Securing Autonomous Vehicles Under Partial-Information Attacks

Spencer Hallyburton and Miroslav Pajic

Cyber-Physical Systems Lab (CPSL)

Department of Electrical and Computer Engineering

Pratt School of Engineering

Duke University

UKE ROBO

Duke

Sensor fusion in autonomous vehicles (AVs)

- Sensors including: LiDAR, camera, radar
- Knowledge of objects in scene
- Prediction of object motion
- Maintaining ego-vehicle safety
- Building situational awareness

Images from:

https://semiengineering.com/here-comes-high-res-car-radar/

https://roboticsandautomationnews.com/2021/01/29/lidar-sensor-makers-choose-nvidia-drive-for-development/40052/

https://auto.economictimes.indiatimes.com/news/auto-technology/cheaper-infrared-cameras-for-self-driving-cars-phones-in-the-offing/68340483

LiDAR provides 3D point cloud

Camera provides dense 2D image

Radar provides sparse position, doppler

Recent security analysis: Structured spoofing and injection attacks

Spoofing Attacks at 8m

Threat Model **Attack Model Naïve Attack** Road-side attack laser, photodiode Attacker Knowledge Frustum Attack Line-of-sight to victim to receive and transmit signal **Attacker Capability** Up to 200 spoof points ACM CCS **Challenge:** Expensive hardware **Challenge:** Moving vehicles **Challenge:** Precise aiming, timing

Attack Designs

Spoofing in front-near position of victim without contextual information

Spoofing relative to a "target car" -- in front or behind, relative to victim

Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., ... & Mao, Z. M. (2019, November). Adversarial sensor attack on lidarbased perception in autonomous driving. In Proceedings of the 2019

Sun, J. S., Cao, Y. C., Chen, Q. A., & Mao, Z. M. (2020, January). Towards robust lidar-based perception in autonomous driving: General black-box adversarial sensor attack and countermeasures. In USENIX Security Symposium (Usenix Security'20).

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. (2022). Security Analysis of {Camera-LiDAR} Fusion Against {Black-Box} Attacks on Autonomous Vehicles. In 31st USENIX Security Symposium (USENIX Security 22) (pp. 1903-1920).

Compromise sensor fusion with "frustum" attack

Frustum Vulnerability

3D space <u>in front or behind</u> an existing "target vehicle" is consistent with unaltered 2D image

Shadow Vulnerability

Real 3D objects create a void region of space <u>behind</u> them where no LiDAR points exist

Frustum Definition

2D image unable to resolve range information – leads to 3D "frustum" extruded along range axis

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. (2022). Security Analysis of {Camera-LiDAR} Fusion Against {Black-Box} Attacks on Autonomous Vehicles. In *31st USENIX Security Symposium (USENIX Security 22)* (pp. 1903-1920). Viewing frustum defined by a camera field-of-view.

Configuration for frustum attack. Adversary spoofs in front or behind target object.

5

Partial-Information Attacks on LiDAR

Securing Autonomous Vehicles Under Partial-Information Attacks

Attackers are more ambitious than ever

Connected vehicles, edge computing makes CPS vulnerable

AVs are vulnerable to many attack vectors

Remote attacks on AVs already demonstrated

Threat Model

- Compromised sensor (e.g., LiDAR sensor)
- Cyber threat at sensor, comms, or processing substrate

Knowledge Model

- Limited a-priori information
- Only access to raw data at sensor level

Attacker Capabilities

- Attacker has access to the sensor data (spherical points)
- Range modification → attacker can modify only the range of the points due to LiDAR data structure
- Range nullification → attacker can set range value of points to NULL
- Add/drop LiDAR datagrams
- Attacker <u>cannot</u> modify point angles

for a cyber attack to be effective

Understanding the LiDAR point cloud

Point cloud projected onto image for visualization purposes

Each point is a 3D return from a laser

Color corresponds to range of the point (distance) LiDAR has 64 vertical (elevation) channels and many horizontal (azimuth)

Attacker subroutines – "masking"

Find angles in the point cloud matrix that originally returned "NULL"

Mask points pertaining to an existing object

Mask points that will be affected by inserting a new "trace"

**Color overloaded \rightarrow red means "1" and all others "0" for a binary mask

Original Point Cloud

Attacker subroutines – "inpainting"

Inpaint mask as background from context

Given mask, change ranges to make masked region appear like background

Inpaint mask as object from trace

Given mask, change ranges to make masked region appear like object

Original Point Cloud

Inpainted Point Cloud

Original Point Cloud

Mask trace

Find Points to Manipulate

Inpaint mask as object from trace

Manipulate points to look like object

- Attacks built from previous subroutines
- Context-aware: attacker builds awareness in real time
- Attacker only needs to wait for "right moment" to attack.
- <u>Attacks</u>: false positive, replay, object removal

TABLE II: Attack executions are constructed from subroutines. Frustum-type attacks use other attacks as subroutines.

	Num.	Att. Case Name	Subroutines
Context Unaware	ATT.1	False Positive	FindMissingAngles GetPointMaskFromTrace InpaintMaskAsObjectFromTrace
	ATT.2	Dual False Positive	FindMissingAngles GetPointMaskFromTrace InpaintMaskAsObjectFromTrace
	ATT.3	Forward Replay	N/A
	ATT.4	Reverse Replay	N/A
Context Aware	ATT.5	Clean Scene	InpaintMaskAsBackgroundFromContext
	ATT.6	Object Removal	Object Detection, Tracking GetPointMaskFromObject InpaintMaskAsBackgroundFromContext
	ATT.7	Frustum Translation	Object Removal False Positive
	ATT.8	Dual Frustum False Positive	Object Removal False Positive
Context Aware	ATT.4 ATT.5 ATT.6 ATT.7 ATT.7	Reverse Replay Clean Scene Object Removal Frustum Translation Dual Frustum False Positive	N/A InpaintMaskAsBackgroundFromConte Object Detection, Tracking GetPointMaskFromObject InpaintMaskAsBackgroundFromConte Object Removal False Positive Object Removal False Positive

Case study: Reverse Replay attack

Case study: Frustum Translation attack

Duke

Demonstrated success on industry-grade AV

15

Tested on Baidu's Apollo - Level 5, fully autonomous self-driving vehicle

Extending attacks into aerial domain

- Attacks are data-source agnostic
- Attacks are platform agnostic
- Moving analysis to AirSim simulator

17

Security-Aware Sensor Fusion

Securing Autonomous Vehicles Under Partial-Information Attacks

Monitoring data asymmetries

- Centralized object tracking
- Maintaining sensor-specific "scores"
- Scores derived from likelihood ratios

Distributed tracking and fusion

- 3D monocular camera detection
- Distributed object tracking
- Post-tracking fusion

RATT SCHOOL #

ENGINEE

Monitoring for data asymmetries

Extending 2d data to 3d with scene context

PRATT SCHOOL of ENGINEERING

Monocular Detection

- <u>Motivation</u>: 2D detections from camera are ambiguous when extended into 3D
- <u>Solution</u>: detect 3D objects from 2D images using context directly
- Algorithm: PGD, M3D-RPN

Post-Tracking Fusion

- <u>Motivation</u>: uncompromised sensor compensates for inconsistent dynamics of compensated sensor
- <u>Solution</u>: perform tracking on each sensor and fusion after tracking
- <u>Algorithm</u>: Distributed data fusion (e.g., covariance intersection, conservative Kalman filtering)

Monocular Detection

Monocular detection extends object detection from 2D data to 3D detections using context and optimization

Covariance Intersection (CI) Fusion

Cl fuses two data sources (**red**, **green**) conservatively to reduce uncertainty of estimate (**blue**). Cl useful when data correlations unknown (e.g., same platform)

remove existing objects

22

Outcomes at perception

- All AVs tested use same LiDAR perception algorithm
 - Therefore, outcomes at perception are identical for AVs
 - We show difference between attacks
- Metric → "Increment over baseline"
 - (1) run baseline AV
 - (2) run attack on AV
 - (3) compute difference

Attacks successful in creating false positives and false negatives

False Negative Increment

Outcomes at tracking

PRATT SCHOOL of ENGINEERING

- Limited-information cyber attacker can disrupt LiDAR-based AVs
- Attacker gains necessary situational awareness online
- Attacks are successful in many scenarios: KITTI, nuScenes, Apollo
- Basic security-aware architectures can improve assuredness

Thank you

Duke PRATT SCHOOL of ENGINEERING

Backup

Securing Autonomous Vehicles Under Partial-Information Attacks

Safety has received much of the attention...but what if data are *adversarially compromised?*

Remote attacks on AVs

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., ... & Kohno, T. (2011, August). <u>Comprehensive experimental analyses of automotive attack surfaces</u>. In *USENIX security symposium* (Vol. 4, No. 447-462, p. 2021).

• Physical attacks

Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., ... & Mao, Z. M. (2019, November). <u>Adversarial sensor attack on lidar-based perception</u> in autonomous driving. In *Proceedings of the 2019 ACM CCS* (pp. 2267-2281).

Hallyburton, R. S., Liu, Y., Cao, Y., Mao, Z. M., & Pajic, M. (2022). Security Analysis of <u>{Camera-LiDAR} Fusion Against {Black-Box} Attacks</u> on Autonomous Vehicles. In *31st USENIX Security Symposium (USENIX Security 22)* (pp. 1903-1920).

• White-box attacks

Tu, J., Ren, M., Manivasagam, S., Liang, M., Yang, B., Du, R., ... & Urtasun, R. (2020). Physically realizable a<u>dversarial examples for lidar object detection</u>. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 13716-13725).

• Cyber attacks

Hallyburton, R. S., & Pajic, M. (2023). Securing Autonomous Vehicles Under <u>Partial-Information Cyber Attacks</u> on LiDAR Data. *arXiv preprint arXiv:2303.03470*.

Target selection for situational awareness

Thank you

