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Big Picture: Joint Optimization of Control and

Networks
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Application: Distributed Localization in

GPS-Denied Environments
▶ Desire low cost, low complexity, robust, high-performance

solutions to tracking/RADAR in GPS-denied
environments
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GPS-Denied Environments

▶ Low cost, low complexity: sensors have unreliable
clocks and noisy RF

▶ Robust: no single point of failure ⇒ distributed sensors
with robustness to failure of individual sensors

▶ High-performance: need to generate reliable
localization estimates using noisy ToF measurements
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Need for Synchronization

▶ Given accurate sensor locations, tightly synchronized
clocks, and perfect RF channels, distributed sensor
networks can produce accurate location estimates

▶ Timing drifts and RF noise reduce localization accuracy

▶ Can reduce timing noise by using RF channel to
synchronize clocks at expense of not being able to
perform localization when synchronizing

Need to optimize between localization and
synchronization
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System Model

▶ Single asset to be tracked:
▶ Asset transmits beacon signal at known times to agents

to facilitate tracking in GPS-denied environment
▶ Asset moves according to known Markov model

▶ Network of m stationary sensing agents
▶ Sensors measure time-of-flights (ToFs) of beacon signal

& fuse measurements to localize asset

9 / 37



System Model – cont.

▶ ToFs are triply stochastic, depending on:
▶ Vehicle motion state
▶ Clock drift among sensors, may be correlated over

time
▶ RF noise and received SNR depend on vehicle

motion state (propagation distance)

▶ Agents can synchronize (SYNCH) clocks at expense of
not being able to measure ToFs during that time
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Notation

▶ Let Mk denote the motion state of asset (position) and

s(i)k the sensor position, at time k ,

▶ ToF from the asset to sensor i : τ̂k,i =
||s(i)k −mk ||

c
+ Nk,i

▶ Nk,i is noise at time k and sensor i modeled as
conditionally Gaussian with variance that depends on time
since last sync T s

k and mk
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Variance Model

▶ Let σ2
N denote the sensor clock noise variance one slot

after synchronization (i.e., when T s
k = 1)

▶ Let σ2
D be the variance from RF noise when the

propagation distance is one unit.

▶ Then, the overall noise is modeled as:[
σ
(i)
k

]2
=

[
σ
(i)
k,S(T

s
k )

]2
+

[
σ
(i)
k,D(dia)

]2
= T s

kσ
2
N + d2

k,iσ
2
D .
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Simulation: 3D Ellipse Motion Model
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3D Ellipse Motion Model Parameters

Table: Ellipse Motion Model Parameters

Parameter Value
# Levels (including ground station) 3
# Levels above ground 2
Length of major axis of elliptical path 800 m
Length of minor axis of elliptical path 400 m
# States at each level above ground 6
Vertical spacing 100 m
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Normalized Clock Noise σN = 10
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Normalized RF Noise
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Optimization of Localization and Synchronization

▶ Synchronization is required to avoid clock variance
growing without bound

▶ Do not want to synchronize too often because not able to
localize using ToFs during synchronization times

▶ May be able to tolerate higher timing noise when RF
SNRs are high (asset is close to sensors)

▶ However, a high SNR at some time may not reflect
ambiguity built up from times when asset was operating
further from sensors

Want optimal approach to fuse all available information to
determine whether to synchronize or localize
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POMDP

▶ Optimal tracking and SYNC/LOC decision can be solved
using Bayesian framework:

Partially Observable Markov Decision Process
(POMDP)
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POMDP Formulation

▶ State: (Mk ,T
s
k )

▶ Controls: U = {sync, loc}
▶ Continuous observations: τ̂ k

. . .

▶ Squared-error localization cost function,

ck =
∥∥M̂k −Mk

∥∥2
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Beliefs

▶ Beliefs are a posteriori probabilities of states given
sequence of observations and controls:

bk(j) = Pr
(
Mk = j

∣∣τ [0...k],u[0...k]

)
.

▶ MAP location estimate is maximum over beliefs

M̂k = arg max
m∈M

bk (m) .
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Belief Update after Localization

▶ For a localization control, the Bayesian belief update at
time k + 1 is

bk+1(j) = ηf (τ̂ k+1|j , uk)bk(j),

▶ where η is a normalization constant

▶ For a synchronization control, belief update is via model
knowledge,

bk+1 = PTbk
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Solving the POMDP

1. Can treat POMDP as an MDP where the state is now the
belief state (continuous state space with many
dimensions)

2. Can solve via Q-learning, but any solution approach
requires approximation:
▶ Quantize beliefs to create discrete space: Triple-Q

learning
▶ Approximate Q function as linear function of beliefs:

Replicated Q-learning
▶ Approximate Q function using deep neural network:

Deep Q-Learning
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Fixed Rate Deterministic (FRD)

▶ One more approximation: drop the continuous features
and only use time since last synch:

▶ Fixed-rate deterministic (FRD): sync every k intervals

▶ Standard approach used in most of the literature,
synchronization interval often chosen using ad hoc
approach

▶ We optimize the synchronization interval to minimize the
MSE

▶ Results still use Bayesian location estimate using ToFs
and Markov movement model
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DQN Architecture

▶ The basic DQN architecture is shown below (with
unquantized belief and time since last sync as input):
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DQN Architecture - Cont.

▶ Optimize number of layers & number of hidden neurons
per layer
▶ Results show no significant performance gain with more

than 1 layer, more than 64 neurons in hidden layer

▶ RELU activation for all hidden neurons,

▶ Optimal policy is u∗ = argmin
u∈U

Qu(s)
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Deep Q-Networks DQNs - Training

▶ Discount factor, γ = 0.99

▶ Used multiple techniques from literature to improve
convergence, along with hyperparameter tuning:
▶ Learning rate, α = 0.1
▶ Used soft update:

▶ target network only updated every 100 steps
▶ target network update weight τ = 10−3

▶ Used experience replay buffer:
▶ 106 entries
▶ 64 batch size
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Deep Q-Networks DQNs – Training 2

▶ ϵ-greedy annealed from 1 to 10−4 over course of training

▶ Standard ϵ-greedy chooses uniformly among actions
▶ resulted in no learning in our application because sync

was often chosen by ϵ-greedy before ever reaching state
when sync is optimal action

▶ used domain knowledge to make ϵ-greedy randomly
choose an action that is biased to select loc with high
probability (0.99)
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DQN Features Tested

▶ Tested all combinations of time since last sync (Ns), time
of flights (τ̂ ), and beliefs (b)
1) [Ns ] (equivalent to FRD)
2) [τ̂ ] 3) [b] 4) [τ̂ ,b]
5) [τ̂ ,Ns ] 6) [b,Ns ] 7) [τ̂ ,b,Ns ]

▶ Found Ns to be essential: performances of feature
combos without Ns were much worse than others and are
not shown
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Test Performance: RMS Localization Error and

Average Sync Rate
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Ongoing Research – Part I: Clock Drift Model

▶ Develop optimal synchronization/localization strategies
when clock drift modeled by random walk (breaks Markov
property)

▶ Approaches under investigation:

1. redefine underlying MDP using pairs of states and the
observation as the difference in ToFs across those states

2. use convolutional NN to directly extract information
from the beliefs in the presence of the memory effect of
the random walk

30 / 37



Convolutional Deep Q-Network (CDQN) design
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Optimizing Filter Length
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▶ Initial experiments show that a CNN can achieve good
performance on this channel

▶ Filter length is much greater than the channel memory

▶ Average pooling works better than max pooling
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Ongoing Research – Part II: Coordination of

Communication for Distributed Sensors

▶ Distributed sensors generate noisy measurements that
depend on the distance from a vehicle being tracked

▶ These measurements are selectively sent to a centralized
fusion center over a shared wireless channel
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Ongoing Research – Part II: Coordination of

Communication for Distributed Sensors

▶ If more than one sensor transmits simultaneously, collision
occurs and no sensor measurements will reach the fusion
center in that interval

▶ Overall problem is Decentralized POMDP (Dec-POMDP)

▶ Dec-POMDPs are even harder to solve than POMDPs

▶ Can make Dec-POMDP closer to POMDP by sharing
beliefs from fusion center back to agents
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Ongoing Research – Part III: Optimizing Drone

Data Collection and Delivery

Joint project with researchers from Pontifical Catholic
University of Rio de Janeiro (PUC-RIO)
▶ Ground sensors are deployed to

monitor a remote area but do not have
long-range communication

▶ Multiple UAVs are tasked with
collecting data from the ground
sensors for delivery to a fusion center
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Ongoing Research – Part III: Optimizing Drone

Data Collection and Delivery

▶ UAVs must physically move closer to other agents to:
▶ receive information from sensors
▶ exchange information with other drone
▶ deliver information to an internet backhaul to the fusion

center

▶ Using Multi-agent Reinforcement Learning (MARL) to
control drone movement patterns to minimize data
latency
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Thank You!

Any questions?
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