Generalizing Formation Chain Framework with Insights from Screw Theory

Taryn J. Noone \& Norman G. Fitz-Coy

- We are seeking to solve the Swarm Initialization Problem (SIP) in the special case of a circular swarm trajectory (eccentricity $=0$, exact).
- Quantization of the orbit into evenly-spaced 'checkpoints'
- Same number of checkpoints as satellites.
- Assume no checkpoint is 'special'; i.e., re-orienting global coordinates to set any checkpoint as 'initial' results in an identical problem.
- Construction of formation chains based on geometry alone.
- Consider distinct modes of translation and rotation.
- Utilization of homogeneous coordinates consistent with screw theory.
- Leads to quantification of geometric swarm motion.

Duke
图TEXAS
(ive

Swarm-Preserving Operations

Duke
圖TEXAS

Oucisini cill

Swarm-Preserving Operations

- Invariance of swarm optimality under rotation of the swarm within a known space of valid rotations:
- Example: Planar formations rotated about the normal of their plane.

Duke
圈TEXAS

Swarm-Preserving Operations

- Invariance of swarm optimality under translation of the swarm within a known space of valid translations.
- Complicated by requirement that no one checkpoint is 'special'.
- Supports three 'modes' of translation:

1. Globally fixed displacement applied to all checkpoints.
2. Rotationally fixed displacement.
3. Swarm fixed displacement normal to axis of swarm rotation.

Duke
圖TEXAS

Swarm-Preserving Operations

- Invariance of swarm optimality under transposition, or re-labeling of any two satellites.

圖TEXAS

Index Chains

Index Chains

- A full index chain for each satellite is fully defined by the first two checkpoints.
- Results in n^{2} index chains for n satellites.
- Valid assignments must have unique row and column indices.

Index Chain for 3 Satellites		Moves to Position Index		
		A	B	C
Satellite Index	1 (at A)	A, A, A	A, B, C	A, C, B
	2 (at B)	B, A, C	B, B, B	B, C, A
	3 (at C)	C, A, B	C, B, A	C, C, C

Duke

Modes of Rotation

Modes of Rotation

- Fixed parameters of the chain cost function:

Modes of Rotation

- Geometric variables incorporated in the chain cost function:

魿TEXAS

Modes of Rotation

- Geometric variables incorporated in the chain cost function:

Modes of Rotation

- Geometric variables incorporated in the chain cost function:

黄TEXAS
© © SLSHITH CRUII

Modes of Rotation

- Geometric variables incorporated in the chain cost function:

Modes of Rotation

Modes of Translation

Modes of Translation

- Geometric variables incorporated in the chain cost function:

Modes of Translation

$\vec{S}_{0}=\vec{S}_{g}+\underbrace{\left(\vec{S}_{\Delta 0}+\vec{S}_{r 0}\right)}_{\text {Attached to }}+\underbrace{\left(\vec{S}_{\Delta 1}+\vec{s}_{r 1}\right)+\cdots+\left(\vec{s}_{\Delta K}+\vec{S}_{r K}\right)}_{\text {Attached to }}$

Modes of Translation

- For $k \in\{1, \ldots, K\}$, we have $\vec{s}_{\Delta k}$ and $\vec{s}_{r k}$, where
- $\vec{s}_{\Delta k}$ is incremental - that is, at each time step, a rotated value is added to the overall displacement,
- $\vec{s}_{r k}$ is fixed to \widehat{w}_{k} in such a way that it rotates by some integer multiple of Δ with each time step.

Duke
图TEXAS
(4)UC SANTH CRUL

Modes of Translation

- For $k \in\{1, \ldots, K\}$, we have $\vec{s}_{\Delta k}$ and $\vec{s}_{r k}$, where
- $\vec{s}_{\Delta k}$ is incremental - that is, at each time step, a rotated value is added to the overall displacement,
- $\vec{s}_{r k}$ is fixed to \widehat{w}_{k} in such a way that it rotates by some integer multiple of Δ with each time step.

Duke
图TEXAS
© UL SANTH CRUZ

The Formation Chain Function

Duke
圈TEXAS

(4)UC SANTH CRUZ

Let us consider each mode of translation separately.

- The k th mode of displacement at time step 0 is

$$
\vec{s}_{k, 0}=\vec{s}_{r k}+\vec{s}_{\Delta k}
$$

Per the previous two slides, the displacement at time step 1 is

$$
\vec{s}_{k, 1}=\boldsymbol{R}_{w k} \cdot \vec{s}_{r k}+\left(\boldsymbol{I}+\boldsymbol{R}_{w k}\right) \cdot \vec{s}_{\Delta k}
$$

Rearranging, we obtain

$$
\begin{aligned}
\vec{s}_{k, 1} & =\boldsymbol{R}_{w k} \cdot\left(\vec{s}_{r k}+\vec{s}_{\Delta k}\right)+\vec{s}_{\Delta k} \\
& =\boldsymbol{R}_{w k} \cdot \vec{s}_{k, 0}+\vec{s}_{\Delta k}
\end{aligned}
$$

We see that $\vec{s}_{k, 0}$ is transformed by a mode of rotation and a mode of translation, as described by screw theory.

- For the sake of compactification, we take $\boldsymbol{R}_{w 0} \equiv \boldsymbol{R}_{Z 0}$.

Duke
包TEXAS

Consequently, we investigate the position of the swarm centroid

- The position of the swarm centroid at time step 0 is

$$
\vec{r}_{0,0}^{*}=a_{0} \hat{X}_{0}+\vec{s}_{g}+\vec{s}_{0,0}+\vec{s}_{1,0}+\vec{s}_{2,0}+\cdots+\vec{s}_{K, 0}
$$

Consequently, the displacement at time step 1 is

$$
\vec{r}_{0,1}^{*}=\boldsymbol{R}_{Z 0} \cdot a_{0} \hat{X}_{0}+\vec{s}_{g}+\vec{s}_{0,1}+\vec{s}_{1,1}+\vec{s}_{2,1}+\cdots+\vec{s}_{K, 1}
$$

It can be shown that

$$
\vec{r}_{0,1}^{*}=\boldsymbol{R}_{Z 0} \cdot \vec{r}_{0,0}^{*}+\sum_{k=1}^{K}\left[\left(\boldsymbol{R}_{w k}-\boldsymbol{R}_{Z 0}\right) \cdot \vec{s}_{k, 0}\right]+\vec{s}_{\Delta}
$$

where

$$
\vec{s}_{\Delta}=\left(\boldsymbol{I}-\boldsymbol{R}_{Z 0}\right) \cdot \vec{s}_{g}+\sum_{k=0}^{K} \vec{s}_{\Delta k}
$$

Note that the dependence on $\vec{s}_{0,0}$ drops out, so we may summarize the propagation of all displacement modes in matrix form as such

$$
\left[\begin{array}{c}
\vec{r}_{0,1}^{*} \\
\vec{s}_{1,1} \\
\vdots \\
\vec{s}_{K, 1} \\
1
\end{array}\right]=\left[\begin{array}{ccccc}
\boldsymbol{R}_{Z 0} & \boldsymbol{R}_{w 1}-\boldsymbol{R}_{Z 0} & \cdots & \boldsymbol{R}_{w K}-\boldsymbol{R}_{Z 0} & \vec{s}_{\Delta} \\
& \boldsymbol{R}_{w 1} & & & \vec{s}_{\Delta 1} \\
& & \ddots & & \vdots \\
& & & \boldsymbol{R}_{w K} & \vec{s}_{\Delta K} \\
& & & & 1
\end{array}\right]\left[\begin{array}{c}
\vec{r}_{0,0}^{*} \\
\vec{s}_{1,0} \\
\vdots \\
\vec{s}_{K, 0} \\
1
\end{array}\right]
$$

With suitable definitions, we may express this as

$$
\left[\begin{array}{c}
\vec{r}_{0,1}^{*} \\
\boldsymbol{S}_{1} \\
1
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{R}_{Z 0} & \boldsymbol{D}_{W} & \overrightarrow{\boldsymbol{s}}_{\Delta} \\
& \boldsymbol{R}_{W} & \boldsymbol{S}_{\Delta} \\
& & 1
\end{array}\right]\left[\begin{array}{c}
\vec{r}_{0,0}^{*} \\
\boldsymbol{S}_{0} \\
1
\end{array}\right]
$$

where

$$
\begin{gathered}
\boldsymbol{D}_{W}=\boldsymbol{\Sigma}_{K} \cdot \boldsymbol{R}_{W}-\boldsymbol{R}_{Z 0} \cdot \boldsymbol{\Sigma}_{K}, \quad \boldsymbol{\Sigma}_{P}=\underbrace{\left[\begin{array}{lll}
\boldsymbol{I} & \cdots & \boldsymbol{I}
\end{array}\right]}_{\text {blockwise } 1 \times P} \\
\boldsymbol{R}_{W}=\left[\begin{array}{lll}
\boldsymbol{R}_{w 1} & & \\
& \ddots & \\
& & \boldsymbol{R}_{w K}
\end{array}\right], \quad \boldsymbol{S}_{\Delta}=\left[\begin{array}{c}
\vec{s}_{\Delta, 1} \\
\vdots \\
\vec{S}_{\Delta, K}
\end{array}\right], \quad \boldsymbol{S}_{j}=\left[\begin{array}{c}
\vec{s}_{1, j} \\
\vdots \\
\vec{S}_{K, j}
\end{array}\right]
\end{gathered}
$$

Because the relationship between time steps is consistent, we may state generally that

$$
\left[\begin{array}{c}
\vec{r}_{0, j}^{*} \\
\boldsymbol{S}_{j} \\
1
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{R}_{Z 0} & \boldsymbol{D}_{W} & \vec{s}_{\Delta} \\
& \boldsymbol{R}_{W} & \boldsymbol{S}_{\Delta} \\
& & 1
\end{array}\right]\left[\begin{array}{c}
\vec{r}_{0, j-1}^{*} \\
\boldsymbol{S}_{j-1} \\
1
\end{array}\right], \quad\left[\begin{array}{c}
\vec{r}_{0,0}^{*} \\
\boldsymbol{S}_{0} \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{0} \hat{X}_{0}+\vec{s}_{0} \\
\boldsymbol{S}_{0} \\
1
\end{array}\right]
$$

The Formation Chain Function

Lastly, we determine the evolution of the satellite positions relative to the swarm centroid. Consider that

$$
\vec{r}_{i, j}^{*}=\vec{\rho}_{i, j}^{*}+\vec{r}_{0, j}^{*}
$$

where

$$
\vec{\rho}_{i, j}^{*}=\boldsymbol{R}_{\Delta} \cdot \vec{\rho}_{i, j-1}^{*}
$$

and

$$
\vec{r}_{0, j}^{*}=\boldsymbol{R}_{Z 0} \cdot \vec{r}_{0, j-1}^{*}+\boldsymbol{D}_{W} \cdot \boldsymbol{S}_{j-1}+\vec{s}_{\Delta}
$$

Since

$$
\vec{\rho}_{i, j-1}^{*}=\vec{r}_{i, j-1}^{*}-\vec{r}_{0, j-1}^{*}
$$

it follows that

$$
\vec{r}_{i, j}^{*}=\boldsymbol{R}_{\Delta} \cdot \vec{r}_{i, j-1}^{*}+\left(\boldsymbol{R}_{Z 0}-\boldsymbol{R}_{\Delta}\right) \cdot \vec{r}_{0, j-1}^{*}+\boldsymbol{D}_{W} \cdot \boldsymbol{S}_{\boldsymbol{j}-1}+\vec{s}_{\Delta}
$$

Duke
包TEXAS

Finally, let us define

$$
\begin{gathered}
\boldsymbol{c}_{Z 0}=\boldsymbol{\Sigma}_{n}^{T} \cdot\left(\boldsymbol{R}_{Z 0}-\boldsymbol{R}_{\Delta}\right), \quad \boldsymbol{c}_{W}=\boldsymbol{\Sigma}_{n}^{T} \cdot \boldsymbol{D}_{W}, \quad \boldsymbol{c}_{\Delta}=\boldsymbol{\Sigma}_{n}^{T} \cdot \vec{s}_{\Delta} \\
\mathcal{D}_{n}\left(\boldsymbol{R}_{\Delta}\right)=\underbrace{\left[\begin{array}{lll}
\boldsymbol{R}_{\Delta} & & \\
& \ddots & \\
& & \boldsymbol{R}_{\Delta}
\end{array}\right], \quad \boldsymbol{r}_{j}^{*}=\left[\begin{array}{c}
\vec{r}_{1, j}^{*} \\
\vdots \\
\vec{r}_{n, j}^{*}
\end{array}\right], \quad \boldsymbol{\rho}_{0}^{*}=\left[\begin{array}{c}
\vec{\rho}_{1}^{*} \\
\vdots \\
\vec{\rho}_{n}^{*}
\end{array}\right]}_{\text {blockwise } n \times n}
\end{gathered}
$$

We at last obtain

$$
\left[\begin{array}{c}
\boldsymbol{r}_{j}^{*} \\
\vec{r}_{0, j}^{*} \\
\boldsymbol{S}_{j} \\
1
\end{array}\right]=\left[\begin{array}{llll}
\mathcal{D}_{n}\left(\boldsymbol{R}_{\Delta}\right) & \boldsymbol{c}_{Z 0} & \boldsymbol{c}_{W} & \boldsymbol{c}_{\Delta} \\
& \boldsymbol{R}_{Z 0} & \boldsymbol{D}_{W} & \vec{S}_{\Delta} \\
& & \boldsymbol{R}_{W} & \boldsymbol{S}_{\Delta} \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{r}_{j-1}^{*} \\
\vec{r}_{0, j-1}^{*} \\
\boldsymbol{S}_{j-1} \\
1
\end{array}\right]
$$

where $\boldsymbol{r}_{0}^{*}=\mathcal{D}_{n}\left(\boldsymbol{R}_{u}\right) \cdot \boldsymbol{\rho}_{0}^{*}+\boldsymbol{\Sigma}_{n}^{T} \cdot \vec{r}_{0,0}^{*}$.
Duke
兾TEXAS

The Formation Chain Function

To account for the effect of re-indexing, we introduce the assignment matrix $\boldsymbol{A}_{\mathfrak{p}}$, where \mathcal{p} is an index to distinguish different assignment matrices from one another.

- Assignment applies to the first row only.
- Columns 3, 4 and 5 all contain the same element, so that

$$
\boldsymbol{A}_{\mathcal{P}} \cdot \boldsymbol{c}_{Z 0}=\boldsymbol{c}_{Z 0}, \quad \boldsymbol{A}_{\mathcal{p}} \cdot \boldsymbol{c}_{W}=\boldsymbol{c}_{W}, \quad \boldsymbol{A}_{\mathcal{p}} \cdot \boldsymbol{c}_{\Delta}=\boldsymbol{c}_{\Delta}
$$

Thus, we obtain

$$
\left[\begin{array}{c}
\boldsymbol{r}_{j}^{*} \\
\vec{r}_{0, j}^{*} \\
\boldsymbol{S}_{j} \\
1
\end{array}\right]=\left[\begin{array}{llll}
\boldsymbol{A}_{\mathcal{p}} \cdot \mathcal{D}_{n}\left(\boldsymbol{R}_{\Delta}\right) & \boldsymbol{c}_{Z 0} & \boldsymbol{c}_{W} & \boldsymbol{c}_{\Delta} \\
& \boldsymbol{R}_{Z 0} & \boldsymbol{D}_{W} & \vec{s}_{\Delta} \\
& & \boldsymbol{R}_{W} & \boldsymbol{S}_{\Delta} \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{r}_{j-1}^{*} \\
\vec{r}_{0, j-1}^{*} \\
\boldsymbol{S}_{j-1}^{*} \\
1
\end{array}\right] .
$$

包TEXAS
© UC SANTH CRUL

The final value of the Formation Chain Function is as follows:

$$
\left[\begin{array}{c}
\boldsymbol{r}_{j}^{*} \\
\vec{r}_{0, j}^{*} \\
\boldsymbol{S}_{j} \\
1
\end{array}\right]=\left[\begin{array}{llll}
\boldsymbol{A}_{\mathfrak{p}} \cdot \mathcal{D}_{n}\left(\boldsymbol{R}_{\Delta}\right) & \boldsymbol{c}_{Z 0} & \boldsymbol{c}_{W} & \boldsymbol{c}_{\Delta} \\
& \boldsymbol{R}_{Z 0} & \boldsymbol{D}_{W} & \vec{s}_{\Delta} \\
& & \boldsymbol{R}_{W} & \boldsymbol{S}_{\Delta} \\
& & & 1
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{r}_{j-1}^{*} \\
\vec{r}_{0, j-1}^{*} \\
\boldsymbol{S}_{j-1} \\
1
\end{array}\right] .
$$

Using a time-invariant state transition matrix, we obtain

$$
\boldsymbol{z}_{j}=\boldsymbol{\Phi} \cdot \boldsymbol{z}_{j-1} .
$$

Note, it can be shown that

$$
\mathbf{z}_{j}=\boldsymbol{\Phi}^{j} \cdot \mathbf{z}_{0}
$$

and

$$
\mathbf{z}_{n}=\boldsymbol{\Phi}^{n} \cdot \mathbf{z}_{0}=\mathbf{z}_{0}
$$

Duke
() TEXAS
© ULS SANTH CRUZ

Reproducing LISA

Reproducing LISA

- Process is intended for swarms with any number of satellites.
- Process must produce results of LISA swarm to be considered viable.
- Consider a LISA-like configuration with the following parameters.

Parameter / Variable

Value

$\hat{\rho}_{i}$	$\cos \left((i-1) \cdot 120^{\circ}\right) \hat{X}-\sin \left((i-1) \cdot 120^{\circ}\right) \hat{Y}$
ρ	$1,000 \mathrm{~km}$
a_{0}	$10,000 \mathrm{~km}$
ϕ	0°
\hat{u}	\hat{Y}
θ	-60°
\widehat{w}	$\sin \left(120^{\circ}\right) \hat{X}+\cos \left(120^{\circ}\right) \hat{Z}$

Reproducing LISA

- Left-handed motion \Rightarrow path A, C, B; right-handed motion \Rightarrow path A, B, C.

Parameter / Variable
Left-Handed Motion
$\vec{s}_{g} \quad-(20.14 \mathrm{~km}) \hat{Z}$
$\vec{s}_{r k}, \vec{s}_{\Delta k} \forall k \geq 0$
a
e
e
$e_{3} \quad 0.0454$
$v_{1} 180^{\circ} \quad 180^{\circ}$
$v_{2} \quad 305^{\circ}$
55°
295°

图TEXAS
The University of Texas at Austin
©UL SANTH CRUZ

Reproducing LISA

- Path comparison for right-handed motion.

Duke
圈TEXAS
© ULS SANTH CHIUL

Reproducing LISA

- Path comparison for right-handed motion.

Conclusions

- Summary:
- Extended the number of degrees of freedom.
- Uncovered dynamics consistent with screw theory, which pair rotational and translational movement.
- Drafted a journal article which is now in the early stages of publication.
- Next Steps:
- Utilize these results to create satellite swarms of various sizes and shapes.
- Move past the swarm initialization problem towards other engineering challenges surrounding the concept.

Duke
© UL SANTH CRUL

Questions

