
LYAPUNOV-BASED INDIRECT CONTROL OF ROBOTIC SYSTEMS

By

PATRICK MCGILL AMY

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2025

© 2025 Patrick McGill Amy

2

To my wife Josie and to my family for their unwavering support and endless love

3

ACKNOWLEDGMENTS

I thank my advisor, Dr. Warren Dixon, for his mentorship and patience during my

PhD career. I thank my committee members, Dr. Matthew Hale, Dr. Jane Shin, and Dr.

John Shea for their invaluable guidance and thoughtful feedback. I thank my colleagues

in the Nonlinear Control and Robotics Laboratory at the University of Florida and the

Naval Surface Warfare Center Panama City Division for inspiring me to challenge myself

and supporting me along the way.

“If perhaps I have seen a great distance, it is because I have stood on the shoulders

of Giants.”

My Giants: Dr. John Amy, Dr. Warren Dixon, Dr. Matthew Hale, Dr. Patrick Walters,

Dr. Zachary Bell, Dr. Federico Zegers, Dr. Patryk Deptula, Dr. Ryan Licitra

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 7

LIST OF FIGURES . 8

LIST OF ABBREVIATIONS . 10

ABSTRACT . 11

CHAPTER

1 INTRODUCTION . 12

1.1 Background . 12
1.2 Multi-Agent Systems . 12
1.3 Event-Triggered and Self-Triggered Consensus Control for Multi-Agent

Systems . 14
1.3.1 Event-Triggered Consensus Control 17
1.3.2 Self-Triggered Consensus Control 20
1.3.3 Extensions of Event-Triggered Consensus 22

1.4 Single Agent and Multi-Agent Indirect Control 23
1.4.1 Single Agent Indirect Control . 25
1.4.2 Multi Agent Indirect Control . 27

1.5 Outline of Dissertation . 30
1.6 Notation . 31

1.6.1 Graphs . 32
1.6.2 Hybrid Dynamical Systems . 32

2 MULTI-AGENT APPROXIMATE CONSENSUS WITH A USER-SPECIFIED
MINIMUM INTER-EVENT TIME . 34

2.1 Problem Formulation . 34
2.2 Hybrid System Modeling . 35
2.3 Supporting Lemmas . 39
2.4 Stability Analysis . 42
2.5 Discussion . 45
2.6 Simulation Example . 47
2.7 Concluding Remarks . 49

3 EVENT-TRIGGERED INDIRECT CONTROL OF A COOPERATIVE AGENT . . 57

3.1 Problem Formulation . 57
3.2 Control Objective . 58

3.2.1 Trigger Design . 59

5

3.3 Stability Analysis . 60
3.3.1 State Convergence . 61
3.3.2 State Divergence . 63
3.3.3 Combined Stability Analysis . 64

3.4 Results . 65
3.4.1 Simulated Results . 65
3.4.2 Experiment . 66

3.5 Concluding Remarks . 70

4 INDIRECT CONTROL OF A COOPERATIVE AGENT THROUGH FIELD OF
VIEW INTERACTIONS . 74

4.1 Problem Formulation . 74
4.2 Control Objective . 76

4.2.1 Switching Signal and Control Design 77
4.3 Stability Analysis . 78

4.3.1 Target Convergence . 79
4.3.2 Target Divergence . 81
4.3.3 Combined Stability Analysis . 82

4.4 Simulation . 83
4.5 Concluding Remarks . 83

5 CONCLUSIONS . 86

LIST OF REFERENCES . 89

BIOGRAPHICAL SKETCH . 98

6

LIST OF TABLES

Table page

2-1 Convergence results from repeated simulations with an increasing τmin. 49

7

LIST OF FIGURES

Figure page

2-1 The top plot indicates larger values of lead to smaller minimum inter-event
times and smaller values of , demonstrating the performance trade-off. 48

2-2 Depiction of the initial and final configuration of agent trajectories. 51

2-3 Depiction of the normalized surface g(h, δ). 52

2-4 Depiction of the MAS normed consensus errors. The relatively small value of
k1 led to a relatively large simulation time. 53

2-5 Depiction of the normed consensus variables {ηp}p∈V versus time. The small
magnitude values are due to a small value for k1. 54

2-6 Depiction of the distance of ϕ (solution of H) to the desired attractor A. 55

2-7 Depiction of the timer values {βp}p∈V versus time. 56

3-1 The trajectories of the pursuer agent, ηp (t), and target agent, ηt (t), are repre-
sented by the black and blue lines respectively. The desired trajectory, ηd (t),
is represented by the magenta dashed line. The black and magenta ×’s rep-
resent ηp (tk) and ηd (tk) when T = 0. The blue solid dots represent ηt (tk)
when T = 0. The black, magenta, and blue #’s represent ηp (t0), ηd (t0), and
ηt (t0). The B’s represent ηp (tfinal), ηd (tfinal), and ηt (tfinal). The green square
represents the goal location. 67

3-2 The value of ∥et∥2 over time. The magenta ♢’s represent when the pursuer
agent influences the target agent. 68

3-3 The evolution of the trigger function, denoted by the blue line over time.
Event times when the pursuer agent exerts influence on the target agent are
marked with red B’s. It can be seen that T resets to a constant and remains
constant while tpk+1 − tuk ≤ δmin. When δmin ≤ tpk+1 − tuk < δmax, T grows be-
cause ∥et∥2 gets smaller as the target agent is influenced in the direction of
ζg. Finally, T is forced to zero when tpk+1 − tuk = δmax, which is evidenced by
the downward spike at most red B’s. 69

3-4 The Freefly Astro quadcopter (left) was used as the pursuer agent and the
Unitree Go1 quadruped (right) was used as the target agent. The quadruped
uses an Emlid RS+ RTK GPS for precise position updates, which is fused
with attitude and heading data from a Microstrain 3DM-GX5-AHRS using the
ROS2 robot− localization package. 70

8

3-5 The trajectories of the pursuer agent, ηp (t), and target agent, ηt (t), are rep-
resented by the black and blue lines respectively. The #’s represent ηp (t0)
and ηt (t0). The B’s represent ηp (tfinal) and ηt (tfinal). The light blue circle rep-
resents the goal location and the ultimate bound of B described in Remark
3.1 is depicted by the light gray circle. 71

3-6 The value of ∥et∥2 during the experiment. Notable changes in the slope cor-
respond to effective regulation of the target agent’s trajectory by the pursuer
agent’s movement patterns. 72

4-1 Target agent FOV model. 75

4-2 Visualization of (4–8), where ka = 1.0 and kr = 1.0, therefore ηd is projected
onto the boundary of the FOV. 77

4-3 The trajectories of the pursuer agent, ηp (t), and target agent, ηt (t), are repre-
sented by the blue and red lines respectively. The desired target agent trajec-
tory, ζt (t), is represented by the green dashed line. The blue, red, and green
#’s represent ηp (t0), ηt (t0), and ζt (t0). The blue, red and green ×’s represent
ηp (tfinal), ηt (tfinal), and ζt (tfinal). 84

4-4 The value of ∥et∥ over time. The magenta ♢’s represent when the pursuer
agent entered F and influence the target agent. 85

9

LIST OF ABBREVIATIONS
ETC Event-Triggered Control

FOV Field Of View

GES Globally Exponentially Stable

HDI Hybrid Differential Inclusion

IET Inter-Event Time

MAS Multi-Agent System

PAS Practically Asymptotically Stable

STC Self-Triggered Control

UUB Uniformly Ultimately Bounded

10

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

LYAPUNOV-BASED INDIRECT CONTROL OF ROBOTIC SYSTEMS

By

Patrick McGill Amy

August 2025

Chair: Warren E. Dixon
Major: Mechanical Engineering

Robotic systems operating in austere environments face unique navigation and

localization challenges. An important factor when developing robotic systems for austere

environments is the size of the system. The solutions to navigation and localization

for such environments often require cost-prohibitive or space-prohibitive sensors. If a

team of robotic systems is employed, then the cost-capability gap can be mitigated.

Indirect control is a field of research that involves the design of control laws to regulate a

directly controllable agent’s state and indirectly regulate, through an uncertain influence

dynamic, an agent without an explicit control input. This dissertation investigates

stability methods and control designs for a small team of robotic agents with navigation

and localization capabilities to indirectly control a larger team of robotic agents with

limited navigation or localization capabilities.

11

CHAPTER 1
INTRODUCTION

1.1 Background

Unmanned robotic systems have been used in a multitude of tasks (mine hunt-

ing, space exploration, environmental monitoring, search and rescue, etc) and have

demonstrated the efficacy of employing robotic platforms for such tasks. As more robotic

platforms become commercially available, more applications for robotic teams are rel-

evant. Utilizing a robotic team can increase task completion efficiency and decrease

the overall risk (schedule impacts, cost, injury to personnel, etc.) associated with the

task. Operating robotic teams in a coordinated manner, including incorporating other

related systems (sensors, communication relays, etc.) to boost task efficiency, forms a

multi-agent system (MAS).

It is often cost prohibitive to create a MAS with robotic systems with robust nav-

igation sensor suites (fiber optic gyro, DVL, USBL sonar, etc.) and high bandwidth

communication hardware. The cost of a MAS is directly related to the cost of each

agent, a MAS comprised of robots with basic navigation sensors (GPS, SLAM, etc)

and communication hardware (wifi, etc.) will be more affordable, hence feasible, than

a MAS comprised of robots equipped with state-of-the-art sensing and communication

hardware. Sometimes, robust capabilities are necessary to accomplish basic navigation

and localization; for example, navigating underwater or in a gps-denied envrionment. By

making use of inter-agent interactions, an agent with a full sensor suite could aide an

agent with basic capabilities in challenging environments. Utilizing a few capable robots

to mitigate the technological deficiencies of many incapable robots can allow for large

multi-agent operations in previously infeasible domains.

1.2 Multi-Agent Systems

A multi-agent system is comprised of a number of individual nodes, or agents, that

are connected in a way that permits information exchanges [1]. A MAS can consist of

12

sensors, computers, manned/unmanned platforms, among many other entities. A MAS

comprised of only one type of agent is referred to as a homogeneous MAS; conversely,

if a MAS consists of different types of agents (sensors, robots, communication relays,

etc.) the MAS is referred to as heterogeneous [1, 2]. Heterogeneous MASs are of

interest when it is desired to leverage capable platforms to compensate for under-

equipped platforms in-situ [3].

There are two major inter-node communication paradigms in MASs: centralized and

distributed [4, 5]. In centralized communication, every node in the MAS broadcasts and

receives information to and from a central node [6, 7]. In this convention, all transmitted

information must pass through the central node for it to reach its destination [6, 7]. In

distributed (or decentralized) communications, each node in the MAS exchanges in-

formation with the nodes that are within its communication range [1]. In this paradigm,

information flows from the source node to its destination node through a path of inter-

connected nodes [1]. There are advantages and disadvantages to each paradigm, these

advantages and disadvantages become more important as a MAS increases in size

(increasingly more nodes are added) [8]. The control of a MAS fits within the same two

paradigms: centralized and distributed [4]. In centralized control of a MAS, a central

node computes the control input for every node in the system based on its available

information [6, 7]. Conversely, in distributed control each node in the MAS computes its

own control input based on the local information available [5].

Using graphs to represent a MAS allows for the inclusion of physical constraints

from onboard hardware in the theoretical model of the system [9–11]. A graph-based

representation of a MAS uses nodes to represent the agents in the MAS, and edges

between specific agent pairs to depict the ability to exchange information [1]. For

example, if there is a range-based constraint between nodes, an edge may be removed

from the graph if the corresponding nodes become too far apart; similarly, an edge may

form in the graph if the corresponding nodes become sufficiently close [9]. Desirable

13

attributes of a MAS, such as guaranteed and persistent connectivity between agents,

can be attained by proving certain characteristics of the associated graph (i.e. edge

preservation) [1,9].

1.3 Event-Triggered and Self-Triggered Consensus Control for Multi-Agent
Systems

Common MASs of interest are swarms of aerial drones, teams of mobile robot

manipulators, and satellite constellations, all of which operate with finite power and

communicate through limited bandwidth communication networks [12–14]. It is advan-

tageous to design control algorithms that mandate inter-agent communication among

MAS agents only when essential to maintain a desired performance level [15]. Doing

so negates the need of continuous communication, which helps prevent bandwidth

saturation. Reducing network activity is particularly desirable when the communication

network (and the MAS in general) grows in size [15–17]. Reducing inter-agent com-

munication and achieving a desired performance level necessitates intermittent and

asynchronous communication between agents [5, 18]. Aperiodic communication means

that agents broadcast their information at non-continuous, possibly irregular intervals.

Asynchronous communication indicates that the broadcast times of different agents are

not coordinated or synchronized with one another [5].

To address the physical constraints in a MAS, event-triggered control (ETC)

and self-triggered control (STC) offers advantages over periodic control to address

energy, computation, and communication constraints when designing feedback control

laws [5, 6, 17, 19]. When feedback control laws are computed continuously or at uniform

time intervals, those control laws can be categorized as periodic control [5]. Periodic

control encompasses traditional continuous and discrete time control [5]. Conversely,

aperiodic control involves feedback control updates that occur in non-uniform time

intervals [5]. Event-triggered and self-triggered control are aperiodic control methods

that are comprised of two elements: a feedback controller that computes the control

14

input, and a trigger generator that dictates when to update the control input [5]. In

ETC, the trigger generator (also referred as a trigger mechanism or trigger function) is

typically a function of the state of the system, requiring periodic sampling of the system’s

state [15,17]. Self-triggered control differs from ETC: during a control update, the time of

the next control update is computed by using state estimates projected forward in time,

typically by using state data and the plant dynamics [5, 20]. Both ETC and STC results

typically employ a zero-order hold between control updates, where the control update is

held constant between updates [4,5,15].

There are ETC results that specifically aim to regulate the rate of inter-agent

communications, the authors of which develop a trigger generator that dictates com-

munication transmissions [9, 19, 21, 22]. Sometimes this is separately referred to as

event-triggered communication, other times it is still referred to as event-triggered con-

trol, even if the control of the system is not bound to a trigger generator. Event-triggered

coordination, however, refers specifically to the combination of event-triggered control

and event-triggered communication [21, 23–28]. In event-triggered coordination, an

agent’s control updates and communication transmissions occur based on a trigger

generator [21, 23–26, 29, 30]. Similar extensions of self-triggered control also appear in

related literature [31].

When an event-trigger condition is met, an event occurs and the time at which this

happens is called an event time [16]. The difference between consecutive event times

is called the inter-event time, and the minimum inter-event time (MIET) is defined as

the greatest lower bound on the inter-event times [16]. It is necessary in ETC work to

show that consecutive inter-event times do not tend to zero (i.e., Zeno behavior). Zeno

behavior occurs when a process requires infinitely many discrete transitions in a finite

time duration, which is not implementable on physical systems [16,21,25]. In [16,32,33]

the properties of inter-event times were studied; specifically, in [16] the existence of

positive MIETs for common classes of event-triggers was formalized. It is frequently

15

shown that a novel event-trigger has Zeno-free behavior but does not guarantee that the

developed solution is implementable on hardware because the MIET from the event-

trigger would require an unfeasible communication rate for common hardware. The idea

of designing an ETC system to achieve a desired MIET that results in an implementable

ETC formulation has been studied in results such as [9, 24, 25, 34–38]. There is a

distinction between a user-defined MIET and a designable MIET: a user-defined MIET

requires system parameters to depend on the chosen MIET, whereas a designable

MIET requires its system parameters and variables to be tuned to achieve the desired

MIET [9, 24, 25, 34–38]. In [38], among others, the event-trigger function is designed to

produce the desired MIET of the system. The authors of [35, 36] present a centralized

dynamic event-trigger mechanism and a distributed dynamic event-trigger mechanism

that can achieve consensus over strongly connected digraphs with a designed MIET.

In [25], the authors presented an ETC formulation that took advantage of individual

agent clock-like variables to achieve average consensus with a user-defined MIET. Apart

from [24] and [25], the idea of an ETC formulation with a user-defined MIET, as opposed

to a designed MIET, has not extensively been studied.

A common control objective used to demonstrate the efficiencies gained in ETC and

STC is the consensus control objective [4,17,20,39–43]. The consensus, or agreement,

protocol involves each agent in a MAS using locally available information to reach a

globally agreed upon state [1]. For a MAS with N agents, where i ∈ 1, 2, ..., N, then the

classic consensus protocol for agent i is given by

ẋi(t) =
∑

j∈N (i)

(xj(t)− xi(t)) ,

where xi and xj are the states of agent i and agent j, respectively [1]. In this classic

example, consensus is achieved when the inter-agent distances are zero, i.e., ∥xi −

xj∥ = 0 for all i, j ∈ V [1]. The consensus problem is often considered since other

MAS coordination problems (rendezvous, distributed estimation, formation control, etc.)

16

can be expressed as a consensus problem [8, 9, 38, 44–46]. Expanding the consensus

objective to reaching a neighborhood about the globally agreed upon state, yields the

approximate consensus problem. Consensus-type protocols can also be extended

to the approximate form, and two common approximate consensus protocols are

approximate rendezvous and approximate leader-follower consensus [2,9,38,42,47]. To

execute these desired consensus protocols, the intermittent communication and control

characteristics inherent to these MASs must be included in the feedback control design.

1.3.1 Event-Triggered Consensus Control

An early example of event-based sampling for single feedback control loops is

proposed in [48], where the state is periodically sampled and the control update is

computed and applied only when measurements satisfied a design threshold. This

approach was shown to outperform periodic sampling and control for a first-order

system [48]. In results such as [15], a triggering mechanism for a state feedback

controller where the trigger mechanism is a function of the norm of the difference

between the system’s current state and the system’s state at the previous sampling

instant. When this trigger function met a prescribed threshold, the control input would be

computed and applied [15]. When the control update is computed, the trigger function

would update its internal values and reset [15]. This result was guaranteed to exhibit

a certain level of performance, and it was shown that the inter-execution times did not

converge to zero - specifically, that these inter-execution times are lower bounded by a

positive constant [15].

Further development of event-triggered control is presented in [7] and [6], where a

control scheme is designed to decentralize a centralized event-triggered condition that

depends solely on locally sampled information. Additionally, the presented trigger mech-

anism permits increasing the inter-execution times between controller re-computations

without affecting the guaranteed performance. The event-triggered broadcasting of state

17

information in distributed networked control systems with data dropouts and transmis-

sion delay is examined in [49] and [50]. Similar to [15], the proposed event-triggering

scheme in [49] and [50] requires a subsystem to broadcast its state information to its

neighbors only when the subsystem’s local state error exceeds a specified threshold.

This results in [49] and [50] shows a Lyapunov-based approach to stabilize a distributed

control system over an ad-hoc network in the absence of synchronization within the

communication network. Foundational works, such as [7, 15, 48, 50], suggest that

event-triggered control reduces resource utilization while maintaining a suitable control

performance in a MAS, and [18] presents a comprehensive overview and theory for

event-driven systems that validates the performance of these results. In [51], an ETC

scheme is presented whose closed-loop system can achieve approximate performance

of the behavior of the corresponding continuous state-feedback system. Furthermore,

in [51], it is shown that the sensitivity bound ē of the event-trigger can be chosen such

that the event-based control loop tracks the continuous state-feedback loop with a

desired precision. The inter-agent communication frequency adjusts based on the

disturbance, such that if the disturbance is sufficiently small, a trigger-event will not

occur.

Event-triggered control has been repeatably shown to be suitable for coordinated

control of MASs with network constraints. Following the methods in [15], [17] presents

both a centralized and distributed ETC design, and both are shown to be effective

control designs for a class of cooperative control problems. The overall systems achieve

average consensus asymptotically. The class of cooperative control problems described

in [17] are a set of problems that can be expressed as a first-order agreement problem,

as discussed in [52]. Furthermore, [17] assumes that all agents periodically monitor

their neighbors’ states and that each agent updates its control law at its own event-

times, and also when each of its neighbors experience an event-time. In the previous

work [4], each agent required global knowledge of the initial average of the MAS to

18

implement the control strategy. The approach in [17] shows that this assumption is not

required and global knowledge of the initial average of the MAS is not needed.

Similar to the ETC design in [17], the control design in [53] dictates that information

exchanges between agents occur in an event-based scheme. Specifically, the continu-

ous monitoring of the neighbors’ states is not required to achieve consensus; however,

each agent updates its control input when it transmits or receives a new information.

This approach is similar to [50], where each agent has global information of the con-

sensus goal, but in [53] the consensus point is unknown to the agents, and each agent

strictly has access to local information. In [53], similar to [15], the trigger mechanism

of each agent is a function of the measurement error and an event is triggered when

the norm of the measurement error meets a predefined criteria. However, the proposed

trigger functions in [53] exhibit exponentially decreasing trigger criteria overtime with

non-negative offsets. This approach guarantees asymptotic convergence to average

consensus or to approximate consensus.

The results discussed previously utilized static, undirected communication graphs to

represent inter-agent communication in the considered MAS. In [54–56], ETC designs

are presented where switching topologies and directed graphs are used to represent

inter-agent interactions in the MAS. In particular, the authors in [56] present an event-

triggered consensus algorithm for switching network topologies with distributed and

sampled-data event-trigger mechanisms. The distributed event-trigger mechanism,

in this case, is driven by sequential communication exchanges between an agent

experiencing a control update and its neighboring agents. In [54], an ETC design

is applied to a MAS comprised of agents modeled by a linear multi-agent systems,

xi = Axi + Bui. It was shown that the system matrix A is not required to be stable, and

the Laplacian matrix of the communication topology is not required to be symmetric.

In [55], a distributed ETC strategy is presented for a MAS whose agents communicate

19

based on a directed graph. Conditions are presented to ensure consensus is achieved

for the proposed ETC design.

1.3.2 Self-Triggered Consensus Control

As discussed previously, self-triggered control requires each agent to compute its

next update time during a control update [57]. Specifically, in a self-triggered formula-

tion, the next time, ti + 1, the control law is updated is predetermined at the previous

event time ti. This predetermination of control update times frees the agent from moni-

toring the state error measurement that triggers the control action between consecutive

updates, whereas in event-triggered control the continuous monitoring of a trigger

condition is required [57]. In [58], a self-triggered implementation was developed with

control law execution times that are defined by a function of the dynamics of the system,

the desired performance, and the current measurement of the state. The self-trigger

conditions were derived for two classes of systems: state-dependent homogeneous

systems and polynomial systems. The rate of consensus of the presented self-trigger

conditions was shown to be related to how often the controller executed. The more often

the controller executed, the better the convergence: this is a common observation in

ETC and STC [5,15,17,58].

In [17], ETC and STC were shown to be capable of achieving cooperative control

algorithms that can be expressed as a first order agreement problem. In [20] and

[17], event-triggered and self-triggered control formulations were presented in both a

centralized and decentralized form, and compared in terms of control update frequency.

The self-triggered formulation resulted in more controller updates than the event-

triggered scheme. The larger controller updates was attributed to the self-trigger

scheme over-approximating how often control updates were required based on the

state of the agent, the states of its neighbors, and the network [17, 20]. For such a

self-triggered scheme, the inter-execution times (the time between control updates) are

strictly positive except when all the agents in the MAS reach agreement (all agents are

20

in consensus). This implies that Zeno-free behavior is achieved while not in consensus

[17].

In [42], a hybrid self-triggered/time-triggered approach was developed that dis-

played better performance than the self-trigger schemes proposed in [17], in terms

of reduced trigger events, control updates, and communication transmissions. This

improved performance claimed in [42], was attributed to extending the available infor-

mation of an agent from its surrounding neighbors to its two-hop neighbors results.

Additionally, in [59], a hybrid self-triggered/time-triggered approach is presented. Specif-

ically, for a MAS with N agents, where i ∈ 1, 2, ..., N, let the time an event occurs for

agent i be denoted tik, for (k = 1, 2, ...). The event times, presented in [42], of agent i are

computed by

tik+1 = tik +max
{
τ ik, bi

}
,

where bi is a strictly positive real number and τ ik is the self-trigger condition. This

approach bounds the inter-event time by the strictly positive number bi, which implies

that all agents in the MAS will exhibit Zeno-free behavior. This, however, does not result

in a free choice of the minimum inter-event times as bi was shown to be upper bounded

to ensure asymptotic stability [42, Theorem 1].

In [60], the authors present both an ETC and an STC design that do not require

any global information a priori. This design is shown to achieve consensus exponentially

fast, and is free from Zeno behavior. The STC design was formulated to avoid the

continuous sensing and listening that is required of the ETC scheme. The STC does

not require each agent to perpetually monitor incoming information from neighboring

agents, each agent predicts its next trigger-time and shares this information with its

neighboring agents at the current trigger instant. This reduces resource usage by

each agent as state sensing and broadcasting occurs at one’s trigger-times, and

network monitoring for incoming information occurs at the neighboring agent’s triggering

times [60].

21

1.3.3 Extensions of Event-Triggered Consensus

Robotic teams are increasingly being used in automated sensing applications

(forestry surveying, ocean floor mapping, search and rescue, etc.) to complete these

mission objectives more efficiently than previous methods [13,14,61]. These automated

sensing applications require multiple coordination objectives to complete the given mis-

sion [13, 14, 61]. For example, if a robotic team must move in a formation to collectively

observe a large swath of its environment, an initial rendezvous step where the robots

congregate to a starting area to reduce initial formation control error can increase overall

performance [62]. The goal of rendezvous for a MAS is to position every agent in the

MAS to common point, rendezvous refers to achieving consensus in position. Some

examples of applications of MAS rendezvous are robotic logistics support, satellite

rendezvous and docking, and multi-robot cooperative landing [12, 44, 63]. As discussed

previously, many MAS control objectives (formation control, orientation alignment, target

tracking, etc.) can be expressed as a consensus problem, and the consensus problem

is well studied within network control literature [8, 46, 64]. MAS control design for phys-

ical systems must accommodate hardware constraints while guaranteeing the desired

control objective is achieved; however, hardware constraints elicit non-trivial challenges

to consensus results [24]. These hardware constraints could include sensor sampling

rates, or communication bandwidth and range limitations [9,16,24,25,38,65]. To demon-

strate a MAS control objective result on a team of robots, for example, the hardware

constraints resulting from the robot’s communication medium must be considered.

The results in [9] and [38] provide a basis for achieving the MAS rendezvous

control objectives for a MAS whose agents have hybrid dynamics. Specifically, those

results present a MAS model with agent dynamics based on the hybrid differential

inclusions (HDI) framework whose inter-agent communications are determined by

an ETC mechanism. In [9], a class of distributed event-trigger functions that yield

approximate rendezvous with graph preservation and positive MIETs is formalized.

22

Additionally, in [38] the approximate rendezvous problem is achieved for second-order

MASs.

1.4 Single Agent and Multi-Agent Indirect Control

The pursuit-evasion problem involves one (or more) pursuers attempting to intercept

one (or more) evaders, during which the evaders attempt to avoid interception [66–68].

The pursuit-evasion problem is studied in the field of robotics such as automated

surveillance, missile interception, animal control, etc [69–71]. Research across multiple

disciplines has led to rapid advances in robotic pursuit-evasion; however, despite

investigating the same problem, the developed approaches differ significantly based

upon contributions from each discipline [72]. Many results pertaining to the pursuit-

evasion problem have come from the fields of game theory and control theory [72], the

focus in the following discussions will be on the contributions from the control theory

discipline. In particular, control strategies are presented in [69, 73] which can guarantee

the pursuers capture the evader if a sufficient number of pursuers are present - the

minimum number of pursuers needed for guaranteed capture were shown to depend on

the pursuer-evader speed ratio. Alternatively, an escape strategy for out-maneuvering

pursuer agents using mathematical frameworks based on Apollonius circles was

presented in [71].

Herding is a type of pursuit-evasion problem, and it differs from many pursuit-

evasion results because herding includes regulating the evader to a control objective

(goal location, velocity alignment, etc.) after interception [74]. Herding can be con-

sidered a leader-follower problem because the pursuers control the evaders upon

interception; however, herding differs from the typical leader-follower problem due to

the difference in the use of indirect versus direct control [74–78]. In leader-follower

problems, the typical control objective involves direct control over every agent, whereas

in herding the evader agents do not have an explicit control input [74, 77]. In herding,

evaders are only indirectly controlled through an influence function that includes the

23

states of the pursuer and evader [74–78]. For example, the influence a pursuer can

exert on an evader could be a function based on the distance between the two [74, 77].

When an evader has the same goal as the pursuers, then the evader is referred to as

cooperative, but when an evader does not have a goal or has a goal different from the

pursuers’, then the evader is deemed agnostic or antagonistic [79–81].

Herding results can be categorized as belonging to either control theory methods or

rule-based methods [82–85]. There is a subclass of learning-based methods containing

results that make use of off-line training to learn a heuristic or a ruled-based type of

herding method [83–85]. Learning-based methods are categorized with rule-based

methods as they face the same limitations [82, 86]. Classic examples of the rule-based

method are presented in [82] and [87], where the pursuers act according to a designed

heuristic or behavior. Learning-based methods involve training different models how to

intercept evaders or drive a flock [84, 85]. A flock refers to a cohesive evader group, and

the typical model of how evaders interact in a flock is presented in [88], where evaders

use relative measurements to others evaders to form a flock. These methods, along

with the rule-based methods have been combined with classic path-planning methods

to enable pursuers to regulate evaders through cluttered environments [84, 85, 89–92].

Control theory methods involve developing feedback control strategies for the pursuer

to regulate the evader(s) to a desired set-point [75, 76, 79, 80, 93, 94]. Learning-based

and rule-based methods are generally limited to a relatively-small flock size, and this

motivates the use of control theory methods applied in a distributed pursuer scenario to

address herding larger flocks [82–86].

Each class of herding methods can be further divided by how many pursuer agents

are considered. In the single pursuer agent case, one pursuer will either drive a flock

or individual agent(s) to a goal [74, 77]; however, in multi-agent herding more than

one pursuer agent drives a group of evaders, a single evader, or multiple independent

evaders to a goal [78, 80, 93, 94]. Contributions from each of these classes will be

24

discussed in 1.4.1 and 1.4.2 to illustrate the differences in approach and problem

formulation.

1.4.1 Single Agent Indirect Control

The single agent herding problem considers one pursuer regulating one or more

evaders, or a flock of evaders to a control objective. In [86, 95, 96], the evaders are

assumed to adhere to the previously discussed flock dynamics. The results in [82,

86, 87, 95–98] follow formulated heuristics or rules in order to achieve the outlined

herding problem. In [96], the herding problem was formulated such that the goal of the

pursuer was to push a trespassing flock out of the protected region. The pursuer would

interact with the flock by sequentially positioning itself at a periodically refreshed set

of points. The set of points are chosen to maximize the deflection of the flock’s flight

path. This approach relies on the inherent stability of the flocking dynamics to prevent

fragmentation of the flock.

In [86] and [98], the pursuer is not assumed to have information on the state of the

flock. The pursuer is modeled with a limited field-of-view (FOV); where, the pursuer is

able to determine the state of the evader(s) within its FOV. The evaders in [98] flock

together as described in [88], and three control objectives are compared: farthest-agent

targeting, center-of-group targeting, and online target switching. Furthermore, in [98] the

efficacy of each control objective was shown to depend on how closely evaders flocked

together. In [86], the evader’s flock dynamics were modeled to be attracted to the center

of mass of at least half of the total number of evaders. This model allows flocks to

be broken into manageable sub-groups by the pursuer. This result, [86], allowed the

pursuer to take one of three actions: (1) if the pursuer is too close, it will not move; (2)

if all evaders are within a radius about the global center of mass (GCM) of the flock,

then the pursuer aims towards a steering point directly behind the flock relative to the

goal; (3) if an evader is outside the radius about the GCM, the pursuer aims to a point

directly behind the evader relative to the flock to force that evader back to the flock. The

25

authors of [95], build upon this approach by combining tasks (2) and (3). The pursuer

controls the flock by positioning itself relative to the GCM of the flock to use its influence

to push the flock in the desired direction. The pursuer can move in a v-formation about

the steering point of the flock to push evaders closer to the GCM.

The result presented in [74] solves the single agent herding problem by formulating

a sliding-mode controller (SMC) to compensate for uncertainties in the evader(s) motion

model. In [77], an adaptive control approach was adopted in place of the high-frequency

SMC, where a data-based parameter estimation method, integral concurrent learning

(ICL) was used to learn the linearly parameterized (LP) evader dynamics by keeping a

history of input–output data to improve parameter estimation and facilitate the switched

systems analysis [99]. In both [74] and [77], the pursuer–evader interactions were

modeled by a distance-based potential function. In [78], a more general, but unknown,

distance-based pursuer-evader interaction is considered where the only assumption is

that the evader reacts to a repulsion force from the pursuer. Furthermore, in [78], the

unknown pursuer-evader interaction was approximated using a neural network (NN),

where ICL was integrated within the NN update law to achieve a transient performance

required to develop dwell-time conditions for switching.

In [75] and [76], the herding problem with uncertainties in both the pursuer and

evader dynamics was addressed. The uncertain dynamics in both agents were ap-

proximated by using ICL, and an approximate dynamic programming (ADP) strategy,

as presented in [100], was used to develop an approximate optimal solution to the

optimal control problem using a function approximation method. The closed-loop

herding system was shown to be uniformly ultimately bounded (UUB) by performing a

Lyapunov-based stability analysis. This result was further developed in [101], where a

multi-timescale Lyapunov-based deep neural network (Lb-DNN) was used approximate

the uncertain dynamics.

26

1.4.2 Multi Agent Indirect Control

Multi agent herding involves either assigning individual pursuers from a team to

herd individual evaders (one-to-one herding), controlling a team of pursuers to herd

one evader (many-to-one herding), or controlling a team of pursuers to herd a flock

of evaders [102–106]. Few multi agent herding results consider pursuers making co-

ordinated actions to intercept and corral multiple evaders. An obvious approach to

multi-agent herding of a flock of evaders would be to position each pursuer on the

perimeter of the flock in such a way that the indirect control of the pursuers on the flock

keeps them contained within the encircled pursuers [91, 105, 106]. This approach was

used in [106] and [105], where the approach, referred to as “herding by caging,” was

influenced from robotic grasping literature. In [106], the caging verification problem for a

fixed number of pursuers was addressed to demonstrate how a sufficiently large team of

pursuers can surround, and “cage”, a group of evaders. The authors of [105], extended

the result from [106], and presented algorithms to optimize the time to compute a valid

cage formation and to minimize the number of pursuer robots while prioritizing caging

formations. These results focus on computing cage formations that are considered

complete or safe. The dynamics and control of the formation is not considered. Addi-

tionally, and the stability of the system is not addressed [105]. Furthermore, inter-evader

interactions are not considered, allowing for collisions between evaders. These caging

methods assume that once the cage formation encompasses the evaders, then the cage

is a static object [105, 106]. To move the cage to the goal, the authors show the cage

is robust to perturbations, and by applying sequentially small perturbations the herders

can move the formation slowly to follow the desired path [105,106].

In [91], a similar containment approach to the caging method, called StringNet, was

shown to be capable of encircling a flock and regulating it to a goal. StringNet is formed

by line segments between pursuers, and evaders are modeled to sense the strings

when within a detectable region. The result in [91] requires the pursuers to approach

27

the flock in an arc formation, and the pursuer at each end of the arc would move around

the flock in opposite directions to form a new edge. This approach ultimately turns

the pursuers graph representation from a line graph to a cycle graph. Once the flock

is encircled by the StringNet, the pursuers would herd the flock to a goal region. The

StringNet result was further developed in [102] where the desired pursuer formation

positions and path was determined with a mixed integer quadratic program (MIQP). This

MIQP minimized the distance (and travel time) to the formation for each pursuer. The

results in [90,91,102], differ from [105,106] by the fact that the formation of evaders isn’t

considered to be static configuration, but treated as a dynamic system.

In contrast to the encirclement of evaders by pursuers, [104] proposed that a flock

could be controlled at numerous “steering points” along the perimeter of a flock. As

long as the pursuers were able to stay at the steering points, then with coordination

between pursuers, the flock could be controlled to a goal location. Several methods

to assign each pursuer to a steering point were presented, in particular the Vector

Projection method was introduced. The Vector Projection method requires each pursuer

to count the number of pursuers on its left or right side, if there’s k − 1 pursuers on

the left (or right), then the shepherd will got to the k-th steering point from the left (or

right). The efficiency of this assignment technique was compared to other common

methods (global distance minimization and greedy distance minimization) . Finally, [104]

uniquely considered the case where separate flocks could be combined if pursuers are

able to drive the two flocks sufficiently close. In [107], nuanced inter-agent behaviors

were considered. The evaders were assumed to act as a flock but each evader could

take a “random action” that would disrupt an individual evader’s flocking behavior.

Additionally, a repulsive force between herders to avoid overlapping herding areas was

included. It was shown that a single herder and a pair of herders could move the flock

to goal location. Unique to the presented approach, the indirect control of the flock by

the herders was modeled using a heuristic that used the orientation of the pursuer(s).

28

A number of different strategies to assign each herder in a team to an evader were

presented and compared in [108]. These strategies require communication between

herders to deconflict evader assignments, incorporating coordination between pursuers.

When a pursuer is assigned a target, the pursuer intercepts the evader and drives it to

a goal region by indirectly controlling it. The pursuer(s) will repeat the assignment and

herding phases until all evaders are inside the goal.

The approach in [93], addressed the same problem formulation as [107] and [108],

but presented a closed-loop feedback control strategy instead of a heuristic or behavior

result. The authors assumed the pursuer/evader assignment had been completed,

and the authors considered the case where the maximum velocity of the pursuers was

equal to that of the evaders. A Lyapunov-based analysis was provided to show the

proposed strategy was globally asymptotically stable. This stability result led the authors

to adopt an initial approach phase that the pursuers must complete to avoid the evaders

dispersing and becoming unreachable. It was apparent in the provided simulations

that the pursuers initial state had to be sufficiently far away from the evaders. The case

where a pursuer was initially amongst the evaders was not presented. This result was

further developed in [94] by including an adaptation law to address uncertainty in the

evader’s model.

The authors of [78] and [90] presented a control-methods approach to address

the multiple pursuers intercepting and herding a single evader. In [90], a finite-time

stabilizing, state-feedback controller is presented to regulate each pursuer into a

desired formation about the evader while avoiding inter-agent collisions and collisions

with obstacles. In [78], the authors presented a neural network-based estimation

scheme to approximate the influence dynamics between the pursuer and evader. The

developed controller for the pursuers makes use of these estimates to guarantee that

the interception and herding objectives are achieved. The stability of the closed loop

error system was shown to be UUB by using a Lyapunov-based analysis. The results

29

in [79, 80, 109] use multiple pursuers with a pursuer-evader interaction known a priori to

herd multiple evaders to a desired location as a group. The general approach adopted

in these results is to control the pursuers to create an arc formation that lies on a circle

about the centroid of the evaders’ positions and treating the resulting pursuer-evader

system as a constrained unicycle-like object. The arc formation of pursuers is controlled

to align the direction of the formation towards the desired goal, and the pursuers adapt

the curvature of the arc and the spacing along the arc (inter-pursuer edge lengths) in

order to herd the evaders to the goal.

1.5 Outline of Dissertation

Chapter 2 explores the approximate consensus problem for a multi-agent system

under intermittent communication. To accommodate the limits of digital communication

hardware, an event-triggered controller is presented that satisfies a minimum inter-event

time constraint as specified by the user. The proposed event-triggered controller is

bounded a priori via the exploitation of a projection operator that yields workspace

invariance, which can be leveraged to promote safety. The consensus problem is

posed as a set stabilization problem and, using a Lyapunov-based stability analysis for

hybrid dynamical systems, a ν-expansion of the agreement subspace is shown to be

asymptotically stable. Specifically, by increasing the region within which the consensus

criteria is satisfied, an asymptotically stable control design is achieved.

Chapters 3-4 investigate unique indirect control problems motivated by sensor or

communication limitations. Chapter 3 explores the indirect control problem for a single

pursuer agent regulating a single target agent to a goal location. To accommodate

the constraints of sensing hardware, an event-triggered inter-agent influence model

between the pursuer agent and target agent is considered. Motivated by fielded sensing

systems, an event-triggered controller and trigger mechanism are presented that satisfy

a user-selected minimum inter-event time. The combined pursuer-target system is

modeled as a switched system that alternates between stable and unstable modes. A

30

dwell-time analysis is completed to develop a closed-form solution for the maximum

time the pursuer agent can allow the target agent to evolve in the unstable mode before

requiring a control input update. The presented trigger function is designed and shown

to produce inter-event times that are upper-bounded by the maximum dwell time.

Chapter 4 considers an indirect control problem for a single pursuer agent regulat-

ing a single target agent where inter-agent interactions can only occur within the FOV of

the target agent. By formulating the system as a switched dynamical model with stable

and unstable subsystems, Chapter 4 presents a comprehensive dwell-time analysis to

create a switching controller that can regulate a constant speed target agent toward a

desired trajectory.

1.6 Notation

Specific notation is used throughout this dissertation to represent mathematical

concepts. To facilitate the subsequent development, the most common notations are

described in this section. The set of real numbers and integers are represented by R

and Z, respectively. The set of positive and strictly positive real numbers greater than

z ∈ R are represented by R≥z ∈ [z,∞) and R>z ∈ (z,∞). Similarly, the set of positive

and strictly positive integers greater than z ∈ R are denoted by Z≥z ≜ R≥z ∩ Z and

Z>z ≜ R>z ∩ Z. Consider the sets A,B, the mapping f from A to values of B is denoted,

f : A → B. The set-valued mapping f from A to B is denoted f : A ⇒ B [110].

The c ∈ R sub-level and super-level sets of a real-valued function f on a set A and

is denoted by [f ≤ c] and [f ≥ c], respectively [110]. The pth standard basis vector is

denoted ep ∈ RN . The Euclidean norm of a vector u ∈ Rn is denoted by ∥u∥ ≜
√
u⊤u.

The infinity norm of a vector u ≜ (u1, u2, . . . , un), where ui ∈ RN and u ∈ RnN , is denoted

∥u∥∞ ≜ max {∥u1∥ : i ∈ S}, where S ≜ [1, 2, ..., N]. The inner product of two vectors

u, v ∈ Rn is denoted ⟨u, v⟩ ≜ u⊤v. The Kronecker product between A ∈ Rn×m and

B ∈ Rp×q, is represented by A ⊗ B ∈ Rnp×mq. The identity matrix, of size n × n, is

denoted In. Let 1n, 0n ∈ Rn represent the column vectors with all elements being one

31

and zero, respectively. Given a symmetric matrix A ∈ Rn×n, the ith eigenvalue of A, in

non-decreasing order, is denoted by λi(A) ∈ R. Furthermore, let λmax(A) and λmin(A)

denote the minimum and maximum eigenvalues of A. Given a set A ⊂ Rn and a point

x ∈ Rn, the distance between x and A is denoted |x|A ≜ inf∥x− y∥ : y ∈ A ∈ R≥0 [38].

The complement and orthogonal complement of a set A are denoted Ac and A⊥,

respectively [38]. The component of x ∈ RnN , denoted x⊥, in A⊥ is computed using

x⊥ = Sx, where the linear projection operator S ≜
(
IN − 1

N
1N1

⊤
N

)
⊗ In ∈ RnN [38].

For N ∈ Z≥1, let [N] = {1, 2, . . . , N} [38]. For xp ∈ Rn and p ∈ [N], the stacked vector

x ≜
[
x⊤1 , x

⊤
2 , . . . , x

⊤
N

]
∈ RnN can be written as x ≜ (xp)p∈V [38].

1.6.1 Graphs

This section introduces the specific notation for graph theory used throughout this

dissertation, providing a consistent framework for the discussion and analysis of graph-

related concepts. Let G ≜ (V , E) denote an undirected and connected graph. The vertex

set in G is denoted V ≜ [N], for N ∈ Z>1, and the vertices in G are called nodes [1]. The

edge set in G is E ⊂ V × V, where an edge exists between two nodes if information can

be exchanged [1]. Recall, a path exists between nodes p, q ∈ V , if there is a sequence of

distinct vertices such that (v0 = p, . . . , vk = q) , for k ∈ Z≥0, (vs−1, vs) ∈ E , and s ∈ [k] [17].

The neighbor set of node p is denoted Np ≜ {q ∈ V \ {p} : pq ∈ E} , and represents

the set of nodes that have an edge connected to node p [1]. Additionally, the adjacency

matrix of G is denoted A ≜ [apq] ∈ RN×N , where apq = 1 if and only if (p, q) ∈ E ;

otherwise, apq = 0 [1]. Since edges describe information links between nodes, self loops

are not considered, i.e., aii ≜ 0 for all i ∈ V [9]. The degree matrix of G is denoted

∆ ≜ diag (A · 1N) ∈ RN×N [1]. The Laplacian matrix is denoted L ≜ ∆− A ∈ RN×N [1].

The Laplacian of a complete graph on N nodes is denoted LC ∈ RN×N [9].

1.6.2 Hybrid Dynamical Systems

This section outlines the notation adopted for hybrid dynamical systems, ensuring

coherence and clarity in the formulation and discussion of the ensuing material. A hybrid

32

system H with data (C, f,D,G) is defined as

H :

{
ż = f (z) , z ∈ C,

z+ ∈ G (z) , z ∈ D,

where f : Rn → Rn denotes the single-valued flow map that models continuous

behavior, C ⊆ Rn denotes the flow set over which the system continuously evolves,

G : Rn ⇒ Rn denotes the set-valued jump map that models discrete behavior,

and D ⊆ Rn denotes the jump set over which the system discretely evolves [110].

Given a set-valued mapping H : Rm ⇒ Rn, the domain of H is the set dom H ≜

{x ∈ Rm : H(x) ̸= ∅} [110, Definition 2.1]. A solution ϕ to the hybrid system H is

parameterized with respect to hybrid-time as denoted by (t, j) ∈ R≥0 × Z≥0 [110].

Observe that t and j represent continuous-time and discrete-time, respectively [110].

The domain domϕ ⊂ R≥0 × Z≥0 is called a hybrid time domain if for all (T, J) ∈ dom ϕ,

dom ϕ ∩ ([0, T] × {0, 1, ..., J}) can be expressed as ∪J
j=0(Ij × {j}), where Ij ≜ [tj, tj+1]

for a time sequence 0 = t0 ≤ t1 ≤ ... ≤ tJ+1 [110]. Note that tj indicates the j th instant

the state z jumps [110]. A solution ϕ to H is called maximal if ϕ cannot be extended, that

is, ϕ is not a truncated version of another solution [110]. A solution is called complete if

its domain is unbounded [110]. The set SH contains all maximal solutions to H, where

the set SH(ξ) contains all maximal solutions to H with initial condition ξ [110]. A hybrid

system H with data (C, f,D,G) is said to satisfy the hybrid basic conditions if it satisfies

the conditions in [110, Assumption 6.5]. A switched system is generally described as

a continuous-time system with discrete switching events [111]. A switched system can

be viewed as a hybrid system where the discrete behavior is reduced to a class of

switching patterns [111]. A hybrid arc ϕ is a function ϕ : dom ϕ → Rn, where x(ϕ) is

used to represent the value of the solution ϕ(t, j) to H. Further discussion on relevant

notation can be found in references such as [9,38,110,112].

33

CHAPTER 2
MULTI-AGENT APPROXIMATE CONSENSUS WITH A USER-SPECIFIED MINIMUM

INTER-EVENT TIME

This work explores the approximate consensus problem for a multi-agent system

under intermittent communication. To accommodate the limits of digital communication

hardware, an event-triggered controller is presented that satisfies a minimum inter-event

time constraint as specified by the user. The developed event-triggered controller is

bounded a priori via the exploitation of a projection operator that yields workspace

invariance, which can be leveraged to promote safety. The consensus problem is

posed as a set stabilization problem and, using a Lyapunov-based stability analysis

for hybrid dynamical systems, a ν-expansion of the agreement subspace is shown to

be asymptotically stable, i.e., by increasing the region within which consensus criteria

is satisfied an asymptotically stable control design is achieved. A simulation example

of a multi-agent system conducting approximate consensus in the 2-D plane with a

user-defined minimum inter-event time is presented to illustrate the contribution of this

work.

2.1 Problem Formulation

Consider a MAS of N ∈ Z≥2 agents. The single-integrator dynamics of agent p ∈ V

is

ẋp = up, (2–1)

where xp ∈ Rn and up ∈ Rn denote the state and control input of the agent, respectively.

More complex dynamics can be considered but for ease of exposition, single integrator

dynamics are used. This contribution only requires the control input to be bounded since

single integrator dynamics are employed. If higher order dynamics were incorporated,

the agent dynamics, along with the control input, would have to be bounded. For

ẋp = f(xp) + up, an upper bound f̄ on f(xp) and a bounded up must exist to bound Ṫp as

stated in Definition 2.1, if f̄ exists, and up is given in (2–6), then (2–14) becomes mp =

4rk1
√

hp
(
f̄ + rk1N + rk1 |Np|

)
|Np|. Let G = (V , E) be a connected, undirected, and

34

static graph modeling a communication network that links the agents of the ensemble.

To reduce the amount of network resources needed to support information sharing

between agents, an event-triggered control strategy is adopted.

The objective of this work is to design a distributed event-triggered controller for

each agent p ∈ V that enables the MAS to achieve ν-approximate consensus, as defined

is [38], while accommodating the sampling limit of the onboard hardware. In particular,

given a user-defined sampling limit τmin ∈ R>0, the minimum inter-event time of an

admissible trigger Tp must satisfy τp ≥ τmin for each agent p ∈ V.

2.2 Hybrid System Modeling

Let k1 ∈ R>0 be a user-defined parameter and ηp ∈ Rn be the zero-order hold

sampled consensus error for agent p ∈ V, which evolves according to the hybrid system

η̇p = 0n, Tp(ξ) ≥ 0

η+p = k1
∑
q∈Np

(xq − xp), Tp(ξ) ≤ 0.
(2–2)

A solution to the hybrid system in (2–2) yields a sample-and-hold approximation of the

distributed consensus controller in [52, Equation A1]. To facilitate the analysis, consider

the error between the zero-order hold consensus error and an estimated consensus

error,

η̃p ≜ ηp − η̂p ∈ Rn (2–3)

where η̂p ≜ k1
∑

q∈Np

(x̂q − x̂p) is a continuously computed estimate of the consensus error.

Using (2–3), the trigger function of agent p is selected as

Tp (ξ) ≜ hp − ∥η̃p∥2 . (2–4)

Let x ≜ (xp)p∈V ∈ RnN and η ≜ (ηp)p∈V ∈ RnN denote the ensemble form of the

state and sampled consensus error of the MAS, then ξ ≜ [x⊤, η⊤]⊤ ∈ X and X ≜

RnN × RnN represents the state variable and state space of the hybrid system for the

MAS, respectively.

35

Definition 2.1. A trigger function Tp(ξ) is said to be admissible if it satisfies the following

properties1 :

1. Tp is a differentiable function of ξ;

2. Ṫp ≥ −mp for some constant mp ∈ R>0;

3. If ξ jumps in response to Tp(ξ) ≤ 0, then T+
p = hp for some constant hp ∈ R>0.

Under (2–2)–(2–4), a jump for agent p may occur only when Tp(ξ) ≤ 0. If a jump

occurs in response to Tp(ξ) ≤ 0, then (2–2)–(2–4) imply that η̃+p = 0n and T+
p = hp.

Furthermore, if a jump occurs in response to Tp(ξ) ≤ 0 only, then η̃+q = η̃q and T+
q = Tq

for all q ∈ V \ {p}. Specifically, when a jump occurs, agent p samples the relative

displacements to its neighbors, updates ηp, and transmits [x⊤p , η
⊤
p]

⊤ to its neighbors.

Under (2–2) and (2–3), the trigger function Tp in (2–4) satisfies Items 1) and 3) of

Definition 2.1. The only property left to satisfy is Item 2), i.e., uniformly lower bounding

the trigger’s time derivative. Observe that

Ṫp = −2η̃⊤p ˙̃ηp = 2k1η̃
⊤
p

∑
q∈Np

(uq − up) , (2–5)

which is obtained by substituting (2–1), the flow equation in (2–2), and the time deriva-

tive of (2–3) into the time derivative of Tp in (2–4). As a result, Ṫp may be bounded as

in Item 2) provided η̃p and {uq}q∈V are bounded. One way to design controllers that are

bounded a priori is by leveraging a projection operator (see [113]). Boundedness can be

achieved via the forward invariance of compact sets.

Let proj : Rn × Rn → Rn denote the Lipschitz continuous projection operator

in [113, Equation 4], which has parameters (θ0, ε) ∈ R>0 × R>0. By [113, Property

1], the dynamical system d
dt
θ̂ = proj(µ, θ̂), with (θ̂, µ) ∈ Rn × Rn and initial condition

θ̂(0) ∈ B(θ0) ≜ {s ∈ Rn : ∥s∥ ≤ θ0}, renders the closed ball B(θ0 + ε) forward invariant.

1 The symbol ξ represents the state variable of the hybrid system for the MAS which
is presented in Section 2.2.

36

Let Ω ≜ {z ∈ Rn : ∥z − c∥ ≤ r} represent the workspace of all agents in the MAS,

where c ∈ Rn and r ≜ θ0 + ε ∈ R>0 are user-defined constants. Further, consider the

Lipschitz function h : Rn → Rn : s 7→ s− c. Using the projection operator proj(a, b) and the

translation h, the controller of agent p is

up ≜ proj (ηp, h (xp)) . (2–6)

The projection operator from [113] is

proj (ηp, h (xp)) =



ηp, if pl (h (xp)) ≤ 0

ηp, if pl (h (xp)) ≥ 0

and ∇pl (h (xp))⊤ (h (xp)) ≤ 0

(In − Φ (h (xp))) ηp, otherwise.

(2–7)

In (2–7), Φ (h (xp)) ≜
pl(h(xp))∇pl(h(xp))∇pl(h(xp))

⊤

∇pl(h(xp))
⊤∇pl(h(xp))

and pl (h (xp)) ≜
h(xp)

⊤(h(xp))−∥θ0∥2
ε2+2ε∥θ0∥ .

Substituting (2–6) into (2–1) yields ẋp = proj(ηp, h(xp)), where ηp is piece-wise

constant during flows. A continuous state must be consistently measured for the

trigger mechanism to evolve in time and satisfy the event-trigger conditions. Since

single-integrator dynamics2 are considered, if agent q ∈ Np broadcasts (xq, ηq)

whenever a jump occurs in response to Tq(ξ) ≤ 0, then agent p can use the dynamics

ẋq = proj(ηq, h(xq)) with initial condition (xq, ηq) to compute the trajectory of agent q

during a flow interval for each agent q ∈ Np. Additionally, agent p can compute xp

utilizing ẋp = proj(ηp, h(xp)) and initial condition (xp, ηp), such that (xp, ηp) can be

computed instead of continuously measured, which also satisfies the requirement

2 Using higher order dynamics to model the agent states would require that either
xq − xp or xp be continuously measured by agent p, consistent with ETC literature
(e.g., [5,7,9,17,38,53,65,114]).

37

to achieve a continuously evolving trigger mechanism. The computed trajectories

{xq : q ∈ Np ∪ {p}} enable the computation of Tp(ξ) without requiring continuous

measurements of xq or xq − xp for all q ∈ Np ∪ {p}. Therefore the estimate η̂p in (2–3)

closely tracks the actual consensus error since the system is disturbance free; hence

x̂p = xp and x̂q = xq.

Remark 2.1. Observe that h(xp) ∈ B(θ0 + ε) if and only if xp ∈ Ω. Also, the substitution of

ẋp = proj(ηp, h(xp)) into the time derivative of h(xp) yields d
dt
h(xp) = proj(ηp, h(xp)). Thus,

if xp(0) ∈ {z ∈ Rn : ∥z − c∥ ≤ θ0} ⊂ Ω, then h(xp(0)) ∈ B(θ0 + ε) and the dynamics of

h(xp) renders B(θ0 + ε) forward invariant by [113, Property 1], implying that xp(t) ∈ Ω for

all t ≥ 0. In other words, xp is bounded provided xp(0) ∈ {z ∈ Rn : ∥z − c∥ ≤ θ0}.

Let H represent the hybrid system for the MAS with state variable ξ and state space

X . Using the trigger function Tp in (2–4), the flow and jump sets of H are

C ≜
⋂
p∈V

[Tp ≥ 0] , D ≜
⋃
p∈V

[Tp ≤ 0] , (2–8)

respectively. To assist the development, let Dp ≜ [Tp ≤ 0] denote the jump set

corresponding to agent p and proj(η, x) ≜ (proj(ηp, h(xp)))p∈V ∈ RnN be a concatenation

of all controllers in the MAS. Substituting (2–1), the flow equation in (2–2), and the

controller in (2–6) for every p ∈ V into the time derivative of ξ yields ξ̇ = f(ξ), where the

single-valued flow map f : X → X is

f (ξ) ≜

 proj (η, x)

0nN

 . (2–9)

Recall that xp evolves according to the continuous-time system in (2–1). Therefore, xp is

mapped to itself during jumps, that is, x+p = xp in response to a jump caused by Tq(ξ) =

0 for any q ∈ V. Since x+p = xp for all p ∈ V, then x+ = x from Definition 2.1. Next, recall

that ηp evolves according to the hybrid system in (2–2), where η+p = k1
∑

q∈Np
(xq − xp) if

and only if a jump is triggered by Tp(ξ) = 0. Consequently, the set-valued jump map of

38

H is G : X ⇒ X with

G (ξ) ≜ {Gp (ξ) : ξ ∈ Dp for some p ∈ V} ,

Gp (ξ) ≜

 x[
η⊤1 , ..., η

⊤
p−1, (η

+
p)

⊤, η⊤p+1, ..., η
⊤
N

]⊤
 . (2–10)

Upon inspection, the flow and jump sets are closed, the single-valued flow map is

continuous, and the set-valued jump map is outer semi-continuous and locally bounded.

For these reasons, the hybrid system H with data (C, f,D,G) satisfies the hybrid

basic conditions in [110, Assumption 6.5], implying that H is nominally well-posed

by [110, Theorem 6.8]. Let

A ≜
{
ξ ∈ X : ∥x⊥∥ = 0

}
= A× RnN , (2–11)

and observe that the distance between ξ and A is |ξ|A = ∥x⊥∥. With respect to the

objective, if we can show that all maximal solutions of H converge to within a distance of

ν from the set A, then the MAS achieves ν-approximate consensus.

Definition 2.2. A closed set A is said to be practically asymptotically stable (PAS) for a

hybrid system H if there exists a constant ν ∈ R>0 and KL function β such that every

maximal solution ϕ to H satisfies the following for all (t, j) ∈ dom ϕ,

|ϕ (t, j)|A ≤ β (|ϕ (0, 0)|A , t+ j) + ν.

2.3 Supporting Lemmas

Given a maximal solution ϕ of the hybrid system H, the following result supports the

analysis of ϕ(t, j) for arbitrarily large t+ j ∈ R≥0 such that (t, j) ∈ dom ϕ.

Lemma 2.1. Every maximal solution ϕ of the hybrid system H with data (C, f,D,G) is

complete.

Proof. The single-valued flow map f in (2–9) is Lipschitz continuous since the proj(a, b)

is a Lipschitz continuous function by [113, Property 4] and the composition of Lipschitz

39

continuous functions is itself Lipschitz continuous. Given ξ̇ = f(ξ) with initial condition

ξ0 = ϕ(0, 0) ∈ C \ D, there exists a nontrivial maximal solution ϕ for H that satisfies

the initial condition. Since f is Lipschitz continuous, Case (b) in [110, Proposition 2.10]

does not occur. Furthermore, since G(D) ⊂ C ∪D under the construction of H, Case (c)

in [110, Proposition 2.10] does not occur. Therefore, ϕ is complete. ■

Definition 2.3. Let Tp be an admissible trigger function as defined in Definition 2.1,

and let {tpk}∞k=0 be an increasing sequence of event times for agent p, where tpk denotes

the kth instant ξ jumped in response to Tp(ξ)≤0. The positive difference between

consecutive event times, tpk+1−tpk, is uniformly bounded away from zero (see [9, Theorem

1]). Specifically, for all k ∈ Z≥0, t
p
k+1 − tpk ≥ τp, where

τp ≜
hp
mp

. (2–12)

The parameter τp in (2–12) is henceforth referred to as the minimum inter-event time of

Tp.

The next result states that the hybrid system H has admissible trigger functions.

Specifically, Item 2) in Definition 2.1 is satisfied. To aid in the presentation of the result,

let

Tmin ≜ min {τp : p ∈ V} ∈ R>0 (2–13)

denote the smallest minimum inter-event time of the MAS.

Lemma 2.2. Let ϕ be a maximal solution of the hybrid system H. If the initial condition

of H is selected to satisfy ϕ(0, 0) ∈ Φ ≜ {ξ ∈ X : ∀p∈V ∥xp − c∥ ≤ θ0}, then the parameter

mp may be selected as

mp = 4rk21
√

hp(N + |Np|)|Np| (2–14)

for every p ∈ V. In addition,

Tmin

(
j

N
− 1

)
≤ t (2–15)

for all (t, j) ∈ dom ϕ.

40

Proof. Fix a p ∈ V, and recall

Ṫp = 2k1η̃
⊤
p

∑
q∈Np

(uq − up) .

When ϕ ∈ C, the definition of Tp in (2–4) and the definition of the flow set in (2–8) imply

∥η̃p(ϕ)∥ ≤
√

hp. When ϕ ∈ D, ∥η̃p(ϕ)∥ ≤
√
hp since maximal solutions of H are complete,

that is, Tp(ϕ(t, j)) ≥ 0 for all (t, j) ∈ dom ϕ. Otherwise, the solution ϕ terminates prior to

achieving Tp(ϕ) < 0, implying that ϕ was not maximal. Hence, ∥η̃p(ϕ(t, j))∥ ≤
√

hp for all

(t, j) ∈ dom ϕ. Since H renders Ω forward invariant given ϕ(0, 0) ∈ Φ and Remark 2.1,

∥xp(ϕ(t, j)) − c∥ ≤ r for all (t, j) ∈ dom ϕ. By definition, ηp is a piece-wise continuous

computation of k1
∑

q∈Np
(xq − xp) along ϕ, and ∥k1

∑
q∈Np

(xq − xp)∥ ≤ 2rk1|Np|, ηp can

be bounded as ∥ηp∥ ≤ 2rk1|Np|. By [113, Property 3], ∥up∥ = ∥proj(ηp, h(xp))∥ ≤ ∥ηp∥.

Therefore,

|Ṫp| ≤ 2k1∥η̃p∥
∑
q∈Np

(∥ηq∥+ ∥ηp∥)

≤ 4rk21
√

hp(N + |Np|)|Np|,

and the result for mp follows.

Next, suppose (t′, j′), (t, j) ∈ dom ϕ such that 0 ≤ t − t′ ≤ Tmin and 0 ≤ j − j′.

With respect to H, at most N triggers may jump twice during a flow interval of length

Tmin. Hence, the number of jumps between (t′, j′) and (t, j) is bounded as j − j′ ≤

N((t− t′)/Tmin + 1), which implies that

Tmin

(
j − j′

N
− 1

)
≤ t− t′.

Setting (t′, j′) to (0, 0) leads to the desired result. ■

Remark 2.2. Leveraging the definition in (2–12) and the equality in (2–14),

τp =

√
hp

4rk21(N + |Np|)|Np|
. (2–16)

41

Consequently, for every p ∈ V, the minimum inter-event time constraint τmin ≤ τp

can be satisfied, given (2–16), through the selection of the parameters hp, k1, r with

consideration to the system configuration governed by N and |Np| . Solving (2–16) for hp

and setting τp = τmin informs how a specified minimum inter-event time can be used to

solve for the system parameters. The system parameters must also be selected based

on the stability criteria discussed in the next section.

2.4 Stability Analysis

The following items are provided to streamline the presentation of the main result,

given in Theorem 2.1. Let η̃ ≜ (η̃p)p∈V ∈ RnNdenote the concatenation of the sample-

and-hold errors of the MAS. Recall the projection S from Section 1.6. Let x⊥ = Sx =

(sp)p∈V for an appropriate collection of vectors {s1, s2, ..., sN} ⊂ Rn. Moreover, for each

p ∈ V, ∑
q∈Np

(xq − xp) = − (epL⊗ In)x, (2–17)

where ep represents the pth standard basis vector of RN and L is the Laplacian matrix of

the communication graph G. Given a user-defined constant κ ∈ R>0, let

c1 ≜ 2k1λ2 (L)−
1

κ
∈ R, c2 ≜

κ

2

∑
p∈V

hp ∈ R. (2–18)

Recall G is connected, undirected, and static. Thus, λ2(L) > 0 along any solution ϕ of H.

Theorem 2.1. For every agent p ∈ V, if k1 > 0, θ0 > 0, ε > 0, hp > 0, mp satisfies (2–14),

and κ > 1/(2k1λ2(L)), then c1 > 0, c2 > 0, and the set A is PAS3 with respect to Φ ∩ C

for the hybrid system H with data (C, f,D,G). In particular, for every maximal solution ϕ

3 The qualifier in PAS is restricted to the set of initial conditions in Φ ∩ C, enabling the
use of Lemma 2.2 and the satisfaction of Tp(ϕ(0, 0)) ≥ 0 for each p ∈ V given any max-
imal solution ϕ of H with ϕ(0, 0) ∈ Φ ∩ C.

42

such that ϕ(0, 0) ∈ Φ ∩ C,

|ϕ (t, j)|A ≤ |ϕ (0, 0)|A α1 exp (−α2 (t+ j)) + ν, (2–19)

for any (t, j) ∈ dom ϕ and for some ϵ ∈ (0, 1), where

ν =

√
c2
2c1

, α1 ≜ exp

(
(1− ϵ)c1Tmin

2

)
, (2–20)

α2 ≜ min

{
ϵc1
2
,
(1− ϵ)c1Tmin

2N

}
.

Proof. Consider the Lyapunov-like function

V : X → R≥0 : ξ 7→
1

2
x⊤Sx, (2–21)

which is a continuously differentiable function of ξ by construction. Since S is idempo-

tent, V (ξ) can be equivalently written as

V (ξ) =
1

2
x⊤SSx =

1

2
∥x⊥∥2 = 1

2
|x|2A. (2–22)

When ξ ∈ C, the change in V (ξ) is computed using V̇ (ξ) = ⟨∇V (ξ), f(ξ)⟩. Recall that

f(ξ) is the flow map of H provided in (2–9). Hence, the substitution of (2–9) into the time

derivative of (2–21) yields

V̇ (ξ) = x⊤Sproj (η, x) . (2–23)

By using η̃ = (η̃p)p∈V , the identity proj(−a, b) = −proj(a, b), x⊥ = Sx = (sp)p∈V , the

sample-and-hold error in (2–3), [113, Property 2], and the expression in (2–17), the time

derivative of V (ξ) in (2–23) can be bounded as

V̇ (ξ) =
∑
p∈V

s⊤p proj (− (k1 (epL⊗ In)x− η̃p) , h(xp)) ≤ −k1x⊤S (L⊗ In)x+ x⊤Sη̃. (2–24)

43

The time derivative of V (ξ) in (2–24) can be bounded using Young’s inequality and the

definition of L⊗ In = (L⊗ In)S and x⊥ = Sx, as

V̇ (ξ) ≤ −k1λ2 (L) ∥x⊥∥2 +
1

2κ
∥x⊥∥2 + κ

2
∥η̃∥2. (2–25)

Summing the triggers in (2–4) over all p ∈ V yields

∥η̃∥2 =
∑
p∈V

(hp −Tp (ξ)) . (2–26)

Using (2–26), κ > 0, and the fact that Tp(ξ) ≥ 0 for all p ∈ V when ξ ∈ C, the inequality

in (2–25) enables the derivation of

V̇ (ξ) ≤ −
(
k1λ2 (L)−

1

2κ

)
∥x⊥∥2 + κ

2

∑
p∈V

hp. (2–27)

Since 2V (ξ) = ∥x⊥∥2 given (2–22), the inequality in (2–27) can be equivalently written as

V̇ (ξ) ≤ −c1V (ξ) + c2. (2–28)

When ξ ∈ D and g ∈ G(ξ), the change in V (ξ) is computed using V (g)−V (ξ). Since

V (ξ) only depends on x, which evolves continuously under H, V (ξ) evolves continuously

as well. Therefore, V (g) = V (ξ) whenever there is a jump. Let ϕ be a maximal solution

of H with initial condition ϕ(0, 0) ∈ Φ, and let 0 = t0 ≤ t1 ≤ ... ≤ tj+1 ≤ t satisfy

dom ϕ
⋂

([0, tj+1]× {0, 1, ..., j}) =
j⋃

s=0

([ts, ts+1]× {s}) .

Observe that ϕ(r, s) ∈ C for each s ∈ {0, 1, ..., j} and almost all r ∈ [ts, ts+1]. In addition,

(2–28) implies

d

dr
V (ϕ (r, s)) ≤ −c1V (ϕ (r, s)) + c2. (2–29)

Integrating (2–29) over all but finitely many r ∈ [ts, ts+1] yields

V (ϕ (ts+1, s)) ≤ V (ϕ (ts, s)) exp (−c1 (ts+1 − ts))

44

+
c2
c1

(1− exp (−c1 (ts+1 − ts))) . (2–30)

Next, we have that ϕ(ts, s− 1) ∈ D for each s ∈ {0, 1, ..., j}, and V (g) = V (ξ) implies

V (ϕ (ts, s))− V (ϕ (ts, s− 1)) = 0. (2–31)

By inductively stitching (2–30) and (2–31) along the solution ϕ, it follows that

V (ϕ (t, j)) ≤ V (ϕ (0, 0)) exp (−c1t) +
c2
c1

(1− exp (−c1t)) . (2–32)

For all (t, j) ∈ dom ϕ, the substitution of 2V (ξ) = |x|2A from (2–22) into (2–32) yields

|ϕ (t, j)|A ≤ |ϕ (0, 0)|A exp
(
−c1

2
t
)
+

√
c2
2c1

. (2–33)

Let ϵ ∈ (0, 1), and note that

−c1
2
t ≤ −min

{
ϵc1
2
,
(1− ϵ)c1Tmin

2N

}
(t+ j) +

(1− ϵ)c1Tmin

2
, (2–34)

which is derived using (2–15). The substitution of (2–34) into (2–33) leads to the desired

result in (2–19). ■

2.5 Discussion

The main unique result of this chapter is the development of a freely selectable

minimum inter-event timing condition for an event-triggered ν-approximate consensus

controller. A Lyapunov-based stability analysis indicates that a user cannot select an

arbitrarily large minimum inter-event time without some loss of system performance.

The stability analysis shows that both convergence speed and accuracy are affected by

the choice of minimum inter-event time. In the discussion below, it is shown that k1 is

computed from the choice of τmin and if an arbitrarily large minimum inter-event time is

desired, this result will support it, albeit with arbitrarily low convergence accuracy and

speed. Additionally, the following discussion describes how to compute system gains

45

and parameters to achieve ν-approximate convergence performance while adhering to a

prescribed minimum inter-event time.

Ideally, a user would select control parameters that yield a small value for ν and

large value for τp with p ∈ V, where limsupt+j→∞|ϕ(t, j)|A = ν and τp is a lower bound

on the minimum inter-event time of the trigger function Tp for agent p ∈ V. However, the

control parameters that satisfy the constraints τp ≥ τmin for each p ∈ V are not unique

and their selection affects the value of ν, i.e., how close the MAS gets to consensus in

the states {xp}p∈V . Hence, a systematic method for selecting the controller parameters

that minimize ν while satisfying τp ≥ τmin for each agent p ∈ V and the sufficient

conditions of Theorem 2.1 is motivated.

Suppose the number of agents in the MAS and the undirected, connected, and

static communication graph are specified, that is, N and G with λ2(L) > 0 are fixed.

To simplify the satisfaction of the sufficient conditions of Theorem 2.1, let h = hp for all

p ∈ V and δ > 1 be user-defined parameters. Furthermore, let

κ =
δ

2k1λ2 (L)
. (2–35)

Substituting h = hp, (2–18), and (2–35) into the equation for ν in (2–20) yields

ν =
δ

4k1λ2 (L)

√
Nh

δ − 1
. (2–36)

Substituting h = hp into (2–16) yields

τp =

√
h

4rk21 (N + |Np|) |Np|
(2–37)

for each p ∈ V. Let dmax ≜ max{|Np| : p ∈ V} denote the largest degree in G, and

observe that

τ ≜

√
h

4rk21 (N + dmax) dmax

. (2–38)

46

Here, (2–38) shows that τ ≥ τmin which implies that ∀p∈V τp ≥ τmin. Leveraging the

sufficient condition in (2–38), let

k1 =

√ √
h

4rτmin (N + dmax) dmax

. (2–39)

Substituting (2–39) into (2–36) yields

g(h, δ) ≜
δ

2λ2 (L)

√
rτmin

√
hN (N + dmax) dmax

δ − 1
, (2–40)

where g(h, δ) ≥ ν. The free variables in (2–40) are h and δ, which can be selected by

solving the following optimization problem:

minimize g(h, δ)2

subject to (h, δ) ∈ R>0 × R>1.
(2–41)

2.6 Simulation Example

Numerical experiments demonstrate the efficacy of the event-triggered consen-

sus controller in (2–2) and (2–6). In practice, the constant τmin is determined by the

hardware of the MAS, e.g., the sampling time of the slowest sensor or processing

time. For this simulation, τmin = 0.01 is selected. The workspace parameters (i.e., c

and r = θ0 + ε) can be selected according to the initial configuration of the MAS. In

practice, initial configuration x(0, 0), workspace parameters c and r would have to be

computed in a distributed manner. That is, given x(0, 0), the parameters c, θ0, and ε can

be selected to ensure x(0, 0) ∈ Ω and thus satisfy the sufficient condition of Lemma

2.2. The following parameters were selected n = 2, N = 10, Tmin = 0.01, ε = 1.35,

δ = 2, α1 = 1, and given a randomly generated initial configuration x(0, 0) and graph

G, the following simulation were computed θ0 = 13.54, r = 14.89, c = [4.81, 12.97]⊤ ,

dmax = 7, λ2(L) = 0.91, h = 1 × 10−5, k1 = 6.7 × 10−3, ν = 0.82, ϵ = 0.98, κ = 163.75,

c1 = 6.1× 10−3, c2 = 8.2× 10−3, and α2 = 4.58× 10−8. Note that h and δ were determined

by minimizing g2(h, δ) over [1× 10−5,+∞)× [1 + 1× 10−5,+∞). Solving the optimization

47

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

10
0

10
5

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
10

-5

10
0

10
5

Figure 2-1. The top plot indicates larger values of k1 lead to smaller minimum inter-event
times and smaller values of ν, demonstrating the performance trade-off. The
red dashed line depicts the selected value of k1 = 6.7× 10−3, which shows
the compromise made in performance to satisfy a minimum inter-event time
constraint.

problem in (2–41) would lead to ν = 0.1 and k1 = 1.40 × 10−4, which would substantially

elongate the convergence time of |ξ|A to 0. Hence, the domain of (2–41) was modified

from R>0 × R>1 to R≥1×10−5 × R≥1+1×10−5 to shorten the simulation time. The trade-off

between performance (i.e., small values of ν are better) and minimum inter-event times

is summarized in Fig. 2-1. To help visualize the satisfaction of the minimum inter-event

time constraint for each agent, we introduce timers, i.e., let βp ∈ R≥0 be a timer variable

48

τmin k1 ν Tconvergence

Simulation 1 0.01 6.7× 10−3 0.82 371.71
Simulation 2 0.1 2.1× 10−3 2.59 740.62
Simulation 3 0.5 9.44× 10−4 5.79 940.24
Simulation 4 1.0 6.68× 10−4 8.19 1049.40
Simulation 5 1.1 6.37× 10−4 8.59 1409.0

Table 2-1. Convergence results from repeated simulations with an increasing τmin.

for agent p that evolves according to

β̇p = 1, Tp(ξ) ≥ 0

β+
p = 0, Tp(ξ) ≤ 0.

(2–42)

Given a maximal solution ϕ of H, the trajectory βp(ϕ(t, j)) can be used to determine

the length of each flow interval of agent p. In particular, the height of each peak of

βp(ϕ(t, j)) in Fig. 2-7 represents the length of the corresponding flow interval for agent p,

which must be greater than τmin to satisfy the minimum inter-event time constraint.

From Fig. 2-1, (2–16), (2–20), and (2–33) the minimum inter-event time constraint

is satisfied while creating a trade-off in performance. The speed of convergence can be

sacrificed for accuracy of convergence (size of ν resulting from the system parameters)

based on the chosen system parameters. This means that ν-approximate consensus

can be achieved quickly for a large ν or ν-approximate consensus can be achieved

slowly for a small ν, all while achieving the specified minimum inter-event time.

Multiple simulations were performed with the same system parameters, but τmin

was increased from 0.01 to 1.1. The convergence results are shown in Table 2-1. The

convergence time, Tconvergence was recorded to be the time when |ϕ(t, j)|A ≤ ν. From

Table 2-1, as τmin is increased, the convergence time increases and the convergence

accuracy decreases.

2.7 Concluding Remarks

The developed solution to the ν-approximate consensus problem using a distributed

event-triggered coordination scheme for a MAS with homogeneous dynamics and a

49

specific communication minimum inter-event time. The developed control design is PAS

and the workspace is forward invariant. The forward invariance of the agents’ workspace

shows an aspect of safety in the presented control design. Additionally, a bounded

control input and an appropriate event trigger mechanism can yield a user-specified

minimum inter-event time.

50

-10 -5 0 5 10 15 20

0

5

10

15

20

25

Figure 2-2. Depiction of the initial and final configuration (colored ×’s, •’s), agent
trajectories (colored curves), and communication graph G (black dashed
lines). The boundary and center of the workspace Ω are represented by the
black circle and disk.

51

Figure 2-3. Depiction of the normalized surface g(h, δ) over [1× 10−5, 1× 10−1]× [1.05, 3].
MATLAB’s fmincon function was used to minimize g(h, δ) over
[1× 10−5,+∞)× [1 + 1× 10−5,+∞), which successfully found the minimizer
(1× 10−5, 2) as represented by the red stem. Note that ”Trigger Budget”
refers to the variable h.

52

0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8

10

12

14

Figure 2-4. Depiction of the MAS normed consensus errors. The relatively small value
of k1 led to a relatively large simulation time.

53

0 50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0.15

0.2

0.25

Figure 2-5. Depiction of the normed consensus variables {ηp}p∈V versus time. The small
magnitude values are due to a small value for k1.

54

0 50 100 150 200 250 300 350 400 450 500

0

5

10

15

20

25

Figure 2-6. This plot depicts the distance of ϕ (solution of H) to the desired attractor A,
the bound on |ϕ(t, j)|A presented in (2–19). This plot shows that the MAS
achieves ν-approximate consensus.

55

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

0 20 40 60 80 100
0

5

10

15

20

Figure 2-7. Illustration of the timer values {βp}p∈V versus time. The flow intervals of each
agent are represented by the linear growth regions of the corresponding
curve. Since no peak of any curve is smaller than τmin = 0.01, every flow
interval is longer than τmin.

56

CHAPTER 3
EVENT-TRIGGERED INDIRECT CONTROL OF A COOPERATIVE AGENT

The work in this chapter is centered around developing control laws to regulate

semi-cooperative or cooperative target agents. Cooperative agents are aware of the

goal that the pursuer agents are regulating them towards. Semi-cooperative agents are

agnostic to a goal and follow the control influence from the pursuer agent. Regardless

of if a cooperative or semi-cooperative paradigm is adopted, the target agents in this

work will move in a constant direction unless influenced by the pursuer. Typical indirect

control results consider a continuous time influence function, typically a proximity based

function, but in this work an event-triggered influence function is considered.

3.1 Problem Formulation

A single pursuer agent is tasked with regulating a single cooperative target agent to

a goal location, which is unknown to the target agent. Unlike results such as [74,77,79],

the target agent is only capable of measuring the relative direction to the pursuer agent

when dictated by the pursuer agent’s trigger function. Let ηt (t) : R≥0 → Rn denote the

target agent’s position, and let ηp (t) : R≥0 → Rn denote the pursuer agent’s position.

The dynamics of the target agent are given by

η̇t (t) ≜ f (ηt (t)) + µt (ηt (tk) , ηp (tk)) , (3–1)

where the zero-order hold inter-agent influence is denoted µt (ηt (tk) , ηp (tk)) : Rn ×Rn →

Rn, tk denotes the kth time instant when the pursuer agent influences the target agent,

and f : Rn → Rn represents the target agent’s unknown drift dynamics. The inter-agent

influence function is defined by

µt (ηt (tk) , ηp (tk)) ≜


νt

(
ηt(tk)−ηp(tk)

∥ηt(tk)−ηp(tk)∥

)
, if ∥ηt (tk)− ηp (tk)∥ ≤ Rp

0, otherwise,
(3–2)

57

where νt ∈ R>0 denotes the constant speed of the target agent and Rp ∈ R>0 denotes

the maximum distance at which the pursuer agent can exert influence over the target

agent. The influence function in (3–2) defines a unit vector from the pursuer to the

target, scaled by the target’s constant speed. This influence function denotes the effect

of the pursuer’s position on the target’s velocity during influence events. Furthermore,

the influence function in (3–2) is motivated by sensor applications in which sensing can

only occur between discrete time intervals. The use of a relative direction influence is

motivated by a sensor such as an underwater SONAR, which motivates the inclusion of

a maximum influence range. The target agent’s dynamics are not directly controllable;

therefore, the pursuer agent will regulate the target agent’s trajectory by positioning itself

to update the zero-order hold influence function in (3–2). Unlike the target agent, the

pursuer agent is directly controllable with dynamics

η̇p (t) ≜ µp (t) , (3–3)

where µp (t) : R>0 → Rn denotes the control input of the pursuer agent.

Assumption 3.1. The target agent’s drift dynamics, f : Rn → Rn, are continuously

differentiable and bounded as ∥f (ηt (t))∥ ≤ f .

Assumption 3.2. The pursuer agent can continuously measure its state, ηp (t), and the

target agent’s state, ηt (t) for all t ∈ R≥0.

Assumption 3.3. The pursuer agent can instantaneously impart influence on the target

agent defined by the inter-agent influence function in (3–2).

3.2 Control Objective

The goal of the pursuer agent is to regulate the target agent’s state to a static

desired goal location, ζg ∈ Rn. To quantify the target agent regulation objective, the

target agent position error et (t) : R≥0 → Rn is defined as

et (t) ≜ ηt (t)− ζg. (3–4)

58

The pursuer agent error ep (t) : R≥0 → Rn, is defined as

ep (t) ≜ ηd (t)− ηp (t) , (3–5)

where ηd (t) : R≥0 → Rn represents the pursuer agent’s desired trajectory, which is

defined as

ηd (t) ≜ ηt (t) +RaS0, (3–6)

where S0 ≜ −et (t) /∥et (t) ∥ denotes a direction vector equal to the normalized direction

from the goal location to the target agent, and Ra ∈ R>0 represents the desired influence

range, where Ra must be selected such that Ra ≤ Rp. The minimum and maximum

influence ranges are motivated by the pursuer agent’s use of sensors to influence the

target agent’s control input. Based on the subsequent stability analysis, the pursuer

agent’s controller is designed as

µp (t) ≜ η̇d (t) + (β + 1) ep (t) , (3–7)

where β ∈ R>0 is a user-selected constant. In the following subsection, we formulate

a trigger function that determines conditions under which the pursuer agent exerts

influence on the target agent’s trajectory.

3.2.1 Trigger Design

The pursuer agent influences the target agent when dictated by the trigger function

T : R × Rn × Rn → R. The minimum and maximum IETs are denoted by δmin and δmax,

respectively. The trigger function is designed to incorporate a user-prescribed minimum

IET to account for sensing or communication constraints. The trigger function employs a

timer, τ ∈ R>0, to enforce the minimum and maximum IETs while allowing elements of

the system state to dictate events between the maximum and minimum IET limits. The

timer is described by τ ≜ t − tk, where tk is the time the last influence event occurred.

59

The trigger function is defined as

T ≜


γs, τ < δmin,

γs + ∥ep (t)∥2 − (α + 1) ∥et (t)∥2 , δmin ≤ τ < δmax,

0, otherwise,

(3–8)

where γs ≜ 1
2
f 2 + 1

2
νt

2 + (α + 1) ∥et (tk)∥2 and α ∈ R>0 is a user-defined constant.

When τ < δmin, the trigger function is a positive constant equal to γs, preventing the

pursuer agent from influencing the target agent before the minimum IET condition

has been met. When the timer τ is between the minimum and maximum IETs, we

have δmin ≤ τ < δmax and the trigger function T is dependent on the system error

signals ep (t) and et (t). When the timer is equal to the maximum IET, the trigger function

is set to zero. The trigger function generates an influence event when T = 0. This

condition can occur when the timer reaches the maximum IET or if the norm of the

target agent error, ∥et∥, grows sufficiently large. From (3–8), since T = γs when

τ < δmin, the pursuer agent cannot influence the target agent when the IETs are less

than the minimum IET. Therefore, Zeno behavior is prevented given the minimum IET

is selected such that δmin ∈ (0, δmax]. When T = 0, the kth influence time is updated as

tk = t and the timer τ is reset such that τ = 0. Additionally, the constant γs is reset to

γs =
1
2
f 2 + 1

2
νt

2 + (α + 1) ∥et (tk)∥2. The trigger function can be constructed to rely only

on a timer variable; however, including the error signal component allows the trigger

function to generate influence events more often if the target is not tracking the desired

trajectory. That is, the error signal component of T enables influence events to occur

before τ = δmax.

3.3 Stability Analysis

The stability analysis considers the system in two parts: a converging subsystem

when the pursuer agent influences the target agent, and a diverging subsystem when

60

the pursuer agent does not influence the target agent. After each subsystem is con-

sidered independently, stability criteria are developed by considering the combined

system as a switched system. For notational brevity, the time dependence of functions

and variables is omitted in the following analysis, unless additional clarity is required.

In the following subsections, tsk and tuk represent the kth time instant the combined sys-

tem enters its stable and unstable subsystem, respectively. Specifically, the sequence

tsk, t
u
k , t

s
k+1 represents an iteration of entering the stable subsystem for the kth time, fol-

lowed by the unstable subsystem for the kth time, followed by stable subsystem for the

(k + 1)th time. From Assumption 3.3, tuk − tsk = 0. Therefore, in (3–8), tk = tuk and the

trigger function evolves while in the unstable subsystem. Let ξ =
[
e⊤p , e

⊤
t

]⊤
: R≥0 → R2n

represent the concatenated vector of agent regulation errors. Consider the common

candidate Lyapunov function, V : R2n → R,

V (ξ) =
1

2
e⊤p ep +

1

2
e⊤t et. (3–9)

3.3.1 State Convergence

The following stability analysis reveals that all system trajectories converge to the

set B ≜ {ξ ∈ R2n : ∥ξ (t)∥2 ≤ γs
λs
}, where λs ≜ min {β, α} determines the rate of

convergence, establishing globally uniformly ultimately bounded (UUB) regulation.

Theorem 3.1. For the dynamical systems in (3–1) and (3–3) and any initial state ξ (t0),

the control law given in (3–7) ensures ξ (t) converges exponentially to the set B, where

∥ξ (t)∥2 ≤
(
∥ξ (tsk)∥2 −

γs
λs

)
e−2λs(t−tsk) +

γs
λs

(3–10)

for all t ∈ [tsk, t
u
k), given that α > 0, β > 0, and Assumptions 3.1-3.3 are satisfied.

Proof. Taking the total derivative of (3–9) along the trajectories of ξ, and substituting the

dynamics of the target agent from (3–1) and the time derivative of (3–5) yields

V̇ (ξ) = e⊤p (η̇d − η̇p)− e⊤t (f (ηt) + µt) . (3–11)

61

Substituting (3–3) and (3–7) into (3–11) yields

V̇ (ξ) = −βe⊤p ep − e⊤t (f (ηt) + µt) . (3–12)

Using the Cauchy-Schwarz inequality and Young’s inequality, (3–12) can be written as

V̇ (ξ) ≤ −β ∥ep∥2 + ∥et∥2 +
1

2
∥f (ηt)∥2 +

1

2
∥µt∥2 . (3–13)

Given ∥f (ηt (t))∥ ≤ f and ∥µt∥ ≤ νt, we can upper bound (3–13) as

V̇ (ξ) ≤ −β ∥ep∥2 + ∥et∥2 +
1

2
f
2
+

1

2
ν2t . (3–14)

Since γs = 1
2
f 2 + 1

2
νt

2 + (α + 1) ∥et∥2 while t ∈ [tsk, t
u
k), then (3–14) can be expressed as

V̇ (ξ) ≤ −β ∥ep∥2 + ∥et∥2 + γs − (α + 1) ∥et∥2 . (3–15)

Therefore, (3–15) becomes

V̇ (ξ) ≤ −β ∥ep∥2 − α ∥et∥2 + γs. (3–16)

Using the fact that λs = min {β, α} and substituting (3–9) into (3–16) yields

V̇ (ξ) ≤ −2λsV (ξ) + γs. (3–17)

Solving the differential inequality in (3–17) yields

V (ξ (t)) ≤ V (ξ (tsk)) e
−2λs(t−tsk) +

γs
2λs

(
1− e−2λs(t−tsk)

)
. (3–18)

Using [115, Def. 4.6] shows that ξ is uniformly ultimately bounded by

∥ξ (t)∥ ≤
√

∥ξ (tsk)∥2 e−2λs(t−tsk) +
γs
λs

(
1− e−2λs(t−tsk)

)
,

for all t ∈ [tsk, t
u
k), which yields the result in (3–10). ■

62

3.3.2 State Divergence

Theorem 3.2. For the dynamical systems in (3–1) and (3–3) and t ∈
[
tuk , t

s
k+1

)
, the state

ξ (t) remains bounded as

∥ξ (t) ∥2 ≤
(
∥ξ (tuk) ∥2 + γu

)
e2(t−tuk) − γu, (3–19)

where γu ∈ R>0 is defined as γu ≜ 1
2
f 2 + 1

2
νt

2 ∈ R>0.

Proof. Taking the total derivative of (3–9) along trajectories of ξ, substituting the

dynamics of the target agent from (3–1), and substituting the time derivative of (3–

5) yields

V̇ = e⊤p (η̇d − η̇p) + e⊤t (f (ηt) + µt) . (3–20)

Substituting (3–3) and (3–7) into (3–20) yields

V̇ = e⊤p (η̇d − (η̇d + βep)) + e⊤t (f (ηt) + µt) . (3–21)

Using the Cauchy-Schwarz inequality, Young’s inequality, and Assumption 3.1, (3–21) is

upper-bounded as

V̇ ≤ −β ∥ep∥2 + ∥et∥2 +
1

2
f 2 +

1

2
νt

2. (3–22)

Given −β ∥ep∥2 ≤ ∥ep∥2 and γu = 1
2
f 2 + 1

2
νt

2, we can further bound (3–22) as

V̇ ≤ 2V + γu. (3–23)

Solving the differential inequality in (3–23) yields

V (t) ≤ V (tuk) e
2(t−tuk) +

1

2
γu

(
e2(t−tuk) − 1

)
, (3–24)

for all t ∈
[
tuk , t

s
k+1

)
. Substituting (3–9) into (3–24) and simplifying the expression yields

the result in (3–19). ■

63

3.3.3 Combined Stability Analysis

Theorem 3.3. The combination of the trigger function in (3–8) and the control law in

(3–7) guarantees that the state ξ remains bounded by

∥ξ (t) ∥2 ≤
(
∥ξ (tsk)∥2 −

γs
λs

)
e−2λs(t−tsk) +

γs
λs

for all t ∈ R≥0 given that tsk+1 − tuk < δk and

δk ≤
1

2
ln

[
ξs + γu
ξu

]
, (3–25)

where ξs ≜ ∥ξ (tsk)∥2, and ξu ≜ ∥ξ (tuk) ∥2.

Proof. The stable subsystem is upper-bounded by (3–10), which can be written as

∥ξ (t)∥ ≤
√(

ξs −
γs
λs

)
e−2λs(t−tsk) +

γs
λs
. (3–26)

The unstable subsystem is bounded by (3–19), which can also be written as

∥ξ (t)∥ ≤
√
(ξu + γu) e

2(t−tuk) − γu. (3–27)

Since the influence updates occur instantaneously, tuk+1 − tsk = 0, and the system

predominantly remains in the unstable subsystem. The time interval δk = tsk+1 − tuk is

the time interval from when the system enters the unstable subsystem until it exits the

unstable subsystem. Consider the unstable subsystem in δk and the stable subsystem

in the preceding interval δk−1 = tuk − tsk. Given that the influence the pursuer imparts on

the target agent occurs instantaneously, then δk−1 = 0. Let the unstable subsystem be

bounded by the stable subsystem, then (3–26) and (3–27) can be expressed as

ξue
2δk ≤

(
ξs −

γs
λs

)
e−2λsδk−1 +

γs + λsγu
(
1− e2δk

)
λs

. (3–28)

Since δk−1 = 0, (3–28) can be bounded by

ξue
2δk ≤ ξs + γu. (3–29)

64

Solving for δk in (3–29) yields the result in (3–25). ■

Remark 3.1. During the interval t ∈ [tsk, t
u
k), the radius of the set B decreases because

the target agent converges toward the goal location. Conversely, the radius of the set B

expands when the target agent diverges from the goal location during this same interval.

The evolution of the radius of B occurs because γs = 1
2
f 2 + 1

2
νt

2 + (α + 1) ∥et (tsk)∥2 is

reset after each trigger event. Specifically, if ∥et (tsk)∥ >
∥∥et (tsk−1

)∥∥ then the radius of

the set B increases, and if ∥et (tsk)∥ <
∥∥et (tsk−1

)∥∥ then the radius of the set B decreases.

The trigger function given by (3–8) will generate influence events more frequently if the

radius of B is growing due to target agent divergence from the goal location. When the

target agent is diverging from the goal location, γs + ∥ep (t)∥2 − (α + 1) ∥et (t)∥2 = 0

before t− tk = δmax, and the IETs will approach the minimum IET. Subsections 3.3.1 and

3.3.3 imply that with each successive sequence δk → δk+1, the radius of B decreases as

the pursuer agent regulates the target agent to the goal. Furthermore, from the stability

result, the radius of the set B decreases with each successive sequence δk → δk+1, and

lim sup
t→∞

∥ξ (t)∥2 ≤ 1
2λs

(
f 2 + νt

2
)

for all t ∈ [0,∞).

3.4 Results

3.4.1 Simulated Results

Numerical experiments demonstrate the efficacy of the controller in (3–7) and the

trigger function in (3–8). The minimum IET δmin is determined by the sensing hardware

constraints of the pursuer and target agents (e.g., the sampling time or processing

time of the sensor). In this simulation study, the target agent drift dynamics are given

by f (ηt (t)) = tanh (ηt (t)), satisfying Assumption 3.1. For this simulation, we select

δmin = 0.1 · δmax, n = 2, Rp = 10.0, Ra = 5.0, νt = 1.5, α = 2.1, and β = 5.0. Based on

the parameter selection, γu was found to be γu = 1.9639. Given the initial configuration

represented by the #’s in Figure 3-1 and the value of γu, the maximum IET was found to

be δmax = 0.178 using 3–25. In Figure 3-3, T increases during the interval t − tk < δmax

because the target agent’s tracking error et diminishes as it approaches the goal

65

location. If instead the tracking error were to increase during this period, T would rapidly

decrease to zero closer to the minimum IET, δmin. This relationship is critical for system

efficiency—when T is driven to zero shortly after δmin, the pursuer must intervene more

frequently, indicating that the influence function is not effectively managing the target

agent’s tracking performance given the target agent’s drift dynamics. The conservative

nature of the result is evidence in Figure 3-2, where it can be seen that the target

agent’s error does not grow between influence events. Based on the fact that the target

agent’s error does not grow in between influence events, it is possible for the maximum

dwell time to be increased while still ensuring the regulation of the target agent to the

goal location.

3.4.2 Experiment

Experiments were performed at the University of Florida’s Autonomy Park outdoor

facility to validate the efficacy of the controller in (3–7) and the trigger function in (3–8).

The results of a single experimental run are presented in Figures 3-5 and 3-6. The

experiment was carried out using the Freefly Astro and Unitree Go1 platforms shown

in Figure 3-4. In the experimental results, a pursuer agent (Freefly Astro quadcopter)

was tasked with regulating a target agent (Unitree Go1 quadruped) to the desired

coordinates (−2.0m,−5m, 0m) in the local Autonomy Park reference frame. The

minimum IET, δmin, was selected as 0.01s. Based upon the documented tolerances of

onboard sensors and the maximum velocity of the target agent, f was conservatively

estimated to be 6.0m/s. The target agent velocity, νt, was selected as 0.25m/s. From 3–

25, and based on the initial values of ξu and ξs, the maximum IET, δmax, was computed

to be 0.0282s. The smallest and largest IETs from the experimental data were found

to be 0.0154s and 0.0248s, respectively. Due to the small IETs, the influence and event

markers shown in the simulation Figures 3-1-3-3 were omitted from Figures 3-5 and 3-6.

The experimental results demonstrate the effectiveness of the controller in (3–7)

and the trigger function in (3–8), as the pursuer agent successfully regulated the target

66

Figure 3-1. The trajectories of the pursuer agent, ηp (t), and target agent, ηt (t), are
represented by the black and blue lines respectively. The desired trajectory,
ηd (t), is represented by the magenta dashed line. The black and magenta
×’s represent ηp (tk) and ηd (tk) when T = 0. The blue solid dots represent
ηt (tk) when T = 0. The black, magenta, and blue #’s represent ηp (t0),
ηd (t0), and ηt (t0). The B’s represent ηp (tfinal), ηd (tfinal), and ηt (tfinal). The
green square represents the goal location.

67

Figure 3-2. The value of ∥et∥2 over time. The magenta ♢’s represent when the pursuer
agent influences the target agent.

68

Figure 3-3. The evolution of the trigger function, denoted by the blue line over time.
Event times when the pursuer agent exerts influence on the target agent are
marked with red B’s. It can be seen that T resets to a constant and remains
constant while tpk+1 − tuk ≤ δmin. When δmin ≤ tpk+1 − tuk < δmax, T grows
because ∥et∥2 gets smaller as the target agent is influenced in the direction
of ζg. Finally, T is forced to zero when tpk+1 − tuk = δmax, which is evidenced by
the downward spike at most red B’s.

69

Figure 3-4. The Freefly Astro quadcopter (left) was used as the pursuer agent and the
Unitree Go1 quadruped (right) was used as the target agent. The quadruped
uses an Emlid RS+ RTK GPS for precise position updates, which is fused
with attitude and heading data from a Microstrain 3DM-GX5-AHRS using the
ROS2 robot− localization package.

agent while maintaining IETs within the theoretically predicted bounds. In contrast to the

simulated results in Section 3.4.1, experimental results revealed that trigger events were

primarily initiated by state conditions rather than timer constraints, demonstrating the

system’s efficient adaptation to the target agent’s dynamic movements.

3.5 Concluding Remarks

This work introduces a novel solution to the indirect control problem by leveraging

an event-triggered relative bearing influence function to regulate a target agent toward

a desired location. A rigorous connection is established between the maximum dwell

70

Figure 3-5. The trajectories of the pursuer agent, ηp (t), and target agent, ηt (t), are
represented by the black and blue lines respectively. The #’s represent
ηp (t0) and ηt (t0). The B’s represent ηp (tfinal) and ηt (tfinal). The light blue
circle represents the goal location and the ultimate bound of B described in
Remark 3.1 is depicted by the light gray circle.

71

Figure 3-6. The value of ∥et∥2 during the experiment. Notable changes in the slope
correspond to effective regulation of the target agent’s trajectory by the
pursuer agent’s movement patterns.

72

time and IET bounds in an event-triggered indirect control framework. By formulating

the system as a switched dynamical model with stable and unstable subsystems, this

work develops a comprehensive dwell-time analysis to derive an upper bound on inter-

event times for the trigger function. A piecewise continuous trigger function is proposed,

incorporating both a maximum IET, determined through a dwell-time analysis, and a

selectable minimum IET, providing enhanced control flexibility.

73

CHAPTER 4
INDIRECT CONTROL OF A COOPERATIVE AGENT THROUGH FIELD OF VIEW

INTERACTIONS

The work in this chapter is centered around developing control laws to regulate a

cooperative target agent along a desired trajectory. This work is motivated by the use

of sensors that have a limited FOV, these sensors could include cameras or underwater

SONAR. This chapter assumes that a target agent has a sensor that can detect the

pursuer agent and can measure the resulting relative bearing to the pursuer agent. The

target agent will move in a constant direction unless influenced by the relative bearing

from the pursuer agent through an event-triggered influence function.

4.1 Problem Formulation

A single pursuer agent is tasked with regulating a single target agent to a desired

trajectory which in unknown to the target agent. The target agent is not directly con-

trollable but its dynamics are influenced by an inter-agent interaction. The target agent

is only able to sense the pursuer agent when it is within the target agent’s FOV, which

is denoted F . Many common FOVs can be modeled using a pair of circular arcs sym-

metric about the agent’s orientation. In this work, the circular arcs are centered at ±θt
radians from the agent’s orientation and the central angle of each circular arc is ±ψt

radians, Figure (4-1) depicts the FOV model. The target agent is modeled using unicycle

kinematics where ηt (t) : R≥0 → Rn and ϕt (t) : R≥0 → R denote the target agent’s

position and orientation, respectively. Specifically, the target agent’s unicycle kinematics

are given by f (ϕt (t)) ≜ νt · [cos (ϕt) , sin (ϕt)]
⊤, where νt ∈ R>0 is the known constant

nominal speed of the target agent. The dynamics of the target agent are given by

η̇t (t) ≜ f (ϕt (t)) (1− 1F (ηp (t))) + kt (ηt (t)− ηp (t))1F (ηp (t)) , (4–1)

ϕ̇t (t) ≜ µt (ηt (t) , ηp (t)) (4–2)

where f : R → Rn represents the unknown persistent vehicle dynamics, the indicator

function 1F : Rn → {0, 1} determines if the pursuer agent is within the target agent’s

74

Target Orientation

θt

θt

±ψt

±ψt

F

Figure 4-1. Target agent FOV model.

FOV, and µt : Rn × Rn → Rn models the angular inter-agent influence between

the pursuer and the target agent. The relative displacement inter-agent influence

interaction is included in the dynamics of the target agent, whereas the angular inter-

agent interaction function is defined by

µt (ηt (t) , ηp (t)) ≜ α · 1F (ηp (t)) , (4–3)

where α ≜ (atan2 (ηt (t)− ηp (t))− ϕt (t)) is the difference of the relative bearing

between the two agents and the target agent’s orientation. The inter-agent interaction

moves and rotates the target agent in a direction opposite to the direction of the relative

75

direction between the target agent and pursuer agent. The pursuer agent is modeled as

a single-integrator system where ηp (t) : R≥0 → Rn denotes the pursuer agent’s position.

Unlike the target agent, the pursuer agent is directly controllable with dynamics

η̇p (t) ≜ µp (t) , (4–4)

where µp (t) ∈ Rn denotes the control input of the pursuer agent.

Assumption 4.1. The pursuer agent can continuously measure its state and the target

agent’s state.

Assumption 4.2. The pursuer agent can instantaneously impart influence on the target

agent.

4.2 Control Objective

The goal of the pursuer agent is to regulate the target agent’s state to a desired

target agent trajectory, ζt (t) : R≥0 → Rn. To quantify the target agent regulation

objective, the target agent position error et (t) ∈ Rn is defined as

et (t) ≜ ηt (t)− ζt (t) . (4–5)

The velocity of the desired target agent trajectory, ζ̇t : R≥0 → Rn, is bounded as∥∥∥ζ̇t (t)∥∥∥ ≤ νζ . The desired pursuer position ηd (t) is designed as

ηd (t) ≜ ζt (t) + kdet (t) , (4–6)

where kd ∈ R>0 is a user-selected gain. The pursuer agent position error ep (t) ∈ Rn is

defined as

ep (t) ≜ proj (ηd (t) , ηt (t))− ηp (t) , (4–7)

where proj (ηd (t) , ηt (t)) projects the desired pursuer position into F , and is defined as

proj (ηd (t) , ηt (t)) ≜


ηd (t) , if ηd (t) ∈ F

ηt (t) + krRFOV [cos (ϕ
′) , sin (ϕ′)]⊤ otherwise.

(4–8)

76

ηtζt ηdet

ηprojd

proj(ηd, ηt)

Figure 4-2. Visualization of (4–8), where ka = 1.0 and kr = 1.0, therefore ηd is projected
onto the boundary of the FOV.

In (4–8), the angle ϕ′ ∈ (−π, π] is defined by ϕ′ ≜ ϕt + sgn (α) · θt +

sgn (α + sgn (α) · (kaψt − θt)) · kaψt, and ka, kr ∈ (0, 1] are parameters that adjust

where the projected point is angularly and radially within the FOV, respectively.

4.2.1 Switching Signal and Control Design

The pursuer agent influences the target agent when dictated by the switching signal

σ : R× Rn → {0, 1}. The switching signal is defined as

σ ≜


1, if ∥et (t)∥2 > γs and t− tk ≥ δk,

0, otherwise,
(4–9)

77

where γs ≜ 1
2
ν2ζ , t − tk is the total elapsed time since ηp exited F the kth time, and δk is

the minimum dwell time developed in Subsection 4.3.3.

Remark 4.1. The switching signal allows the pursuer agent take advantage of the

target agent’s dynamics to reduce the target position regulation error. The FOV of the

target agent could cause every trajectory correction caused by the pursuer agent to

be an over-correction, causing et (t) to oscillate and not approach zero. Employing the

switching signal in (4–9) allows the target agent’s constant velocity dynamics to drive

et (t) to zero when it is advantageous to do so.

When the switching signal indicates the target agent dynamics are sufficiently

reducing et (t), the pursuer agent will track an auxiliary desired position to avoid influenc-

ing the target agent arbitrarily. The auxiliary desired point, η∗d (t) : R≥0 → Rn, is designed

as

η∗d (t) ≜ ηt (t) + kdRFOV

 cos (ϕt (t)− π)

sin (ϕt (t)− π)

 ,
where kd ∈ R>1 is a scaling factor of RFOV, this scaling factor keeps the pursuer agent

from unintentionally entering F . When σ = 0, (4–7) becomes ep (t) = η∗d (t) − ηp. Based

on the switching signal in (4–9) and the subsequent stability analysis, the control input of

the pursuer is designed as

µp (t) ≜


d

dt
proj (ηd (t) , ηt (t)) + kpep (t) + ktet (t) , if σ = 1

η̇∗d (t) + kpep (t) + ktet (t) , otherwise,
(4–10)

where kp ∈ R>0 is a user-selected parameter.

4.3 Stability Analysis

The stability analysis considers the system in two parts: a converging subsystem

when the pursuer agent is within F and influences the target agent, and a diverging

subsystem when the pursuer agent does not influence the target agent, but does

78

follow a stand off point. After each subsystem is considered independently, a dwell-

time analysis is used to develop stability criteria by considering the combined system

as a switched system. For notational brevity, the time dependence of functions and

variables is omitted in the following analysis, unless additional clarity is required. In

the following subsections, tsk and tuk represent the kth time instant the pursuer agent

entered and exited F , respectively. Specifically, the sequence tsk, t
u
k , t

s
k+1 represents

an iteration of entering F for the kth time, followed by exiting F for the kth time, and

subsequently reentering F for the (k + 1)th time. Let ξ =
[
e⊤p , e

⊤
t

]⊤
: R≥0 → R2n represent

the concatenated vector of agent regulation errors. Consider the candidate Lyapunov

function, V : R2n → R, for the stable subsystem

Vs (ξ) =
1

2
e⊤p ep +

1

2
e⊤t et. (4–11)

The following stability analysis reveals that all system trajectories converge to the set

B ≜ {ξ ∈ R2n : ∥ξ (t)∥2 ≤ γs
λs
}, where λs ≜ min

(
kp, kdkt − kt − 1

2

)
determines the rate of

convergence, establishing global UUB regulation.

4.3.1 Target Convergence

Theorem 4.1. For the dynamical systems in (4–1) and (4–4) and any initial state ξ (t0),

the control law given in (4–10) ensures ξ (t) converges exponentially to the set B, where

∥ξ (t)∥2 ≤
(
∥ξ (tsk)∥2 −

γs
λs

)
e−2λs(t−tsk) +

γs
λs

(4–12)

for all t ∈ [tsk, t
u
k), given that kp > 0, kt > 1, kd > 2kt+1

2kt
, and Assumption 4.2 is satisfied.

Proof. Taking the total derivative of (4–11) along the trajectories of ξ, and substituting

the dynamics of the target agent from (4–1) and the time derivative of (4–7) yields

V̇s (ξ) = e⊤p

(
d

dt
proj (ηd (t) , ηt (t))− η̇p

)
+ e⊤t

(
η̇t − ζ̇t

)
. (4–13)

79

Substituting (4–4) and (4–10) into (4–13) yields

V̇s (ξ) = e⊤p

(
d

dt
proj (ηd (t) , ηt (t))−

(
d

dt
proj (ηd (t) , ηt (t)) + kpep + ktet

))
+ e⊤t

(
η̇t − ζ̇t

)
.

(4–14)

Rewriting (4–14) as

V̇s (ξ) = −kpe⊤p ep − kte
⊤
p et + e⊤t η̇t − e⊤t ζ̇t, (4–15)

and substituting the target agent dynamics from (4–1) into (4–15) yields

V̇s (ξ) = −kpe⊤p ep − kte
⊤
p et + e⊤t f (ϕt (t)) (1− 1F) + e⊤t kt (ηt − ηp)1F − e⊤t ζ̇t. (4–16)

When t ∈ [tsk, t
u
k), ηp ∈ F and 1F = 1, therefore (4–16) becomes

V̇s (ξ) = −kpe⊤p ep − kte
⊤
p et + kte

⊤
t (ηt − ηp)− e⊤t ζ̇t. (4–17)

Substituting (4–6) and (4–7) into (4–17) yields

V̇s (ξ) = −kpe⊤p ep − kte
⊤
p et + kte

⊤
t (ep + (1− kd) et) + e⊤t ζ̇t. (4–18)

Regrouping terms in (4–18) and using the Cauchy-Schwarz inequality and Young’s

inequality yields

V̇s (ξ) ≤ −kp ∥ep∥2 −
(
kdkt − kt −

1

2

)
∥et∥2 +

1

2

∥∥∥ζ̇t∥∥∥2

. (4–19)

Given
∥∥∥ζ̇t∥∥∥ ≤ νζ and γs = 1

2
ν2ζ , then (4–19) can be expressed as

V̇s (ξ) ≤ −kp ∥ep∥2 −
(
kdkt − kt −

1

2

)
∥et∥2 + γs. (4–20)

Given λs = min
(
kp, kdkt − kt − 1

2

)
and substituting (4–11) into (4–20) yields

V̇s (ξ) ≤ −2λsV (ξ) + γs. (4–21)

80

Solving the differential inequality in (4–21) yields

V (ξ (t)) ≤ V (ξ (tsk)) e
−2λs(t−tsk) +

γs
2λs

(
1− e−2λs(t−tsk)

)
. (4–22)

Using [115, Def. 4.6] shows that ξ is UUB by

∥ξ (t)∥ ≤
√

∥ξ (tsk)∥2 e−2λs(t−tsk) +
γs
λs

(
1− e−2λs(t−tsk)

)
,

for all t ∈ [tsk, t
u
k), which yields the result in (4–12). ■

4.3.2 Target Divergence

Theorem 4.2. For the dynamical systems in (4–1) and t ∈
[
tuk , t

s
k+1

)
, the value of ξ (t)

remains bounded as

∥ξ (t) ∥2 ≤
(
∥ξ (tuk) ∥2 +

γu
λu

)
e2λu(t−tuk) − γu

λu
, (4–23)

where γu ∈ R>0 is defined as γu ≜ 1
2
ν2ζ +

1
2
ν2t ∈ R>0.

Proof. Taking the total derivative of (4–11) along trajectories of ξ and substituting the

dynamics of the target agent from (4–1) yields

V̇u = e⊤p (η̇∗d − η̇p) + e⊤t ζ̇t − e⊤t f (ϕt (t)) (1− 1F)− e⊤t kt (ηt − ηp)1F . (4–24)

When t ∈
[
tuk , t

s
k+1

)
, ηp /∈ F , and 1F = 0, (4–24) can be written as

V̇u = e⊤p (η̇∗d − η̇p) + e⊤t ζ̇t − e⊤t f (ϕt (t)) . (4–25)

Substituting (4–4) and (4–10), where σ = 0, into (4–25) and applying the Cauchy-

Schwarz inequality and Young’s inequality gives

V̇u ≤ −
(
kp +

1

2

)
∥ep∥2 +

3

2
∥et∥2 +

1

2

∥∥∥ζ̇t∥∥∥2

+
1

2
∥f (ϕt)∥2 . (4–26)

Given ∥f (ϕt)∥ ≤ νt,
∥∥∥ζ̇t∥∥∥ ≤ νζ , and −kp − 1

2
≤ kp, we can upper bound (4–26) as

V̇u ≤ kp ∥ep∥2 +
3

2
∥et∥2 +

1

2
ν2ζ +

1

2
ν2t . (4–27)

81

Substituting (4–11) into (4–27), and given γu ≜ 1
2
ν2ζ +

1
2
ν2t and λu = max

(
kp,

3
2

)
, (4–27)

becomes

V̇u ≤ 2λuVu + γu. (4–28)

Solving the differential inequality in (4–28) yields

Vu (t) ≤ Vu (t
u
k) e

2λu(t−tuk) +
γu
2λu

(
e2λu(t−tuk) − 1

)
, (4–29)

for all t ∈
[
tuk , t

s
k+1

)
. Substituting (4–11) into (4–29) and simplifying the expression yields

the result in (4–23). ■

4.3.3 Combined Stability Analysis

Theorem 4.3. The combination of the switching function in (4–9) and the control law in

(4–10) guarantees that the state ξ remains bounded by

∥ξ (t) ∥2 ≤
(
∥ξ (tsk)∥2 −

γs
λs

)
e−2λs(t−tsk) +

γs
λs

for all t ∈ R≥0 given that tsk+1 − tuk < δk and

δk ≤
1

2
ln

[
λuξs + γu
λuξu

]
, (4–30)

where ξs ≜ ∥ξ (tsk)∥2, and ξu ≜ ∥ξ (tuk) ∥2.

Proof. The stable subsystem is upper-bounded by (4–12), which can be written as

∥ξ (t)∥ ≤
√(

ξs −
γs
λs

)
e−2λs(t−tsk) +

γs
λs
. (4–31)

The unstable subsystem is bounded by (4–23), which can also be written as

∥ξ (t)∥ ≤
√(

ξu +
γu
λu

)
e2(t−tuk) − γu

λu
. (4–32)

Since the influence updates occur instantaneously, tuk+1 − tsk = 0, and the system

predominantly remains in the unstable subsystem. The time interval δk = tsk+1 − tuk is

the time interval from when the system enters the unstable subsystem until it exits the

unstable subsystem. Consider the unstable subsystem in δk and the stable subsystem

82

in the preceding interval δk−1 = tuk − tsk. Given that the influence the pursuer imparts on

the target agent occurs instantaneously, then δk−1 = 0. Let the unstable subsystem be

bounded by the stable subsystem, then (4–31) and (4–32) can be expressed as

ξue
2δk ≤

(
ξs −

γs
λs

)
e−2λsδk−1 +

γsλu + λsγu
(
1− e2δk

)
λsλu

. (4–33)

Since δk−1 = 0, (4–33) can be bounded by

ξue
2δk ≤ ξs +

γu
λu
. (4–34)

Solving for δk in (4–34) yields the result in (4–30). ■

4.4 Simulation

Numerical experiments demonstrate the efficacy of the controller in (4–10) and

the switching function in (4–9). For this simulation, we select n = 2, RFOV = 3.0,

νt = 1.0, νζ = 0.625, kt = 1.0, kp = 5.0 and kd = 5.0. Given the initial configuration

represented by the #’s in Figure 4-3 and the value of γu, the minimum dwell time was

found to be δmin = 0.01 using 4–30. The minimum, maximum, and average intervals

between influence actions
(
tsk+1 − tuk

)
, denoted ∆tmin, ∆tmax, and ∆tavg was found to be

∆tmin = 0.15, ∆tmax = 1.3, and ∆tavg = 0.49.

4.5 Concluding Remarks

This work introduces a novel solution to the indirect control problem where inter-

agent interactions can only occur in a limited target agent FOV. By formulating the

system as a switched dynamical model with stable and unstable subsystems, this work

develops a comprehensive dwell-time analysis to create a switching controller that can

regulate a constant speed target agent toward a desired trajectory. A projection function

is formulated to move the desired pursuer position into the target agent’s FOV when

necessary.

83

Figure 4-3. The trajectories of the pursuer agent, ηp (t), and target agent, ηt (t), are
represented by the blue and red lines respectively. The desired target agent
trajectory, ζt (t), is represented by the green dashed line. The blue, red, and
green #’s represent ηp (t0), ηt (t0), and ζt (t0). The blue, red and green ×’s
represent ηp (tfinal), ηt (tfinal), and ζt (tfinal).

84

Figure 4-4. The value of ∥et∥ over time. The magenta ♢’s represent when the pursuer
agent entered F and influence the target agent.

85

CHAPTER 5
CONCLUSIONS

Indirect control has the potential to reduce the cost-capability gap and allow a

team of highly-capable agents to guide many objective-capable agents to a goal or

along a desired trajectory. The event-triggered indirect control framework allows for the

constraints of sensor-based robotic systems to be considered when developing control

laws and communication paradigms. When developing event-triggered or switched

control solutions, it is imperative to show that the proposed design achieves a physically

feasible trigger rate. The results presented in Chapters 2-4 are shown to achieve

implementable event-triggered and state-dependent switching results that are shown to

be Zeno-free.

Chapter 2 introduces a distributed event-triggered coordination strategy for multi-

agent systems with homogeneous dynamics, ensuring that communication events occur

no more frequently than a user-defined minimum interval. The resulting control method

is proven to be PAS, and maintains the forward invariance of the agents’ workspace,

thereby ensuring safety. Furthermore, by appropriately selecting the event-triggering

mechanism and bounding the control input, the desired minimum inter-event time can be

guaranteed.

Future extensions of the work in Chapter 2 could focus on extending the event-

triggered consensus strategy to heterogeneous multi-agent systems, where agents

may have differing dynamics or capabilities. Another direction could involve relaxing the

assumptions about network connectivity or allowing for time-varying communication de-

lays, thereby making the approach more robust and applicable to real-world scenarios.

Additionally, investigating adaptive mechanisms for dynamically tuning the minimum IET,

to optimize performance while preserving the user-specified minimum IET, could further

improve efficiency and safety in dynamic environments.

86

Chapter 3 presents an innovative approach to the indirect control problem by using

an event-triggered relative direction influence function to guide a target agent toward

a desired position. It establishes a rigorous link between maximum dwell time and

inter-event time (IET) bounds within the event-triggered indirect control framework. By

modeling the system as a switched dynamical system with both stable and unstable

modes, a detailed dwell-time analysis is used to derive an upper bound on the IET

for the triggering mechanism. A piecewise continuous trigger function is introduced,

incorporating a maximum IET, which is determined through the dwell-time analysis, and

a configurable minimum IET, offering flexibility in control design.

Future work for Chapter 3 includes the design of bounded control laws for pursuer

agents to facilitate a closed-form characterization of the minimum inter-event time (IET),

enhancing both theoretical clarity and practical implementation. Another key direction

is the extension of the current analytical results to scenarios involving bearing-only

measurements, which reflect more realistic sensing constraints in many applications.

Furthermore, future research will investigate the scalability of the proposed event-

triggered indirect control framework to systems with multiple pursuer and target agents,

including the coordination and communication challenges that arise in such multi-agent

environments. Additional efforts may also focus on robustness analysis under modeling

uncertainties and external disturbances to further broaden the applicability of the

approach.

Chapter 4 presents a solution to the indirect control problem where inter-agent

interactions can only occur in a limited target agent FOV. Similar to Chapter 3, the

pursuer and target agents are modeled as a switched dynamical system with stable and

unstable subsystems, but in Chapter 4 a comprehensive dwell-time criteria enforces the

switching controller to prevent Zeno behavior while regulating a constant speed target

agent toward a desired trajectory. Chapter 4 also presents a projection function which

moves the desired pursuer position into the target agent’s FOV - creating a sub-optimal

87

desired pursuer position in terms of regulating the target agent position error, but is

optimal in terms of effectively indirectly controlling the target agent.

The work in Chapter 4 can be characterized as primarily reactive to system errors,

and future research will focus on developing more predictive control strategies—such

as incorporating target motion forecasting or model-based estimation techniques—to

improve responsiveness and control efficiency. Additionally, future work will explore

the scalability of this approach to scenarios involving multiple target agents, including

challenges related to FOV constraints, interaction scheduling, and decentralized

coordination among multiple pursuers. Further extensions may also consider dynamic or

adaptive FOV models, as well as robustness to sensor noise and communication delays,

to enhance the applicability of the framework in real-world environments.

The work in Chapters 3-4 are impactful in addressing problems related to the

indirect control of flocks or swarms of agents. Specifically, these chapters provide

mechanisms by which a limited number of pursuer agents can strategically influence

the movement and formation of larger groups of target agents by exploiting localized

interactions, dwell-time-based switching logic, and visibility-constrained control laws

to guide collective behavior toward desired global objectives. The work in Chapters

2-4 is relevant in scenarios where direct control of every agent is infeasible, such as in

surveillance, environmental monitoring, or autonomous exploration tasks. The analytical

tools and control frameworks developed in these chapters lay the groundwork for

scalable and resource-efficient coordination strategies in multi-agent systems, where

indirect influence must be both deliberate and adaptable to system variability.

88

LIST OF REFERENCES

[1] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent networks.
Princeton University Press, 2010.

[2] E. Panteley and A. Loría, “Synchronization and dynamic consensus of hetero-
geneous networked systems,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp.
3758–3773, 2017.

[3] C. Sun and K. G. Vamvoudakis, “Continuous-time safe learning with temporal logic
constraints in adversarial environments,” in Proc. Am. Control Conf., 2020, pp.
4786–4791.

[4] D. V. Dimarogonas and K. H. Johansson, “Event-triggered cooperative control,” in
Proc. European Control Conf., Aug. 2009, pp. 3015–3020.

[5] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to event-triggered
and self-triggered control,” in Proc. IEEE Conf. Decis. Control, Dec. 2012, pp.
3270–3285.

[6] M. Mazo and P. Tabuada, “Decentralized event-triggered control over wireless
sensor/actuator networks,” IEEE Trans. Autom. Control, vol. 56, no. 10, pp.
2456–2461, 2011.

[7] M. Mazo and M. Cao, “Decentralized event-triggered control with asynchronous
updates,” in Proc. IEEE Conf. Decis. Control Eur. Control Conf., pp. 2547–2552.

[8] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,”
Automatica, vol. 53, pp. 424–440.

[9] F. M. Zegers, D. P. Guralnik, and W. E. Dixon, “Event/self-triggered multi-agent
system rendezvous with graph maintenance,” in Proc. IEEE Conf. Decis. Control,
pp. 1886–1891.

[10] F. Zegers, M. Hale, J. Shea, and W. E. Dixon, “Event-triggered formation control
and leader tracking with resilience to byzantine adversaries: A reputation-based
approach,” IEEE Trans. Netw. Syst., vol. 8, no. 3, pp. 1417–1429, 2021.

[11] F. Zegers, M. Hale, J. M. Shea, and W. E. Dixon, “Reputation-based event-triggered
formation control and leader tracking with resilience to byzantine adversaries,” in
Proc. Am. Control Conf., 2020, pp. 761–766.

[12] N. Mathew, S. L. Smith, and S. L. Waslander, “A graph-based approach to
multi-robot rendezvous for recharging in persistent tasks,” in IEEE Int. Conf. Robot.
Automat., pp. 3497–3502.

[13] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N. Gia, H. Tenhunen,
M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collaborative multi-robot search

89

and rescue: Planning, coordination, perception, and active vision,” IEEE Access,
vol. 8, pp. 191 617–191 643.

[14] Z. Zhou, J. Liu, and J. Yu, “A survey of underwater multi-robot systems,” IEEE/CAA
J. Autom. Sin., vol. 9, no. 1, pp. 1–18.

[15] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,” IEEE
Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685, Sep. 2007.

[16] D. P. Borgers and W. Heemels, “On minimum inter-event times in event-triggered
control,” in Proc. IEEE Conf. Decis. Control, 2013, pp. 7370–7375.

[17] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed event-triggered
control for multi-agent systems,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp.
1291–1297, May 2012.

[18] W. Heemels, J. Sandee, and P. Van Den Bosch, “Analysis of event-driven
controllers for linear systems,” Int. J. Control, vol. 81, no. 4, pp. 571–590.

[19] W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle Cooperative
Control. New York: Springer-Verlag, 2008.

[20] D. Dimarogonas, E. Frazzoli, and K. Johansson, “Distributed self-triggered control
for multi-agent systems,” Proc. IEEE Conf. Decis. Control, pp. 6716–6721.

[21] C. Nowzari, E. Garcia, and J. Cortés, “Event-triggered communication and control
of networked systems for multi-agent consensus,” Automatica, vol. 105, pp. 1–27,
2019.

[22] J. Yang, “A consensus control for a multi-agent system with unknown time-varying
communication delays,” IEEE Access, vol. 9, pp. 55 844–55 852.

[23] M. Ajina, D. Tabatabai, and C. Nowzari, “Asynchronous distributed event-triggered
coordination for multiagent coverage control,” IEEE Trans. Cybern., vol. 51, no. 12,
pp. 5941–5953.

[24] J. Berneburg and C. Nowzari, “Distributed dynamic event-triggered coordination
with a designable minimum inter-event time,” in Proc. Am. Control Conf., pp.
1424–1429.

[25] ——, “Robust dynamic event-triggered coordination with a designable minimum
interevent time,” IEEE Trans. Autom. Contr., vol. 66, no. 8, pp. 3417–3428, 2021.

[26] C. Chen, F. L. Lewis, and X. Li, “Event-triggered coordination of multi-agent
systems via a lyapunov-based approach for leaderless consensus,” Automatica,
vol. 136, p. 109936.

90

[27] Y. Liu, C. Nowzari, Z. Tian, and Q. Ling, “Asynchronous periodic event-triggered
coordination of multi-agent systems,” Proc. IEEE Conf. Decis. Control, pp.
6696–6701.

[28] H. Liu, L. Cheng, M. Tan, and Z.-G. Hou, “Exponential finite-time consensus of
fractional-order multiagent systems,” IEEE Trans. Syst. Man Cybern. Syst., 2018.

[29] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234, pp.
11–26, 2017.

[30] X. Liu, S. S. Ge, C.-H. Goh, and Y. Li, “Event-triggered coordination for formation
tracking control in constrained space with limited communication,” IEEE Trans.
Cybern., vol. 49, no. 3, pp. 1000–1011.

[31] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic networks for
optimal deployment,” Automatica, vol. 48, no. 6, pp. 1077–1087.

[32] R. Postoyan, R. G. Sanfelice, and W. M. H. Heemels, “Inter-event times analysis
for planar linear event-triggered controlled systems,” in Proc. IEEE Conf. Decis.
Control, pp. 1662–1667.

[33] A. Rajan and P. Tallapragada, “Analysis of inter-event times for planar linear
systems under a general class of event triggering rules,” in Proc. IEEE Conf. Decis.
Control, pp. 5206–5211.

[34] M. Ghodrat and H. Marquez, “Event-triggered design with guaranteed minimum
interevent times and Lp performance,” IEEE Trans. Autom. Control, vol. 65, no. 4,
pp. 1668–1675.

[35] M. Li, Y. Long, T. Li, H. Liang, and C. P. Chen, “Dynamic event-triggered consensus
control for input constrained multi-agent systems with a designable minimum
inter-event time,” IEEE/CAA J. Autom. Sin., vol. 10, pp. 1–12.

[36] M. Li, Y. Long, T. Li, and C. P. Chen, “Consensus of linear multi-agent systems by
distributed event-triggered strategy with designable minimum inter-event time,” Inf.
Sci., vol. 609, pp. 644–659.

[37] H. Xie, B. Wu, and F. Bernelli-Zazzera, “High minimum inter-execution time sigmoid
event-triggered control for spacecraft attitude tracking with actuator saturation,”
IEEE Trans. Autom. Sci. Eng., vol. 20, no. 2, pp. 1349–1363.

[38] F. Zegers, D. Guralnik, S. Edwards, C.-L. Lee, and W. E. Dixon, “Event-triggered
consensus for second-order systems: A hybrid systems perspective,” in Proc.
IEEE Conf. Decis. Control.

[39] J.-M. Li, C.-W. Chen, and T.-H. Cheng, “Motion prediction and robust tracking of
a dynamic and temporarily-occluded target by an unmanned aerial vehicle,” IEEE
Trans. Control Syst. Technol., vol. 29, no. 4, pp. 1623–1635, 2020.

91

[40] D. Dimarogonas and E. Frazzoli, “Distributed event-triggered control strategies for
multi-agent systems,” Proc. Annu. Allerton Conf. Commun. Control Comput., pp.
906–910.

[41] D. V. Dimarogonas and K. H. Johansson, “Event-triggered control for multi-agent
systems,” in Proc. IEEE Conf. Decis. Control, Dec. 2009, pp. 7131–7136.

[42] Y. Fan, L. Liu, G. Feng, and Y. Wang, “Self-triggered consensus for multi-agent
systems with Zeno-free triggers,” IEEE Trans. Autom. Control, vol. 60, no. 10, pp.
2779–2784, 2015.

[43] W. Hu, L. Liu, and G. Feng, “Consensus of linear multi-agent systems by distributed
event-triggered strategy,” IEEE Trans. Cybern., vol. 46, pp. 148–157.

[44] A. A. Soderlund and S. Phillips, “Hybrid systems approach to autonomous
rendezvous and docking of an underactuated satellite,” J. Guid. Control Dyn.,
vol. 46, no. 10, pp. 1901–1918, 2023.

[45] J. A. V. Trejo, D. Rotondo, M. A. Medina, and D. Theilliol, “Robust observer-
based leader-following consensus for a class of nonlinear multi-agent systems:
application to UAV formation control,” in Intl. Conf. Unmann. Aircraft Syst.

[46] H. Wang, “Flocking of networked uncertain Euler-Lagrange systems on directed
graphs,” Automatica, vol. 49, no. 9, pp. 2774–2779, 2013.

[47] M. Maghenem, E. Panteley, and A. Loria, “Singular-perturbations-based analysis
of dynamic consensus in directed networks of heterogeneous nonlinear systems,”
IEEE Trans. Autom. Control.

[48] K. Astrom and B. Bernhardsson, “Comparison of periodic and event based
sampling for first-order stochastic systems,” in Proc. IFAC World Congress, Beijing,
China, 1999, pp. 301–306.

[49] X. Wang and M. Lemmon, “Event-triggering in distributed networked systems with
data dropouts and delays,” Int. Workshop Hybrid Syst. Comput. Control.

[50] ——, “Event-triggering in distributed networked control systems,” IEEE Trans.
Autom. Control, vol. 56, pp. 586–601.

[51] J. Lunze and D. Lehmann, “A state-feedback approach to event-based control,”
Automatica, vol. 46, pp. 211–215.

[52] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1520–1533, 2004.

[53] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49, pp.
245–252, Jan. 2013.

92

[54] W. Zhu, Z.-P. Jiang, and G. Feng, “Event-based consensus of multi-agent systems
with general linear models,” Automatica, vol. 50, pp. 552–558.

[55] G. Guo, L. Ding, and Q.-L. Han, “A distributed event-triggered transmission
strategy for sampled-data consensus of multi-agent systems,” Automatica, vol. 50,
no. 5, pp. 1489–1496.

[56] X. Meng and T. Chen, “Event based agreement protocols for multi-agent networks,”
Automatica, vol. 49, pp. 2125–2132, Jul. 2013.

[57] D. Dimarogonas and K. Johansson, “Bounded control of network connectivity in
multi-agent systems,” Control Theory Appl., vol. 4, no. 8, pp. 1330–1338, Aug.
2010.

[58] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered control for
nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 9, pp. 2030–2042.

[59] Y. Fan and G. Hu, “Connectivity-preserving rendezvous of multi-agent systems
with event-triggered controllers,” in Proc. IEEE Conf. Decis. Control, 2015, pp.
234–239.

[60] X. Yi, K. Liu, D. V. Dimarogonas, and K. H. Johansson, “Dynamic event-triggered
and self-triggered control for multi-agent systems,” IEEE Trans. Autom. Control,
2018.

[61] W. Tabib, K. Goel, J. Yao, C. Boirum, and N. Michael, “Autonomous cave surveying
with an aerial robot,” IEEE Trans. Robot., vol. 38, no. 2, pp. 1016–1032.

[62] K. D. Listmann, M. V. Masalawala, and J. Adamy, “Consensus for formation control
of nonholonomic mobile robots,” in IEEE Int. Conf. Robot. Automat. IEEE, pp.
3886–3891.

[63] D. Lapandić, L. Persson, D. V. Dimarogonas, and B. Wahlberg, “Aperiodic
communication for mpc in autonomous cooperative landing,” IFAC-PapersOnLine,
vol. 54, no. 6, pp. 113–118.

[64] J. Qin, Q. Ma, Y. Shi, and L. Wang, “Recent advances in consensus of multi-agent
systems: A brief survey,” IEEE Trans. Indus. Electron., vol. 64, pp. 4972–4983.

[65] F. Zegers, S. Phillips, and W. E. Dixon, “Consensus over clustered networks
with asynchronous inter-cluster communication,” in Proc. Am. Control Conf., pp.
4249–4254.

[66] J. P. Hespanha, Z. Dodds, G. D. Hager, and A. S. Morse, “What tasks can be
performed with an uncalibrated stereo vision system?” Int. J. Comput. Vision,
vol. 35, no. 1, pp. 65–85, 1999.

93

[67] J. P. Hespanha, M. Prandini, and S. Sastry, “Probabilistic pursuit-evasion games:
A one-step Nash approach,” in Proc. IEEE Conf. Decis. Control, vol. 3, 2000, pp.
2272–2277.

[68] R. Vidal, O. Shakernia, H. Kim, D. Shim, and S. Sastry, “Probabilistic pursuit-
evasion games: theory, implementation, and experimental evaluation,” IEEE Trans.
Robot. and Autom., vol. 18, no. 5, pp. 662–669, Oct. 2002.

[69] J. Chen, W. Zha, Z. Peng, and D. Gu, “Multi-player pursuit–evasion games with
one superior evader,” Automatica, vol. 71, pp. 24–32, 2016.

[70] D. W. Oyler, P. T. Kabamba, and A. R. Girard, “Pursuit–evasion games in the
presence of obstacles,” Automatica, vol. 65, pp. 1–11.

[71] M. V. Ramana and M. Kothari, “Pursuit-evasion games of high speed evader,” J.
Intell. Rob. Syst., vol. 85, no. 2, pp. 293–306, 2017.

[72] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile
robotics,” Autonomous Robots, vol. 31, no. 4, p. 299, 2011.

[73] W. Zha, J. Chen, Z. Peng, and D. Gu, “Construction of barrier in a fishing game
with point capture,” IEEE Trans. Cybern., vol. 47, no. 6, pp. 1409–1422.

[74] R. Licitra, Z. I. Bell, E. Doucette, and W. E. Dixon, “Single agent indirect herding of
multiple targets: A switched adaptive control approach,” IEEE Control Syst. Lett.,
vol. 2, no. 1, pp. 127–132, January 2018.

[75] P. Deptula, Z. I. Bell, E. Doucette, J. W. Curtis, and W. E. Dixon, “Data-based
reinforcement learning approximate optimal control for an uncertain nonlinear
system with partial loss of control effectiveness,” in Proc. Am. Control Conf., 2018,
pp. 2521–2526.

[76] P. Deptula, Z. Bell, F. Zegers, R. Licitra, and W. E. Dixon, “Approximate optimal
influence over an agent through an uncertain interaction dynamic,” Automatica, vol.
134, pp. 1–13, Dec. 2021.

[77] R. Licitra, Z. Hutcheson, E. Doucette, and W. E. Dixon, “Single agent herding
of n-agents: A switched systems approach,” in IFAC World Congr., 2017, pp.
14 374–14 379.

[78] R. Licitra, Z. Bell, and W. Dixon, “Single agent indirect herding of multiple targets
with unknown dynamics,” IEEE Trans. Robot., vol. 35, no. 4, pp. 847–860, 2019.

[79] A. Pierson and M. Schwager, “Bio-inspired non-cooperative multi-robot herding,” in
Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 1843–1849.

[80] A. Pierson, Z. Wang, and M. Schwager, “Intercepting rogue robots: An algorithm
for capturing multiple evaders with multiple pursuers,” IEEE Robot. Autom. Lett.,
vol. 2, no. 2, pp. 530–537, 2017.

94

[81] A. Pierson and M. Schwager, “Controlling noncooperative herds with robotic
herders,” IEEE Trans. Robot., vol. 34, no. 2, pp. 517–525, 2018.

[82] B. Bennett and M. Trafankowski, “A comparative investigation of herding
algorithms,” in Proc. Symp. Underst. Model. Collect. Phenom., 2012, pp. 33–38.

[83] N. K. Long, K. Sammut, D. Sgarioto, M. Garratt, and H. A. Abbass, “A
comprehensive review of shepherding as a bio-inspired swarm-robotics guidance
approach,” in IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 4, 2020, pp.
523–537.

[84] J. Zhi and J. Lien, “Learning to herd agents amongst obstacles: Training robust
shepherding behaviors using deep reinforcement learning,” IEEE Robot. Autom.
Lett., vol. 6, pp. 4163–4168, 2020.

[85] ——, “Learning to herd amongst obstacles from an optimized surrogate,” Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2954–2961, 2022.

[86] D. Strömbom, R. P. Mann, A. M. Wilson, S. Hailes, A. J. Morton, D. J. T.
Sumpter, and A. J. King, “Solving the shepherding problem: heuristics for herding
autonomous, interacting agents,” J. of the R. Society Interface, vol. 11, no. 100,
2014.

[87] R. Vaughan, N. Sumpter, J. Henderson, A. Frost, and S. Cameron, “Experiments
in automatic flock control,” Robot. Autom. Syst., vol. 31, no. 1, pp. 109–117, 2000.

[88] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in
Proc. 14th Annu. Conf. Comput. Graph. Interact. Tech., pp. 25–34.

[89] O. B. Bayazit, J.-M. Lien, and N. M. Amato, “Roadmap-based flocking for complex
environments,” in 10th Pac. Conf. Comput. Graph. Appl. IEEE, pp. 104–113.

[90] V. Chipade and D. Panagou, “Herding an adversarial attacker to a safe area
for defending safety-critical infrastructure,” in Proc. Am. Control Conf., 2019, pp.
1035–1041.

[91] V. S. Chipade and D. Panagou, “Herding an adversarial swarm in an obstacle
environment,” Proc. IEEE Conf. Decis. Control, pp. 3685–3690.

[92] A. Pierson, A. Ataei-Esfahani, I. Paschalidis, and M. Schwager, “Cooperative
multi-quadrotor pursuit of an evader in an environment with no-fly zones,” Proc.
IEEE Int. Conf. Robot. Autom., pp. 320–326, 2016.

[93] E. Sebastián and E. Montijano, “Multi-robot implicit control of herds,” in IEEE Int.
Conf. Robot. Autom., 2021, pp. 1601–1607.

[94] E. Sebastián, E. Montijano, and C. Sagues, “Adaptive multirobot implicit control of
heterogeneous herds,” IEEE Trans. Robot., vol. 38, no. 6, pp. 3622–3635, 2022.

95

[95] K. Fujioka and S. Hayashi, “Effective shepherding behaviours using multi-agent
systems,” in Proc. IEEE Region 10 Conf. IEEE, pp. 3179–3182.

[96] A. A. Paranjape, S.-J. Chung, K. Kim, and D. H. Shim, “Robotic herding of a flock
of birds using an unmanned aerial vehicle,” IEEE Trans. Robot., vol. 34, no. 4, pp.
901–915, 2018.

[97] J.-M. Lien, O. B. Bayazit, R. T. Sowell, S. Rodriguez, and N. M. Amato,
“Shepherding behaviors,” in Proc. IEEE Int. Conf. on Robot. and Autom., vol. 4,
Apr. 2004, pp. 4159–4164.

[98] Y. Tsunoda, Y. Sueoka, Y. Sato, and K. Osuka, “Analysis of local-camera-based
shepherding navigation,” Advanced Robotics, vol. 32, pp. 1217 – 1228.

[99] A. Parikh, R. Kamalapurkar, and W. E. Dixon, “Integral concurrent learning:
Adaptive control with parameter convergence using finite excitation,” Int. J. Adapt.
Control Signal Process., vol. 33, no. 12, pp. 1775–1787.

[100] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Model-based reinforcement
learning for approximate optimal regulation,” Automatica, vol. 64, pp. 94–104.

[101] W. A. Makumi, Z. I. Bell, and W. E. Dixon, “Approximate optimal indirect regulation
of an unknown agent with a lyapunov-based deep neural network,” IEEE Control
Syst. Lett.

[102] V. S. Chipade and D. Panagou, “Multiagent planning and control for swarm herding
in 2-d obstacle environments under bounded inputs,” IEEE Trans. Robot., vol. 37,
no. 6, pp. 1956–1972, 2021.

[103] R. A. Licitra, A. J. Neale, E. A. Doucette, and J. W. Curtis, “Adversarial aircraft
diversion and interception using missile herding techniques,” in Micro-and
Nanotechnology Sensors, Systems, and Applications XI, vol. 10982. SPIE, 2019,
pp. 335–343.

[104] J.-M. Lien, S. Rodriguez, J.-P. Malric, and N. M. Amato, “Shepherding behaviors
with multiple shepherds,” in Proc. IEEE Int. Conf. on Robot. and Autom., 2005, pp.
3402–3407.

[105] H. Song, A. Varava, O. Kravchenko, D. Kragic, M. Wang, F. T. Pokorny, and
K. Hang, “Herding by caging: a formation-based motion planning framework for
guiding mobile agents,” Autonomous Robots, vol. 45, pp. 613 – 631.

[106] A. Varava, K. Hang, D. Kragic, and F. T. Pokorny, “Herding by caging: a topological
approach towards guiding moving agents via mobile robots.” Robotics: Science
and Systems, pp. 1–9, 2017.

[107] T. Miki and T. Nakamura, “An effective simple shepherding algorithm suitable
for implementation to a multi-mobile robot system,” in Proc. of the First Int. Conf.

96

on Innov. Computing, Inf., and Control, vol. 3, Washington, DC, USA, 2006, pp.
161–165.

[108] F. Auletta, D. Fiore, M. J. Richardson, and M. di Bernardo, “Herding stochastic
autonomous agents via local control rules and online target selection strategies,”
Autonomous Robots, vol. 46, pp. 469 – 481.

[109] M. Bacon and N. Olgac, “Swarm herding using a region holding sliding mode
controller,” J. Vib. Control, vol. 18, no. 7, pp. 1056–1066, 2012.

[110] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems. Princeton
University Press, 2012.

[111] D. Liberzon, Switching in Systems and Control. Birkhauser, 2003.

[112] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,” IEEE
Control Syst. Mag., vol. 29, no. 2, pp. 28–93, 2009.

[113] Z. Cai, M. S. de Queiroz, and D. M. Dawson, “A sufficiently smooth projection
operator,” IEEE Trans. Autom. Control, vol. 51, no. 1, pp. 135–139, Jan. 2006.

[114] T.-H. Cheng, Z. Kan, J. R. Klotz, J. M. Shea, and W. E. Dixon, “Event-triggered
control of multiagent systems for fixed and time-varying network topologies,” IEEE
Trans. Autom. Control, vol. 62, no. 10, pp. 5365–5371.

[115] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

97

BIOGRAPHICAL SKETCH

Patrick McGill Amy received his bachelor’s degree in ocean engineering from the

Florida Institute of Technology in 2017. The following year, he continued his academic

career at the Johns Hopkins University. Patrick finished his master’s degree in robotics

at the Johns Hopkins University while working at the Naval Research Laboratory in

2019. Patrick moved to Florida and started working at the Naval Surface Warfare Center

Panama City Division in 2019. In 2021, Patrick joined the Nonlinear Controls and

Robotics Laboratory to conduct research and pursue a Ph.D. under the advisement of

Dr. Warren Dixon. Patrick received his Ph.D. from the University of Florida in August

2025. Patrick’s research focuses on developing stability methods and stability criteria to

control nonlinear sensor-based multi-agent systems.

98

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	1 INTRODUCTION
	1.1 Background
	1.2 Multi-Agent Systems
	1.3 Event-Triggered and Self-Triggered Consensus Control for Multi-Agent Systems
	1.3.1 Event-Triggered Consensus Control
	1.3.2 Self-Triggered Consensus Control
	1.3.3 Extensions of Event-Triggered Consensus

	1.4 Single Agent and Multi-Agent Indirect Control
	1.4.1 Single Agent Indirect Control
	1.4.2 Multi Agent Indirect Control

	1.5 Outline of Dissertation
	1.6 Notation
	1.6.1 Graphs
	1.6.2 Hybrid Dynamical Systems

	2 MULTI-AGENT APPROXIMATE CONSENSUS WITH A USER-SPECIFIED MINIMUM INTER-EVENT TIME
	2.1 Problem Formulation
	2.2 Hybrid System Modeling
	2.3 Supporting Lemmas
	2.4 Stability Analysis
	2.5 Discussion
	2.6 Simulation Example
	2.7 Concluding Remarks

	3 EVENT-TRIGGERED INDIRECT CONTROL OF A COOPERATIVE AGENT
	3.1 Problem Formulation
	3.2 Control Objective
	3.2.1 Trigger Design

	3.3 Stability Analysis
	3.3.1 State Convergence
	3.3.2 State Divergence
	3.3.3 Combined Stability Analysis

	3.4 Results
	3.4.1 Simulated Results
	3.4.2 Experiment

	3.5 Concluding Remarks

	4 INDIRECT CONTROL OF A COOPERATIVE AGENT THROUGH FIELD OF VIEW INTERACTIONS
	4.1 Problem Formulation
	4.2 Control Objective
	4.2.1 Switching Signal and Control Design

	4.3 Stability Analysis
	4.3.1 Target Convergence
	4.3.2 Target Divergence
	4.3.3 Combined Stability Analysis

	4.4 Simulation
	4.5 Concluding Remarks

	5 CONCLUSIONS
	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

