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Recent advances in image-based information estimation has enabled the use of vision

sensor in many robotics and surveillance applications. The work in this dissertation, is

focused on developing online techniques for image-based structure and motion (SaM)

estimation. Since traditional batch methods are not useful for the online vision-based

control tasks, observer-based approaches to the problem have been developed. Starting

from the Kalman-filter for SaM problem by L. Matthies in 1990, many contributions

to the observer approach for the SaM problem exist in literature. Various models are

introduced in literature for SaM estimation but two models are prevalent, viz; a kinematic

relative motion affine model with implicit outputs and a transformed nonlinear state

model with the linear output equation. The existing SaM observers are designed for

the case of a stationary object, requires full camera velocity information and cannot

be used for certain camera motions. In this dissertation, new solutions to the SaM are

presented using the transformed nonlinear state model which can be used for larger set of

camera motions, does not require full camera velocity information, and are reduced-order.

Solutions for the stationary as well as moving objects viewed by a moving camera are

presented.

Chapter 2 introduces a camera projection model and a camera-object relative motion

model. The model is generic and can be used to describe relative motion of a moving

camera looking at a moving object or a stationary object. Chapters 3 and 4 develops
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solution to structure estimation of a stationary object while Chapters 5, 6, and 7 extend

the solutions to the structure estimation of a moving object.

In Chapter 3, a reduced order nonlinear observer is developed to estimate the distance

from a moving camera to a feature point on a static object (i.e., structure estimation or

range identification), where full velocity and linear acceleration feedback of the calibrated

camera is provided. The contribution of this work is to develop a global exponential range

observer which can be used for a larger set of camera motions than existing observers.

The observer is shown to be robust against external disturbances in the sense that the

observer is Lp∀p ∈ [1,∞] stable even if the target object is moving or the camera motion

is perturbed. The proposed observer estimates the structure provided an observability

condition commonly used in literature is satisfied and is shown to be exponentially stable

even if camera motion satisfies a less restrictive observability condition. A sufficient

condition on the observer gain is derived to prove stability using a Lyapunov-based

analysis. Experimental results are provided to show robust performance of the observer

using an autonomous underwater vehicle (AUV).

A natural question arises, is the structure estimation feasible when all six camera ve-

locities are not known? Motivated by this question, Chapter 4 focuses on the development

of a reduced order nonlinear observer for the “structure and motion (SaM)” estimation of

a stationary object observed by a moving calibrated camera. In comparison to existing

work which requires some knowledge of the Euclidean geometry of an observed object or

full knowledge of the camera motion, the developed reduced order observer only requires

one camera linear velocity and corresponding acceleration to asymptotically identify

the Euclidean coordinates of the feature points attached to an object (with proper scale

reconstruction) and the remaining camera velocities. The unknown linear velocities are

assumed to be generated using a model with unknown parameters. The unknown angular

13



velocities are estimated using a robust estimator and a standard Homography decomposi-

tion algorithm. A Lyapunov analysis is provided to prove that the observer asymptotically

estimates the unknown states under a persistency of excitation (PE) condition.

The results in Chapter 3 and 4 assume that the object is stationary. If the object is

moving, the system dynamics presents a new challenge for the observer design because of

the presence of unmeasurable signals. To solve this challenge, in Chapter 5 an observer

design is presented for a specific class of nonlinear systems where the output dynamics

is affine in the unmeasurable state and the dynamics of the unmeasurable state are

nonlinear. The observer design is based on a strategy of identifying the unmeasurable

part of the state from the output dynamics and using the identifier to stabilize the

corresponding error dynamics. The estimation error asymptotically converges to zero in

the presence of L2[0,∞) disturbances. To illustrate the implications of such an observer,

the method is applied to simultaneously estimate the structure (i.e., the range of an object

with respect to a camera) and motion (i.e., velocities of an object) of a moving object seen

by a moving camera.

Another strategy to the observer design in the presence of an unmeasurable distur-

bance is an unknown input observer (UIO) design. Chapter 6 provides a solution to an

UIO design for a general class of nonlinear systems. Stability and convergence of the esti-

mation error is proven using a Lyapunov-based stability analysis. Necessary and sufficient

conditions for the observer error convergence are provided. Similarities to the existence

conditions of UIO theory for linear systems and the existence conditions of an observer for

Lipschitz nonlinear systems with a known input are established.

In Chapter 7, the UIO developed in Chapter 6 is applied to the structure estimation

of an object moving with time-varying velocities viewed by a moving camera. The

object’s velocity is considered as an unknown input to the perspective dynamical system

introduced in Chapter 2. A few scenarios are discussed where the moving object velocity

and the camera velocity satisfy the assumptions required for the feasibility of the UIO

14



developed in Chapter 6. The developed method provides the first causal, observer-

based structure estimation algorithm for a moving camera viewing a moving object with

unknown time-varying object velocities.
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Chapter 1
INTRODUCTION

1.1 Motivation

Camera images provide a dense data set in an encrypted form. Estimation of the data

encoded in the images is a pervasive problem across multiple disciplines. From the large

amount of information encoded in the images, structure and motion (SaM) of the objects

in the scene is of particular interest. SaM estimation is important for robotic applications

such as vision-based urban navigation of an autonomous agent, manipulation of unknown

and moving targets, or human-machine interaction applications. For military applications

such as, automated missile navigation, guidance, and control, GPS-denied autonomous

flight, autonomous visual surveillance and video-based geo-location; for medical robotics

applications, image-based estimation of SaM is critical. Given the crosscutting need for

SaM estimation, this dissertation is motivated by the following questions.

1. How can the structure of stationary objects be accurately estimated in real-time for

a static scene given all the camera motion information?

2. How can the structure of a stationary object be estimated given minimal information

about the camera motion?

3. How can the structure and motion in dynamic scenes be estimated when the objects

are moving with unknown motion?

1.2 Problem Statement and Overview

Observers for SaM estimation of a target object in the field-of-view of a moving

camera are developed. For the general SaM problem, the camera and the target are

allowed to move freely. The objective of the classic “structure from motion (SfM)” problem

is to estimate the Euclidean coordinates of feature points attached to an object (i.e., 3D

structure) provided the relative motion between the camera and the object is known.

The converse of the SfM problem is the “motion from structure (MfS)” problem where

the relative motion between the camera and the object is estimated based on known
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geometry of the feature points attached to an object. An extended problem is “structure

and motion (SaM)” where the objective is to estimate the Euclidean geometry of the

feature points as well as the relative motion between the camera and feature points.

The SaM problem is fundamental and some examples indicate that SaM estimation is

only possible up to a scale when a pinhole camera model is used [4]. The work presented

in this dissertation examines a moving camera capturing images of either a static or

moving object. For these scenarios, a reduced order observer is developed using a specific

state-space model to estimate structure of a stationary object either given all the camera

velocities (see Chapter 3) or given partial knowledge of the camera motion (see Chapter

4). Nonlinear observer is developed in Chapter 5 for a general class of systems, and this

observer is applied to estimate the structure and motion of a moving object given all

camera velocities. An unknown input observer for a general class of systems is developed

in Chapter 6 and it’s application to the structure estimation of a moving object given all

camera velocities is presented in Chapter 7. The observer designs in Chapters 5 and 6 are

based on a nonlinear model of the moving object and moving camera relative motion. A

pinhole camera projection model is assumed and the measurement of feature points in

each camera frame can be obtained using existing feature point identification, and tracking

algorithms (see [5–7]).

1.3 Literature Review

This section provides a review of relevant related literature for each chapter.

Chapter 3: Structure estimation of a stationary object given all six camera velocities.

Solutions to the SfM problem can be broadly classified as offline methods (batch

methods) and online methods (iterative methods). References and critiques of batch meth-

ods can be found in [8–13] and the references therein. Online methods typically formulate

the SfM problem as a continuous differential equation, where the image dynamics are de-

rived from a continuous image sequence (see [3, 14–23] and the references therein). Online

methods often rely on the use of an Extended Kalman filter (EKF) [14, 24–26]. Kalman
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filter based approaches also lack a convergence guarantee and could diverge in practical

scenarios. Also, a priori knowledge about the noise is required for such solutions. In

comparison to Kalman filter-based approaches, some researchers have developed nonlinear

observers for SfM with analytical proofs of stability. For example, a high-gain observer

called the identifier-based observer (IBO) is presented for range estimation in [23] under

the assumption of known camera motion. In [3], a discontinuous sliding-mode observer is

developed which guarantees exponential convergence of the states to an arbitrarily small

neighborhood, i.e., uniformly ultimately bounded (UUB) result. A continuous observer

which guarantees asymptotic range estimation is presented in [19] under the assumption

of known camera motion. A semi-globally asymptotically stable reduced-order observer is

presented in [27] to estimate the range, given known camera motion. In [21], an asymp-

totically converging nonlinear observer is developed based on Lyapunov’s indirect method.

An application of IBO is presented in [28] to estimate the range of features in the static

scene.

The dynamics of the unknown state are nonlinear and the unknown state appears

linearly in the dynamics of the known states. In the previous work, the nonlinearities

are dominated using sliding mode techniques as shown in [3, 19] which achieves UUB

or asymptotic stability. Recently, in [2] a nonlinear observer is developed and using

converse Lyapunov theorem exponential convergence of the estimation error is shown,

but the result is local in nature, meaning the initial condition has to be within some

bound of the ‘true’ depth. The nonlinearities are treated as a perturbation and Lyapunov-

based stability analysis is presented to show the local stability of the error system. It is

pointed out in [2] that the observer is guaranteed to converge with initial conditions in an

arbitrarily large compact set if the linear velocity in Z-direction, and angular velocities

in X and Y directions are small. The authors in [2] propose that these velocities can

be scaled down suitably in a visual servoing controller scheme. Thus, the observer can

be initialized within an arbitrarily large compact set only when the camera velocities
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are small, which restricts the domain of applications of this observer. In another recent

work [1], an immersion and invariance (I&I) based observer is designed which computes

the output injection functions by solving a partial differential equation and achieves global

exponential stability. The observer requires camera acceleration measurements along

with camera velocity and image feature measurements. In [1], the authors state that the

observer has to satisfy the Extended Output Jacobian (EOJ) observability rank condition,

which is stricter than the persistency of excitation condition. Thus, the observer in [1]

cannot address all the camera motions, which can be addressed by the observer in [2]. The

gain condition of the observer in [1] is a function of image features, camera velocities and

camera acceleration. Motivated by the desire to achieve globally exponentially convergence

observer for the range estimation with less stringent observability conditions a new

nonlinear observer is developed in Chapter 3.

Chapter 4: Structure estimation of a stationary object with one known camera linear

velocity.

Various batch and iterative methods have been developed to solve the SaM problem

up to a scale, such as [11, 29]. However, in comparison to SfM and MfS results, sparse

literature is available where the SaM problem is formulated in terms of continuous image

dynamics with associated analytical stability analysis. In [30], an algorithm is presented to

estimate the structure and motion parameters up to a scaling factor. In [31], a perspective

realization theory for the estimation of the shape and motion of a moving planar object

observed using a static camera up to a scale is discussed. Recently, a nonlinear observer

is developed in [21] to asymptotically identify the structure given the camera motion

(i.e., the SfM problem) or to asymptotically identify the structure and the unknown

time-varying angular velocities given all three linear velocities. In [14, 32] structure and

linear velocities are estimated given partial structure information such as length between

two points on an object, which may be difficult in practice for random objects. In another

recent result in [28], the IBO approach in [23] is used to estimate the structure and
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the constant angular velocity of the camera given all three linear velocities, which may

not be possible in practical scenarios such as a camera attached to a unmanned vehicle

where side-slip velocities may not be available. The problem of estimating structure,

time varying angular velocities, and time varying linear velocities of the camera without

knowledge of partial structure information remains an unsolved problem.

The technical challenge presented by the SaM problem is that the image dynamics are

scaled by an unknown factor, and the unknown structure is multiplied by unknown motion

parameters. The challenge is to estimate a state in the open loop dynamics that appears

nonlinearly inside a matrix that is multiplied by a vector of unknown linear and angular

velocity terms (see (2–12)). By assuming that the velocities are known, or some model

knowledge exists, previous online efforts have been able to avoid the problem of separately

estimating multiplicative uncertainties. The contribution of this work is a strategy to

segregate the multiplicative uncertainties, and then to develop a reduced order nonlinear

observer to address the SaM problem where the structure (i.e., the properly scaled relative

Euclidean coordinates of feature points), the time-varying angular velocities, and two

unknown time-varying linear velocities are estimated (i.e., one relative linear velocity is

assumed to be known along with a corresponding acceleration).

Chapter 5: Structure and motion estimation of a moving object using a moving

camera.

Solutions to the SfM problem when the object is stationary, can be used for self-

localization and map building of an environment using a moving camera. Since the object

is stationary, a moving camera can capture snapshots of the object from two different

locations and triangulation can be used to estimate the structure. If object is moving SfM

techniques cannot be used to recover the structure. In this dissertation, the structure and

motion estimation of a moving object using a moving camera is referred to as SaMfM.

The pioneering work in [33] provides a solution to the SaMfM problem where at least

five views are required if the motion of the object is constrained to a straight line and at
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least nine views are required if the object is moving with conic trajectories. In [34], the

structure and motion of the objects moving with linear or conic trajectories are recovered

from tangent projections, provided at least nine views are available. In [35], an object is

assumed to be moving with constant velocities while being observed by an approximate

orthographic projection camera model. In [36], a stereo camera is used to provide a

solution to the SaMfM with at least four views. In [37], a batch algorithm is presented for

object motions represented by more general curves. In [38], a factorization-based batch

algorithm is proposed where objects are assumed to be moving with constant speed in a

straight line, observed by a weak perspective camera. An algebraic geometry approach

is presented in [39] to estimate the motion of objects up to a scale given a minimum

number of point correspondences. In [40], authors propose a batch algorithm to estimate

the structure and motion of objects moving on a ground plane observed by a moving

airborne camera. The method relies on a static scene for estimating the projective depth,

approximated by the depth of feature points on a static background assuming that one

of the feature points of the moving object lies on the static background. In [41], a batch

algorithm is developed by approximating the trajectories of a moving object using a linear

combination of discrete cosine transform (DCT) basis vectors.

Traditionally, SaMfM problem is tackled using batch algorithms which uses algebraic

relationships between 3D coordinates of points in the camera coordinate frame and

corresponding 2D projections on the image frame collected over n images to estimate

the structure. Batch algorithms are not useful in real-time control algorithms (such as

formation control of unmanned ground vehicles, autonomous missile guidance, navigation,

and control) where state estimation is required at every camera image capture. Instead of

algebraic relationships and geometric constraints used by batch algorithms, a rigid body

kinematic motion model can be used to design nonlinear observers/estimators using the

data from images up to the current time step. Nonlinear observer algorithm generate
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the estimates at every time instant and hence can be implemented online along with the

control algorithm.

In [42], an H∞ approach to the SaMfM problem is presented where the moving object

velocities are considered as external disturbances, and only the structure estimation

problem is solved. The estimator in [42] converges to a ball around the origin (i.e.,

an UUB result). In this dissertation, two approaches to the problem of structure and

motion estimation for a moving object are presented. In the first approach, an extended

state space is created by combining the moving object velocity with the unknown state.

The extended state space dynamics are expressed as a nonlinear system where output

(measurable state) dynamics is affine in the unmeasurable state and the dynamics of

the unmeasurable state is nonlinear. A nonlinear observer is designed for this class of

nonlinear systems. In the second approach, the linear velocity of the moving object is

viewed as an unknown exogenous input and an unknown input observer approach is

developed. In the following, various observer design techniques for nonlinear systems

present in literature are discussed and the proposed approach is contrasted against the

existing literature.

One of the earliest observer design techniques for nonlinear systems is bsed on

a strategy of linearizing a plant up to a nonlinear function of outputs by a change of

coordinates. The method requires the output equation to be linear in the state. A

Luenberger observer can be developed for the transformed system, but the conditions

for simultaneous transformation of the state dynamics and output equation are very

stringent and are based on a solution to a partial differential equation (PDE) [43, 44].

In [45], a method to approximately solve a state transformation PDE is developed. The

observer design in [45] does not require the output equation to be linear in the state,

hence, it imposes less stringent conditions on system transformation. The results in [45]

are extended in [46] by increasing the domain of feasible coordinate transformations.

Extension of the result in [45] can also be found in [47]. Another approach to nonlinear
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observer design utilizes a strategy where gains are selected large enough to dominate the

unmeasurable state dependent nonlinearity [48–50].

Lyapunov-based observer design solutions for Lipschitz nonlinear systems can

be found in [51–54]. In [52], a necessary and sufficient observer existence condition is

developed for Lipschitz nonlinear systems. In [53], the conditions in [52] are related to a

H∞ problem which satisfy all the regularity assumptions. However, for the design methods

in [52] and [53] the Lipschitz constant of the non-linearity has to be small. This limitation

is overcome in [54] by developing a robust observer based on the loop-transfer recovery

(LTR) observer design technique [55]. All of these observer designs require the system

dynamics to contain a linear time-invariant term, i.e., Ax along with a nonlinear term.

In [3, 23, 27], observers for a class of nonlinear systems are developed, where the

dynamics of the measurable part of the state is affine in the unmeasurable part of the

state, and the dynamics of the unmeasurable part of the state is nonlinear. Systems of

this class do not contain a linear time-invariant part in the system dynamics. In [23],

the observer design is based on the use of high gain and parameter identification theory

from [56]. However, the observer in [23] can only be designed for systems where the

dimension of the unmeasurable part of the state is less than the measurable part of the

state. An observer is developed in [3] which is not restricted by the dimensions of the

measurable and the unmeasurable parts of the state. The design in [3] is based on a

sliding mode strategy and yields a state estimation which is uniformly ultimately bounded

(UUB) around the origin of the system. Recently, a reduced-order observer design for a

general class of nonlinear systems (where the dynamics of measurable part of the state

is not required to be affine in the unmeasurable part) is presented in [57]. The observer

in [57] can also be used to design an observer for the class of systems in [3, 23, 27] but the

observer design relies on finding an appropriate invariant manifold which can be rendered

attractive. Finding such invariant manifold involves solving a PDE which may be a

tedious task. Motivated by the desire to design an asymptotically converging observer for

23



the class of nonlinear systems presented in [3] and overcome the limitations in [3, 23, 27], a

new observer is presented in Chapter 5.

Chapter 6: Unknown input observer and it’s application to structure and motion

estimation of a moving object

In the relative rigid body motion dynamics for structure and motion estimation, the

moving object’s linear velocity can be viewed as an exogenous time-varying disturbance.

An unknown input observer (UIO) approach is used to estimate the state of the dynamical

system where the moving object’s velocity is considered as an unknown input. This

approach does not require creating an extended state space as required by the observer

design approach in the Chapter 5. To motivate the UIO design in this dissertation, the

existing UIO design approaches are discussed in the following section.

One of the earliest UIO results introduced the concept of system observability with

respect to unknown inputs [58]. Presently, several UIO algorithms exist in literature for

estimating the state when a time-varying disturbance, considered as an exogenous input, is

present in the system (cf., [59–71]). UIO solutions for linear time-invariant (LTI) systems

are broadly studied (cf., [59–68,72–75]).

Linear UIO algorithms are extended to nonlinear systems in [69–71, 76–81]. In [69],

an UIO is designed for SISO nonlinear systems. In [70], a nonlinear UIO is presented

based on H∞ optimization. The observer is called a dynamic UIO which provides an extra

degree of design freedom but increases the order of the system. In [78], a nonlinear UIO

is presented for a class of nonlinear systems based on an LMI approach but no necessary

and sufficient observer existence conditions are developed. In [79], a high gain observer for

a class of nonlinear systems is presented for state and unknown input estimation but is

achieved only up to a small bound which can be reduced by increasing the observer gains,

(i.e., an uniformly ultimately bounded (UUB) result). A higher order sliding mode UIO

is presented for nonlinear systems in [80] which requires the original nonlinear system to

satisfy geometric conditions for transforming the system into the Brunovsky canonical
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form. Based on a detectability notion, a sufficient condition for the existence of an UIO is

derived in [81] for state-affine systems up to an output injection. Based on the geometric

approach of [59], necessary and sufficient conditions are derived in [71] for the existence

of an UIO for state affine systems up to a nonlinear unknown input dynamics; hence,

the UIO can be used for a larger class of unknown inputs. UIOs are used extensively in

fault detection and isolation for various classes of systems such as linear systems [82],

control affine systems [83], bilinear systems [84], and nonlinear systems [76, 85]. In [76], an

unknown input observer for a class of nonlinear systems is presented for fault diagnosis.

The observer design relies on a coordinate transformation which decouples the nonlinear

system into a system independent of unknown inputs and a system with the states

that can be expressed as linear combinations of the outputs and the states of the first

subsystem. The observer gain is obtained by solving a parametric Lyapunov equation

which can be challenging to compute [78]. To overcome the limitations of the current UIO

designs, a solution for a general class of nonlinear systems is desired and is presented in

Chapter 6.

1.4 Contributions

This dissertation focuses on developing nonlinear observers for vision-based range

and motion estimation. The observers are developed to overcome the technical challenges

such as global estimation in the presence of locally Lipschitz nonlinearity and nonlinear

multiplicative uncertainty. The contributions of the proposed results are as follows.

1. Chapter 3, Globally Exponentially Convergent Observer for Vision-based Range

Estimation: This chapter presents a new reduced order observer for vision based

range estimation. The main contributions of the observer are summarized as follows.

(a) Global exponential convergence is achieved under a gain conditions and the

observability condition required by the range observers present in the literature.
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(b) The observer is proven to be exponentially convergent even under a relaxed

observability condition which allows camera motion to be zero along all three

direction for sufficiently small duration of time.

(c) The observer is shown to be finite gain Lp stable with respect to an exogenous

disturbance input. Thus, the observer errors remain bounded even if the

stationary object assumption is violated where the object motion is considered

as an exogenous input.

In comparison with the observer in [1], the gain condition in this chapter is only a

function of upper bounds on camera velocities and image size.

2. Chapter 4, Structure and Motion with a Single Known Linear Velocity : In this

chapter an observer for range (structure) and motion estimation is presented. The

technical challenge presented by the SaM problem is that the image dynamics are

scaled by an unknown scale factor, and the unknown structure is multiplied by

unknown motion parameters. As described in Chapter 4, the challenge is to estimate

a state in the open loop dynamics that appears nonlinearly inside a matrix that

is multiplied by a vector of unknown linear and angular velocity terms (see Eq.

2–12). By assuming that the velocities are known, or some model knowledge exists,

previous online efforts have been able to avoid the problem of separately estimating

multiplicative uncertainties. The contribution of this work is a strategy to segregate

the multiplicative uncertainties, and then to develop a reduced order nonlinear

observer to address the SaM problem where the structure (i.e., the properly scaled

relative Euclidean coordinates of feature points), the time-varying angular velocities,

and two unknown time-varying linear velocities are estimated (i.e., one relative linear

velocity is assumed to be known along with a corresponding acceleration). The

result exploits an uncertain locally Lipschitz model of the unknown linear velocities

of the camera. The strategic use of a standard homography decomposition is used to

estimate the angular velocities, provided the intrinsic camera calibration parameters
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are known and feature points can be between images. A persistency of excitation

(PE) condition is formulated, which provides an observability condition that can be

physically interpreted as the known camera linear velocity should not be zero over

any small interval of time, and the camera should not be moving along the projected

ray of a point being during any small interval of time. A Lyapunov-based analysis

is provided that indicates the SaM observer errors are asymptotically regulated

provided the PE condition is satisfied. By developing a reduced order observer to

segregate and estimate the multiplicative uncertainties, new applications can be

addressed including: range and velocity estimation using a camera fixed to a moving

vehicle where only the forward velocity/acceleration of the vehicle is known, range

and velocity estimation using an unmanned air vehicle (UAV) using only a forward

velocity/acceleration sensors, etc.

3. Chapter 5, Observer Design for a Class of Nonlinear Systems with an Application

to Structure and Motion: In this chapter, the problem of structure and motion

estimation of a moving object is caste into a specific class of a nonlinear systems

and an observer design is presented. For the systems of this class, output dynamics

(measurable part of the state) is affine in the unmeasurable part of the state, and

dynamics of the unmeasurable part of the state is nonlinear. There is no restriction

on the dimensions of the measurable part and the unmeasurable part of the state.

The observer design does not require the transformation of the plant dynamics

into the observer canonical form or solving a PDE, hence, assumption of uniform

observability of the system dynamics is not required. Additionally, the system

dynamics does not require a linear time invariant term. The state estimation

error asymptotically converges to zero in the presence of L2[0,∞) time-varying

disturbances. The design is based on identifying the linear unmeasurable part of the

state from the dynamics of the measurable part of the state using a robust identifier

called the robust integral of the signum of the error (RISE) [86, 87]. The identifier is
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then used to stabilize the estimation error dynamics of the unmeasurable state. The

proposed observer provides a real-time solution to structure and motion and extends

the existing results to objects moving independently with unknown time-varying

velocity converging to a constant. The proposed method has no requirements of the

minimum number of point correspondences or the minimum number of views.

4. Chapter 6, Lyapunov-based Unknown Input Observer Design for a Class of Nonlinear

Systems: In this chapter, a nonlinear UIO is developed for a general class of multi-

input multi-output (MIMO) nonlinear systems. Based on the existence of a solution

to the Riccati equation, necessary and sufficient existence conditions are derived.

The conditions provide guidelines for choosing the observer gain matrix based on

the Lipschitz constant of the nonlinearity present in the dynamics. An algorithm

for choosing the gain matrix based on the Eigenvalue placement is suggested in [52].

The gain matrix is obtained by solving an LMI feasibility problem. Contributions

of Chapter 6 include the design of an UIO for a general class of nonlinear systems

and an extension of the observer existence conditions derived in [52] for systems with

known inputs to a general class of nonlinear systems with unknown inputs.

5. Chapter 7, Application of the Unknown Input Observer for the Structure and Mo-

tion: The contribution of this work is to provide a causal algorithm for estimating

the structure of a moving object using a moving camera with relaxed assumptions

on the object’s motion. The object is assumed to be moving on a ground plane

with arbitrary velocities observed by a downward looking camera with arbitrary

linear motion in 3D space. No assumptions are made on the minimum number of

points or minimum number of views required to estimate the structure. Feature

point data and camera velocity data from each image frame is required. Estimating

the structure of a moving object is re-cast into an unknown input observer design

problem.
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1.5 Dissertation Outline

Chapter 1 serves as an introduction. The motivation, problem statement and the

contributions of the dissertation are discussed in this chapter. Chapter 2 describes the

relative motion model of a camera-object system and states the common assumptions

of the model used in rest of the chapters. Chapter 3 illustrates a nonlinear observer for

range estimation when all six camera velocities are known. The observer presented in

this chapter achieves global exponential convergence result for a nonlinear system with a

locally Lipschitz nonlinearity. Simulation results compare the performance of the observer

with the recently published observers for the range estimation problem. The observer

performance is validated using experiments conducted on autonomous underwater vehicle

(AUV). Chapter 4 provides a solution to an extended structure and motion problem where

out of the six camera velocities (three angular and three linear) only one of the linear

velocities is known. A reduced order observer is developed which asymptotically estimates

the unknown depth and two unknown linear camera velocities given a persistency of

excitation (PE) condition is satisfied. Angular velocities are estimated using homography

matrix decomposition between consecutive camera frames. Simulation results are provided

to illustrate the performance of the observer. Chapter 5 develops a new observer for a

class of nonlinear systems which can be used to solve the structure and motion estimation

problem when an object is moving. Physical constraints on the object’s motion are

discussed. Performance of the observer is illustrated via comparison with the existing

observers in simulation. Chapter 6 provides a new solution to a general class of unknown

input observers (UIO). Necessary and sufficient existence conditions are developed for

the observer. A linear matrix inequality (LMI) is developed to compute the observer

gain matrix. Chapter 7 presents an application of the UIO to the SaMfM problem.

Specific scenarios are discussed when the SaMfM state dynamics can be transformed

into the structure of UIO developed in Chapter 6. Chapter 8 concludes the dissertation
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by summarizing the work in this dissertation and giving directions to a few future open

problems in the observer design and structure and motion estimation.
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Chapter 2
CAMERA MOTION MODEL

The purpose of this chapter is to provide background information pertaining to

coordinate frames attached to the camera and object, their relationship, geometric

projections of the object on a camera image and camera-object relative motion model.

2.1 Euclidean and Image Space Relationships

Figure 2-1. Coordinate frame relationships of a moving camera and an object.

A moving camera observing a scene induces a motion in the image plane. Point

correspondences in successive image to image can be computed using existing feature

tracking techniques [5–7]. Consider a moving camera that views four or more planar1 and

non-collinear feature points (denoted by j = {1, 2, ...., n} ∀n ≥ 4) lying fixed in a visible

plane πr, attached to an object in front of the camera as shown in Fig. 2-1. Let Fr be a

1 Four planar points are needed to compute the homography. The homography can also
be computed with 8 non-coplanar and non-collinear feature points using the “virtual paral-
lax" algorithm [88].
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static coordinate frame attached to the object. A static reference orthogonal coordinate

frame F∗c is attached to the camera at the location corresponding to an initial point in

time t0 where the object is in the camera field of view (FOV). After the initial time, an

orthogonal coordinate frame Fc attached to the camera undergoes some rotation R̄(t)

∈ SO(3) and translation x̄f (t) ∈ R3 away from F∗c .

The Euclidean coordinates m̄(t) ∈ R3 of a point2 observed by a camera expressed in

the camera frame Fc and the respective normalized Euclidean coordinates m(t) ∈ R3 are

defined as

m̄(t) =

[
x1(t), x2(t), x3(t)

]T
, (2–1)

m(t) =

[
x1(t)

x3(t)
,
x2(t)

x3(t)
, 1

]T
. (2–2)

The constant Euclidean coordinates and the normalized coordinates of the feature points

expressed in the camera frame F∗c are denoted by m̄∗ ∈ R3, and m∗ ∈ R3 respectively and

are given by Eq. 2–2 super-scripted by a ‘∗’. To facilitate the subsequent development, the

state vector y(t) = [y1(t), y2(t), y3(t)]T ∈ Y ⊂ R3 is constructed from Eq. 2–2 as

y =

[
x1

x3

,
x2

x3

,
1

x3

]T
. (2–3)

The corresponding feature points m∗ and m(t) viewed by the camera from two

different locations (and two different instances in time) are related by a depth ratio

α(t) ,
x∗3
x3(t)

∈ R and a homography matrix H(t) ∈ R3×3 as

m = Hm∗ (2–4)

where H ,
x∗3
x3

(
R̄ +

x̄f
d∗
n∗T
)
. The homography matrix can be estimated using four

coplanar points or eight non-coplanar points. The homography matrix H(t) can be

2 Subsequent technical development is shown for a single point. In practice, results can
be extended to multiple points in a similar manner.
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Figure 2-2. Moving camera looking at the static scene.

decomposed using various methods (see e.g., [89, 90]) to obtain the rotation R̄(t), depth

ratio α(t), the scaled translation
x̄f (t)

d∗
where x̄f (t) is the absolute translation between F∗c

and Fc, d∗ and n∗ represents the perpendicular distance and normal vector between F∗c

and the object plane. The decomposition of the homography leads to two solutions, one of

which is physically relevant. An in-depth discussion about the homography estimation and

decomposition and how to obtain the physically relevant solution can be found in [4, 89].

Using projective geometry, the normalized Euclidean coordinates m∗ and m(t) can be

related to the pixel coordinates in the image space as

p = Acm, p∗ = Acm
∗ (2–5)

where p(t) = [u, v, 1]T is a vector of the image-space feature point coordinates u(t),

v(t) ∈ R defined on the closed and bounded set I ⊂ R3, and Ac ∈ R3×3 is a constant,
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known, invertible intrinsic camera calibration matrix [4] given by

Ac =


λm −λm cotφ u0

0 λm
sinφ

v0

0 0 1

 . (2–6)

In Eq. 2–6 u0, v0 ∈ R denote the pixel coordinates of the principal point, λm ∈ R

represents the focal length in pixels and φ ∈ R is the skew angle between the camera axes.

Since Ac is known, Eq. 2–5 can be used to recover m(t), which can be used to partially

reconstruct the state y(t).

2.2 Camera-Object Relative Motion Model

As seen from Fig. 2-2, the static scene point q can be expressed in the coordinate

system Fc as

m̄ = x̄f + R̄xoq (2–7)

where xoq is a vector from the origin of coordinate system F∗c to the point q expressed in

the coordinate system Fc. Differentiating Eq. 2–7, the relative motion of q as observed in

the camera coordinate system can be expressed by the following kinematics [4, 91]

˙̄m = [ω]×m̄+ vr (2–8)

where m̄(t) is defined in Eq. 2–1, [ω]× ∈ R3×3 denotes a skew symmetric matrix formed

from the angular velocity vector of the camera ω(t) =

[
ω1 ω2 ω3

]T
∈ W ⊂ R3,

and vr(t) represents the relative velocity of the camera with respect to the moving point,

defined as

vr = vc − R̄v̄p. (2–9)

In Eq. 2–9, vc(t) =

[
vcx vcy vcz

]T
∈ Vc ⊂ R3 denotes the camera velocity in the

inertial reference frame, R̄vp (t) , vp(t) =

[
vpx vpy vpz

]T
∈ Vp ⊂ R3 denotes

the velocity of the moving point q expressed in camera reference frame Fc, and vp (t) =
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[
vpx vpy vpz

]T
∈ Vp ⊂ R3 denotes the velocity of the moving point in the inertial

reference frame F∗. Subsequent development in Chapters 3 and 4 is based on the fact

that, for stationary object, v̄p (t) = 0, hence, vr (t) = vc (t) .

Using Eqs. 2–3 and 2–8, the dynamics of the partially measurable state y(t) can be

expressed as

ẏ1 = (vcx − y1vcz)y3 − y1y2ω1 + (1 + y2
1)ω2 − y2ω3 − (vpx − y1vpz)y3 (2–10)

ẏ2 = (vcy − y2vcz)y3 − (1 + y2
2)ω1 + y1y2ω2 + y1ω3 − (vpy − y2vpz)y3 (2–11)

ẏ3 = −y2
3vcz − y2y3ω1 + y1y3ω2 + y2

3vpz (2–12)

where the states y1(t) and y2(t) can be measured as the output of the system through

the invertible transformation given by Eq. 2–5. The following symbols are defined to

streamline the notations throughout the dissertation: h1 (t) , vcx (t) − y1 (t) vcz (t) ,

h2 (t) , vcy (t) − y2 (t) vcz (t) , p1 (t) , −y1 (t) y2 (t)ω1 (t) + (1 + y2
1 (t))ω2 (t) − y2 (t)ω3 (t)

and p2 (t) , −(1 + y2
2 (t))ω1 (t) + y1 (t) y2 (t)ω2 (t) + y1 (t)ω3 (t). The development in

Chapters 3 and 4 uses the fact that in the generic camera-object relative motion state

space dynamics, vpx (t) = vpy (t) = vpz (t) = 0.

2.3 Assumptions

The following physically inspired assumptions are used in the development of the

Chapters 3-7.

Assumption 2.1. The relative Euclidean distance x3(t) between the camera and the

feature points observed on the target is upper and lower bounded by some known positive

constants (i.e., the object remains within some finite distance away from the camera).

Assumption 2.2. The camera velocities are assumed to be bounded, and the linear

velocities are assumed to be differentiable with bounded accelerations.
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Remark 2.1. The states y1(t) and y2(t) represent pixel locations. From the finite size of

the image, y1(t) and y2(t) are bounded by known constants as

y1 ≤ y1(t) ≤ y1, y2 ≤ y2(t) ≤ y2.

The relative Euclidean distance x3(t) between the camera and the feature point is lower

bounded by the camera focal length λm (in meters), and is not assumed to be upper

bounded. Therefore, the state y3(t), an inverse of the state x3(t), can be upper and lower

bounded as [2]

0 < y3 < y3(t) ≤ 1

λm
= y3.
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Chapter 3
GLOBALLY EXPONENTIALLY STABLE OBSERVER FOR VISION-BASED RANGE

ESTIMATION

The objective of the classic “structure from motion (SfM)” problem is to estimate

the Euclidean coordinates of tracked feature points attached to an object (i.e., 3D

structure) provided the relative motion between the camera and the object is known.

In the motion model described in Chapter 3 the dynamics of the unknown state are

nonlinear and the unknown state appears in the dynamics of the known states. In the

previous work, the nonlinearities are mitigated using sliding mode techniques or the

nonlinear part is considered as a perturbation term and stability is proven using a

converse Lyapunov theorem or an immersion and invariance technique is used to find

output injection by solving partial differential equations. In general, the observability

condition for the existing results states that camera must be translating along at least

one of the three directions and should not be translating parallel to the ray projected

from a feature point at any instant of time. In this chapter, a globally exponentially

stable reduced-order observer is designed. The contributions of this work is threefold.

The observer is globally exponentially stable under sufficient observability and gain

conditions. Second, the observer is proven to be exponentially convergent even under a

relaxed observability condition which allows the camera motion to be zero along all three

directions for sufficiently small duration of time. Finally, the observer is shown to be finite

gain Lp stable with respect to an exogenous disturbance input. Thus, the observer errors

remain bounded even if the stationary object assumption is violated where the object

motion is considered as an exogenous input. In comparison with the observer in [1], the

gain condition is only a function of upper bounds on camera velocities and image size.

Simulation and experimental results are provided to show the performance of the proposed

observer. Comparison of the performance of proposed observer to the performance of

observers in [2] and [1] is provided.
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3.1 Vision-based Range Estimation

The objective of the range estimation problem (i.e., SfM) is to estimate the Euclidean

coordinates of feature points in a static scene using a moving camera with known camera

velocities b(t) and ω(t). The projective transformation onto the image plane loses depth

information, but it can be recovered from 2D point correspondences in the images.

Once the Euclidean depth is recovered using Eq.s 2–3 and 2–5, the complete Euclidean

coordinates can be computed.

3.1.1 Range Observer

In this section, a new nonlinear observer for range estimation is presented. The

dynamics of the range, given by m̄(t), are represented using the perspective dynamic

system in Eq. 2–12. All six velocities and linear accelerations of the camera are available

as sensor measurements. Scenarios where the relative motion ω(t) and b(t) are known

include a camera attached to the end-effector of a robot manipulator, mobile robot,

autonomous underwater vehicle (AUV), or micro air vehicle (MAV). Linear and angular

camera velocity, and linear camera acceleration can be acquired using a wide array of

sensor configurations utilizing an inertial measurement unit (IMU), global positioning

system (GPS), or other sensors.

The state y3(t) contains depth information which is lost due to a perspective transfor-

mation. To obtain the range of a feature point m̄(t), it is necessary to scale the measured

states y1(t) and y2(t) using the depth. Thus, the main motivation of the observer is to es-

timate the state y3(t). Let the estimates of the state y3(t) be defined as ŷ3(t). To quantify

the depth estimation mismatch, an estimate error e(t) is defined as

e , y3 − ŷ3. (3–1)
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To ensure the estimate ŷ3(t) is bounded, a locally Lipschitz projection law [92] is designed

to update ŷ3(t) as

˙̂y3(t) = proj(ŷ3, φ) =



φ


if y3 ≤ ŷ3(t) ≤ y3 or

ŷ3(t) > y3 and φ(t) ≤ 0 or

ŷ3(t) < y3 and φ(t) ≥ 0

φ̄ if ŷ3(t) > y3 and φ(t) > 0

φ̆ if ŷ3(t) < y3 and φ(t) < 0

(3–2)

where φ(y1, y2, ŷ3, vc, ω) ∈ R is defined as

φ , ŷ2
3vcz + (y2ω1 − y1ω2) ŷ3 − k3(h2

1 + h2
2)ŷ3

+k3(−h1p1 − h2p2 + h1ẏ1 + h2ẏ2), (3–3)

where h1 (t) , h2 (t) , p1 (t) , p2 (t) are defined in Chapter 2, and φ̄(t) ∈ R and φ̆(t) ∈ R are

defined as

φ̄ ,

[
1 +

y3 − ŷ3

δ

]
φ, φ̆ ,

[
1 +

ŷ3 − y3

δ

]
φ. (3–4)

The projection in Eq. 3–2 ensures that the estimate ŷ3 ∈ Ωδ ∀t ≥ 0, where Ωδ = {ŷ3

|y3 − δ ≤ ŷ3 ≤ y3 + δ} for some known arbitrary constant δ > 0. The signal φ(t) can be

integrated to eliminate the computation of optical flow, i.e., ẏ1 and ẏ2, and the signal ŷ3

can be generated using

ŷ3 = α + β. (3–5)

Instead of Eq. 3–3, in Eq. 3–5 the update law for the function α(y1, y2, ŷ3, ω, vc, v̇c) is

given by

α̇ = ŷ2
3vcz + (y2ω1 − y1ω2)ŷ3

−k3(h2
1 + h2

2)ŷ3 − k3h1p1 − k3h2p2 (3–6)

−k3y1v̇cx − k3y2v̇cy + k3v̇cz

(
y2

1 + y2
2

2

)
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and β(y1, y2, vc) is defined as

β , k3

(
vcxy1 + vcyy2 − vcz

(
y2

1 + y2
2

2

))
(3–7)

where k3 ∈ R+. The initial condition of the observer is selected as

α(t0) = α0

where α0 is an arbitrary constant.

Assumption 3.1. The subsequent development is based on the assumption that h2
1 + h2

2 ≥

ε > 0, ∀t ≥ 0 for a positive constant ε. This assumption is an observability condition

for the observer in Eqs. 3–2-3–7, and is the same as obtained previously in the literature

[1, 19, 23, 93]. The condition physically implies that vcx(t), vcy(t), vcz(t) are not equal to

zero simultaneously and the motion of the camera should not be along the projected ray of

the point being observed.

3.1.2 Stability Analysis

Theorem 3.1. The observer presented in Eqs. 3–2-3–7 is a globally exponentially stable

observer provided Assumptions 2.2 and 3.1 are satisfied along with the sufficient condition

k3 ≥
2v̄cz
λm

+ δv̄cz + ȳ2ω̄1 + ȳ1ω̄2

ε
(3–8)

where v̄cz, ω̄1and ω̄2 are known upper bounds on vcz(t), ω1(t) and ω2(t).

Proof. For three cases of projection law described by Eq. 3–2 the e(t) error dynamics are

given by

Case 1: y3 ≤ ŷ3(t) ≤ y3 or ŷ3(t) > y3 and φ(t) ≤ 0 or ŷ3(t) < y3 and φ(t) ≥ 0

Using Eqs. 2–12 and 3–2-3–4, the error dynamics of e(t) can be expressed as

·
e = ς , (y2ω1 − y1ω2)e+ (y3 + ŷ3)vcze

−k3(h2
1 + h2

2)e. (3–9)

Case 2: ŷ3(t) > y3 and φ(t) > 0
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Using Eqs. 2–12 and 3–2-3–4, the error dynamics of e(t) can be expressed as

·
e = ς − y3 − ŷ3

δ
φ. (3–10)

Case 3: ŷ3(t) < y3 and φ(t) < 0

Using Eqs. 2–12 and 3–2-3–4, the error dynamics of e(t) can be expressed as

·
e = ς −

ŷ3 − y3

δ
φ. (3–11)

The stability of the proposed observer can be analyzed using Lyapunov-based stability

analysis. Consider a domain D ⊂ R containing e(0) and a continuously differentiable,

radially unbounded candidate Lyapunov function, V (e) : D → R, defined as

V ,
1

2
e2. (3–12)

The stability of the error system will be analyzed for all three cases of the projection

law.

Case 1: Taking the derivative of V (e) and utilizing Eq. 3–9 yields

·
V =

[
(y3 + ŷ3) vcz − y2ω1 + y1ω2 − k3(h2

1 + h2
2)
]
e2. (3–13)

If k3 satisfies the condition in Eq. 3–8, the bracketed term is strictly negative and the

following expression is obtained
·
V ≤ −k1V (3–14)

where k1 ∈ R+.

Case 2: Taking the derivative of V (e) and utilizing Eq. 3–10 yields

·
V = ((y3 + ŷ3) vcz − y2ω1 + y1ω2) e2

−k3(h2
1 + h2

2)e2 − eȳ3 − ŷ3

δ
φ. (3–15)

where the last term on the right hand side of Eq. 3–15 is always negative, and hence, the

inequality in Eq. 3–14 can be achieved.
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Case 3: Taking the derivative of V (e) and utilizing Eq. 3–11 yields

·
V = ((y3 + ŷ3) vcz − y2ω1 + y1ω2) e2

−k3(h2
1 + h2

2)e2 − e
ŷ3 − y3

δ
φ, (3–16)

where the last term on the right hand side of Eq. 3–16 is always negative, and hence, the

inequality in Eq. 3–14 can be achieved.

For all three cases of projection the Gronwall-Bellman lemma [94] can be applied to

Eq. 3–14 to yield

V (t) ≤ V (0) exp(−k1t).

Hence, from Eq. 6–17, the following upper bound for e(t) can be obtained

‖e(t)‖ ≤ γ ‖e(0)‖ exp(−k1t) (3–17)

where γ ∈ R+.

From Eq. 3–17, e(t) ∈ L∞. 1 Since e(t) ∈ L∞, and using Remark 2.1, y3(t) ∈ L∞,

thus ŷ3(t) ∈ L∞. From the boundedness of y(t), vc(t) and ω(t), Eq. 3–8 can be used to

prove that k3 ∈ L∞. Based on the fact that e(t), y(t), ω(t), vc(t), k3 ∈ L∞, standard

linear analysis methods can be used to prove that ė(t) ∈ L∞. Thus, y3(t) is exponentially

estimated and Eqs. 2–2-2–5 can be used to recover the Euclidean coordinates m̄(t) of the

feature point.

If the condition in Assumption 3.1 is not satisfied and the gain k3 is chosen according

to Eq. 3–8, the proposed observer is still exponentially convergent, provided the PE

condition in [2] is satisfied.

1 For a function s (t) ∈ Rn ∀n ∈ [1,∞), s (t) ∈ L∞ means the function s (t) has a finite
L∞ norm, i.e., ‖s (t)‖L∞ = supt≥0 ‖s (t)‖2 <∞ where ‖·‖2 denotes the 2-norm in Rn.
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Theorem 3.2. The observer presented in Eqs.3–2-3–7 is a exponentially stable observer

provided k3 is chosen according to Eq. 3–8, Assumption 2.2 is satisfied, and the following

PE condition is satisfied

ˆ t+T

t

(
h2

1(τ) + h2
2(τ)

)
dτ ≥ ρ > 0, ∀t > t0 (3–18)

where T, ρ ∈ R+.

Proof. To examine the stability of the estimation error dynamics in Eq. 3–9 under the

assumption that Eq. 3–18 is satisfied, consider the nominal system

ė = −k3(h2
1 + h2

2)e. (3–19)

Using Theorem 2.5.1 of [95] the error system in Eq. 3–19 is globally exponentially stable

if the condition in Eq. 3–18 is satisfied. Since the nominal system in Eq. 3–19 is globally

exponentially stable using 4.14 of [96] based on the Converse Lyapunov Theorem, there

exists a function V̄ : [0,∞)× R→ R that satisfies the inequalities

c1 ||e||2 ≤ V̄ (t, e) ≤ c2 ||e||2 ,
∂V̄

∂t
+
∂V̄

∂e

(
−k3(h2

1 + h2
2)e
)
≤ −c3 ||e||2 ,∥∥∥∥∂V̄∂e

∥∥∥∥ ≤ c4 ||e|| (3–20)

where ci ∈ R+, ∀i = {1, .., 4}. After using Eq. 6–17 with the properties in Eq. 3–20 and

substituting in the perturbed system Eq. 3–9, the following inequalities can be obtained

˙̄V ≤ ∂V̄

∂t
+
∂V̄

∂e

(
−k3(h2

1 + h2
2)e
)
,

+
∂V̄

∂e
(((y3 + ŷ3) vcz − y2ω1 + y1ω2) e) ,

˙̄V ≤ −c3 ||e||2 + c4η ||e||2 ,

where η = 2v̄cz
λm

+ δv̄cz + ȳ2ω̄1 + ȳ1ω̄2, and ˙̄V (t) can be upper bounded as

˙̄V ≤ −(c3 − ηc4) ||e||2 .
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Since k3 is selected according to Eq. 3–8 with sufficiently small δ, c3 satisfies c3 > ηc4.

Hence, the origin of the perturbed system Eq. 3–9 is exponentially stable.

Remark 3.1. As stated in [2], the PE condition physically implies that all the linear

velocities should not be identically zero and that the camera should not be translating

along the projected ray of any feature point during any small interval of time [t, t + T ]. If

all of the linear velocities are zero at any instant of time h2
1(t) + h2

2(t) = 0 and the stability

of the observer in Eqs. 3–2-3–7 cannot be shown using Theorem 3.1, Theorem 3.2 ensures

stability of system in such cases.

3.2 Stability Analysis in the Presence of Disturbances

In this section, the stability of the observer in Eqs. 3–2-3–7 is analyzed in the

presence of an exogenous input such as a disturbance acting on the camera motion or a

target object begins to move. The disturbance enters the system as

˙̄m =


1 0 0 0 −x3 x2

0 1 0 x3 0 −x1

0 0 1 −x2 x1 0


 vc + ∆vc

ω + ∆ω

 , (3–21)

where ∆vc(t), ∆ω(t) represent the exogenous inputs such that ∆vc(t), ∆ω(t) ∈ Lpe 2 with

sup0≤t≤τ ||∆vc(t)|| ≤ rb and sup0≤t≤τ ||∆ω(t)|| ≤ rω for some rb, rω ∈ R+. Using Eqs. 2–3

and 3–21, the dynamics of the unmeasurable state y3(t) can be expressed as

ẏ3 = −y2
3vcz − y2y3ω1 + y1y3ω2 + ∆y3 (3–22)

where

∆y3 = −y2
3∆vcz − y2y3∆ω1 + y1y3∆ω2.

2 The space Lpe = {u|uτ ∈ Lp, ∀τ ∈ [0,∞]}, and uτ is a truncation of u defined by

uτ (t) =

{
u(y), 0 ≤ t ≤ τ

0, t > τ
.
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Theorem 3.3. The observer presented in Eqs. 3–2-3–7 is finite-gain Lp 3 stable where

p ∈ [1,∞] with respect to the exogenous input
[

∆vTc ∆ωT
]T

and Lp gain less than or

equal to 1
k1
.

Proof. Using Eqs. 3–22 and 3–2-3–7 the error system can be written as

ė = (y2ω1 − y1ω2)e+ (y3 + ŷ3)vcze

−k3(h2
1 + h2

2)e+ ∆y3k3. (3–23)

The error system in Eq. 3–23 can be expressed in the following form

ė = f(e, u),

r = h(e)

where u(t) = k3∆y3(t) is an exogenous disturbance/noise input, r(t) = e(t). Let R be a

domain containing e(t) = 0 and u(t) = 0, the function f : R× R→ R is linear and globally

Lipschitz in u(t), h : R→ R is continuous in e(t). Using Theorem 3.1, the unforced system

ė = f(e, 0)

is globally exponentially stable with the Lyapunov function in Eq. 6–17 which satisfies the

following bounds

0.5 ‖e‖2 ≤ V (e) ≤ 0.5 ‖e‖2 ,

∂V

∂t
+
∂V

∂e
(f(e, 0)) ≤ −k1 ‖e‖2 ,∥∥∥∥∂V∂e

∥∥∥∥ ≤ ‖e‖ . (3–24)

3 A mapping F : Lme → Lne is finite-gain L stable if there exist non-negative constants %
and χ such that ‖(Fu)‖L ≤ % ‖uτ‖L + χ for all u ∈ Lme and τ ∈ [0,∞) where the extended
space Lme is defined as Lme = {u|uτ ∈ Lm, ∀τ ∈ [0,∞)} .
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Since the function f(e, u) is globally Lipschitz in u(t), the following inequality is satisfied

||f(e, u)− f(e, 0)|| ≤ ||u|| . (3–25)

Since Eqs. 3–24 and 3–25 are satisfied, using Theorem 5.1 of [96] the error system in Eq.

3–23 is finite gain Lp stable where p ∈ [1,∞] with Lp gain less than or equal to 1
k1

for each

e(0) ∈ R, i.e.,

||e||Lp ≤
1

k1

||u||Lp + ||e0|| ρ,

where

ρ =


1, if n =∞(

1
k1n

)1/n

, if n ∈ [1,∞)

.

The velocities of the object denoted by bO and ωO can be assumed to be Lpe distur-

bances acting on the system as shown in Eq. 3–21. Thus, Theorem 3.3 implies that even if

the stationary object assumption is violated, the observer errors are bounded. The Lp gain

is the measure of accuracy of the estimates and gives an upper bound on the estimation

errors. The Lp gain can be reduced by increasing the gain k3which in turn reduces the

constant k1 (see Eqs. 6–19 and 3–14).

3.3 Discussion

A comparison between the proposed observer with the I&I observer [1] and the

observer in [2] is provided in Table 3-1 and the numbered list below.

1. The presented observer achieves global exponential estimation of the 3D Euclidean

coordinates of feature points, which is a similar result achieved by the observer developed

in [1]. The observer presented in [2] only achieves local exponential convergence of the

estimation errors. Thus, the proposed observer and the observer in [1] can have arbitrary

initial conditions as opposed to the initial conditions required by the observer presented

in [2]. A limitation of the local nature of the result in [2] is illustrated in the subsequent

simulations.

46



Table 3-1. Comparison of the presented observer with observers in [1] and [2].
Proposed observer Observer via I&I [1] Observer in [2]
Global exponential error
convergence

Global exponential error
convergence

Local exponential error
convergence

Observability:
h2

1(t) + h2
2(t) ≥ ε > 0,

∀t ≥ 0,

Observability:
h2

1(t) + h2
2(t) ≥ ε > 0,

∀t ≥ 0

Observability: @t̄ : ∀t > t̄,
h2

1(t) + h2
2(t) = 0

stable if
∃t : h2

1(t) + h2
2(t) = 0

singular if h2
1(t) + h2

2(t) = 0
for any time t

stable if
∃t : h2

1(t) + h2
2(t) = 0

Requires camera velocities
and linear accelerations

Requires camera velocities
and linear accelerations

Requires only camera
velocities

Reduced order Reduced order Full order

2. One of the advantages of the observer presented in [2] over the observer in [1],

is the use of a less restrictive observability condition which enables the observer to be

used for a larger set of camera motions. The observability condition of the proposed

observer is the same as that in [1], but if the observability condition in [1] is not satisfied,

the I&I observer becomes singular. The advantage of the proposed observer is that even

if the observability condition in Assumption 3.1 is not satisfied, the observer is still

locally exponentially stable and thus can encompass a larger set of camera motions. The

limitations of the singularity issue with the observer in [1] is illustrated in the subsequent

simulation section.

3. The proposed observer requires measurements of the camera linear acceleration

along with camera velocities and image features, which are also required by the observer

in [1]. Thus, the proposed observer and the observer in [1] are more sensitive to noisy

input measurements compared to the observer in [2]. Improved steady-state performance

is illustrated by the observer in [2] in the presence of noise in the subsequent simulation

section.

4. The gain condition in [1] is a function of the image size, camera velocities and

acceleration. On the contrary, the gain condition for the proposed observer is only a

function of image size and camera velocities.
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3.4 Simulations and Experiments

Simulations are conducted to evaluate the performance of the observer. The perfor-

mance of the observer is compared with the observers in [2] and [1]. For each simulation

the focal length of the camera is set to λm = 30 and the gains for the estimators are

adjusted to achieve the best performance (i.e., the least estimation error). In contrast to

the trial-and-error approach, methodological approaches such as [97–102] could be used to

adjust the observer gains. For the first simulation, the initial location of the point on the

target with respect to the initial camera frame is selected as m̄(t0) =

[
10 5 0.5

]T
m.

The camera velocities are selected as

vc =

[
0.3 0.4 + 0.1 sin(πt

4
) −0.3

]T
m/s,

ω =

[
0 − π

30
0

]T
rad/s.

Additive white Guassian noise with a signal-to-noise ratio (SNR) of 20dB is added

to the image pixel measurements, and noise with zero mean and a variance of 0.01 is

added to the velocity measurements. The velocity signal is differentiated using the

“Derivative” block in Simulink to obtain a linear acceleration signal. The estimates are

integrated with a step size of 0.01sec using the “ode4” Matlab command which uses a

Runge-Kutta (R-K) integrator. The initial condition of the observer is set to α(t0) = 5

with k3 = 1.55 × 10−3. For the observer in [1], the initial condition is chosen to be4

ξ (t0) = −0.9 and the observer gain is set to 2.5 × 10−5. The initial conditions and the

observer gains for the observer in [2] are selected5 as k1 = k2 = 200, k3 = 0.1 and

ŷ1 (t0) = 600, ŷ2 (t0) = 300, ŷ3 (t0) = 50. The initial conditions are selected so that the

4 The symbol ξ (t) is taken from [1] and denotes an auxiliary state.

5 The symbols k1, k2, k3, ŷ1 (t) , ŷ2 (t) are taken from [2]. The observer in [2] is a third
order observer and ŷ1 (t) , ŷ2 (t) denotes the estimates of y1 (t) and y2 (t).
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Table 3-2. Comparison of the RMS depth estimation errors.
Proposed observer Observer in [2] Observer in [1]

Transient RMS error 0.3128 0.3477 0.3547
Steady-state RMS error 0.1717 0.0155 0.2150

initial value of the estimated depth is equal for all three observers. A comparison of the

depth estimation performance of the observers is shown in Figure 3-1. As shown in Table

3-2, the root-mean square (RMS) of the depth estimation error is also compared for the

transient and the steady-state response. The transient period is selected to be the first

0.2 sec. The proposed observer has the least transient RMS error, and the observer in [2]

has the minimum steady-state RMS error.
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Figure 3-1. Comparison between the true and estimated depth in the presence of mea-
surement noise A) top subplot shows the estimated depth using the proposed observer. B)
middle subplot shows the estimated depth using the observer in [1]. C) bottom subplot
shows the estimated depth using the observer in [2].
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Figure 3-2. Comparison of the depth estimation using the proposed observer and the
observer in [2] when camera motion does not satisfy Assumption 3.1.
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Figure 3-4. Depth estimation using the observer in [1].
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Figure 3-5. Estimation of ŷ3 (t) starting from large initial condition α (t0) = 300 using the
proposed observer.
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Figure 3-6. Depth estimation with large initial condition α (t0) = 300 using the proposed
observer.
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Figure 3-7. State estimation using the observer in [2] for large initial conditions. Since the
state estimate is very large, simulation fails to integrate at t = 0.03.
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Figure 3-8. AUV experimental setup.

A second simulation is performed based on Discussion Point 2 of Section 3.3. The

camera velocities for this simulation are selected as

vc =

[
0 0 0.5 cos(πt/2)

]T
m/s,

ω =

[
0 0 0

]T
rad/s

which violates the observability condition in Assumption 3.1 but satisfies the condition

in Eq. 3–18. Again, the image pixel data is corrupted with the additive white Gaussian

noise with an SNR of 20dB. Noise of zero mean and 0.01 variance is added to the camera

velocity measurements. Using the Runge-Kutta integrator with a time step of 0.03sec,

the state estimates are computed. Figure 3-2 shows the depth estimation performance of

the proposed observer and the observer in [2] for the same initial conditions ŷ3 (t0) . The

proposed observer exhibits a better transient performance compared to the observer in [2].
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Figure 3-9. An image frame displaying the tracked buoy target by the AUV.

Figure 3-3 shows the evolution of h2
1 (t) + h2

2 (t) . At 1sec, h2
1 (t) + h2

2 (t) = 0.1 and at 3sec,

h2
1 (t) + h2

2 (t) = 10e − 4. In Figure 3-4, there is a peak in the depth estimate of [1] near

t = 1sec. The response recovers from the peak at t = 1sec but at t = 3sec the observer

in [1] becomes singular. The results in Figure 3-4 coincide with the theoretical prediction

discussed in Point 2 of Section 3.3.

A third simulation is performed using camera velocities of

vc =

[
0.3 0.4 + 0.1 sin(πt

4
) −1

]T
m/s,

ω =

[
0 π

3
0

]T
rad/s.

to demonstrate that for large initial conditions the proposed observer converges while

the local observer in [2] is unstable. In [2], the domain of initial conditions is small

for large vcz (t) , ω1 (t) and ω2 (t) . The initial relative position of the target point is
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Figure 3-10. Comparison of the estimated and ground truth range of the buoy with re-
spect to the underwater vehicle.
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Figure 3-11. States y1(t) and y2(t) computed using image pixels.

m̄ (t0) =

[
10 5 5

]T
m. The proposed observer is initialized to α (t0) = 300 and the

gain is selected as k3 = 0.09. For the observer in [2], the initial conditions and gains are

set to ŷ1 (t0) = 60, ŷ2 (t0) = 30, ŷ3 (t0) = 144 and k1 = k2 = 12, k3 = 10.2. The

observers are integrated using the Runge-Kutta integrator with a time step of 0.01sec.

The state estimation results are shown in Figures 3-5-3-7. Since the states y1 (t) and y2 (t)

are measurable, the initial conditions of ŷ1 (t) and ŷ2 (t) are set equal to the initial values

of y1 (t) and y2 (t) . The gains of the observer in [2] are tuned and the initial condition is

progressively increased until the observer error converges. Convergence is observed for

ŷ3 (t0) ≤ 143 but not for ŷ3 (t0) ≥ 144. For the proposed observer, the observer error

converges even for an initial condition as large as α (t0) = 300. In this simulation a value

of α (t0) = 300 corresponds to ŷ3 (t0) = 583.5 for the proposed observer. The simulation

demonstrates that the observer in [2] is unstable when the initial conditions are chosen

outside a local domain.
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Experiments are conducted to estimate the range of a 9-inch Mooring buoy floating in

the middle of a water column as observed by a camera rigidly attached to an autonomous

underwater vehicle (AUV). Figure 3-8 shows the AUV experimental platform. The AUV is

equipped with a Matrix Vision mvBlueFox-120a color USB camera, a Doppler velocity log

(DVL), a pressure transducer, a compass and an inertial measurement unit (IMU). Two

computers running Microsoft Windows Server 2008 are used on the AUV. One computer is

dedicated for running image processing algorithms and the other computer executes sensor

data fusion, low level component communication and control, and mission planning. An

unscented Kalman filter (UKF) is used to fuse the IMU, DVL and pressure transducer

data at 100Hz to accurately estimate the position, orientation and velocity of the AUV

with respect to an inertial frame by correcting the IMU bias. This position data is used to

compare the results of the observer with a relative ground truth measurement of the AUV

by rotating the localized AUV position into the camera fixed frame. The buoy is tracked

in the video image of dimension 640 × 480 using a standard feature tracking algorithm as

shown in Figure 3-9, and pixel data of the centroid of the buoy is recorded at 15Hz. The

camera is calibrated using a standard camera calibration algorithm [103] and is given by

Ac =


749.82231 0 321.05569

0 750.19507 292.41939

0 0 1

 .
The linear and angular velocity, and linear acceleration data obtained from the UKF is

logged at the camera frame rate. Using the velocity, linear acceleration and pixel data

obtained from the AUV sensors, the range of the buoy is estimated with respect to the

camera. The initial condition is chosen as α (t0) = 0.08 and the observer gain is selected

to be k3 = 2 × 10e − 6. The observer equations are integrated using a Runge-Kutta

integrator with a time step of 1
15
sec. A comparison of the estimated range with the ground

truth measurement is shown in Figure 3-10. In Figure 3-11, the feature tracking algorithm
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fails for several frames near time t = 6 sec. The range estimation algorithm shows robust

performance even in the presence of feature tracking errors as illustrated in Figure 3-10.

3.5 Summary

A nonlinear observer is presented for the range estimation of feature points using

a moving camera. The observer is globally exponentially stable provided an observabil-

ity condition is satisfied. The observer is also shown to be exponentially stable under a

relaxed observability condition. The observer requires velocity and linear acceleration mea-

surements of the camera. The observer is shown to be robust against external disturbances

acting on the camera motion and pixel noise. Simulation results and data from an AUV

experiment demonstrate the performance of the observer.
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Chapter 4
STRUCTURE AND MOTION USING A SINGLE KNOWN CAMERA LINEAR

VELOCITY

In this chapter, a solution to the SaM estimation is presented when only one of

the linear camera velocities of the camera can be measured. The angular velocity of

the camera is estimated by decomposing the homography estimated from two images.

A robust derivative estimator is used for the angular velocity estimation. In the state

dynamics, the unknown time-varying linear velocities is multiplied by an unknown state

poses a problem of multiplicative time-varying uncertainties. In this work a strategy is

presented to segregate the multiplicative uncertainties, and then to develop a reduced

order nonlinear observer to address the SaM problem where the structure (i.e., the

properly scaled relative Euclidean coordinates of tracked feature points), the time-varying

angular velocities, and two unknown time-varying linear velocities are estimated. The

result exploits an uncertain locally Lipschitz model of the unknown linear velocities of

the camera. A persistency of excitation (PE) condition is formulated, which provides an

observability condition that can be physically interpreted as the known camera linear

velocity should not be zero over any small interval of time, and the camera should

not be moving along the projected ray of a point being tracked. A Lyapunov-based

analysis is provided that indicates the SaM observer errors are globally asymptotically

regulated provided the PE condition is satisfied. By developing a reduced order observer

to segregate and estimate the multiplicative uncertainties, new applications can be

addressed including: range and velocity estimation using a camera fixed to a moving

vehicle where only the forward velocity/acceleration of the vehicle is known, range

and velocity estimation using an unmanned air vehicle (UAV) using only a forward

velocity/acceleration sensors, etc.
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4.1 Structure and Motion Estimation

4.1.1 Estimation with a Known Linear Velocity

In this section, an estimator is designed for the perspective dynamic system in Eq. 2–

12, where the angular velocity is considered unknown and only one of the linear velocities

(i.e., vcz)1 and respective acceleration (i.e., v̇cz) is available. Moreover, an uncertain

dynamic model of the linear velocity vc(t) is assumed to be available as [3, 21]

v̇ci(t) = q(vci, t)vci,∀i = {x, y} (4–1)

where q(vci, t) ∈ R is a known locally Lipschitz function of unknown states.

To facilitate the design and analysis of the subsequent observer, a new state u(t) ∈

U ⊂ R2 ,

[
u1(t) = y3vcx, u2(t) = y3vcy

]T
, is defined where U is a closed and bounded

set. After utilizing Eqs. 2–12 and 4–1, the dynamics for u1(t), u2(t) can be expressed as

u̇i = y3vczui + (y2ω1 − y1ω2)ui + q(vci)ui, ∀i = {1, 2}. (4–2)

From Eqs. 2–12 and 4–2 the dynamics of the known states y1(t), y2(t) and the unknown

state θ(t) =

[
y3 u1 u2

]T
are

 ẏ1

ẏ2

 =

 −y1vcz 1 0

−y2vcz 0 1



y3

u1

u2

+

 −y1y2ω1 + (1 + y2
1)ω2 − y2ω3

−(1 + y2
2)ω1 + y1y2ω2 + y1ω3

 (4–3)

and 
ẏ3

u̇1

u̇2

 = g(θ, ω, y1, y2, vcz) =


y2

3vcz + (y2ω1 − y1ω2) y3

y3vczu1 + (y2ω1 − y1ω2)u1 + q(b1)u1

y3vczu2 + (y2ω1 − y1ω2)u2 + q(b2)u2

 . (4–4)

1 An observer can be developed with any of the three linear velocities known. In this
chapter, vcz(t) is assumed to be known w.l.o.g.
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Let

J(y, vcz) =

 −y1vcz 1 0

−y2vcz 0 1

 ,
and

Ψ(y, ω) =

 −y1y2ω1 + (1 + y2
1)ω2 − y2ω3

−(1 + y2
2)ω1 + y1y2ω2 + y1ω3

 .
Since y1(t) and y2(t) are measurable, from Eqs. 2–2 and 2–5 the Euclidean structure m̄(t)

can be estimated once the state y3(t) is determined. Since the dynamics of the outputs

y1(t), y2(t) are affine in the unknown state θ(t), a reduced order observer can be developed

based on this relationship for the unknown state θ(t). The subsequent development is

based on the strategy of constructing the estimates θ̂(t) ,

[
ŷ3 û1 û2

]T
∈ R3. To

quantify the SaM estimation objective, an estimation error θ̃(t) =

[
θ̃1 θ̃2 θ̃3

]T
∈ R3 is

defined as

θ̃(t) ,

[
y3 − ŷ3 u1 − û1 u2 − û2

]T
. (4–5)

Assumption 4.1. The function q(vci, t) ∀i = {x, y} is locally Lipschitz where q(vcx) −

q(v̂cx) = λ1(vcx − v̂cx) and q(vcy) − q(v̂cy) = λ2(vcy − v̂cy) where λ1 and λ2 are Lipschitz

constants.

Remark 4.1. The linear velocity model in Eq. 4–1 (and in the results in [3, 21]) is re-

stricted to motions that are satisfied by Assumption 4.1; yet, various classes of trajectories

satisfy this assumption (e.g., straight line trajectories, circles, some periodic trajectories,

etc.).

Assumption 4.2. The function J(y1, y2, vcz) defined in Eq. 4–3 satisfies the persistency of

excitation condition, i.e., ∃ γ, δ > 0 :
´ t+δ
t

JT (y1(τ), y2(τ), vcz(τ))J(y1(τ), y2(τ), vcz(τ))dτ ≥

γI ∀t ≥ 0.

Remark 4.2. Assumption 4.2 is violated iff ∃ t1| ∀t > t1, vcz(t) = 0 or y1(t) = c1, y2(t) = c2.

That is, Assumption 4.2 is valid unless there exists a time t1 such that for all t > t1 the

camera translates along the projected ray of an observed feature point.
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Assumption 4.3. The linear camera velocities vc(t) are upper and lower bounded by

constants.

Remark 4.3. The following bounds can be developed using Assumption 2.1, Remark 2.1

and the definitions of u1(t) and u2(t)

u1 min ≤ u1 ≤ u1 max, u2 min ≤ u2 ≤ u2 max.

4.1.1.1 Step I: Angular velocity estimation

Solutions are available in literature that can be used to determine the relative angular

velocity between the camera and a target [16]. To quantify the rotation mismatch between

F∗c and Fc, a rotation error vector eω (t) ∈ R3 is defined by the angle-axis representation

as

eω , uω(t)θω(t) (4–6)

where uω(t) ∈ R3 represents a unit rotation axis, and θω(t) ∈ R denotes the rotation angle

about uω(t) that is assumed to be confined to region −π < θω(t) < π. The angle θω(t) and

axis uω(t) can be computed using the rotation matrix R̄(t) obtained by decomposing the

Homography matrix H(t) given by the relation in Eq. 2–4. Taking time derivative of Eq.

4–6 yields

ėω = Lωω (4–7)

where Lω(t) ∈ R3×3 denotes an invertible Jacobian matrix [16]. A robust integral of the

sign of the error (RISE)-based observer êω(t) ∈ R3 is generated in [16] as

·
êω = (Kω + I3×3)ẽω(t) +

ˆ t

t0

(Kω + I3×3)ẽωdτ + v (4–8)

v̇ = ρωsgn(ẽω)

where Kω, ρω ∈ R3×3 are positive constant diagonal gain matrices, and ẽω(t) ∈ R3

quantifies the observer error as ẽω(t) , eω − êω. A Lyapunov-based stability analysis is
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provided in [16] that proves

·
êω(t)− ėω(t)→ 0 as t→∞ (4–9)

and that all closed-loop signals are bounded. Based on Eqs. 4–7 and 4–9, the angular

velocity can be determined as

ω̂(t) = L−1
ω

·
êω(t) as t→∞. (4–10)

An angular velocity estimation error ω̃(t) ∈ R3 ,

[
ω̃1(t), ω̃2(t), ω̃3(t)

]T
is defined as

ω̃i(t) = ωi(t) − ω̂i(t), ∀i = {1, 2, 3}.As shown in [16], the angular velocity estimator given

by Eq. 4–8 is asymptotically stable; thus, the angular velocity estimation error ‖ω̃(t)‖ → 0

as t→∞.

4.1.1.2 Step II: Structure estimation

A reduced order observer for θ(t) is designed as
ŷ3

û1

û2

 =


ȳ3

ū1

ū2

+ Γ


−vcz(y21+y22)

2

y1

y2

 (4–11)

where the state vector
[
ȳ3 ū1 ū2

]T
is updated using the following update law


·
ȳ3

·
ū1

·
ū2

 =


ŷ2

3vcz + (y2ω̂1 − y1ω̂2) ŷ3

ŷ3vczû1 + (y2ω̂1 − y1ω̂2)û1 + q(v̂cx)û1

ŷ3vczû2 + (y2ω̂1 − y1ω̂2)û2 + q(v̂cy)û2


︸ ︷︷ ︸

g(θ̂,ω̂,y1,y2,b3)

− ΓJT


 −y1vcz 1 0

−y2vcz 0 1



ŷ3

û1

û2



+

 −y1y2ω̂1 + (1 + y2
1)ω̂2 − y2ω̂3

−(1 + y2
2)ω̂1 + y1y2ω̂2 + y1ω̂3


︸ ︷︷ ︸

Ψ(y,ω̂)

+ Γ


v̇cz(y21+y22)

2

0

0

 . (4–12)
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In Eq. 4–12, Γ ∈ R3×3, ω̂i(t) are given by Eq. 4–10, and J(y, vcz) is defined in Eq. 4–

3. Differentiating Eq. 4–5 and using Eqs. 4–3, 4–4, 4–11 and 4–12 yields the following

closed-loop observer error dynamics
·
θ̃1

·
θ̃2

·
θ̃3

 =


(y3 + ŷ3)vcz θ̃1 + (y2ω1 − y1ω2) θ̃1

y3vcz θ̃2 + vczû1θ̃1 + (y2ω̂1 − y1ω̂2)θ̃2 + q(vcx)θ̃2

y3vcz θ̃3 + vczû2θ̃1 + (y2ω̂1 − y1ω̂2)θ̃3 + q(vcy)θ̃3

+ (y2ω̃1 − y1ω̃2) ŷ3

+ (y2ω̃1 − y1ω̃2) û1 + λ1 (vcx − v̂cx) û1

+ (y2ω̃1 − y1ω̃2) û2 + λ2 (vcy − v̂cy) û2



+ΓJT


 −y1b3 1 0

−y2b3 0 1



ŷ3

û1

û2

−
 ẏ1

ẏ2



+

 −y1y2ω̂1 + (1 + y2
1)ω̂2 − y2ω̂3

−(1 + y2
2)ω̂1 + y1y2ω̂2 + y1ω̂3




Using the output dynamics from Eq. 4–3, the error dynamics can be rewritten as

·
θ̃ = g(θ, ω, y1, y2, vcz)− g(θ̂, ω̂, y1, y2, vcz)− ΓJT

(
Jθ̃ + Ψ(y, ω̃)

)
. (4–13)

Using Assumption 4.2, and locally Lipschitz property of g (·), following relationship can be

developed ∥∥∥g(θ, ω, y1, y2, vcz)− g(θ̂, ω̂, y1, y2, vcz)
∥∥∥ ≤ ρ

(∥∥∥θ̃∥∥∥+ ‖ω̃‖
)

(4–14)

where ρ ∈ R+. The results from the angular velocity estimator in Section 4.1.1.1 prove

that ω̃1, ω̃2, ω̃3 → 0 therefore, Ψ(·)→ 0 as t→∞.

4.1.2 Stability Analysis

Theorem 4.1. If Assumptions 4.1-4.3 are satisfied, the reduced order observer in Eqs.

4–11 and 4–12 asymptotically estimates θ(t) in the sense that
∥∥∥θ̃(t)∥∥∥→ 0 as t→∞.
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Proof. The stability of the error system in Eq. 4–13 can be proved using a converse

Lyapunov theorem [96]. Consider the nominal system

·
θ̃ = f(θ̃) = −ΓJTJθ̃. (4–15)

Using Theorem 2.5.1 of [95] the error system in Eq. 4–15 is globally exponentially

stable if Assumption 4.2 is satisfied. Hence, θ̃(t) satisfies the inequality
∣∣∣∣∣∣θ̃(t)∣∣∣∣∣∣ ≤∣∣∣∣∣∣θ̃(t0)

∣∣∣∣∣∣α1e
−α2(t−t0), where α1, α2 ∈ R+, and α2 is directly proportional to Γ and in-

versely proportional to δ [3, 95]. Consider a set D ={ θ̃(t) ∈ R3
∣∣∣ ∥∥∥θ̃(t)∥∥∥ < ∞}. Using a

converse Lyapunov theorem there exists a function V : [0,∞)×D → R that satisfies

c1

∥∥∥θ̃(t)∥∥∥2

≤ V (t, θ̃) ≤ c2

∥∥∥θ̃(t)∥∥∥2

,

∂V

∂t
+
∂V

∂θ̃
(−ΓJTJθ̃) ≤ −c3

∥∥∥θ̃(t)∥∥∥2

,∥∥∥∥∂V∂θ̃
∥∥∥∥ ≤ c4

∥∥∥θ̃(t)∥∥∥ (4–16)

for some positive constants c1, c2, c3, c4. Using V (t, θ̃) as a Lyapunov function candidate

for the perturbed system in Eq. 4–13, the derivative of V (t, θ̃) along the trajectories of Eq.

4–13 is given by

V̇ (t, θ̃) =
∂V

∂t
+
∂V

∂θ̃
(−ΓJTJθ̃) +

∂V

∂θ̃
(g(θ, ω, y1, y2, vcz)− g(θ̂, ω̂, y1, y2, vcz))

+
∂V

∂θ̃
(−ΓJTΨ(y, ω̃)).

Using the bounds in Eq. 4–16 the following inequality is developed

V̇ (t, θ̃) ≤ −(c3 − c4ρ)
∥∥∥θ̃∥∥∥2

+ c4d
∥∥∥θ̃∥∥∥ (4–17)
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where ρ is introduced in Eq. 4–14 and d(t) = ‖Γ‖
∥∥JT∥∥ ‖Ψ(y, ω̃)‖+ρc4 ‖ω̃‖ where d(t)→ 0

as t→∞. Using Theorem 4.14 of [96] the estimates of c3 and c4 are given by2

c3 =
1

2
, c4 =

2α1

(α2 − L)

[
1− e−

(α2−L) ln(2α21)

2α2

]
where L ∈ R+ is an upper bound on the norm of Jacobian matrix ∂f(θ̃)

∂θ̃
, where f(θ̃)

is defined in Eq. 4–15. Since α2 is directly proportional to the gain Γ, the inequality

c3 − c4ρ = 1
2
− 2α1ρ

(α2−L)

[
1− e−

(α2−L) ln(2α21)

2α2

]
> 0 can be achieved by choosing the gain Γ

sufficiently large. Using Eqs. 4–16, 4–17, and based on the development in Section 9.3

of [96], the following bound is obtained∥∥∥θ̃(t)∥∥∥ ≤√c2

c1

e
c4
2c1

∥∥∥θ̃(t0)
∥∥∥ e−β(t−t0) +

c4

2c1

e
c4
2c1

ˆ t

0

e−β(t−τ)d(τ)dτ (4–18)

where a constant convergence rate β > 0 can be increased by increasing c3. From Eq.

4–18,
∥∥∥θ̃(t)∥∥∥ ∈ L∞, thus θ̃1(t), θ̃2(t), θ̃3(t) ∈ L∞. Since θ̃1(t), θ̃2(t), θ̃3(t) ∈ L∞,

and the fact that θ1(t), θ2(t), θ3(t) ∈ L∞ can be used to conclude that θ̂1(t), θ̂2(t),

θ̂3(t) ∈ L∞. Using the result from Section 4.1.1.1 that ‖ω̃(t)‖ → 0 as t → ∞, the

function ‖Ψ(y, ω̃)‖ → 0 as t → ∞. Hence, d(t) → 0 as t → ∞ and d(t) ∈ L∞. Since

d(t)→ 0 as t→∞ and d(t) ∈ L∞, by the Lebesgue dominated convergence theorem [104]

limt→∞
´ t

0
e−β(t−τ)d(τ)dτ =

´ t
0
e−βσ limt→∞ d(τ − σ)dσ = limt→∞ d(t)

β
= 0 [see Theorem

3.3.2.33 of [105]]. Lemma 9.6.3 of [96] can now be invoked to show that
∥∥∥θ̃(t)∥∥∥ → 0 as

t → ∞. Hence, the reduced order estimator in Eqs. 4–11 and 4–12 identifies the structure

of observed feature points and unknown camera motion asymptotically. Since y3(t), u1(t),

and u2(t) can be estimated, the motion parameters b1(t) and b2(t) can be recovered based

on the definition of u(t).

2 Note that limα2→Lc4 = limα2→L

1−e
−

(α2−L)ln(2α21)
2α2

(α2−L)

 = 0.
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4.2 Simulation

In this addendum, a numerical solution is presented to illustrate the performance of

the proposed estimation in estimating depth of a feature point and linear, and angular

velocities of the camera. The time varying angular motion of the camera is selected as

ω =

[
0.01 sin( t

2
) 0.01 sin( t

2
) 0

]T
.

The linear velocities in the X and Y directions are updated using the equation

v̇c(t) =

[
−v2

cx(t) −v2
cy(t)

]T
which is of the form described by (7) in the chapter. The linear velocity in Z direction

measured using a sensor is chosen as

vcz(t) = cos(2t).

The initial linear velocity in the X and Y directions are chosen as

vc(t0) =

[
1 1

]T
,

and the initial Euclidean coordinates of the first point are chosen as

m̄(t0) =

[
10 10 100

]T
.

The camera motion induces a motion of the feature points in the image frame. The

camera calibration matrix is arbitrarily chosen to be

Ac =


800 0 300

0 800 200

0 0 1

 .
Points are tracked in the image while the camera is moving. Image coordinates of the first

point and linear velocity vcz(t) of the camera are fed back to the estimator. The states of

67



0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0.012

Time (sec)

S
ta

te

 

 

y
3

u
1

u
2

Figure 4-1. State
[
y3 u1 u2

]T
.

the estimator are initialized to

ȳ3(t0) = 0.1, ū1(t0) = 0.1, ū2(t0) = 0.1.

The estimator gain is chosen as

Γ =


3.6 0 0

0 0.44 0

0 0 0.44

 .
A measurement noise with mean zero and variance 0.1 is added using Matlab’s ‘randn()’

command to the image point vector p defined in (4) and linear velocity in Z direction

vcz(t). The state vector θ(t) = [y3(t), u1(t), u2(t)] is shown in Fig. 4-1. The state esti-

mated by an observer in (18) and (19) is shown in Fig. 4-2. In Fig. 4-3, an asymptotic

convergence of the estimation error is shown in the presence of noisy measurement inputs.
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4.3 Summary

A reduced order observer is developed for the estimation of the structure (i.e. range

to the target and Euclidean coordinates of the feature points) of a stationary target with

respect to a moving camera, along with two unknown time-varying linear velocities and

the angular velocity. The angular velocity is estimated using Homography relationships

between two camera views. The observer requires the image coordinates of the points,

a single linear camera velocity, and the corresponding linear camera acceleration in any

one of the three camera coordinate axes. Under a physically motivated PE condition,

asymptotic convergence of the observer is guaranteed. However, future efforts could

potentially eliminate the need for any model of the vehicle trajectory (even if uncertain as

in this result) and eliminate the need for an acceleration measurement.
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Chapter 5
A LYAPUNOV-BASED OBSERVER FOR A CLASS OF NONLINEAR SYSTEMS

WITH APPLICATION TO IMAGE-BASED STRUCTURE AND MOTION
ESTIMATION

In this chapter, an online solution is presented to answer the question: Given ob-

servations of point correspondences in every image of a video stream with known camera

motion, is it possible to recover the Euclidean structure and motion (i.e. linear and

angular velocities) of independently moving objects observed by the moving camera? A

nonlinear observer is developed to estimate the structure and motion of the object viewed

by a moving camera. The observer algorithm uses camera velocities and the feature point

data obtained from an image sequence. The proposed method has several advantages over

the existing methods. There are no requirements of minimum number of point correspon-

dences or number of views. The nonlinear observer processes the data in every image as

it arrives, and thus, can perform real-time computation of the structure and motion of a

moving object. A stability analysis of the proposed observer is presented which guarantees

convergence of the observer, provided an observability condition based on the persistency

of excitation (PE) of the camera motion is satisfied.

5.1 Nonlinear Observer

5.1.1 System Dynamics

Consider a class of nonlinear systems described by the following dynamics

ẏ = f(y, u) + J(y, u)x,

ẋ = g(y, x, u) + d(t) (5–1)

where y (t) ∈ Y ⊂ Rn1 is the measured state, x (t) ∈ X ⊂ Rn2 is the unmeasured

state, u (t) ∈ U ⊂ Rm is the input, d (t) ∈ D ⊂ Rn2 is an external disturbance,

J : Rn1×Rm → Rn1×n2 is a known function of inputs and outputs, and f : Rn1×Rm → Rn1

and g : Rn1 × Rn2 × Rm → Rn2 are known nonlinear functions. The sets Y , X , U and D

are compact sets. The system satisfies the following assumptions.
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Assumption 1: The functions g (y, x, u) and ġ (y, x, u) are bounded for all y ∈ Y ,

x ∈ X and u ∈ U , and is locally Lipschitz with respect to x in the sense that ∃γ ∈ R+ :

‖g (y, x1, u)− g (y, x2, u)‖ ≤ γ ‖x1 − x2‖ , where x1, x2 ∈ Ω and Ω is a compact subset of

Rn2 .

Assumption 2: The unknown time-varying disturbance satisfies the properties:

ḋ (t) ∈ L∞ and d (t) ∈ L2 ∩ L∞ [106,107].

Assumption 3: The functions J (y, u) , J̇ (y, u) , J̈ (y, u) are bounded for all y ∈ Y and

u ∈ U .

Assumption 4: There exists β1, ε ∈ R+ such that the inequality1

t+εˆ

t

JT (y (σ) , u (σ))J(y (σ) , u (σ))dσ ≥ β1In2

is satisfied for all t ≥ 0. This is the well-known persistence of excitation (P.E.) condition

[95].

5.1.2 State Estimator

A state estimator is developed for the system in Eq. 5–1 under Assumptions 1-4. To

quantify the estimation objective, errors denoted by e1(y, t) ∈ Rn1 and e2(x, t) ∈ Rn2 are

defined as

e1 , y − ŷ, e2 , x− x̂ (5–2)

where ŷ (t) ∈ Rn1 and x̂ (t) ∈ Rn2 are the estimates of y (t) and x (t) . To facilitate the

stability analysis, a filtered error r(e1, ė1) ∈ Rn1 is defined as

r , ė1 + αe1 (5–3)

1 For any two matrices X and Y , the expression X ≥ (>)Y means the matrix X − Y is
positive semi-definite (positive definite). The subscript of the Identity matrix I defines the
dimension of I.
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where α ∈ R+ is a tuning parameter. Based on the structure of Eq. 5–1, a full-order

continuous nonlinear observer is designed as

˙̂y = f(y, u) + (α + β)e1 + v,

˙̂x = g(y, x̂, u) + ΓJT (y, u) (v − αe1)− ΓJT (y, u) J (y, u) x̂ (5–4)

where Γ ∈ Rn2×n2 is a gain matrix, v(e1) ∈ Rn1 is the generalized solution to

v̇ = βαe1 + ρsgn(e1), v (0) = 0 (5–5)

where β, ρ ∈ Rn1×n1 are diagonal gain matrices, and sgn (e1) =

[
sgn (e11) .. sgn (e1n1)

]T
.

The closed-loop error dynamics for e1 (y, t) and e2 (x, t) are determined by differenti-

ating Eq. 5–2 and using Eqs. 5–1 and 5–4 as

ė1 = Jx− (α + β)e1 − v, (5–6)

ė2 = g (y, x, u)− g (y, x̂, u)− ΓJT (v − αe1) + ΓJTJx̂+ d. (5–7)

The closed-loop dynamics for r (e1, ė1) are determined by differentiating Eq. 5–3 and using

Eq. 5–6 as

ṙ = Jẋ+ J̇x− βė1 − v̇. (5–8)

Let χ1 (y, u, x, ẋ) , J (y, u) ẋ (t) + J̇ (y, u)x (t) . From Eq. 5–1 and Assumption 1-3,

ẋ (t) , ẍ (t) ∈ L∞; these facts, along with Assumption 3, indicate that

‖χ1 (y, u, x, ẋ)‖ ≤ ζ1, ‖χ̇1 (y, u, x, ẋ)‖ ≤ ζ2 (5–9)

where ζ1, ζ2 ∈ R+ are known constants. Utilizing Eq. 5–5, the expression in Eq. 5–8 can

be written as

ṙ = χ1 − βr − ρsgn(e1). (5–10)
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5.1.3 Stability Analysis

Stability of the observer in Eq. 5–4 is analyzed by first studying the stability of

the e1(t) dynamics. Since χ1 (y, u, x, ẋ) satisfies the bounds in Eq. 5–9, χ1 (y, u, x, ẋ)

can be considered as a time-varying bounded disturbance. The robust term v(t) is used

to compensate for the disturbance χ1 (y, u, x, ẋ) and asymptotically stabilize e1(t) and

r(t). Hence in Eq. 5–6, the signal v(t) identifies the term J(y, u)x(t) and can be used to

stabilize the ė2(t) dynamics in Eq. 5–7. The main result of the paper follows in Theorem

1 which proves ‖e2(t)‖ → 0 as t → ∞ using tools from converse Lyapunov theory. To

facilitate the proof for Theorem 1, the following Lemma is established.

Lemma 5.1. The error system in Eq. 5–6 is globally asymptotically stable in the sense

that

‖e1(t)‖ → 0 as t→∞

provided Assumptions 1-3 and following sufficient conditions are satisfied

ρ > ζ1 +
1

α
ζ2, β >

1

2
, α >

1

2
. (5–11)

Proof. Let ψ(r, e, P ) ∈ R2n1+1 be defined as

ψ ,

[
rT eT1

√
P

]T
(5–12)

such that R2n1+1 contains ψ(r, e, P ) = 0. In Eq. 5–12, the auxiliary function P (e1, r, χ1, t) ∈

R is a generalized solution to the differential equation

Ṗ = −L, P (0) = ρ

n1∑
i=1

e1i(0)− eT1 (0)χ1(0) (5–13)

where the function L (e1, r, χ1) ∈ R is defined as

L , rT (χ1 − ρsgn(e1)). (5–14)

Provided the sufficient conditions in Eq. 5–11 are satisfied, P (e1, r, χ1, t) ≥ 0 as shown in

the Appendix. Let V (ψ) : R2n1+1 → R be a Lipschitz, regular positive definite function
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defined as

V ,
1

2
rT r +

1

2
eT1 e1 + P (5–15)

which satisfies the following inequalities

1

2
‖ψ‖2 = U2 (ψ) ≤ V ≤ U1 (ψ) = ‖ψ‖2 . (5–16)

The closed-loop system in Eqs. 5–3, 5–8, and 5–13 can be described by ψ̇ = F (ψ, t) ,

where F (ψ, t) ∈ R2n1+1. The right-hand side of the closed-loop system F (ψ, t) is discon-

tinuous in the set {(ψ, t)| e1 = 0} . As shown in [108, 109], a unique generalized solution

can be established in the Filippov’s sense by studying a differential inclusion ψ̇ ∈ F (ψ, t) ,

where ψ (r, e, P ) is absolutely continuous (i.e., differentiable almost everywhere (a.e.))

and F (·) is Lebesgue measurable and locally bounded. Under Filippov’s framework,

generalized Lyapunov stability theory can be used to establish strong stability of the

closed-loop system in Eqs. 5–3, 5–8, and 5–13 (see [110–112] for further details). Since

V (ψ) is Lipschitz and regular, and ψ (r, e, P ) is absolutely continuous, Theorem 2.2

of [112] can be invoked to conclude that V (ψ) is absolutely continuous, V̇ (ψ) exists a.e.,

and V̇ (ψ) ∈a.e. ˙̃V (ψ) where

˙̃V (ψ) =
⋂

ξ∈∂V (ψ)

ξTK

[
ṙ ė1

1
2
P−

1
2 Ṗ

]T
(5–17)

where ∂V (ψ) is the generalized gradient of V (ψ) [111], and K [·] is defined in [110, 112].

Since V (ψ) is Lipschitz and regular, Eq. 5–17 can be simplified as [110]

˙̃V (ψ) = ∇V TK

[
ṙ ė1

1
2
P−

1
2 Ṗ

]T
=

[
r e1 2

√
P

]
K

[
ṙ ė1

1
2
P−

1
2 Ṗ

]T
.
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Utilizing Eqs. 5–3, 5–8, and 5–13, and using Property 2, 5, and 7 of K[·] given in Theorem

1 of [110] yields

˙̃V ⊂ rT (χ1 − βr − ρK [sgn(e1)]) + eT1 r − αeT1 e1 − rT (χ1 − ρK [sgn(e1)])

= −βrT r + eT1 r − αeT1 e1

where
(
rT − rT

)
i
SGN (e1i) = 0 and K [sgn (e1)] = SGN (e1) are used [110], where

SGN(·) is defined such that SGN (e1i) = −1 if e1i < 0, [−1, 1] if e1i = 0, and 1 if ei1 > 0.

Using Young’s inequality to show that ‖e1‖ ‖r‖ ≤ 1
2
‖e1‖2 + 1

2
‖r‖2 , the following inequality

is obtained
˙̃V ≤ −(β − 1

2
) ‖r‖2 − (α− 1

2
) ‖e1‖2

where the symbol ≤ means every element of ˙̃V (ψ) is less than or equal to the right hand

side [112]. Choosing α > 1
2
and β > 1

2
, the following upper bound can be established

˙̃V ≤ −β̄ ‖r‖2 − ᾱ ‖e1‖2 = −U (ψ) (5–18)

where β̄ , β − 1
2
, ᾱ , α− 1

2
. The result in Eq. 5–18 indicates that

V̇ (ψ) ≤ −U (ψ) ∀V̇ (ψ) ∈a.e. ˙̃V (ψ) . (5–19)

The inequalities in Eqs. 5–16 and 5–19, indicate that V (ψ) ∈ L∞; thus r(t), e1(t) ∈ L∞,

and from y (t) ∈ L∞, ŷ (t) ∈ L∞. Since r(t) and e1(t) ∈ L∞, Eq. 5–3 can be used to

show that ė1(t) ∈ L∞, and Eqs. 5–5, 5–8, and Assumption 1 can be used to show that

v̇(t), ṙ(t) ∈ L∞. Since r (t) , e1(t) ∈ L∞, Eq. 5–10 can be used to prove that r (t) is

uniformly continuous. From Eq. 5–19 and the fact that V (ψ) ∈ L∞, r (t) , e1 (t) ∈ L2.

Since ė1 (t) ∈ L∞, e1 (t) ∈ L∞ ∩ L2, ṙ (t) ∈ L∞, and r (t) ∈ L∞ ∩ L2, Barbalat’s lemma can

be invoked to prove that

‖r(t)‖ → 0 and ‖e1 (t)‖ → 0 as t→∞. (5–20)
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Theorem 5.1. Given the dynamics in Eq. 5–1 with inputs u (t) and output y (t) , the

observer in Eq. 5–4 asymptotically estimates the state x (t) in the sense that

‖e2 (t)‖ → 0 as t→∞

provided Assumptions 1-4 are satisfied.

Proof. Substituting v(t) from the ė1(t) dynamics into the ė2(t) dynamics in Eq. 5–7 yields

ė2 = g − ĝ − ΓJTJe2 − ΓJT (−r − βe1) + d. (5–21)

Since g (y, x, u) is locally Lipschitz, the Mean Value Theorem (MVT) can be invoked to

yield

g(y, x, u)− g(y, x̂, u) = Λ(y, x̂, u)e2(t), (5–22)

where Λ(y, x̂, u) is bounded for all time t as

Λ̄ = sup
t
‖Λ(y, x̂, u)‖ . (5–23)

The ė2(t) dynamics in Eq. 5–21 can be written as

ė2 = −ΓJTJe2 + Λe2 + ΓJT r + ΓJTβe1 + d. (5–24)

The nominal system

ė2 = f̄ (e2) = −ΓJTJe2 (5–25)

is globally exponentially stable if Assumption 4 is satisfied using Theorem 2.5.1 of [95].

Hence, trajectories of the nominal system in Eq. 5–25 satisfy the inequality:

‖e2(t)‖ ≤ k ‖e2(0)‖ e−λ(t−t0), ∀t ≥ t0 ≥ 0
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where k, λ ∈ R are positive constants. Using the converse Lyapunov theorem there exists a

Lyapunov function V̄1 : [0,∞)× Rn2 → R that satisfies

c11 ‖e2‖2 ≤ V̄1(t, e2) ≤ c21 ‖e2‖2 ,

˙̄V1(t, e2) =
∂V̄1

∂t
+
∂V̄1

∂e2

(
−ΓJTJe2

)
≤ −c31 ‖e2‖2 ,∥∥∥∥∂V̄1

∂e2

∥∥∥∥ ≤ c41 ‖e2‖ , (5–26)

where c11, c21, c31, c41 ∈ R+. Taking the time derivative of V̄1(t, e2) along the trajectories of

the system

ė2 = −ΓJTJe2 + Λe2 (5–27)

the following expression is obtained

˙̄V1(t, e2) =
∂V̄1

∂t
+
∂V̄1

∂e2

(
−ΓJTJe2 + Λe2

)
≤ − c31 ‖e2‖2 + c41Λ̄ ‖e2‖2 (5–28)

= −
(
c31 − c41Λ̄

)
‖e2‖2 .

Using Theorem 4.14 of [96], the estimates for c31 and c41 are given by

c31 =
1

2
, c41 =

2α1

(α2 − L)

[
1− e−

(α2−L)ln(2α21)
2α2

]

where α1, α2 ∈ R+ and L ∈ R+ is an upper bound on the norm of the Jacobian matrix

∂f̄(e2)
∂e2

, where f̄ (e2) is defined in Eq. 5–25. Note that limα2→Lc41 = limα2→L

1−e
−

(α2−L)ln(2α21)
2α2

(α2−L)

 =

0. Since α2 is directly proportional to the gain Γ [95], the inequality c31 − c41Λ̄ > 0 can

be achieved by choosing the gain Γ sufficiently large. Using the upper bounds in Eq. 5–26

and the inequality in Eq. 5–28, the error system in Eq. 5–27 is globally exponentially
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stable. Hence, there exists a Lyapunov function V̄2 : [0,∞)× Rn2 → R that satisfies

c12 ‖e2‖2 ≤ V̄2(t, e2) ≤ c22 ‖e2‖2 ,

˙̄V2(t, e2) =
∂V̄2

∂t
+
∂V̄2

∂e2

(
−ΓJTJe2 + Λe2

)
≤ −c32 ‖e2‖2 ,∥∥∥∥∂V̄2

∂e2

∥∥∥∥ ≤ c42 ‖e2‖ (5–29)

where c12, c22, c32, c42 ∈ R+. Taking the time derivative of V̄2 (t, e2) along the trajectories of

the error system in Eq. 5–24, the following expression is obtained:

˙̄V2 =
∂V̄2

∂t
+
∂V̄2

∂e2

(
−ΓJTJe2 + Λe2 + ΓJT r + ΓJTβe1 + d

)
≤ −c32 ‖e2‖2 + c42 ‖e2‖

∥∥ΓJT (r + βe1)
∥∥+ c42 ‖e2‖ ‖d‖

≤ −c32 ‖e2‖2 + c42ς1 ‖e2‖ ‖r‖+ c42ς2 ‖e2‖ ‖e1‖+ c42 ‖e2‖ ‖d‖

where the fact that the matrix J (y, u) is norm bounded is used so that
∥∥ΓJT

∥∥ ≤ ς1 and∥∥ΓJTβ
∥∥ ≤ ς2 for constants ς1, ς2 ∈ R+. Completing the squares, the following inequality

can be obtained

˙̄V2 ≤ −γ1 ‖e2‖2 + γ2 (5–30)

where γ1 , c32−ξ1−ξ2 > 0, γ2 (t) , c242ς
2
1‖r(t)‖

2+ς22‖e1(t)‖2

4ξ1
+

c242‖d(t)‖2

4ξ2
and γ1, γ2 (t) , ξ1, ξ2 ∈ R+.

Using the bounds on V̄2 (t, e2) in Eq. 5–29, the inequality in Eq. 6–19 can be expressed as

˙̄V2 ≤ −
γ1

c22

V̄2 + γ̄2 (5–31)

where γ̄2 , max (γ2) . From Eqs. 5–29 and 5–31, V̄2 (t, e2) decreases along the trajectories

of Eq. 5–24 until the solution reaches a compact set Ωc ,
{
e2 (t)| ‖e2 (t)‖ ≤

√
γ̄2
γ1

}
. Hence,

all solutions of the closed-loop system Eq. 5–24 converge to the compact ball Ωc and

all signals of the closed-loop system Eq. 5–24 are uniformly ultimately bounded. Since

e2 (t) ∈ L∞, using Eq. 5–29, V̄2 (t, e2) ∈ L∞. Integrating Eq. 6–19, following inequality can
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be obtained

tˆ

t0

γ1 ‖e2 (τ)‖2 dτ ≤ V̄2 (t0) +
c2

42

4ζ1

ς2
1

tˆ

t0

‖r (τ)‖2 dτ + ς2
2

tˆ

t0

‖e1 (τ)‖2 dτ

 (5–32)

+
c2

42

4ζ2

tˆ

t0

‖d (τ)‖2 dτ

Using Assumption 2 and the fact that r (t) , e1 (t) ∈ L2 (from Eq. 5–19), it can be

concluded that ˆ t

t0

‖e2(τ)‖2 dτ <∞.

Hence, e2(t) ∈ L2 ∩ L∞. Since all signals on the right hand side of Eq. 5–24 are bounded,

ė2(t) ∈ L∞. Thus, Barbalat’s lemma can be invoked to prove that ‖e2(t)‖ → 0 as

t→∞.

5.2 Application to Structure and Motion Problem

In this section, the nonlinear observer developed in Section 5.1 is applied to a

well known machine vision problem called ‘structure and motion from motion’. In

contrast to the traditional ‘structure from motion’ problem where the objective is to

estimate structure of a stationary object, the SaMfM problem solves the structure and

motion estimation of the object moving with unknown velocities. In the following,

the estimation objective is described and a physical plant model is provided which

can be transformed into a state space model of the form given in Eq. 5–1 under some

assumptions. An observer is developed by following the guidelines presented in Section

5.1.2. The performance of the observer is demonstrated via a numerical simulation.

5.2.1 Structure and Motion from Motion (SaMfM) Objective

The objective of SaMfM is to recover the structure (i.e. Euclidean coordinates) and

motion (i.e. Euclidean linear and angular velocities) of moving objects observed by a

moving camera, assuming all camera velocities are known. The object can be tracked as a
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single point or a collection of multiple points, where the range (i.e., 1
x3(t)

) and the motion

of each point are estimated.

5.2.2 State Dynamics Formulation

The camera-object relative motion model developed in Chapter 2 is used for the

subsequent technical development in this chapter. Some assumptions are made on the

moving object’s velocities to facilitate the development.

The states defined in Eq. 2–3 contain unknown structure information of the ob-

ject. To facilitate the observer design, states are defined in this section to incorporate

unknown structure and velocity information. Specifically, an auxiliary state vector

p(t) =

[
p1(t) p2(t) p3(t)

]T
∈ R3 is defined as

p ,

[
vpxy3(t) vpyy3(t) vpzy3(t)

]T
(5–33)

which incorporates the unknown object velocity information. To recover the 3D structure,

the state y3(t) should be estimated because it contains range information. Since, the states

y1(t), y2(t) can be measured from the images, the estimated state y3(t) can be used to

scale y1(t) and y2(t), and thus m̄(t), i.e. the 3D structure can be recovered. To recover

velocity information, the state p(t) must be estimated. Once y3(t) and p(t) are estimated,

velocity information can be recovered by scaling the estimated p(t) by the estimated y3(t).

Using Eqs. 2–3 and 2–8, the dynamics of the state vector y(t) are expressed as

ẏ1 = Ω1 + (vcx − y1vcz)y3 − p1 + y1p3,

ẏ2 = Ω2 + (vcy − y2vcz)y3 − p2 + y2p3,

ẏ3 = −vczy2
3 − (y2ω1 − y1ω2)y3 + vpzy

2
3 (5–34)

where Ω1(t) ∈ R and Ω2(t) ∈ R are defined as

Ω1(t) , −y1y2ω1 +
(
1 + y2

1

)
ω2 − y2ω3,

Ω2(t) , −
(
1 + y2

2

)
ω1 + y1y2ω2 + y1ω3.
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Differentiating Eq. 5–33 and using Eq. 5–34, the dynamics of the state p(t) can be

represented by the following set of differential equations

ṗ1 = y3v̇px − vczp1y3 − (y2ω1 − y1ω2)p1 + p3p1,

ṗ2 = y3v̇py − vczp2y3 − (y2ω1 − y1ω2)p2 + p3p2,

ṗ3 = y3v̇pz − vczp3y3 − (y2ω1 − y1ω2)p3 + p2
3. (5–35)

By defining the vector z(t) ∈ R2 and the vector θ(t) ∈ R4 as

z(t) ,

[
y1 y2

]T
,

θ(t) ,

[
y3 p1 p2 p3

]T
the state dynamics in Eqs. 5–34 and 5–35 can be expressed as

ż = Ω(z, u) + J(z, u)θ,

θ̇ = g(z, θ, u) + d (t) (5–36)

where Ω(t) =

[
Ω1(t) Ω2(t)

]T
, u(t) =

[
vc(t) ω(t)

]T
, d (t) = y3 (t) v̇p (t) , and the

functions J(z, u) ∈ R2×4 and g(z, θ, u) ∈ R4 are given by

J =

 (vcx − y1vcz) −1 0 y1

(vcy − y2vcz) 0 −1 y2

 , (5–37)

and

g =



−vczy2
3 − (y2ω1 − y1ω2)y3 + p3y3

−vczp1y3 − (y2ω1 − y1ω2)p1 + p3p1

−vczp2y3 − (y2ω1 − y1ω2)p2 + p3p2

−vczp3y3 − (y2ω1 − y1ω2)p3 + p2
3


. (5–38)

Assumption 5.1. The velocity of object expressed in the camera reference frame satisfies

v̇p (t) ∈ L2 ∩ L∞ and v̈p (t) ∈ L∞.
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Assumption 5.2. The camera velocities ω (t) , vc (t) and the point velocity vp (t) belongs to

class C2 with bounded derivatives.

Assumption 5.3. There exists β̄2, ε̄ ∈ R+ such that the inequality

t+ε̄ˆ

t

JT (z (τ) , u (τ))J(z (τ) , u (τ))dτ ≥ β̄2I4 ∀t ≥ 0.

Remark 5.1. Assumption 5.5 indicates that the linear velocity of the moving object vp (t) ,

measured in the camera reference frame, can be time-varying but converges to a constant.

Assumption 5.5 holds for a special case of vp (t) = c, where c is a constant.

Remark 5.2. Based on Assumptions 5.5 and 5.6, Eqs. 5–33, 5–34 and 5–35 the following

inequalities can be developed

‖χ1 (t)‖ =
∥∥∥J (z, u) θ̇(t) + J̇ (z, u) θ (t)

∥∥∥ ≤ ξ̄3 ‖χ̇1 (t)‖ ≤ ξ̄4

where ξ̄3, ξ̄4 ∈ R+ denote known bounding constants.

Remark 5.3. (Observability Condition) Even though the rank of JT (z, u)J(z, u) can

be at most 2, the integration of JT (z, u)J(z, u) can achieve full rank [3, 95, 113, 114].

The condition in Assumption 5.5-5.7 fail if the camera is translating parallel to the ray

projected by the moving object on the camera, i.e., y1 (t) , y2 (t) = 0 or if the camera is not

translating in any direction, i.e.,vcx = vcy = vcz = 0 ∀t ≥ 0.

5.2.3 Structure and Motion Observer

Based on the work presented in Section 5.1.2, an observer is designed to estimate θ(t)

which contains unknown depth and unknown velocity information of the moving object.

Let ẑ (t) ∈ R2 and θ̂(t) ∈ R4 denote the estimates of z (t) and θ (t) . Based on the structure

of Eq. 5–36 and the observer design in Eq. 5–4, a full-order continuous nonlinear observer

is designed as

˙̂z = Ω(z, u) + (α + β)e1 + v,

˙̂
θ = g(z, θ̂, u) + ΓJT (z, u) (v − αe1)− ΓJTJθ̂ (5–39)
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where Γ ∈ R4×4 is a gain matrix, α, β ∈ R+ are tuning parameters, the signal v(t) ∈ R2 is

a generalized solution to

v̇ = βαe1 + ρsgn(e1), v (0) = 0 (5–40)

where ρ ∈ R2×2, sgn (e1) =

[
sgn (e11) sgn (e12)

]T
, and e1 (t) ∈ R2 is the output

estimation error defined as

e1 , y − ŷ.

If Assumptions 5 and 6 are satisfied, Assumptions 1-4 are satisfied by the dynamic system

in Eq. 5–36. Based on the stability analysis presented in Section 7.1.3, θ̂ (t) → θ (t) as

t→∞.

5.2.4 Conditions on the Moving Object Trajectory

In this section, physical constraints on the trajectory of the moving target due to

Assumption 5 are discussed. According to Assumption 2, the time-varying disturbance,

d (t) = y3 (t) v̇p (t) ∈ L2 ∩ L∞ and ḋ (t) = ẏ3v̇p + y3v̈p ∈ L∞. Using Remark 1, Assumption

5, Assumption 6 and Eq. 5–34, y3v̇p (t) ∈ L∞ and ẏ3v̇p + y3v̈p ∈ L∞. For y3 (t) v̇p (t) ∈ L2,

limt→∞

tˆ

0

‖y3 (τ) v̇p (τ)‖2 dτ <∞. (5–41)

Using ‖y3 (t) v̇p (t)‖2 ≤ ‖y3 (t)‖2 ‖v̇p (t)‖2 , the following norm inequality can be developed

limt→∞

tˆ

0

‖y3 (τ) v̇p (τ)‖2 dτ ≤
(
supt≥0 ‖y3 (t)‖2)limt→∞

tˆ

0

‖v̇p (τ)‖2 dτ

 .

Using Remark 1, y3 (t) ∈ L∞ hence, supt≥0 ‖y3 (t)‖2 <∞. From Assumption 5, v̇p (t) ∈ L2;

thus, Eq. 6–10 is satisfied.

According to Remark 2, one of the cases for which Assumption 5 is satisfies is when

the object velocity, vp (t) , is constant, i.e.,

R̄v̄p = c (5–42)
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where c ∈ R3 is a vector of constants. The expression in Eq. 5–42 can be interpreted in

two ways:

Case 1: The rotation matrix between the current camera coordinate frame and the

inertial coordinate frame, R̄ (t) , and the velocity of the moving object in the inertial

coordinate frame, v̄p (t) , do not change with time. The rotation matrix R̄ (t) is a constant

matrix if the angular velocities of the camera are zero. Hence, if the camera exhibits only

translational motion and the object velocity is constant in the inertial coordinate frame

then the expression in Eq. 5–42 holds.

Case 2: The time derivative of the equality in Eq. 5–42 is zero, i.e., ˙̄R (t) v̄p (t) +

R̄ (t) ˙̄vp (t) = 0. Using ˙̄R (t) = [ω (t)]× R̄ (t) , the following ordinary differential equation

(ODE) can be developed

˙̄vp = −R̄T [ω]× R̄v̄p.

Based on the fact that R̄T (t) [ω (t)]× R̄ (t) =
[
R̄T (t)ω (t)

]
× , the following ODE is

obtained

˙̄vp = −
[
R̄Tω

]
× v̄p. (5–43)

Since R̄T (t)ω (t) = ω (t) , the ODE for object velocity can be expressed as

˙̄vp = − [ω]× v̄p. (5–44)

For a special case of constant camera angular velocity, ω, the ODE in Eq. 5–44 has

an analytical solution given by

v̄p (t) = e−[ω]×tv̄p (t0) . (5–45)

Using Rodrigues’ formula for a matrix exponential, Eq. 5–45 can be transformed into

v̄p (t) =

(
I +

[ω̄]×
‖ω̄‖

sin (‖ω̄‖) +
[ω̄]2×

‖ω̄‖2 (1− cos (‖ω̄‖))

)
v̄p (t0) (5–46)
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where ω̄ (t) , −ωt. For time varying object linear velocity, v̄p (t) , and the constant camera

angular velocity, ω, which in combination satisfies the equation Eq. 5–46, the object linear

velocity vp (t) satisfies the Assumption 5. Hence, the observer in Section 5.1 can be used

for the class of object linear velocity and camera angular velocity for which Eq. 5–46 is

satisfied.

For the case of time-varying camera angular velocity, an analytical solution to Eq.

5–46 is a wide open problem in literature. For v̄p (t) and ω (t) satisfying the ODE in

Eq. 5–44, Assumption 5 is satisfied and the observer in Eq. 5–39 can be used to achieve

asymptotic range and motion estimation.

5.3 Simulation

The performance of the observer in Eq. 5–39 is tested using a numerical simulation in

Matlab. The results are compared with the observer in [3]. The camera calibration matrix

is selected as

A =


720 0 320

0 720 240

0 0 1

 .
The velocities of the camera are selected as

vc (t) =

[
−3sin(t/5) + 2 2cos(t/10) + 1 5sin(t/2) + 0.5

]T
m/s,

ω (t) =

[
−0.01sin(t/5) 0.01cos(t/2) 0

]T
rad/s

and the time-varying object velocity v̄p (t) , expressed in the inertial frame, is shown in

Fig. 5-1. The equivalent object velocity expressed in the camera reference frame is

vp (t) =

[
−2 −1 −1

]T
m/s.

The initial relative range between the camera and the object is m (t0) =

[
4 4 50

]T
m.

The estimates are integrated using a fourth order Runge-Kutta integrator with a time step

of 0.01sec. For the proposed observer, the initial conditions and observer gains are selected
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as2 ẑ (t0) =

[
4
50

4
50

]T
, θ̂ (t0) =

[
0.015 −0.02 −0.01 −0.01

]T
, α = 70, β = 80,

ρ = diag

{[
0.05 0.05

]T}
, 3 and Γ = diag

{[
0.091 0.095 0.2 0.165

]T}
. The

initial conditions for the observer in [3] are selected exactly the same as for the proposed

observer and the observer gains are selected as4 α1 = α2 = 5, δ1 = δ2 = 0.01, and

Γ = diag

{[
0.091 0.095 0.2 0.165

]T}
. The errors in the estimation of θ (t) using the

proposed observer and the observer in [3] are shown in Figs. 5-2 and 5-3. From Fig. 5-3, it

is determined that the estimation errors converge to a small ball around the origin (a UUB

result). The proposed observer shows an improved transient performance over the observer

in [3]. In Fig. 5-4, a comparison of the estimated and actual 3D relative position of the

target is presented.

In the second simulation, the camera velocities are selected to be the same as the first

simulation and the object velocity, vp (t) , is selected as

vp (t) =

[
−2e−0.01t −1sin (0.001t) −1

]T
m/s.

The object velocity, vp (t) , is slowly time-varying and satisfies Assumption 5.5. The

initial conditions are chosen the same as the first simulation. The Γ gain is selected as

Γ = diag

{[
0.090 0.23 0.2 0.215

]T}
. The object velocity in the inertial frame is

shown in Fig. 5-5. The observer shows robust performance even in the presence of time-

varying object velocities, vp (t) as seen in the state estimation errors in Fig. 5-6, and the

estimated and actual position comparison in Fig. 5-7.

2 Since z (t) is measurable from the image, the initial conditions of ẑ (t) are selected
equal to z (t0) .

3 diag {·} represents a diagonal matrix constructor.

4 The symbols α1, α2, δ1, δ2 are introduced in [3].
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Figure 5-1. The velocity of the moving object measured in the inertial reference frame.
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Figure 5-2. State estimation errors using the proposed observer.
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Figure 5-3. State estimation errors using the observer in [3].
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Figure 5-4. Comparison of the actual and estimated 3D relative position of the object and
the camera.
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Figure 5-5. The velocity of the moving object measured in the inertial reference frame.
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Figure 5-6. State estimation errors for time varying velocity, vp (t) , using the proposed
observer.
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Figure 5-7. Comparison of the actual and estimated 3D relative position of the object and
the camera for time-varying object velocity vp (t).

5.4 Summary

An observer for a class of nonlinear systems is designed. The design is based on

an identifier approach where the unmeasurable part of the state is identified using a

robust identifier from the output dynamics and the identifier is used to stabilize the error

dynamics of the unmeasurable part of the state. It is shown that the observer design

improves upon existing solutions to the problem presented in [3] by proving asymptotic

estimation error convergence even in the presence of external disturbances. An application

of the observer to the structure and motion problem in machine vision is presented. The

observer has some advantages over both existing batch solutions and online solutions.

New insight on moving object trajectories are developed for online structure and motion

estimation when the object is moving.
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Chapter 6
LYAPUNOV-BASED UNKNOWN INPUT OBSERVER FOR A CLASS OF

NONLINEAR SYSTEMS

In this chapter, a nonlinear UIO is developed for a general class of multi-input multi-

output (MIMO) nonlinear systems. Based on the existence of a solution to the Riccati

equation, necessary and sufficient existence conditions are derived. The conditions provide

guidelines for choosing the observer gain matrix K based on the Lipschitz constant of

the nonlinearity present in the dynamics. An algorithm for choosing K based on the

Eigenvalue placement is suggested in [52]. In this chapter, K is obtained by solving an

LMI feasibility problem.

6.1 Nonlinear Unknown Input Observer

6.1.1 Nonlinear Dynamics

Consider a general class of MIMO nonlinear systems expressed as

ẋ = f(x, u) + g(y, u) +Dd

y = Cx (6–1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the known control input,

d(t) ∈ Rq is an unknown input, y(t) ∈ Rp is the output of the system1 , C ∈ Rp×n is full

row rank, D ∈ Rn×q is full column rank2 , g : Rp × Rm → Rn is nonlinear in y (t) and

u (t) , f : Rn × Rm → Rn is nonlinear in x(t) and u(t), and satisfies the Lipschitz condition

||f(x, u)− f(x̂, u)|| ≤ γ1 ||x− x̂|| where γ1 ∈ R+, and x̂ (t) ∈ Rn is an estimate of the

unknown state x (t) .

1 It is assumed that p ≥ q. This is a standard condition present in the UIO literature
(cf. [59–70,72–76,78]).

2 This condition is not restrictive since if rank (D) = q1 < q then D can be written as
D = D1D2 where rank (D1) = q1 and the new disturbance d̄ (t) = D2d (t) [60].
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The system in Eq. 7–1 can be written as

ẋ = Ax+ f̄(x, u) + g(y, u) +Dd

y = Cx (6–2)

where A ∈ Rn×n, and f̄(x, u) = f(x, u) − Ax. The auxiliary function f̄(x, u) satisfies the

Lipschitz condition [115,116]

||f(x, u)− f(x̂, u)− A (x− x̂)|| ≤ (γ1 + γ2) ||x− x̂|| (6–3)

where γ2 ∈ R+.

6.1.2 UIO Design

The UIO objective is to design an asymptotically converging state observer to

estimate x(t) in the presence of an unknown input d(t). To quantify this objective an

estimation error is defined as

e(t) , x̂(t)− x(t). (6–4)

Based on Eq. 7–8 and the subsequent stability analysis, the UIO for the system in Eq. 7–2

is designed as

ż = Nz + Ly +Mf̄(x̂, u) +Mg(y, u)

x̂ = z − Ey (6–5)

where z(t) ∈ Rn and N ∈ Rn×n, L ∈ Rn×p, M ∈ Rn×n are designed as [66]3

M = In + EC

N = MA−KC

L = K(Ip + CE)−MAE (6–6)

3 The subscript of the Identity matrix I defines the dimension of I.
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where E ∈ Rn×p is subsequently designed, and K ∈ Rn×p is a gain matrix which satisfies

the inequality

Q , NTP + PN + (γ1 + γ2)2 PMMTP + In < 0 (6–7)

where P ∈ Rn×n is a positive definite, symmetric matrix. Using Eq. 7–4, the equality

NM + LC −MA = 0n×n (6–8)

is satisfied, where 0i×j denotes a zero matrix of the dimensions i × j. If E is selected so

that

E = F + Y G (6–9)

where Y ∈ Rn×p can be chosen arbitrarily, and F and G are given by

F , −D(CD)†, G ,
(
Ip − (CD)(CD)†

)
then ECD = −D and the following equality is satisfied:

MD = (In + EC)D = 0n×q. (6–10)

Note that the generalized pseudo inverse of the matrix CD, defined as

(CD)† =
(

(CD)T (CD)
)−1

(CD)T

exists provided rank(CD) = q. Substituting Eq. 7–3 into Eq. 7–8, taking the time

derivative of the result, and using Eqs. 7–2 and 7–3 yields

ė = Nz + Ly +Mf̄(x̂, u)− (In + EC)Ax− (In + EC)f̄(x, u)− (In + EC)Dd.(6–11)

Using Eqs. 7–8 and 7–4, and the conditions in Eqs. 6–8 and 6–10 the error system in Eq.

7–9 can be written as

ė = Ne+M
(
f̄(x̂, u)− f̄(x, u)

)
. (6–12)

94



6.1.3 Necessary and Sufficient Condition

Lemma 6.1 provides a condition on the gain matrix K for the inequality in Eq. 7–5

to hold. The result of Lemma 6.1 is used in Theorem 6.1 to develop a necessary and

sufficient condition for the existence of the observer presented in Section 6.1.2.

Lemma 6.1. The matrix inequality in Eq. 7–5 is satisfied if the pair (MA,C) is ob-

servable, K is selected so that MA − KC is Hurwitz4 , and the following condition is

satisfied

min
ω∈R+

σmin (MA−KC − jωIn) >
√
γ3 (γ1 + γ2) (6–13)

where σmin (·) denotes the minimum singular value of a matrix, and γ3 , λmax
(
MMT

)
.

Proof. The proof of this theorem is inspired by the work in [52] which developed necessary

and sufficient conditions for an observer design for nonlinear systems with known inputs.

The development of the proof is based on the conditions for the existence of a solution to

the algebraic Riccati equation (ARE). Consider a Hamiltonian matrix H, defined as

H =

 A R

−Q −AT


where A, Q and R are real matrices, Q and R are symmetric. If the Hamiltonian, has no

imaginary eigenvalues, R is either positive semi-definite or negative semi-definite and the

pair
(
A,R

)
is stabilizable, then there exists a symmetric solution to the ARE

A
T
X +XĀ+XRX +Q = 0n×n.

Consider a Hamiltonian matrix, H, defined as

4 As pointed out in [52], stability of the matrix MA − KC is not sufficient for the error
system of the form (7–10) to be stable.
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H =

 MA−KC (γ1 + γ2)2MMT

−εIn − In − (MA−KC)T


associated with the ARE

(MA−KC)T P + P (MA−KC) + (γ1 + γ2)2 PMMTP + In + εIn = 0n×n (6–14)

where ε ∈ R+ is a small constant. Since (MA,C)is observable, the matrix K can be

selected so that MA−KC is Hurwitz, and hence the pair
(
MA−KC, (γ1 + γ2)2MMT

)
is

stabilizable. If H has no eigenvalues on the imaginary axis then there exists a symmetric

positive definite solution to the ARE in Eq. 6–14. In the following, it is proven that if the

condition in Eq. 7–11 is satisfied then the eigenvalues of H do not lie on the imaginary

axis. The proof is given by contradiction.

Consider the characteristic equation of H as

det

 λIn − (MA−KC) − (γ1 + γ2)2MMT

εIn + In λIn + (MA−KC)T

 = 0

where λ ∈ C denotes an eigenvalue of H. Using the fact that for any two real matrices

Ǎ and B̌, if det
(
B̌
)

= 1, then det
(
Ǎ
)

= det
(
Ǎ
)
det
(
B̌
)

= det
(
ǍB̌
)
, the characteristic

equation can be written as

det

 λIn − (MA−KC) − (γ1 + γ2)2MMT

εIn + In λIn + (MA−KC)T


 In − 1

1+ε

[
λIn + (MA−KC)T

]
0 In

 = 0.

Let the eigenvalues of H̄ be on the imaginary axis i.e., λ = jω, then the characteristic

equation becomes

det
[
[jωIn − (MA−KC)]

[
jωIn + (MA−KC)T

]
+ (1 + ε) (γ1 + γ2)2MMT

]
= 0.
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Using (MA−KC − jωIn)∗ = jωIn + (MA−KC)T , the characteristic equation is

transformed into following equality,

det
[
(MA−KC − jωIn) (MA−KC − jωIn)∗ − (1 + ε) (γ1 + γ2)2MMT

]
= 0. (6–15)

Now, it is shown that if Eq. 7–11 is true then the equality in Eq. 6–15 cannot be satisfied

which proves that H̄ cannot have eigenvalues on the imaginary axis.

Since the singular values of a matrix are continuous functions of the elements

of the matrix, σmin (MA−KC − jωIn) is a continuous function of ω ∈ R+ and

σmin (MA−KC − jωIn) → ∞ as ω → ∞. Hence, there exists a finite ω ∈ R+ for which

σmin (MA−KC − jωIn) has a minimum [52,104]. That is, ∃ω1 : min
ω∈R+

σmin (MA−KC − jωIn) =

σmin (MA−KC − jω1In) = γmin. Using Eq. 7–11 γmin = σmin (MA−KC − jω1In) >

√
γ3 (γ1 + γ2) and the following inequality holds:

(MA−KC − jωIn) (MA−KC − jωIn)∗ ≥ γ2
minIn ∀ω

5 where γmin ∈ R+, and (·)∗ denotes the complex conjugate transpose of a matrix. By

choosing ε such that γ2
minIn > (γ1 + γ2)2 (1 + ε) γ3In ≥ (γ1 + γ2)2 (1 + ε)

(
MMT

)
, the

following inequality can be obtained:

(MA−KC − jωIn) (MA−KC − jωIn)∗ − (1 + ε) (γ1 + γ2)2MMT > 0n×n. (6–16)

which contradicts the conclusion of Eq. 6–15 that (MA−KC − jωIn) (MA−KC − jωIn)∗−

(1 + ε) (γ1 + γ2)2MMT is a singular matrix. Hence, if Eq. 7–11 holds, then H can not

have eigenvalues on the imaginary axis. Thus, a symmetric solution to Eq. 6–14 exists and

Eq. 7–5 is satisfied.

5 For any two matrices X and Y , the expression X ≥ (>)Y means the matrix X − Y is
positive semi-definite (positive definite).
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Theorem 6.1. The nonlinear UIO in Eq. 7–3 is exponentially stable such that ∃ξ, ζ ∈ R+

‖e(t)‖ ≤ ζ ‖e(t0)‖ exp(−ξt)

iff rank(CD) = q and the condition in Eq. 7–11 is satisfied.

Proof. (Sufficiency) If rank(CD) = q then the solution to Eq. 6–10 exists. For proving

the sufficiency of the condition in Eq. 7–11, consider a Lyapunov candidate function

V (e) : Rn → R defined as

V = eTPe. (6–17)

The Lyapunov function satisfies

λmin (P ) ‖e‖2 ≤ V ≤ λmax (P ) ‖e‖2 (6–18)

where λmin and λmax are the minimum and maximum eigenvalues of the matrix P. Taking

the time derivative of Eq. 6–17 along the trajectories of Eq. 7–10 yields

V̇ = eT
(
NTP + PN

)
e+ 2eTPM

(
f̄(x̂, u)− f̄(x, u)

)
V̇ ≤ eT

(
NTP + PN

)
e+ 2

∥∥eTPM∥∥ ‖f(x̂, u)− f(x, u)− A (x− x̂)‖

V̇ ≤ eT
(
NTP + PN

)
e+ 2

∥∥eTPM∥∥ γ1 ‖e‖+ 2
∥∥eTPM∥∥ γ2 ‖e‖ .

Using the norm inequality

2γi
∥∥eTPM∥∥ ‖e‖ ≤ γ2

i

∥∥eTPM∥∥2
+ ‖e‖2 , ∀i = {1, 2},

the upper bound on V̇ is given by

V̇ ≤ eT
(
NTP + PN

)
e+ (γ1 + γ2)2 eTPMMTPe+ eT e

V̇ ≤ eT
(
NTP + PN + (γ1 + γ2)2 PMMTP + In

)
e

V̇ ≤ eTQe. (6–19)
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If the condition in Eq. 7–11 is satisfied, then Lemma 6.1 can be invoked to conclude

Q < 0 and hence V̇ < 0. Using Eqs. 6–17-6–19 the upper bounds for V (e) and e(t) can be

developed as

V (e) ≤ V (e (0)) exp (−ξt)

where ξ = λmax(Q)
λmin(P )

and

‖e(t)‖ ≤ ζ ‖e(0)‖ exp (−ξt)

where ζ = λmax(P )
λmin(P )

.

(Necessity) If rank(CD) < q then a solution to Eq. 6–10 does not exist and the UIO

in Eq. 7–3 cannot be designed. The necessity of the condition in Eq. 7–11, is proven with

the help of following proposition. If the observer gain K is chosen such that

min
ω∈R+

σmin (MA−KC − jωIn) ≤ √γ3 (γ1 + γ2) (6–20)

then there exists at least one matrix V ∈ Rn×n such that Mf̄(x, u) = V x has the Lipschitz

constant √γ3 (γ1 + γ2) , and the error dynamics in Eq. 7–10 are unstable. The proof of

this proposition follows the proof of Theorem 3 in [52]. Consider ω̄1 ∈ R+ such that

σmin (MA−KC − jω̄1In) < γ̄ (6–21)

where γ̄ ∈ R+ and satisfies γ̄ <
√
γ3 (γ1 + γ2). Choose ε̄ > 0 such that γ̄ + ε̄ <

√
γ3 (γ1 + γ2) . Since Eq. 6–21 holds, ∃W ∈ Rn×n : ‖W‖2 < γ̄, 6 and (MA−KC − jω̄1In +W )

is singular. Let

V = W + ε̄In (6–22)

thus, ‖V ‖2 ≤ ‖W‖2 + ‖ε̄In‖2 <
√
γ3 (γ1 + γ2) . Since (MA−KC − jω̄1In +W ) is singular,

using Eq. 6–22 (MA−KC + V − ε̄In − jω̄1In) is singular and the matrix MA−KC + V

has at least one eigenvalue with a positive real-part, viz,; ε̄ + jω̄1. Hence, if the condition

6 The norm ‖·‖2 denotes the maximum singular value.
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in Eq. 7–11 is not satisfied, then the error dynamics ė = (MA−KC) e + V e are not

asymptotically stable.

6.1.4 Conditions for Choosing Matrix A

In this section, conditions on choosing A are provided based on the necessary and

sufficient observer existence conditions. The existence conditions for the UIO in Eq. 7–3

can be summarized as follows:

1. (MA,C) is observable,

2. 7 rank(CD) = rank(D) = q,

3. MA−KC is Hurwitz, and

4. Eq. 7–11 holds.

Hence, matrix A should be chosen such that (MA,C)is observable. Since rank(CD) =

rank (D) = q, it is proven subsequently that the observability of the pair (MA,C) is

equivalent to the following rank condition [66,72]

rank

 λIn − A D

C 0p×q

 = n+ q, ∀λ ∈ C. (6–23)

Thus, A in Eq. 7–2 should be selected so that Eq. 7–12 is satisfied. The condition in Eq.

7–12 facilitates the selection of A based on the system matrices and hence circumvents

the computation of M for checking the observability of (MA,C). Another criteria on the

selection of A is to minimize the Lipschitz constant in Eq. 6–3.

In the following, Theorem 6.2 proves the relationship between Eq. 7–12 and the

observability of the pair (MA,C) and uses the result proved in Lemma 6.2.

7 Since rank (CD) = min {rank (C) , rank (D)} and by assumption rank (C) = p, p ≥ q,
the rank of D must be q for rank of CD to be q.
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Lemma 6.2. If rank (CD) = rank (D) = q, D† denotes a left inverse of matrix D,

then8 Ker
(
D†
)
∩ Ker (M) = φ, where φ is a null set, and if rank (M) = n − q then

rank

 M

D†

 = n.

Proof. From Eq. 6–10 MD = 0n×q, hence, Ker (M) = Im (D) . Also, Ker
(
D†
)

=

Ker
(
DT
)
and Ker

(
DT
)

= (Im (D))⊥ [117]. Hence, Ker
(
D†
)
∩Ker (M) = (Im (D))⊥ ∩

Im (D) = φ. Using the fact that the null spaces of M and D† do not have any common

elements,

 M

D†

h =

 Mh

D†h

 6= 0n+q ∀h ∈ Rn, where 0n+q is a zero vector of dimension

n+ q, and dim

Ker
 M

D†


 = 0. Using rank

 M

D†

+ dim

Ker
 M

D†


 = n, [117]

it can be concluded that rank

 M

D†

 = n.

Theorem 6.2. [66] Assume rank(CD) = rank(D) = q, and rank (M) = n− q. The pair

(MA,C) is observable iff Eq. 7–12 holds.

Proof. The rank condition rank(CD) = rank(D) = q is obtained as a necessary and

sufficient condition for the existence of an unknown input observer for linear systems

in [60, 62, 66, 72]. Using the Popov-Bellman-Hautus (PBH) test of observability, the pair

(MA,C) is observable iff

rank

 λIn −MA

C

 = n ∀λ ∈ C. (6–24)

8 Ker (·) denotes a kernel of a null space of a matrix and Im (·) denotes an image space
of a matrix.
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Consider the following matrix rank properties

Property 1: rank
(
ÃB̃
)

= rankB̃ if Ã ∈ Rl×r with rank r and B̃ ∈ Rr×s,

Property 2: rank
(
ÃB̃
)

= rankÃ if B̃ ∈ Rl×r with rank l and Ã ∈ Rs×l.

Using Eqs. 7–4, 6–24 and the Property 1, following equality is obtained

rank

 λM −MA

C

 = rank

 In λE

0p×n Ip


 λIn −MA

C


= rank

 λIn −MA

C

 = n ∀λ ∈ C.

Given matrices S ∈ R(n+q+p)×(n+p) and T ∈ R(n+q)×(n+q) as

S =


M 0n×p

D† 0q×p

0p×p Ip

 , T =

 In 0n×q

−
(
λD† −D†A

)
Iq


the result in Lemma 6.2 shows that S is full column rank (i.e., rank (S) = n+ p), and T is

full row rank matrix (i.e., rank (T ) = n + q). Using Properties 1 and 2, the following rank

condition can be obtained

rank

 λIn − A D

C 0p×q

 = rank

S
 λIn − A D

C 0p×q

T
 = rank


λM −MA 0n×q

0q×n Iq

C 0p×q


= q + rank

 λM −MA

C

 ∀λ ∈ C,

which implies that rank

 λM −MA

C

 = n. Hence, if rank (M) = n−q, the observability

of (MA,C) and Eq. 7–12 are equivalent.
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Remark 6.1. The condition in Eq. 7–12 implies that the pair (C,A,D) has no invariant

zeros. For a LTI system with unknown inputs, Eq. 7–12 implies observability [72]. In [72],

it is mentioned that system observability is not sufficient for the existence of an UIO for

LTI systems. The condition rank(CD) = rank(D) = q is also required for the existence

of the observer. The condition rank(CD) = rank(D) = q and Eq. 7–12 are defined as

the strong* detectability9 condition and are necessary and sufficient conditions for the

existence of UIO for LTI systems. For a general nonlinear system, necessary and sufficient

UIO existence conditions are unknown and is an open problem in the literature.

6.1.5 LMI Formulation

In the following section, the condition in Eq. 7–5 is reformulated as an LMI feasibility

problem. The matrices P , K and Y should be selected such that the sufficient condition

for the observer error stability in Eq. 7–5 is satisfied. Substituting N and M from Eq. 7–4

into Eq. 7–5 yields

(MA−KC)T P + P (MA−KC) + I

+ (γ1 + γ2)2 P (I + EC) (I + EC)T P < 0. (6–25)

After using Eq. 6–9, the inequality in Eq. 6–25 can be expressed as

AT (I + FC)T P + P (I + FC)A+ ATCTGTP T
Y

+PYGCA− CTP T
K − PKC + I (6–26)

+ (γ1 + γ2)2 (P + PFC + PYGC) (P + PFC + PYGC)T < 0

where PY = PY and PK = PK. For the observer synthesis, the matrices Y , K and

P > 0 should be computed such that the matrix inequality in Eq. 7–5 is satisfied. Since

9 The notion of ’strong* detectability’ is introduced in [72] to distinguish from a strong
detectability condition which implies minimum-phase condition for linear systems with
unknown inputs.
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P > 0, P−1 exists, and Y and K can be computed using Y = P−1PY , and K = P−1PK .

Using Schur’s complement, the inequality in Eq. 6–26 can be transformed into the matrix

inequality  P1 βR

βRT −I

 < 0 (6–27)

where

P1 = AT (I + FC)T P + P (I + FC)A+ ATCTGTP T
Y + PYGCA− CTP T

K − PKC + I,

R = P + PFC + PYGC,

β = γ1 + γ2.

The matrix inequality in Eq. 6–27 is an LMI in variables P , PY , and PK . The LMI

feasibility problem can be solved using standard LMI algorithms [118] and is a problem

of finding P , PY and PK such that β is maximized. Maximizing β is equivalent to

maximizing γ1 which means the observer can be designed for nonlinear functions with a

larger Lipschitz constant. If the LMI in Eq. 6–27 is feasible, then a solution to Eq. 7–5

exists. Hence, the LMI feasibility problem is a sufficient condition for the stability of the

observer. Alternatively, a sufficient numerical algorithm is presented in [52] to compute

K such that Eq. 7–11 is satisfied. The algorithm is based on the eigenvalue placement

approach and is a sufficient condition for Eq. 7–11 to be satisfied.

6.2 Summary

An UIO for a class of nonlinear systems is developed. Necessary and sufficient con-

ditions for the existence of the UIO are developed and computation of the observer gain

is achieved via an LMI formulation. The necessary and sufficient conditions developed

for the existence of developed UIO extend the necessary and sufficient conditions of UIOs

for LTI systems and the existence conditions of nonlinear observer for Lipschitz nonlinear

systems with known inputs.
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Chapter 7
APPLICATION OF THE UNKNOWN INPUT OBSERVER TO THE STRUCTURE

ESTIMATION

In this chapter, the unknown input observer developed in Chapter 6 is applied to

the structure and motion estimation problem with a moving object. The developed

causal algorithm requires less restrictive assumptions on the object’s motion than existing

approaches. The object is assumed to be moving on a ground plane with arbitrary

velocities observed by a downward looking camera with arbitrary linear motion. No

assumptions are made on the minimum number of points or minimum number of views

required to estimate the structure. Feature point data and camera velocity data from each

image frame is required. Simulation results are presented to show the effectiveness of the

proposed approach.

7.1 Structure and Motion Estimation

7.1.1 Structure and Motion from Motion (SaMfM) Objective

The objective of SaMfM is to recover the structure (i.e., Euclidean coordinates with

a scaling factor) and motion (i.e., velocities) of moving objects observed by a moving

camera, assuming that all camera velocities are known. In this chapter, an observer is

presented which estimates the structure of the moving object with respect to the moving

camera. It is assumed that one or more feature points on the object are tracked in each

image frame and camera velocities are recorded using sensors such as an IMU. The camera

is assumed to be internally calibrated. Estimating the structure of an object is equivalent

to estimating the state x(t) in each image frame. Based on the definition of the state in

Eq. 2–3, the structure of the moving object can be estimated by scaling x̂1(t) and x̂2(t) by

x̂3(t).
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7.1.2 Nonlinear Unknown Input Observer

Consider the following system

ẋ = f(x, u) + g(y, u) +Dd

y = Cx (7–1)

where x(t) ∈ R3 is a state of the system, u(t) ∈ R6 is a measurable control input, d(t) ∈ R

is an unmeasurable input, y(t) ∈ R2 is output of the system, the function f(x, u) is

nonlinear in x(t) and u(t) and satisfies the Lipschitz condition ||f(x, u)− f(x̂, u)|| ≤

γ1 ||x− x̂|| where γ1 ∈ R+. The system in Eq. 2–12 can be represented in the form of Eq.

7–1 with

f (x, u) =


(vcx − y1vcz)x3

(vcy − y2vcz)x3

−x2
3vcz − y2x3ω1 + y1x3ω2

 ,

g (y, u) =


−y1y2ω1 + (1 + y2

1)ω2 − y2ω3

−(1 + y2
2)ω1 + y1y2ω2 + y1ω3

0

 ,

and C =

 1 0 0

0 1 0

 is full row rank, D ∈ R3×1 is full column rank, and q = 1.

The system in (7–1) can be written in the following form

ẋ = Ax+ f̄(x, u) + g(y, u) +Dd

y = Cx (7–2)

where A ∈ R3×3, and f̄(x, u) = f(x, u) − Ax. The function f̄(x, u) satisfies the Lipschitz

condition ||f(x, u)− f(x̂, u)− A (x− x̂)|| ≤ (γ1 + γ2) ||x− x̂|| , where γ2 ∈ R+. An

exponentially converging state observer is designed to estimate x(t) in the presence of an

unknown input d(t) (i.e., the moving object’s velocity).
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An unknown input reduced order state observer for the system in Eq. 7–2 is designed

as

ż = Nz + Ly +Mf̄(x̂, u) +Mg(y, u)

x̂ = z − Ey (7–3)

where x̂(t) ∈ R3 is an estimate of the unknown state x(t), z(t) ∈ R3 is an auxiliary signal,

the matrices N ∈ R3×3, L ∈ R3×2, E ∈ R3×2, M ∈ R3×3 are designed as [66]

M = I3 + EC

N = MA−KC

L = K(I + CE)−MAE (7–4)

where E is subsequently designed and K ∈ R3×2 is a gain matrix which satisfies the

inequality

Q , NTP + PN + (γ1 + γ2)2 PMMTP + I3 < 0 (7–5)

where P ∈ Rn×n is a positive definite, symmetric matrix. Using Eq. 7–4 the equality

NM + LC −MA = 03×3 is satisfied, and if E is selected as

E = F + Y G (7–6)

where Y ∈ R3×2 can be chosen arbitrarily, and F and G are given by

F , −D(CD)†, G ,
(
I2 − (CD)(CD)†

)
then ECD = −D, and the following equality is satisfied:

MD = (I3 + EC)D = 03×1. (7–7)
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Since rank(CD) = 1, the generalized pseudo inverse of the matrix CD exists and is given

by

(CD)† =
(

(CD)T (CD)
)−1

(CD)T .

To quantify the estimation objective an estimation error is defined as

e(t) , x̂(t)− x(t) = z − Ey − x. (7–8)

Taking the time derivative of the estimation error and using Eqs. 7–2 and 7–3 yields

ė = ż − (I + EC) ẋ,

ė = Nz + Ly +Mf̄(x̂, u)− (I + EC)Ax

−(I + EC)f̄(x, u)− (I + EC)Dd. (7–9)

Using Eqs. 7–4 and 7–8, the error system in Eq. 7–9 can be written as

ė = Ne+ (NM + LC −MA)x

+M
(
f̄(x̂, u)− f̄(x, u)

)
−MDd.

Using Eq. 7–7 and NM + LC −MA = 0, the error dynamics can be written as

ė = Ne+M
(
f̄(x̂, u)− f̄(x, u)

)
. (7–10)

7.1.3 Stability Analysis

Theorem 7.1. The nonlinear unknown input observer in Eq. 7–3 is exponentially stable

iff

min
ω∈R+

σmin (MA−KC − jωI3) >
√
γ3 (γ1 + γ2) (7–11)

where σmin (·) denotes the minimum singular value of a matrix, and γ3 , λmax
(
MMT

)
.

Proof. The proof follows directly from the proof of Theorem 6.1.
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7.1.4 Conditions for Stability

The SaMfM observer developed in this chapter follows the same existence conditions

developed in Chapter 6. In this section, conditions specific to the SaMfM dynamics are

developed. The inequality in Eq. 7–5 is satisfied if the pair (MA,C) is observable [66]

and the condition in Eq. 7–11 is satisfied. If the pair (MA,C) is observable then the

gain matrix K can be selected so that N = MA − KC is Hurwitz. Since rank(CD) =

rank(D) = 1 the condition

rank

 sIn − A D

C 0

 = 4, ∀s ∈ C (7–12)

implies that the pair (MA,C) is observable [66].

7.1.5 Conditions on Object Trajectories

The dynamics in Eq. 2–12 cannot be transformed into the form of Eq. 7–1 because

of the constraints on number of outputs p and number of unknown inputs q. However, by

making some assumptions on the motion of a camera and the viewed object, the dynamics

in Eq. 2–12 can be transformed in the form of Eq. 7–1. In this section, two specific

scenarios are discussed.

Example 1: The camera is undergoing arbitrary purely translational motion, i.e., the

angular velocities of the camera are zero and the object is moving along a straight line

with time-varying unknown velocities. For this case, choices of R̄ (t) and v̄p (t) in Eq. 2–9

become1 R̄ = I3, and v̄p (t) =

[
d1 (t) 0 0

]T
, or v̄p (t) =

[
0 d2 (t) 0

]T
, or v̄p (t) =[

0 0 d3 (t)

]T
, or v̄p (t) =

[
d4 (t) d5 (t) 0

]T
, etc., where di (t) ∈ R ∀i = {1, .., 5} is

the unknown time-varying object velocity.

1 w.l.o.g. the camera coordinate frame when the image capture starts can be set as In-
ertial coordinate frame.
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Example 2: A downward looking camera is undergoing arbitrary translational motion

along with the angular velocity along the Z-direction (an axis pointing downwards).

The object is moving on a ground plane (i.e., X-Y plane) with arbitrary time-varying

velocities. In this case, the rotation matrix R̄ (t) is given by

R̄ =


cos (θ (t)) sin (θ (t)) 0

−sin (θ (t)) cos (θ (t)) 0

0 0 1

 =

 R̄s 02×1

01×2 1


where θ (t) ∈ [−2π, 2π) is the rotation angle between the current camera coordinate

frame and inertial coordinate frame, and R̄s (t) ∈ R2×2 represents the upper left 2 × 2

block of the R̄ (t) . The object velocity in the inertial frame is represented as v̄p (t) =[
d̄1 (t) d̄2 (t) 0

]T
, where d̄1 (t) , d̄2 (t) ∈ R. The camera angular velocity is such that

R̄v̄p = u (7–13)

where u (t) =

[
d̄3 (t) 0 0

]T
or u (t) =

[
0 d̄4 (t) 0

]T
, and d̄3 (t) , d̄4 (t) ∈

R are unknown time-varying quantities. The equality in Eq. 7–13 can be achieved if

R̄s

[
d̄1 (t) d̄2 (t)

]T
= ū, where ū (t) =

[
d̄5 0

]T
or ū (t) =

[
0 d̄6

]T
, where

d̄5 (t) , d̄6 (t) ∈ R. Physically, the condition in Eq. 7–13 represents camera motions such

that the heading direction of the camera is parallel or perpendicular to the object’s

heading direction in the X-Y plane. For example, consider an object undergoing a circular

motion in the X-Y plane with unknown time-varying velocities observed by a camera

undergoing an arbitrary linear motion in the X-Y-Z plane and circular motion along the

downward looking Z-direction.

7.2 Simulation

Consider a moving camera observing an object moving along a straight line. Camera

velocities are given by vc(t) =

[
2 1 0.5cos(t/2)

]T
and ω(t) =

[
0 0 1

]T
. The object

velocity is selected such that vp(t) =

[
0.5 0 0

]T
. The camera calibration matrix is
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Figure 7-1. Comparison of the actual and estimated X,Y and Z positions of a moving
object with respect to a moving camera.
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Figure 7-2. Error in the range estimation of the moving object.

111



given by

Ac =


720 0 320

0 720 240

0 0 1

 .
Matrices A, C and D are

A =


0 −1 2

1 0 1

0 0 0

 , C =

 1 0 0

0 1 0

 , D =


1

0

0

 .
An LMI is formed as shown in Section 6.1.5 of Chapter 6. The matrix Y and the gain

matrix K are computed using the LMI feasibility command ’feasp’ in Matlab and are

given by

K =


0.8278 0

0 0.8278

−1.5374 0

 , Y =


0 0

0 −1

0 −1.5374

 .
Fig. 7-1 shows comparison of the actual and estimated X, Y and Z coordinates of the

object in the camera coordinate frame. Fig. 7-2 shows the range estimation error between

the moving object and the moving camera.

7.3 Summary

In this chapter, a nonlinear observer is developed to solve the SaMfM problem. The

proposed algorithm estimates the structure of a moving object using a moving camera

with less restrictive assumptions on the object motion. The object motion is assumed

to be along a straight line or in a plane observed by a moving airborne camera. The

algorithm improves on our previous work in [119] by relaxing the constant object velocity

assumption to arbitrary object motion in a straight line or in a plane. The observer-based

approach is causal and does not assume a minimum number of views or feature points.

The structure estimation is insensitive to the object motion in the sense that the state

estimation is completely decoupled from the object motion which acts as an exogenous
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disturbance input under certain conditions on the object motion. Future efforts will

focused on designing a reduced-order observer for structure as well as motion estimation.
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Chapter 8
CONCLUSION AND FUTURE WORK

8.1 Conclusion

New real-time solutions to a general structure and motion problem in computer vision

are presented. As opposed to the traditional batch methods, an observer-based approach

is developed. A nonlinear state model is used to derive new reduced-order structure

estimation algorithms when the object is stationary and the camera is moving with full or

partial camera velocity information. Solutions of the structure estimation of the stationary

object have been extended to the moving object moving camera scenario. For the moving

object moving camera scenario, the moving object’s velocity is considered as an external

unknown time-varying disturbance. Two approaches to the observer design in the presence

of external unknown disturbance are presented. In the first approach, the disturbance is

considered to be a vanishing disturbance. Conditions on the object’s motion are developed

which satisfies the assumptions required by the observer design. These conditions put

certain constraints in the form of differential equations on the moving object’s motion

and the angular velocity of the camera. For a special case of constant camera angular

velocities, an analytical relation between the object’s motion and the camera angular

velocities is developed where asymptotic estimator convergence can be achieved. In the

second approach, a time varying object velocity is considered as an unknown input to

the system and an unknown input observer for a general class of nonlinear systems is

developed. The UIO approach does not require the external disturbances to be vanishing

but requires it to satisfy a minimum phase condition for the transfer function from the

disturbance to the output of the system. For the moving camera moving object dynamics

the minimum phase condition provides new constraints on the velocity of the moving

object and the angular velocity of the camera. These constraints can accommodate a

more general moving camera moving object scenario. Results in Chapters 5 and 6 for the

moving camera moving object scenario advances the state-of-the-art in terms of amount
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of data required and by enabling real-time estimation. The specific contributions of each

result are mentioned below.

In Chapter 3, a reduced order nonlinear observer is presented for the structure

estimation of points on a stationary object using a moving camera. The observer is

globally exponentially stable provided an observability condition is satisfied. The observer

is also shown to be exponentially stable under a relaxed observability condition. Hence,

the result improves the domain of applicability to a larger set of camera motions than

previous algorithms. The observer is shown to be robust against external disturbances.

Comparison of the observer performance against two existing observers is presented in

theory and in numerical simulations.

Chapter 4 develops a reduced order observer for the estimation of the structure of a

stationary target with respect to a moving camera, along with two unknown time-varying

linear and angular camera velocities. The observer requires the image coordinates of the

feature points on the object, a single linear camera velocity, and the corresponding linear

camera acceleration in any one of the three camera coordinate axes. Under a physically

motivated PE condition, asymptotic convergence of the observer error is guaranteed. The

result advances state of the art SaM algorithms in terms of a fewer number of measurable

signals required by the algorithm.

In Chapter 5, a nonlinear observer for moving camera moving object scenario is

developed. The object’s velocity is considered as an external disturbance. Under a PE

condition, Lyapunov analysis is performed to show that the observation error converges to

zero. The observer is robust in the sense that the estimation error converges even in the

presence of L2[0,∞) time-varying disturbances.

In Chapter 6, an UIO is developed for a general class of nonlinear systems. Necessary

and sufficient conditions are developed for the UIO design. The result improves the state

of the art UIO algorithms by developing an UIO for a more general class of nonlinear

systems. The application of the UIO to the moving camera moving object scenario is

115



presented in Chapter 7. Conditions on the object motion are developed which satisfies the

assumptions of the UIO. The application of the UIO to the moving camera moving object

scenario enables solutions to the problems in real-time and significantly advances the state

of the art structure and motion algorithms given moving objects in terms of real-time

computation, and amount of data required by the estimation algorithm.

8.2 Future Work

The work in this dissertation opens new doors for research in the domain of nonlinear

observer design, and structure and motion. In this section, open problems related to the

work in this dissertation are discussed. The open problems are segregated into two broad

technical disciplines, viz.; Nonlinear Observer and Structure and Motion.

Nonlinear Observer

1. For all the observer designs in this dissertation, the output equation is considered

to be continuous. A practically inspired problem in the observer design is: how to

design nonlinear observers with the intermittent and/or time-delayed observations.

Recently, Kalman filter and extended Kalman filter with intermittent observations

have been developed in [120, 121]. The parallels of these results to the general

nonlinear observer design should be pursued.

2. In Chapter 5, a very special class of nonlinear systems is considered. One interesting

question is can one generalize the output dynamics in Eq. 5–1 to contain nonlinear

terms of the unmeasurable state x (t)? This extension will increase the application

domain of the observer design approach to multiple areas.

3. In Chapter 5, asymptotic error convergence is achieved by assuming that the ex-

ternal disturbance is asymptotically converging to zero. Under suitable conditions,

is the asymptotic error convergence achievable with bounded non-vanishing distur-

bance?

4. In Chapter 5, can the PE assumption be relaxed to show the error convergence?

There is related work in [122] which introduced relaxed-PE notion for parameter

116



identification and adaptive control literature. Similar ideas may be adapted for the

observer design to relax the PE assumptions.

5. In Chapter 6, the class of nonlinear systems considered for the UIO has a constant

matrix D multiplied by a time-varying disturbance. Designing a UIO for time-

varying or state dependent D matrix for the general class of nonlinear systems is an

open problem.

6. In Chapter 6, designing necessary and sufficient conditions under which UIO exists

for a general class of nonlinear systems is an open problem. Recently, necessary and

sufficient conditions are developed for the existence of UIO for state affine systems

in [71]. The extension of such results for a more general class of nonlinear systems

should be pursued.

Structure and Motion

1. In Chapter 7, the approach for structure and motion estimation of the moving

object requires some constraints on the object and camera motions. Existing batch

methods solves the problem by putting some geometric constraints on the object

trajectory but requires more than two images to perform the estimation. Future

efforts should try to incorporate some geometric constraints on the object motion

with the state space differential equation model so that a generalized solution to

the structure and motion problem can be developed which will potentially relax the

existing conditions on the camera and object motion.

2. In this dissertation, the surface of the object is considered as a Lambertian surface,

i.e., there is no reflection of the surrounding scene and the feature points on the

object can be tracked easily. This observation raises a question: can online solutions

be developed for the structure and motion estimation problem when the object’s

surface is specular, i.e., reflects the surroundings. Recently, in [123, 124] some

geometric solutions to the problem are developed. An online solution to this problem

does not appear to exist.

117



Appendix A
PROOF OF POSITIVENESS OF P

Integrating (5–13), the following expression can be obtained

P (t) = P (0)−
tˆ

0

L (τ) dτ. (A–1)

Using (5–3) and (5–14) the integral of L (t) can be written as

tˆ

0

L (τ) dτ =

tˆ

0

ėT1 (τ)χ1 (τ) dτ − ρ
tˆ

0

ėT1 (τ) sgn(e1 (τ)))dτ

+

tˆ

0

αeT1 (τ) (χ1 (τ)− ρsgn(e1 (τ)))dτ. (A–2)

Using integration by parts for the first integral in (A–2) and using the property

tˆ

0

ėT1 (τ) sgn(e1 (τ)))dτ = ρ
2∑
i=1

|e1 (t)| − ρ
2∑
i=1

|e1 (0)|

the integral of L (t) can be expressed as

tˆ

0

L (τ) dτ = eT1 (t)χ1 (t)− eT1 (0)χ1 (0)− ρ
2∑
i=1

|e1i (t)|+ ρ
2∑
i=1

|e1i (0)|

+α

tˆ

0

eT1 (τ)χ1 (τ) dτ −
tˆ

0

(
eT1 (τ) χ̇1 (τ) + αρ |e1 (τ)|

)
dτ. (A–3)

Using (A–1) and (A–3), P (t) can be written as

P (t) = −eT1 (t)χ1 (t) + eT1 (0)χ1 (0) + ρ

n1∑
i=1

|e1i (t)| − ρ
n1∑
i=1

|e1i (0)|

−α
tˆ

0

eT1 (τ)χ1 (τ) dτ +

tˆ

0

(
eT1 (τ) χ̇1 (τ) + αρ

n1∑
i=1

|e1i (τ)|

)
dτ

+ρ

n1∑
i=1

|e1i(0)| − eT1 (0)χ1(0)
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P (t) = −eT1 (t)χ1 (t) + ρ

n1∑
i=1

|e1i (t)|

−α
tˆ

0

eT1 (τ)χ1 (τ) dτ +

tˆ

0

(
eT1 (τ) χ̇1 (τ) + αρ |e1 (τ)|

)
dτ

P (t) ≥
n1∑
i=1

|e1i (t)| (ρi − |χ1i (t)|)

+

tˆ

0

n1∑
i=1

|e1i (τ)| (αρi − α |χ1i (τ)| − |χ̇1i (τ)|) dτ (A–4)

If ρ is selected according to (5–11), then using (5–9) and (A–4) P ≥ 0.
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Appendix B
OBSERVABILITY CONDITIONS

B.1 Observability Condition in Chapter 4

From Chapter 4, J (y1, y2, b3) ∈ R2×3 is given by

J =

 −y1b3 1 0

−y2b3 0 1


and

JTJ =


(y2

1 + y2
2) b2

3 −y1b3 −y2b3

−y1b3 1 0

−y2b3 0 1

 .
Taking the integral of JT (y1, y2, b3) J (y1, y2, b3) yields

t+δˆ

t

JTJdτ =


´ t+δ
t

(y2
1 (τ) + y2

2 (τ)) b2
3 (τ) dτ

´ t+δ
t
−y1 (τ) b3 (τ) dτ

´ t+δ
t
−y2 (τ) b3 (τ) dτ

´ t+δ
t
−y1 (τ) b3 (τ) dτ δ 0

´ t+δ
t
−y2 (τ) b3 (τ) dτ 0 δ

 .
(B–1)

The conditions for which (B–1) becomes rank 2 are:

1. b3 (t) = 0 ∀t ∈ [t, t+ δ]

2. y1 (t) = c1, y2 (t) = c2, and b3 (t) = c3 ∀t ∈ [t, t+ δ] where ci ∀i = {1, 2, 3} are

constants.

The first condition indicates that the camera must be moving in Z-direction during

any small duration of time [t, t+ δ] . The second condition is satisfied if the image point is

not moving for a small duration of time. The image point is constant only if the camera

is not moving or if the camera is traveling along the ray projected by the feature point on

the camera image.

B.2 Observability Condition in Chapter 5

From Chapter 5,
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J =

 vcx − y1vcz −1 0 y1

vcy − y2vcz 0 −1 y2

 .
Let h1 (t) = vcx (t) − y1 (t) vcz (t) and h2 (t) = vcy (t) − y2 (t) vcz (t) . The integral of

JT (vcx, vcy, vcz, y1, y2) J (vcx, vcy, vcz, y1, y2) is given by

t+ε̄ˆ

t

JTJdτ =



´ t+ε̄
t

h2
1 (τ) + h2

2 (τ) dτ
´ t+ε̄
t
−h1 (τ) dτ

´ t+ε̄
t
−h1 (τ) dτ ε̄

´ t+ε̄
t
−h2 (τ) dτ 0

´ t+ε̄
t

y1 (τ)h1 (τ) + y2 (τ)h2 (τ) dτ
´ t+ε̄
t
−y1 (τ) dτ

(B–2)

´ t+ε̄
t
−h2 (τ) dτ

´ t+ε̄
t

y1 (τ)h1 (τ) + y2 (τ)h2 (τ) dτ

0
´ t+ε̄
t
−y1 (τ) dτ

ε̄
´ t+ε̄
t
−y2 (τ) dτ

´ t+ε̄
t
−y2 (τ) dτ

´ t+ε̄
t

y2
1 (τ) + y2

2 (τ) dτ


The integral in (B–2) is not full rank if:

1. y1 (t) = c̄1, and y2 (t) = c̄2∀t ∈ [t, t+ ε̄] where c̄1, c̄2 are constants.

2. h1 (t) = c̄3, and h2 (t) = c̄4∀t ∈ [t, t+ ε̄] where c̄3, c̄4 are constants.

Condition 1 can be satisfied only if camera is stationary or if the camera is moving

along the projected ray of the feature point on the image plane. For both the cases,

h1 (t) = h2 (t) = 0, hence, the first condition is a subset of the second condition. The

second condition implies the following ratio inequalities,

vcx − c̄3

vcz
=
X

Z
, and

vcy − c̄4

vcz
=
Y

Z
. (B–3)

The conditions in (B–3) are satisfied if the camera is moving along the ray projected

by the feature point on the image plane or if the camera velocities are not persistently

changing.

121



REFERENCES

[1] F. Morbidi and D. Prattichizzo, “Range estimation from a moving camera: an
immersion and invariance approach,” in Proc. IEEE Int. Conf. Robot. Autom., Kobe,
Japan, May 2009, pp. 2810–2815.

[2] A. D. Luca, G. Oriolo, and P. R. Giordano, “Feature depth observation for image-
based visual servoing: Theory and experiments,” Int. J. Robot. Res., vol. 27, no. 10,
pp. 1093–1116, 2008.

[3] X. Chen and H. Kano, “State observer for a class of nonlinear systems and its
application to machine vision,” IEEE Trans. Autom. Control, vol. 49, no. 11, pp.
2085–2091, 2004.

[4] Y. Ma, S. Soatto, J. Kosecká, and S. Sastry, An Invitation to 3-D Vision. Springer,
2004.

[5] B. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” in Int. Joint Conf. Artif. Intell., vol. 3. Citeseer, 1981,
p. 3.

[6] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” Lect.
Notes Comput. Sci., vol. 3951, pp. 404–417, 2006.

[7] D. G. Lowe, “Distinctive image feature from scale-invariant keypoints,” Int. J.
Comput. Vision, vol. 60, pp. 91–110, 2004.

[8] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2003.

[9] J. Oliensis, “Exact two-image structure from motion,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 12, pp. 1618–2002, 2002.

[10] ——, “A critique of structure-from-motion algorithms,” Comput. Vis. Image.
Understand., vol. 80, pp. 172–214, 2000.

[11] P. Sturm and B. Triggs, “A factorization based algorithm for multi-image projective
structure and motion,” Lect. Notes Comput. Sci., vol. 1065, pp. 709–720, 1996.

[12] A. Bartoli and P. Sturm, “Constrained structure and motion from multiple uncali-
brated views of a piecewise planar scene,” Int. J. Comput. Vision, vol. 52, no. 1, pp.
45–64, 2003.

[13] ——, “Structure-from-motion using lines: Representation, triangulation, and bundle
adjustment,” Comput. Vis. Image. Understand., vol. 100, no. 3, pp. 416–441, 2005.

[14] S. Soatto, R. Frezza, and P. Perona, “Motion estimation via dynamic vision,” IEEE
Trans. Autom. Control, vol. 41, no. 3, pp. 393–413, 1996.

122



[15] G. Hu, D. Aiken, S. Gupta, and W. E. Dixon, “Lyapunov-based range identification
for paracatadioptric systems,” IEEE Trans. Autom. Control, vol. 53, no. 7, pp.
1775–1781, Aug. 2008.

[16] V. Chitrakaran, D. M. Dawson, W. E. Dixon, and J. Chen, “Identification of a
moving object’s velocity with a fixed camera,” Automatica, vol. 41, no. 3, pp.
553–562, 2005.

[17] S. Soatto and P. Perona, “Reducing "structure from motion": A general framework
for dynamic vision, part 1: Modeling,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 20, no. 9, pp. 933–942, 1998.

[18] A. Azarbayejani and A. P. Pentland, “Recursive estimation of motion, structure, and
focal length,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 6, pp. 562–575,
1995.

[19] W. E. Dixon, Y. Fang, D. M. Dawson, and T. J. Flynn, “Range identification for
perspective vision systems,” IEEE Trans. Autom. Control, vol. 48, no. 12, pp.
2232–2238, Dec. 2003.

[20] G. Quian and R. Chellappa, “Structure from motion using sequential monte carlo
methods,” Int. J. Comput. Vision, vol. 59, pp. 5–31, 2004.

[21] O. Dahl, F. Nyberg, and A. Heyden, “Nonlinear and adaptive observers for perspec-
tive dynamic systems,” in Proc. Am. Control Conf., New York City, USA, July 2007,
pp. 966–971.

[22] A. De Luca, G. Oriolo, and P. Giordano, “On-line estimation of feature depth for
image-based visual servoing schemes,” in Proc. IEEE Int. Conf. Robot. Autom.,
2007, pp. 2823–2828.

[23] M. Jankovic and B. Ghosh, “Visually guided ranging from observations points, lines
and curves via an identifier based nonlinear observer,” Syst. Contr. Lett., vol. 25,
no. 1, pp. 63–73, 1995.

[24] L. Matthies, T. Kanade, and R. Szeliski, “Kalman filter-based algorithm for esti-
mating depth from image sequence,” Int. J. Comput. Vision, vol. 3, pp. 209–236,
1989.

[25] H. Kano, B. K. Ghosh, and H. Kanai, “Single camera based motion and shape
estimation using extended Kalman filtering,” Math. Comput. Modell., vol. 34, pp.
511–525, 2001.

[26] A. Chiuso, P. Favaro, H. Jin, and S. Soatto, “Structure from motion causally
integrated over time,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 4, pp.
523–535, 2002.

123



[27] D. Karagiannis and A. Astolfi, “A new solution to the problem of range identification
in perspective vision systems,” IEEE Trans. Autom. Control, vol. 50, no. 12, pp.
2074–2077, 2005.

[28] L. Ma, C. Cao, N. Hovakimyan, C. Woolsey, and W. E. Dixon, “Fast estimation for
range identification in the presence of unknown motion parameters,” IMA J. Appl.
Math., vol. 75, no. 2, pp. 165–189, 2010.

[29] S. Ramalingam, S. Lodha, and P. Sturm, “A generic structure-from-motion frame-
work,” Comput. Vis. Image. Understand., vol. 103, no. 3, pp. 218–228, 2006.

[30] B. Ghosh and E. Loucks, “A realization theory for perspective systems with appli-
cations to parameter estimation problems in machine vision,” IEEE Trans. Autom.
Control, vol. 41, no. 12, pp. 1706–1722, 1996.

[31] ——, “A perspective theory for motion and shape estimation in machine vision,”
SIAM J. Contr. Optim., vol. 33, no. 5, pp. 1530–1559, 1995.

[32] O. Dahl and A. Heyden, “Dynamic structure from motion based on nonlinear
adaptive observers,” in International Conference on Pattern Recognition, 2008, pp.
1–4.

[33] S. Avidan and A. Shashua, “Trajectory triangulation: 3D reconstruction of moving
points from a monocular image sequence,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 22, no. 4, pp. 348–357, Apr 2000.

[34] D. Segal and A. Shashua, “3D reconstruction from tangent-of-sight measurements of
a moving object seen from a moving camera,” Lect. Notes Comput. Sci., vol. 1842,
pp. 621–631, 2000.

[35] M. Han and T. Kanade, “Reconstruction of a scene with multiple linearly moving
objects,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. II, 2000, pp.
542–549.

[36] P. Sturm, “Structure and motion for dynamic scenes-the case of points moving in
planes,” Lect. Notes Comput. Sci., vol. 2351, pp. 867–882, 2002.

[37] J. Kaminski and M. Teicher, “A general framework for trajectory triangulation,” J.
Math. Imag. Vis., vol. 21, no. 1, pp. 27–41, 2004.

[38] M. Han and T. Kanade, “Reconstruction of a scene with multiple linearly moving
objects,” Int. J. Comput. Vision, vol. 59, no. 3, pp. 285–300, 2004.

[39] R. Vidal, Y. Ma, S. Soatto, and S. Sastry, “Two-view multibody structure from
motion,” Int. J. Comput. Vision, vol. 68, no. 1, pp. 7–25, 2006.

[40] C. Yuan and G. Medioni, “3D reconstruction of background and objects moving on
ground plane viewed from a moving camera,” in Comput. Vision Pattern Recongnit.,
vol. 2, 2006, pp. 2261 – 2268.

124



[41] H. Park, T. Shiratori, I. Matthews, and Y. Sheikh, “3D reconstruction of a moving
point from a series of 2D projections,” in Euro. Conf. on Comp. Vision, vol. 6313,
2010, pp. 158–171.

[42] A. Aguiar and J. Hespanha, “Robust filtering for deterministic systems with implicit
outputs,” Syst. Contr. Lett., vol. 58, no. 4, pp. 263–270, 2009.

[43] A. Krener and A. Isidori, “Linearization by output injection and nonlinear ob-
servers,” Syst. Contr. Lett., vol. 3, no. 1, pp. 47–52, 1983.

[44] A. Krener and W. Respondek, “Nonlinear observers with linearizable error dynam-
ics,” SIAM J. Contr. Optim., vol. 23, no. 2, pp. 197–216, March 1985.

[45] N. Kazantzis and C. Kravaris, “Nonlinear observer design using Lyapunov’s auxiliary
theorem,” Syst. Contr. Lett., vol. 35, no. 5, pp. 241–247, 1998.

[46] A. Krener and M. Xiao, “Nonlinear observer design in Siegel domain,” SIAM J.
Contr. Optim., vol. 41, no. 3, pp. 932–953, 2002.

[47] V. Andrieu and L. Praly, “On the existence of a Kazantzis-Kravaris/Luenberger
observer,” SIAM J. Contr. Optim., vol. 45, no. 2, pp. 432–456, 2006.

[48] J. P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for nonlinear
systems applications to bioreactors,” IEEE Trans. Autom. Control, vol. 37, no. 6, pp.
875–880, 1992.

[49] J. P. Gauthier and I. A. K. Kupka, “Observability and observers for nonlinear
systems,” SIAM J. Contr. Optim., vol. 32, no. 4, pp. 975–994, 1994.

[50] A. Atassi and H. Khalil, “A separation principle for the stabilization of a class of
nonlinear systems,” IEEE Trans. Autom. Control, vol. 44, no. 9, pp. 1672–1687,
1999.

[51] F. Thau, “Observing the state of non-linear dynamic systems,” Int. J. Control,
vol. 17, no. 3, pp. 471–479, 1973.

[52] R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE Trans. Autom.
Control, vol. 43, no. 3, pp. 397–401, Mar. 1998.

[53] A. Pertew, A. Marquez, and Q. Zhao, “H∞ observer design for Lipschitz nonlinear
systems,” IEEE Trans. on Autom. Control, vol. 51, no. 7, pp. 1211–1216, 2006.

[54] M. Chen and C. Chen, “Robust nonlinear observer for Lipschitz nonlinear systems
subject to disturbances,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2365–
2369, 2007.

[55] J. C. Doyle and G. Stein, “Robustness with observers,” IEEE Trans. Autom. Contr.,
vol. 24, no. 4, pp. 607–611, 1979.

125



[56] A. Morgan and K. Narendra, “On the stability of nonautonomous differential
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