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In most applications involving autonomous agents tracking a moving target through

uncertain environments, it is necessary to estimate the structure of local features

in the environment (e.g., relative positions of objects in the immediate surrounding

environment), the pose of an agent (i.e., position and orientation), and the pose and

velocity of the target. Many of these applications require traveling over large distances

implying the local environment for an agent is always changing, introducing further

difficulty. Furthermore, it is often only possible to intermittently sense the target (e.g.,

environmental obstructions or path constraints of the agent may cause occlusions of the

target).

It is often assumed that it is possible to use global sensing to measure the state

of an agent. However, state feedback generally requires a sensor that can relate all

the states to a common coordinate system (e.g., global positioning system (GPS)).

However, GPS may be unavailable (e.g., agents could operate in environments where

GPS is restricted or denied). Furthermore, assuming that the entire environment is

known and state information from the target is available is a restrictive assumption

since targets are not likely to communicate such information and directly sensing the

pose and velocity of a target is challenging and not possible in many scenarios. These

challenges motivate the development of techniques that rely on local sensing but still

allow agents to estimate their own state (i.e., pose) as well as the state of a target (i.e.,
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pose and velocity). Additionally, efforts are motivated by the fact that local sensing often

has intermittent availability.

Cameras are a potential sensor that can provide local feedback of the environment

where coordinates of the target can be related to a common reference frame; however,

camera systems don’t inherently measure scale, have a limited field-of-view, and are

susceptible to intermittent sensing (e.g., due to occlusions). The scale of the Euclidean

coordinates of features in an image, (also known as the structure of the features)

is not available because images are a two dimensional projection of a Euclidean

environment. Monocular camera systems can recover scale by moving the camera

(e.g., structure from motion) and tracking features over large periods of time; however,

as the distance to a target increases, the distance between views of the feature must

also increase making an accurate scale estimate challenging. Additionally, the camera’s

limited field-of-view can inhibit continuous observation of a specific object. Continuous

observation can also be disrupted by occlusions or trajectory constraints that may

require an agent to purposefully allow the target to leave its field-of-view periodically.

Furthermore, agents may need to track the target over large distances requiring the

agent to continuously reconstruct new objects from the global environment when

reconstructed objects in the local environment permanently leave their field-of-view.

In Chapter 3, a global exponentially stable observer for feature scale is developed

under a finite excitation condition through the use of integral concurrent learning.

Since the observer only requires finite excitation to be globally exponentially stable, the

observer is more general than previous results. The result indicates that the Euclidean

distance to a set of features on a stationary object and the path the camera travels while

viewing that object are estimated exponentially fast implying the structure and path

are reconstructed exponentially. Furthermore, the developed estimation method does

not require the features on the objects to be planar and does not require the positive

depth constraint. An experimental study is presented which compares the developed
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Euclidean distance observer to previous observers demonstrating the effectiveness of

this result.

In Chapter 4, an extension to the learning approaches in Chapter 3 is developed

that applies a new learning strategy that maintains a continuous estimate of the position

of the camera and estimates the structure of features as they come into the camera’s

field-of-view. Furthermore, the developed learning strategy allows simulated mea-

surements of features from objects that are no longer in the field-of-view enabling a

continuous estimate of the distance to features with respect to the camera. Additionally,

this approach shows how the extended observer removes the positive depth constraint

required by all previous structure from motion approaches. Using this approach, a

camera may travel over large distances without keeping specific features in the field-of-

view for all time and allow objects to permanently leave the field-of-view if necessary.

A Lyapunov based stability analysis proves that the observers for estimating the path

of the camera as well as the structure of each set of objects are globally exponentially

stable while features are in the camera’s field-of-view. A switched systems analysis is

used to develop dwell-time conditions to indicate how long a feature must be tracked to

ensure the distance estimation error is below a threshold. After the distance estimates

have converged below the threshold, the feature may be used to update the position

of the camera. If a feature does not satisfy the dwell-time condition, it is never used to

update the position of the agent. Furthermore, the approach does not require a new set

of features to be in the camera’s FOV when older features leave the camera’s FOV.

In Chapter 5, the approach in Chapter 4 is used to provide pose estimates of the

camera and an extension of Chapter 3 is developed to exponentially estimate the pose,

velocity, and acceleration of the moving target. Specifically, using the pose and velocity

of the camera, the estimation error of the Euclidean trajectory of the target as well as

the structure of the target, is globally exponentially convergent to an ultimate bound

assuming the target velocity and acceleration are bounded and dwell-time conditions
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are satisfied. The developed estimator relaxes the requirement to have continuous

observation of the target, to know the exact structure, velocity, or acceleration of the

target, and does not require the persistence of excitation assumption or positive depth

constraint.

Chapter 6 concludes the dissertation with a discussion of the developed estimation

algorithms and potential extensions.
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CHAPTER 1
INTRODUCTION

1.1 Background

In many applications, the state (e.g., position and orientation) of an autonomous

agent and its local environment (e.g., relative positions of objects in the surrounding

environment) must be determined from sensor data. This problem is well known as

simultaneous localization and mapping (SLAM) (cf., [2–14]). Often, a global positioning

system (GPS) is used to estimate the position; however, in many environments GPS is

unavailable (e.g., when agents operate in GPS denied or contested environments) mo-

tivating the use of only local sensing data (e.g., camera images, inertial measurement

units, and wheel encoders) to estimate the position and model the surrounding environ-

ment. In applications involving tracking a moving target through uncertain environments,

it is additionally necessary to estimate the pose and velocity of the target. Many of these

applications require traveling over large distances implying the local environment for

an agent is always changing introducing further difficulty. These challenges motivate

the development of techniques that rely on local sensing but still allow agents to esti-

mate their own state (i.e., pose) as well as the state of a target (i.e., pose and velocity).

Additionally, efforts are motivated by the fact that local sensing often has intermittent

availability.

Using cameras to reconstruct the surrounding environment (i.e., determine the

Euclidean scale of objects in the environment) requires an assumption that object

features are in the camera field-of-view (FOV) and may be extracted and tracked

through a sequence of images. However, a significant challenge arises in determining

the scale of objects in an image using a camera given the loss of depth information.

Specifically, images of objects are 2D projections of the 3D environment. Approaches

to reconstruct (i.e., estimate the structure) objects use multiple images of an object

along with scale information (cf., [15, 16]) or motion (cf., [1, 17–32]), such as, linear and

16



angular velocities of the camera. The latter of these methods is referred to as structure

from motion (SfM). Generally, the Euclidean scale of objects are not known; however,

multiple calibrated cameras may be used to recover the scale (cf., [15, 16]). However,

this approach is inapplicable in all scenarios because some objects may have limited

or no parallax between the camera images. In SfM approaches, the potential for limited

parallax still exists; however, a camera may travel to generate enough parallax, which is

generally not possible in stereo vision.

The SfM problem may be approached using online iterative methods (cf., [1,17–32])

and offline batch methods (cf., [15, 16, 33] and the references contained within). These

offline approaches perform an optimization over an image sequence, but only show

convergence for limited cases (cf., [34, 35]). Most online SfM approaches assume

continuous measurements of objects by the camera or only update when a new image

is received (cf., [1, 17–27, 29–32]); however, recent results enable objects to temporarily

leave the camera’s FOV (cf., [36–38]). Many results apply the extended Kalman filter

(EKF) to estimate depth, (cf., [17, 19–21, 28]); however, the EKF generally does not

guarantee convergence and may fail in some applications where the system is not

sufficiently excited and or the initial error is too large [39, 40]. Compared to the EKF

approach, techniques such as [22, 24, 25, 27, 30, 31], show asymptotic convergence

of the structure estimation errors. Furthermore, results such as [1, 18, 23, 26, 29] show

exponential convergence of the scale estimate assuming some form of a persistence

of excitation (PE) condition or the more strict Extended Output Jacobian (EOJ) is

satisfied. Specifically, the authors in [26] show exponential convergence assuming the

PE condition is met and either the initial estimation error is small or the velocities are

limited. Furthermore, the development in [29] yields exponential convergence assuming

the observer satisfies the EOJ condition. In [1] an exponentially stable observer is

developed that requires the motion along at least one axis to be nonzero, and the

observer remains ultimately bounded if the PE assumption does not hold, while in [29]
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the observer becomes singular. Typically, SfM approaches require the motion (e.g.,

linear and angular velocities) to be known; however, the design in [31], extending an

approach similar to [1], demonstrates a partial solution to the more challenging problem

(i.e. compared to SfM) of structure and motion (SaM) where not only are the feature

Euclidean coordinates estimated, but also two of the linear velocities and the three

angular velocities of the camera, assuming PE and the linear velocity and acceleration

are measurable along one axis.

In [32], exponentially converging observers are developed that use a camera

to estimate the Euclidean distance to features on a stationary object in the camera

FOV while also estimating the Euclidean trajectory of the camera tracking the object.

Unlike previous methods such as [1, 18, 23, 26, 29] that assume a PE condition, [32]

only requires finite excitation. The finite excitation condition results from the use of

concurrent learning (CL) (cf., [41–44]). The concept of CL is to use recorded input and

output data from system trajectories to identify uncertain constant parameters of the

system in real time under the assumption that the system is sufficiently excited for a

finite amount of time. This approach relaxes the PE assumption and can be monitored

and verified online. To eliminate the need to measure the highest order derivative of

the state, we specifically use integral concurrent learning (ICL) (cf., [32, 45–49]). ICL

removes the necessity to estimate the highest order derivative of the system required in

traditional concurrent learning (cf., [32,45,48,49]).

Although ICL removes the need for measuring the state derivative, it still requires

the state to be measurable; yet, a unique challenge in [32] is that the state depends on

the unmeasurable distance to the target. Moreover, the traditional state used in results

such as [1, 17–27, 29–31] include an inherent singularity when one of the coordinates

becomes zero (i.e., the so-called depth to the target). Specifically, previous results

assume a positive depth constraint where the distance from the focal point of the

camera to the target along the axis perpendicular to the image plane remains positive.
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The positive depth constraint is satisfied if the features remain in the camera’s FOV;

however, the constraint can be violated for some camera rotations that cause the feature

to leave the FOV.

In many visual servoing approaches, the trajectory of the camera is constrained

to maintain continuous observation of features on a landmark (cf., [50–61]); however,

constraining the trajectory to keep constant observation of a landmark is not possible

when traveling over large distances. Recent results develop approaches for relaxing

the continuous feedback requirement (cf., [36–38, 62, 63]), enabling the ability to

temporarily allow a landmark or target to leave the camera’s FOV temporarily given

dwell-time conditions are satisfied on the amount of time feedback is unavailable and

available (e.g., features are in and out of the FOV). However, [36–38] still require the

positive depth constraint while the object is not in the camera’s FOV. While these types

of approaches may solve issues that arise from occlusions over small periods or for

reconstructing smaller environments, it still may not be possible or desirable to return

to some regions in large environments. Others approach the problem of temporary

loss of feedback by assuming the range to an object is available (cf., [64–66]), which is

often not possible, or do not determine the pose of a target (cf., [67]). Other approaches

use function approximation methods to learn a motion model for a target (cf., [68–

73]); however, these approaches assume models are Gaussian processes and show

simulation and experimental results but do not provide a stability analysis.

An approach to allowing features to leave the FOV for an extended period of

time, enabling the ability to travel over large distances, is the use of multiple sets of

tracked features (cf., [2–5, 7, 9–14, 74–80]); however, most of the these approaches

assume that each new set of features can be approximated before older sets of features

leave the camera’s FOV. In many applications, it is not possible to ensure a new set

of features is observed and estimated before the older sets leave the camera’s FOV.

This drawback motivates the development of techniques that initially learn each set
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of features independently. Additionally, many approaches use known information

about features, the desired trajectory, or assume features lie on a plane to develop

relationships between poses or features using homography relationships between

planes (cf. [74–80]). In general, requiring homographic relationships may introduce more

error in position estimates or fail to estimate position because features do not always lie

on a plane, especially in environments comprised of multiple objects. Additionally, most

of these approaches do not take an observer based approach (cf., [2–5,7,9–14,74–80]);

instead, known geometry or measurements are used (cf. [74–80]), or an optimization

method is used which may not converge without a good initial guess or only converge

up to a scale factor (cf., [2–5, 7, 9–14]) and can be computationally expensive. Methods

that rely on measurements or geometry reduce robustness to noise because no control

of the rate of learning is possible and there is no ability to remove potentially noisy data;

however, many of the optimization methods have outlier rejection and consider noise.

Stochastic homography based approaches are developed in [79] and [80] to handle

process and measurement noise; however, these approaches will still suffer from the

same issues that arise from the planar assumption. For agents to travel over unknown

environments, the limitations presented by the planar assumption and those introduced

by not using an observer or learning must be removed (i.e., it is not possible to instantly

reconstruct features if they are nonplanar and so the structure of each set of features

must be learned). While all of these approaches enable traveling over large distances,

they do not all combine the pose and environment estimation with tracking moving

objects (i.e., the structure and motion from motion (SaMfM) problem [81]), which is

required for target tracking.

The primary difficulty that arises in estimating the trajectory of a moving object

using a moving camera is that the velocity of the moving object is not typically measur-

able. Some approaches assume a known length on the object and estimate the pose

directly (cf., [82–89] ). One of the first results to estimate the path of moving objects
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was discussed [90] where a batch method of trajectory triangulation was developed by

restricting the object motion to be along lines and conics. The result in [90] was gen-

eralized in [91] where the object trajectory could be along any curve. The work in [92]

and [93] discuss Euclidean path estimation of objects moving along lines. However,

even though these approaches discuss the number of images required to calculate tra-

jectories of moving objects and are shown to work in select environments, stability is not

guaranteed. Additionally, these batch methods are restrictive in the sense they require

the velocities of the camera and objects to be small and are difficult to implement online

because repeated optimization over image sequences is required.

The first SaMfM result that included a stability analysis to show asymptotic esti-

mation is in [81] where a robust integral sign of the error (RISE) observer is developed

under the assumptions of constant velocities for moving features, known bounds on dis-

tances, measurable optical flows, differentiable camera accelerations, and persistence

of excitation (PE). The result in [94] asymptotically estimated an object’s velocity where

some length on the object is assumed known and the objects initial orientation are used

to develop a RISE estimator for a single stationary camera. Results in [95] and [96]

use a passivity-based approach to show the estimation error asymptotically converges

under the assumption of known lengths on the moving object. The assumption that the

moving features have a constant velocity in [81] is relaxed in [97] and [98] by restricting

the motion of the object to a plane and requiring PE, using an extended unknown input

observer to show the observer error converges exponentially to zero. In [99], a recursive

least squares observer is developed that assumes a known bound on the distance to

moving and stationary features, known camera angular velocities, and PE to develop

a RISE-based method that asymptotically estimates the distance to moving features

and the linear velocities of the features and the camera. The result in [99] is extended

in [100] to remove the PE condition by assuming the velocity of the moving features

and the angular velocity of the camera are known to develop a RISE-based approach
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to asymptotically estimate the camera linear velocities and distances to the features.

In [45], an approach similar to [32] is developed that uses velocity measurements of the

camera and tracked stationary features to learn the Euclidean positions of the stationary

features and the trajectory of the camera. The velocity of the camera and the estimates

of the positions of the stationary features are then used to the show the estimation error

of the Euclidean path and velocity of a moving object, as well as the structure of the

moving object, is globally exponentially convergent to an ultimate bound assuming the

object velocity and acceleration are bounded. Additionally, if the velocity of the moving

object is constant, the ultimate bound of the estimation error will be zero. The developed

observer for the moving object features relaxed the requirement to measure optical flow

and the PE assumption. In [101], estimators are developed for a network of stationary

cameras to exponentially estimate the Euclidean distance to a moving object’s features

and the object’s velocity, with respect to each camera. The objective is similar to the

inverse of the daisy-chaining type problem (cf., [74–80]). However, [45] and most other

SaMfM approaches assume continuous feedback of the moving object. Unlike the

camera pose estimation problem, the moving object will typically only leave the cam-

era’s FOV temporarily implying approaches that consider temporary loss of feedback

(cf., [36–38, 62, 63]) may be developed to determine how long a target may leave the

camera’s FOV.

1.2 Outline of the Dissertation

Chapter 2 describes the dynamics for a moving monocular camera tracking station-

ary features and a moving target’s features. The dynamics present a unique approach to

the SfM and SaMfM where relationships are developed showing how the Euclidean dis-

tance to stationary features relates to the pose of the agent and the Euclidean distance

to moving features relates to the pose and velocity of the moving target.

A global exponentially stable observer for feature scale is developed in Chapter

3, under a finite excitation condition through the use of ICL. Since the observer only
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requires finite excitation to be globally exponentially stable, the observer is more

general than previous results. The result indicates that the Euclidean distance to a set

of features on a stationary object and the path the camera travels while viewing that

object are estimated exponentially fast implying the structure (i.e., Euclidean coordinates

of the tracked features) and path are reconstructed exponentially. Furthermore, the

developed estimation method does not require the features on the objects to be planar

and does not require the positive depth constraint. An experimental study is presented

which compares the developed Euclidean distance observer to previous observers

demonstrating the effectiveness of this result.

In Chapter 4, an extension to the learning approaches in Chapter 3 is developed

that applies a new learning strategy that maintains a continuous estimate of the position

of the camera and estimates the structure of features as they come into the camera’s

field-of-view. Furthermore, the developed learning strategy allows simulated mea-

surements of features from objects that are no longer in the field-of-view enabling a

continuous estimate of the distance to features with respect to the camera. Additionally,

this approach shows how the extended observer removes the positive depth constraint

required by all previous structure from motion approaches. Using this approach, a cam-

era may travel over large distances without keeping specific features in the field-of-view

for all time and allow objects to permanently leave the field-of-view if necessary. A Lya-

punov based stability analysis proves that the observers for estimating the path of the

camera as well as the structure of each set of objects are globally exponentially stable

while features are in the camera’s field-of-view. A switched systems analysis is used to

develop dwell-time conditions to indicate how long a feature must be tracked to ensure

the distance estimation error is below a threshold. After the distance estimates have

converged below the threshold, the feature may be used to update the position of the

camera. If a feature does not satisfy the dwell-time condition, it is never used to update

the position of the agent. Furthermore, the approach does not require a new set of
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features to be in the camera’s FOV when older features leave the camera’s FOV. Finally,

if a recognized landmark enters the camera’s FOV, the feedback is used to compensate

for drift error.

In Chapter 5, the approach in Chapter 4 is used to provide pose estimates of the

camera and an extension of Chapter 3 is developed to exponentially estimate the pose,

velocity, and acceleration of the moving target. Specifically, using the pose and velocity

of the camera, the estimation error of the Euclidean trajectory of the target as well as

the structure of the target, is globally exponentially convergent to an ultimate bound

assuming the target velocity and acceleration are bounded and dwell-time conditions

are satisfied. The developed estimator relaxes the requirement to have continuous

observation of the target, to know structure, velocity, or acceleration of the target, and

does not require the persistence of excitation assumption or positive depth constraint.

Chapter 6 concludes the dissertation with a discussion of the developed estimation

algorithms and potential extensions.
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CHAPTER 2
SYSTEM MODEL

The development in this chapter presents the dynamics and assumptions used

in Chapters 3-5. Section 2.1 develops the dynamics of a single stationary object’s

features relative to a moving camera, Section 2.2 extends Section 2.1 to a sequence of

objects, and Section 2.4 develops the dynamics of a moving object’s features relative to

a moving camera.

2.1 Motion Model Using Stationary Features

This section describes the dynamic relationship between a single object’s features

and a moving camera. To facilitate the subsequent development, a key frame is defined

as the camera frame when features are first extracted from an image of an object.

Furthermore, a key frame, denoted by Fk, has its origin at the principal point of that

image, denoted by k, and basis
{
xk, yk, zk

}
. The frame when the current image is taken,

denoted by Fc, has its origin at the principal point of the current image, denoted by

c, and basis
{
xc, yc, zc

}
, where zc is aligned with the normal to the image plane, xc is

aligned with the horizontal of the image plane (i.e., to the right in the image), and y
c

is

aligned with the vertical of the image plane (i.e., downward in the image).. This implies

that Fk is established to coincide with Fc at time t = 0, where t ∈ R≥0 represent time.

Assumption 2.1. A stationary object, s, has at least p ∈ Z≥4 features that can be

detected and tracked provided they are within the FOV of the camera.

Remark 2.1. Features on an object in the camera’s FOV can be tracked using de-

scriptor and matching techniques such as [102–108] or feature extraction and tracking

techniques such as [109–112].

Assumption 2.2. The camera intrinsic matrix A ∈ R3×3 is known and invertable [16].

Assumption 2.3. The camera linear and angular velocities, vc (t) , ωc (t) ∈ R3, are

measurable and expressed in Fc and are upper bounded as ‖vc (t) ‖ ≤ vc and ‖ωc (t) ‖ ≤

ωc, where vc, ωc ∈ R>0 are known constants.
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Figure 2-1. Example geometry for tracking the position of the ith feature of s where the
camera starts at the top left where the key image is taken and is traveling
downward from the upper left to the lower left while tracking a stationary
object on the right.
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As shown in Figure 2-1, the position of the ith feature on s, si ∈ Z>0, ∀i = {1, ..., p},

can be described as

p
si/c

(t) = p
k/c

(t) +Rk/c (t) p
si/k

, (2–1)

where p
k/c

(t) ∈ R3 is the position of the k with respect to c expressed in Fc, psi/k (t) ∈ R3

is the position of feature si with respect to k expressed in Fk, Rk/c (t) ∈ R3×3 is the

rotation matrix describing the orientation of Fk with respect to Fc, and p
si/c

(t) ∈ R3 is the

position of feature si with respect to c expressed in Fc. Rearranging (2–1) gives

Ysi (t)

dsi/c (t)

dk/c (t)

 = Rk/c (t)usi/kdsi/k, (2–2)

where Ysi (t) ,

[
usi/c (t) −uk/c (t)

]
, dsi/c (t) ∈ R>0 and usi/c (t) ∈ R3 are the distance

and unit vector of feature si with respect to c expressed in Fc, dk/c (t) ∈ R>0 and

uk/c (t) ∈ R3 are the distance and unit vector of k with respect to c expressed in Fc, and

dsi/k ∈ R>0 and usi/k ∈ R3 are the distance and unit vector of feature si with respect to k

expressed in Fk.

While a set of features, {si}pi=1, are in the camera’s FOV and dk/c (t) > 0, the rota-

tion Rk/c (t) and unit vector uk/c (t) can be determined from a general set of stationary

features, using existing techniques such as planar homography decomposition or es-

sential decomposition.1 Additionally, usi/k and usi/c (t) can always be determined from

usi/k =
A−1psi/k
‖A−1psi/k‖

and usi/c (t) =
A−1psi/c(t)

‖A−1psi/c(t)‖
where psi/k, psi/c (t) ∈ R3 are the homoge-

neous pixel coordinates of feature si in Fk and Fc, respectively. When the motion of the

camera is not parallel to the direction to a feature,
(

1− ‖uTk/c (t)usi/c (t) ‖
)
> λa, where

1 See [15], [16], and [113] for examples on calculating the rotation and normalized
translation from planar and nonplanar features.
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λa ∈ (0, 1) is a selected constant, and dk/c (t) > 0, (2–2) can be written asdsi/c (t)

dk/c (t)

 = ψsi (t) dsi/k, (2–3)

where ψsi (t) ,
(
Y T
si

(t)Ysi (t)
)−1

Y T
si

(t)Rk/c (t)usi/k is invertable and measurable while(
1− ‖uTk/c (t)usi/c (t) ‖

)
> λa. Furthermore, given Fk and s are stationary, the time

derivatives of the unknown distances are measurable as

d

dt

(
dsi/c (t)

)
= −uTsi/c (t) vc (t) , (2–4)

d

dt

(
dk/c (t)

)
= −uTk/c (t) vc (t) , (2–5)

and

d

dt
(dsi/k) = 0. (2–6)

2.2 Extension of Motion Model Using Stationary Features

Considering the objective is to travel over large distances, this section extends

Section 2.1 to a sequence of stationary objects.

Let
{
Fkj
}ps(t)
j=1

and {ζj}ps(t)j=1 be a sequence of key frames and times at which key

frames are established, respectively, where ζaj ∈ R≥0 denotes the time, t ∈ R≥0, that

the jth object has feedback available (i.e., features are first extracted from the object

after entering the FOV establishing the key frame), ζuj ∈ R>ζaj
denotes the time the when

feedback for the jth object unavailable (i.e., the object is no longer tracked because

too many features on the object leave the camera’s FOV), ps (t) ∈ Z>0 denotes the

total number of key frames, and the jth key frame, denoted by Fkj , has its origin at the

principal point of that image, denoted by kj, and has the basis
{
xkj , ykj

, zkj

}
, which are

selected such that Fkj is established to coincide with Fc at time t = ζaj . Let Vc ⊂ R3

represent the Euclidean space of the camera’s FOV expressed in Fc.
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Figure 2-2. Example geometry for tracking the position of the ith feature in Sj where the
key image taken from the top left and the camera traveling downward from
the upper left to the lower left while tracking Sj on the right.
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Assumption 2.4. The Euclidean space of the camera’s FOV, Vc, is compact and the

norm of each point in Vc is bounded using the known constant d ∈ R>0.

Remark 2.2. Assumption 2.4 is necessary for the subsequent development of the max-

imum and minimum dwell-time conditions and is inherently required when estimating

distances to an unknown object’s features that may leave the camera’s FOV.

Assumption 2.5. There exists a set of stationary objects, {Sj}ps(t)j=1 , where Sj ⊂ R3

represents the minimum Euclidean sphere enclosing the jth stationary object expressed

in Fc. Furthermore, there exists a set of trackable features on each stationary object,{
Osj
}ps(t)
j=1

, where Osj , {sj,i}
psj
i=1 is the jth stationary object’s feature set, sj,i represents

the ith feature on the jth stationary object, and psj ∈ Z≥4 represents the total number of

trackable features on the jth stationary object.

As illustrated in Figure 2-2, the position feature sj,i ∈ Osj , can be described as

p
sj,i/c

(t) = p
kj/c

(t) +Rkj/c (t) p
sj,i/kj

, (2–7)

where p
sj,i/c

(t) ∈ R3 is the position of feature sj,i with respect to c expressed in Fc,

p
kj/c

(t) ∈ R3 is the position of kj with respect to c expressed in Fc, psj,i/kj (t) ∈ R3 is

the position of feature sj,i with respect to kj expressed in Fkj , and Rkj/c (t) ∈ R3×3 is the

rotation matrix describing the orientation of Fkj with respect to Fc. Rearranging (2–7)

gives

Ysj,i (t)

dsj,i/c (t)

dkj/c (t)

 = Rkj/c (t)usj,i/kjdsj,i/kj , (2–8)

where Ysj,i (t) ,

[
usj,i/c (t) −ukj/c (t)

]
, dsj,i/c (t) ∈ R>0 and usj,i/c (t) ∈ R3 are the

distance and unit vector of feature sj,i with respect to c expressed in Fc, dkj/c (t) ∈ R>0

and ukj/c (t) ∈ R3 are the 2–8distance and unit vector of kj with respect to c expressed in

Fc, and dsj,i/kj ∈ R>0 and usj,i/kj ∈ R3 are the distance and unit vector of feature sj,i with

respect to kj expressed in Fkj .

30



Since features on the object may leave the camera’s FOV over time, let Psj (t) ⊆ Osj

represent the remaining set of features in the camera’s FOV, specifically, Psj (t) ,{
sj,i ∈ Osj : p

sj,i/c
(t) ∈ Sj ∩ Vc

}
, and let psj (t) ∈ Z≥0 represent the number of features

in Psj (t), and Pcsj (t) , Osj\Psj (t) represent the compliment of Psj (t). Let ζusj,i ∈ R≥ζaj ,

represent the time the feature indexed by sj,i leaves the FOV, specifically, the time

instance when sj,i /∈ Psj (t), and let ∆tasj,i , ζusj,i − ζ
a
j represent the total time the feature

indexed by sj,i was tracked by the camera. Let ζuj , max
{
ζusj,i

}psj (t)

i=1
(i.e., the time the

last feature leaves).

While the origins kj and c are not coincident (i.e., dkj/c (t) > d1 where d1 ∈ R>0

is a constant), Assumptions 2.2 and 2.5 ensure the rotation Rkj/c (t) and unit vector

ukj/c (t) can be determined from the set of stationary features in Psj (t) while psj (t) ≥ 4.

Additionally, usj,i/kj and usj,i/c (t) can be determined from usj,i/kj =
A−1psj,i/kj
‖A−1psj,i/kj ‖

and

usj,i/c (t) =
A−1psj,i/c(t)

‖A−1psj,i/c(t)‖
where psj,i/kj , psj,i/c (t) ∈ R3 are the homogeneous pixel

coordinates of feature sj,i in Fkj and Fc, respectively.

Let
{
σsj,i (t)

}
sj,i∈Psj (t)

be the set of switching signals for the features in Psj (t),

where σsj,i (t) ∈ {u, a} indicates whether
(

1− ‖uTkj/c (t)usj,i/c (t) ‖
)
< λa or(

1− ‖uTkj/c (t)usj,i/c (t) ‖
)
> λa, respectively. While the origins kj and c are not coin-

cident (i.e., dkj/c (t) > d1) and the motion of the camera is not parallel to the direction

to a feature (i.e.,
(

1− ‖uTkj/c (t)usj,i/c (t) ‖
)
> λa), σsj,i (t) = a (i.e., not parallel motion),

(2–8) is invertable in the sense that Ysj,i (t) is full column rank and (2–8) may be writtendsj,i/c (t)

dkj/c (t)

 = ψasj,i (t) dsj,i/kj , (2–9)

where

ψasj,i (t) ,
(
Y T
sj,i

(t)Ysj,i (t)
)−1

Y T
sj,i

(t)Rkj/c (t)usj,i/kj ,

is measurable based on Assumptions 2.2 and 2.5. When σsj,i (t) = u (i.e., parallel

motion), (2–8) is not invertable. However, (2–8) can always be written dsj,i/c (t) =
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uTsj,i/c (t)ukj/c (t) dkj/c (t) + uTsj,i/c (t)Rkj/c (t)usj,i/kjdsj,i/kj yielding

dsj,i/c (t) = ψusj,i (t)

dkj/c (t)

dsj,i/kj

 , (2–10)

where

ψusj,i (t) ,

[
uTsj,i/c (t)ukj/c (t) uTsj,i/c (t)Rkj/c (t)usj,i/kj

]
.

Using Assumption 2.3 and while psj (t) ≥ 4, the time derivatives of the unknown

distances dsj,i/c (t), dkj/c (t), and dsj,i/kj are measurable for sj,i ∈ Psj (t) as

d

dt

(
dsj,i/c (t)

)
= −uTsj,i/c (t) vc (t) , (2–11)

d

dt

(
dkj/c (t)

)
= −uTkj/c (t) vc (t) , (2–12)

and

d

dt
(dsj,i/kj) = 0. (2–13)

Taking the time derivative of usj,i/c (t) yields

d

dt

(
usj,i/c (t)

)
= −ω×c (t)usj,i/c (t) +

1

dsj,i/c (t)

(
usj,i/c (t)uTsj,i/c (t)− I3×3

)
vc (t) , (2–14)

where ω×c (t) ,


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

, and I3×3 ,


1 0 0

0 1 0

0 0 1

.

2.3 Motion Model of Camera

As previously discussed, it is necessary to have a continuous estimate of the

position of the camera over time regardless of the visibility of objects (i.e., there will time

periods where no objects remain in the camera’s FOV). As shown in Figure 2-3, the

position of the camera may be expressed through the sequence of objects. Since the

starting location of the camera may be unknown, the position of the camera over time
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Figure 2-3. Example geometry for pose of the camera over time where the camera
starts at the top where the first key frame is located and is traveling
downward to the lower left.
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can be expressed relative to the first key frame as

p
c/k1

(t) = Rkps(t)/k1
p
c/kps(t)

(t) +

ps(t)∑
j=2

Rkj−1/k1pkj/kj−1
. (2–15)

The derivative of the position with respect to time can be expressed similarly

d

dt

(
p
c/k1

(t)
)

= Rc/k1vc (t) . (2–16)

The orientation of Rc/k1 (t) is derived using a unit quaternion, q
c/k1

(t) ∈ H, which

can be represented as qc/k1 (t) ∈ R4, where qTc/k1 (t) qc/k1 (t) = 1. The derivative with

respect to time for qc/k1 (t) is

d

dt

(
qc/k1 (t)

)
=

1

2
B
(
qc/k1 (t)

)
ωc (t) , (2–17)

where

B (q) ,



−q2 −q3 −q4

q1 −q4 q3

q4 q1 −q2

−q3 q2 q1


,

q1, q2, q3, q4 ∈ R are the four elements of a unit quaternion q (t) and BT (q (t))B (q (t)) =

I3×3.2 The rotation matrix representation of a unit quaternion q (t) is

R (q),


1− 2 (q2

3 + q2
4) 2 (q2q3 − q4q1) 2 (q2q4 + q3q1)

2 (q2q3 + q4q1) 1− 2 (q2
2 + q2

4) 2 (q3q4 − q2q1)

2 (q1q4 − q3q1) 2 (q3q4 + q2q1) 1− 2 (q2
2 + q2

3)

.
Remark 2.3. The orientation qc/k1 (t) is often measurable using local sensors (e.g.,

inertial measurement units and magnetometers). So measurements of qc/k1 (t) may be

2 Time dependence is suppressed except when needed for clarity or introducing
terms.
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available at all times in many applications. In those applications, no estimate of qc/k1 (t)

would be required.

Given ukj/c (t) is only measurable locally, an estimate of subsequently p
kj/c

(t) is

developed. Taking the derivative of the position of the camera expressed in the camera

frame with respect to time yields

d

dt

(
p
kj/c

(t)
)

= −vc (t)− ω×c (t) p
kj/c

(t) . (2–18)

Similarly, the orientation used for each key frame is Rkj/c (t) as shown in (2–7). The

unit quaternion form of the orientation is q
kj/c

(t) ∈ H, which can be represented as

qkj/c (t) ∈ R4, where qTkj/c (t) qkj/c (t) = 1. The derivative with respect to time for qkj/c (t) is

d

dt

(
qkj/c (t)

)
= −1

2
B
(
qkj/c (t)

)
ωc (t) . (2–19)

2.4 Motion Model of Moving Features

Given the objective is to track a moving object that intermittently leaves the cam-

era’s FOV, this section develops the dynamic relationships between the a moving object

and moving camera. Tracking features on a moving object that intermittently leaves the

camera’s FOV can be a significantly more challenging problem than tracking station-

ary features. Descriptor and matching techniques such as [102–108] may have better

tracking performance for moving objects.

Assumption 2.6. A moving object represented byM ⊂ R3, whereM represents the

minimum Euclidean sphere enclosing the object expressed in Fc, has n ∈ Z≥4 features

that can be detected and tracked whileM⊂ Vc (i.e., the object is in the camera’s FOV).

WhileM is in the FOV of the camera, the position of each feature inM can be

related to the camera. Let Om , {mi}ni=1 represent the set of features on the object,

p
mi/c

(t) ∈ R3 represent the position of feature mi with respect to c expressed in Fc,

and let σO (t) ∈ {u, a} be a switching signal indicating whetherM ⊂ Vc implying when
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Figure 2-4. Example geometry for tracking the position of the ith feature of m and m∗.
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σO (t) = a,
{
pmi/c (t)

}n
i=1
⊂ M ∩ Vc. Furthermore, let πaj ∈ R≥0 be the jth time t when

σO (t) = a occurs, and let πuj ∈ R≥πaj represent the jth time when σO (t) = u.

Assumption 2.7. The features on the moving object are initially contained in the

camera’s FOV (i.e.,
{
pmi/c (πa1)

}n
i=1
⊂ M∩ Vc) and the moving object and first stationary

object are detected at the same time (i.e., πa1 = ζa1 ).

As illustrated in Figure 2-4, the object frame, denoted by Fm, has its origin at

feature m1, with basis
{
xm, ym, zm

}
. The initial object frame (i.e., the object at the first

key frame), denoted by Fm∗, has its origin at m∗1 and basis
{
xm∗ , ym∗ , zm∗

}
, where m∗

represents m at time t = πa1 .

Remark 2.4. The initial orientation of the object may be selected arbitrarily given any

coordinate frame may be attached to the moving object body. To aid in the subsequent

development, the object initial basis is selected to align with the first key frame (i.e.,{
xm∗ , ym∗ , zm∗

}
=
{
xk1 , yk1

, zk1

}
and Rm∗/c (πa1) = Rm∗/k1 = I3×3).

As also shown in Figure 2-4, the position of the ith feature onM may be described

in Fc as

p
mi/c

(t) = p
m1/c

(t) +Rm/c (t) p
mi/m1

, (2–20)

where Rm/c (t) ∈ R3×3 is the rotation matrix describing the orientation of Fm with

respect to Fc, and p
mi/m1

∈ R3 is the constant position of feature mi with respect to m1

expressed in Fm. The same expression is true when features inM are first extracted

(i.e., when σO (t) = a at time t = πa1); specifically, p
m∗i /c

(πa1) , p
mi/c

(πa1) = p
m∗i /k1

and as

described in Remark 2.4, Rm∗/c (πa1) = Rm∗/k1 = I3×3 implying

p
mi/m1

= p
m∗i /k1

− p
m∗1/k1

. (2–21)

Substituting (2–21) into (2–20), the position of the ith feature in Vc can be described in

Fc by

p
mi/c

(t) = p
m/m∗

(t) +Rm/c (t) p
m∗i /k1

, (2–22)
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where p
m/m∗

(t) , p
m1/c

(t)−Rm/c (t) p
m∗1/k1

. Rearranging (2–22) gives

Ymi (t)

 dmi/c (t)

dm/m∗ (t)

 = Rm/c (t)um∗i /k1dm
∗
i /k1

, (2–23)

where Ymi (t) ,

[
umi/c (t) −um/m∗ (t)

]
, dmi/c (t) ∈ R>0 and umi/c (t) ∈ R3 are the

distance and unit vector of feature mi with respect to c expressed in Fc, dm/m∗ (t) ∈ R>0

and um/m∗ (t) ∈ R3 are the distance and unit vector of p
m/m∗

(t) from (2–22), and

dm∗i /k1 ∈ R>0 and um∗i /k1 ∈ R3 are the distance and unit vector of feature m∗i with respect

to k1 expressed in Fk1.

Under Assumptions 2.2 and 2.6, while σO (t) = a, the rotation matrix Rm/c (t) and

unit vector um/m∗ (t) can be determined from a general set of features, using existing

techniques. Additionally, um∗i /k1 and umi/c (t) can be determined from um∗i /k1 =
A−1pm∗

i
/k1

‖A−1pm∗
i
/k1
‖

and umi/c (t) =
A−1pmi/c(t)

‖A−1pmi/c(t)‖
where pm∗i /k1 , pmi/c (t) ∈ R3 are the homogeneous pixel

coordinates of feature m∗i and mi in Fk1 and Fc, respectively.

Let {σmi (t)}mi∈Om be the set of switching signals for the features in Om,

where σmi (t) ∈ {u, a} indicates whether
(

1− ‖uTm/m∗ (t)umi/c (t) ‖
)
≤ λa or(

1− ‖uTm/m∗ (t)umi/c (t) ‖
)
> λa, respectively. Furthermore, let πalj,mi ∈

[
πaj , π

u
j

)
rep-

resent the lth instance the ith moving feature satisfies the eigenvalue condition (i.e.,

σmi (t) = a) during the jth instance the object enters the camera’s FOV (i.e., t ∈
[
πaj , π

u
j

)
)

and let πulj,mi ∈
[
πaj , π

u
j

)
represent the lth instance it doesn’t satisfy the eigenvalue

condition (i.e., σmi (t) = u).

Remark 2.5. The set of features excluding the origin (i.e., {σmi (t)}mi∈Om\{m1}) are

σmi (t) = u if the origin does not satisfy the eigenvalue condition (i.e., σm1 (t) = u).

This relationship results because the features are all dependent on the origin in the

subsequent development. The set of features (i.e., {σmi (t)}mi∈Om) are set as σmi (t) = u

if the object leaves the camera’s FOV (i.e., σO (t) = u).
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While the relative direction of motion is not parallel to the direction of a feature (i.e.,(
1− ‖uTm/m∗ (t)umi/c (t) ‖

)
> λa), σmi (t) = a and (2–23) may be rearranged as dmi/c (t)

dm/m∗ (t)

 = ψmi (t) dm∗i /k1 , (2–24)

where

ψmi (t) ,
(
Y T
mi

(t)Ymi (t)
)−1

Y T
mi

(t)Rm/c (t)um∗i /k1

and ψmi (t) is measurable.

Based on the definitions of p
mi/c

(t) and p
m/m∗

(t), their derivatives with respect to

time are

d

dt

(
p
mi/c

(t)
)

= vm (t)− vc (t)− ω×c (t) p
mi/c

(t) + ω×m (t)Rm/c (t) p
mi/m1

(2–25)

and

d

dt

(
p
m/m∗

(t)
)

= vm (t)− vc (t)− ω×m (t)Rm/c (t) p
m∗1/k1

− ω×c (t) p
m/m∗

(t) . (2–26)

Taking the time derivatives of the unknown distances and using (2–25) and (2–26) yields

d

dt

(
dmi/c (t)

)
=uTmi/c (t) vm (t)− uTmi/c (t) vc (t)

+uTmi/c (t)ω×m (t)Rm/c (t)um∗i /k1dm
∗
i /k1

−uTmi/c (t)ω×m (t)Rm/c (t)um∗1/k1dm
∗
1/k1

, (2–27)

d

dt

(
dm/m∗ (t)

)
=uTm/m∗ (t) vm (t)− uTm/m∗ (t) vc (t)

−uTm/m∗ (t)ω×m (t)Rm/c (t)um∗1/k1dm
∗
1/k1

, (2–28)

and
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d

dt
(dm∗i /cj) = 0. (2–29)

Taking the time derivatives of the directions yields

d

dt

(
umi/c (t)

)
=

1

dmi/c (t)
Ψmi (t) (vm (t)− vc (t))− ω×c (t)umi/c (t)

+
1

dmi/c (t)
Ψmi (t)ω×m (t)Rm/c (t)um∗i /k1dm

∗
i /k1

− 1

dmi/c (t)
Ψmi (t)ω×m (t)Rm/c (t)um∗1/k1dm

∗
1/k1

(2–30)

and

d

dt

(
um/m∗ (t)

)
=

1

dm/m∗ (t)
Ψm/m∗ (t) (vm (t)− vc (t))− ω×c (t)um/m∗ (t)

− 1

dm/m∗ (t)
Ψm/m∗ (t)ω×m (t)Rm/c (t)um∗1/k1dm

∗
1/k1

, (2–31)

where Ψmi (t) =
(
I3×3 − umi/c (t)uTmi/c (t)

)
and Ψm/m∗ (t) ,

(
I3×3 − um/m∗ (t)uTm/m∗ (t)

)
.
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CHAPTER 3
SIMULTANEOUS ESTIMATION OF EUCLIDEAN DISTANCES TO A STATIONARY

OBJECT’S FEATURES AND THE EUCLIDEAN TRAJECTORY OF A MONOCULAR
CAMERA

In this chapter, image geometry insights are exploited to express the error system

with a more general distance measure that only becomes zero when the target and

camera are coincident; thereby, avoiding the positive depth constraint. While this result

also requires the features to remain in the FOV, eliminating the positive depth constraint

eliminates a barrier for future development that would allow intermittent viewing of the

features. Although, the new image-geometry based error system avoids the potential

depth singularity, the resulting error system still contains the unmeasurable distance to

the target. However, the development in Section 3.1 illustrates how the unmeasurable

state can be related to an unknown constant to enable the use of ICL. Regardless of the

system identification method used, there is a delay before sufficient excitation occurs to

identify the parameters. Therefore, the preliminary result in [32] and the development

in Section 3.1 exhibit an arbitrarily long delay before determining the feature Euclidean

coordinates. In Section 3.2, we modify the developed learning strategy to include

gradient terms that enable transient learning until sufficient data has been collected for

the ICL terms.

To illustrate the performance of the developed observers, multiple experiments are

presented, including a comparison of the observers in Section 3.1 and Section 3.2 with

the results in [1] and an EKF. These results indicate that the EKF and result in [1] have

improved transient performance over the result in Section 3.1, before the ICL-based

estimates converge. The EKF and result in [1] have similar transient response as the

observer in Section 3.2 before the ICL-based estimates converge. After the ICL-based

estimates converge, the observers in Sections 3.1 and 3.2 converge to steady-state with

improved performance over the EKF and observer in [1].
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3.1 Integral Concurrent Learning Observer Update Laws for Euclidean Distances

Motivated by the developments in [32, 45], an ICL update law is implemented to

estimate the constant unknown distances, dsi/k, by integrating (2–4) and (2–5) over a

time window ς ∈ R>0 yielding

dsi/c (t)

dk/c (t)

−
dsi/c (t− ς)

dk/c (t− ς)

 =

∫ t

t−ς
ηsi (ι) dι, t > ς,

where ς may be constant in size or change over time. While
∫ t
t−ς ηsi (ι) dι is a known

quantity,

dsi/c (t)

dk/c (t)

 and

dsi/c (t− ς)

dk/c (t− ς)

 are unknown; however, the relationship in (2–3)

may be utilized at the current time t and the previous time t− ς yielding

Ysi (t) dsi/k = Usi (t) , (3–1)

where

Ysi (t) ,


02×1, t ≤ ς,

(ψsi (t)− ψsi (t− ς)) , t > ς,

and

Usi (t) ,


02×1, t ≤ ς,∫ t
t−ς ηsi (ι) dι, t > ς.

The dynamics in (3–1) demonstrate that concurrent learning can estimate the constant

distances, dsi/k, to the features on s. Specifically, multiplying both sides of (3–1) by

YTsi (t) yields

YTsi (t)Ysi (t) dsi/k = YTsi (t)Usi (t) . (3–2)

In general, Ysi (t) will not have full column rank (e.g., when the camera is stationary)

implying YTsi (t)Ysi (t) ≥ 0. However, the equality in (3–2) may be evaluated at instances
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in time and summed together (i.e., history stacks) as

ΣYsidsi/k = ΣUsi , (3–3)

where ΣYsi ,
∑N

hi=1 YTsi (thi)Ysi (thi), ΣUsi ,
∑N

hi=1 YTsi (thi)Usi (thi), thi ∈ (ς, t), and

N ∈ Z>1.

Assumption 3.1. Motion of the camera occurs so there exists finite constants τsi ∈

R>ς , λτ ∈ R>0 such that for all time t ≥ τsi, λmin
{

ΣYsi
}
> λτ , where λmin{·} and λmax{·}

are the minimum and maximum eigenvalues of {·}.1

Assumption 3.1 can be verified online and is heuristically easy to satisfy be-

cause it only requires a finite collection of sufficiently exciting Ysi (t) and Usi (t) to yield

λmin
{

ΣYsi
}
> λτ . The time τsi is unknown; however, it can be determined online by

checking the minimum eigenvalue of ΣYsi . After τsi, λmin
{

ΣYsi
}
> λτ implies that a

constant unknown distance, dsi/k, can be determined from (3–3) as

dsi/k = Xsi , t ≥ τsi , (3–4)

where

Xsi ,


0, t < τsi ,

Σ−1
Ysi

ΣUsi , t ≥ τsi .

When t ≥ τsi, (3–4) can be substituted into (2–3) to yield

dsi/c (t) = νsi,1 (t) , t ≥ τsi , (3–5)

and

dk/c (t) = νsi,2 (t) , t ≥ τsi , (3–6)

where νsi,1 (t) , νsi,2 (t) are the first and second elements of νsi (t) , ψsi (t)Xsi.

1 See [114] or [115] for some examples of methods for selecting data to satisfy the
assumption.
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The estimation errors, d̃si/c (t) , d̃k/c (t) , d̃si/k (t) ∈ R, are defined as

d̃si/c (t) , dsi/c (t)− d̂si/c (t) , (3–7)

d̃k/c (t) , dk/c (t)− d̂k/c (t) , (3–8)

and

d̃si/k (t) , dsi/k − d̂si/k (t) , (3–9)

where d̂si/c (t) , d̂k/c (t) , d̂si/k (t) ∈ R are the estimates. Motivated by the subsequent sta-

bility analysis, the implementable observer update laws for the estimates are designed

using (3–4)-(3–6) as

d

dt

(
d̂si/c (t)

)
,


ηsi,1 (t) , t < τsi ,

ηsi,1 (t) + k1

(
νsi,1 (t)− d̂si/c (t)

)
, t ≥ τsi ,

(3–10)

d

dt

(
d̂k/c (t)

)
,


ηsi,2 (t) , t < τsi ,

ηsi,2 (t) + k2

(
νsi,2 (t)− d̂k/c (t)

)
, t ≥ τsi ,

(3–11)

and

d

dt

(
d̂si/k (t)

)
,


0, t < τsi ,

k3

(
Xsi − d̂si/k (t)

)
, t ≥ τsi ,

(3–12)

where k1, k2, k3 ∈ R>0 are constants. Taking the time derivative of (3–7)-(3–9), and

substituting (3–4)-(3–9), (2–4)-(2–6), and (3–10)-(3–12) yields

d

dt

(
d̃si/c (t)

)
=


0, t < τsi ,

−k1d̃si/c (t) , t ≥ τsi ,

(3–13)

d

dt

(
d̃k/c (t)

)
=


0, t < τsi ,

−k2d̃k/c (t) , t ≥ τsi ,

(3–14)
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and

d

dt

(
d̃si/k (t)

)
=


0, t < τsi ,

−k3d̃si/k (t) , t ≥ τsi ,

(3–15)

implying for all time t ≥ τsi, the estimation error derivatives are negative definite

functions of the estimation errors. The form of the update laws in (3–10)-(3–12) are im-

plementable and used in practice, while the form of the time-derivative of the estimation

errors in (3–13)-(3–15) are analytical and provided to facilitate the subsequent analysis.

3.2 Extended Observer Update Law for Euclidean Distance to Features from
Camera

The subsequent analysis demonstrates that (3–7) and (3–13) will remain bounded

while t < τsi. However, after sufficient data is gathered, for all t ≥ τsi, (3–7) is bounded

by an exponential envelope. The delay required to get sufficient excitation may reduce

transient performance (i.e., the error is not guaranteed to reduce until after time t ≥ τsi)

which is a disadvantage compared to previous approaches such as [1], which improve

estimation errors by estimating optical flow. Motivated by the optical flow estimator form

of the inverse depth estimator in [1], the time rate of change of usi/c (t) is approximated

and used to provide additional information to the estimator in (3–10) which will improve

transient performance until sufficient excitation occurs.

The time derivative of usi/c (t) is

d

dt

(
usi/c (t)

)
=−ω×c (t)usi/c (t)

+
1

dsi/c (t)

(
usi/c (t)uTsi/c (t)− I3×3

)
vc (t) ,

and

ξTsi (t) ξsi (t) dsi/c (t) = ξTsi (t) ρsi (t) , (3–16)
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where ξsi (t) ,
(
d
dt

(
usi/c (t)

)
+ ω×c (t)usi/c (t)

)
, ρsi (t) ,

(
usi/c (t)uTsi/c (t)− I3×3

)
vc (t),

ω×c (t) ,


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

, and I3×3 ,


1 0 0

0 1 0

0 0 1

. To aid in the subsequent analysis let

µsi (t) , ηsi,1 (t) + kξ

(
ξTsi (t) ρsi (t)− ξTsi (t) ξsi (t) d̂si/c (t)

)
, then an extended version of the

estimator in (3–10) is designed as

d

dt

(
d̂si/c (t)

)
,


µsi (t) , t < τsi ,

µsi (t) + k1

(
νsi,1 (t)− d̂si/c (t)

)
, t ≥ τsi ,

(3–17)

where kξ ∈ R>0. Using (3–7) and (3–16) in (3–17) then simplifying yields

d

dt

(
d̂si/c (t)

)
=


ηsi,1 (t) + kξΞsi (t) d̃si/c (t) , t < τsi ,

ηsi,1 (t) + (k1 + kξΞsi (t)) d̃si/c (t), t ≥ τsi ,

(3–18)

where Ξsi (t) , ξTsi (t) ξsi (t). Substituting (3–18) into the time derivative of (3–7) yields

d

dt

(
d̃si/c (t)

)
=


−kξΞsi (t) d̃si/c (t) , t < τsi ,

− (k1 + kξΞsi (t)) d̃si/c (t) , t ≥ τsi .

(3–19)

Remark 3.1. Under Assumption 3.1, Ξsi (t) ≥ 0 since ‖vc (t) ‖ may be zero for any

period of time; however, for Assumption 3.1 to be satisfied, there will be times where

Ξsi (t) > 0. Specifically, there will exist a set of times Tsi ⊂
⋃N
hi=1(thi − ς, thi) such that

Ξsi (t) > 0, ∀t ∈ Tsi, where hi, thi are from (3–3), implying the design in (3–17) may

improve transient performance under Assumption 3.1.

3.3 Stability Analysis

Since the observer in (3–17) is an extension of (3–10), the resulting stabil-

ity analysis of (3–10) is identical to Theorem 3.1 and is excluded. Let η (t) ,
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[
d̃si/c (t) d̃k/c (t) d̃si/k (t)

]T
and V (η (t)) : R3 → R be a candidate Lyapunov func-

tion defined as

V (η (t)) ,
1

2
ηT (t) η (t) , (3–20)

which can be bounded as 1
2
‖η (t) ‖2 ≤ V (η (t)) ≤ 1

2
‖η (t) ‖2.

Theorem 3.1. The observer update laws defined in (3–11), (3–12), and (3–17) ensure

the estimation errors in η (t) are bounded and globally exponentially stable in the sense

that

‖η (t) ‖ ≤ ‖η (0) ‖exp (βτsi) exp (−βt) . (3–21)

Proof. Taking the time derivative of (3–20) then substituting the error derivatives in

(3–14), (3–15), and (3–19), results in the upper bound

d

dt
(V (η (t))) ≤


0, t < τsi ,

−2βV (η (t)) , t ≥ τsi ,

(3–22)

where β = min {k1, k2, k3}. From (3–20) and (3–22), [116, Theorem 8.4] can be

invoked to conclude that ‖η (t) ‖2 ≤ ‖η (0) ‖2, ∀t ≤ τsi. From [116, Theorem 4.10],

‖η (t) ‖2 ≤ ‖η (τsi) ‖2exp (2βτsi) exp (−2βt) , ∀t ≥ τsi. Evaluating the first bound on

‖η (t) ‖2 at t = τsi then substituting into the second bound on ‖η (t) ‖2 and taking the

square root yields (3–21).

3.4 Experimental Results

Fifteen experiments are provided to demonstrate the performance of the developed

observers. The performance of the developed observers in (3–10)-(3–12) and (3–

17) were tested using the Eigen3, OpenCV, and ROS c++ libraries (cf., [117], [118],

and [119], respectively). A Kobuki Turtlebot with a 1920 × 1080 monochrome iDS uEye

camera, shown in Figure 3-1, provides images at 30 Hz. Features were extracted from

images of a checkerboard, shown in Figure 3-1, with 8 × 6 corners (48 total features)
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Figure 3-1. Photo courtesy of author. Image shows the checkerboard, Kobuki Turtlebot,
and an iDS uEye camera used for experiments.

where each square is 0.06 meters × 0.06 meters. The linear and angular velocity of

the camera were calculated using the Turtlebot wheel encoders and a gyroscope at

50 Hz. An Optitrack motion capture system operating at 120 Hz measured the pose

of the camera and checkerboard, allowing for the position of each feature relative to

the camera to be known for comparison. Image processing and estimators executed

simultaneously on a computer with an Intel i7 processor running at 3.4 GHz. The error

of the distance estimators in (3–10) and (3–17) are compared to the estimator in [1] and

an EKF. Since the estimator in [1] and the EKF estimate the inverse depth (i.e., 1
zsi/c(t)

,

where zsi/c (t) is the depth to feature si from c expressed in Fc), while the estimators in

(3–10) and (3–17) estimate the distance,zsi/c (t) (the third element of usi/c (t) dsi/c (t)) is

used to compare the four methods.

For each experiment, the Turtlebot started approximately 3 meters away from

the checkerboard, and various trajectories were taken, shown in Figure 3-2, while

maintaining the checkerboard in the FOV. In each experiment, the Turtlebot initially
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started at rest, and after traveling 2.5 meters the estimators were stopped to provide

a large baseline. After the Turtlebot started its motion, the Turtlebot traveled without

stopping until after the estimators were stopped in an effort to have the ideal conditions

for estimation (i.e., continuous motion of the features in the camera FOV and continuous

linear motion of the camera as is required for [1] and the EKF). The initial distances

for the estimators in (3–10), (3–12), (3–17), the estimator in [1] and the EKF were

initialized with a depth of 0.5 meters. The estimator in (3–11) was initialized to 0.0

meters. The gains for (3–10)-(3–12) and (3–17) were selected as k1 = k2 = k3 = 25.0

and kξ = 25.0k1, respectively. The maximum value for ς was 5 seconds. The 48 feature

estimates were combined using a mean at each instance to update (3–11). The gain

for the method in [1] was selected to be 100.0. The covariance matrices for the EKF

were determined through experimentation and values found to have low steady state

error and fast convergence were R = r

1 0

0 1

 for the measurement covariance,

Q = r


100 0 0

0 100 0

0 0 100000

for the process covariance, and P (0) = r


1 0 0

0 1 0

0 0 150000

 for

the initial state covariance, respectively, where r = 0.00001.

Remark 3.2. For a general system, the optimal method to select good data and remove

bad data for (3–3) (e.g., due to noise or parameter changes) remains an open problem

and is often left to intuition. In these experiments, the selection of data was based off

of knowledge about approximate noise magnitudes in feature tracking and velocity

measurements. Specifically, data was only selected if ‖Ysi (t) ‖ ≥ εY and ‖Usi (t) ‖ ≥ εU

where εY , εU ∈ R>0 are values selected based on trial and error. Because Ysi (t) is full

column rank when ‖Ysi (t) ‖ ≥ εY and ‖Usi (t) ‖ ≥ εU , the value of dsi/k approximated

by Ysi (t) and Usi (t) can be determined. Given dsi/k > 0, and some knowledge about

reasonable values for the distances, values of dsi/k can be determined and only Ysi (t)
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Figure 3-2. The camera trajectories for each of the 15 experiments.

and Usi (t) values that had dsi/k estimates falling in these bounds are saved to ΣYsiand

ΣUsi . The values for εY and εU were εY = εU = 0.1 and the bounds on the distance were

selected as 0.5 meters and 6.0 meters.

A comparison of the example performance over time of the estimators is shown in

Figure 3-3 and Tables 3-1-3-3, where before learning refers to t < max {τsi} and after

learning refers to t ≥ max {τsi}. Figure 3-3 shows a comparison of the sum of the norm

of each depth error across the 48 features (i.e.,
∑48

si=1 ‖z̃si/c(t)‖) on the checkerboard

for the estimators in (3–10), (3–17), [1], and the EKF, respectively. As shown in Figure

3-3, the EKF estimator starts converging the fastest, but reaches steady state slower

than the estimators in (3–10), (3–17), and [1]. However, after converging, the EKF has

a similar error to the estimators in (3–10) and (3–17). Figure 3-3 also shows that the

estimator in (3–10) does not converge until sufficient learning occurs (at t = 3.6 seconds

for experiment 11). The extension in Section 3.2 shows an advantage of using current

input-output data in the estimator, as shown by the mean RMS errors in Table 3-1 and
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Figure 3-3. The sum of the norm of each depth error across the 48 features (i.e.,∑48
si=1 ‖z̃si/c(t)‖) for Experiment 11. Estimator 1 (red) refers to (3–10),

Estimator 2 (magenta) refers to (3–17), Estimator 3 (green) refers to [1], and
Estimator 4 (blue) refers to the EKF. The black vertical line indicates the time
when enough information was collected for learning.

Table 3-1. RMS Depth Error and Position Error in Meters Over 15 Experiments
Experiment Estimator 1 Estimator 2 Estimator 3 Estimator 4 Trajectory

1 70.499 55.525 58.325 55.435 0.017
2 66.358 42.065 52.827 42.838 0.026
3 80.466 64.701 67.616 63.706 0.037
4 76.250 59.583 65.593 59.565 0.032
5 79.419 63.244 70.798 65.674 0.032
6 82.611 69.300 71.996 68.558 0.018
7 65.971 48.192 57.287 46.392 0.020
8 73.864 60.002 64.290 59.858 0.027
9 77.699 61.468 69.227 60.708 0.020
10 72.053 55.916 63.679 55.771 0.023
11 75.472 59.757 59.916 60.798 0.016
12 77.571 63.623 66.451 63.686 0.022
13 83.663 67.817 72.995 68.274 0.036
14 74.030 58.764 66.941 59.245 0.030
15 77.742 56.067 64.983 56.612 0.029

Mean 75.578 59.068 64.862 59.141 0.026
Standard Deviation 5.086 6.819 5.522 6.938 0.007
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Figure 3-4. The position error of the camera and the distance error using the estimator
in (3–11) for Experiment 11.
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Table 3-2. RMS Depth Error and Position Error in Meters Over 15 Experiment Before
Learning

Experiment Estimator 1 Estimator 2 Estimator 3 Estimator 4 Trajectory
1 133.393 105.884 109.492 104.984 0.007
2 137.855 87.811 107.410 88.252 0.005
3 137.133 110.694 114.093 108.139 0.005
4 134.047 105.321 113.742 104.732 0.005
5 138.285 110.761 120.448 112.189 0.005
6 137.122 115.571 118.032 113.951 0.005
7 126.254 92.370 103.992 87.503 0.004
8 128.662 104.859 109.866 103.421 0.004
9 136.862 108.817 119.151 106.569 0.005
10 128.454 100.033 110.136 98.836 0.004
11 137.677 109.201 107.660 110.506 0.006
12 132.034 108.494 111.989 108.105 0.005
13 139.927 113.816 119.680 112.477 0.009
14 131.922 104.987 114.095 101.154 0.005
15 142.222 103.213 116.301 103.489 0.006

Mean 134.790 105.455 113.073 104.287 0.005
Standard Deviation 4.440 7.212 4.825 7.645 0.001

Table 3-3. RMS Depth Error and Position Error in Meters Over 15 Experiment After
Learning

Experiment Estimator 1 Estimator 2 Estimator 3 Estimator 4 Trajectory
1 13.374 3.979 12.838 8.567 0.017
2 10.655 1.868 13.894 8.166 0.029
3 12.513 2.657 14.246 10.123 0.045
4 12.517 1.180 15.656 7.629 0.038
5 13.431 1.903 20.777 17.759 0.038
6 13.359 2.414 16.889 7.562 0.022
7 10.403 3.502 22.177 10.390 0.024
8 11.632 3.804 17.099 11.610 0.033
9 12.661 1.683 19.959 9.847 0.024
10 11.162 1.861 20.035 9.457 0.028
11 10.239 2.828 13.483 8.119 0.019
12 9.996 1.576 12.845 7.833 0.027
13 13.093 3.261 19.967 16.608 0.044
14 11.044 3.090 24.677 21.283 0.036
15 13.885 2.599 18.542 8.494 0.034

Mean 11.998 2.547 17.539 10.897 0.031
Standard Deviation 1.284 0.831 3.567 4.080 0.008
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3-2. Specifically, the estimator in (3–10) is at a disadvantage to the other estimators

before sufficient excitation has occurred, while the estimator in (3–17) starts converging

to the true depths at a similar rate as the estimator in [1]. The average RMS error of

(3–10) is more than 10 meters greater than the other estimators over the entirety of

each experiment, and more than 20 meters greater before learning. However, Table 3-3

shows that the average error of (3–10) after learning is only 1 meter greater than the

EKF on average.

The extension in Section 3.2, specifically the design in (3–17), improves the error

convergence of (3–10) such that the RMS error is lower than the EKF on average. As

shown in Table 3-1, the average error over the entire experiment runtime was 59.068

meters for (3–17) compared to 59.141 meters for the EKF. After learning, the average

RMS error for the estimator in (3–17) was smaller (2.547 meters) compared to the EKF

(10.897 meters). However, as shown in Table 3-2, the RMS error before learning was

smaller for the EKF compared to (3–17), where the errors were 104.287 meters for the

EKF and 105.455 meters for the estimator in (3–17). Additionally, Tables 3-1-3-3 show

that the design in (3–17) has a smaller RMS error than the design in [1] on average.

Figure 3-4 and Tables 3-1-3-3 show the position error using (3–11) is small with an

average RMS error of 0.026 meters over the entire run; 0.005 meters before learning

and 0.031 after learning, which is approximately 1.2% error relative to trajectory length.

The error increase after learning is a result of noise, which as shown in Figure 3-3 and

Table 3-3 causes the depth error to remain small but bounded at approximately 1.8%

of the initial error. These experimental results demonstrate the ability of the observer in

(3–10) and (3–17) to leverage both immediate information and learning to both converge

quickly with low RMS error and maintain a low RMS error after converging.

3.5 Summary

Novel observers using a single camera and structure from motion theory are

developed to estimate the Euclidean distance to features on a stationary object and
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the Euclidean trajectory the camera takes while observing the object. Unlike previous

results that estimate the inverse depth to features, the developed observer for estimating

the Euclidean distance to features does not require the positive depth constraint. A

Lyapunov-based stability analysis shows the observer error exponentially converges

where persistence of excitation is replaced by finite excitation through the use of ICL. An

experimental comparison of the developed estimator to existing estimators shows that it

achieves lower RMS error when comparing feature depth estimates on average, and the

RMS error of the position also remains within 1.8%.
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CHAPTER 4
POSITION ESTIMATION USING A MONOCULAR CAMERA SUBJECT TO

INTERMITTENT FEEDBACK

In this chapter, an extension to the learning approaches in [32], [45], and Chapter 3,

is developed that applies a new learning strategy that maintains a continuous estimate

of the position of the camera and estimates the structure of features as they come

into the camera’s FOV. Furthermore, the developed learning strategy allows simulated

measurements of features from objects that are no longer in the FOV enabling a

continuous estimate of the distance to features with respect to the camera. Additionally,

this approach shows how the extended observer removes the positive depth constraint

required by all previous structure from motion approaches. Using this approach, a

camera may travel over large distances without keeping specific features in the FOV for

all time and allow objects to permanently leave the FOV if necessary. A Lyapunov based

stability analysis proves that the observers for estimating the path of the camera as well

as the structure of each set of objects are globally exponentially stable while features

are in the FOV. A switched systems analysis is used to develop dwell-time conditions

to indicate how long a feature must be tracked to ensure the distance estimation error

is below a threshold. After the distance estimates have converged below the threshold,

the feature may be used to update the position of the camera. If a feature does not

satisfy the dwell-time condition, it is never used to update the position of the agent.

Furthermore, the approach does not require a new set of features to be in the FOV

when older features leave the FOV. Finally, if a recognized landmark enters the FOV, the

feedback is used to compensate for drift error. The results in this chapter demonstrate

that the observer and predictor strategy outperforms a predictor-only strategy (cf., [62]

and [63]) when feedback is unavailable, provided structure estimation error is less than

the thresholds used to develop the developed dwell-times.
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4.1 Learning Feature Structure

In general, there is no relationship between any two objects that may be exploited

to immediately estimate the structure of the ith feature on the jth object (i.e., sj,i) when

t = ζaj , since the objects are unknown and there may only be one object in the FOV.

While the ith feature on the jth object has the eigenvalue condition satisfied (i.e.,

σsj,i (t) = a), an approach motivated by the development in [32] and [45] is used to learn

a constant unknown distance, dsj,i/kj . Specifically, (2–11) and (2–12) are integrated over

a time window ς ∈ R>0 yielding

dsj,i/c (t)

dkj/c (t)

−
dsj,i/c (t−ς)

dkj/c (t−ς)

=−
t∫
t−ς

uTsj,i/c (ι)

uTkj/c (ι)

 vc (ι) dι,t>ς, (4–1)

where ς may be constant in size or change over time. As described in (2–11) and

(2–12), while sj,i ∈ Psj (t), −
t∫
t−ς

uTsj,i/c (ι)

uTkj/c (ι)

 vc (ι) dι is known, but

dsj,i/c (t)

dkj/c (t)

 and

dsj,i/c (t− ς)

dkj/c (t− ς)

 are unknown indicating the left side of the equality in (4–1) is unknown.

However, when σsj,i (t) = a, the relationship in (2–9) may be utilized in (4–1) yielding

Ysj,i (t) dsj,i/kj = Usj,i (t) , t > ζaj , (4–2)

where Ysj,i (t) ,Usj,i (t) ∈ R2 are defined as

Ysj,i(t),



(
ψasj,i(t)− ψ

a
sj,i

(
ζalsj,i

))
,t ∈

(
ζalsj,i , ζ

al
sj,i

+ ς
]
,(

ψasj,i(t)− ψ
a
sj,i

(t− ς)
)
,t ∈

(
ζalsj,i + ς, ζulsj,i

]
,

02×1, t ∈
(
ζulsj,i , ζ

al+1
sj,i

]
,

57



Usj,i(t),



−
t∫

ζ
al
sj,i

uTsj,i/c (ι)

uTkj/c (ι)

vc(ι) dι, t ∈ (ζalsj,i , ζalsj,i + ς
]
,

−
t∫
t−ς

uTsj,i/c (ι)

uTkj/c (ι)

vc(ι) dι, t ∈ (ζalsj,i + ς, ζulsj,i

]
,

02×1, t ∈
(
ζulsj,i , ζ

al+1
sj,i

]
,

and ζalsj,i , ζ
ul
sj,i
∈
[
ζaj , ζ

u
sj,i

]
represent time instances when σsj,i (t) = a and σsj,i (t) = u,

respectively, and l ∈ Z>0, represents the index corresponding to each switch for feature

sj,i. Multiplying both sides of (4–2) by YTsj,i (t) yields

YTsj,i (t)Ysj,i (t) dsj,i/kj=YTsj,i (t)Usj,i (t) . (4–3)

In general, Ysj,i (t) will is not full column rank while σsj,i (t) = a (e.g. when the camera

is stationary implying YTsj,i (t)Ysj,i (t) ≥ 0) and cannot be determined while σsj,i (t) = u.

However, the equality in (4–3) may be evaluated at any instance in time and summed

together (i.e., history stacks) yielding

ΣYsj,idsj,i/kj = ΣUsj,i , (4–4)

where ΣYsj,i ,
N∑
h=1

YTsj,i (th)Ysj,i (th), ΣUsj,i ,
N∑
h=1

YTsj,i (th)Usj,i (th), th ∈
(
ζaj , ζ

u
sj,i

]
, and

N ∈ Z>1.

Assumption 4.1. The camera motion occurs so there exists a set of features Asj (t) ⊆

Osj , constant λτ ∈ R>0, and a set of times τj ,
{
τsj,i
}
sj,i∈Asj

, such that for all time t >

τsj,i, λmin
{

ΣYsj,i

}
> λτ , where τsj,i ∈

(
ζaj , ζ

u
sj,i

)
and λmin{·} is the minimum eigenvalue of
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{·}. Let Acsj (t) , Osj\Asj (t). Furthermore, asj
(
ζuj
)
≥ 4, where asj (t) ∈ Z≥0 represents

the number of features in Asj (t).1

Learning the subset in Asj (t) is less restrictive than assuming all of the features

in Osj are learned because there is no guarantee that the motion of the camera will be

sufficient before every feature leaves the camera’s FOV permanently. Camera motion

in Assumption 4.1 can be verified online and is heuristically easy to satisfy because

it only requires a finite collection of sufficiently exciting Ysj,i (t) and Usj,i (t) to yield

λmin

{
ΣYsj,i

}
> λτ . The times in τj are unknown; however, they can be determined

online by checking the minimum eigenvalue of ΣYsj,i for each each feature.

If motion occurs as discussed in Assumption 4.1, the constant unknown distance,

dsj,i/kj , can be determined for feature sj,i ∈ Asj (t) from (4–4) yielding

dsj,i/kj = Xsj,i , sj,i ∈ Asj (t) , (4–5)

where Xsj,i , Σ−1
Ysj,i

ΣUsj,i , sj,i ∈ Asj (t). Substituting (4–5) into (2–8) yields

Ysj,i (t)

dsj,i/c (t)

dkj/c (t)

 = Rkj/c (t)usj,i/kjXsj,i , sj,i ∈ Asj (t) . (4–6)

Since there will always be a delay before Xsj,i is determined for sj,i ∈ Asj (t), an

additional relationship is developed in an effort to provide feedback based on the rate of

change of the direction to the feature, motivated by the development in [1]. Specifically,

the time rate of change of usj,i/c (t) is approximated and used to provide feedback.

Taking the time derivative of usj,i/c (t) yields

d

dt

(
usj,i/c (t)

)
= −ω×c (t)usj,i/c (t)

1 See [114] or [115] for some examples of methods for selecting data to satisfy the
assumption.
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+
1

dsj,i/c (t)

(
usj,i/c (t)uTsj,i/c (t)−I3×3

)
vc (t),

(4–7)

implying

ξsj,i (t) dsj,i/c (t) = ρsj,i (t) , (4–8)

where ξsj,i (t) ,
(
d
dt

(
usj,i/c (t)

)
+ ω×c (t)usj,i/c (t)

)
, ρsj,i (t) ,

(
usj,i/c (t)uTsj,i/c (t)− I3×3

)
vc (t), ω×c (t) ,


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

, and I3×3 ,


1 0 0

0 1 0

0 0 1

.

Substituting (2–10) into (4–8) yields

ξsj,i (t)ψusj,i (t)

dkj/c (t)

dsj,i/kj

 = ρsj,i (t) . (4–9)

Let a composite signal ηsj,i (t) ∈ R3 be defined as ηsj,i (t) ,


dsj,i/c (t)

dkj/c (t)

dsj,i/kj

. Combining (4–5)

and (4–6) yields

YXsj,i (t) ηsj,i (t) = uXsj,i (t) , (4–10)

where YXsj,i (t) ,

Ysj,i (t) 03×1

01×2 1

 and uXsj,i (t) , Xsj,i

Rkj/c (t)usj,i/kj

1

, and combining

(4–8) and (4–9) yields

Yξsj,i (t) ηsj,i (t) = uξsj,i (t) , (4–11)

where Yξsj,i (t) ,

ξsj,i (t) 03×2

03×1 ξsj,i (t)ψusj,i (t)

 and uξsj,i (t) ,

ρsj,i (t)

ρsj,i (t)

.

4.2 Feature Observer Design Without Object Return

The estimation errors for feature sj,i ∈ Osj , d̃sj,i/c (t) , d̃kj,i/c (t) , d̃sj,i/kj (t) ∈ R, are

defined as

60



d̃sj,i/c (t) , dsj,i/c (t)− d̂sj,i/c (t) , (4–12)

d̃kj,i/c (t) , dkj/c (t)− d̂kj,i/c (t) , (4–13)

and

d̃sj,i/kj (t) , dsj,i/kj − d̂sj,i/kj (t) , (4–14)

where d̂sj,i/c (t) , d̂sj,i/kj (t) ∈ R are the estimates of dsj,i/c (t) and dsj,i/kj , respectively, and

d̂kj,i/c (t) is the estimate of dkj/c (t) by feature sj,i. The combined error for feature sj,i is

quantified using (4–12)-(4–14) as

η̃sj,i (t) , ηsj,i (t)− η̂sj,i (t) , (4–15)

where η̂sj,i (t) ,


d̂sj,i/c (t)

d̂kj,i/c (t)

d̂sj,i/kj (t)

 is the estimate of ηsj,i (t) implying η̃sj,i (t) ,


d̃sj,i/c (t)

d̃kj,i/c (t)

d̃sj,i/kj (t)

.

4.2.1 Feature Observer Design

If the jth object will never return to the camera’s FOV, no updates can be guaran-

teed after sj,i ∈ Pcsj (t). In this case, each feature is designed as though it would remain

in the FOV and the last known estimate is used after the feature leaves the FOV (i.e.,

a zero-order hold). Motivated by the subsequent analysis, the estimator update law for

η̂sj,i (t) is defined as

d

dt

(
η̂sj,i (t)

)
,


03×1, sj,i ∈ Pcsj (t) ,

proj
(
µξsj,i(t)

)
, sj,i ∈ Psj (t) ,

proj
(
µξsj,i(t)+µXsj,i(t)

)
, sj,i ∈ Asj∩Psj(t) ,

(4–16)
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where µξsj,i (t) ,


−uTsj,i/c (t) vc (t)

−uTkj/c (t) vc (t)

0

 + KξY
T
ξsj,i

(t)uξsj,i (t) − KξY
T
ξsj,i

(t)Yξsj,i (t) η̂sj,i (t),

µXsj,i (t) , KXY
T
Xsj,i

(t)uXsj,i (t) − KXY
T
Xsj,i

(t)YXsj,i (t) η̂sj,i (t), and Kξ, KX ∈ R3×3

are positive definite gain matrices, and proj (·) is a projection operator to bound d2 ≤

d̂sj,i/c (t) ≤ d, d2 ≤ d̂sj,i/kj (t) ≤ d, and d1 ≤ d̂kj,i/c (t).2

Taking the time derivative of (4–15), substituting (2–11)-(2–13), (4–10), (4–11),

(4–15), and (4–16), and simplifying yields

d

dt

(
η̃sj,i (t)

)
=




−uTsj,i/c (t) vc (t)

−uTkj/c (t) vc (t)

0

, sj,i ∈ P
c
sj

(t) ,

−Ψξsj,i
(t) η̃sj,i (t), sj,i ∈ Psj (t) ,

−Ψsj,i (t) η̃sj,i (t), sj,i ∈ Asj (t)∩Psj(t) ,

(4–17)

where Ψsj,i (t) , Ψξsj,i
(t) + ΨXsj,i (t), Ψξsj,i

(t) , KξY
T
ξsj,i

(t)Yξsj,i (t), and

ΨXsj,i (t) , KXY
T
Xsj,i

(t)YXsj,i (t). While feature sj,i ∈ Psj (t), there may be a set

of times where Ψξsj,i
(t) can improve the estimate if a PE assumption is satisfied.

Let Bsj (t) ,
{
sj,i ∈ Asj (t) ∩ Psj (t) : σsj,i (t) = a

}
and Bcsj (t) , Osj\Bsj (t). If

feature sj,i ∈ Bsj (t), Ψsj,i (t) > 0 and λmin
{

Ψsj,i (t)
}
> λa; however, if feature

sj,i ∈ Asj (t) ∩ Psj (t) ∩ Bcsj (t), Ψsj,i (t) ≥ 0 given Y T
sj,i

(t)Ysj,i (t) ≥ 0. After feature

sj,i ∈ Pcsj (t), the object never returns to the FOV and the error will grow given no update

is available.

2 See [32, Appendix E] or [33, Remark 3.7] for examples on implementing a smooth
projection operator
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4.2.2 Observer Design Stability Analysis

To facilitate the subsequent development, let Lsj,i ,
{
l ∈ Z>0 : ζalsj,i > τsj,i

}
and

∆ζalsj,i , ζulsj,i − ζ
al
sj,i

. Let Vsj,i
(
η̃sj,i (t)

)
: R3 → R be a candidate Lyapunov function defined

as

Vsj,i
(
η̃sj,i (t)

)
,

1

2
η̃Tsj,i (t) η̃sj,i (t) , (4–18)

which can be bounded as 1
2
‖η̃sj,i (t) ‖2 ≤ Vsj,i

(
η̃sj,i (t)

)
≤ 1

2
‖η̃sj,i (t) ‖2.

Lemma 4.1. The observer update law defined in (4–16) ensures the estimation error

η̃sj,i (t) is bounded for the feature sj,i ∈ Psj (t) in the sense that

‖η̃sj,i (t) ‖ ≤ ‖η̃sj,i
(
ζaj
)
‖, sj,i ∈ Psj (t) . (4–19)

Proof. Taking the time derivative of (4–18), substituting (4–17) for the case when feature

sj,i ∈ Psj (t) and using λmin
{

Ψξsj,i
(t)
}
≥ 0 for sj,i ∈ Psj (t) yields

d

dt

(
Vsj,i

(
η̃sj,i (t)

))
≤ 0. (4–20)

Invoking [116, Theorem 8.4] on (4–20) yields ‖η̃sj,i (t) ‖2 ≤ ‖η̃sj,i
(
ζaj
)
‖2 and taking the

square root yields (4–19).

Lemma 4.2. The observer update law defined in (4–16) ensures the estimation error

η̃sj,i (t) is bounded for feature sj,i ∈ Asj (t) ∩ Psj (t) ∩ Bcsj (t) in the sense that

‖η̃sj,i (t) ‖ ≤ ‖η̃sj,i
(
ζulsj,i

)
‖, sj,i ∈ Asj (t) ∩ Psj (t) ∩ Bcsj (t) . (4–21)

Proof. Taking the time derivative of (4–18), substituting (4–17) for the case when feature

sj,i ∈ Asj (t)∩Psj (t) and using λmin
{

Ψsj,i (t)
}
≥ 0 for sj,i ∈ Asj (t)∩Psj (t)∩Bcsj (t) yields

d

dt

(
Vsj,i

(
η̃sj,i (t)

))
≤ 0. (4–22)

Invoking [116, Theorem 8.4] on (4–22) yields ‖η̃sj,i (t) ‖2 ≤ ‖η̃sj,i
(
ζulsj,i

)
‖2 and taking the

square root yields (4–21).
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Lemma 4.3. The observer update law defined in (4–16) ensures the estimation error

η̃sj,i (t) is exponentially converging for feature sj,i ∈ Bsj (t) in the sense that

‖η̃sj,i (t) ‖≤‖η̃sj,i
(
ζalsj,i

)
‖ exp

(
−β
(
t− ζalsj,i

))
, sj,i ∈ Bsj (t) . (4–23)

Proof. Taking the time derivative of (4–18), substituting (4–17) for the case when feature

sj,i ∈ Asj (t) ∩ Psj (t), and using λmin
{

Ψsj,i (t)
}
> λa for sj,i ∈ Bsj (t) yields

d

dt

(
Vsj,i

(
η̃sj,i (t)

))
≤ −2βVsj,i

(
η̃sj,i (t)

)
, (4–24)

where β , λaλmin {KX}. Invoking [116, Theorem 4.10] on (4–24) yields ‖η̃sj,i (t) ‖2 ≤

‖η̃sj,i
(
ζalsj,i

)
‖2 exp

(
−2β

(
t− ζalsj,i

))
and taking the square root yields (4–23).

Theorem 4.1. When feature sj,i ∈ Asj (t) ∩ Psj (t) leaves the FOV, the switched system

defined by σsj,i (t) and the observer update law defined in (4–16) is globally uniformly

ultimately bounded (GUUB) as

‖η̃sj,i
(
ζusj,i

)
‖ ≤ ‖η̃sj,i

(
ζasj,i

)
‖ exp

−β ∑
l∈Lsj,i

∆ζalsj,i

 . (4–25)

Proof. Using the bounds in (4–19), (4–21), and (4–23) implies ‖η̃sj,i
(
ζulsj,i

)
‖ ≤

‖η̃sj,i
(
ζalsj,i

)
‖ exp

(
−β∆ζalsj,i

)
and ‖η̃sj,i

(
ζ
ul+1
sj,i

)
‖ ≤ ‖η̃sj,i

(
ζulsj,i

)
‖ exp

(
−β∆ζ

al+1
sj,i

)
. Substitut-

ing the first inequality into the second, and using the relationship for all l ∈ Lsj,i leads to

(4–25).

As shown in (4–25), the final error when a feature leaves is bounded; however,

once sj,i ∈ Pcsj (t), the estimation errors in d̃sj,i/c (t) and d̃kj,i/c (t) will diverge given no

observations are made. For example, using d
dt

(
Vsj,i

(
η̃sj,i (t)

))
= η̃Tsj,i (t) d

dt

(
η̃sj,i (t)

)
and substituting (4–15) and (4–17) for the case when feature sj,i ∈ Pcsj (t) implies

d
dt

(
Vsj,i

(
η̃sj,i (t)

))
≤ ‖d̃sj,i/c (t) ‖‖vc (t) ‖ + ‖d̃kj,i/c (t) ‖‖vc (t) ‖, implying the error grows.

In applications where it is not possible to return to an object, this growth cannot be
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compensated for, implying the estimator for feature sj,i is not continued after sj,i ∈

Pcsj (t).

4.3 Feature Observer Design With Object Return

As discussed in recent work such as [62] and [63], the objective of exploring

unknown environments where feedback is unavailable requires an agent to return to

regions where feedback is available to compensate for error growth. This return will

enable the ability to reduce the ultimate bound of the error described in (4–25) and

compensate for the error growth through the development of dwell-time conditions.

4.3.1 Feature Predictor Design

As shown in (4–17), if feedback is unavailable (i.e., sj,i ∈ Pcsj (t)), usj,i/c (t) is

unknown. Therefore, a predictor is designed to estimate usj,i/c (t) as

d

dt

(
ûsj,i/c (t)

)
, µusj,i/c

(t) , sj,i ∈ Pcsj (t) , (4–26)

where µusj,i/c (t) , −ω×c (t) ûsj,i/c (t) + 1

d̂sj,i/c(t)

(
ûsj,i/c (t) ûTsj,i/c (t)− I3×3

)
vc (t). While

sj,i ∈ Psj (t), a reset map (cf., [62] and [63]) is used to set ûsj,i/c (t) → usj,i/c (t). Also,

since usj,i/c (t) is a unit vector, ‖ûsj,i/c (t) ‖ = 1. Let the predictor error for usj,i/c (t) be

quantified as

ũsj,i/c (t) , usj,i/c (t)− ûsj,i/c (t) , (4–27)

where ‖ũsj,i/c (t) ‖ ≤ 2.

Since the time derivative of ukj/c (t) is

d

dt

(
ukj/c (t)

)
=−ω×c (t)ukj/c (t)

+
1

dkj/c (t)

(
ukj/c (t)uTkj/c (t)− I3×3

)
vc (t) ,

(4–28)
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a predictor similar to (4–26) is designed to estimate ukj/c (t) as

d

dt

(
ûkj,i/c (t)

)
, µukj,i/c

(t) , sj,i ∈ Pcsj (t) , (4–29)

where µukj,i/c (t) , −ω×c (t) ûkj,i/c (t) + 1

d̂kj,i/c(t)

(
ûkj,i/c (t) ûTkj,i/c (t)− I3×3

)
vc (t). Addi-

tionally, while sj,i ∈ Psj (t), a reset map is used to set ûkj,i/c (t) → ukj/c (t). Also, since

ukj/c (t) is a unit vector, ‖ûkj,i/c (t) ‖ = 1. Let the predictor error for ukj/c (t) be quantified

as

ũkj,i/c (t) , ukj/c (t)− ûkj,i/c (t) (4–30)

where ‖ũkj,i/c (t) ‖ ≤ 2.

An estimate of Rkj/c (t) is established using the unit quaternion form of the orien-

tation, which can be represented as qkj/c (t) ∈ R4, where qTkj/c (t) qkj/c (t) = 1. The

derivative with respect to time for qkj/c (t) is

d

dt

(
qkj/c (t)

)
= −1

2
B
(
qkj/c (t)

)
ωc (t) , (4–31)

where

B (q) ,



−q2 −q3 −q4

q1 −q4 q3

q4 q1 −q2

−q3 q2 q1


,

q1, q2, q3, q4 ∈ R are the four elements of a unit quaternion q (t) and BT (q (t))B (q (t)) =

I3×3.3 The rotation matrix representation of a unit quaternion q (t) is

R (q),


1− 2 (q2

3 + q2
4) 2 (q2q3 − q4q1) 2 (q2q4 + q3q1)

2 (q2q3 + q4q1) 1− 2 (q2
2 + q2

4) 2 (q3q4 − q2q1)

2 (q1q4 − q3q1) 2 (q3q4 + q2q1) 1− 2 (q2
2 + q2

3)

.

3 Time dependence is suppressed except when needed for clarity or introducing
terms.
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Similar to (4–31), a predictor is designed for qkj/c (t) as

d

dt

(
q̂kj/c (t)

)
= −1

2
B
(
q̂kj/c (t)

)
ωc (t) , (4–32)

where q̂kj/c (t) ∈ R4 is the estimate of qkj/c (t). Only one predictor q̂kj/c (t) is necessary

given d
dt

(
qkj/c (t)

)
is not dependent on feature estimates. Additionally, the orientation is

often estimated through other methods and a predictor may not be necessary. Since

d
dt

(
qkj/c (t)

)
is only a function of qkj/c (t), initializing q̂kj/c

(
ζuj
)

= qkj/c
(
ζuj
)

implies (4–31)

and (4–32) are equivalent for all t > ζuj .

Using the estimates from the predictors in (4–26), (4–29), and (4–32), a predictor is

designed for ηsj,i (t) when sj,i ∈ Pcsj (t) as

d

dt

(
η̂sj,i (t)

)
, proj

(
µ̂ξsj,i (t)

)
, sj,i ∈ Pcsj (t) , (4–33)

where µ̂ξsj,i (t) ,


−ûTsj,i/c (t) vc (t)

−ûTkj,i/c (t) vc (t)

0

 and the projection operator is used to bound

d2 ≤ d̂sj,i/c (t) ≤ d, d2 ≤ d̂sj,i/kj (t) ≤ d, and d1 ≤ d̂kj,i/c (t).

Taking the time derivative of (4–15), substituting (2–11)-(2–13), (4–27), (4–30), and

(4–33), simplifying yields

d

dt

(
η̃sj,i (t)

)
= −


ũTsj,i/c (t) vc (t)

ũTkj,i/c (t) vc (t)

0

 . (4–34)

4.3.2 Stability Analysis of Feature Predictor Design

To quantitatively describe the stability of the observer and predictor, let σosj,i (t) ∈

{a, u} describe whether an observer is activated or a predictor is activated, respectively.

Specifically, when σosj,i (t) = a, sj,i ∈ Psj (t) indicating the feature sj,i is in the FOV

and an observer is used for feature sj,i. Similarly, when σosj,i (t) = u, sj,i ∈ Pcsj (t)
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indicating the feature sj,i leaves the FOV and a predictor is used for feature sj,i. Let tansj,i

represent the nth instance in time feature sj,i enters the FOV (i.e., sj,i ∈ Psj
(
tansj,i

)
) with

σosj,i

(
tansj,i

)
= a ∧ σsj,i

(
tansj,i

)
= a, where ta1sj,i ≥ ζaj . Furthermore, let tunsj,i represent the nth

instance in time feature sj,i leaves the FOV (i.e., sj,i ∈ Pcsj
(
tunsj,i

)
).

Theorem 4.2. The predictor design in (4–33) for feature sj,i ∈ Pcsj (t) ensures the

estimation error η̃sj,i (t) is bounded as

‖η̃sj,i (t) ‖ ≤ ‖η̃sj,i
(
tunsj,i

)
‖+ 4vc

(
t− tunsj,i

)
. (4–35)

Proof. Taking the time derivative of (4–18), substituting (4–34), and using the bounds

‖ũkj,i/c (t) ‖ ≤ 2 and ‖ũsj,i/c (t) ‖ ≤ 2 yields

d

dt

(
Vsj,i

(
η̃sj,i (t)

))
≤ 4
√

2vc

√
Vsj,i

(
η̃sj,i (t)

)
. (4–36)

Invoking the Comparison Lemma [116, Lemma 3.4] on (4–36) yields the result in

(4–35).

4.3.3 Ensuring Stability Through Dwell-Time Conditions

To facilitate the subsequent development, let Lnsj,i ,{
l ∈ Z>0 : ζalsj,i ∈

[
tansj,i , t

un
sj,i

]
∩ t > τsj,i

}
, where ln, ln, ln ∈ Z>0 represent the first and

last l ∈ Lnsj,i, respectively, and ln , ln − ln. Additionally, let ln ∈
{

1, 2, . . . , ln + 1
}

repre-

sent the index of Lnsj,i, and let ζaln,nsj,i ∈
[
tansj,i , t

un
sj,i

]
∩ t > τsj,i and ζuln,nsj,i ∈

[
tansj,i , t

un
sj,i

]
∩ t > τsj,i

represent the instances in time for the nth return such that σsj,i (t) = a and σsj,i (t) = u,

respectively. Furthermore, let ∆tansj,i ,
ln∑
ln=1

∆ζ
aln,n
sj,i and ∆tunsj,i , tan+1

sj,i
− tunsj,i, where

∆ζ
aln,n
sj,i , ζ

uln,n
sj,i − ζ

aln,n
sj,i , ∆ζ

uln,n
sj,i , ζ

aln+1,n
sj,i − ζuln,nsj,i , and ∆ζunsj,i , tunsj,i − ζ

uln,n
sj,i .

To ensure that the system defined by the switching signals σsj,i (t) and σosj,i (t)

remains bounded, minimum and maximum dwell-times must be developed for each

observer and predictor, respectively. Approaches like those taken in [62] and [63] will

not be possible for switched systems like those defined by σsj,i (t) and σosj,i (t) given
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η̃sj,i

(
tansj,i

)
and η̃sj,i

(
tunsj,i

)
are unknown and cannot be reset. However, d̃sj,i/c

(
ta1sj,i

)
≤ d,

d̃kj,i/c

(
ta1sj,i

)
≤ d, and d̃sj,i/kj

(
ta1sj,i

)
≤ d implying ‖η̃sj,i

(
ta1sj,i

)
‖ ≤
√

3 d.

Let η̃sj,i ∈
(
0, d
)

be a user-defined threshold such that ‖η̃sj,i
(
ζ
uln,n
sj,i

)
‖ ≤ η̃sj,i

(i.e., the user will need the error below some threshold before allowing the object to

leave the FOV). Furthermore, let η̃sj,i ∈
(
η̃sj,i , d

]
be a user-defined threshold such that

η̃sj,i < ‖η̃sj,i
(
ζ
a1,n
sj,i

)
‖ ≤ η̃sj,i for all n > 1. The thresholds η̃sj,i and η̃sj,i represent the

acceptable amount of error for a user’s application before a feature may leave and must

return to the FOV, respectively. While the true error η̃sj,i (t) is unknown, bounds on the

distances are known and establishing the bounds η̃sj,i and η̃sj,i as described will ensure

that the errors are within the thresholds provided the subsequently developed dwell-time

conditions are satisfied. Specifically, the dwell-times are established such that the upper

bound on the distance errors converge implying the true errors must also converge.

Assumption 4.2. It is possible for the system to satisfy the subsequently developed

dwell-time conditions for the set of features Asj (t). Also, after t > tu1sj,i, the only tracked

features from the jth object will be those contained in Asj (t). Specifically, Psj (t) ⊆

Asj (t) for time t > tu1sj,i, implying Asj (t) ∩ Psj (t) = Psj (t).

Under Assumptions 2.1 and 2.2, the rotation matrix Rkj/c (t) and unit vector ukj/c (t)

can be determined from the set of stationary features in Psj (t) while psj (t) ≥ 4. This

implies that it is not sufficient to only consider the dwell-times for individual features

given the observers are used on the assumption ukj/c (t) is available. Let σosj (t) ∈

{a, u} be a switching signal that indicates when there are enough features in the FOV

to determine ukj/c (t) and Rkj/c (t); specifically, the first and second mode of σosj (t)

represents when psj (t) ≥ 4 and psj (t) < 4, respectively. However, for the object

to be successfully recaptured, σosj (t) = a ∧ ∩
sj,i∈Asj (t)

(
σosj,i (t) = a ∧ σsj,i (t) = a

)
implying each feature sj,i ∈ Asj (t) is in the FOV and the relative motion is sufficient for

learning. Let tansj , max
{
ζ
a1,n
sj,i

}
, tunsj , min

{
ζ
uln,n
sj,i

}
, and ∆tansj , tunsj − tansj for the nth
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switching cycle across all features in Asj (t). Furthermore, let tan+1
sj , max

{
ζ
a1,n+1
sj,i

}
and

∆tunsj , t
an+1
sj − tunsj .

Theorem 4.3. For each feature in the set of features Asj (t), the errors of the switched

system defined by the switching signals σsj,i (t), σosj,i (t), and σosj (t), and the observer

update law in (4–16) ensure the estimation error in η̃sj,i (t) at time t = tu1sj,i is GUUB as

‖η̃sj,i
(
tu1sj,i

)
‖ ≤ η̃sj,i provided the switching signals satisfy the initial minimum feedback

availability dwell-time condition

∆ta1sj ≥ −
1

β
ln

(
η̃sj,i√

3 d

)
> − 1

β
ln

(
1√
3

)
. (4–37)

Proof. Using (4–25) for the first instance implies ‖η̃sj,i
(
tu1sj,i

)
‖ ≤

‖η̃sj,i
(
ta1sj,i

)
‖ exp

(
−β∆ta1sj,i

)
. It is desired to have ‖η̃sj,i

(
tu1sj,i

)
‖ ≤ η̃sj,i and the initial

error is bounded as ‖η̃sj,i
(
ta1sj,i

)
‖ ≤

√
3 d. Substituting these bounds into the first

inequality and solving for ∆ta1sj,i yields ∆ta1sj,i ≥ −
1
β

ln
( η̃sj,i√

3 d

)
. Because ∆ta1sj must

lower bound the dwell-times to ensure all of the feature observers are implementable,

∆ta1sj ≥ −
1
β

ln
( η̃sj,i√

3 d

)
. Since η̃sj,i < d,

η̃sj,i√
3 d

< 1√
3

yielding the bound in (4–37).

Theorem 4.4. For each feature in the set of features Asj (t), the errors of the switched

system defined by the switching signals σsj,i (t), σosj,i (t), and σosj (t), and the observer

update law in (4–16) ensure the estimation error in η̃sj,i (t) is GUUB as ‖η̃sj,i
(
tunsj,i

)
‖ ≤

η̃sj,i provided the switching signals satisfy the minimum feedback availability dwell-time

condition

∆tansj ≥ −
1

β
ln

(
η̃sj,i

η̃sj,i

)
> 0, n > 1 (4–38)

Proof. The proof follows Theorem 4.3 using the upper ‖η̃sj,i
(
tansj,i

)
‖ ≤ η̃sj,i .

Theorem 4.5. For each feature in the set of features Asj (t) ∩ Pcsj (t), the errors of

the switched system defined by the switching signals σsj,i (t), σosj,i (t), and σosj (t), and

the predictor update law in (4–33) ensure the estimation error in η̃sj,i (t) is GUUB as
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‖η̃sj,i
(
tan+1
sj,i

)
‖ ≤ η̃sj,i provided the switching signals satisfy the maximum loss of

feedback dwell-time condition

0 < ∆tunsj ≤
η̃sj,i − η̃sj,i

4vc
(4–39)

Proof. Using (4–35) for the nth instance implies ‖η̃sj,i
(
tan+1
sj,i

)
‖ ≤ ‖η̃sj,i

(
tunsj,i

)
‖+4vc∆t

un
sj,i

.

It is desired to have ‖η̃sj,i
(
tan+1
sj,i

)
‖ ≤ η̃sj,i and ‖η̃sj,i

(
tunsj,i

)
‖ ≤ η̃sj,i . Substituting the

second bounds into the first and solving for ∆tunsj,i yields ∆tunsj,i ≤
η̃sj,i−η̃sj,i

4vc
. Because

∆tunsj must upper bound the dwell-times to ensure all of the feature observers are

implementable, ∆tunsj ≤
η̃sj,i−η̃sj,i

4vc
. Given η̃sj,i > η̃sj,i , η̃sj,i − η̃sj,i > 0, yielding the bound in

(4–39).

Ensuring that (4–37)-(4–39) are satisfied guarantees the error remains bounded as

η̃sj,i < ‖η̃sj,i (t) ‖ ≤
√

3 d for all time t < tu1sj,i , η̃sj,i < ‖η̃sj,i (t) ‖ ≤ η̃sj,i for all time t ≥ tu1sj,i ,

and enables the ability to recapture the features in Asj (t) and use them to improve

position estimates.

4.4 Estimator Design for Pose of Camera

As previously discussed, the primary purpose of the dwell-time analysis is to ensure

the object feature observers have converged below a user defined threshold before

using feature structure estimates in an observer for the position of the camera; however,

there will be time periods where no objects remain in the camera’s FOV. The position

estimation objective is to express the camera pose in a fixed coordinate frame. As

shown in Figure 2-3, the pose of the camera may be expressed through the sequence

of objects. The starting location of the camera may be unknown but the pose of the

camera over time can always be expressed relative to the first key frame; yet, in many

applications, the region around the first object may directly have feedback available

(cf., [62] and [63]). Let p
c/k1

(t) ∈ R3 represent the position of the camera with respect to
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the first key frame expressed in the first key frame and qc/k1 (t) ∈ R4 be the quaternion

representation of the orientation of the camera with respect to the first key frame.

Assumption 4.3. There exists a landmark around the first object that is unique com-

pared to all other objects and p
c/k1

(t) and qc/k1 (t) are directly measurable through some

means while the landmark is in the camera’s FOV. Let σL (t) ∈ {a, u} be a switching

signal indicating whether the landmark is in the FOV or not in the FOV, respectively.

Considering the jth object only provides measurements of ukj/c (t) and qkj/c (t)

and estimates of dkj/c, an observer must be used to estimate p
c/k1

(t) and qc/k1 (t) while

the jth object is in the FOV. When no object has feedback available, a predictor must

be used to estimate p
c/k1

(t) and qc/k1 (t). Based on the minimum dwell-time analysis

in Theorem 4.3, let σ∆t
sj,i

(t) ∈ {a, u} be a switching signal for ith feature on the jth

object indicating when the total time converging has exceeded the minimum dwell-

time condition or has not exceeded the minimum dwell time condition. Specifically,

σ∆t
sj,i

(t) = a implies

(
l∗n(t)∑
ln=1

∆ζ
aln,n
sj,i > ∆tansj

)
∧ t ∈

[
tansj,i , t

un
sj,i

]
, where l∗n (t) ∈ Z>0 represents

the current index of the nth cycle for the ith feature on the jth object. Similarly, let

σ∆t
sj

(t) ∈ {a, u} be a switching signal indicating when all the remaining features on

the jth object with feedback available have either satisfied or not satisfied the dwell-

time condition, specifically, σ∆t
sj

(t) = a implies all remaining features on the jth object

sj,i ∈ Psj (t) have σ∆t
sj,i

(t) = a. Furthermore, let τansj , min
{
t > tansj,i : σ∆t

sj
= a
}

, represent

the time that all of the remaining features on the jth object sj,i ∈ Psj (t) have satisfied

the minimum dwell-time for the nth cycle. When the dwell-time condition has been

satisfied for the jth object during the nth cycle (i.e., t ∈
[
τansj , t

un
sj,i

]
), the error in each of

the feature observers is less than the desired threshold (i.e., ‖η̃sj,i (t) ‖ ≤ η̃sj,i), implying

d̃kj,i/c (t) ≤ η̃sj,i .

Let the pose error be quantified as p̃
c/k1

(t) ∈ R3 and q̃c/k1 (t) ∈ R4, where

p̃
c/k1

(t) , p
c/k1

(t)− p̂
c/k1

(t) , (4–40)
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q̃c/k1 (t) , qc/k1 (t)− q̂c/k1 (t) , (4–41)

and p̂
c/k1

(t) ∈ R3 and q̂c/k1 (t) ∈ R4 are the estimates of p
c/k1

(t) and qc/k1 (t), respectively.

Taking the time derivative of p
c/k1

(t) yields

d

dt

(
p
c/k1

(t)
)

= R
(
qc/k1 (t)

)
vc (t) . (4–42)

Similarly, the time derivative of qc/k1 (t) is

d

dt

(
qc/k1 (t)

)
=

1

2
B
(
qc/k1 (t)

)
ωc (t) . (4–43)

Taking the time derivative of p̃
c/k1

(t) and q̃c/k1 (t), and substituting (4–42) and (4–43)

yields
d

dt

(
p̃
c/k1

(t)
)

= R
(
qc/k1 (t)

)
vc (t)− d

dt

(
p̂
c/k1

(t)
)

(4–44)

and
d

dt

(
q̃c/k1 (t)

)
=

1

2
B
(
qc/k1 (t)

)
ωc (t)− d

dt

(
q̂c/k1 (t)

)
. (4–45)

When the landmark is in the FOV, σL (t) = a and feedback of the pose of the

camera is directly available under Assumption 4.3. While σL (t) = a, a reset map is used

to reset both position and orientation as

p̂
c/k1

(t)→ p
c/k1

(t) (4–46)

and

q̂c/k1 (t)→ qc/k1 (t) . (4–47)

However, while σL (t) = u, an observer or predictor is used to estimate the pose of the

camera depending on the set of switching signals,
{
σ∆t
sj

(t)
}ps(t)
j=1

.

When the feature estimators for the jth object have satisfied the minimum dwell-

time condition, σ∆t
sj

(t) = a, and enough features are remaining on the object σosj (t) = a,

psj (t) ≥ 4, both Rkj/c (t) and ukj/c (t) are measurable and the estimation error for each

remaining feature ‖d̃kj,i/c (t) ‖ ≤ ηsj,i. While σ∆t
sj

(t) = a ∧ σosj (t) = a, an estimate of the
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position of the camera with respect to the jth key frame is available as

p̂∗
c/kj

(t) , uc/kj (t) d̂kj/c (t) , (4–48)

where d̂kj/c (t) , 1
psj (t)

psj (t)∑
i=1

d̂kj,i/c (t), uc/kj (t) = −Rc/kj (t)ukj/c (t), Rc/kj (t) = RT
kj/c

(t), and

p̂∗
c/kj

(t) is expressed in the jth key frame based on (4–48). Using (4–48), an observer is

designed for the pose of the camera while σL (t) = u ∧ σ∆t
sj

(t) = a ∧ σosj (t) = a as

d

dt

(
p̂
c/k1

(t)
)
=R
(
q̂c/k1(t)

)
vc (t)

+Kp

(
p̂
kj/k1

+R
(
q̂kj/k1

)
p̂∗
c/kj

(t)−p̂
c/k1

(t)
)
, (4–49)

and

d

dt

(
q̂c/k1(t)

)
=

1

2
B
(
q̂c/k1 (t)

)
ωc (t)

+Kq

(
Q
(
q̂kj/k1

)
qc/kj (t)− q̂c/k1 (t)

)
, (4–50)

where q̂kj/k1 = q̂c/k1 (ζa1 ), p̂
kj/k1

= p̂
c/k1

(ζa1 ), Kp ∈ R3×3 and Kq ∈ R4×4 are constant

positive gain matrices, and

Q (q) ,



q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1


.

However, if the minimum dwell-time condition for the object is unsatisfied or the object

has too few features in the FOV, a predictor is used to update the pose estimate.

Specifically, when σL (t) = u ∧
(
σ∆t
sj

(t) = u ∨ σosj (t) = u
)

, a predictor is designed for the

pose as

d

dt

(
p̂
c/k1

(t)
)
=R
(
q̂c/k1(t)

)
vc (t) (4–51)

74



and

d

dt

(̂
qc/k1(t)

)
=

1

2
B
(
q̂c/k1 (t)

)
ωc (t) . (4–52)

Only an analysis of the position estimator design is considered given the primary result

of this work is estimating the position of the camera. Additionally, the orientation is

often estimated through other methods and a predictor may not be necessary. Since

d
dt

(
qc/k1 (t)

)
is only a function of qc/k1 (t), initializing q̂c/k1 (ζa1 ) =

[
1 0 0 0

]T
implies

(4–43) is equivalent to (4–50) and (4–52) for all t > ζa1 .

While σL (t) = u and σ∆t
sj

(t) = a ∧ σosj (t) = a for the jth object, substituting the

position observer update law in (4–49) into the derivative of the position error in (4–44),

using q̂c/k1 (t) = qc/k1 (t), and simplifying yields

d

dt

(
p̃
c/k1

(t)
)

= −Kpp̃c/k1
(t)+Kpp̃kj/k1

+ KpR
(
qkj/k1

)
uc/kj(t)

1

psj (t)

psj (t)∑
i=1

d̃kj,i/c(t).

(4–53)

While σL (t) = u and σ∆t
sj

(t) = u ∨ σosj (t) = u for all objects, substituting the

position predictor in (4–51) into the derivative of the position error in (4–44), using

q̂c/k1 (t) = qc/k1 (t), and simplifying yields

d

dt

(
p̃
c/k1

(t)
)

= 03×1. (4–54)

4.4.1 Stability of Key Frame Position Observer and Predictor Design

Let Vc/k1
(
p̃
c/k1

(t)
)

: R3 → R be a candidate Lyapunov function defined as

Vc/k1

(
p̃
kj/c

(t)
)
,

1

2
p̃T
c/k1

(t) p̃
c/k1

(t) , (4–55)

which can be bounded as 1
2
‖p̃

c/k1
(t) ‖2 ≤ Vc/k1

(
p̃
c/k1

(t)
)
≤ 1

2
‖p̃

c/k1
(t) ‖2.
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Theorem 4.6. The switching signals σL (t), σ∆t
sj

(t), and σosj (t) and the observer update

law designed in (4–49) ensure the position error of the camera p̃
c/k1

(t) is GUUB while

t ∈
[
τansj , t

un
sj

]
in the sense

‖p̃
c/k1

(t) ‖2≤‖p̃
c/k1

(
τansj

)
‖2 exp

(
−βap

(
t− τansj

))
+2

εkj
βap

(4–56)

where βap , λmin {Kp}, εkj ,

(
λmax{Kp}

(
‖p̃
kj/k1

‖+η̃sj,i

))2

2λmin{Kp} , and λmax {·} is the maximum

eigenvalue of {·}.

Proof. Taking the derivative of (4–55) with respect to time and substituting (4–53) yields

d

dt

(
Vc/k1

(
p̃
c/k1

(t)
))
≤ −βapVc/k1

(
p̃
c/k1

(t)
)

+ εkj . (4–57)

Invoking the Comparison Lemma [116, Lemma 3.4] on (4–57) then upper bounding

yields (4–56).

Theorem 4.7. The switching signals σL (t), σ∆t
sj

(t), and σosj (t) and the predictor update

law designed in (4–51) ensure the position error of the camera p̃
c/k1

(t) is bounded while

t /∈
[
τansj , t

un
sj

]
in the sense

‖p̃
c/k1

(t) ‖ ≤ ‖p̃
c/k1

(
tunsj

)
‖. (4–58)

Proof. Taking the derivative of (4–55) with respect to time and substituting (4–54) yields

d

dt

(
Vc/k1

(
p̃
c/k1

(t)
))
≤ 0. (4–59)

Invoking the Comparison Lemma [116, Lemma 3.4] on the result then upper bounding

yields (4–58).

4.5 Experiments

An experiment is provided to demonstrate the performance of the developed

estimator strategy using the observer and predictor design compared to a predictor-only

strategy (cf., [62] and [63]). The experiment assumed no return to previous objects (i.e.,
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Figure 4-1. Photo courtesy of author. Image of the Kobuki Turtlebot and iDS uEye
camera used for experiments.
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Figure 4-2. Photo courtesy of author. Image of a section of the wooden hallways in the
environment and locations of the motion capture cameras in that section.
The motion capture cameras were located throughout the environment
attached to the upper portion of each wall.
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Figure 4-3. Photo courtesy of author. Image of the landmark captured within a key
frame (i.e., the checkerboard is leaning on the wooden wall), where the
white dots drawn in the image are the extracted corner features.

each new set of features was considered a new object) implying the initial minimum

dwell-time condition in (4–37) must always be satisfied before using a new object in the

position observer. The performance examined is that of the developed feature observer

in (4–16) and the pose estimation strategy using the reset maps in (4–46) and (4–47)

when a landmark is in the FOV (i.e., σL (t) = a), the observer update laws in (4–49)

and (4–50) while no landmark is in the FOV and an object in the FOV has satisfied

the minimum dwell-time condition and has enough remaining features in the FOV (i.e.,

σL (t) = u and σ∆t
sj

(t) = a ∧ σosj (t) = a), and the predictor update laws in (4–51) and (4–

52) while no landmark is in the FOV and no object has satisfied the dwell-time condition

or does not have enough remaining features (i.e., σL (t) = u and σ∆t
sj

(t) = u∨σosj (t) = u).

A Kobuki Turtlebot with a 1920× 1080 monochrome iDS uEye camera, shown in Fig-

ure 4-1, provided images and velocity at 30 Hz as it drove the through the environment

(e.g., Figure 4-2). The estimator can ran real-time (i.e., at 30 Hz) and was implemented
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Figure 4-4. Photo courtesy of author. Image of the features extracted from a key frame
image of a nonplanar object (i.e., two wooden walls with a 90◦ angle
between them, where the white dots are the extracted corner features.
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Figure 4-5. Photo courtesy of author. Image of the features extracted from a key frame
image of a planar object, where the white dots are the extracted corner
features.

using Eigen3, OpenCV, and ROS c++ libraries (cf., [117], [118], and [119], respec-

tively). The landmark was a checkerboard with 8 × 6 corners where each square is

25.4 millimeters× 25.4 millimeters. As the example in Figure 4-2 shows, the environment

was an enclosed series of wooden hallways where a motion capture system provided

ground truth. An Optitrack motion capture system operated at 120 Hz and measured the

pose of the camera, allowing for the position of each feature relative to the camera to be

known for comparison. A computer with an Intel i7 processor running at 3.4 GHz was

used to simultaneously perform image processing and estimator updates.

Between approximately 30 and 50 corner features (cf., [111] or [118]) were ex-

tracted from each key frame image with an initial spacing of 100 pixels.4 A new object

4 The extraction method could only find between 30 and 50 corner features in a key
frame image depending on what was in the image.
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and associated key frame was added after the previous object left the FOV. An object

and the associated key frame were no longer tracked and considered out of the FOV

when less than 20 corner features remained (i.e., psj (t) ≥ 20 implied σosj (t) = a and

psj (t) < 20 implied σosj (t) = u).5 The environment consisted of both nonplanar (e.g.,

Figure 4-4) and planar (e.g., Figure 4-5) surfaces demonstrating the planar assumption

was not always valid. If the landmark was in the FOV while tracking an extracted set of

features (e.g., Figure 4-3), the ground truth was provided to the vehicle and the reset

maps in (4–46) and (4–47) where used to update the pose estimate.

Extracted corner features were tracked while in the FOV by first predicting the

location of a corner feature in a new image using the current estimate of the distance

to the feature and the location of the corner feature in the old image. For example,

consider tracking the location of the ith feature on the jth object while it is in the FOV

(i.e., sj,i ∈ Psj (t)), integrating (4–7) from the previous image at time tp ∈ R>0 using

usj,i/c (tp), d̂sj,i/c (tp), vc (tp), and ωc (tp) to the time of the new image t yields

ûsj,i/c (t)=usj,i/c (tp)−
∫ t

tp

ω×c (ι)usj,i/c (ι)dι

+

∫ t

tp

1

d̂sj,i/c (ι)
usj,i/c (ι)uTsj,i/c (ι) vc (ι)dι

−
∫ t

tp

1

d̂sj,i/c (ι)
vc (ι)dι. (4–60)

The average of the shift estimated by all the features in Psj (t) was then used to estimate

an affine transformation between the two images (i.e., the unit vectors were converted

back into pixels and the average of the change in pixels was used to determine an

affine transformation between the images). The approximated affine transformation was

5 While an absolute minimum of 4 features is required, 4 corner features will typically
provide a poor estimate of qkj/c (t) and ukj/c (t) and it was experimentally determined
that 20 corner features was the lowest number of features that could consistently pro-
vide good estimates.
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then applied to a 50 pixel × 50 pixel patch of the previous image around the previous

pixel location of each feature sj,i. The transformed patch was used as a template to

search for a match in a 90 pixel × 90 pixel patch around the predicted feature location

in the new image using normalized cross correlation coefficient template matching

(cf., [118] or [15]). The best matches provided by the template matching were then used

to determine the set of usj,i/c (t). The average shift after template matching by all the

features in Psj (t) was then used to determine outliers by calculating the χ2 value of

a features shift compared to the average shift using a standard deviation of 3 pixels.

If a feature had a χ2 value greater than 6.63 it was considered an outlier. The value

of d
dt

(
usj,i/c (t)

)
was then estimated using a filtered backwards difference on usj,i/c (t)

and used to update (4–8) and subsequently update (4–16), where Kξ = 40I3×3 was

determined to consistently improve performance with low noise sensitivity. After finding

the features, multiple methods (i.e., essential, homography, and perspective-n-point

decompositions, [118]) were used to approximate qkj/c (t) and ukj/c (t) from the set of

features Psj (t), and any solution that had a norm difference between expected solution

and approximated solution less than 0.1 was averaged together and passed into a low

pass filter. If no solution had a small enough error, the expected solution was used

instead, where the expected qkj/c (t) and ukj/c (t) were determined using the current

pose estimate (i.e., p̂
c/k1

(t) and q̂c/k1 (t)).

An update to the estimator in (4–16) was then processed for each feature in Psj (t).

Using a value of λa = 0.3 for each feature, the state of σsj,i was determined and if

σsj,i = a, Ysj,i (t) and Usj,i (t) from (4–2) were calculated where the maximum value for

ς was 1.0 second. The pose estimate of p̂
c/k1

(t) and q̂c/k1 (t) was used to determine

p̂
kj/c

(t) expressed in the camera frame and q̂kj/c (t). Using a standard deviation of 3

pixels, the reprojection error between the pixel coordinates of the feature determined

from usj,i/c (t) and the pixel coordinates determined using the estimate of dsj,i/kj from

Ysj,i (t) and Usj,i (t) was used to calculate the χ2 value if the estimate of dsj,i/kj from
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Ysj,i (t) and Usj,i (t) fell within the known bounds, d2 ≤ dsj,i/kj ≤ d, and the value of

‖Ysj,i (t) ‖ > 0.1 and ‖Usj,i (t) ‖ > 0.15, where the thresholds on ‖Ysj,i (t) ‖ and ‖Usj,i (t) ‖

and the distance bounds d2 = 0.5 meters and d = 5.0 meters were selected based on

the environment. If the χ2 value was smaller than 6.63, the value of dsj,i/kj from Ysj,i (t)

and Usj,i (t) was considered an inlier and the Ysj,i (t) and Usj,i (t) pair were added to the

history stack in (4–4) where N = 50. Using λτ = 0.0001, when λmin
{

ΣYsj,i

}
> λτ , the

value of Xsj,i in (4–5) was determined and used to update (4–16), where KX = 30I3×3

was determined to consistently perform well with low noise sensitivity. Additionally,

after λmin
{

ΣYsj,i

}
> λτ , the value of Xsj,i was also used to estimate the reprojection

error and if the χ2 value was too large when comparing the measured pixel coordinates

from usj,i/c (t) to the pixel coordinates determined from Xsj,i, the new Ysj,i (t) and Usj,i (t)

were considered outliers, enabling another method of rejecting noisy measurements.

Additionally, the dwell-time for feature sj,i started accumulating time while the switching

signal σsj,i = a. Once the dwell-time exceeded the initial minimum dwell-time condition

in (4–37), the switching signal σ∆t
sj,i

(t) activated (i.e., σ∆t
sj,i

(t) = a), where η̃sj,i was

selected to be 1 centimeter and given λmin {KX} = 30, λa = 0.3, and d = 5.0 meters,

∆ta1sj ≥ 0.75 seconds. When all of the remaining features on the jth object were

activated σ∆t
sj

(t) = a and while σosj (t) = a (i.e., at least 20 features on the jth object

remained in the FOV), the observer update laws for the camera pose in (4–49) and

(4–50) where used to estimate the pose. After σosj (t) = u, the features on the jth object

were no longer tracked and a new set of features were extracted establishing the next

object and key frame. After the object was no longer tracked, the predictor update laws

in (4–51) and (4–52) were used to estimate the pose until the next object satisfied

the minimum dwell-time condition. If an object never satisfied the minimum dwell-time

condition, that object was never used to update the pose.

The experiment was approximately 560 seconds and consisted of driving the

ground vehicle shown in Figure 4-1 over a path of approximately 250 meters through
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Figure 4-6. Plot of the path of the camera during the experiment and the estimated path
of the camera using a standard deviation of 3 pixels for the history stack
rejection algorithm. The true path is marked in black. The estimated path
shows which estimator is activated over the experiment. While the landmark
is in the FOV, the estimated path is shown using the red marker. Similarly,
the estimated path is marked in green or blue when the predictor or observer
are active, respectively.
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Figure 4-7. Plot of the norm of the camera position error during the experiment using a
standard deviation of 3 pixels for accepting data onto the history stack. The
camera position error shows which estimator is activated over the
experiment. While the landmark is in the FOV, the estimated path is shown
using the red marker. Similarly, the estimated path is marked in green or
blue when the predictor or observer are active, respectively. As shown, the
error resets to zero each time the landmark enters the FOV. The maximum
position error was approximately 1.18 meters while the average of the
maximums was 1.0 meters and the RMS of the position error was 0.58
meters.
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Figure 4-8. Plot of the distance estimator convergence for key frame 33 by showing the
average percentage error of the distance to the features relative to the true
distance to the features using a standard deviation of 3 pixels for accepting
data onto the history stack. The plot shows while the set of estimators have
not satisfied the eigenvalue condition, marked in red, the flow type term
enables convergence. When enough data has been collected and the
eigenvalue condition is satisfied, marked by the green vertical line and green
markers, the error demonstrates exponential decay. After the initial minimum
dwell-time condition is satisfied, marked by the vertical blue line and blue
markers, the set of features was used in the position observer. As shown,
the error percentage relative to the distance is approximately 1.6%.
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Figure 4-9. Plot of the distance estimator convergence for key frame 173 by showing the
average percentage error of the distance to the features relative to the true
distance to the features using a standard deviation of 3 pixels for accepting
data onto the history stack. The plot shows while the set of estimators have
not satisfied the eigenvalue condition, marked in red, the flow type term
enables convergence. When enough data has been collected and the
eigenvalue condition is satisfied, marked by the green vertical line and green
markers, the error demonstrates exponential decay. After the initial minimum
dwell-time condition is satisfied, marked by the vertical blue line and blue
markers, the set of features was used in the position observer. As shown,
the error percentage relative to the distance is approximately 2.3%.
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Figure 4-10. Plot of the distance estimator convergence for key frame 215 by showing
the average percentage error of the distance to the features relative to the
true distance to the features using a standard deviation of 3 pixels for
accepting data onto the history stack. The plot shows while the set of
estimators have not satisfied the eigenvalue condition, marked in red, the
flow type term enables convergence. When enough data has been
collected and the eigenvalue condition is satisfied, marked by the green
vertical line and green markers, the error demonstrates exponential decay.
After the initial minimum dwell-time condition is satisfied, marked by the
vertical blue line and blue markers, the set of features was used in the
position observer. As shown, the error percentage relative to the distance
is approximately 1.9%.
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Figure 4-11. Histogram plot of the RMS of the average percentage error of the distance
to the features relative to the true distance to the features across the entire
experiment using a standard deviation of 3 pixels for accepting data onto
the history stack. The histogram shows the the RMS errors over the entire
time a key frame tracked. The RMS error was on average of 15.6% with a
standard deviation of 3.7% and a median error of 15.4% over the entire
time a key frame was tracked.
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Figure 4-12. Histogram plot of the RMS of the average percentage error of the distance
to the features relative to the true distance to the features across before the
minimum dwell-time condition is satisfied using a standard deviation of 3
pixels for accepting data onto the history stack. The histogram shows the
RMS errors over the time from extracting the features from a key frame to
the time just before the minimum dwell-time condition is satisfied. The RMS
error was on average of 19.4% with a standard deviation of 4.5% and a
median error of 19.1% before the minimum dwell-time condition was
satisfied.
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Figure 4-13. Histogram plot of the RMS of the average percentage error of the distance
to the features relative to the true distance to the features across after the
minimum dwell-time condition is satisfied using a standard deviation of 3
pixels for accepting data onto the history stack. The histogram shows the
RMS errors over the time the minimum dwell-time condition is satisfied to
the time a key frame was no longer tracked. The RMS error was on
average of 4.2% with a standard deviation of 2.9% and a median error of
3.4% after the minimum dwell-time condition was satisfied.
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the series of wooden hallways shown in Figure 4-2. The true and estimated path over

the experiment is shown in Figure 4-6 where the estimator state estimate is marked in

red, green, or blue depending if the landmark is in the FOV, the predictor is activated, or

the observer is activated, respectively. The norm of the position error for the experiment

is shown in Figure 4-7 where the error is marked in red, green, or blue depending if

the landmark is in the FOV, the predictor is activated, or the observer is activated,

respectively. As shown in Figure 4-7, the RMS error over the entire experiment was

0.58 meters. The maximum error before a reset was 1.18 meters implying the error over

path length before reset was approximately 2.8%. The average of the maximums was

1.0 meters implying the average maximum error over path length was approximately

2.4%. Over the experiment there were 246 key frames; however, only 83 key frames

satisfied the minimum dwell-time condition and were used in the position observer. The

distance to the features was approximately 1.5 meters on average and as shown in the

example convergence in Figures 4-8-4-10, and the histograms of the RMS error (i.e.,{
RMS

(
100

1
p

∑p
i=1 |d̃sj,i/c(t)|

1
p

∑p
i=1 dsj,i/c(t)

)}ps(t)
j=1

) in Figures 4-11-4-13, the average feature distance

error of the 83 key frames was at its lowest when used by the position estimator as was

predicted by the minimum dwell-time. Specifically, the histograms showed that before

the dwell-time condition is satisfied the percentage error was 19.4% on average as

shown in Figure 4-12; however, after the minimum dwell-time condition was satisfied the

error was 4.2 percent on average but had a median error of 3.4%.

Similar to our previous work in [62] and [63], the developed position estimator strat-

egy is to ensure the error in the position does not exceed a desired threshold through

the development of dwell-time conditions. However, [62] and [63] use a predictor-only

strategy when feedback on the position is not directly available. The purpose of the

developed estimator in this paper is to improve upon a predictor-only estimator and

guarantee the error in the position estimate grows at a slower rate when a vehicle is
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Figure 4-14. Plot of the path of the camera during the experiment and the estimated
path of the camera using the predictor-only strategy when no landmark is in
the FOV. The true path is marked in black. The estimated path shows if the
landmark is in the FOV or the predictor is activated. While the landmark is
in the FOV, the estimated path is shown using the red marker. Similarly, the
estimated path is marked in green when the predictor is active.
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Figure 4-15. Plot of the norm of the camera position error during the experiment using
the predictor-only strategy when no landmark is in the FOV. The camera
position error shows which estimator is activated over the experiment.
While the landmark is in the FOV, the estimated path is shown using the
red marker. Similarly, the estimated path is marked in green when the
predictor is active. As shown, the error resets to zero each time the
landmark enters the FOV. The maximum position error was approximately
1.18 meters while the average of the maximums was 1.09 meters and the
RMS of the position error was 0.63 meters.
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operating in an environment with no feedback from landmarks or a positioning sys-

tem. This is achieved through the use of the position observer strategy when features

satisfy the minimum dwell-time condition. As shown in Figures 4-14 and 4-15, using a

predictor-only strategy, similar to [62] and [63], results in larger maximum position error

compared to using the predictor and observer strategy. Specifically, the position error

using a predictor-only strategy had an overall RMS position error that was 8% larger

(i.e., 0.63 meters for the predictor-only strategy while the predictor and observer strategy

was 0.58 meters) and an average maximum that was 8.3% larger (i.e., 1.09 meters for

the predictor-only strategy compared to 1.0 meters using the predictor and observer

strategy). These experimental results demonstrate that the estimator strategy using

the minimum dwell-time condition ensures that only features with low error are used in

the position observer. The result of this paper enables the position estimation error to

remain smaller compared to using a predictor-only strategy which enables a vehicle to

operate in an environment with no feedback from landmarks or a positioning system for

longer periods of time.

Remark 4.1. Reducing the standard deviation for accepting data onto the history stack

improves the overall performance of both the distance estimators and the position

estimator as demonstrated by comparing Figures 4-6, 4-7, and 4-13 to Figures 4-16-

4-18. Specifically, the maximum position error using a 3 pixel standard deviation for

accepting data was on average 1.0 meters compared to 1.21 meters when using a 10

pixel standard deviation for accepting data. This shows that relaxing the threshold to

accept data causes more error to be injected into the system reducing performance

compared to the predictor-only strategy which had an average maximum error of 1.1

meters. Similarly, the RMS error of the distances after satisfying the minimum dwell-time

was 4.2% on average with a standard deviation of 2.9% and a median error of 3.4% for

the 3 pixel standard deviation for accepting data compared to using a 10 pixel standard

deviation for accepting data which had a 6.6% average RMS error with a standard
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Figure 4-16. Plot of the path of the camera during the experiment and the estimated
path of the camera using a standard deviation of 10 pixels for the history
stack rejection algorithm. The true path is marked in black. The estimated
path shows which estimator is activated over the experiment. While the
landmark is in the FOV, the estimated path is shown using the red marker.
Similarly, the estimated path is marked in green or blue when the predictor
or observer are active, respectively.
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Figure 4-17. Plot of the norm of the camera position error during the experiment using a
standard deviation of 10 pixels for accepting data onto the history stack.
The camera position error shows which estimator is activated over the
experiment. While the landmark is in the FOV, the estimated path is shown
using the red marker. Similarly, the estimated path is marked in green or
blue when the predictor or observer are active, respectively. As shown, the
error resets to zero each time the landmark enters the FOV. The maximum
position error was approximately 1.81 meters while the average of the
maximums was 1.21 meters and the RMS of the position error was 0.65
meters.
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Figure 4-18. Histogram plot of the RMS of the average percentage error of the distance
to the features relative to the true distance to the features across after the
minimum dwell-time condition is satisfied using a standard deviation of 10
pixels for accepting data onto the history stack. The histogram shows the
histogram of the RMS errors over the time the minimum dwell-time
condition is satisfied to the time a key frame was no longer tracked. The
RMS error was on average of 6.6% with a standard deviation of 4.3% and a
median error of 5.5% after the minimum dwell-time condition was satisfied.
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deviation of 4.3% and a median of 5.5%. However, reducing the threshold results in less

features satisfying the minimum dwell-time given 147 key frames out of 246 satisfied the

minimum dwell-time condition when using the 10 pixel standard deviation for accepting

data compared to 83 key frames out of 246 when using the 3 pixel standard deviation

for accepting data. Since the objective is to provide better position estimates when the

landmark is not in the camera’s FOV, this trade-off is acceptable; however, if the goal

was to estimate more of the environment then allowing for a higher standard deviation

for accepting data would be acceptable. Additionally, if the resulting structure of all

the objects and the resulting path of the camera were passed into an optimization

algorithm implementing bundle adjustments, the result may enable a richer estimate of

the environment. An optimization could be applied regardless; however, having more

features will result in a more dense estimate of the environment.

4.6 Summary

In this chapter, an extension to the learning approaches in [32], [45], and Chapter 3,

is developed that applies a new learning strategy that maintains a continuous estimate

of the position of the camera and estimates the structure of features as they become

visible. The developed learning strategy allows simulated measurements of features

from objects that are no longer in the FOV enabling a continuous estimate of the

distance to features with respect to the camera. Additionally, this approach shows how

the extended observer removes the positive depth constraint required by all previous

structure from motion approaches. Using this approach, a camera may travel over large

distances without keeping specific features in the FOV for all time and allow objects to

permanently leave the FOV if necessary. A Lyapunov based stability analysis proves

that the observers for estimating the path of the camera as well as the structure of each

set of objects are globally exponentially stable while features are in the camera’s FOV. A

switched systems analysis is used to develop dwell-time conditions to indicate how long

a feature must be tracked to ensure the distance estimation error is below a threshold.
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After distance estimates have converged below the threshold, the feature may be used

to update the camera position. If a feature does not satisfy the dwell-time condition, it

is never used to update the position of the agent. Furthermore, the approach does not

require a new set of features to be in the camera’s FOV when older features leave the

camera’s FOV. Finally, if a recognized landmark enters the camera’s FOV, the feedback

is used to compensate for drift error.
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CHAPTER 5
STRUCTURE AND MOTION OF A MOVING TARGET USING A MOVING

MONOCULAR CAMERA SUBJECT TO INTERMITTENT FEEDBACK

In this chapter, an approach similar to [45] and Chapter 3 is developed to estimate

the initial structure of a moving object. Unlike Chapter 3, intermittent feedback of the

object is considered. After estimating the initial structure of the object, an observer and

predictor for the object’s pose, velocity, and acceleration model (i.e., SaMfM [81]) is

guaranteed to be GUUB provided dwell-time conditions on the availability of feedback

are satisfied. Specifically, the dwell-time conditions, developed using a Lyapunov-

based stability analysis, give upper bounds on the time to learn the object’s initial

structure and upper bounds on the time feedback of the object’s features can be

unavailable. The approach to learn the motion model is motivated by [38]; however,

an acceleration model is learned in this chapter instead of a velocity model as done

in [38]. Estimating an acceleration model relaxes constraints on the motion and enables

the use of more general system models. Furthermore, the approach to develop the

dwell-times is motivated by [63] where the dwell-times in this chapter are based on the

size of the camera’s FOV, ensuring estimation error cannot exceed upper thresholds.

The dwell-times developed in this chapter ensure an object is recaptured in the FOV

after leaving which is not guaranteed in [38]. Specifically, [38] gives an object a number

of cycles of leaving and returning to the camera’s FOV to guarantee stability; however,

in many applications it is not possible to ensure an object returns to the camera’s FOV

if estimation error grows too large motivating the dwell-times developed in this chapter.

Furthermore, this development in this chapter relaxes the positive depth constraint

required in [38].

5.1 Learning the First Feature Structure

Similar to the approach for stationary features, the dynamics for the describing

the moving object’s distances can be integrated over a window of time to determine
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a relationship for the initial structure; however, unlike the stationary features, (2–

27) and (2–28) are functions of the target’s linear and angular velocity. Because the

target’s linear and angular velocity are measurable, relationships must be developed to

enable learning the initial structure. Let qm/c (t) be the quaternion representation of the

orientation of Fm with respect to Fc where its derivative with respect to time is

d

dt

(
qm/c (t)

)
=

1

2
B
(
qm/c (t)

)
RT
m/c (t) (ωm (t)− ωc (t)) . (5–1)

If the rotation of the object is measurable when in the FOV, ωm (t) can be estimated by

approximating d
dt

(
qm/c (t)

)
while σO (t) = a as

ωm (t) = 2Rm/c (t)BT
(
qm/c (t)

) d
dt

(
qm/c (t)

)
+ ωc (t) , (5–2)

where qm/c (t) can be determined while σO (t) = a implying estimates of d
dt

(
qm/c (t)

)
can also be determined. The target’s linear velocity does not have any relationship that

allows for a direct approach. Yet by examining the rate of change of the direction for the

first feature (i.e., the origin of the object) and the rate of change of the relative motion

direction, vm (t) can be written as a function of measurable quantities and the initial

distance to the first feature. Specifically, using (5–2) in (2–30) for the first feature and

(2–31) yieldsξm1 (t) 03×1

03×1 ξm/m∗ (t)


 dm1/c (t)

dm/m∗ (t)

+

 03×1

ξm/m∗1 (t)

 dm∗1/k1 +

 ρm1 (t)

ρm/m∗ (t)

=

 Ψm1 (t)

Ψm/m∗ (t)

vm (t) ,

(5–3)

where ξmi (t) ,
(
d
dt

(
umi/c (t)

)
+ ω×c (t)umi/c (t)

)
, ρmi (t) , Ψmi (t) vc (t),

ξm/m∗ (t) ,
(
d
dt

(
um/m∗ (t)

)
+ ω×c (t)um/m∗ (t)

)
, ρm/m∗ (t) , Ψm/m∗ (t) vc (t), and

ξm/m∗1 (t) , Ψm/m∗ (t)ω×m (t)Rm/c (t)um∗1/k1 are all measurable while the target is in

the camera’s FOV. Substituting the relationship in (2–24) for the first feature into (5–3)
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for

 dm1/c (t)

dm/m∗ (t)

 and simplifying yields

Ξvm
(t) dm∗1/k1 + Pvm

(t) = Ψvm
(t) vm (t) , (5–4)

where Ψvm
(t) ,

 Ψm1 (t)

Ψm/m∗ (t)

, Ξvm
(t) ,


ξm1 (t) 03×1

03×1 ξm/m∗ (t)

ψm1 (t) +

 03×1

ξm/m∗1 (t)


,

and Pvm
(t) ,

 ρm1 (t)

ρm/m∗ (t)

 are all measurable while the target is in the camera’s FOV.

Let σvm (t) ∈ {u, a} be an indicator signal indicating if λmin
{

ΨT
vm

(t) Ψvm
(t)
}
≤ λvm or

λmin

{
ΨT
vm

(t) Ψvm
(t)
}
> λvm, respectively. If σO (t) = a ∧ σvm (t) = a ∧ σm1 (t) = a, the

body velocity can be written as a function of the constant initial distance to the origin of

the object (i.e., the first feature) as

vm (t) = Ψ+
vm

(t) Ξvm
(t) dm∗1/k1 + Ψ+

vm
(t) Pvm

(t) , (5–5)

where Ψ+
vm

(t) =
(

ΨT
vm

(t) Ψvm
(t)
)−1

ΨT
vm

(t)

Remark 5.1. The set of features, {σmi (t)}mi∈Om, are set as σmi (t) = u if the velocity

does not satisfy the eigenvalue condition (i.e., σvm (t) = u). This is done because the

features are all dependent on the velocity in the subsequent development.

While σO (t) = a ∧ σvm (t) = a ∧ σm1 (t) = a, the relationships in (5–5) are used to

learn the initial distance to the first feature by substituting (5–5) into (2–27) for the first

feature and (2–28), then integrating over a time window ς ∈ R>0 yielding

 dm1/c (t)

dm/m∗ (t)

−
 dm1/c (t− ς)

dm/m∗ (t− ς)

= dm∗1/k1

∫ t

t−ς

uTm1/c
(ι) Ψ+

vm
(ι) Ξvm

(ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Ξvm
(ι)

dι
− dm∗1/k1

∫ t

t−ς

 0

uTm/m∗ (ι)ω×m (ι)Rm/c (ι)um∗1/k1

dι
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+

∫ t

t−ς

 uTm1/c
(ι) Ψ+

vm
(ι) Pvm

(ι)− uTm1/c
(ι) vc (ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Pvm
(ι)− uTm/m∗ (ι) vc (ι)

dι,(5–6)

where ς may be constant in size or change over time, and σO (ι) = a ∧ σvm (ι) =

a ∧ σm1 (ι) = a,∀ι ∈ [t− ς, t]. Again substituting the relationship in (2–24) for the first

feature into (5–6) for

 dm1/c (t)

dm/m∗ (t)

 and

 dm1/c (t− ς)

dm/m∗ (t− ς)

 yields

Ym1 (t) dm∗1/k1 = Um1 (t) , (5–7)

where

Ym1 (t) ,



ψm1 (t)− ψm1

(
t− πalj,mi

)
−
∫ t
t−πalj,m1

uTm1/c
(ι) Ψ+

vm
(ι) Ξvm

(ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Ξvm
(ι)

 dι

+
∫ t
t−πalj,m1

 0

uTm/m∗ (ι)ω×m (ι)Rm/c (ι)um∗1/k1

 dι, t− πalj,m1
< ς,

ψm1 (t)− ψm1 (t− ς)

−
∫ t
t−ς

uTm1/c
(ι) Ψ+

vm
(ι) Ξvm

(ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Ξvm
(ι)

 dι

+
∫ t
t−ς

 0

uTm/m∗ (ι)ω×m (ι)Rm/c (ι)um∗1/k1

 dι, t− πalj,m1
≥ ς,
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and

Um1 (t) ,



∫ t
t−πaj

 uTm1/c
(ι) Ψ+

vm
(ι) Pvm

(ι)− uTm1/c
(ι) vc (ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Pvm
(ι)− uTm/m∗ (ι) vc (ι)

 dι, t− πalj,m1
< ς,

∫ t
t−ς

 uTm1/c
(ι) Ψ+

vm
(ι) Pvm

(ι)− uTm1/c
(ι) vc (ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Pvm
(ι)− uTm/m∗ (ι) vc (ι)

 dι, t− πalj,m1
≥ ς,

and πalj,m1
is the lth instance the first feature satisfies the eigenvalue condition during the

jth instance the object enters the camera’s FOV (i.e., t ∈
[
πaj , π

u
j

)
). The time πalj,m1

must

be considered given there is no guarantee the object is learned before time πulj,m1
or time

πuj .

Multiplying both sides of (5–7) by YTm1
(t) yields

YTm1
(t)Ym1 (t) dm∗1/k1 = YTm1

(t)Um1 (t) . (5–8)

In general, Ym1 (t) will not have full column rank while σO (ι) = a ∧ σvm (ι) = a ∧

σm1 (ι) = a, ∀ι ∈ [t− ς, t] (e.g. when the camera and object are stationary implying

YTm1
(t)Ym1 (t) ≥ 0). However, the equality in (5–8) may be evaluated at any instance in

time and summed together (i.e., history stacks) yielding

ΣYm1
dm∗1/k1 = ΣUm1

, (5–9)

where ΣYm1
,

N∑
h=1

YTm1
(th)Ym1 (th), ΣUm1

,
N∑
h=1

YTm1
(th)Um1 (th), th ∈ (πa1 , t], and N ∈ Z>1.

Assumption 5.1. There is sufficient relative motion between the camera and target so

there exists a time τm1 ∈ R>πa1
, such that for all time t > τm1, λmin

{
ΣYm1

}
> λτ .

Remark 5.2. Learning the initial distance to the first feature enables learning the

remaining features on the target. Specific to the target tracking objective, learning the

initial distance to the first feature provides sufficient information to determine the relative

position of the target with respect to the camera, while the target is in the FOV and the

relative motion is not parallel. However, since it is often desirable to obtain a continuous
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estimate of the targets velocity, learning the structure of all the features will enable a

more robust estimate of the velocity. Specifically, σvm (t) = u may occur, implying the first

feature cannot estimate vm (t). The time τm1 is unknown; however, it can be determined

online by checking the minimum eigenvalue of ΣYm1
.

Once sufficient relative motion occurs as discussed in Assumption 5.1, the constant

unknown distance, dm∗1/k1, can be determined from (5–9) yielding

dm∗1/k1 = Xm1 , (5–10)

where Xm1 , Σ−1
Ym1

ΣUm1
. Given p

m1/c
(t) = um1/c

(t) dm1/c (t), while σO (ι) = a ∧ σm1 (ι) =

a ∧ t > τm1 using (5–10) in (2–24) yields

p
m1/c

(t) = um1/c
(t)ψm1,1 (t)Xm1 , (5–11)

where ψm1,1 (t) is the first element of ψm1 (t).

5.2 Learning the Structure of the Remaining Features

After the initial structure for the origin has been learned, the linear velocity of the

object can be determined while σO (t) = a ∧ σvm (t) = a ∧ σm1 (t) = a ∧ t > τm1 using

(5–10) in (5–5) yielding

vm (t) = Ψ+
vm

(t) Ξvm
(t)Xm1 + Ψ+

vm
(t) Pvm

(t) . (5–12)

Using (5–10) and (5–12) while σmi (t) = a ∧ σO (t) = a ∧ σvm (t) = a ∧ σm1 (t) =

a ∧ t > τm1 the ith feature on the object, mi ∈ Om, is learned learned while it satisfies the

eigenvalue condition (i.e., σmi (t) = a) by integrating (2–27) for mi and (2–28) similar to

(5–6) yielding

 dmi/c (t)

dm/m∗ (t)

−
 dmi/c (t− ς)

dm/m∗ (t− ς)

= dm∗i /k1

∫ t

t−ς

uTmi/c (ι)ω×m (ι)Rm/c (ι)um∗i /k1

0

dι
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+Xm1

∫ t

t−ς

 uTmi/c (ι) Ψ+
vm

(ι) Ξvm
(ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Ξvm
(ι)

dι
−Xm1

∫ t

t−ς

 uTmi/c (ι)ω×m (ι)Rm/c (ι)um∗1/k1

uTm/m∗ (ι)ω×m (ι)Rm/c (ι)um∗1/k1

dι
+

∫ t

t−ς

 uTmi/c (ι) Ψ+
vm

(ι) Pvm
(ι)− uTmi/c (ι) vc (ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Pvm
(ι)− uTm/m∗ (ι) vc (ι)

dι,(5–13)

where σO (ι) = a ∧ σvm (ι) = a ∧ σm1 (ι) = a ∧ σmi (ι) = a, ∀ι ∈ [t− ς, t] ∧ t > τm1.

Again substituting the relationship in (2–24) for mi into (5–13) for

 dmi/c (t)

dm/m∗ (t)

 and

 dmi/c (t− ς)

dm/m∗ (t− ς)

 yields

Ymi (t) dm∗i /k1 = Umi (t) , (5–14)

where

Ym1 (t) ,



ψmi (t)− ψmi
(
t− πalj,mi

)
−
∫ t
t−πalj,mi

uTmi/c (ι)ω×m (ι)Rm/c (ι)um∗i /k1

0

 dι, t− πalj,mi < ς,

ψmi (t)− ψmi (t− ς)

−
∫ t
t−ς

uTmi/c (ι)ω×m (ι)Rm/c (ι)um∗i /k1

0

 dι, t− πalj,mi ≥ ς,
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and

Umi (t) ,



Xm1

∫ t
t−πalj,mi

 uTmi/c (ι) Ψ+
vm

(ι) Ξvm
(ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Ξvm
(ι)

 dι

−Xm1

∫ t
t−πalj,mi

 uTmi/c (ι)ω×m (ι)Rm/c (ι)um∗1/k1

uTm/m∗ (ι)ω×m (ι)Rm/c (ι)um∗1/k1

 dι

+
∫ t
t−πalj,mi

 uTmi/c (ι) Ψ+
vm

(ι) Pvm
(ι)− uTmi/c (ι) vc (ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Pvm
(ι)− uTm/m∗ (ι) vc (ι)

 dι, t− πalj,mi < ς,

Xm1

∫ t
t−ς

 uTmi/c (ι) Ψ+
vm

(ι) Ξvm
(ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Ξvm
(ι)

 dι

−Xm1

∫ t
t−ς

 uTmi/c (ι)ω×m (ι)Rm/c (ι)um∗1/k1

uTm/m∗ (ι)ω×m (ι)Rm/c (ι)um∗1/k1

 dι

+
∫ t
t−ς

 uTmi/c (ι) Ψ+
vm

(ι) Pvm
(ι)− uTmi/c (ι) vc (ι)

uTm/m∗ (ι) Ψ+
vm

(ι) Pvm
(ι)− uTm/m∗ (ι) vc (ι)

 dι, t− πalj,mi ≥ ς,

and πalj,mi is the lth time the ith feature satisfies the eigenvalue condition during the jth

time the object enters the camera’s FOV and sufficient data has been collected for the

first feature (i.e., πalj,mi ∈
[
πaj , π

u
j

)
∩ t > τm1). The time πalj,mi ∈

[
πaj , π

u
j

)
∩ t > τm1 must be

considered given there is no guarantee the object is learned before time πulj,mi or πuj .

Multiplying both sides of (5–14) by YTmi (t) yields

YTmi (t)Ymi (t) dm∗i /k1 = YTmi (t)Umi (t) . (5–15)

In general, Ymi (t) will not have full column rank while σO (ι) = a ∧ σvm (ι) = a ∧ σm1 (ι) =

a ∧ σmi (ι) = a, ∀ι ∈ [t− ς, t] ∧ t > τm1 (e.g. when the camera and object are stationary

implying YTmi (t)Ymi (t) ≥ 0). However, the equality in (5–15) may be evaluated at any

instance in time and summed together (i.e., history stacks) yielding
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ΣYmidm∗i /k1 = ΣUmi , (5–16)

where ΣYmi ,
N∑
h=1

YTmi (th)Ymi (th), ΣUmi ,
N∑
h=1

YTmi (th)Umi (th), th ∈ (τm1 , t], and N ∈ Z>1.

Assumption 5.2. There is sufficient relative between the camera and target so there

exists a time τmi ∈ R>πa1
, such that for all time t > τmi, λmin

{
ΣYmi

}
> λτ .

Once sufficient relative motion occurs as discussed in Assumption 5.2, the constant

unknown distance, dm∗i /k1, can be determined from (5–16) yielding

dm∗i /k1 = Xmi , (5–17)

where Xmi , Σ−1
Ymi

ΣUmi .

5.3 Learning the Object Motion Model

After learning the structure of the object, estimates of object pose and velocity

will be available while the object is in the camera’s FOV and the eigenvalue conditions

are satisfied; however, the object may periodically leave the camera’s FOV over time

and the eigenvalue conditions will not always be satisfied. The work in [38] used

motion model learning to design a predictor for the pose of a target while the target is

outside the camera’s FOV which is naturally extended to include time periods where the

eigenvalue conditions are not satisfied. In the subsequent development, an estimator

for the motion model of the vehicle is presented; however, the primary difference in the

subsequent design is the model learned is for the acceleration of the vehicle and not

the velocity. Specifically, [38] developed a method for modeling the velocity of the target

but estimating a model of the acceleration enables the use of kinetic models of targets

to be exploited rather than only using kinematic models. As described in [38], there are

numerous applications where a target’s velocity is directly a function of its pose in the

world or the relative pose between the target and the camera; however, these kinematic

models or approximations of the desired trajectory of a target don’t accurately model
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vehicle trajectories in numerous applications. In the subsequent development, a more

general model is presented which enables the estimation of a larger class of systems.

Let ηc (t) ,

pc/k1 (t)

qc/k1 (t)

 and ηm (t) ,

pm1/c
(t)

qm/c (t)

 represent the pose of the camera

expressed in Fk1 and the pose of the object with respect to the camera expressed in Fc.

Additionally, let φm (t) ,

vm (t)

ωm (t)

 represent the velocity of the object expressed in Fc.

Assumption 5.3. The pose of the camera, ηc (t), is known.

Assumption 5.4. The pose and velocity of the moving object and camera are bounded.

Specifically, ηm (t) ∈ Nηm, ηc (t) ∈ Nηc, and φm (t) ∈ Nφm where Nηm , Nηc ⊂ R7 and

Nφm ⊂ R6 are convex, compact sets and ‖φm (t) ‖ ≤ φm.

Remark 5.3. Assumption 5.4 is a general requirement for any estimator to converge

(i.e., the state to be estimated must remain bounded for an estimator to remain

bounded). The is equivalent to the requirement of desired trajectories remaining

bounded in control problems.

Assumption 5.5. The acceleration of the moving object is bounded and limited to the

class of systems that are bounded and are locally Lipschitz functions of the pose and

velocity of the moving object and pose of the camera. Specifically, the derivative of the

velocity with respect to time is

d

dt
(φm (t)) = fm (ηm (t) , ηc (t) , φm (t)) (5–18)

where fm : R7 × R7 × R6 → R6 is a locally Lipschitz and bounded function.

Remark 5.4. Assumption 5.5 ensures the kinetic model of the target can be approxi-

mated using universal function approximators to an arbitrary level of accuracy via the

Stone-Weierstrass theorem [120]. Specifically, a neural network (NN) is subsequently

used to approximate fm (ηm (t) , ηc (t) , φm (t)). This assumption holds in various target

tracking objectives (e.g., projectile and orbital motion, pursuit-evasion games, and appli-

cations where a target is traveling through an environment with stationary obstacles).
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Remark 5.5. The acceleration model is not limited to targets that are a function of

ηm (t), ηc (t), and φm (t), specifically, the target’s motion model may be a function of any

combination of ηm (t), ηc (t), and φm (t).

In this development, the target’s acceleration model is approximated using a neural

network of the form

fm (ηm (t) , ηc (t) , φm (t)) = W T
mσm (ηm (t) , ηc (t) , φm (t)) + εm (ηm (t) , ηc (t) , φm (t)) ,

(5–19)

where L ∈ Z>0 is the number of basis functions, Wm ∈ RL×6 is a matrix of the constant

unknown ideal weights, σm : R7 × R7 × R6 → R6 is a designed matrix of basis

functions that are bounded and locally Lipschitz, and εm : R7 × R7 × R6 → R6 is

the function approximation residual, which is locally Lipschitz and can be bounded

with a bound that can be made arbitrarily small based on the Stone-Weierstrass

theorem εm , supηm∈Nm,ηc∈Nc,φm∈Φm,t∈[0,∞) ‖εm (ηm (t) , ηc (t) , φm (t))‖. Furthermore,

‖Wm‖ ≤ Wm ∈ R>0, σm , supηm∈Nm,ηc∈Nc,φm∈Φm,t∈[0,∞) ‖σm (ηm (t) , ηc (t) , φm (t)) ‖,

σm,ηm , supηm∈Nm,ηc∈Nc,φm∈Φm,t∈[0,∞) ‖ ∂σm
∂ηm(t)

(ηm (t) , ηc (t) , φm (t)) ‖, and σm,φm ,

supηm∈Nm,ηc∈Nc,φm∈Φm,t∈[0,∞) ‖ ∂σm
∂φm(t)

(ηm (t) , ηc (t) , φm (t)) ‖.

Remark 5.6. After the initial structure of the first feature m1 ∈ Om is known, while

the eigenvalue condition is satisfied and the object remains in the camera’s FOV (i.e.,

σO (t) = a ∧ σvm (t) = a ∧ σm1 (t) = a ∧ t > τm1), ηm (t) can be approximated by using

(5–11). Using (5–12) and (5–2), φm (t) can be determined. Furthermore, after the initial

structure for the other features has been learned, any or all of the features can be used

to estimate the ηm (t) and φm (t); however, in the subsequent development only the

origin of the object is used (i.e., the first feature m1 ∈ Om).

Similar to the approach taken for the moving features, using (5–19), the derivative

of the velocity with respect to time is integrated over a time window ς while σO (t) =
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a ∧ σvm (t) = a ∧ σm1 (t) = a ∧ t > τm1

φm (t)− φm (t− ς) = W T
m

∫ t

t−ς
σm (ηm (ι) , ηc (ι) , φm (ι)) dι

+

∫ t

t−ς
εm (ηm (ι) , ηc (ι) , φm (ι)) dι, (5–20)

where σO (ι) = a ∧ σvm (ι) = a ∧ σm1 (ι) = a, ∀ι ∈ [t− ς, t] ∧ t > τm1. Using (5–12) and

(5–2),

φm (t) =

 Ψ+
vm

(t) Ξvm
(t)Xm1 + Ψ+

vm
(t) Pvm

(t)

2Rm/c (t)BT
(
qm/c (t)

)
d
dt

(
qm/c (t)

)
+ ωc (t)

 , (5–21)

implying (5–20) can be written as

Ym (t)Wm = Um (t) + Em (t) , (5–22)

where

Ym (t) ,


∫ t
t−πalj,m1

σTm (ηm (ι) , ηc (ι) , φm (ι)) dι, t− πalj,m1
< ς,∫ t

t−ς σ
T
m (ηm (ι) , ηc (ι) , φm (ι)) dι, t− πalj,m1

≥ ς,
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Um (t) ,



 Ψ+
vm

(t) Ξvm
(t)Xm1

2Rm/c (t)BT
(
qm/c (t)

)
d
dt

(
qm/c (t)

)

T

+

Ψ+
vm

(t) Pvm
(t)

ωc (t)


T

−

 Ψ+
vm

(
t− πalj,m1

)
Ξvm

(
t− πalj,m1

)
Xm1

2Rm/c

(
t− πalj,m1

)
BT
(
qm/c

(
t− πalj,m1

))
d
dt

(
qm/c

(
t− πalj,m1

))

T

−

Ψ+
vm

(
t− πalj,m1

)
Pvm

(
t− πalj,m1

)
ωc
(
t− πalj,m1

)

T

, t− πalj,m1
< ς,

 Ψ+
vm

(t) Ξvm
(t)Xm1

2Rm/c (t)BT
(
qm/c (t)

)
d
dt

(
qm/c (t)

)

T

+

Ψ+
vm

(t) Pvm
(t)

ωc (t)


T

−

 Ψ+
vm

(t− ς) Ξvm
(t− ς)Xm1

2Rm/c (t− ς)BT
(
qm/c (t− ς)

)
d
dt

(
qm/c (t− ς)

)

T

−

Ψ+
vm

(t− ς) Pvm
(t− ς)

ωc (t− ς)


T

, t− πalj,m1
≥ ς,

and

Em (t) ,


−
∫ t
t−πalj,m1

εTm (ηm (ι) , ηc (ι) , φm (ι)) dι, t− πalj,m1
< ς,

−
∫ t
t−ς ε

T
m (ηm (ι) , ηc (ι) , φm (ι)) dι, t− πalj,m1

≥ ς.

.

Multiplying both sides of (5–22) by YTm (t) yields

YTm (t)Ym (t)Wm = YTm (t)Um (t) + YTm (t) Em (t) . (5–23)

The matrix Ym (t) will never have full column rank; however, the equality in (5–23) may

be evaluated at any instance in time and summed together (i.e., history stacks) yielding

ΣYmWm = ΣUm + ΣEm , (5–24)
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where ΣYm ,
NW∑
h=1

YTm (th)Ym (th), ΣUm ,
NW∑
h=1

YTm (th)Um (th), ΣEm ,
NW∑
h=1

YTm (th) Em (th),

th ∈ (τm1 , t], and NW ∈ Z>L.

Assumption 5.6. There is sufficient relative motion between the camera and target so

there exists a time τm ∈ R>τm1
, such that for all time t > τm, λmin {ΣYm} > λτ .

Remark 5.7. The time τm is unknown; however, it can be determined online by checking

the minimum eigenvalue of ΣYm .

5.4 Target Estimators

To quantify the pose and velocity estimation objective, let

η̃m (t) , ηm (t)− η̂m (t) , (5–25)

φ̃m (t) , φm (t)− φ̂m (t) , (5–26)

and

W̃m (t) , Wm − Ŵm (t) , (5–27)

where η̂m (t) ∈ R7, φ̂m (t) ∈ R6, and Ŵm (t) ∈ RL×6 are the estimates of ηm (t), φm (t),

and Wm, respectively. Taking the time derivative of (5–25)-(5–27) and using (2–25) for

feature m1, (5–1), (5–18), (5–19), and given d
dt

(Wm) = 0L×6 yields

d

dt
(η̃m (t)) = Φm

(
qm/c (t)

)
φm (t) +

 −vc (t)− ω×c (t) p
m1/c

(t)

−1
2
B
(
qm/c (t)

)
RT
m/c (t)ωc (t)

− d

dt
(η̂m (t)) , (5–28)

d

dt

(
φ̃m (t)

)
= W T

mσm (ηm (t) , ηc (t) , φm (t)) + εm (ηm (t) , ηc (t) , φm (t))− d

dt

(
φ̂m (t)

)
,

(5–29)

and
d

dt

(
W̃m (t)

)
, − d

dt

(
Ŵm (t)

)
, (5–30)

where Φm

(
qm/c (t)

)
,

I3×3 03×3

04×3
1
2
B
(
qm/c (t)

)
RT
m/c (t)

, ‖Φm

(
qm/c (t)

)
‖ ≤ 1, and

Φm,qm/c , supηm∈Nm,t∈[0,∞) ‖ ∂Φm
∂qm/c(t)

(
qm/c (t)

)
‖
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While the target is in the camera’s FOV and the eigenvalue conditions are satisfied

but the first feature learning condition is not satisfied, σO (t) = a ∧ σvm (t) = a ∧

σm1 (t) = a ∧ t < τm1, observer update laws are designed for d
dt

(η̂m (t)), d
dt

(
φ̂m (t)

)
, and

d
dt

(
Ŵm (t)

)
as

d

dt
(η̂m (t)) , proj

Φm

(
qm/c (t)

)
φ̂m (t) +

 −vc (t)− ω×c (t) p̂
m1/c

(t)

−1
2
B
(
qm/c (t)

)
RT
m/c (t)ωc (t)


 , (5–31)

d

dt

(
φ̂m (t)

)
, proj

(
Ŵ T
mσm

(
η̂m (t) , ηc (t) , φ̂m (t)

))
, (5–32)

and
d

dt

(
Ŵm (t)

)
, 0L×6. (5–33)

After the learning condition is satisfied (i.e., t ≥ τm1), and given um1/c
(t) and qm/c (t) can

be determined while σO (t) = a∧σvm (t) = a∧σm1 (t) = a, (5–11) and (5–21) can be used

to determine ηm (t) and φm (t) as

ηm (t) =

um1/c
(t)ψm1,1 (t)Xm1

qm/c (t)


and

φm (t) =

 Ψ+
vm

(t) Ξvm
(t)Xm1 + Ψ+

vm
(t) Pvm

(t)

2Rm/c (t)BT
(
qm/c (t)

)
d
dt

(
qm/c (t)

)
+ ωc (t)

 .
After (5–24) begins saving data, the observer update laws use ηm (t), φm (t), ΣUm, and

ΣYm as

d

dt
(η̂m (t)) , proj

Φm

(
qm/c (t)

)
φm (t) +

 −vc (t)− ω×c (t) p
m1/c

(t)

−1
2
B
(
qm/c (t)

)
RT
m/c (t)ωc (t)

+Kηm η̃m (t)

 ,

(5–34)
d

dt

(
φ̂m (t)

)
, proj

(
Ŵ T
mσm (ηm (t) , ηc (t) , φm (t)) +Kφmφ̃m (t)

)
, (5–35)
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d

dt

(
Ŵm (t)

)
, proj

(
Γmσm (ηm (t) , ηc (t) , φm (t)) φ̃Tm (t) + ΓmKWm

(
ΣUm − ΣYmŴm (t)

))
,

(5–36)

where Kηm ∈ R7×7, Kφm ∈ R6×6, Γm ∈ RL×L, and KWm ∈ RL×L are constant, positive

definite gain matrices.

Before the learning condition is satisfied (i.e., t < τm1), when the object is not in

the camera’s FOV or the origin or velocity eigenvalue conditions are not satisfied (i.e.,

σO (t) = u ∨ σvm (t) = u ∨ σm1 (t) = u), the predictor update laws are designed to update

the estimates as

d

dt
(η̂m (t)) , proj

Φm

(
q̂m/c (t)

)
φ̂m (t) +

 −vc (t)− ω×c (t) p̂
m1/c

(t)

−1
2
B
(
q̂m/c (t)

)
R̂T
m/c (t)ωc (t)


 , (5–37)

d

dt

(
φ̂m (t)

)
, proj

(
Ŵ T
m (t)σm

(
η̂m (t) , ηc (t) , φ̂m (t)

))
, (5–38)

and
d

dt

(
Ŵm (t)

)
, 0L×6, (5–39)

where after the the learning condition is satisfied, t ≥ τm1, the acceleration model

weights are updated using the history stacks as

d

dt

(
Ŵm (t)

)
, ΓmKWm

(
ΣUm − ΣYmŴm (t)

)
. (5–40)

5.5 Object Observer and Predictor Analysis

To simplify the subsequent analysis, if σm1 (t) = u then σO (t) = u implying

πalj,m1
= πaj and πulj,m1

= πuj . Let a Lyapunov candidate function, Vm (Zm (t)) : R7+6+6L → R,

be defined as

Vm (Zm (t)) ,
1

2
η̃Tm (t) η̃m (t) +

1

2
φ̃Tm (t) φ̃m (t) +

1

2
tr
(
W̃ T
m (t) Γ−1

m W̃m (t)
)

(5–41)

where

1

2
min

{
1, λmin

{
Γ−1
m

}}
‖Zm (t) ‖2 ≤ Vm (Zm (t)) ≤ 1

2
max

{
1, λmax

{
Γ−1
m

}}
‖Zm (t) ‖2
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and Zm (t) ∈ R7+6+6L is a stacked error vector defined as

Zm (t) ,

[
η̃Tm (t) φ̃Tm (t) vec

(
W̃m (t)

)T]T
.

Lemma 5.1. The observer designs in (5–31)-(5–33) ensure the stacked error in Zm (t)

is exponentially bounded while feedback from the object is available (i.e., object is in

the camera’s FOV), the motion eigenvalue conditions are satisfied, and the history stack

eigenvalue conditions are unsatisfied, σO (t) = a∧ σvm (t) = a∧ σm1 (t) = a∧ t < τm1 ∧ t <

τm, (i.e., t ∈
[
πaj , π

u
j

)
∩ t < τm).

Proof. Taking the derivative of (5–41) with respect to time and substituting the error

derivative in (5–28)-(5–30), the update laws in (5–31)-(5–33), and upper bounding using

the bounds in (5–41) yields

d

dt
(Vm (Zm (t))) ≤ c1Vm (Zm (t)) + c2,

which invoking the Comparison Lemma [116, Lemma 3.4] implies

Vm (Zm (t)) ≤
(
Vm
(
Zm
(
πaj
))

+
c2

c1

)
exp

(
c1

(
t− πaj

))
− c2

c1

, (5–42)

where

c1 ,
max

{(
1
2

+ ωc + 1
2
Wmσm,ηm

)
,
(
1 + 1

2
σm + 1

2
Wmσm,ηm +Wmσm,φm

)
, 1

2
σm
}

1
2

min {1, λmin {Γ−1
m }}

and

c2 ,
1

2
εm

2.

Lemma 5.2. The observer designs in (5–34)-(5–36) ensure the stacked error Zm (t)

exponentially decays while feedback from the object is available (i.e., object is in

the camera’s FOV), the motion eigenvalue conditions are satisfied, and the history stack
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eigenvalue conditions are satisfied, σO (t) = a∧σvm (t) = a∧σm1 (t) = a∧t ≥ τm1∧t ≥ τm,

(i.e., t ∈
[
πaj , π

u
j

)
∩ t ≥ τm).

Proof. Taking the derivative of (5–41) with respect to time and substituting the error

derivative in (5–28)-(5–30), the update laws in (5–34)-(5–36), using the eigenvalue

conditions in Assumptions 5.1 and 5.6, and upper bounding using the bounds in (5–41)

yields
d

dt
(Vm (Zm (t))) ≤ −c3Vm (Zm (t)) + c4,

which invoking the Comparison Lemma [116, Lemma 3.4] implies

Vm (Zm (t)) ≤
(
Vm
(
Zm
(
πaj
))
− c4

c3

)
exp

(
−c3

(
t− πaj

))
+
c4

c3

, (5–43)

where

c3 ,
min

{
λmin {Kηm} , 1

2
λmin {Kφm} , 1

2
λmin {KWm}λτ

}
1
2

max {1, λmax {Γ−1
m }}

and

c4 ,
εm

2

2λmin {Kφm}
+

(
λmax {KWm}

√
λmax {ΣYm}NW εmς

)2

2λmin {KWm}λτ
.

As described in Remark 5.4, εm decreases as L increases implying c4
c3

decreases as the

number of different basis functions increases.

Lemma 5.3. The predictor designs in (5–37)-(5–40) ensure the stacked error Zm (t)

exponentially grows while feedback from the object is unavailable (i.e., the object

is outside the camera’s FOV) or the motion eigenvalue conditions are unsatisfied,

(σO (t) = u ∨ σvm (t) = u ∨ σm1 (t) = u), (i.e., t ∈
[
πuj , π

a
j+1

)
).

Proof. Taking the derivative of (5–41) with respect to time and substituting the error

derivative in (5–28)-(5–30), the update laws in (5–37)-(5–39), and upper bounding using

the bounds in (5–41) yields

d

dt
(Vm (Zm (t))) ≤ c5Vm (Zm (t)) + c2,
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Figure 5-1. Example geometry for a simplified camera with origin at c, angle αc, and
FOV Vc. The maximum radius of an inscribed sphere in the camera’s FOV at
a distance d is Rη , d sin (αc).

which invoking the Comparison Lemma [116, Lemma 3.4] implies

Vm (Zm (t)) ≤
(
Vm
(
Zm
(
πuj
))

+
c2

c5

)
exp

(
c5

(
t− πuj

))
− c2

c5

, (5–44)

where c5 ,
max{c5,ηm ,c5,φm , 12σm}
1
2

min{1,λmin{Γ−1
m }} , c5,ηm ,

(
φm Φm,qm/c + 1

2
+ ωc + ωc Φm,qm/c + 1

2
Wmσm,ηm

)
,

and c5,φm ,
(
1 + 1

2
σm + 1

2
Wmσm,ηm +Wmσm,φm

)
.

5.6 Object Dwell-Time Analysis

As shown in (5–42) and (5–44), the observer designs before Assumptions 5.1 and

5.6 and the predictor designs are always exponentially growing. Given the objective is

to track the moving object, dwell-times must be developed to ensure the Zm (t) remains

bounded during periods of time where Zm (t) grows. The analysis in [38] assumes the

structure of the object is known and measurable and shows that an estimator design

(i.e., switching between an observer and predictor) is stable provided dwell-times can

upper bound the total time spent in the unstable periods over a constant number of

cycles; however, growth of the estimation error beyond some threshold is not always

possible. Specifically, as described in [63], feedback regions are finite in size and

constrained by sensor modality (e.g., the size of a camera’s FOV or regions where a
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positioning system is accurate). Furthermore, the object’s structure is unknown while

t < τm implying the assumptions required in [38] are unsatisfied.

For this image-based target tracking objective, the feedback region is defined by the

camera’s FOV, Vc. As shown in the simplified camera model in Figure 5-1, the largest

inscribed sphere that can fit within the camera’s FOV is defined by Rη , d sin (αc),

where d is the maximum distance a camera can reasonably estimate and αc ∈ R>0

is the minimum angle of the camera’s FOV Vc. Specifically, the set of features on

the object must be captured within the camera’s FOV for feedback to be available,

σO (t) = a. This requirement is covered by Assumption 2.6 where the set of features

on the target, Om, are assumed to fit within the camera’s FOV,M ⊂ Vc. Let DM ,

maxpmi/m1
∈M {mi ∈ Om}ni=2 represent the maximum distance between the origin of the

object, m1, and another feature, mi, and DM ∈ R>RM represent a known bound on DM.

To ensure the estimation error remains bounded, the maximum value for (5–41) must be

bounded as

Vm (Zm (t)) <
1

2
η̃m

2
, (5–45)

where η̃m , Rη − DM is the maximum error for the camera’s FOV, Rη > DM, and

‖η̃m (t) ‖ ≤ η̃m.

Ensuring the maximum time where feedback is unavailable (i.e., maximum dwell-

time) also guarantees the camera will have feedback and the estimator will remain

stable when Assumptions 5.1 and 5.6 are satisfied. This implies that an initial minimum

dwell-time must reflect the learning objective, specifically, Assumptions 5.1 and 5.6 are

satisfied after t ≥ τm1 ∩ t ≥ τm (i.e., the times the history stacks for the initial structure

of the origin and acceleration model have sufficient data). By design, τm > τm1 implying

the initial minimum dwell-time must initially exceed τm otherwise it is not possible to

guarantee the object is captured within the camera’s FOV. Specifically, the maximum

amount of time it can take to learn, ∆tm ∈ R>0 must be greater than the finite excitation
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condition in Assumptions 5.1 and 5.6 implying

∆tm > τm. (5–46)

If this is not true, then it is not possible to ensure stability using the proposed observer

and predictor design.

For the subsequent development, let ∆πaj , πuj − πaj and ∆πuj , πaj+1 − πuj represent

the time spent with feedback available and unavailable over the jth cycle.

Theorem 5.1. The switched system defined by the switching signals σO (t), σvm (t), and

σm1 (t), and the bounds in (5–42) and (5–44) ensure the estimation error Zm remains

bounded while t < τm provided

τm < min

{
1

c1

ln

(
1
2
η̃m

2
+ c2

c1

Vm (Zm (πa1)) + c2
c1

)
,

1

c5

ln

(
1
2
η̃m

2
+ c2

c5

Vm (Zm (πa1)) + c2
c5

)}
. (5–47)

Proof. Using (5–45), to ensure stability of the system, Vm (Zm (τm)) < 1
2
η̃m

2. Consid-

ering the bounds in (5–42) and (5–44), the initial minimum dwell-time must satisfy the

minimum of (
Vm (Zm (πa1)) +

c2

c1

)
exp

(
c1∆tm

)
− c2

c1

≤ 1

2
η̃m

2 (5–48)

and (
Vm (Zm (πa1)) +

c2

c5

)
exp

(
c5∆tm

)
− c2

c5

≤ 1

2
η̃m

2
. (5–49)

Solving (5–48) and (5–49) for ∆tm and substituting (5–46) yields (5–47).

Remark 5.8. The learning condition in (5–47) requires reasonable initial values to be

known for the estimates; however, this is a general requirement to guarantee the motion

model is learned when a target intermittently leaves the camera’s FOV. Furthermore,

reasonable initial values for the estimates are often available.

Theorem 5.2. The switched system defined by the switching signals σO (t), σvm (t), and

σm1 (t), and the bounds in (5–43) and (5–44) ensure the estimation error Zm remains
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GUUB while t ≥ τm provided the jth cycle always satisfies the loss of feedback dwell-

time condition

∆πuj ≤
1

c5

ln

 1
2
η̃m

2
+ c2

c5(
1
2
η̃m

2 − c4
c3

)
exp

(
−c3∆πaj

)
+ c4

c3
+ c2

c5

 . (5–50)

Proof. Using (5–45), to ensure stability of the system, Vm
(
Zm
(
πaj
))
< 1

2
η̃m

2. Consider-

ing the observer bound in (5–43), the worst case for each cycle j is the estimation error

growing to the maximum during the previous cycle implying when t = πuj ,

Vm
(
Zm
(
πuj
))
≤
(

1

2
η̃m

2 − c4

c3

)
exp

(
−c3∆πaj

)
+
c4

c3

. (5–51)

Using the worst case, Vm
(
Zm
(
πaj+1

))
< 1

2
η̃m

2 for the predictor bound in (5–44) and

solving for the ∆πuj yields

∆πuj ≤
1

c5

ln

(
1
2
η̃m

2
+ c2

c5

Vm
(
Zm
(
πuj
))

+ c2
c5

)
. (5–52)

Substituting (5–51) into (5–50) yields the loss of feedback dwell-time condition in

(5–50).

Remark 5.9. A minimum feedback dwell-time condition is not developed here given the

objective is to always track the target.

5.7 Summary

In this chapter, a novel approach to estimating the pose, velocity, and acceleration

of a target is developed while considering intermittent feedback. This approach utilizes

a new approach to image geometry that relaxes the requirement to have continuous

observation of the target, to know structure, velocity, or acceleration of the target, and

does not require the persistence of excitation assumption or positive depth constraint.
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CHAPTER 6
CONCLUSIONS

In applications where agents are required to track a moving target through uncertain

environments, it is necessary to estimate the structure of local features in the environ-

ment (e.g., relative positions of objects in the immediate surrounding environment),

the pose of an agent (i.e., position and orientation), and the pose and velocity of the

target. Many of these applications require traveling over large distances implying the

local environment for an agent is always changing introducing further difficulty. It is often

only possible to intermittently sense the target (e.g., environmental obstructions or path

constraints of the agent may cause occlusions of the target). A typical assumption is

that global sensing is available to measure the state of an agent. However, state feed-

back generally requires a sensor that can relate all the states to a common coordinate

system (e.g., global positioning system (GPS)). However, GPS may be unavailable (e.g.,

agents could operate in environments where GPS is restricted or denied). Assuming

that the entire environment is known and state information from the target is available

is a restrictive assumption since targets are not likely to communicate such information

and directly sensing the pose and velocity of a target is challenging and not possible in

many scenarios. These challenges motivate the development of techniques that rely on

local sensing but still allow agents to estimate their own state (i.e., pose) as well as the

state of a target (i.e., pose and velocity). Additionally, efforts are motivated by the fact

that local sensing often has intermittent availability.

In this dissertation, cameras are proven to be a sensor that can provide local

feedback of the environment where coordinates of the target can be related to a

common reference frame. Numerous estimators are developed that enable a monocular

camera system to estimate the state of an agent and target despite not having the ability

to inherently measure scale, have a limited FOV, and being susceptible to intermittent

sensing (e.g., due to occlusions). Specifically, novel estimators using a single camera
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and SfM theory are developed to estimate the Euclidean distance to features on a

stationary objects and the Euclidean trajectory the camera takes while tracking the

target. These estimators are extended to develop a novel estimator that used a single

camera and SaMfM theory to estimate the pose of the target relative to the agent

and the velocity of the target. Unlike previous results that estimate the inverse depth

to features, the developed observers do not require the positive depth constraint,

allowing for more general trajectories to be taken by an agent. In Chapter 1, the target

tracking problem is discussed and a survey of previous work on using camera systems

was presented. In Chapter 2, the dynamics for a moving monocular camera tracking

stationary features and a moving target’s features is developed. The dynamics present

a unique approach to the SfM and SaMfM where relationships are developed showing

how the Euclidean distance to stationary features relates to the pose of the agent and

the Euclidean distance to moving features relates to the pose and velocity of the moving

target.

In Chapter 3, a global exponentially stable observer for feature scale is developed

under a finite excitation condition through the use of ICL. Since the observer only

requires finite excitation to be globally exponentially stable, the observer is more

general than previous results. The result indicates that the Euclidean distance to a set

of features on a stationary object and the path the camera travels while viewing that

object are estimated exponentially fast implying the structure (i.e., Euclidean coordinates

of the tracked features) and path are reconstructed exponentially. Furthermore, the

developed estimation method does not require the features on the objects to be planar

and does not require the positive depth constraint. An experimental study is presented

which compares the developed Euclidean distance observer to previous observers

demonstrating the effectiveness of this result.

In Chapter 4, an extension to the learning approaches in Chapter 3 is developed

that applies a new learning strategy that maintains a continuous estimate of the position

125



of the camera and estimates the structure of features as they come into the FOV.

Furthermore, the developed learning strategy allows simulated measurements of

features from objects that are no longer in the FOV enabling a continuous estimate

of the distance to features with respect to the camera. Additionally, this approach

shows how the extended observer removes the positive depth constraint required by

all previous SfM approaches. Using this approach, a camera may travel over large

distances without keeping specific features in the FOV for all time and allow objects to

permanently leave the FOV if necessary. A Lyapunov based stability analysis proves

that the observers for estimating the path of the camera as well as the structure of each

set of objects are globally exponentially stable while features are in the FOV. A switched

systems analysis is used to develop dwell-time conditions to indicate how long a feature

must be tracked to ensure the distance estimation error is below a threshold. After the

distance estimates have converged below the threshold, the feature may be used to

update the position of the camera. If a feature does not satisfy the dwell-time condition,

it is never used to update the position of the agent. Furthermore, the approach does not

require a new set of features to be in the camera’s FOV when older features leave the

camera’s FOV. Finally, if a recognized landmark enters the camera’s FOV, the feedback

is used to compensate for drift error.

In Chapter 5, the approach in Chapter 4 is used to provide pose estimates of

the camera and an extension of Chapter 3 is developed to exponentially estimate the

pose and velocity of the moving target. Specifically, using the pose and velocity of

the camera, the estimation error of the Euclidean trajectory of the target as well as

the structure of the target, is globally exponentially convergent to an ultimate bound

assuming the target velocity and acceleration are bounded and dwell-time conditions

are satisfied. The developed estimator relaxes the requirement to have continuous

observation of the target, to know structure or velocity of the target, and does not require

the persistence of excitation assumption or positive depth constraint.
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The monocular camera estimators developed in this dissertation only consider a

single agent tracking a single target and assume that a controller exists to satisfy the

tracking objective. Future work may include incorporating the estimators in this dis-

sertation into a guidance and control framework that informs the agent about potential

trajectory issues (e.g., a building may block the path or occlude the target) and estimate

the optimal trajectory to track that enables learning the target structure. Additionally, this

work could be the foundation for a cooperative network target tracking system where a

multiple agents are tracking multiple targets. Future work can also focus on extending

this result to consider disturbances in the dynamics and developing a bundle adjustment

strategy that is proven to be stable using a Lyapunov-based analysis enabling improved

estimates of the path through the feedback-denied region without sacrificing stability

guarantees. The extended result would be the foundation of a novel simultaneous local-

ization and mapping algorithm that improves the observer and predictor strategy while

operating in feedback-denied environments and ensures stability.
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