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Collaborations with CoE PIs

• Ongoing collaboration with Dawn Hustig-Schultz and Ricardo Sanfelice (UCSC)

• Developed a distributed asynchronous heavy ball algorithm

• Paper to be presented at ACC 2023 in San Diego next month

• A journal extension is in the works

• Ongoing collaboration with Parham Gohari, Mustafa Karabag, Cyrus Neary, and Ufuk Topcu
(UT-Austin)

• CDC 2023 paper on private RL (under review)

• CDC 2023 paper on private stochastic matrices (under review)

• Another paper under review at UAI for privacy in multi-agent planning

• Various extensions are in the works



Collaborations with Air Force Colleagues

• Applied optimization to weapon-target assignment (WTA) problems with RW: 
Katherine Hendrickson, Prashant Ganesh, Kyle Volle, Paul Buzaud, Kevin Brink, and Matthew Hale,     
“Decentralized Weapon–Target Assignment Under Asynchronous Communications”, Journal of 
Guidance, Control, and Dynamics, 2023, 46:2, 312-324.

• Work on anomaly detection with RY: 
M. Ubl, B. Robinson, and M.T. Hale, “Anomaly search over many sequences with switching costs,”      
Under review at Control Systems Letters

• 2023 AIAA SciTech paper with Michael Anderson and cadets from USAFA

• Work on optimization in the loop with RV:
G. Behrendt, A. Soderlund, M. Hale, and S. Phillips, “Autonomous satellite rendezvous and proximity   
operations with time constrained sub-optimal MPC,” Accepted to 22nd IFAC World Congress, 2023. 

• Engaging with AFRL every summer
• William Warke was a Summer Scholar in 2018, 2019, 2022 at RW with Kevin Brink
• I was a Summer Faculty Fellow in 2020 at RW with Kaitlin Fair/Kevin Brink
• Matthew Ubl was a Summer Scholar in 2021 at RY with Ben Robinson
• Gabriel Behrendt was a Summer Scholar in 2022 at RV with Sean Phillips
• Alexander Benvenuti was a Summer Scholar in 2022 at RW with Scott Nivison

• For summer 2023: 
• William Warke will be at RW with Kevin Brink
• Gabriel Behrendt will be at RW with Zach Bell
• Alexander Benvenuti will be at RW with Brendan Bialy
• Calvin Hawkins will be at RY with Ben Robinson
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Anomaly Search Over Multiple Sequences

▪ Anomaly Search: Identifying data that deviates from the norm among many 

options

▪ Cognitive Radio (open frequencies)

▪ Clinical Trials (successful treatment plans)

▪ Intrusion Detection (compromised system)

▪ Area Surveillance (changes of interest)

▪ Identifying anomalies accurately often requires many observations/samples

▪ i.e., lots of information
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Goal: Given multiple choices we can observe (data streams), how do we 

identify anomalous ones as quickly as possible, while still being accurate?
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Want to Identify Anomalies Quickly and Accurately
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Problem:

Given 

▪ 𝑘 ≤ ∞ data streams, 

▪ with anomalous streams occurring with prior probability ෝ𝜋, 

Develop an algorithm to identify an anomalous data stream 

▪ in as few observations (𝜏) as possible, 

▪ with a false-identification error probability less than 𝜖. That is,

minimize 𝔼 𝜏

such that ℙ 𝐻𝑘𝜏 = 𝐻0 ≤ 𝜖
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▪ The optimal algorithm, based on the Sequential Probability Ratio Test, 

is known (Lai, 2011)

▪ Assume observations of nominal data streams follow distribution 𝑓0, 

anomalous ones follow 𝑓1

▪ The Log-Likelihood Ratio of an observation 𝑋𝑡
𝑘 is ℓ 𝑋𝑡

𝑘 = log
𝑓1 𝑋𝑡

𝑘

𝑓0 𝑋𝑡
𝑘

▪ Add observations up to Λ𝑇
𝑘 = σ𝑡=0

𝑇 ℓ 𝑋𝑡
𝑘

▪ If Λ𝑇
𝑘 crosses a lower threshold 𝛾𝐿 < 0, declare it nominal, switch to 

next data stream

▪ If Λ𝑇
𝑘 crosses an upper threshold 𝛾𝑈 > 0, RED FLAG, declare it 

anomalous

Existing State-of-the-Art Algorithm Uses One Threshold Parameter

7

Optimal Thresholds (Lai, 2011): The optimal thresholds of this algorithm are 𝛾𝐿 = 0 and 𝛾𝑈 = 𝛾𝑈
∗

Λ𝑇
𝑘

𝛾𝑈

𝛾𝐿
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▪ Issue #1: We know that an optimal upper threshold 𝛾𝑈
∗ exists, but it cannot be directly calculated

▪ Issue #2: This algorithm also does not consider the case of switching costs

▪ Switching Costs: When the observer switches from data stream 𝑘 to data stream 𝑘 + 1, it incurs some switching cost 𝜆

▪ Dead-time when no useful observations can be taken

▪ Some algorithms exist that address switching costs, none perform very well

▪ Separate exploration/exploitation steps

▪ Pre-scheduling when we can switch (block scheduling)

Existing Algorithms Don’t Handle Switching Costs Well
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Goal: Can we develop an algorithm to solve the anomaly detection problem 

efficiently while minimizing switching costs?
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Want to Identify Anomalies Quickly (Including Switches) and Accurately
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New Problem:

Given 

▪ 𝑘 ≤ ∞ data streams, 

▪ with anomalous streams occurring with prior probability ෝ𝜋, 

Develop an algorithm to identify an anomalous data stream 

▪ in as little time as possible, 

▪ with a false-identification error probability less than 𝜖. That is,

minimize 𝔼 𝜏 + 𝜆𝔼 𝑆

such that ℙ 𝐻𝑘𝜏 = 𝐻0 ≤ 𝜖
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▪ What do we mean when we say we want to minimize switches?

▪ We want to reduce the probability that we switch away from an anomalous data stream, i.e., our false negative error

▪ 𝛾𝑈 governs when we declare a data stream as anomalous, 𝛾𝐿 governs when we switch to a new one

▪ We reduce the number of switches by tuning 𝛾𝐿

We Can Use Approximately Optimal Thresholds
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Approximately Optimal Thresholds for Switching Costs (Ubl, Robinson, Hale, 2023): The approximately 

optimal thresholds for anomaly detection with switching costs are:

𝛾𝑈
∗ = log

1 − ො𝜋

ො𝜋

1 − 𝜖

𝜖

𝛾𝐿
∗ = arg min

𝛾𝐿≤0
𝐶 ⋅ , 𝜖, ො𝜋, 𝑓0, 𝑓1

These thresholds approach optimality when 𝑓0 ≈ 𝑓1, 𝜖 ≪ 1, and 𝜆 ≫ 0

𝐶: 1 − Dimensional, strongly convex
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Simulation Results

▪ ො𝜋 = 0.1, 𝜖 = 0.01, 𝐹0 = 𝒩 0,1 , 𝐹1 = 𝒩 0,1.5

▪ Compared the algorithm from (Lai, 2011) to 

ours (Ubl, 2023) in terms of expected 

observation-switching cost 

𝔼 𝜏 + 𝜆𝔼 𝑆

as switching cost 𝜆 grows

▪ Comparable performance for small 𝜆, our 

algorithm quickly achieves better performance 

as 𝜆 grows large
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Thank you
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