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With the advent of technological improvements in imaging systems and computa-

tional resources, as well as the development of image-based reconstruction techniques,

it is necessary to understand algorithm performance when subject to real world condi-

tions. Specifically, this dissertation focuses on the stability and performance of a class of

image-based observers in the presence of intermittent measurements, caused by e.g.,

occlusions, limited FOV, feature tracking losses, communication losses, or finite frame

rates.

Observers or filters that are exponentially stable under persistent observability

may have unbounded error growth during intermittent sensing, even while providing

seemingly accurate state estimates. In Chapter 3, dwell time conditions are developed

to guarantee state estimation error convergence to an ultimate bound for a class of

observers while undergoing measurement loss. Bounds are developed on the unstable

growth of the estimation errors during the periods when the object being tracked is not

visible. A Lyapunov-based analysis for the switched system is performed to develop an

inequality in terms of the duration of time the observer can view the moving object and

the duration of time the object is out of the field of view.

In Chapter 4, a motion model is used to predict the evolution of the states of the

system while the object is not visible. This reduces the growth rate of the bounding

function to an exponential and enables the use of traditional switched systems Lyapunov

12



analysis techniques. The stability analysis results in an average dwell time condition

to guarantee state error convergence with a known decay rate. In comparison with

the results in Chapter 3, the estimation errors converge to zero rather than a ball, with

relaxed switching conditions, at the cost of requiring additional information about the

motion of the feature.

In some applications, a motion model of the object may not be available. Numerous

adaptive techniques have been developed to compensate for unknown parameters

or functions in system dynamics; however, persistent excitation (PE) conditions are

typically required to ensure parameter convergence, i.e., learning. Since the motion

model is needed in the predictor, model learning is desired; however, PE is difficult to

insure a priori and infeasible to check online for nonlinear systems. Concurrent learning

(CL) techniques have been developed to use recorded data and a relaxed excitation

condition to ensure convergence. In CL, excitation is only required for a finite period

of time, and the recorded data can be checked to determine if it is sufficiently rich.

However, traditional CL requires knowledge of state derivatives, which are typically

not measured and require extensive filter design and tuning to develop satisfactory

estimates. In Chapter 5 of this dissertation, a novel formulation of CL is developed

in terms of an integral (ICL), removing the need to estimate state derivatives while

preserving parameter convergence properties.

Using ICL, an estimator is developed in Chapter 6 for simultaneously estimating the

pose of an object as well as learning a model of its motion for use in a predictor when

the object is not visible. A switched systems analysis is provided to demonstrate the

stability of the estimation and prediction with learning scheme. Dwell time conditions as

well as excitation conditions are developed to ensure estimation errors converge to an

arbitrarily small bound.

Experimental results are provided to illustrate the performance of each of the

developed estimation schemes. The dissertation concludes with a discussion of the
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contributions and limitations of the developed techniques, as well as avenues for future

extensions.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Recent advances in imaging technology and computer hardware have enabled

the use of vision sensors for recovering information about the operating environment

for autonomous systems. Example applications include object tracking [1, 2], scene

reconstruction and 3D modeling [3–5], object and location identification [6, 7], facial

recognition [8–10], motion estimation [11, 12] and simultaneous localization and

mapping (SLAM) [13–17]. Coupled with the development of nonlinear control theory,

cameras are an ideal feedback sensor for various autonomous systems. However,

several estimation and control challenges persist. Most of these challenges stem from

the fact that full state feedback of observed features is not available: 3D coordinates

of features cannot be immediately reconstructed since the imaging process involves

the projection of the feature onto a 2D image plane (i.e., the range to any feature is

lost). One method to compensate for the lack of range information is to use multiple

overlapping images from multiple cameras (e.g., stereo vision). Depth information is

derived from the parallax induced by the relative translation around a feature, however

features farther away from the camera require larger relative translation to induce

sufficient parallax. This introduces a drawback of requiring multiple cameras for depth

recovery in that the cameras must be aligned for a specific range of targets, and for

many applications it is challenging to separate the cameras sufficiently to provide a

large enough baseline to accurately recover depth information. An alternate approach

to multiple cameras is to use a single camera that acquires multiple images that can

be compared, where the motion of the camera (e.g, in vehicular systems) provides

sufficient parallax. This approach is often called Structure from Motion (SfM).

Two significant issues with using cameras for feedback are the intermittent loss

of features (e.g., due to occlusions, feature tracking losses, limited camera field of
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view, etc) and the slow sampling rate (which can be modeled as a periodic loss of

features). In this dissertation, a switched systems framework is investigated to analyze

the stability of observers during intermittent loss of feature observation. During periods

in which the feature is outside the camera field of view (FOV) or in between frames

of a video stream, the error dynamics are unstable, and although the estimation error

may even be exponentially stable during the observable periods, the estimates may

still diverge in the limit if the feature is unobservable for long periods of time. By using

switched systems theory, sufficient conditions on the visibility time can be developed to

guarantee convergence at a known rate. This analysis provides a condition for trusting

the state estimates from the observer and an updated performance metric (via the error

decay rate) based on the error growth rate during the unobservable periods. These

conditions can also be used to ease trajectory generation constraints. For example,

traditional visual servoing requires that the features remain in the camera FOV, which

may be difficult for a camera mounted on a nonholonomic vehicle [18]. By relaxing

this constraint (i.e., by allowing the target to temporarily leave the FOV), more efficient

guidance laws may be designed.

1.2 Literature Review

Solutions to the SfM problem can be broadly classified as either batch or recursive

methods. Batch (or offline) methods rely on epipolar constraints and employ a nonlinear

optimization technique to determine both the relative camera pose between images

and the 3D feature coordinates, up to an unknown scale [19–21]. Recursive (or online)

techniques formulate a dynamic system to represent the relative motion of the feature

with respect to the camera, and utilize state estimators or observers to reconstruct

3D feature coordinates. These online methods are more appropriate for real time

applications since they only store current state estimates and generate new estimates

using only the new image information. Examples of observers or filters for solving the

SfM problem are provided in [22–28]. Observer based methods have also been applied
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to the reverse problem of determining feature depth with a stationary camera and known

feature motion [29–35]. In these cases, the feature motion is expressed as an affine

dynamical system with partially unmeasurable states, expressed in coordinates relative

to the fixed camera. Finally, observers have been used to recover the relative depth of

a moving feature from a moving camera with known velocities [36]. In each of these

cases, continuous observation of the features is assumed.

Removing the continuous observation requirement has been investigated for

problems where the objective is to track the 2D image coordinates of features that

undergo temporary occlusions. For example, authors in [37] construct autoregressive

models for features while they are in view, and then use the models to predict the

location of a feature of interest when it is occluded. Similarly, in [38, 39] Kalman or

particle filters are used to estimate feature motion and predict feature coordinates while

occluded. In contrast to using dynamic models, authors in [40–42] use visual context

to increase the robustness of feature trackers to occlusions. All of these methods aid

in tracking the target location on the image plane (i.e. only tracking feature points in

images), and must be used in conjunction with SfM techniques to provide a continuous

estimate of the full 3D target coordinates while undergoing intermittent observability

loss. In [43], a SfM technique that is robust to occlusions or feature tracking losses is

developed, but only the shape of the object is recovered due to the orthogonal projection

model, and not the 3D position of the object relative to the camera.

Examples of filters that are robust to missing measurements are provided in

[44–60]. In [44, 47–51, 54–58, 60–71], measurement loss is modeled as a random

Bernoulli process with known probability. As a result, filter stability can only be shown

in the stochastic sense, i.e. only the expected value of the estimation error is shown to

asymptotically converge. In this dissertation, no assumption is made on the nature of

switching; any switching sequence that meets certain dwell time conditions is shown to

be stable. Furthermore, for some of the previous results (e.g., [44,50,55,57,61–66,71]),
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measurement loss is imperceptible, and measurements consisting of only noise are

incorporated into the state estimates. For the machine vision applications discussed

in this dissertation, loss of feature tracking is detectable, and therefore erroneous

measurements are not incorporated into the state estimates.

Estimation and control with limited measurements has also been extensively

studied in the networked control systems (NCS) literature [44, 72–77]. Typically, the

problem is formulated as a sensor and decision maker separated from the estimator or

controller by a wired or wireless network. In [72, 75–77], the sensor makes decisions

on when to send sensor information to minimize the use of network bandwidth whereas

in [73] and [74] data loss is due to the unreliable communication channel. In both cases,

a model of the controlled system is used to propagate state estimates during the periods

when sensor data is unavailable. The dwell time conditions arise from the requirement

that a Lyapunov-like function must have an overall decreasing trend. This is less strict

than other results where the function must decrease across repeated activations of

every subsystem; in this work, the functions may increase for short durations. Also, in

contrast to some NCS literature [72, 75–77], the results in this work are also applicable

to cases when loss of observability is uncontrollable.

Many of the probabilistic approaches for SfM, or the associated SLAM problem,

utilize a predictor or circumvent the intermittent sensing issue by only updating state

estimates when new measurements are available (see [78] and [79] for an overview).

However, these approaches are based on either linearizations of the nonlinear dynam-

ics (e.g., [80–85]), and therefore only show local convergence, or are sample based

(e.g., [86] and [87]), and therefore can only show optimal estimation in the limit as the

number of samples approach infinity. Much of the recent literature on target tracking

has focused on using suboptimal algorithms for tracking using simplified motion models

(e.g., constant velocity, constant turn rate, etc.), with a focus on reduced complexity

and improving practical performance, and do not analyze estimation error growth due
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to model uncertainty or show estimation error convergence [88, 89]. Some methods

explicitly handle occlusions, though they either assume availability of range measure-

ments and only estimate position, therefore rendering the system linear, e.g., [90–92], or

only estimate relative depth ordering and do not consider the pose estimation problem,

e.g., [93]. Other methods attempt to learn a model of the target motion online using

function approximation methods, e.g., [94–99], though do not provide a convergence

analysis. Conversely, the full nonlinear dynamics are analyzed in this dissertation, and

the proposed estimation framework has computing requirements that can be met by

typical or low-end modern computers (e.g., see experimental results in the following

chapters). Furthermore, convergence and consistency proofs of probabilistic estimators

typically require knowledge of the probability distribution of the uncertainty in the sys-

tem, and result in convergence in mean or in mean square. In comparison, analysis of

deterministic observers typically assume boundedness and some level of smoothness of

disturbances, and yield asymptotic or exponential convergence. The primary contribu-

tion of this work is in the development and analysis of a framework to show robustness

to intermittent measurements when utilizing deterministic, image-based observers.

The inherent switching in the system caused by the loss of visibility of features

prompts the use of Lyapunov-based, hybrid systems analysis techniques to examine

the stability of the observers of interest. The systems considered in this dissertation

are classified as switched systems, where the states of the system (i.e. the estimation

error) are continuous functions of time while the time derivatives of the states are dis-

continuous with respect to time [100]. Switched systems are a subset of hybrid systems,

where both the states and state derivatives are functions that can be discontinuous

with respect to time. Although the true states and their derivatives are continuous in the

systems considered in this work, the update law for the state estimates change based

on whether the feature is visible to the camera, causing discontinuities in the estimation

error derivatives, and the classification as a switched system
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The overarching strategy for proving stability of switched systems is to first show

stability of the individual subsystems through a traditional Lyapunov analysis, and then

develop switching conditions upon which the overall system will remain stable. The

latter is required because of the well known phenomenon that pathological switching

between stable subsystems can cause instability [101]. One approach to demonstrating

stability of switching is to use a common Lyapunov function for all subsystems. If the

time derivative of the Lyapunov function can be upper bounded by a common negative

definite function for all subsystems, the overall system is stable [101]. In some cases,

one cannot determine a common Lyapunov function for every stable subsystem.

For example, a common Lyapunov function cannot be developed for a set of linear

systems, where the solution of the Lyapunov equation, P , is used in the quadratic

Lyapunov function for stability and is dependent on the system matrix, A, of each

subsystem. In these cases, the subsystem-specific Lyapunov function of the active

subsystem is used to model the energy decay of the overall system, and switching

between subsystems causes jumps in the overall energy storage function. Bounding the

jumps and enforcing the requirement that every subsystem-specific Lyapunov function

must decrease between successive activations of its respective subsystem results in

conditions on when switching between subsystems may occur to guarantee stability.

These conditions typically manifest as forward, reverse, or average subsystem dwell

time requirements [101], i.e. conditions on how long subsystems must remain active

before switching.

Complications arise when a subset of the subsystems are unstable. For the

applications discussed in this dissertation, when the feature of interest is not visible

to the camera, measurements are not available to estimate the state of the system,

and the estimation errors grow. For linear time invariant (LTI) systems with stable and

unstable subsystems, the authors in [102] develop an average dwell time condition to

ensure stability. Since the subsystems are all LTI, state trajectories are exponential,
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and a condition on the overall time spent in the stable and unstable systems can

be developed based on the ratio of maximum unstable eigenvalues and minimum

stable eigenvalues. Similar conditions were developed in [103] for nonlinear switched

systems with exponentially stable and exponentially unstable subsystems. However, in

Chapter 3, the unstable system is not exponentially unstable, and therefore algebraic

simplifications cannot be determined that yield the less restrictive average dwell time

conditions.

To relax dwell time conditions arising from the stability analysis, a predictor can

be utilized to update state estimates when measurements are not available. However,

prediction based on the state dynamics requires knowledge of a motion model of

the target to generate target velocity signals. A number of adaptive methods have

been developed to compensate for unknown functions or parameters in the dynamics,

however, parameter estimates may not approach the true parameters without persistent

excitation (PE) [104–106]. The PE condition cannot be guaranteed a priori for nonlinear

systems, and is difficult to check online, in general. Recently, a technique known as

concurrent learning (CL) was developed to use recorded data for online parameter

estimation [107–109] without PE. In CL, input and state derivatives are recorded and

used similar to recursive least squares to establish a negative definite parameter

estimation error term in the Lyapunov analysis, and hence a negative definite Lyapunov

derivative, provided a finite excitation condition is satisfied. However, state derivatives

can be noisy, and require extensive filter design and tuning to yield satisfactory signals

for use in CL. A novel formulation of CL is developed in Chapter 5 that removes the

need for state derivatives while still maintaining convergence guarantees.

1.3 Contributions

In Chapter 3, a class of image-based observers are analyzed to investigate sta-

bility and performance in the presence of intermittent measurements. In particular, a

framework is constructed that utilizes an exponential observer when measurements are

21



available, and performs a zero order hold when measurements are unavailable. Bounds

on the target velocity are used to bound the growth of the error during the unobservable

periods and therefore the position of the target is bounded by a sphere that grows with

time at a rate proportional to the maximum target velocity. Consequently, the Lyapunov-

like function grows with a bound based on the trigonometric tangent function, resulting

in a maximum contiguous duration in which the target can remain unobservable. The

contribution of Chapter 3 is in the development of the dwell time and reverse dwell time

requirements for estimator error convergence for uncertain nonlinear dynamics which

exhibit finite escape time (i.e., faster than exponential) instabilities. Calculation of the

dwell times only requires knowledge of the bounds of the target velocity. Experimental

results are provided to illustrate the performance of this approach, and the effect of

varying the amount of time measurements are unavailable.

A similar framework is constructed in Chapter 4, however a predictor is used to

update the state estimates when measurements are not available. This results in

an average dwell time condition and an average unmeasurability time condition, as

opposed to the maximum time for each period of measurement unavailability. However,

a motion model in the form of a feedback law is required to achieve these results.

A contribution of Chapter 4 is the extension of one of the stability results in [103] to

nonautonomous nonlinear switched systems by use of nonautonomous Lyapunov-like

functions. An additional contribution of Chapter 4 is the development of an observer and

predictor structure, and the application of the extended stability result to determine the

performance of this combined estimator during intermittent switching. A comparison

between the results in Chapters 3 and 4 demonstrate the tradeoff between the amount

of information that is known about the target and the allowable flexibility in observation

of the target for successful tracking. Experimental results are provided to demonstrate

the performance of this approach as well as to compare with a similar probabilistic

approach, namely an extended Kalman filter.
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A stepping stone to removing the requirement of a known motion model in order

to implement a predictor is provided in Chapter 5. A novel online adaptive update law

that ensures parameter convergence, and hence, exponential convergence for adaptive

controllers is developed in Chapter 5. Compared to other adaptive controllers that

ensure parameter convergence, the ICL controller developed in this chapter does not

require PE, and an eigenvalue procedure can be implemented to check if sufficient data

has been collected for learning. A contribution of this chapter is that the CL technique

is reformulated in terms of an integral, removing the need for state derivatives, while

preserving convergence guarantees. Compared to traditional adaptive methods that

utilize PE to ensure parameter convergence, and hence exponential convergence, CL

and ICL only requires excitation for a finite period of time, and the excitation condition

can be checked online. The ICL technique is formulated for both general control

affine and Euler-Lagrange systems. Monte Carlo simulation results are provided to

demonstrate the reduction in parameter estimation error as well as tracking error for

an example system in the presence of measurement noise when compared to the

traditional derivative-based CL.

In Chapter 6, a framework similar to Chapter 4 is developed to estimate the pose of

a target in the presence of intermittent measurements. Similar to Chapter 4, a predictor

is used when measurements are not available, thereby reducing the rate of estimation

error growth when measurements are unavailable. Unlike Chapter 4, the motion

model of the target is assumed unknown, and learned online using the techniques

developed in Chapter 5. Further, the full 6 degree of freedom (DOF) pose of the target

are estimated. The estimation errors are shown to converge to an arbitrarily small bound

provided an average dwell time condition over a finite number of switches is satisfied.

Experimental results are included to illustrate the performance of this approach.
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CHAPTER 2
SYSTEM MODEL

The development in this section is focused on the dynamics of the vision system of

interest, as well as basic underlying assumptions, that will be used for the subsequent

results in Chapters 3, 4 and 6.

2.1 Kinematic Motion Model

Figure 2-1. Reference frames and coordinate systems of a moving camera observing a
moving target.

In the following development, the notation ~(·) is used to denote geometric vectors,

i.e. members of E3, and is distinguished from its R3 expression in any particular ref-

erence frame. Figure 2-1 is used to develop the image kinematics. In Figure 2-1, FG

denotes an inertial reference frame fixed with arbitrarily selected origin and Euclidean

coordinate system and FC denotes a reference frame fixed to the camera. The right

handed coordinate system attached to FC has an origin at the principle point of the

camera, ~e3 ∈ E3 axis pointing out and collinear with the optical axis of the camera,

~e1 ∈ E3 axis aligned with the horizontal axis of the camera and ~e2 , ~e3 × ~e1 ∈ E3. The

vectors ~rq (t) ∈ E3 and ~rc (t) ∈ E3 represent the vectors from the origin of FG to the

target and the camera principle point, respectively. The position of the target relative to

the camera is then given by

~rq/c (t) , ~rq (t)− ~rc (t) ∈ E3. (2–1)
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The vector ~vq/c
C (t) ∈ E3 represents the relative velocity as viewed by an observer in

the camera frame, defined as

~vq/c
C (t) , d

dt

C
~rq/c (t) .

The relative velocity can be related to the time derivative with respect to the ground

frame as

d
dt

C
~rq/c (t) = d

dt

G
~rq/c (t)− ~ωG C (t)× ~rq/c (t) , (2–2)

where ~ωG C (t) ∈ E3 is the angular velocity of the camera frame with respect to the

ground frame. Using (2–1), d
dt

G
~rq/c (t) can be expanded as

d
dt

G
~rq/c (t) = ~vG q (t)− ~vG c (t) , (2–3)

where ~vG q (t) ∈ E3 is the linear velocity of the target as viewed by an observer in the

ground frame, defined as ~vG q (t) , d
dt

G
~rq (t), and ~vG c (t) ∈ E3 is the linear velocity of the

camera as viewed by an observer in the ground frame, defined as ~vG c (t) , d
dt

G
~rc (t).

Substituting (2–3) into (2–2) yields

d
dt

C
~rq/c (t) = ~vG q (t)− ~vG c (t)− ~ωG C (t)× ~rq/c (t) . (2–4)

In the following derivation, all vectors are expressed in the camera coordinate

system, i.e. the basis fixed in FC . Let rq/c (t), vG q (t), vG c (t), ωG C (t) ∈ R3 denote the

expressions of ~rq/c (t), ~vG q (t), ~vG c (t) and ~ωG C (t) in the camera coordinate system,

respectively, and be defined as

rq/c (t) ,

[
X (t) Y (t) Z (t)

]T
, (2–5)

vG q (t) ,

[
vq1 (t) vq2 (t) vq3 (t)

]T
, (2–6)

vG c (t) ,

[
vc1 (t) vc2 (t) vc3 (t)

]T
, (2–7)
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ωG C (t) ,

[
ω1 (t) ω2 (t) ω3 (t)

]T
, (2–8)

where X (t), Y (t), Z (t) ∈ R denote the Euclidean coordinates of the target position

relative to the camera position, vq1 (t), vq2 (t), vq3 (t) ∈ R denote the linear velocities

of the target with respect to ground frame, vc1 (t), vc2 (t), vc3 (t) ∈ R denote the linear

velocities of the camera with respect to the ground frame and ω1 (t), ω2 (t), ω3 (t) ∈ R

denote the angular velocity of the camera frame with respect to the ground frame.

Substituting (2–5), (2–6), (2–7), and (2–8) into (2–4) results in

Ẋ (t) = vq1 (t)− vc1 (t) + ω3 (t)Y (t)− ω2 (t)Z (t) ,

Ẏ (t) = vq2 (t)− vc2 (t) + ω1 (t)Z (t)− ω3 (t)X (t) , (2–9)

Ż (t) = vq3 (t)− vc3 (t) + ω2 (t)X (t)− ω1 (t)Y (t) .

To facilitate the subsequent analysis, the states of the system are defined as

x (t) = [x1 (t) , x2 (t) , x3 (t)]T =
[
X(t)
Z(t)

, Y (t)
Z(t)

, 1
Z(t)

]T
∈ R3. Formulating the kinematics

in this way is common in observer-based structure from motion literature [23, 28–35].

Taking the time derivative of the state definition yields

ẋ1 (t) =
Ẋ (t)

Z (t)
− X (t)

Z2 (t)
Ż (t) ,

ẋ2 (t) =
Ẏ (t)

Z (t)
− Y (t)

Z2 (t)
Ż (t) , (2–10)

ẋ3 (t) = − Ż (t)

Z2 (t)
.

Substituting (2–9) into (2–10) and simplifying yields the perspective state dynamics

ẋ (t) = g (t, x (t)), where g : [0,∞) × R3 → R3 is a nonlinear function that nonlinearly

depends on the partially measurable states, and can be expressed as

ẋ1 (t) = Ω1 (t, x) + ξ1 (t, x) + vq1 (t)x3 (t)− x1 (t) vq3 (t)x3 (t) ,

ẋ2 (t) = Ω2 (t, x) + ξ2 (t, x) + vq2 (t)x3 (t)− x2 (t) vq3 (t)x3 (t) , (2–11)

ẋ3 (t) = vc3 (t)x2
3 (t)− (ω2 (t)x1 (t)− ω1 (t)x2 (t))x3 (t)− vq3 (t)x2

3 (t) ,
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where Ω1, Ω2, ξ1, ξ2 : [0,∞)× R3 → R are defined as

Ω1 (t, x) = ω3 (t)x2 (t)− ω2 (t)− ω2 (t)x2
1 (t) + ω1 (t)x1 (t)x2 (t) ,

Ω2 (t, x) = ω1 (t)− ω3 (t)x1 (t)− ω2 (t)x1 (t)x2 (t) + ω1 (t)x2
2 (t) , (2–12)

ξ1 (t, x) = (vc3 (t)x1 (t)− vc1 (t))x3 (t) ,

ξ2 (t, x) = (vc3 (t)x2 (t)− vc2 (t))x3 (t) .

In Chapter 6, the orientation of the target will also be estimated. For that chapter,

the quaternion parameterization will be used to represent orientation. Let q ∈ H be

the unit quaternion parameterization of the orientation of the object with respect to the

camera, which can be represented in the four dimensional vector space R4 using the

standard basis 1, i, j, k as q (t) ,

[
q0 (t) qTv (t)

]T
∈ S4, where Sr ,

{
x ∈ Rp|xTx = 1

}
,

and q0 (t) and qv (t) represent the scalar and vector components of q (t). Based on

this definition, a vector expressed in the object coordinate system, ξq ∈ R3, can be

related to the same vector expressed in the camera coordinate system, ξc ∈ R3, as

ξc = q · ξq · q̄, where (̄) : S4 → S4 represents the unit quaternion inverse operator defined

as q̄ ,
[
q0 −qTv

]T
with identity q̄ · q = q · q̄ =

[
1 0 0 0

]T
, and (·) : R4 × R4 → R4

represents the Hamilton product1 , with property qa · qb ∈ S4 for qa, qb ∈ S4. The Hamilton

product can be expressed in block matrix notation as

qa · qb =

 qa0 −qTav

qav qa0I3 + q×av

 qb

1 For brevity, a slight abuse of notation will be utilized throughout the dissertation. For
v1, v2 ∈ R3 and q ∈ S4, the equation v2 = q ·v1 · q̄ can be written precisely as qv2 = q ·qv1 · q̄,
where qv1 ,

[
0 vT1

]T and qv2 ,
[

0 vT2
]T . In other words, an R4 quaternion, qv1, is

derived from an R3 vector, v1, by setting the scalar part of qv1 to zero and setting the vec-
tor part of qv1 as equal to v1. Similarly, the resulting vector, v2, is derived from the vector
component of qv2.
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where Ig ∈ Rg×g is the identity matrix. The kinematics for the relative orientation of the

object with respect to the camera are (see [110, Chapter 3.4] or [111, Chapter 3.6])

q̇ (t) =
1

2
B (q (t)) (ωq (t)− q̄ (t) · ωc (t) · q (t)) (2–13)

where B : S4 → R4×3 is defined as

B (ξ) ,

 −ξTv

ξ0I3 + ξ×v


and has the pseudoinverse property B (ξ)T B (ξ) = I3 (see [110, Chapter 3.4]).

Assumption 2.1. The state x (t) is bounded, i.e. x (t) ∈ X , where X ⊂ R3 is a convex,

compact set.

Remark 2.1. For the state estimates to converge to the states while remaining bounded,

the states themselves must remain bounded (analogous to the requirement that desired

trajectories must remain bounded for trajectory tracking control problems). During

periods in which the target is observable, bounds on the states are a result of the

physical constraints on the imaging system. For image formation, the target must

remain in front of the camera principle point by an arbitrarily small amount, ε ∈ R. This

provides an arbitrarily small lower bound on Z (t) and therefore an arbitrarily large upper

bound on x3 (t). Similarly, a feature with infinite range lower bounds x3 (t) by zero. In

addition, boundedness of the pixel coordinates of the target and boundedness of the

camera intrinsic parameter matrix (see the imaging model in the next section) result in

boundedness of x1 (t) and x2 (t). During the periods in which the target is unobservable,

these physical constraints no longer apply. However, Assumption 2.1 requires that

the target does not exhibit finite escape, even during the unobservable periods. This

restricts the relative motion of the target with respect to the camera; the target cannot

move behind the camera, even during the unobservable periods, else the state x3 (t) will

pass through infinity.
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Assumption 2.2. The motion of the camera is known and bounded in the sense that

vc1 (t), vc2 (t), vc3 (t), ω1 (t), ω2 (t) and ω3 (t) are known and bounded.

2.2 Imaging Model

Using projective geometry, the image coordinates of the feature point, p (t) =[
u (t) v (t) 1

]T
∈ R3, where u (t) , v (t) ∈ R, are related to the normalized Euclidean

coordinates, m (t) ,

[
X(t)
Z(t)

Y (t)
Z(t)

1

]T
∈ R3, by

p (t) = Am (t) ,

where A ∈ R3×3 is the known, invertible, camera intrinsic parameter matrix [112].

Since A is invertible, the states x1 (t) and x2 (t) are measurable when the target is in the

camera FOV.

Assumption 2.3. The target is uniquely identifiable from image projections, even across

periods of unobservability.

Remark 2.2. Algorithms such as the Kanade–Lucas–Tomasi (KLT) [113] feature tracker

have been developed to track image features in consecutive frames of a video stream,

however these may not be sufficient for object tracking if the object temporarily leaves

the FOV or becomes occluded; these feature trackers typically do not differentiate be-

tween new features and features that have been tracked previously and therefore cannot

track an object continuously through intermittent measurements, where continuity or

small deviation assumptions may not hold. Other feature descriptors, such as SIFT [114]

and SURF [115], have been used to match objects across affine transformations, and

therefore may be more robust to temporary loss of sight. Recently, machine learning

techniques have been used to recognize and localize objects in images [116, 117]. A

combination of these techniques can be used to track a feature through multiple periods

of intermittent visibility. See [1] and [118] for a survey of feature trackers and [116] for

examples and performance of modern object localization algorithms.
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Assumption 2.4. An observer for the state x (t) is used so that when the states x1 (t)

and x2 (t) are measurable, the state estimation error is globally exponentially convergent

at a rate of λon ∈ R>0, i.e. ‖e (t)‖ ≤ C ‖e (t0)‖ exp [−λon (t− t0)] for any initial condition

e (t0), with t0 ∈ R≥0 and some positive constant C ∈ R.

Remark 2.3. Exponentially convergent observers for image-based structure estimation

that satisfy Assumption 2.4 are available from results such as [30,31,119–122]. Many of

these results utilize an excitation condition as well as gain conditions to yield exponential

convergence. Any conditions required by the observer are also inherited here. Also,

in some cases (e.g., [122]), only the unmeasurable state, x3 (t), is estimated. In these

cases, the observer can be augmented as exemplified in the Appendix to maintain

continuity of the state estimates as is required in the following stability analysis (i.e.,

to guarantee the system is a switched system as opposed to a hybrid system with

discontinuous states).
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CHAPTER 3
STABILITY OF A CLASS OF IMAGE-BASED OBSERVERS DURING INTERMITTENT

MEASUREMENTS

In this chapter, the robustness of a class of image-based observers to intermittent

measurements is analyzed. During periods in which the feature is not visible, the growth

of a Lyapunov-like function is bounded using the dynamics developed in Chapter 2 and

the velocity bounds in Assumption 3.1 below. Combined with the exponential decay of a

Lyapunov function during periods in which the feature is observable, one can examine

the value of these functions after every cycle of losing and regaining observability of

the feature. Analyzing the limit of a sequence of cycles demonstrates the stability of the

system.

Assumption 3.1. Bounds for the camera and target velocities exist and are known, i.e.

the following inequalities are satisfied[
|vq1 (t)| |vq2 (t)| |vq3 (t)|

]T
≤

[
v̄q1 v̄q2 v̄q3

]T
[
|vc1 (t)| |vc2 (t)| |vc3 (t)|

]T
≤

[
v̄c1 v̄c2 v̄c3

]T
[
|ω1 (t)| |ω2 (t)| |ω3 (t)|

]T
≤

[
ω̄1 ω̄2 ω̄3

]T
where v̄q1, v̄q2, v̄q3, v̄c1, v̄c2, v̄c3, ω̄c1, ω̄c2, ω̄c3 ∈ R are known non-negative constants.

Remark 3.1. Conservative bounds on the target velocities can easily be established.

For example, the velocities of observed vehicular systems can readily be upper bounded

with some domain knowledge.

To facilitate the subsequent stability analysis, the unknown nonlinear functions in

(2–12) can be bounded as

ξ1 (t, x) ≤ v̄c1 ‖x (t)‖+ v̄c3 ‖x (t)‖2 , (3–1)

ξ2 (t, x) ≤ v̄c2 ‖x (t)‖+ v̄c3 ‖x (t)‖2 ,

31



Ω1 (t, x) ≤ ω̄2 + ω̄3 ‖x (t)‖+ (ω̄1 + ω̄2) ‖x (t)‖2 , (3–2)

Ω2 (t, x) ≤ ω̄1 + ω̄3 ‖x (t)‖+ (ω̄1 + ω̄2) ‖x (t)‖2 .

Substituting (3–1) and (3–2) into (2–11) and bounding the remaining terms yields the

following inequalities:

ẋ1 (t) ≤ ω̄2 + (v̄c1 + ω̄3 + v̄q1) ‖x (t)‖+ (v̄c3 + ω̄1 + ω̄2 + v̄q3) ‖x (t)‖2 ,

ẋ2 (t) ≤ ω̄1 + (v̄c2 + ω̄3 + v̄q2) ‖x (t)‖+ (v̄c3 + ω̄1 + ω̄2 + v̄q3) ‖x (t)‖2 , (3–3)

ẋ3 (t) ≤ (v̄c3 + ω̄1 + ω̄2 + v̄q3) ‖x (t)‖2 .

3.1 Structure Estimation Objective

To quantify the structure estimation objective, let the state estimate error, e ∈ R3, be

defined as

e (t) = x (t)− x̂ (t) ,

where x̂ ∈ R3 denotes the state estimate determined from an observer. The evolution of

e is defined by the family of systems

ė (t) = fp (t, x (t) , x̂ (t)) (3–4)

where fp : [0,∞)×R3×R3 → R3, p ∈ {s, u}, s is an index referring to the system in which

the target is observable, and u is an index referring to the system in which the target is

unobservable. When the target is in view, the states x1 (t) and x2 (t) are measurable,

and the closed-loop error dynamics are given by

fs (t, x (t) , x̂ (t)) = g (t, x (t))− ˙̂x (t) , (3–5)

where ˙̂x (t) is defined by an observer based on Assumption 2.4. However, when the

target is out of the camera FOV, the state estimates cannot be updated (i.e., ˙̂x (t) = 0),
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and the error dynamics are given by

fu (t, x (t) , x̂ (t)) = g (t, x (t)) . (3–6)

3.2 Stability Analysis

In the following development, the switching signal σ : [0,∞) → {s, u} indicates

the active subsystem. Also, let ton
n ∈ R denote the time of the nth instance at which the

target enters the camera FOV and toff
n ∈ R denote the time of the nth instance at which

the target exits the camera FOV, where n ∈ N. The dwell time in the nth activation of

subsystem s and u is denoted by ∆ton
n , toff

n − ton
n ∈ R and ∆toff

n , ton
n+1 − toff

n ∈ R,

respectively. Finally, ∆ton
min , inf

n∈N
{∆ton

n } ∈ R and ∆toff
max , sup

n∈N

{
∆toff

n

}
∈ R denote

the minimum dwell time in subsystem s and maximum dwell time in subsystem u,

respectively, for all n.

Based on Assumption 2.4, the estimation error will converge when measurements

are available. However, when measurements are unavailable, the estimation error is

expected to grow since the camera and target may move while the estimate is held

constant. Therefore, a quadratic Lyapunov-like function based on the estimation error

is expected to evolve as shown in Figure 3-1. In Theorem 3.1, it is shown that the

asymptotic behavior of the Lyapunov-like function, and hence the estimation error, is

bounded, provided measurements are available for a sufficient amount of time, and the

duration of time that measurements are not available is relatively small. To prove this,

bounds on the Lyapunov-like functions when each subsystem is active are developed.

From the bounds, a recursive relation between successive cycles of losing and regaining

measurements is developed (i.e., a bound on W on
n+1 based on W on

n in Figure 3-1).

The recursive relation is then used to define a sequence, and conditions in which the

sequence converges are determined. Conditions for convergence of the sequence lead

to dwell time conditions, as well as a relation for the limit of the sequence, which is used

to bound the ultimate estimation error.
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Theorem 3.1. The switched system generated by (3–4) and switching signal σ is

asymptotically regulated to a ball of arbitrary size provided the switching signal and the

initial condition satisfy the following conditions:

∆toff
max <

π

2β
,

∆ton
min ≥ −

1

λs
ln

1

µ2
, (3–7)

1− µ2 exp (−λs∆ton
min)

2µ exp
(
−λs

2
∆ton

min

) > tan
(
β∆toff

max

)
, (3–8)

c2 ‖e (0)‖2 < d̄, (3–9)

where the constants β, λs, µ, d̄, c2 ∈ R are known positive bounding constants.

Proof. The existence of an exponentially tracking state observer from Assumption 2.4

implies the existence of a Lyapunov function Vs : [0,∞)× R3 → R that satisfies

c1 ‖e (t)‖2 ≤ Vs (t, e (t)) ≤ c2 ‖e (t)‖2 (3–10)

∂Vs
∂t

+
∂Vs
∂e

(ė (t)) ≤ −c3 ‖e (t)‖2 (3–11)∥∥∥∥∂Vs∂e
∥∥∥∥ ≤ c4 ‖e (t)‖

for some positive scalar constants c1, c2, c3, c4 ∈ R, during the periods in which the

target is observable (see the converse Lyapunov theorem in [123, Theorem 4.14]). From

(3–10) and (3–11) it is clear that

V̇s ≤ −λsVs (3–12)

when the target is in view, where λs = c3
c2

.

Consider a Lyapunov-like function Vu : [0,∞)× R3 → R defined as

Vu (t, e (t)) = c5e (t)T e (t) (3–13)

34



where c5 ∈ R is selected so that c1 ≤ c5 ≤ c2. From (3–10) and (3–13) it is clear that

Vp (t, e (t)) ≤ c2

c1

Vq (t, e (t)) , ∀p, q ∈ {s, u} , p 6= q (3–14)

i.e., for any value of t, the functions Vs (t, e (t)) and Vu (t, e (t)) are within a factor µ , c2
c1
∈

R of each other. Taking the time derivative of Vu (t, e (t)), and substituting (3–4), (3–6),

and (3–3), yields

V̇u (t, e (t)) ≤ 2c5

(
c6 ‖e (t)‖+ c7 ‖e (t)‖2 + c8 ‖e (t)‖3)

where c6, c7, c8 ∈ R denote known positive constants based on the upper bounds on the

camera and target velocities and an upper bound on ‖x̂ (t)‖ from Assumption 2.1. From

(3–13), ‖e (t)‖ can be upper bounded by
√

Vu
c5

, resulting in

V̇u (t, e (t)) ≤ β
(
V 2
u + 1

)
(3–15)

where β is a known, bounded, positive constant.

Let the function W : [0,∞) → R be defined such that W (t) , Vσ(t) (t, e (t)). From

(3–12) and (3–15)

Ẇ (t) ≤


−λsW (t) t ∈ [ton

n , t
off
n )

β
(
W (t)2 + 1

)
t ∈ [toff

n , t
on
n+1)

, ∀n. (3–16)

The second inequality in (3–16) indicates that W (t) can grow unbounded in finite time

when the target is unobservable. However, from the first inequality, W (t) is regulated to

zero when the target is observable. This suggests that if the target is observed for a long

enough duration, and the target is out of the FOV for a short enough duration, the net

change in W (t) will be negative over a cycle where observability is lost and regained,

and consequently the estimation error will decrease. A representative illustration of the

evolution of W (t) if these conditions are satisfied is depicted in Fig. 3-1.

35



Figure 3-1. Representative illustration of the evolution of W during the interval
[
tonn , t

on
n+1

]
.

Utilizing the Comparison Lemma in [123, Lemma 3.4], (3–16) can be integrated,

yielding

W (t) ≤


W s
n (t) t ∈ [ton

n , t
off
n )

W u
n (t) t ∈ [toff

n , t
on
n+1)

, ∀n (3–17)

where the functions W s
n : [ton

n , t
off
n )→ R and W u

n : [toff
n , t

on
n+1)→ R are defined as

W s
n (t) , W on

n exp (−λs (t− ton
n )) , (3–18)

W u
n (t) , tan

(
β
(
t− toff

n

)
+ arctan

(
W off
n

))
, (3–19)

W on
n denotes W (ton

n ) and W off
n denotes W

(
toff
n

)
. From (3–14), the discontinuities in W

are related as

W
(
toff
n

)
≤ µW

(
toff−
n

)
,

W
(
ton
n+1

)
≤ µW

(
ton−
n+1

)
,
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where 1 W
(
toff−
n

)
, lim

t↗toff
n

W (t) and W
(
ton−
n+1

)
, lim

t↗ton
n+1

W (t). Therefore, the change in

W (t) over a cycle of losing and regaining observability is

W on
n+1 ≤ µ tan

(
β∆toff

n + arctan
(
µW on

n e−λs∆ton
n
))
, ∀n.

Considering the worst case scenario of minimum time of observability and maximum

unobservability

W on
n+1 ≤ µ tan

(
β∆toff

max + arctan
(
µW on

n e−λs∆ton
min
))

(3–20)

for all n. The right hand side of (3–20) can be rewritten using a trigonometric identity as

µ tan
(
β∆toff

max + arctan (µW on
n exp (−λs∆ton

min))
)

= µ
tan
(
β∆toff

max

)
+ µW on

n exp (−λs∆ton
min)

1− [tan (β∆toff
max)] [µW on

n exp (−λs∆ton
min)]

resulting in

W on
n+1 ≤ µ

A+BW on
n

1− ABW on
n

,

where

A = tan
(
β∆toff

max

)
,

B = µ exp (−λs∆ton
min) .

The elements of the sequence {W on
n } are upper bounded as

W on
n ≤ zn, ∀n

where the sequence {zn} is defined as

z0 = W on
0 ,

zn+1 = µ
A+Bzn
1− ABzn

. (3–21)

1 The notation lim
t↗t∗

W (t) refers to the one-sided limit of W (t) as t approaches t∗ from

below (i.e., the left handed limit given in [124, Definition 4.25]).
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Since the elements of the sequence {W on
n } are lower bounded by zero due to the

definition of W , the squeeze theorem [124, Theorem 3.19] can be used to show that

{W on
n } converges to a ball upper bounded by lim

n→∞
zn. The sequence {zn} will converge if

it is bounded and monotonically decreases. The following two conditions arise from the

requirement that zn remain upper bounded over every iteration from n to n + 1 (i.e., the

right hand side of (3–21) remains bounded):

∆toff
max <

π

2β
, (3–22)

ABzn < 1. (3–23)

For decaying convergence, the sequence is monotonically decreasing for all n if zn+1 ≤

zn, resulting in the condition

ABz2
n − (1− µB) zn + µA ≤ 0. (3–24)

Since A and B are positive for all positive values of ∆ton
min and ∆toff

max, the inequality in

(3–24) can only be satisfied for various values of zn if 1 − µB ≥ 0, resulting in the

condition

− 1

λs
ln

1

µ2
≤ ∆ton

min. (3–25)

Note that since µ ≥ 1, the left hand side of (3–25) is always greater than or equal to

zero.

Since the left hand side of (3–24) is a convex parabola, the condition

d ≤ zn < d̄,

must also be satisfied in addition to the condition in (3–25), to satisfy the inequality in

(3–24), where d and d̄ are solutions to the quadratic equation

ABz2
n − (1− µB) zn + µA = 0 (3–26)
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and are given by

d ,
1− µB −

√
(1− µB)2 − 4µA2B

2AB
, (3–27)

d̄ ,
1− µB +

√
(1− µB)2 − 4µA2B

2AB
. (3–28)

The roots, d and d̄, are real and distinct if

(1− µB)2 − 4µA2B > 0,

=⇒ 1− µ2 exp (−λs∆ton
min)

2µ exp
(
−λs

2
∆ton

min

) > tan
(
β∆toff

max

)
. (3–29)

If the conditions in (3–22), (3–25) and (3–29) are satisfied and if the initial conditions

satisfy (3–23), the sequence is monotonically decreasing. Since the function φ : R → R,

φ (z) , µ A+Bz
1−ABz , where z is a dummy variable representing the argument of φ, is an

increasing function on the interval (−∞, 1
AB

], and d and d̄ are both upper bounded by

1
AB

,

zn ∈
[
d, d̄
]

=⇒ φ (d) ≤ φ (zn) =⇒ d ≤ zn+1.

Consequently, if the initial condition z0 is in the interval [d, d̄), the sequence is lower

bounded and monotonically decreasing, and therefore converges. The limit of the

sequence is given by

L , lim
n→∞

zn.

Using the definition of the sequence in (3–21)

lim
n→∞

zn+1 = µ
A+B lim

n→∞
zn

1− AB lim
n→∞

zn

=⇒ L = µ
A+BL

1− ABL
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which results in an equation similar to (3–26) with solutions

L =
1− µB ±

√
(1− µB)2 − 4µA2B

2AB
.

However, since zn monotonically decreases in the interval [d, d̄), if z0 ∈ [d, d̄), the

sequence {zn} converges to the lesser solution, i.e. d, and not d̄.

A similar procedure can be used to show that zn monotonically increases outside

the interval
[
d, d̄
]
. Again, since φ is an increasing function,

zn ∈ [0, d] =⇒ φ (zn) ≤ φ (d) =⇒ zn+1 ≤ d.

Therefore, if z0 ∈ [0, d], {zn} monotonically increases and is upper bounded by d.

Applying the limit as above, it can be shown that {zn} then converges to d. Thus, if

z0 ∈ [0, d̄) (and therefore automatically satisfies (3–23)), the elements of the sequence

{zn} continue to satisfy (3–23) and the sequence converges to d. Consequently, the

sequence {W on
n } converges via the squeeze theorem [124, Theorem 3.19] to the set

0 ≤ lim
n→∞

W on
n ≤ d.

From (3–17), (3–18), and (3–19) it is clear that W (t) ≤ W on
n , ∀t ∈ [ton

n , t
on
n+1), ∀n if

conditions (3–22), (3–25) and (3–29) are satisfied. Therefore,

lim sup
t→∞

W (t) ≤ d.

Using (3–10), (3–13) and the definition of W , the estimation error converges to the

ultimate bound

lim sup
t→∞

‖e (t)‖2 ≤ d

c1

.

Remark 3.2. The observer initial condition, x̂ (0), and the state bounds from Assumption

2.1 can be used to bound the initial error to check the condition in (3–9) without any
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additional information. However, satisfying this condition using this initial error bound

may require an overly large d̄ and therefore overly conservative forward and reverse

dwell times (i.e. ∆ton
min and ∆toff

max). Any additional domain knowledge that can be used to

restrict ‖e (0)‖ is helpful in allowing a larger set of dwell times.

Remark 3.3. The stability conditions in (3–7) and (3–8) are functions of the error decay

rate, λs. The implication of increasing the decay rate of the Lyapunov-like function, i.e.

increasing the observer gains, is that the target has to remain in the FOV for less time.

The size of the ultimate bound can also be decreased, either by increasing the dwell

time in the observable region or increasing λs. However, this is only effective up to a

limit. Re-examining (3–27) and using L’Hôpital’s rule, in the limit as B → 0 (i.e. λs → ∞

or ∆ton
min → ∞) , d → µA, which is equivalent to the growth in W during the period

in which the target is out of the camera FOV in the case when the estimation error is

initially zero. Similarly, from (3–28), d̄ → ∞ as B → 0, allowing an arbitrarily large initial

error.

3.3 Experiments

Experiments were performed to verify the theoretical results. The overall goal of

the experiment was to simulate the scenario of tracking the Euclidean position of a

cooperative mobile vehicle in a GPS-denied environment via a camera. For example,

a common scenario in GPS-denied environments could be one where the object of

interest is a cooperative ground vehicle, which is being observed by a high altitude

aerial vehicle with an active GPS signal [125, 126], or when multiple cooperative

agents are each observing each other to reduce the overall position uncertainty growth

rate [127–130]. Specifically, the objective was to demonstrate convergence of the

relative position estimation errors despite intermittent measurements if a class of

image-based observers is used when the mobile vehicle is visible, and a zero-order

hold (ZOH) of the position estimate is used when the mobile vehicle is not visible. An

IDS UI-1580SE camera with 2-pixel binning enabled and a lens with a 90 FOV was
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used to capture 1280x960 pixel resolution images at a rate of approximately 15 frames

per second. A Clearpath Robotics TurtleBot 2 with a Kobuki base was utilized as a

GPS-denied mobile vehicle simulant. An augmented version of the observer in [122]

provided range estimates while the mobile robot was visible (details are given in the

Appendix). A fiducial marker with a corresponding tracking software library (see [131]

and [132]) was used to repeatably track the image feature pixel coordinates and the

3D orientation of the mobile robot while it was in view. Although the library is capable

of utilizing marker scale information to reconstruct the fully scaled relative Euclidean

position between the camera and the marker, the scale information was not necessary

for implementation, and was not used in the experiment. The optic flow signals (i.e.,

derivatives of the measurable states) required for the observer were approximated via

finite difference.

A NaturalPoint, Inc. OptiTrack motion capture system was used to record the

ground truth pose of the camera and target at a rate of 360 Hz. The pose provided by

the motion capture system was also used to estimate the linear and angular velocities

of the camera necessary for the range observer, where the current camera velocity

estimates were taken to be the slope of the linear regression of the 20 most recent pose

data points. The wheel encoders and rate gyroscope onboard the mobile robot provided

estimates of the linear and angular velocity of the robot, expressed in the robot body

coordinate system, for input into the range observer. Velocities of both the camera and

target are necessary to resolve the well known speed-depth scale ambiguity in vision

systems [112, Chapter 5.4.4], and these quantities would be available in a real world

implementation of the scenario considered in this experiment. When the robot was in

the camera FOV, the fiducial marker tracking algorithm orientation estimate was used

to rotate the linear and angular velocities of the robot into the camera frame, FC . When

the robot was outside the camera FOV, the relative orientation between the camera and

robot was estimated via dead-reckoning with the onboard rate gyroscope. For simplicity,
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the camera was mounted on a stationary tripod, while the TurtleBot was driven via

remote control in an unstructured path.

The results of the experiment are shown in Figures 3-2 through 3-4, with vertical

lines denoting switching times. Specifically, the first vertical line represents the time

when the robot would leave the camera FOV and was no longer visible, and a zero-order

hold was initiated with the last state estimate from the estimator. The second vertical

line represents the time when the robot reentered the camera FOV and the estimator

was restarted with the previous state estimate. From the results, it is clear that the

estimation errors remain bounded.

To examine how the duration of time that measurements are unavailable (i.e.,

∆toff
n ) affects the ultimate estimation error, a number of experiments were performed

with ∆toff
n ranging from 0.5 to 2.5 seconds, in increments of 0.5 seconds. During these

experiments, ∆ton
n was held constant at 4 seconds, and the Turtlebot was sent constant

forward and angular velocity commands, resulting in an approximately circular path.

The experiment was performed three times (labeled A, B and C in Figure 3-5) for each

set of dwell times. The evolution of the norm of the estimation error for all three runs

and across all dwell times is shown in Figure 3-5, with the growth of the estimation

norm after each period of measurement unavailability shown in Figure 3-6 against ∆toff
n .

Compared to the bound based on the trigonometric tangent function that was used in

the stability analysis, the estimation error in the experiments does not seem to grow

unbounded for finite dwell times. This exemplifies the conservative nature of the bounds

derived in the theory, as is typical in Lyapunov-based analysis.

3.4 Summary

Sufficient observation conditions are developed to guarantee convergence to

an ultimate bound of the position estimation error from a vision based observer with

intermittent sensing. Evaluation of the conditions only require conservative bounds

on the target and camera velocities, bounds on the target range and bearing, and
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bounds on the dwell times in which the target is in and out of the FOV. Solutions to the

dynamics, Ẇ (t), of a Lyapunov-like function during both the period when the target is

in view and the period when it is out of the FOV were utilized to bound the decay and

growth of the estimation errors and therefore relate dwell times to a decay in W (t).
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Figure 3-2. Evolution of the state estimates during the experiment. Vertical black lines
denote switching times.
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of 0.5 to 2.5 seconds. Each plot shows three experiments (labeled A, B and
C) for the listed dwell time.
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CHAPTER 4
EXTENDED STABILITY RESULTS OF A CLASS OF IMAGE-BASED OBSERVERS
DURING INTERMITTENT MEASUREMENTS: STATE PREDICTION VIA A MOTION

MODEL

In this chapter, additional information about the feature of interest is used to

relax the dwell time constraints of Chapter 3. Specifically, a motion model of the form

described in Assumption 4.1 below is utilized to estimate the velocity of the feature

during periods in which the feature is not observable. Exploiting the last state estimate

before the feature leaves the FOV and the estimated feature velocity, the dynamics

in (2–11) can be integrated forward in time to continue to provide state estimates. By

using the state prediction, and the locally Lipschitz property of (2–11), the growth of

the Lyapunov like function is bounded by an exponentially increasing function during

periods in which the feature is unobservable, as opposed to the tangential function with

finite escape in Chapter 3. Combined with the exponential decay during the observable

periods, the overall system is exponentially convergent provided that an average dwell

time condition and an average unobservable time condition are met.

Assumption 4.1. A motion model of the moving target is known and bounded, in the

sense that either the target velocity, vq (t) ,

[
vq1 (t) vq2 (t) vq3 (t)

]T
∈ R3, is known

and bounded or the target velocities are given by vq (t) = φ (x (t)), where the known,

continuous function φ : R3 → R3 is locally Lipschitz on X .

Remark 4.1. An analytical expression for target velocities as a function of time is not

required to generate the necessary signals vq1 (t), vq2 (t) and vq3 (t). For example, a

feedback law in the form of

ṙq (t) = φG (rq (t)) (4–1)

is sufficient to generate vq (t), where φG : R3 → R3 is Lipschitz and rq (t) is the

expression of ~rq (t) in the coordinate system attached to the inertial frame FG. However,

in this case, the position and orientation of the camera is required to transform state

estimates in the camera frame to position estimates in the ground frame. From (4–1),
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the signal, vq (t), is given by

vq (t) = [φ1 (x (t)) , φ2 (x (t)) , φ3 (x (t))]T , RT (t)φG
(
R (t) rq/c (t) + rc (t)

)
, (4–2)

where φ1, φ2, φ3 : R3 → R, rc (t) ∈ R3 is the expression of the camera position in the

coordinate system attached to the inertial frame FG, R (t) ∈ R3×3 denotes the orientation

of the camera in the sense that premultiplying by R (t) rotates a vector expressed in the

camera coordinate system to a vector expressed in the ground coordinate system, and

rq/c (t) is related to the states by

rq/c (t) =

[
x1(t)
x3(t)

x2(t)
x3(t)

1
x3(t)

]T
.

Substituting (4–2) into (2–11) yields a new expression for g (t, x (t)) given as

ẋ1 (t) = Ω1 (t, x) + ξ1 (t, x) + φ1 (x (t))x3 (t)− x1 (t)φ3 (x (t))x3 (t) ,

ẋ2 (t) = Ω2 (t, x) + ξ2 (t, x) + φ2 (x (t))x3 (t)− x2 (t)φ3 (x (t))x3 (t) ,

ẋ3 (t) = vc3 (t)x2
3 (t)− (ω2 (t)x1 (t)− ω1 (t)x2 (t))x3 (t)− φ3 (x (t))x2

3 (t) .

Although the target motion model, φ (x (t)) , [φ1 (x (t)) , φ2 (x (t)) , φ3 (x (t))]T , is

assumed to be known, the states are unknown and therefore the estimated target

velocity, v̂q (t) ∈ R3 is given by

v̂q (t) = φ (x̂ (t)) .

A wide variety of object motions can be described by a feedback law in the form of

(4–2). For example, consider the scenario of a vehicle moving with a known constant

nominal speed. In this case, the velocity of the vehicle, v̂q (t), is determined based

on the location of the vehicle (e.g., based on whether the vehicle is traveling on an

East/West road or North/South road, and which side of the road the vehicle is on). The

state estimates can also be used to determine if the vehicle is at an intersection, and

v̂q (t) can be adjusted based on that information. A model of the form in (4–1) can also

be generated in cases where the object is undergoing projectile or orbital motion. In
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these cases, the object velocity is a function of the object position. Similarly, in eye-to-

hand image based visual servoing, a control law of the form in (4–1) is designed, and

therefore known.

In applications where the object and camera are cooperative, the object can directly

communicate it’s velocities to the camera. This is a common scenario in GPS-denied

environments, where the object of interest might be a ground vehicle, which is being

observed by a high altitude aerial vehicle with an active GPS signal [125, 126], or when

multiple cooperative agents are each observing each other to reduce the overall position

uncertainty growth rate [127–130]. Once the relative position vector is estimated, the

geographic coordinates of the ground vehicle can be determined and continuously

estimated even if the camera intermittently loses line of sight.

4.1 Structure Estimation Objective

Similar to Chapter 3, to quantify the structure estimation objective, let the state

estimation error, e (t) ∈ R3, be defined as

e (t) = x (t)− x̂ (t) ,

where x̂ (t) ∈ R3 denotes the continuous state estimate. Consider the family of systems

defined in (3–4) and repeated here

ė (t) = fp (t, x (t) , x̂ (t)) . (4–3)

When the target is in view, the states x1 and x2 are measurable, and the error dynamics

are given by (3–5), i.e.,

fs = g (t, x)− ˙̂x. (4–4)

In contrast to Chapter 3, when the target is outside the camera FOV, the state estimates

are updated using a target motion model described in Assumption 4.1 and a predictor of
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the form

˙̂x = proj (g (t, x̂ (t))) ,

resulting in the error dynamics

fu (t, x (t) , x̂ (t)) = g (t, x (t))− proj (g (t, x̂ (t))) , (4–5)

where proj (·) is a smooth projection operator (see [133], Remark 3.7 in [134] or §4.4

in [104]) with bounds based on the state bounds of Assumption 2.1 and the velocity

bounds in Assumptions 2.2 and 4.1. Since g (t, x (t)) is continuously differentiable with

respect to x (t) on the compact set X , the mean value theorem can be invoked to bound

the error dynamics during the unobservable periods as

‖fu (t, x (t) , x̂ (t))‖ ≤ K ‖e (t)‖ , (4–6)

where K ∈ R is a bounded constant.

4.2 Stability Analysis

To facilitate the following development, let T u (t, τ) denote the total time the sub-

system u is active in the time interval [τ, t), where 0 ≤ τ ≤ t. Also, let Nσ (t, τ) ∈ N

denote the number of switches of the switching signal σ : [0,∞)→ {s, u} during the time

interval (τ, t). Then, using the definition from [135], the switching signal σ is said to have

an average dwell time τa if there exists constants N0, τa ∈ R>0 such that

Nσ (t, τ) ≤ N0 +
t− τ
τa

, ∀t ≥ τ ≥ 0.

Finally, let P be an index set with partition {Ps,Pu} for the family of systems

η̇ = φp (η, t) , ∀p ∈P (4–7)

where η (t) ∈ Rn, t ∈ [0,∞) and φp : Rn → Rn.

Based on Assumption 2.4, the state estimate errors will converge to zero when

measurements are available. Similarly, when measurements are unavailable, the growth

53



of the estimation errors are bounded by an exponential based on (4–3) and (4–6).

Hence, a quadratic Lyapunov-like function is expected to evolve similar to Figure 4-1

across multiple instances of losing and regaining measurement availability. The goal is

to show that, despite intermittent growth in the Lyapunov-like function, the overall trend

is convergence to zero, and therefore convergence of the estimation errors. Lemma

4.1 shows that for a set of exponentially stable and exponentially unstable Lyapunov-

like functions, the overall trend is convergence to zero if more time is spent in stable

systems (proportional to the decay and growth rates of the stable and unstable systems,

respectively) and if switching between systems does not occur too often, on average.

Using this result, Theorem 4.1 indicates that the vision based estimation approach

developed in this chapter is exponentially stable by developing Lyapunov-like functions

that satisfy the hypotheses of Lemma 4.1.

t

V Measurements Unavailable
Measurements Available

Figure 4-1. Evolution of a Lyapunov-like function across multiple periods of losing and
regaining visibility of the object.

Lemma 4.1. Consider the family of systems in (4–7). Suppose there exists continuously

differentiable functions Vp : Rn× [0,∞)→ R, strictly positive constants c1, c2, λs, λu ∈ R>0

and constant µ ∈ R greater than 1 such that

c1 ‖η (t)‖2 ≤ Vp (η (t) , t) ≤ c2 ‖η (t)‖2
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∂Vp
∂t

+
∂Vp
∂η

φp (η (t) , t) ≤ −λsVp (η (t) , t) , ∀p ∈Ps

∂Vp
∂t

+
∂Vp
∂η

φp (η (t) , t) ≤ λuVp (η (t) , t) , ∀p ∈Pu

Vp (η (t) , t) ≤ µVq (η (t) , t) , ∀p, q ∈P.

If there exists positive constants ρ, T0 ∈ R≥0 such that

ρ <
λs

λs + λu

T u (t, τ) ≤ T0 + ρ (t− τ) , ∀t ≥ τ ≥ 0

and if σ : [0,∞) → P is a piecewise constant, right continuous switching signal with

average dwell time

τa >
lnµ

λs (1− ρ)− λuρ

then the switched system

η̇ (t) = φσ (η (t) , t)

is globally exponentially stable.

Proof. Lemma 4.1 is an extension to Theorem 2 in [103] for nonautonomous systems

with nonautonomous functions Vp (η (t) , t). The majority of the proof is omitted here as

it is identical to the proof of Lemma 1 in [103]. However, in this case, the functions α1,

α2 ∈ K∞ are quadratic and the trajectory of the switched system can be reduced to

‖η (t)‖ ≤ c2

c1

µN0 exp ((λs + λu)T0) exp (−λ (t− t0)) ‖η (0)‖

where λ , 1
2

(
λs − (λs + λu) ρ− lnµ

τa

)
∈ (0, (1− ρ)λs + ρλu) ⊂ R>0.

Theorem 4.1. The switched system

ė (t) = fσ (t, x (t) , x̂ (t))

generated by the family of systems described by (4–3), (4–4), and (4–5) and piecewise

constant, right continuous switching signal σ : [0,∞) → {s, u} is globally exponentially
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stable provided that the switching signal σ satisfies the total unstable activation time

condition

T u (t, τ) ≤ T0 + ρ (t− τ) , ∀t ≥ τ ≥ 0 (4–8)

and average dwell time condition

τa >
lnµ

λs (1− ρ)− λuρ
, (4–9)

where T0 ∈ R is an arbitrary positive constant and ρ, λs, λu, µ ∈ R are known positive

constants that satisfy µ ≥ 1 and ρ < λs
λs+λu

.

Proof. Via the Converse Lyapunov Theorem in [123, Theorem 4.14], the existence of

an exponential state tracking observer from Assumption 2.4 implies the existence of a

Lyapunov function Vs : [0,∞)× R3 → R that satisfies

c1 ‖e (t)‖2 ≤ Vs (t, e (t)) ≤ c2 ‖e (t)‖2 (4–10)

∂Vs
∂t

+
∂Vs
∂e

(ė (t)) ≤ −c3 ‖e (t)‖2 (4–11)∥∥∥∥∂Vs∂e
∥∥∥∥ ≤ c4 ‖e (t)‖

for some positive scalar constants c1, c2, c3, c4 ∈ R, during the periods in which the

target is observable. From (4–10) and (4–11), it is clear that

V̇s (t, e (t)) ≤ −λsVs (t, e (t))

when the target is in view, where λs , c3
c2

. Consider a continuously differentiable,

Lyapunov-like function, Vu : [0,∞)× R3 → R defined as

Vu (t, e (t)) , c5 ‖e (t)‖2
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where c5 ∈ R is bounded by c1 ≤ c5 ≤ c2. Using (4–6), the growth of Vu (t, e (t)) during

the periods in which the target is outside the camera FOV can be bounded as

V̇u (t, e (t)) ≤ 2c5 ‖e (t)‖ (K ‖e (t)‖) ≤ λuVu (t, e (t)) ,

where λu , 2K. From (4–10) and 4.2, the functions Vs (t, e (t)) and Vu (t, e (t)) can be

related by

Vp (t, e (t)) ≤ µVq (t, e (t)) , ∀p, q ∈ {s, u} ,

where µ , c2
c1

. Using Lemma 4.1, the system is globally exponentially stable for any

switching signal that satisfies (4–8) and (4–9) with trajectory

‖e (t)‖ ≤ ‖e (0)‖C exp (−λ (t− t0)) ,

decay rate λ , 1
2

(
λs − (λs + λu) ρ− lnµ

τa

)
∈ (0, (1− ρ)λs + ρλu) ⊂ R>0 and positive

constant C , c2
c1
µN0 exp ((λs + λu)T0) ∈ R>0.

Remark 4.2. In application, the constraint on the unstable activation time (i.e. (4–8)) is

trivially satisfied. An arbitrarily large amount of time can be spent in the unstable system

(i.e., measurements are unavailable), and T0 can be increased to compensate. This

condition is only relevant in the limit as t → ∞, where, on average, more time needs to

be spent in the stable system (i.e., measurements are available) based on the relative

convergence and divergence rates of the two systems. However, by increasing T0 to

satisfy stability conditions for large unstable activation times T u (t, τ), the bounding

envelope on the estimation error increases exponentially. This highlights the importance

of increasing the duration in which the object is visible, even in the short term.

Remark 4.3. The average dwell time, τa, and the total allowable invisibility time in (4–8),

are functions of the error decay and growth rates of the observer and predictor. As the

observer convergence rate increases or the predictor divergence rate decreases, the

upper bound on the allowable ρ increases, increasing the total allowable time duration
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in which the object can remain outside of the camera FOV. In addition, increasing ρ

decreases the lower bound on the allowable average dwell time, enabling the use of

a larger set of switching signals. However, increasing ρ decreases the convergence

rate of the switched system; by allowing longer durations in which measurements

are unavailable (from (4–8)), the error of the switched system is slower to converge.

Conversely, as ρ → 0, the allowable amount of time without measurements decreases

and the convergence rate of the switched system increases. The limiting case where

ρ = 0 denotes the case when measurements are available for all time after a finite

number of switches. Finally, switching signals with larger average dwell times also

increase the switched system convergence rate since the jumps in the Lyapunov-like

functions occur less frequently.

Remark 4.4. The average dwell time conditions in Lemma 4.1 and Theorem 4.1 come

as a result of the possibility that the Lyapunov-like functions for each subsystem may

differ, even though they all satisfy a common quadratic bound. However, in some cases

(e.g., [31,122]), the constants c1 and c2 are equal, and c5 can be chosen as c5 = c1 = c2.

Therefore, µ = 1 and the average dwell time condition reduces to the trivial condition

τa > 0.

4.3 Simulation

Simulations were performed using MATLAB to verify the robustness to measure-

ment loss of the proposed observer and predictor estimation scheme. The observer

in [119] was used to satisfy Assumption 2.4 and estimate the states when measure-

ments were available, while the predictor in (6–10) was used when measurements

were unavailable. Camera and object velocities, vc (t) =

[
2 1 0.5 cos (t/2)

]T
m/s,
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ω (t) =

[
0 0 1

]T
rad/s and vq (t) =

[
0.5 0 0

]T
m/s and observer matrices,

A =


0 −1 2

1 0 1

0 0 0

 , C =

 1 0 0

0 1 0

 , D =


1

0

0

 ,

K =


0.8278 0

0 0.8278

−1.5374 0

 , Y =


0 0

0 −1

0 −1.5374


were set to match the simulation parameters in [119]. The switching signal, σ, was

generated with randomly selected dwell times. The dwell times were selected from a

uniform random distribution between 0 and 5 seconds, and 0 and 2 seconds for the s

and u subsystems, respectively. Simulation results are shown in Figure 4-2 with the

switching times shown as vertical lines where the first vertical line represents the time

when the object is no longer visible (i.e., the predictor is started with the last state

estimate from the estimator), and the next vertical line represents the time when the

object is in view again and the estimator is restarted with the state estimate from the

predictor, etc.

An ad hoc approach for state estimation while undergoing intermittent measure-

ments would be to implement a ZOH during periods in which measurements are un-

available, as in Chapter 3. For comparison, a simulation using the approach described

in Chapter 3 was also performed. As shown in Figure 4-3, using the same switching

signal and observer as in the previous simulation, the performance greatly degrades,

with no indication of convergence. The results from Figure 4-2 and Figure 4-3 indicate

that the predictor not only provides accurate state estimates when measurements are

unavailable, but also aids in observer convergence when measurements are available by

reinitializing the observer with a more accurate initial state estimate. This demonstrates

the tradeoff mentioned in the introduction: by utilizing more information (i.e., velocity
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information of the object when it is not in view), a predictor can be utilized to relax dwell

time conditions and ensure estimator convergence in the presence of a wider class of

switching signals. However, if velocity information is not available, the more stringent

conditions described in Chapter 3 must be satisfied to ensure convergence.

4.4 Experiments

Experiments were also performed to verify the theoretical results. The overall goal

of the experiment was to represent the scenario of tracking the Euclidean position of a

cooperative mobile vehicle in a GPS-denied environment via a camera. Specifically, the

objective was to demonstrate the convergence of the relative position estimation errors

when the estimator and predictor structure described in Section 4.1 is implemented.

The experimental setup for these experiments were the same as the setup described in

Chapter 3.

Four experiments were performed. In the first experiment, the camera was mounted

on a stationary tripod, while the mobile robot was driven via remote control in an arbi-

trary motion, including leaving and entering the camera FOV. In the second experiment,

the camera was moved by hand in an arbitrary motion, while the TurtleBot was sent

constant forward velocity and angular turn rate commands, resulting in an approximately

circular path. In the second experiment, the intermittent measurements were caused by

both the TurtleBot leaving the camera FOV, and an object placed directly in front of the

camera lens, completely occluding the scene1 . The resulting evolution of the state esti-

mates and the reconstructed Euclidean coordinates of the target are shown in Figures

4-4 and 4-5 for the first experiment, and Figures 4-7 and 4-8 for the second experiment.

In both cases, the estimates track the true values despite the intermittent visibility of

1 A supplementary video with a representative sample of the motion of the
mobile robot and the camera during the first two experiments is available at
https://www.youtube.com/watch?v=daSZAYXmt-g
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the mobile robot. As can be seen in the Figures 4-6 and 4-9, during periods when the

object is not visible, the estimation error grows since there is no feedback from image

measurements, though, exponential error growth would manifest as lines with constant

positive slope on the log scale plots, indicating the estimation error growth bounds used

in the stability analysis in Section 4.2 are conservative.

To analyze the growth of the estimation error during periods when measurements

are unavailable, the Mean Value Theorem was used to develop a linear bound on fu,

as shown in (4–6). However, based on the quadratic terms in (2–11), the bounding

constant K may need to be extremely large to bound fu throughout the bounded

set X . Since only bounds on the states and velocities are available, the calculated

value of K may also be larger than the smallest constant that bounds fu during a

specific application. To investigate the conservativeness of K, and therefore the

conservativeness of the exponential bound developed in Theorem 4.1, Figures 4-10 and

4-11 show the error and its corresponding time derivative during the each experiment,

as well as the linear best fit line, minimum bounding line, and bounding line calculated

based on the known quantities in Assumptions 2.1 and 2.2. For the experiment with a

static camera, the best fit line (blue) had a slope of 0.1862, the minimum bound (green)

had a slope of 0.5098 and the calculated K (red) was 8.987. For the experiment with

the moving camera, these values were 0.7337, 2.357 and 22.54, respectively. In both

cases, the calculated bounds were an order of magnitude greater than the ideal bound;

however, this is expected due to the conservative nature of Lyapunov analysis.

A third experiment was performed using a motion model of the target (as described

in Assumption 4.1 and the proceeding explanation) rather than directly communicated

velocities. In this experiment, a velocity field of the form shown in Figure 4-12 was

prescribed in the world coordinate system, and a low level controller was implemented

to have the mobile robot follow the velocity field, though it should be noted that the

robot did not follow the velocity field exactly due to the nonholonomic constraints of the
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robot and limits on the wheel velocity. The velocity field was rotated into the camera

coordinate system and used as a velocity estimate of the robot in the predictor. For

simplicity, camera feedback was artificially blocked at set intervals. The results of this

experiment are shown in Figures 4-13 through 4-15. Despite the actual target velocities

being unknown, the state estimates generated by the observer/predictor framework

successfully track the true states, with steady state performance similar to that of the

first two experiments, as seen in Figure 4-15, and as compared to Figures 4-6 and 4-9.

Finally, an extended Kalman filter (EKF) was implemented as an example of a

typical probabilistic approach, where the robustness to intermittent measurements

is inherent to predictor-corrector structure of these types of approaches. For this

implementation, the covariance matrices were set based on an estimated 1 pixel

uncertainty in the measurements, and 0.1 m/s uncertainty in the velocity information

used in the dynamic model. The results of this experiment are shown in Figures 4-16

through 4-18, where it is apparent that convergence of the state estimate generated by

the EKF is much slower compared to the nonlinear observer implemented in the first

two experiments. However, in many applications, the covariance matrices are used as

tuning parameters rather than selected based on the actual uncertainty in the system,

and therefore estimation convergence performance may be improved through tuning.

4.5 Summary

An analysis is performed to demonstrate the robustness of a class of observers to

intermittent loss of sensing. The analysis is applicable to any exponentially convergent,

image-based observer. From signals generated via a known motion model of the target,

a predictor is used in conjunction with the observer to provide state estimates during the

periods when the target is unobservable. The predictor also aids in the stability analysis

by bounding the error growth with an exponential during the unobservable periods. The

system in Chapter 3 does not use a predictor, and the resulting error is bounded by a

tangent function, with finite escape time, leading to hard constraints on the maximum

62



allowable dwell time in the unobservable system. In contrast, the result in this chapter

leads to the more relaxed average dwell time and total activation time conditions in (4–8)

and (4–9). If feature loss is uncontrollable, the average dwell time and total unstable

activation time can be calculated and checked against (4–8) and (4–9) to verify the

convergence of state estimates and therefore their trustworthiness. These conditions

can also be used to relax trajectory constraints for camera motion. Simulation results

confirm the improvements in stability and performance that the analyses suggest are a

consequence of the use of a predictor as opposed to the ZOH approach.

Experiments were performed to demonstrate the stability and performance of the

proposed estimator-predictor scheme in two common scenarios. The experimental re-

sults are compared to the theoretically developed bounds to elucidate how conservative

Lyapunov analysis can be. In addition, an extended Kalman filter is implemented for the

SfM problem as a comparison to the approach developed in this chapter. An example

of how a common observer design that only recovers partial states can be augmented

for full state estimation and therefore can be used during periods of target visibility is

provided.

The novelty of the developed approach is the ability to reconstruct relative Eu-

clidean measurements of a target viewed by intermittent camera observations using

any exponentially convergent observer. This contribution is enabled by using switched

systems methods to analyze the stability of the state estimate when constructed by

switching between the observer and the predictor. However, the current predictor is

limited to applications where target velocity information is measurable or available, either

directly or through a known motion model. Further investigation is required to circum-

vent this requirement, either by changing the predictor structure, or learning a motion

model online while the target is visible.
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Figure 4-2. True and estimated states, utilizing a predictor to evolve the state estimates
when measurements are unavailable. Vertical lines represent switching
times.
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Figure 4-3. True and estimated states without a predictor. State estimates are held
constant until measurements are available. Vertical lines represent switching
times.
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Figure 4-4. State estimates from the experiment with a static camera. Vertical black
lines denote switches.
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Figure 4-5. Reconstructed Euclidean coordinates of the target from the experiment with
a static camera. Vertical black lines denote switches.
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Figure 4-6. State estimation errors from the experiment with a static camera. Vertical
black lines denote switches.
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Figure 4-7. State estimates from the experiment with a moving camera. Vertical black
lines denote switches.
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Figure 4-8. Reconstructed Euclidean coordinates of the target from the experiment with
a moving camera. Vertical black lines denote switches.
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Figure 4-9. State estimation errors from the experiment with a moving camera. Vertical
black lines denote switches.
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Figure 4-10. Error growth magnitude as a function of the magnitude of the error, and
corresponding bounds, for the experiment with a static camera.
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Figure 4-11. Error growth magnitude as a function of the magnitude of the error, and
corresponding bounds, for the experiment with a moving camera.
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Figure 4-13. State estimates from the experiment where the target followed a known
vector field. Vertical black lines denote switches.
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Figure 4-14. Reconstructed Euclidean coordinates of the target from the experiment
where the target followed a known vector field. Vertical black lines denote
switches.
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Figure 4-15. State estimation errors from the experiment the target followed a known
vector field. Vertical black lines denote switches.
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Figure 4-16. State estimates from the experiment where the target followed a known
vector field. Vertical black lines denote switches.
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Figure 4-17. Reconstructed Euclidean coordinates of the target from the experiment
where the target followed a known vector field. Vertical black lines denote
switches.
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Figure 4-18. State estimation errors from the experiment the target followed a known
vector field. Vertical black lines denote switches.
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CHAPTER 5
INTEGRAL CONCURRENT LEARNING: ADAPTIVE CONTROL WITH PARAMETER

CONVERGENCE WITHOUT PE OR STATE DERIVATIVES

In this chapter, a novel adaptive update law is developed to ensure parameter

convergence without PE or state derivatives. Whereas traditional gradient based or

least-squares adaptive update laws do not yield parameter convergence without PE, CL

enables the use of recorded data to develop a negative definite bound on the Lyapunov

derivative, and hence exponential convergence of tracking and parameter estimation

errors. The novelty in this chapter is a reformulation of CL in terms of an integral,

therefore removing the need to measure or estimate state derivatives as is required

in traditional CL. With this approach, parameter convergence is ensured provided a

finite excitation condition is satisfied, and the finite excitation condition can be evaluated

online, whereas the PE condition is difficult to verify for general nonlinear systems. In

the following, the ICL technique will be developed for both control affine dynamics as

well as Euler-Lagrange dynamics.

5.1 Control Affine Dynamics

5.1.1 Control Objective

To illustrate the integral CL method, consider an example dynamic system modeled

as

ẋ (t) = f (x (t) , t) + u (t) (5–1)

where t ∈ [0,∞), x : [0,∞) → Rn are the measurable states, u : [0,∞) → Rn is the

control input and f : Rn × [0,∞) → Rn represents the locally Lipschitz drift dynamics,

with some unknown parameters. In the following development, as is typical in adaptive

control, f is assumed to be linearly parametrized in the unknown parameters, i.e.,

f (x, t) = Y (x, t) θ (5–2)

where Y : Rn× [0,∞)→ Rn×m is a regressor matrix and θ ∈ Rm represents the constant,

unknown system parameters. To quantify the state tracking and parameter estimation
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objective of the adaptive control problem, the tracking error and parameter estimate

error are defined as

e (t) , x (t)− xd (t) (5–3)

θ̃ (t) , θ − θ̂ (t) (5–4)

where xd : [0,∞) → Rn is a known, continuously differentiable desired trajectory and

θ̂ : [0,∞)→ Rm is the parameter estimate.

To achieve the control objective, the following controller is commonly used:

u (t) , ẋd (t)− Y (x (t) , t) θ̂ (t)−Ke (t) (5–5)

where K ∈ Rn×n is a positive definite constant control gain. Taking the time derivative of

(5–3) and substituting for (5–1), (5–2), and (5–5), yields the closed-loop error dynamics

ė (t) = Y (x, t) θ + ẋd (t)− Y (x (t) , t) θ̂ (t)−Ke (t)− ẋd (t)

= Y (x (t) , t) θ̃ (t)−Ke (t) (5–6)

The parameter estimation error dynamics are determined by taking the time derivative of

(5–4), yielding
˙̃θ (t) = − ˙̂

θ (t) . (5–7)

An integral CL-based update law for the parameter estimate is designed as

˙̂
θ (t) , ΓY (x (t) , t)T e (t) (5–8)

+ kCLΓ
N∑
i=1

YTi
(
x (ti)− x (ti −∆t)− Ui − Yiθ̂ (t)

)
where kCL ∈ R and Γ ∈ Rm×m are constant, positive definite control gains, N ∈ Z+is a

positive constant, ti ∈ [0, t] are time points between the initial time and the current time,
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Yi , Y (ti), Ui , U (ti),

Y (t) ,


0n×m t ∈ [0, ∆t]

´ t
t−∆t

Y (x (τ) , τ) dτ t > ∆t

(5–9)

U (t) ,


0n×1 t ∈ [0, ∆t]

´ t
t−∆t

u (τ) dτ t > ∆t

(5–10)

0n×m denotes an n ×m matrix of zeros, and ∆t ∈ R is a positive constant denoting the

size of the window of integration. The concurrent learning term (i.e., the second term) in

(5–8) represents saved data. The principal idea behind this design is to utilize recorded

input-output data generated by the dynamics to further improve the parameter estimate.

See [108] for a discussion on how to choose data points to record. In short, the data

points should be selected to maximize the minimum eigenvalue of
N∑
i=1

YTi Yi since the

minimum eigenvalue bounds the rate of convergence of the parameter estimation errors,

as shown in the subsequent stability analysis.

The integral CL-based adaptive update law in (5–8) differs from traditional state

derivative based CL update laws given in, e.g., [107–109]. Specifically, the state

derivative, control, and regressor terms, i.e., ẋ, u, and Y , respectively, used in [107–109]

are replaced with the integral of those terms over the time window [t−∆t, t].

Substituting (5–2) into (5–1), and integrating yields

ˆ t

t−∆t

ẋ (τ) dτ =

ˆ t

t−∆t

Y (x (t) , τ) θdτ +

ˆ t

t−∆t

u (τ) dτ,

∀t > ∆t. Using the Fundamental Theorem of Calculus and the definitions in (5–9) and

(5–10),

x (t)− x (t−∆t) = Y (t) θ + U (t) (5–11)
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∀t > ∆t, where the fact that θ is a constant was used to pull it outside the integral.

Rearranging (5–11) and substituting into (5–8) yields

˙̂
θ (t) = ΓY (x (t) , t)T e (t) + kCLΓ

N∑
i=1

YTi Yiθ̃ (t) , ∀t > ∆t. (5–12)

5.1.2 Stability Analysis

To facilitate the following analysis, let η : [0,∞) → Rn+m represent a com-

posite vector of the system states and parameter estimation errors, defined as

η (t) ,

[
eT (t) θ̃T (t)

]T
. Also, let λmin {·} and λmax {·} represents the minimum

and maximum eigenvalues of {·}, respectively.

Assumption 5.1. The system is sufficiently excited over a finite duration of time.

Specifically, ∃λ > 0, ∃T > ∆t : ∀t ≥ T, λmin

{
N∑
i=1

YTi Yi
}
≥ λ.

Remark 5.1. The finite excitation condition in Assumption 5.1 is easier to satisfy than

the PE condition used in previous adaptive control results since excitation is only

required over a finite duration of time, whereas in PE, as the name implies, excitation is

required for all time. In addition, the finite excitation condition can be checked online by

checking the minimum eigenvalue of the sum of the regressor in (5–12) (i.e.
N∑
i=1

YTi Yi).

As a reminder, Y (x (t) , t) is PE if ∃T, α > 0 :

ˆ t+T

t

Y T (x (t) , t)Y (x (t) , t) dt ≥ αI > 0, ∀t > 0.

For PE it is difficult to find the correct time window, T , to check if the integral is lower

bounded, and further, check this at every time t.

The stability analysis for ICL is separated into two phases. In the first phase, before

sufficient data has been collected (i.e., t ∈ [0, T ]), the tracking errors and parameter

estimates remain bounded, as shown in Theorem 5.1. In Theorem 5.2 it is shown that

the tracking errors and parameter estimates converge once sufficient data has been

collected to satisfy the finite excitation condition (i.e., t ∈ [T,∞)), which, when combined
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with the results of Theorem 5.1, can be used to develop an exponential envelope on the

system trajectories.

Theorem 5.1. For the system defined in (5–1) and (5–7), the controller and adaptive up-

date law defined in (5–5) and (5–8) ensures bounded tracking and parameter estimation

errors during the time interval t ∈ [0, T ].

Proof. Let V : Rn+m → R be a candidate Lyapunov function defined as

V (η (t)) =
1

2
e (t)T e (t) +

1

2
θ̃ (t)T Γ−1θ̃ (t) .

Taking the derivative of V (η (t)) along the trajectories of (5–1) during t ∈ [0, T ],

substituting the closed-loop error dynamics in (5–6) and the equivalent adaptive update

law in (5–12), and simplifying yields

V̇ (η (t)) ≤ −e (t)T Ke (t) , ∀t ∈ [0, T ]

which implies the system states remain bounded via [123, Theorem 8.4]. Further, since

V̇ (η (t)) ≤ 0, V (η (T )) ≤ V (η (0)), and therefore, ‖η (T )‖ ≤
√

β2
β1
‖η (0)‖, where

β1 , 1
2

min {1, λmin {Γ−1}} and β2 , 1
2

max {1, λmax {Γ−1}}.

Theorem 5.2. For the system defined in (5–1) and (5–7), the controller and adaptive

update law defined in (5–5) and (5–8) ensures globally exponential tracking in the sense

that

‖η (t)‖ ≤
(
β2

β1

)
exp (λ1T ) ‖η (0)‖ exp (−λ1t) , ∀t ∈ [0,∞). (5–13)

Proof. Let V : Rn+m → R be a candidate Lyapunov function defined as

V (η (t)) =
1

2
e (t)T e (t) +

1

2
θ̃ (t)T Γ−1θ̃ (t) . (5–14)

Taking the derivative of V along the trajectories of (5–1) during t ∈ [T,∞), substituting

the closed-loop error dynamics in (5–6) and the equivalent adaptive update law in
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(5–12), and simplifying yields

V̇ (η (t)) = −e (t)T Ke (t)− kCLθ̃ (t)T
N∑
i=1

YTi Yiθ̃ (t) , ∀t ∈ [T,∞). (5–15)

From Assumption 5.1, λmin

{
N∑
i=1

YTi Yi
}
> 0, ∀t ∈ [T,∞), which implies that

N∑
i=1

YTi Yi is

positive definite and therefore V̇ (η (t)) is upper bounded by a negative definite function

of η (t). Invoking [123, Theorem 4.10], e (t) and θ̃ (t) are globally exponentially stable,

i.e., ∀t ∈ [T,∞),

‖η (t)‖ ≤

√
β2

β1

‖η (T )‖ exp (−λ1 (t− T ))

where λ1 , 1
2β2

min {λmin {K} , kCLλ}. The composite state vector can be further upper

bounded using the results of Theorem 5.1, yielding (5–13).

Remark 5.2. Although the analysis only explicitly considers two periods, i.e., before

and after the history stack is sufficiently rich, additional data may be added into the

history stack after T as long as the data increases the minimum eigenvalue of
N∑
i=1

YTi Yi.

By using the data selection algorithm in [108, Chapter 6], the minimum eigenvalue of
N∑
i=1

YTi Yi is always increasing, and therefore the Lyapunov function derivative upper

bound in (5–15), is valid for all time after T . Hence (5–14) is a common Lyapunov

function [101, Chapter 2].

5.2 Euler-Lagrange Dynamics

5.2.1 Control Development

Consider Euler-Lagrange dynamics of the form [136, Chapter 2.3], [137, Chapter

9.3]

M (q (t)) q̈ (t) + Vm (q (t) , q̇ (t)) q̇ (t) + Fdq̇ (t) +G (q (t)) = τ (t) (5–16)

where q (t) , q̇ (t) , q̈ (t) ∈ Rn represent position, velocity and acceleration vectors,

respectively, M : Rn → Rn×n represents the inertial matrix, Vm : Rn × Rn → Rn×n

represents centripetal-Coriolis effects, Fd ∈ Rn×n represents frictional effects, G : Rn →
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Rn represents gravitational effects and τ (t) ∈ Rn denotes the control input. The system

in (5–16) has the following properties (see [136, Chapter 2.3]).

Property 1. The system in (5–16) can be linearly parameterized, i.e., (5–16) can be

rewritten as

Y1 (q (t) , q̇ (t) , q̈ (t)) θ = M (q (t)) q̈ (t) + Vm (q (t) , q̇ (t)) q̇ (t) + Fdq̇ (t) +G (q (t)) = τ (t)

where Y1 : Rn × Rn × Rn → Rn×m denotes the regression matrix, and θ ∈ Rm is a vector

of uncertain parameters.

Property 2. The inertia matrix is symmetric and positive definite, and satisfies the

following inequalities

m1 ‖ξ‖2 ≤ ξTM (q (t)) ξ ≤ m2 ‖ξ‖2 , ∀ξ ∈ Rn

where m1 and m2 are known positive scalar constants, and ‖·‖ represents the Euclidean

norm.

Property 3. The inertia and centripetal-Coriolis matrices satisfy the following skew

symmetric relation

ξT
(

1

2
Ṁ (q (t))− Vm (q (t) , q̇ (t))

)
ξ = 0, ∀ξ ∈ Rn

where Ṁ (q (t)) is the time derivative of the inertial matrix.

To quantify the tracking objective, the position tracking error, e (t) ∈ Rn, and the

filtered tracking error, r (t) ∈ Rn, are defined as

e (t) = qd (t)− q (t)

r (t) = ė (t) + αe (t) (5–17)

where qd (t) ∈ Rn represents the desired trajectory, whose first and second time

derivatives exist and are continuous (i.e., qd (t) ∈ C2). To quantify the parameter
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identification objective, the parameter estimation error, θ̃ (t) ∈ Rm, is again defined as

θ̃ (t) = θ − θ̂ (t) (5–18)

where θ̂ (t) ∈ Rm represents the parameter estimate.

Taking the time derivative of (5–17), premultiplying by M (q (t)), substituting in from

(5–16), and adding and subtracting Vm (q (t) , q̇ (t)) r (t) results in the following open-loop

error dynamics

M (q (t)) ṙ (t) =M (q (t)) q̈d (t)−M (q (t)) q̈ (t) + αM (q (t)) ė (t)

=M (q (t)) q̈d (t) + Vm (q (t) , q̇ (t)) q̇ (t) + Fdq̇ (t) +G (q (t))

+ αM (q (t)) ė (t)− τ (t)± Vm (q (t) , q̇ (t)) r (t)

=M (q (t)) q̈d (t) + Vm (q (t) , q̇ (t)) (q̇d (t) + αe (t)) + Fdq̇ (t) +G (q (t))

+ αM (q (t)) ė (t)− τ (t)− Vm (q (t) , q̇ (t)) r (t)

M (q (t)) ṙ (t) = Y2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t)) θ − Vm (q (t) , q̇ (t)) r (t)− τ (t) (5–19)

where Y2 : Rn × Rn × Rn × Rn × Rn → Rn×m is defined based on the relation

Y2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t)) θ ,M (q (t)) q̈d (t) + Vm (q (t) , q̇ (t)) (q̇d (t) + αe (t))

+ Fdq̇ (t) +G (q (t)) + αM (q (t)) ė (t) .

To achieve the tracking objective, the controller is designed as

τ (t) = Y2θ̂ (t) + e (t) + k1r (t) (5–20)

where k1 ∈ R is a positive constant. To circumvent the need for q̈ (t), the update law can

be formulated in terms of an integral, as

˙̂
θ = ΓY2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t))T r (t) + k2Γ

N∑
i=1

YTi
(
Ui − Yiθ̂ (t)

)
(5–21)
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where Yi , Y (ti), Ui , U (ti), Y : [0,∞)→ Rn×m and U : [0,∞)→ Rn are defined as

U (ti) ,
ˆ t

t−∆t

τ (σ) dσ,

Y (ti) , Y3 (q (t) , q̇ (t)) +

ˆ t

t−∆t

Y4 (q (σ) , q̇ (σ)) dσ,

and the functions Y3, Y4 : Rn × Rn → Rn×m are defined as

Y3 (q (t) , q̇ (t)) θ ,M (q (t)) q̇ (t)−M (q (t−∆t)) q̇ (t−∆t) ,

Y4 (q (t) , q̇ (t)) θ , −Ṁ (q (t)) q̇ (t) + Vm (q (t) , q̇ (t)) q̇ (t) + Fdq̇ (t) +G (q (t)) .

Note that integrating both sides of (5–16) yields

ˆ t

t−∆t

τ (σ) dσ =

ˆ t

t−∆t

M (q (σ)) q̈ (σ) dσ+

ˆ t

t−∆t

[Vm (q (σ) , q̇ (σ)) q̇ (σ) + Fdq̇ (σ) +G (q (σ))] dσ.

(5–22)

The first term on the right hand side can be rewritten using integration by parts as

ˆ t

t−∆t

M (q (σ))︸ ︷︷ ︸
u

q̈ (σ) dσ︸ ︷︷ ︸
dv

= [M (q (σ)) q̇ (σ)]tt−∆t −
ˆ t

t−∆t

Ṁ (q (σ)) q̇ (σ) dσ

=M (q (t)) q̇ (t)−M (q (t−∆t)) q̇ (t−∆t)

−
ˆ t

t−∆t

Ṁ (q (σ)) q̇ (σ) dσ.

Substituting into (5–22) yields

ˆ t

t−∆t

τ (σ) dσ =M (q (t)) q̇ (t)−M (q (t−∆t)) q̇ (t−∆t)︸ ︷︷ ︸
Y3(q(t),q̇(t))θ

+

ˆ t

t−∆t

[
−Ṁ (q (σ)) q̇ (σ) + Vm (q (σ) , q̇ (σ)) q̇ (σ) + Fdq̇ (σ) +G (q (σ))

]
︸ ︷︷ ︸

Y4(q(t),q̇(t))θ

dσ

ˆ t

t−∆t

τ (σ) dσ =Y3 (q (t) , q̇ (t)) θ +

ˆ t

t−∆t

Y4 (q (σ) , q̇ (σ)) dσθ

U =Yθ. (5–23)
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Using the relation in (5–23), (5–21) can be rewritten as

˙̂
θ = ΓY2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t))T r (t) + k2Γ

N∑
i=1

YTi
(
Yiθ − Yiθ̂ (t)

)
. (5–24)

Substituting the controller from (5–20) into the error dynamics in (5–19) results in

the following closed-loop tracking error dynamics

M (q) ṙ = Y2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t)) θ̃ (t)− e (t)− Vm (q (t) , q̇ (t)) r (t)− k1r (t) .

(5–25)

Similarly, taking the time derivative of (5–18) and substituting the parameter estimate

update law from (5–24) results in the following closed-loop parameter estimation error

dynamics

˙̃θ = −ΓY2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t))T r (t)− k2Γ

[
N∑
i=1

YTi Yi

]
θ̃ (t) . (5–26)

5.2.2 Stability Analysis

Similar to the analysis in Section 5.1, two periods of time are considered. In

Theorem 5.3 it is shown that the designed controller and adaptive update law are

sufficient for the system to remain bounded for all time despite the lack of data and in

Theorem 5.4 exponential convergence is established given a sufficiently rich history

stack. Similar to Section 5.1, an excitation condition is required to guarantee that the

transition to the second phase happens in finite time, i.e.,

∃λ, T > 0 : ∀t ≥ T, λmin

{
N∑
i=1

YTi Yi

}
≥ λ.

Theorem 5.3. For the system defined in (5–16), the controller and adaptive update law

defined in (5–20) and (5–21) ensure bounded tracking and parameter estimation errors.

Proof. Let V : R2n+m → R be a candidate Lyapunov function defined as

V (η (t)) =
1

2
e (t)T e (t) +

1

2
r (t)T M (q (t)) r (t) +

1

2
θ̃ (t)T Γ−1θ̃ (t) (5–27)
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where η (t) ,

[
e (t)T r (t)T θ̃ (t)T

]T
∈ R2n+m is a composite state vector. Taking the

time derivative of (5–27) and substituting (5–17), (5–25), and (5–26) yields

V̇ (η (t)) =e (t)T (r (t)− αe (t)) +
1

2
r (t)T Ṁ (q (t)) r (t)− k2θ̃ (t)T

[
N∑
i=1

YTi Yi

]
θ̃ (t)

− θ̃ (t)T Y2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t))T r (t)

+ r (t)T
(
Y2 (q (t) , q̇ (t) , qd (t) , q̇d (t) , q̈d (t)) θ̃ (t)

)
+ r (t)T (−e (t)− Vm (q (t) , q̇ (t)) r (t)− k1r (t))

Simplifying and noting that
N∑
i=1

YTi Yi is always positive semi-definite, V̇ can be upper

bounded as

V̇ (η (t)) ≤ −αe (t)T e (t)− k1r (t)T r (t) .

Therefore, η (t) is bounded based on [123, Theorem 8.4]. Furthermore, since

V̇ (η (t)) ≤ 0, V (η (T )) ≤ V (η (0)) and therefore ‖η (T )‖ ≤
√

β2
β1
‖η (0)‖, where

β1 , 1
2

min {1, m1, λmin {Γ−1}} and β2 , 1
2

max {1, m2, λmax {Γ−1}}.

Theorem 5.4. For the system defined in (5–16), the controller and adaptive update law

defined in (5–20) and (5–21) ensure globally exponential tracking in the sense that

‖η (t)‖ ≤
(
β2

β1

)
exp (λ1T ) ‖η (0)‖ exp (−λ1t) , ∀t ∈ [0,∞) (5–28)

where λ1 , 1
2β2

min {α, k1, k2λ}.

Proof. Let V : R2n+m → R be a candidate Lyapunov function defined as in (5–27).

Taking the time derivative of (5–27), substituting (5–17), (5–25), (5–26) and simplifying

yields

V̇ (η (t)) = −αe (t)T e (t)− k1r (t)T r (t)− k2θ̃ (t)T
[

N∑
i=1

YTi Yi

]
θ̃ (t) .
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From the finite excitation condition, λmin

{
N∑
i=1

YTi Yi
}
> 0, ∀t ∈ [T,∞), which implies that

N∑
i=1

YTi Yi is positive definite, and therefore V̇ can be upper bounded as

V̇ (η (t)) ≤ −αe (t)T e (t)− k1r (t)T r (t)− k2λ
∥∥∥θ̃ (t)

∥∥∥2

, ∀t ∈ [T,∞).

Invoking [123, Theorem 4.10], η (t) is globally exponentially stable, i.e., ∀t ∈ [T,∞),

‖η (t)‖ ≤

√
β2

β1

‖η (T )‖ exp (−λ1 (t− T )) .

The composite state vector can be further upper bounded using the results of Theorem

5.3, yielding (5–28).

Remark 5.3. Similar to Part 5.1, using an appropriate data selection algorithm ensures

the minimum eigenvalue of
N∑
i=1

YTi Yi is always increasing, and therefore the Lyapunov

function (5–27) is a common Lyapunov function.

5.3 Simulation

A Monte Carlo simulation was performed to demonstrate the application of the

theoretical results presented in Section 5.1.2 and to illustrate the increased performance

and robustness to noise compared to the traditional state derivative based CL methods

across a wide variety of gain selections and noise realizations. The following example

system was used in the simulations:

ẋ (t) =

 x2
1 (t) sin (x2 (t)) 0 0

0 x2 (t) sin (t) x1 (t) x1 (t)x2 (t)

 θ + u (t)

where x : [0,∞)→ R2, u : [0,∞)→ R2, the unknown parameters were selected as

θ =

[
5 10 15 20

]T
,
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and the desired trajectory was selected as

xd (t) = 10
(
1− e−0.1t

) sin (2t)

0.4 cos (3t)

 .
For each of the 200 trials within the Monte Carlo simulation, the feedback and

adaptation gains were selected as K = KsI2 and Γ = ΓsI4, where Ks ∈ R was

sampled from a uniform distribution on (0.1, 15) and Γs ∈ R was sampled from a uniform

distribution on (0.3, 3). Also, the concurrent learning gain, kCL, and the integration

window, ∆t, were sampled from uniform distributions with support on (0.002, 0.2) and

(0.01, 1), respectively. After gain sampling, a simulation using each, the traditional state

derivative based, and the integral based, CL update law was performed, with a step

size of 0.0004 seconds and additive white Gaussian noise on the measured state with

standard deviation of 0.3. For each integral CL simulation, a buffer, with size based

on ∆t and the step size, was used to store the values of x, Y , and u during the time

interval [t−∆t, t] and to calculate x (t), x (t−∆t), Y (t) and U (t). Similarly, for the state

derivative CL simulation, a buffer of the same size was used as the input to a moving

average filter before calculating the state derivative via central finite difference. The size

of the history stack and the simulation time span were kept constant across all trials at

N = 20 and 100 seconds, respectively.

Since the moving average filter window used in the state derivative CL simulations

provides an extra degree of freedom, the optimal filter window size was determined

a priori for a fair comparison. The optimal filtering window was calculated by adding

Gaussian noise, with the same standard deviation as in the simulation, to the desired

trajectory, and selecting the window size that minimizes the root mean square error

between the estimated and true ẋd. This process yielded an optimal filtering window

of 0.5 seconds; however, the filtering window was truncated to ∆t on trials where the

sampled ∆t was less than 0.5 seconds, i.e., filter window = min {0.5, ∆t}.
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The mean tracking error trajectory and parameter estimation error trajectory across

all trials are depicted in Figs. 5-1 and 5-2. To compare the overall performance of both

methods, the RMS tracking error and the RMS parameter estimation error during the

time interval t ∈ [60, 100] (i.e., after reaching steady state) were calculated for each

trial, and then the average RMS errors across all trials was determined. The final

results of the Monte Carlo simulation are shown in Table 5-1, illustrating the improved

performance of integral CL versus state derivative CL.

5.4 Summary

A modified concurrent learning adaptive update law was developed, resulting in

guarantees on the convergence of the parameter estimation errors without requiring

persistent excitation or the estimation of state derivatives. The development in this

chapter represents a significant improvement in online system identification. Whereas

PE is required in the majority of adaptive methods for parameter estimation conver-

gence (usually ensured through the use of a probing signal that is not considered in

the Lyapunov analysis), the technique described in this chapter does not require PE.

Furthermore, the formulation of concurrent learning in this chapter circumvents the need

to estimate the unmeasurable state derivatives, therefore avoiding the design and tuning

of a state derivative estimator. This formulation is more robust to noise, i.e., has better

tracking and estimation performance, compared to other concurrent learning designs, as

demonstrated by the included Monte Carlo simulation.

A tuning parameter that results from this design is the integration time window, ∆t.

As the integration window increases, the difference between the prediction of the state

evolution based on current parameter estimates (i.e., Ui + Yiθ̂ (t)) and the actual state

evolution (i.e., x (ti) − x (ti −∆t)) should increase, therefore providing a larger error

signal from which to learn. On the other hand, a larger integration window increases the

effect of disturbances and noise since these signals would also be integrated, resulting

in a larger ultimate error bound (cf. [109] for a discussion on the effects of disturbances
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Table 5-1. Average steady state RMS tracking and RMS parameter estimation errors
across all simulations, for integral concurrent learning (ICL) and traditional
derivative-based concurrent learning (DCL).

e1 e2 θ̃1 θ̃2 θ̃3 θ̃4

ICL 0.1078 0.2117 .0507 0.3100 0.1867 0.1121
DCL 0.2497 0.6717 0.1802 1.3376 0.3753 0.2382

on the ultimate error). Therefore, future efforts will investigate optimal selection of the

integration window based on disturbance and noise characteristics.
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Figure 5-1. Mean state trajectory tracking errors across all trials.
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Figure 5-2. Mean parameter estimation errors across all trials.
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CHAPTER 6
ESTIMATION AND PREDICTION WITH MODEL LEARNING

This chapter combines the results of Chapters 4 and 5. In Chapter 4 it was demon-

strated that estimation performance could be significantly increased, and dwell time

stability conditions significantly relaxed, if a predictor was used to update state estimates

when measurements are unavailable. However, implementation of the predictor required

knowing a motion model of the target. In Chapter 5, a novel adaptive update law was

developed to learn unknown system dynamics online. The focus of this chapter is to

use the function approximation techniques of Chapter 5 to learn a motion model of the

target online, which can then be used to generate target velocity estimates requires for

prediction. As will be shown in the proceeding development, unlike Chapter 5, a neural

network (NN) universal function approximator will be used to learn the unknown portions

of the dynamics, since a parametric model for the target motion may not be available.

This results in ultimately bounded convergence when measurements are available, un-

like the exponential convergence provided by existing observers considered in Chapter

4, and therefore the average dwell time based stability theorems of Chapter 4 cannot be

directly applied.

The full 6 DOF pose of the target with respect to the camera is estimated in this

chapter. To this end, the dynamics in (2–9) can be rewritten as

ẋ (t) = vq (t)− vc (t)− ωc (t)× x (t) (6–1)

where x (t) ∈ R3 denotes the position of the origin of FQ with respect to the origin of FC

(i.e., the relative position of the object with respect to the camera), and ()× : R3 → R3×3

represents the skew operator, defined as

p× ,


0 −p3 p2

p3 0 −p1

−p2 p1 0

 .
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The relative orientation dynamics of the target with respect to the camera are given in

(2–13) and repeated here as

q̇ (t) =
1

2
B (q (t)) (ωq (t)− q̄ (t) · ωc (t) · q (t)) . (6–2)

6.1 Estimation Objective

The primary goal in this work is to develop a pose estimator that is robust to

intermittent measurements. The design strategy employed here is to filter the pose

measurements when they are available, and predict future poses when measurements

are unavailable (e.g., the object is not visible to the camera). However, a predictor based

on (6–1) and (6–2) would require linear and angular velocities of the object to be known.

The novelty in this work is to learn a model of the object velocities when measurements

are available, and use the model in the predictor when measurements are not available.

To this end, a stacked pose state, η (t) ∈ R7, is defined as η (t) ,

[
xT (t) qT (t)

]T
and

the following assumptions are utilized.

Assumption 6.1. Measurements of the relative pose of the target are available from

camera images when the target is in view.

Remark 6.1. The projection of a 3D scene onto a 2D sensor during the imaging process

results in scale ambiguity [112, Chapter 5.4.4]. In typical SfM observers, target velocity

is used to inject scale into the system and recover the full Euclidean coordinates of

the target (as done in Chapters 3 and 4). However, in the scenario considered in this

chapter, the target velocities are unknown. To resolve the ambiguity, a known length

scale on the target can used, and by exploiting Perspective-n-Point (e.g., [138–144]) or

homography (e.g., [145] and [126]) solvers, the pose of the target can be recovered.

Assumption 6.2. The object velocities are a time-invariant, locally Lipschitz function

of the object pose, i.e., vq (t) = φ1 (ρ (η (t) , t)) and ωq (t) = φ2 (ρ (η (t) , t)), where φ1,

φ2 : R7 → R3 are bounded and ρ : R7 × [0,∞) → R7 is a known, bounded, and locally

Lipschitz function.
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Remark 6.2. In some applications, the velocity field of the target is expected to be

dependent on the target’s pose with respect to the world, rather than it’s relative pose

with respect to the camera. The function ρ is used to transform the relative pose to its

world pose by using the camera pose with respect to the world. In other applications,

the velocity field is expected to rely solely on the relative pose (e.g., a pursuit-evasion

scenario in an obstacle free environment, where the evader’s motion would only be

dependent on it’s pose with respect to the pursuer/camera) or the camera pose is

unknown, in which case ρ can be taken as the identity function on η (t).

Assumption 6.3. The state η (t) is bounded, i.e. η (t) ∈ X , where X ⊂ R7 is a convex,

compact set.

Remark 6.3. In estimation, for the state estimates to converge to the states while

remaining bounded, the states themselves must remain bounded. This is analogous to

the requirement of bounded desired trajectories in control problems.

In this development, the unknown motion model functions, φ1 and φ2, are approxi-

mated with a neural network, i.e., vq (t)

1
2
B (q (t))ωq (t)

 =

 φ1 (ρ (η (t) , t))

1
2
B (q (t))φ2 (ρ (η (t) , t))

 = W Tσ (ρ (η, t)) + ε (ρ (η, t))

where σ : R7 → Rp is a known, bounded, locally Lipschitz, vector of basis functions,

W ∈ Rp×7 is a matrix of the unknown ideal weights, and ε : R7 → R7 is the func-

tion approximation residual, which is locally Lipschitz based on the locally Lipschitz

properties of vq (t), ωq (t), B (q (t)) and σ(·), and is a priori bounded with a bound

that can be made arbitrarily small based on the Stone-Weierstrass theorem, i.e.,

ε̄ , supη∈X , t∈[0,∞) ‖ε (ρ (η, t))‖, where ‖·‖ denotes the Euclidean norm. Note that if W is

known, φ2 (ρ (η (t) , t)) can be approximated by premultiplying by 2BT (q (t)) and utilizing

the pseudoinverse property of B (q (t)).
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To quantify the estimation objective, let

η̃ (t) , η (t)− η̂ (t) (6–3)

denote the estimation error, where η̂ (t) ∈ R7 contains the position and orientation

estimates. Also, let

W̃ (t) , W − Ŵ (t) ,

denote the parameter estimation error, where Ŵ (t) ∈ Rp×7 is the estimate of the ideal

function approximation weights. Based on these definitions, the kinematics in (6–1) and

(6–2) can be rewritten as

η̇ (t) = W Tσ (ρ (η (t) , t)) + ε (ρ (η (t) , t)) + f (η (t) , t) , (6–4)

where f : R7 × [0,∞)→ R7 is a known function defined as

f (η (t) , t) , −

 vc (t) + ωc (t)× x (t)

1
2
B (q (t)) (q̄ (t) · ωc (t) · q (t))

 .
6.2 Estimator Design

Taking the transpose of (6–4) and integrating yields

ˆ t

t−∆t

η̇T (τ) dτ =

ˆ t

t−∆t

σT (ρ (η (τ) , τ))Wdτ+

ˆ t

t−∆t

εT (ρ (η (τ) , τ)) dτ+

ˆ t

t−∆t

fT (η (τ) , τ) dτ

where ∆t ∈ R is a positive constant denoting the size of the window of integration. Using

the Fundamental Theorem of Calculus and simplifying yields

ηT (t)− ηT (t−∆t) = Y (t)W + E (t) + F (t) , ∀t ∈ [∆t,∞) (6–5)

where, ∀t ∈ [∆t,∞), Y (t) ,
´ t
t−∆t

σT (ρ (η (τ) , τ)) dτ , E (t) ,
´ t
t−∆t

εT (ρ (η (τ) , τ)) dτ , and

F (t) ,
´ t
t−∆t

fT (η (τ) , τ) dτ .
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6.2.1 Estimator

Based on the subsequent stability analysis, during the periods in which measure-

ments are available, the position and orientation estimate update laws are designed

as

˙̂η (t) = Ŵ (t)T σ (ρ (η (t) , t)) + f (η (t) , t) + k1η̃ (t) + k2sgn (η̃ (t)) , (6–6)

where sgn(·) is the signum function. The update law for the motion model approximation

parameters is based on ICL and is designed as

˙̂
W = proj

(
Γσ (ρ (η (t) , t)) η̃ (t)T + kCLΓ

N∑
i=1

YTi
(

∆ηi −Fi − YiŴ (t)
))

(6–7)

where proj (·) is a smooth projection operator (see [133, Appendix E], [134, Remark

3.7]) with bounds based on the state bounds and velocity bounds of Assumptions

6.2 and 6.3, N ∈ N0, kCL ∈ R and Γ ∈ Rp×p are constant, positive definite and

symmetric control gains, ∆ηi , ηT (ti) − ηT (ti −∆t), Fi , F (ti), Yi , Y (ti), and ti

represents past time points, i.e., ti ∈ [∆t, t], at which measurements are available. The

principle goal behind this design is to incorporate recorded input and trajectory data

to identify the ideal weights. The time points ti, and the corresponding ∆ηi, Fi, and Yi

that are recorded and used in (6–7) are referred to as the history stack. As shown in

the subsequent stability analysis, the parameter estimate learning rate is related to the

minimum eigenvalue of
N∑
i=1

YTi Yi, motivating the use of the singular value maximization

algorithm in [108, Chapter 6] for adding data to the history stack.

Using the relation in (6–5), the update law in (6–7) can be simplified to

˙̂
W = proj

(
Γσ (ρ (η (t) , t)) η̃ (t)T + kCLΓ

N∑
i=1

YTi YiW̃ (t) + kCLΓ
N∑
i=1

YTi Ei

)
, (6–8)

for all t > ∆t, where Ei , E (ti). Taking the time derivative of (6–3), substituting

(6–4) and (6–6), and simplifying, yields the following closed-loop error dynamics when
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measurements are available

˙̃η (t) = W̃ (t)T σ (ρ (η (t) , t))− k1η̃ (t) + ε (ρ (η (t) , t))− k2sgn (η̃ (t)) . (6–9)

6.2.2 Predictor

During periods when measurements are not available, the state estimates are

simulated forward in time using

˙̂η (t) = proj
(
Ŵ (t)T σ (ρ (η̂ (t) , t)) + f (η̂ (t) , t)

)
. (6–10)

Similarly, the recorded data continues to provide updates to the ideal weight estimates

via
˙̂
W (t) = proj

(
kCLΓ

N∑
i=1

YTi
(

∆ηi −Fi − YiŴ (t)
))

, (6–11)

which can be simplified as

˙̂
W (t) = proj

(
kCLΓ

N∑
i=1

YTi YiW̃ (t) + kCLΓ
N∑
i=1

YTi Ei

)
. (6–12)

Taking the time derivative of (6–3), substituting (6–4) and (6–10), and simplifying

yields the following closed-loop dynamics when measurements are not available

˙̃η (t) =W̃ (t)T σ (ρ (η (t) , t)) + Ŵ (t)T (σ (ρ (η (t) , t))− σ (ρ (η̂ (t) , t))) + f (η (t) , t)

− f (η̂ (t) , t) + ε (ρ (η (t) , t)) . (6–13)

6.3 Analysis

The system considered in this work operates in two modes. The evolution of a

Lyapunov-like function is developed in Lemma 6.1 for the mode when measurements

are available and the estimator is used. Similarly, the evolution of a Lyapunov-like

function is developed in Lemma 6.2 for the mode when measurements are unavailable

and the predictor is active.
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In addition to the switching that occurs as measurements become intermittently

unavailable, in the following stability analysis, time is partitioned into two phases. During

the initial phase, insufficient data has been collected to satisfy a richness condition on

the history stack. In Theorem 6.1 it is shown that the designed estimator and adaptive

update law are still sufficient for the system to remain bounded for all time despite the

lack of data. After a finite period of time, the system transitions to the second phase,

where the history stack is sufficiently rich and the estimator and adaptive update law

are shown, in Theorem 6.2, to asymptotically converge to an arbitrarily small bound. To

guarantee that the transition to the second phase happens in finite time, and therefore

the overall system trajectories are ultimately bounded, we require the history stack be

sufficiently rich after a finite period of time, as specified in the following assumption.

Assumption 6.4.

∃λ, T > 0 : ∀t ≥ T, λmin

{
N∑
i=1

YTi Yi

}
≥ λ, (6–14)

where λmin {·} refers to the minimum eigenvalue of {·}.

The condition in (6–14) requires that the system be sufficiently excited, though is

weaker than the persistence of excitation condition since excitation is unnecessary once
N∑
i=1

YTi Yi is full rank.

To facilitate the following analysis, let ton
n and toff

n denote the nth instance at which

measurements become available and unavailable, respectively. Then during t ∈ [ton
n , t

off
n )

measurements are available and the estimator is active, whereas during t ∈ [toff
n , t

on
n+1)

measurements are unavailable and the predictor is active. The duration of contiguous

time each of these modes are active is denoted ∆ton
n , toff

n − ton
n and ∆toff

n , ton
n+1 − toff

n ,

respectively, and the total amount of time each of these modes is active between

switching instances a and b are denoted T on (a, b) ,
b∑
i=a

∆ton
i and T off (a, b) ,

b∑
i=a

∆toff
i ,

respectively. Also, ξ (t) ,

[
η̃ (t)T vec

(
W̃ (t)

)T ]T
∈ R7+7p denotes a stacked state

and parameter error vector, where vec (·) denotes a stack of the columns of (·). Finally,
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V : R7+7p → R is a Lyapunov-like function defined as

V (ξ (t)) ,
1

2
η̃ (t)T η̃ (t) +

1

2
tr
(
W̃ (t)T Γ−1W̃ (t)

)
, (6–15)

which can be bounded as β1 ‖ξ (t)‖2 ≤ V (ξ (t)) ≤ β2 ‖ξ (t)‖2, where tr (·) denotes the

matrix trace operator, β1 , 1
2

min {1, λmin (Γ−1)}, and β2 , 1
2

max {1, λmax (Γ−1)}. Also,

due to the projection operator in (6–7) and (6–11), and since W is a constant, W̃ (t) is

bounded and V (ξ (t)) ≤ c2 + c3 ‖η̃ (t)‖2, where c2, c3 ∈ R>0 are positive constants.

Lemma 6.1. The estimator in (6–6) and (6–7) remains bounded during t ∈ [ton
n , t

off
n ).

Proof. Taking the time derivative of (6–15) during t ∈ [ton
n , t

off
n ), substituting (6–8) and

(6–9), and simplifying yields

V̇ (ξ (t)) ≤ −k1 ‖η̃ (t)‖2 + c1,

where c1 ∈ R>0 is a positive constant. Using the bounds on V , V̇ can be bounded as

V̇ (ξ (t)) ≤ −k1

c3

V (ξ (t)) +

(
k1c2 + c1

c3

)
.

Using the Comparison Lemma in [123, Lemma 3.4],

V (ξ (t)) ≤ V (ξ (ton
n )) exp [−λ (t− ton

n )] +

(
c2 +

c1

k1

)
, ∀t ∈ [ton

n , t
off
n ) (6–16)

where λ , k1
c3

.

Similarly, after sufficient data has been gathered (i.e., t ∈ [ton
n , t

off
n ) ∩ [T,∞), where T

was defined in Assumption 6.4)

V (ξ (t)) ≤ V (ξ (ton
n )) exp [−λT (t− ton

n )] + cUB, ∀t ∈ [ton
n , t

off
n ) ∩ [T,∞), (6–17)

where λT , min{k1,λCL}
β2

, cUB , c1β2
min{k1,λCL}

, λCL , kCLλmin

{
N∑
i=1

YTi Yi
}

and λCL > 0 based

on Assumption 6.4.

Remark 6.4. Note that c1 is based on a bound on the data in the history stack, Yi, the

concurrent learning gain, kCL, and the bound on function approximation error, ε̄, and
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therefore cannot be decreased through gain tuning. However, c1, and hence the ultimate

error bound after sufficient data has been gathered, can be made arbitrarily small by

decreasing ε̄, e.g., increasing the number of neurons in the NN.

Lemma 6.2. The predictor in (6–10) and (6–11) remains bounded during t ∈ [toff
n , t

on
n+1).

Proof. Taking the time derivative of (6–15) during t ∈ [toff
n , t

on
n+1), substituting (6–12) and

(6–13), and simplifying yields

V̇ (ξ (t)) ≤ c4 ‖ξ (t)‖2 + c5

where c4, c5 ∈ R>0 are positive constants. Using bounds on V , V̇ can be bounded as

V̇ (ξ (t)) ≤ c4

β1

V (ξ (t)) + c5.

Using the Comparison Lemma in [123, Lemma 3.4],

V (ξ (t)) ≤ V
(
ξ
(
toff
n

))
exp

[
c4

β1

(
t− toff

n

)]
, ∀t ∈ [toff

n , t
on
n+1) (6–18)

which remains bounded for all bounded t.

Theorem 6.1. The estimator and predictor in (6–6), (6–7), (6–10), and (6–11) remain

bounded provided there exists a k < ∞, and sequences {∆ton
n }
∞
n=0 and

{
∆toff

n

}∞
n=0

such

that
c4

β1

T off (nk, (n+ 1) k) < λTT
on (nk, (n+ 1) k) , ∀n ∈ N. (6–19)

Proof. Consider a single cycle of losing and regaining measurements, i.e., t ∈ [ton
n , t

on
n+1).

Based on (6–16) and (6–18)

V
(
ξ
(
ton
n+1

))
≤ V (ξ (ton

n )) exp

[
c4

β1

∆toff
n − λ∆ton

n

]
+

(
c2 +

c1

k1

)
exp

[
c4

β1

∆toff
n

]
. (6–20)

Using (6–20), the evolution of V over k cycles is

V
(
ξ
(
ton
(n+1)k

))
≤ c6V (ξ (ton

nk)) + c7
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where c6, c7 ∈ R>0 are positive, bounded constants, and c6 < 1 based on (6–19). Let

{sn}∞n=0 be a sequence defined by the recurrence relation

sn+1 = M (sn) ,

with initial condition s0 = V (ξ (ton
0 )), where M : R → R is defined as M (s) , c6s + c7.

Since c6 < 1, M is a contraction [124, Definition 9.22], and therefore all initial conditions,

s0, approach the fixed point s = c7
1−c6 [124, Theorem 9.23]. Since the sequence {sn}

upper bounds V in the sense that V (ξ (ton
nk)) ≤ sn, V is also ultimately bounded.

However, V may grow within
[
ton
nk, t

on
(n+1)k

]
since the dwell time condition (6–19) is

specified over k cycles rather than a single cycle, and therefore the ultimate bound of ξ,

which is based on the ultimate bound of V , is

lim sup
t
‖ξ (t)‖ ≤ β1

c7

1− c6

exp

(
c4

β1

T off
max

)
,

where T off
max , sup

n
T off (nk, (n+ 1) k).

Theorem 6.2. After sufficient data is collected, i.e., t ∈ [T,∞), the estimator and

predictor in (6–6), (6–7), (6–10), and (6–11) converge to a bound that can be made

arbitrarily small provided there exists a k < ∞, and sequences {∆ton
n }
∞
n=0 and {∆ton

n }
∞
n=0

such that (6–19) is satisfied.

Proof. The proof follows similarly to the proof of Theorem 6.1. Consider a single cycle

of losing and regaining measurements after sufficient data has been collected, i.e.,

t ∈ [ton
n , t

on
n+1) ∩ [T,∞). Based on (6–17) and (6–18)

V
(
ξ
(
ton
n+1

))
≤ V (ξ (ton

n )) exp

[
c4

β1

∆toff
n − λT∆ton

n

]
+ cUB exp

[
c4

β1

∆toff
n

]
. (6–21)

Using (6–21), the evolution of V over k cycles is

V
(
ξ
(
ton
(n+1)k

))
≤ c8V (ξ (ton

nk)) + c9
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where c8, c9 ∈ R>0 are positive, bounded constants, and c8 < 1 based on (6–19). Let

{sn}∞n=0 be a sequence defined by the recurrence relation

sn+1 = M (sn) ,

with initial condition s0 = V
(
ξ
(
ton
q

))
, where q , argmin

n
{ton
n > T} and M : R → R is

defined as M (s) , c8s + c9. Since c8 < 1, M is a contraction [124, Definition 9.22],

and therefore all initial conditions, s0, approach the fixed point s = c9
1−c8 [124, Theorem

9.23]. Similar to Theorem 6.2, the sequence {sn} upper bounds V in the sense that

V (ξ (ton
nk)) ≤ sn, but V may grow within

[
ton
nk, t

on
(n+1)k

]
since the dwell time condition (6–19)

is specified over k cycles rather than a single cycle, and therefore the ultimate bound of

ξ, is

lim sup
t
‖ξ (t)‖ ≤ β1

c9

1− c8

exp

(
c4

β1

T off
max

)
,

where T off
max , sup

n
T off (nk, (n+ 1) k).

Remark 6.5. The fundamental difference between Theorem 6.1 and Theorem 6.2, and

hence the need for sufficiently rich data, is the control over the ultimate error bound.

In Theorem 6.1, c7 is based on c2, which is based on a bound on the ideal function

approximation weight errors, which is a priori determined, and therefore the ultimate

error bound cannot be decreased. In Theorem 6.2, c9 is based on cUB which can be

made arbitrarily small by, for example, increasing the number of neurons in the NN.

6.4 Experiments

Experiments were performed to verify the theoretical results and demonstrate the

performance of the developed estimation and prediction scheme with online model

learning. In the first experiment, a stationary camera observed a target moving in a

vector field of the form shown in Figure 6-1. An IDS UI-3060CP was used to capture

1936x1216 pixel resolution images at a rate of 60 frames per second. A Clearpath

Robotics TurtleBot 2 with a Kobuki base was utilized as a mobile vehicle simulant (i.e.,

the target). A fiducial marker was mounted on the mobile robot, and a corresponding
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tracking software library (see [131] and [132]) was used to repeatably track the image

feature pixel coordinates, as well as provide target pose measurements, when the target

was in the camera FOV. A NaturalPoint, Inc. OptiTrack motion capture system was used

to record the ground truth pose of the camera and target at a rate of 360 Hz. The pose

provided by the motion capture system was also used to estimate the linear and angular

velocities of the camera necessary for the estimator, where the current camera velocity

estimates were taken to be the slope of the linear regression of the 20 most recent pose

data points. The same procedure was used to calculate the linear and angular velocities

of the target for ground truth and comparison with the learned model.

For both experiments, radial basis functions were used in the NN, with covariance

Σk = 0.3I. Estimator gains were selected as k1 = 3, k2 = 0.1, kCL = 1 and Γ = I, and the

integration window was selected as ∆t = 0.1 s.

In the first experiment, the function ρ (η, t) was used to determine the estimated

2D position of the target in the world coordinate system using the camera pose (see

Remark 6.2). For this experiment, 81 kernels were used in the NN, with means arranged

in a uniform 9x9 grid across the vector field (Figure 6-1), and a total of N = 600

data points were saved in the CL history stack. During the first 60 seconds of the

experiment, target visibility was maintained in order to quickly fill the CL history stack.

Data was added at a rate of approximately 1 sample per second, resulting in 10% of

the history stack filled at the end of the initial learning phase. After the initial phase,

periodic measurement loss was induced artificially by intermittently disregarding pose

measurements and switching to the predictor. The dwell times for each period were

selected randomly as ton
n ∼ U (15, 30) and toff

n ∼ U (10, 20). The results of this experiment

are shown in Figures 6-2 through 6-6. As shown in Figures 6-2 and 6-3, the predictor

initially performs poorly; however, prediction significantly improves as more data is

acquired. Boundedness of the unknown parameter estimates is validated in Figure 6-4.

Figures 6-5 and 6-6 demonstrate that once sufficient data is acquired, the NN output
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tracks the motion of the target well, therefore reducing the need for large feedback and

sliding mode gains, as well as accurately predicting target motion when measurements

are unavailable.

A second experiment was performed to demonstrate the application of the results

developed in this chapter to a more realistic scenario. Specifically, the goal of this

experiment was to use a single moving camera to estimate the pose of two targets

independently moving along a road network (shown in Figure 6-7). At intersections in

the road network, the targets randomly selected a direction to travel, hence violating

Assumption 6.2. In this experiment, a camera on-board a Parrot Bebop 2 quadcopter

platform was used to capture 640x368 pixel resolution images, which were wirelessly

streamed to an off-board computer at 30 frames per second. The function ρ (η, t)

was augmented to also output the estimated target heading in the world coordinate

system, and the NN was composed of 172 kernels with means distributed along the

road network. Two independent instances of the estimator developed in this chapter

were used to estimate the target poses, one for each target, however, since the targets

share a common road network, the CL history stack was shared between the two

estimators, with a total of N = 2000 data points saved in the stack, thus allowing for

the following strategy. During the initial phase, the quadcopter was commanded to

follow a single target for approximately 300 seconds, therefore acquiring enough data

to reasonably approximate a motion model of the targets along the road network. After

the initial phase, the quadcopter was commanded to follow whichever target was closest

to an intersection, since this is where the assumptions are violated, i.e., a deterministic

function approximator would not be expected to accurately approximate a stochastic

function. After the target has selected a direction, and left the intersection, the predictor

for this target is activated, and the quadcopter can follow the other target. This strategy

matches a reasonable strategy one might employ in a real world scenario: observe a

target at intersections or other areas where the target can act randomly, but once the
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target has chosen a direction, a sufficiently learned predictor is expected to perform

well, and the observer can move on to other targets.

The results of this experiment are shown in Figures 6-8 through 6-15. Figures 6-8,

6-9, 6-12 and 6-13 show the true and estimated pose of the targets in world coordinates,

thus demonstrating that after sufficient data is collected, target pose can be accurately

estimated even if the target remains outside the camera FOV for significant durations,

despite significant delay due to the wireless transmission of the images, as well as the

decreased measurement accuracy compared to the first experiment due to the low

resolution camera. Figures 6-10 and 6-14 demonstrate the accuracy of the learned

parameters.

6.5 Summary

An adaptive observer and predictor were developed to estimate the relative pose

of a target from a camera in the presence of intermittent measurements. While mea-

surements are available, data is recorded and used to update an estimate of the target

motion model. When measurements are not available, the motion model is used in a

predictor to update state estimates. The overall framework is shown to yield ultimately

bounded estimation errors, where the bound can be made arbitrarily small through

gain tuning, increasing data richness, and function approximation tuning. Experimental

results demonstrate the performance of the developed estimator.
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Figure 6-1. During the first experiment, the target was commanded to follow a vector
field of this form.
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Figure 6-2. Relative position estimates for the first experiment with a stationary camera.
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Figure 6-3. Relative orientation estimates for the first experiment with a stationary
camera.
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Figure 6-4. Evolution of the NN ideal weight estimates during the first experiment with a
stationary camera.
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Figure 6-5. Output of the NN compared with ground truth linear velocities for the first
experiment with a stationary camera.
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Figure 6-6. Output of the NN compared with ground truth orientation rates (i.e.,
1
2
B (q (t))ωq (t)) for the first experiment with a stationary camera.
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Figure 6-7. During the second experiment, both targets traveled along this network,
randomly selecting turns at intersections
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Figure 6-8. Position estimates of target 1 expressed in world coordinates for the second
experiment with a quadcopter observing two moving targets.
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Figure 6-9. Orientation estimates of target 1 relative to the world coordinate system for
the second experiment with a quadcopter observing two moving targets.

120



0 100 200 300 400 500 600 700
-0.4

-0.2

0

0.2

0.4

True Estimator Predictor

0 100 200 300 400 500 600 700

?
1

-0.4

-0.2

0

0.2

0.4

Time [s]
0 100 200 300 400 500 600 700

-0.4

-0.2

0

0.2

0.4

Figure 6-10. Output of the NN compared with ground truth linear velocities of target 1 for
the second experiment with a quadcopter observing two moving targets.
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Figure 6-11. Output of the NN compared with ground truth orientation rates (i.e.,
1
2
B (q (t))ωq (t)) of target 1 for the second experiment with a quadcopter

observing two moving targets.
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Figure 6-12. Position estimates of target 2 expressed in world coordinates for the
second experiment with a quadcopter observing two moving targets.
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Figure 6-13. Orientation estimates of target 2 relative to the world coordinate system for
the second experiment with a quadcopter observing two moving targets.
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Figure 6-14. Output of the NN compared with ground truth linear velocities of target 2 for
the second experiment with a quadcopter observing two moving targets.
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Figure 6-15. Output of the NN compared with ground truth orientation rates (i.e.,
1
2
B (q (t))ωq (t)) of target 2 for the second experiment with a quadcopter

observing two moving targets.
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CHAPTER 7
CONCLUSIONS

With the advent of technological improvements in imaging systems and computa-

tional resources, as well as the development of image-based reconstruction techniques,

it is necessary to understand algorithm performance when subject to real world condi-

tions. Specifically, this dissertation focuses on the stability and performance of a class of

image-based observers in the presence of intermittent measurements, caused by e.g.,

occlusions, limited FOV, feature tracking losses, communication losses, or finite frame

rates.

Chapter 3 represents a first cut engineering approach to dealing with intermittent

measurements. When measurements are available, an observer is used to estimate

the full state. The estimate is held constant when measurements are not available,

until feedback is reestablished, at which point the observer is reinitialized with the last

estimate. This models especially well the real world implementation of continuous image

based observer using cameras with finite frame rates. In this general scenario, the

estimation error was shown to grow based on the trigonometric tangent function when

measurements are unavailable, resulting in a finite escape time and therefore reverse

dwell time conditions on each period in which measurements are unavailable to ensure

stability. Provided dwell time conditions on the periods in which measurements are

available are also met, the estimation errors were shown to converge to an ultimate

bound, which can be made arbitrarily small through adjustment of the observer gains

and dwell times.

In Chapter 4, a predictor was added to the framework to update state estimates

during periods in which measurements are unavailable. As shown in the analysis,

this resulted in slower error growth during these periods (i.e., exponential increases

versus tangential increase with finite escape when using ZOH), and therefore relaxed

dwell time conditions (i.e., average dwell time conditions versus (reverse) dwell time
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conditions using ZOH) to ensure stability. Further, provided the average dwell time

conditions were satisfied, the estimation error were shown to exponentially converge.

However, a motion model of the target must be available in order to implement the

predictor, limiting the applicability of this approach. Both Chapters 3 and 4 focused

on analyzing a general framework in which a wide class of observers can be utilized

to estimate the states when measurements are available, therefore generalizing the

results.

To overcome the limitation in requiring a known motion model in order to implement

a predictor and benefit from relaxed dwell time conditions and increased performance,

the remainder of the dissertation focused on using adaptive control techniques to learn

the motion model online. Typical adaptive methods achieve a control objective without

actually learning; although the tracking errors are shown to asymptotically converge,

parameter estimation errors are only shown to be bounded. Ensuring parameter

estimation convergence, and hence system identification, requires the PE assumption.

This assumption is restrictive for two reasons: 1) excitation must be persistent, and 2)

excitation is unmeasurable. Since typical adaptive methods that utilize PE only update

parameter estimates based on current measurements, the system must be excited in

perpetuity to ensure the parameter estimates continue to converge. Typically excitation

is accomplished by injecting a perturbation signal in the controller or desired trajectory,

but perturbing the system for all time runs counter to the original control objective. Also,

the PE condition is based on the integral of a matrix over an unknown time window,

and methods do not currently exist to a priori ensure PE for general nonlinear systems.

CL techniques have been developed to ensure parameter convergence, and hence

exponential convergence of the overall system, under relaxed finite excitation conditions

that can be trivially verified online; however, these techniques require estimation of state

derivatives, which are typically not measured and require extensive filter tuning. The

primary contribution of Chapter 5 is in the development of an adaptive update law that
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ensure parameter convergence without PE or state derivatives, and with a measurable

excitation condition, and a Monte Carlo simulation is presented to demonstrate the

improved performance of this method compared to traditional CL techniques. This

represents a major step forward in adaptive control methods.

The concepts developed in Chapter 5 are utilized in Chapter 6 to implement a

framework similar to that developed in Chapter 4 in scenarios where the motion model

of the target is unknown. Unlike Chapter 5 where the example systems have a known

parametric model with unknown parameters, the form of the target motion model would

be unknown in many applications, and therefore a neural network universal function

approximator is utilized in this chapter. This results in ultimately bounded convergence

when measurements are available, unlike the exponential convergence utilized in

Chapters 3 and 4. Despite these complexities, estimation errors are shown to converge

to an ultimate bound that can be made arbitrarily small through function approximation

tuning, provided k-average dwell time conditions are satisfied.

One of the limitations of the development in Chapter 6 is the assumption that the

target motion model can be represented by an autonomous function (i.e., only explicitly

dependent on the states), whereas actual target motion may also be time dependent.

This assumption is due to the theoretical results that bound function approximation

errors; error bounds can only be established on a compact set, therefore excluding

time-varying functions with infinite support. A subject for future research is the use of

stochastic models and predictors, from which richer behaviors may be covered while still

being limited to autonomous models.
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APPENDIX
AUGMENTED STATE OBSERVER

In [122], an observer is designed for the unmeasurable state, x3, whereas it is

assumed the estimates for the first two states, x1 and x2, are directly measurable. If

this design were directly implemented, the state estimates may discontinuously jump

whenever the target comes into view, violating the continuity assumption of Theorem

4.1. By using filtered measurements for the complete state estimate, the continuity

assumption can be satisfied. The observer used in the experiments in Chapters 3 and 4

is a modified version of the observer in [122] and is defined by the update laws

˙̂x1 (t) = h1 (t) x̂3 (t) + p1 (t) + k1e1 (t)

˙̂x2 (t) = h2 (t) x̂3 (t) + p2 (t) + k2e2 (t)

˙̂x3 (t) = −b3 (t) x̂2
3 (t)− (x1 (t)ω2 (t)− x2 (t)ω1 (t)) x̂3 (t)− k3

(
h2

1 (t) + h2
2 (t)

)
x̂3 (t)

+ k3h1 (t) (ẋ1 (t)− p1 (t)) + k3h2 (t) (ẋ2 (t)− p2 (t)) + h1 (t) e1 (t) + h2 (t) e2 (t)

where the error signals, e (t) ,

[
e1 (t) e2 (t) e3 (t)

]T
∈ R3, are defined as

e1 (t) , x1 (t)− x̂1 (t) ,

e2 (t) , x2 (t)− x̂2 (t) ,

e3 (t) , x3 (t)− x̂3 (t) ,

the linear velocity signal is defined as b (t) , vq (t)−vc (t) ∈ R3, k1, k2, k3 ∈ R are positive

constants, and the auxiliary signals h1 (t), h2 (t), p1 (t), p2 (t) ∈ R are defined as

h1 (t) , b1 (t)− x1 (t) b3 (t) ,

h2 (t) , b2 (t)− x2 (t) b3 (t) ,

p1 (t) , x1 (t)x2 (t)ω1 (t)−
(
1 + x2

1 (t)
)
ω2 (t) + x2 (t)ω3 (t) ,

p2 (t) ,
(
1 + x2

2 (t)
)
ω1 (t)− x1 (t)x2 (t)ω2 (t)− x1 (t)ω3 (t) .
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Using the Lyapunov function candidate

V (e (t)) =
1

2
e2

1 (t) +
1

2
e2

2 (t) +
1

2
e2

3 (t)

it can be shown that

V̇ (e (t)) ≤ −k1e
2
1 (t)− k2e

2
2 (t)− k4e

2
3 (t)

for some positive constant k4 ∈ R, using the same bounding arguments and gain

conditions as in [122]. Thus, the augmented observer is exponentially convergent.
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