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Sensor fusion in autonomous vehicles (AVs)

▪ Sensors including: LiDAR, camera, radar

▪ Knowledge of objects in scene

▪ Prediction of object motion

▪ Maintaining ego-vehicle safety

▪ Building situational awareness

LiDAR provides 3D point cloud

Camera provides dense 2D image

Radar provides sparse position, doppler
Images from:
https://semiengineering.com/here-comes-high-res-car-radar/
https://roboticsandautomationnews.com/2021/01/29/lidar-sensor-makers-choose-nvidia-drive-for-development/40052/
https://auto.economictimes.indiatimes.com/news/auto-technology/cheaper-infrared-cameras-for-self-driving-cars-phones-in-the-offing/68340483
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Recent security analysis: 

Structured spoofing and injection attacks
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Spoofing Attacks at 8m

From Cao et al. 2019

Attack Model

Road-side attack laser, 

photodiode

Attacker Knowledge

Line-of-sight to victim to 

receive and transmit signal

Attacker Capability

Up to 200 spoof points

Naïve Attack

Spoofing in front-near position of 

victim without contextual information

Frustum Attack

Spoofing relative to a "target car" -- in 

front or behind, relative to victim

Threat Model Attack Designs

Existing object

Spoof in 

front

Spoofed 

object

Spoof

behind

Challenge: Moving vehicles

Challenge: Expensive hardware

Challenge: Precise aiming, timing

Sun, J. S., Cao, Y. C., Chen, Q. A., & Mao, Z. M. (2020, January). 

Towards robust lidar-based perception in autonomous driving: 

General black-box adversarial sensor attack and countermeasures. 
In USENIX Security Symposium (Usenix Security'20).

Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., ... & 

Mao, Z. M. (2019, November). Adversarial sensor attack on lidar-

based perception in autonomous driving. In Proceedings of the 2019 

ACM CCS

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. 

(2022). Security Analysis of {Camera-LiDAR} Fusion Against 

{Black-Box} Attacks on Autonomous Vehicles. In 31st USENIX 

Security Symposium (USENIX Security 22) (pp. 1903-1920).



Compromise sensor fusion with “frustum” attack
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Viewing frustum defined

by a camera field-of-view.

Frustum Vulnerability

3D space in front or behind an existing "target 

vehicle" is consistent with unaltered 2D image

Shadow Vulnerability

Real 3D objects create a void region of space 

behind them where no LiDAR points exist

Frustum Definition

2D image unable to resolve range information –

leads to 3D "frustum" extruded along range axis

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. (2022). Security Analysis of 

{Camera-LiDAR} Fusion Against {Black-Box} Attacks on Autonomous Vehicles. In 31st 

USENIX Security Symposium (USENIX Security 22) (pp. 1903-1920).

Configuration for frustum attack. Adversary

spoofs in front or behind target object.



Partial-Information Attacks on LiDAR
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Cyber threats are increasingly likely

Attackers are more 

ambitious than ever

Connected vehicles, 

edge computing makes 

CPS vulnerable

AVs are vulnerable to 

many attack vectors

Remote attacks on AVs 

already demonstrated
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Cyber attack threat model

Threat Model

▪ Compromised sensor (e.g., LiDAR sensor)
▪ Cyber threat at sensor, comms, or processing substrate

Knowledge Model

▪ Limited a-priori information
▪ Only access to raw data at sensor level

Attacker Capabilities

▪ Attacker has access to the sensor data (spherical points)
▪ Range modification → attacker can modify only the 

range of the points due to LiDAR data structure
▪ Range nullification → attacker can set range value of 

points to NULL
▪ Add/drop LiDAR datagrams
▪ Attacker cannot modify point angles

Any of the red elements could be compromised 

for a cyber attack to be effective
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Understanding the LiDAR point cloud
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Point cloud projected 

onto image for 

visualization purposes

Each point is a 3D 

return from a laser

Color corresponds to 

range of the point 

(distance)

LiDAR has 64 vertical 

(elevation) channels and 

many horizontal (azimuth) 



Attacker subroutines – “masking”
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Mask missing angles Mask object Mask trace

Original Point Cloud

Masked Point Cloud

Find angles in the point cloud matrix 

that originally returned “NULL” 
Mask points pertaining 

to an existing object
Mask points that will be affected 

by inserting a new “trace”
**Color overloaded → red means “1” 

and all others “0” for a binary mask



Attacker subroutines – “inpainting”
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Inpaint mask as background 

from context

Inpaint mask as object 

from trace

Original Point Cloud

Inpainted Point Cloud

Given mask, change ranges to make 

masked region appear like background

Given mask, change ranges to make 

masked region appear like object



Example: False Positive attack
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Original Point Cloud Find Points to Manipulate Manipulate points to look like object

Mask trace
Inpaint mask as object 

from trace

**Color overloaded → red means “1” 

and all others “0” for a binary mask



Building cyber-based attacks

▪ Attacks built from 
previous subroutines

▪ Context-aware: attacker 
builds awareness in real 
time

▪ Attacker only needs to 
wait for “right moment” 
to attack.

▪ Attacks: false positive, 
replay, object removal
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Context 

Unaware

Context 

Aware



Case study: Reverse Replay attack
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Sensor data replayed in 

reverse, causing drift

Creating false tracks (red) 

and missed tracks (yellow)

Forward

Beginning has high-accuracy 

situational awareness



Case study: Frustum Translation attack
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False positive starts in-line 

with existing object “frustum"

Attack object moved closer to victim 

vehicle, maintaining frustum

Ego appears in danger of 

“colliding” with attack object

Fake object

Real object “in line”



Demonstrated success on industry-grade AV

Context-unaware false 

positive attack

Context-unaware reverse 

replay attack

Tested on Baidu’s Apollo - Level 5, fully autonomous self-driving vehicle
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Extending attacks into aerial domain

▪ Attacks are data-source agnostic
▪ Attacks are platform agnostic
▪ Moving analysis to AirSim simulator
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Security-Aware Sensor Fusion
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Security-aware philosophies

Challenges:

▪ Degradation in nominal performance 

▪ Complexity of implementation

▪ Rigidity of estimation structure

Integrity (Detect + Identify + Mitigate + Recover)

▪ An understanding that some attacks will succeed

▪ Questions becomes: 

▪ How do we detect and identify?

▪ How do we mitigate and recover?
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https://app.diagrams.net/?page-id=BdL5t4EL-oEWObbdk3gh&scale=auto#G1Qk2uE5Uu8a_5358n94OHiC29D7_pZ4-2
https://app.diagrams.net/?page-id=og05a4ayUo1_OB_FkdZQ&scale=auto#G1Qk2uE5Uu8a_5358n94OHiC29D7_pZ4-2


Two approaches to detect and mitigate attacks

Monitoring data asymmetries

▪ Centralized object tracking
▪ Maintaining sensor-specific “scores”
▪ Scores derived from likelihood 

ratios

Distributed tracking and fusion

▪ 3D monocular camera detection
▪ Distributed object tracking
▪ Post-tracking fusion
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Monitoring for data asymmetries

▪ Traditional tracking maintains “score”
▪ Log likelihood ratio of:

▪ H1 → track is a true target
▪ H0 → track is a false alarm
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True target hypothesis

False alarm hypothesis

Track score

▪ For n sensors, maintain n+1 scores
▪ n per-sensor scores
▪ 1 central score (all sensors, same as 

done in traditional tracking)
▪ Central score for track “confirmation”
▪ Per-sensor scores for track “validation”

User-selected 

threshold

User-selected 

threshold

Central track score

Per-sensor 

track score



Extending 2d data to 3d with scene context

Monocular Detection

▪ Motivation: 2D detections from camera are 
ambiguous when extended into 3D

▪ Solution: detect 3D objects from 2D images using 
context directly

▪ Algorithm: PGD, M3D-RPN

Post-Tracking Fusion

▪ Motivation: uncompromised sensor compensates 
for inconsistent dynamics of compensated sensor

▪ Solution: perform tracking on each sensor and 
fusion after tracking

▪ Algorithm: Distributed data fusion (e.g., covariance 
intersection, conservative Kalman filtering)
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Monocular Detection

Brazil, G., & Liu, X. (2019). M3d-rpn: Monocular 3d region proposal network for object detection. 

In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 9287-9296).

Covariance 

Intersection (CI) Fusion

Monocular detection extends object 

detection from 2D data to 3D detections 

using context and optimization

CI fuses two data sources (red, green) 

conservatively to reduce uncertainty of 

estimate (blue). CI useful when data 

correlations unknown (e.g., same platform)



Outcomes at perception

▪ All AVs tested use same LiDAR perception algorithm
▪ Therefore, outcomes at perception are identical for AVs
▪ We show difference between attacks

▪ Metric → “Increment over baseline”
▪ (1) run baseline AV
▪ (2) run attack on AV
▪ (3) compute difference
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Object removal does not 

introduce new object

False positive does not 

remove existing objects

y-axis means: when we run the attack, we obtain Y more of the 

metric than we did in the baseline case in each frame of the attack

Attacks successful in creating false 

positives and false negatives



Outcomes at tracking
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Security-aware fusion defends false positive attacks

Data asymmetry monitor vulnerable to frustum 

attack, T2T-3DLM improves performance

Reduced false tracks 

for security-aware

Few missed tracks for all

Reduced false tracks 

for security-aware

Similar missed tracks across all

False positive attack

Frustum translation attack



In conclusion

▪ Limited-information cyber attacker can disrupt LiDAR-based AVs

▪ Attacker gains necessary situational awareness online

▪ Attacks are successful in many scenarios: KITTI, nuScenes, Apollo

▪ Basic security-aware architectures can improve assuredness
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Thank you
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Backup
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Recent interest in security of AVs

● Remote attacks on AVs
Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., ... & 

Kohno, T. (2011, August). Comprehensive experimental analyses of automotive 

attack surfaces. In USENIX security symposium (Vol. 4, No. 447-462, p. 2021).

● Physical attacks
Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., ... & Mao, Z. M. (2019, 

November). Adversarial sensor attack on lidar-based perception in autonomous driving. In 

Proceedings of the 2019 ACM CCS (pp. 2267-2281).

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. (2022). Security Analysis 

of {Camera-LiDAR} Fusion Against {Black-Box} Attacks on Autonomous Vehicles. In 

31st USENIX Security Symposium (USENIX Security 22) (pp. 1903-1920).

● White-box attacks
Tu, J., Ren, M., Manivasagam, S., Liang, M., Yang, B., Du, R., ... & Urtasun, R. (2020). 

Physically realizable adversarial examples for lidar object detection. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13716-13725).

● Cyber attacks
Hallyburton, R. S., & Pajic, M. (2023). Securing Autonomous Vehicles Under Partial-

Information Cyber Attacks on LiDAR Data. arXiv preprint arXiv:2303.03470.

Safety has received much of the attention…but 
what if data are adversarially compromised?

Saturation 

Attacks

White-Box 

Adversary Structured 

Spoofing and 

Injection

Black-Box 

Adversary
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Monitoring and target selection
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Monitoring for sensor height Target selection for situational awareness



Thank you
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