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Sensor fusion in autonomous vehicles (AVSs)
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= Sensors including: LiDAR, camera, radar

= Knowledge of objects in scene

= Prediction of object motion

= Maintaining ego-vehicle safety

= Building situational awareness

LiDAR-Based AV
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https://semiengineering.com/here-comes-high-res-car-radar/
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https://roboticsandautomationnews.com/2021/01/29/lidar-sensor-makers-choose-nvidia-drive-for-development/40052/
https://auto.economictimes.indiatimes.com/news/auto-technology/cheaper-infrared-cameras-for-self-driving-cars-phones-in-the-offing/68340483

Camera provides dense 2D image

RADAR and the Autonomous Vehicle ® Ve

Radar provides sparse position, doppler
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Recent security analysis:
Structured spoofing and injection attacks

Duke

PRATT SCHOOL of
ENGINEERING

Threat Model
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Up to 200 spoof points
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Attack Designs

Naive Attack
Spoofing in front-near position of
victim without contextual information

Frustum Attack
Spoofing relative to a "target car" -- in
front or behind, relative to victim

Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., ... &
Mao, Z. M. (2019, November). Adversarial sensor attack on lidar-
based perception in autonomous driving. In Proceedings of the 2019
ACM CCS

Sun, J. S,, Cao, Y. C., Chen, Q. A,, & Mao, Z. M. (2020, January).
Towards robust lidar-based perception in autonomous driving:
General black-box adversarial sensor attack and countermeasures.
In USENIX Security Symposium (Usenix Security'20).

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M.
(2022). Security Analysis of {Camera-LiDAR} Fusion Against
{Black-Box} Attacks on Autonomous Vehicles. In 31st USENIX
Security Symposium (USENIX Security 22) (pp. 1903-1920).
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Compromise sensor fusion with “frustum” attack

4 — A
Frustum Vulnerability

3D space in front or behind an existing "target
vehicle" is consistent with unaltered 2D image

Shadow Vulnerability
Real 3D objects create a void region of space
behind them where no LIDAR points exist

Spoof points in front or
behind target

Frustum Definition
2D image unable to resolve range information —

Victim vehicle

Spoofer

Other vehicle
leads to 3D "frustum" extruded along range axis ok %l}'
- J
Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. (2022). Security Analysis of Viewing frustum defined Configuration for frustum attack. Adversary

{Camera-LiDAR} Fusion Against {Black-Box} Attacks on Autonomous Vehicles. In 31st

_ _ : by a camera field-of-view. spoofs in front or behind target object.
USENIX Security Symposium (USENIX Security 22) (pp. 1903-1920).
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Partial-Information Attacks on LIDAR

Securing Autonomous Vehicles Under Partial-Information Attacks



Cyber threats are increasingly likely
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Attackers are more
ambitious than ever

Connected vehicles,
edge computing makes
CPS vulnerable

many attack vectors

Remote attacks on AVs
already demonstrated

[ AVs are vulnerable to
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Cyber attack threat model

LiDAR Sensor Substrate
Threat Model
. On-Sensor
] . Sensing Arra -
= Compromised sensor (e.g., LIDAR sensor) Sl Processing

= Cyber threat at sensor, comms, or processing substrate

"ﬁommunication Substraté\" Encrvot
Knowledge Model P

o o [ e o [ Decr'vpt
= Limited a-priori information

= Only access to raw data at sensor level

.\L- _,/I

Central Processing Substrate

Attacker Capabilities

Perception
Sensor Drivers Data Neural

= Attacker has access to the sensor data (spherical points) | Preprocessing] | Networks |
= Range modification - attacker can modify only the
range of the points due to LiDAR data structure
= Range nullification - attacker can set range value of
points to NULL Any of the red elements could be compromised
. Add/d rop LiDAR datagrams for a cyber attack to be effective

= Attacker cannot modify point angles
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Understanding the LIDAR point cloud
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Point cloud projected L Color corresponds to LIiDAR has 64 vertical
: Each pointis a 3D ) :
onto image for range of the point (elevation) channels and
: - return from a laser : : .
visualization purposes (distance) many horizontal (azimuth)
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Attacker subroutines — “masking”

Mask missing angles Mask object Mask trace

Original Point Cloud

Masked Point Cloud

Find angles in the point cloud matrix Mask points pertaining  Mask points that will be affected

that originally returned “NULL” to an existing object by inserting a new “trace”

**Color overloaded — red means “1”
and all others “0” for a binary mask
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Attacker subroutines — “inpainting”

Inpaint mask as background Inpaint mask as object
from context from trace

Original Point Cloud

Inpainted Point Cloud

pr L oo
Jooans NI

fas asee
R

Ll .

g

lpananmmaniienas T
M_I . PR

Given mask, change ranges to make Given mask, change ranges to make
masked region appear like background masked region appear like object 10
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Example: False Positive attack

Inpaint mask as object
from trace

Mask trace

Original Point Cloud Find Points to Manipulate Manipulate points to look like object

**Color overloaded — red means “1”

and all others “0” for a binary mask 11
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Building cyber-based attacks

- Attacks bU | |t from TABLE II: Attack executions are constructed from subroutines.
Frustum-type attacks use other attacks as subroutines.

previous subroutines

Num. Att. Case Name Subroutines
( FindMissingAngles
m - . ATT. False Positive GetPointMaskFromTrace
CO nteXt awa re ' atta C ke r InpaintMaskAsCbjectFromTrace
builds awareness in real Context FindMissingAngles
. Unaware ATT.2 Dual False Positive GetPointMaskFromTrace
tl m e InpaintMaskAsObjectFromTrace
ATT.S Forward Replay N/A
> Reverse Replay N/A
. AttaCker Only needS tO Clean Scene InpaintMaskAsBackgroundFromContext
i " ” Object Detection, Tracking
Walt for rlght moment ATT.I Object Removal GetPointMaskFromObject
InpaintMaskAsBackgroundFromContext
to attack. [ Context J<
1 Frustum Object Removal
i
Aware ATT. Translation False Positive
. Dual Frustum Object Removal
= Attacks: false positive, ATT$  Ealee Positive Faise Positive

replay, object removal .



Case study: Reverse Replay attack
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Left (m)

Left (m)

Ego-Centric Bird's Eye Track View - Frame 039
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[ Trk: False Track
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Tru: Missed Track
N0 35

Beginning has high-accuracy
situational awareness

Ego-Centric Bird's Eye Track View - Frame 046

5

oo =

Il Ego Bounding Box
= Track History

-2 Ego believes unsafe
[ Trk: True Positive
[ Trk: False Track

Sensor data replayed in

Ego-Centric Bird's Eye Track View -

5

0 15 20
Forward (m)

25

3 reverse, causing drift

Frame 051

54

==

Il Ego Bounding Box
Track History
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[ Trk: True Positive
L Tk Falee Track

Creating false tracks (red)

5

0 15 20
Forward (m)

25

and missed tracks (yellow)
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Case study: Frustum Translation attack

Real object ‘in line”

Ego-Centric Bird's Ey4 Track View - Frame 029
Ego Bounding Box

— 3 Track History

e Ego believes unsafe
E 0 - Trk: True Positive

9] Trk: False Track

- 5| Tru: True Positive

Tru: Missed Track

False positive starts in-line
with existing object “frustum”

Fake object

Ego-Centric Bird's Eye Track View - Frame 038

Il Ego Bounding Box
—_ > = Track History
& =2 Ego believes unsafe
E 0 - [ Trk: True Positive
] — I“a [ Trk: False Track
- _5 _t“ Tru: True Positive
'd

© 5 1 15 201 Attack object moved closer to victim
Forward (m vehicle, maintaining frustum

Ego-Centric Bird's Eye Track View - Frame 061

Ego Bounding Box
Track History

[l C =2 Ego believes unsafe

—
VE J
0 - = Trk: True Positive
vl —
7] —
—

Trk: False Track
5 Tru: True Positive
Tru: Missed Track

0 5 10 15 20
Forward (m Ego appears in danger of
“colliding” with attack object
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Demonstrated success on industry-grade AV

[ Tested on Baidu’s Apollo - Level 5, fully autonomous self-driving vehicle ]

(a) Unattacked. Ego sees lane is (b) FP attack [ATT]. Ego emer- (c¢) Unattacked. Ego stops ahead of (d) Rev-replay attack ATTA. Ego
clear and plans straight path. gency brakes to avoid fake obj.  existing stopped car crashes into stopped car.

N AN J

Y Y

Context-unaware false Context-unaware reverse
positive attack replay attack

15
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Extending attacks into aerial domain

= Attacks are data-source agnostic
= Attacks are platform agnostic
= Moving analysis to AirSim simulator

16
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Security-Aware Sensor Fusion

Securing Autonomous Vehicles Under Partial-Information Attacks



Security-aware philosophies

Duke

PRATT SCHOOL of
ENGINEERING

Challenges:

= Degradation in nominal performance

=  Complexity of implementation

= Rigidity of estimation structure

[ Sensor H

Resilient
Perception

%

[ Sensor H

Resilient
Perception

9[

Resilient
Tracking

I

],

Planning/
Control

|

~— @
" | Perception

Integrity (Detect + Identify + Mitigate + Recover)

= An understanding that some attacks will succeed

= Questions becomes:

How do we detect and identify?

How do we mitigate and recover?

Perception

\

S
> Perception
—
Integrity- Planning/
Backed Fusion Control
> Perception
- )
Integrity-Backed Fusion
Sensor Fusion J
Threat Threat Threat
Detection Identlflcat[on Mitigation

o]

A\ 4
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https://app.diagrams.net/?page-id=BdL5t4EL-oEWObbdk3gh&scale=auto#G1Qk2uE5Uu8a_5358n94OHiC29D7_pZ4-2
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Two approaches to detect and mitigate attacks

Monitoring data asymmetries Distributed tracking and fusion
= Centralized object tracking = 3D monocular camera detection
= Maintaining sensor-specific “scores” = Distributed object tracking
= Scores derived from likelihood = Post-tracking fusion
ratios

/Camera-LiDAR AV With Asymmetry Monitom

/" Camera-LiDAR AV With Asymmetry Monitor )
. 3D Object -
LIDAR —> : - 3D Object : 4
Perception . .. Safety LiDAR > . —» Tracking 3 m’
} Tracking > Prediction > Evaluation Perception | Iy
2D Object ' P
Camera ; 3D Object |\ : Safet
Camera ; Trackin icti y
Perception Asymmetry Perception)/ . I EE »| Evaluation
\_ Monitor Y, ' \_ ' J

19
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Monitoring for data asymmetries

/ Camera-LiDAR AV With Asymmetry Monitor\

= Traditional tracking maintains “score” | _ipar Ll 3D Obiect -
\ / SRELCERUON Tracking [—>»{Prediction > Safety
» Log likelihood ratio of: J— ’ Evaluation
. 2D Object
= H1 - track is a true target Camera =5, ception Asym¢metry
= HO - track is a false alarm \_ Monitor )
IR — PI‘(DlHl) PI‘[](Hl) L & True target hypothesis
PI‘(‘DIHU) PI‘[]{H{]) Pr False alarm hypothesis Central track score
-sel d
Pr threshold
LLR =L = log 2 — Track score
" | } 7
Confirmation = {Conflrmed Lok central 2 7e
= For n sensors, maintain n+1 scores Unconfirmed otherwise
" N per-sensor scores valid Confirmed and
= 1 central score (all sensors, same as Validation = Cmvalid L‘i‘lfe*r‘-%“f; = L sensors | ‘7’”
. - . A 1
done in traditional tracking) \ // »
= Central score for track “confirmation” Persensor  pooroe o0
track score 20

= Per-sensor scores for track “validation”



Extending 2d data to 3d with scene context
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Monocular Detection

Motivation: 2D detections from camera are

ambiguous when extended into 3D

Solution: detect 3D objects from 2D images using

context directly
Algorithm: PGD, M3D-RPN

Post-Tracking Fusion

Motivation: uncompromised sensor compensates
for inconsistent dynamics of compensated sensor
Solution: perform tracking on each sensor and
fusion after tracking

Algorithm: Distributed data fusion (e.g., covariance
intersection, conservative Kalman filtering)

/" Camera-LiDAR AV With Asymmetry Monitor )

Monocular detection extends object
detection from 2D data to 3D detections
using context and optimization

3D Object
LIDAR > jec —>»| Tracking :I-) Fusion

Perception

A

3D Object - Safet
Camera - —»| Trackin ot Yy

Perception g Prediction

4
Covariance

Intersection (Cl) Fusion

Cl fuses two data sources (red, green)
conservatively to reduce uncertainty of
estimate (blue). ClI useful when data
correlations unknown (e.g., same platform)

21

Brazil, G., & Liu, X. (2019). M3d-rpn: Monocular 3d region proposal network for object detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9287-9296).



Duke

Outcomes at perception

ENGINEERING

= All AVs tested use same LiDAR perception algorithm
= Therefore, outcomes at perception are identical for AVs
= We show difference between attacks

Attacks successful in creating false
positives and false negatives

= Metric = “Increment over baseline”
u (1) Fun basellne AV False Positive Increment False Negative Increment

1.50
s - it T 15 - it
" (2) run attaCk On AV P§8 kel Bl nuscenes ég I nuscenes
. gé 1.00 g_; T
= (3) compute difference S50 35
£ 8 0.50 £ .
2 s
= 0.25 &
[} [}
& 0.00 “ 00

y-axis means: when we run the attack, we obtain Y more of the _
metric than we did in the baseline case in each frame of the attack Object removal does not

False positive does not
introduce new object remove existing objects

22
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Outcomes at tracking

Few missed tracks for all
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= Limited-information cyber attacker can disrupt LiDAR-based AVs
= Attacker gains necessary situational awareness online
= Attacks are successful in many scenarios: KITTI, nuScenes, Apollo

= Basic security-aware architectures can improve assuredness

24
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Backup

Securing Autonomous Vehicles Under Partial-Information Attacks



Recent interest in security of AVs
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Safety has received much of the attention...but
what if data are adversarially compromised.:

Remote attacks on AVs

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., ... &

Kohno, T. (2011, August). Comprehensive experimental analyses of automotive
attack surfaces. In USENIX security symposium (Vol. 4, No. 447-462, p. 2021).

Physical attacks

Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., ... & Mao, Z. M. (2019,
November). Adversarial sensor attack on lidar-based perception in autonomous driving. In
Proceedings of the 2019 ACM CCS (pp. 2267-2281).

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. (2022). Security Analysis
of {Camera-LiDAR} Fusion Against {Black-Box} Attacks on Autonomous Vehicles. In
31st USENIX Security Symposium (USENIX Security 22) (pp. 1903-1920).

White-box attacks

Tu, J., Ren, M., Manivasagam, S., Liang, M., Yang, B., Du, R., ... & Urtasun, R. (2020).
Physically realizable adversarial examples for lidar object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13716-13725).

Cyber attacks

Hallyburton, R. S., & Pajic, M. (2023). Securing Autonomous Vehicles Under Partial-
Information Cyber Attacks on LIDAR Data. arXiv preprint arXiv:2303.03470.
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[ Monitoring for sensor height ] [ Target selection for situational awareness J

Local Perception Confusion Matrix

Height Monitor Error (m) Height Monitor Error (m) Target Selection
v : ccuracy
30 kitti 2 pacenes True Positive False Positive 1-&
_é‘ 20 z 3 57% of Truths 0.9x of TPs 0.8
)] )] >
© G 2 2 0.6
a) a) S
10 " o
False Negative |EEENURNSISISS I s
0 0 True Negative
~0.05 0.00 0.05 -0.4 -02 0.0 0.2 HERO @IS 0.2
Height Error (m) Height Error (m) 0.0
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