = Ay(x)
A € R"*0" with all elements from U(0, 0.1)
y(x) £ 27, tanh(z)T, sin(z)?, sech(z)”, (z @ 2)T, (z © 2 © 2)T] g

» Reference Trajectory

xq(t) = [0.5 + sin(w1t), ..., 0.5 + sin(wyt)]

Wiy« wn ~ U(0,20)

« ResNet configuration is selected with 20 hidden layers, a shortcut

connection across each hidden layer, and 10 neurons in each
layer.

» For a fair comparison, weights are initialized using Monte Carlo
approach with 10,000 iterations to minimize

J = ["(eT(®)Qe(t) + u” (t)Ru(t)), Q= I, R =0.01Iy

>
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\~7 Simulations
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..g\.:,/ , pnelusions and Future Work

« ResNet-based adaptive controller was developed for control-
affine nonlinear systems

« ResNet provided twofold improvement in tracking and function
approximation performance in comparison to an equivalent
fully-connected DNN

« Future work may involve concurrent learning-based adaptation
for DNNs

P

R 4

rorm e
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Deep Lyapunov-Based Physics-
Informed Neural Networks (DeLb-
PINN) for Adaptive Control Design

Rebecca G. Hart, Omkar Sudhir Patil, Emily J. Griffis, and Warren E. Dixon, “Deep Lyapunov-
Based Physics-Informed Neural Networks (DeLb-PINN) for Adaptive Control Design”,IEEE
Conf. Decis. Control, Under Review.
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Physics Informed Machine Learning

Motivation: To impose constraints derived from known physical laws on the
learning algorithm to reduce the possible solution space and eliminate invalid

solutions resulting from noisy data

Aristotle (~330 B.C) A model based purely on measurement

The speed of a falling would yield the Aristotelian theory of

object is proportional to gravitation for a falling object [1].

the weight of the object

Galileo (~1589) A challenge in machine learning and

All objects fall at the artificial intelligence it’s heavy reliance on
v Fair same rate irrespective data which can be noisy or scarce

of their mass

[1] de Silva BM, Higdon DM, Brunton SL, Kutz JN. Discovery of Physics From Data: Universal Laws and Discrepancies. Front Artif Intell. 2020 Apr 28

1
©)
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\j Contribution
A" 2 ’

Many physics inspired learning algorithms have been shown to be useful
to approximate solution to various forms of differential equations

« Many are not constructed for control applications

Deep Neural Networks which have high function approximation
capabilities, have been integrated in control algorithms and yielded an
improvement in tracking capabilities

» These DNNs are still data-based algorithms

Deep Lyapunov-Based Physics Informed Neural Network (DeLb-PINN)
architecture combines the function approximation performance of DNNs
while leveraging knowledge of the system

UF [FLORIDA



\j Contribution
A" 2 ,

Previous continuous-time adaptation laws for all layers DNN-based
controllers do not leverage known physics of the system.

M(q)G+ Vi, )q + G(q) + F(§) +7a(t) = 7 (1)

Using the Data Based Approach:
The entire function is approximated by a DNN

UF [FLORIDA
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\j , Contribution

DeLb-PINN architecture uses the structure of a governing Euler-
Lagrange and uses DNN representations to approximate unknown
matrix structures.

M(q )q+Vm(q, )q+G( )+F(Q)+Td() 7 (1)

Using the Physics Inspired Approach:
Only unknown matrices are approximated using DNNs

DNNs can only approximate vectors, not matrices

UFiiokivh &)




'_%,.\/ , yystem Dynamics and Control Objective

System Dynamics
Consider a general uncertain Euler-Lagrange system modeled as

M(q)G + Vin(q,4)q + G(q) + F (¢) + 74 (t) = 7 (t)

Design a controller to track a desired trajectory ¢4 : R>o — R"

Ay
€ —{q—dqd
r2eé+ae

Closed Loop Error System after some algebraic manipulation can be written as

M(q)r=7()—7a(t) = Vin(q,9) + (Me — M (ga)) (§a — aé)
+ (Vme — Vi (Qda C_ld)) (Qd — ae)""Ge -G (Qd) +F. — F (Qd)

UFsioRich &)



"%"\w/ , Mathematical Challenges

Using the universal function approximation
property, the unknown terms can be modeled as

Recall
vec (M (qa)) = ®ar (xar,037) + e (2ar) . )
VeC( (Qd7Qd)) Dy (xvm,ﬁ* ) + ey, ( Vm) M (q4) (_Qd ——.ae)
G(qa) = ®c (za,05) +ca (za) Vin (4a, da)|(da — o)
F(Gq) = ®F (vF,0%) +€r (vF)

Properties vec(A) £ [a1.1, ..., 01.m,ranm]  Vec(ABC) = (CT @ A) vec (B)

M (40) Ga — 08) ——— (i —0&)" © 1) (@ar (2ar,03,) +ear (2a0))

Vin (94, 4a) (4a — ce) —— <(‘-7d —ae)' ® In) (Pv,,, (zv,.. 0, ) +ev,, (2v;,))

UFiiskica €




-‘%"\w/ , Control Design

Using the DeLb-PINN architecture the control input is designed as

T (t) = ((qd — Oze)T X In) EI\)Vm + EI\)G + EI\)F + ((C]d — Oéé)T 0% In> EI\)M — kir—e
—sgn(r) (p(l=DIIZI + b + ksll(da — ae) T @ Il ~kasgn(r)l|(Ga — a) T © L |

Where the DNN estimates adapt in real time according to the following
update laws

HM = —proj (I‘MCD’T (( Ga — ae) ® In)T r) éF = —Pproj (FF(T)/FTT)

A . A/T . T T A o

HVm = —Pproj (vaq)vm ((Qd — Cke) &) In) T) ‘9G — —pI‘Oj (FG(I)/C—;T)
gm%’%

UFiiskioa €



\ 2 .1
4’,\*/ , Stability Result

Theorem. For the general Euler-Lagrange system, the developed
controller and adaptation laws ensure global asymptotic tracking in the

sense that ||e(t)|| = 0 and ||7(t)|| =0 as t — oo provided sufficient
gain conditions are met.

UFiiskioa €
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.-%"\j , Simulations

The developed method was implemented on a two-link planer revolute

robot and compared to a baseline Lyapunov-based DNN adaptive
controller

For a fair comparison, the same number of SIMULATION PARAMETERS
neurons was used in each architecture and

. Control Gain  DeLb-PINN  Lb-DNN
the control gains were kept the same

«a 3.5 3.5
k1 10 10
ko 0.5 0.5
NETWORK ARCHITECTURES ks 0.5 ,
k4 0.5 -
Neural Network DeLb-PINN Lb-DNN THONN - 5
Dimensions M  Vym F - INY; 20 -
Layers 4 4 4 4 Ty, 20
Neurons 3 3 2 8 I'e 5

(A58 Dif
P

Duke

%\K j UNIVERSITY
o &4

o T

UF [FLORIDA




\j , Simulations

0-5 T T T T T T T
3 Developed Method
B — — —DNN Adaptive
= 04 .
o
=
203 e
i
3]
&S
= |
o 0.2
=
ks

0.1 |
: ~

0 ll/ ! N ! N\ Z ! \\-- L -
0 1 2 3 4 5 6 7 8 9 10

Note: Larger robustifying control gains could yield improved tracking error convergence for the DNN
adaptive method, but would likely lead to high-gain oscillatory behavior in the control input

Duke

UNIVERSITY
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A 2 :
\ 94 Conclusion
- ’

A DeLb-PINN adaptive controller leverages knowledge of the system and
the function approximation capabilities of DNNs.

Simulations showed that the developed DeLb-PINN adaptive controller
yielded a 19.91% improvement in RMS tracking error compared to a
baseline adaptive DNN controller.

Future work would include constraining the output of the DNN to

further respect physical properties of the matrices such as positive
definiteness.

UF#ioRich &)
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Lyapunov-Based Long Short-
Term Memory (Lb-LSTM)
Neural Network-Based Control

Emily Griffis, Omkar Sudhir Patil, Zachary I. Bell, and Warren E. Dixon, “Lyapunov-Based Long
Short-Term Memory (Lb-LSTM) Neural Network-Based Control”, IEEE Control Systems
Letters, Under Review.




-‘%"\*.*/ , Neural Networks (NNs)

* Most adaptive NN control | ... I
methods are restricted to
feedforward NNs

e static structures

» only have access to current state
information

 The presence of a memory
capable of accessing previous

. . E—
state information both reduces
the required data set for training Flow of information
and leads to faster learning. (no memory loop)

UFiiokivh &)



'_%,.\/ , Recurrent Neural Networks (RNN5s)

« RNNs can capture the temporal dynamic behavior of an
unknown system.

« RNNs have an internal memory that can leverage
dependencies in a sequence and increase approximation
capabilities, thus improving performance.

Internal
memory loop

° 1h(J"- hh(ai
- JAR

! Un[{ﬂ(

UFiisiivh €



\/) ’ Long Short-Term Memory (LSTMs)

» The structure of traditional RNNs inhibits their ability to learn
long-term time dependencies.

« LSTMs have a better ability to learn long term dependencies,
and therefore, have improved memory capability when
compared to traditional RNNs.

_ h

LSTM

UF [FLORIDA



\/) ’ Long Short-Term Memory (LSTMs)

» LSTMs regulate the flow of the gradient along long time
sequences by adding an explicit memory through three gate
units: the input, forget, and output gates.

 Retain relevant information and forget irrelevant information stored in
the internal memory.

|lt;' Forget gate rlt)

_ 4 )

LSTM

UF [FLORIDA



A\ _ .
\ 4 Contribution
A" 2 ’

 Previous LSTM-based control results use offline optimization
techniques to train the LSTM weights.
* No online learning of the LSTM

 An adaptive Lyapunov-based LSTM (Lb-LSTM) controller is
developed for general Euler-Lagrange systems.

* A continuous-time Lb-LSTM NN is developed to adaptively estimate
uncertain model dynamics.

« Stability-driven adaptation laws adjust the Lb-LSTM weights in real-
time.

UF [FLORIDA



'_%,.\/ , ystem Dynamics and Control Objective

* Consider a general uncertain Euler-Lagrange system
M(q@)G+Vin(@)qg+F(@)+G(q) =7
 Design a controller to track a desired trajectory g; € R "
e = da — q
r=e+ae

* Design an Lb-LSTM to adaptively learn unknown system
dynamics g(x) = M(q)(§; + aé) + V,,(q,q9)(qq + ae) + F(q) +

G(q)-
M(q@)7 F g(x) + T —V(q, @r

UFiisiiva €
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J%,\:/ J LSTM Model

Legend
Element-wise product

"0 Fully-connected layer

An LSTM NN can be modeled in continuous-time as

Gate Outputs Cell State and Hidden State Dynamics

f(z,Wr) =040 W, z ¢ = —b.c+b.¥.(x,c,h0)

— o :
?((Z'VVV"O)) = 9 V‘l//"g z h = —byh + bW, (x, ¢, h,6,W,)
i(zW,)) =0, W, z . .
C*(Z; VlVC) =go-c o VLVCTZ lPC(x’ C h’ 0) = f(Z’ Wf) @ ¢ + l(Z’ Wl) @ ¢ (Z’ M/C)
z 2 [xTh"]T for some input x Wh(x, ¢, h, 6,W,) = 0(z, W) O (0. o Pc(x, ¢, h,0))

UF#skih 6
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LSTM Model

Internal

memory loops

& h
Legend
. Element-wise product

0 Fully-connected layer

An LSTM NN can be modeled in continuous-time as

Gate Outputs Cell State and Hidden State Dynamics

f(z, Wf) =agoW,'z

0(z, W) =a5°W,'z
i(z,W;) =040 W'z

c*(z, W) = oo VVCTZ

z 2 [x"hT]" for some input x

UNIVERSITY of

FLORIDA & g
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¢ =—-b.c+b.¥Y.(x,c,h,0)

h = —b,h + b, W, (x,c,h,6,W,)

Y.(x,c,h,0) = f(z, Wf) OQc+ilz, W) ©c*(z,W,)
Y, (x,c,h,0,W,) =0(z,W,) © (a,°¥.(x,c, h,0))




LSTM Model

Gate units
x ;? l ‘e regulate flow of
//—z‘]‘ ' e information
| B B E across cell
h— I % 10— P
Legend

. Element-wise product
0 Fully-connected layer

An LSTM NN can be modeled in continuous-time as

Gate Outputs Cell State and Hidden State Dynamics

f(zW;) =050W, 2
0(z, W) =a5°W,'z
i(z,W;) =040 W'z

c*(z, W) =0, W, z
z 2 [xTh"]T for some input x Wh(x, ¢, h, 6,W,) = 0(z, W) O (0. o Pc(x, ¢, h,0))

UF#skih 6

R

UN

¢ =—-b.c+b.¥Y.(x,c,h,0)
h = —b,h + b, W, (x,c,h,6,W,)
Y.(x,c,h,0) = f(z, Wf) Oc+ilz,W;) Oc*(z,W,)
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* LSTM Output

® = W) (Y,(x,c,h,0,W,) + 0 o Wix)

e Fully-connected output layer ensures appropriate dimensions
» Feedforward component adds generality

* Model unknown system dynamics using LSTM

g(x) = d(x,c,h,0,W,, W, Wgp) + €(x)

UFfiokia €&



‘g\\./, , Control Design

» Using the adaptive Lb-LSTM term ® =
d(x, ¢ h, 0, W, W,, Wrr), the control input is designed as

A

TP+ kr—K, nec—Kypnp +e

e The estimated cell and hidden states evolve as

¢ =—=bet+b(f(2W) O c+i(2,W;) O c*(2,W,))
h= —bph + bp(0(2,W,) © o, 0 W.(x,¢,h,0)

where 2 2 [xTﬁT]T and § 2 [VT/CTWL-TWfT]T.
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..g-\.;,j, Control Design

» Using the adaptive Lb-LSTM term ® =
d(x, ¢ h, 0, W, W,, Wrr), the control input is designed as

A

TP+ kr—K, nec—Kypnp +e

* The estimated cell and hidden states evolye as
¢ ==bet +b(f(2Wp) O c+i(2W) O c*(%
h = —byh + by (0 2,) O, oW, (x,2h 0)

where 2 2 [xTﬁT]T and § 2 [VT/CTWL-TWfT]T.

Weight
Estimates
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‘g\\./, , Weight Adaptation Laws

» The weight adaptation laws are designed as

vec (@) 2 proj(Iy (bCf}\’C’TnC + bhfp'T Np + EIS{gTT — ygvec(6))
vec ( Ao) 2 proj(Fp (bn Priw, nn + Py, 7 — yovec(W,))

vec (Wh) 2 proj(I, (CDWhT — ynvec(Wy))

vec ( ;\FF) £ proj(I'rg (CDWFFT — VFFVeC(WFF))
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'g\\_/} Weight Adaptation Laws

» The weight adaptation laws are designed as
vec (é) 2 proj(Ty (b ijC’TnCJ+ bp P gnp H Py’ r |~ ygvec(é)j

J
N o

vec (WO) 2 proj(T, (b, P w, ® ; —yovec(Wo)

‘ L o-mod terms
Jacobian-based terms
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'_%,\\‘_’/) ’ Main Stability Result

Theorem 1. The adaptive LSTM-based controller and weight
adaptation laws ensure the states { 2 [eTr"n/¢T nohT

vec(0)" vec(W,)" vec(Wrr)T]" are uniformly ultimately
bounded (UUB) in the sense that

561,

a e 1 31— )

< [2211¢(0)2e 2 +=
<] <V'81 1S(0)]|=e +
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\j Simulation Results
%" 8 J

Simulations were performed on a two-link robot
manipulator for 10 s.

 Adaptive feedforward DNN used for
comparison’

—sm(— t)
* qqa(t) = (1 —exp(=0.10)) [ = 7 |[rad]
;sm(;t
« q(0) = [1.0472,—0.5236]" [rad] and ¢(0) =
[0,0]T [rad/s]

0. Patil, D. Le, M. Greene, and W. E. Dixon, “Lyapunov-derived control and adaptive update laws for inner and outer layer weights of a deep neural
network,” IEEE Control Syst Lett., vol. 6, pp. 1855 1860, 2022.
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\j Simulation Results

80 T T T T
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\_j , Simulation Results

TABLEL
lle]| [deg] 0.0373 0.0179 52.0542%
lg(x) — 9| 39.2248 8.6457 77.9585%
lIzll [Nm] 23.8107 10.3615 56.4838%

LSTM provided twofold faster tracking and function approximation error
convergence with better transient behavior.

Twofold and fourfold improvements in the tracking error and function
approximation error, respectively with reduced control effort.

P wm’%;
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A 2 :
\ 94 Conclusions
- ’

 Formulated a continuous-time LSTM model for control of
continuous-time systems.

 Developed the Lb-LSTM architecture to capture time-varying
effects in the system.

e Stability-driven weight adaptation laws for real-time learning.

 Simulation results yield fourfold improvement in function
approximation performance compared to a baseline DNN
controller.
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 Extend developed Lb-LSTM architecture for black-box
estimation.

* Develop Lb-LSTM-based observer for uncertain, nonlinear
systems.

* Investigate developing Lyapunov-based adaptive architectures
for other neural network models
» Transformers
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