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Store-induced limit cycle oscillations (LCO) affect several fighter aircraft and is

expected to remain an issue for next generation fighters. LCO arises from the inter-

action of aerodynamic and structural forces, however the primary contributor to the

phenomenon is still unclear. The practical concerns regarding this phenomenon include

whether or not ordnance can be safely released and the ability of the aircrew to perform

mission-related tasks while in an LCO condition. The focus of this dissertation is the

development of control strategies to suppress LCO in aircraft systems.

The first contribution of this work (Chapter 2) is the development of a controller

consisting of a continuous Robust Integral of the Sign of the Error (RISE) feedback term

with a neural network (NN) feedforward term to suppress LCO behavior in an uncertain

airfoil system. The second contribution of this work (Chapter 3) is the extension of the

development in Chapter 2 to include actuator saturation. Suppression of LCO behavior

is achieved through the implementation of an auxiliary error system that features

hyperbolic functions and a saturated RISE feedback control structure.

Due to the lack of clarity regarding the driving mechanism behind LCO, common

practice in literature and in Chapters 2 and 3 is to replicate the symptoms of LCO by

including nonlinearities in the wing structure, typically a nonlinear torsional stiffness. To

improve the accuracy of the system model a partial differential equation (PDE) model

of a flexible wing is derived (see Appendix F) using Hamilton’s principle. Chapters 4
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and 5 are focused on developing boundary control strategies for regulating the bending

and twisting deformations of the derived model. The contribution of Chapter 4 is the

construction of a backstepping-based boundary control strategy for a linear PDE model

of an aircraft wing. The backstepping-based strategy transforms the original system

to a exponentially stable system. A Lyapunov-based stability analysis is then used to

to show boundedness of the wing bending dynamics. A Lyapunov-based boundary

control strategy for an uncertain nonlinear PDE model of an aircraft wing is developed

in Chapter 5. In this chapter, a proportional feedback term is coupled with an gradient-

based adaptive update law to ensure asymptotic regulation of the flexible states.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Literature Review

Store-induced limit cycle oscillations (LCO) commonly occur and remain an issue

on high performance fighter aircraft [3]. LCO behavior is characterized by antisymmetric

non-divergent periodic motion of the wing and lateral motion of the fuselage. LCO

motion can be self-induced or initiated through the control inputs; however the motion

is self-sustaining and persists until the flight conditions have been sufficiently altered.

LCO behavior related to flutter, except coupling between the unsteady aerodynamic

forces and nonlinearities in the aircraft structure results in a limited amplitude motion [4].

In fact, store-induced LCO responses are present on fighter aircraft configurations

that have been theoretically predicted to be sensitive to flutter. Classical linear flutter

analysis techniques have been shown to accurately predict the oscillation frequency and

modal composition of LCO behavior; however, due to unmodeled nonlinearities in the

system, they fail to adequately predict its onset velocity or amplitude [5].

The major concern with LCO is the pilot’s ability to successfully complete the

mission in a safe and effective manner. Specifically, the LCO-induced lateral motion of

the fuselage may cause the pilot to have difficulty reading cockpit gauges and heads-up

displays and can lead to the termination of the mission or the avoidance of a part of the

flight envelope critical to combat survivability. Additionally, questions have been raised

about the effects of LCO on ordnance [4]. These questions include whether or not the

ordnance can be safely released during LCO, the effects on target acquisition for smart

munitions, and the effects on the accuracy of unguided weapons.

Concerns regarding the effects of LCO on mission performance necessitate the

development of a control strategy that could suppress LCO behavior in an uncertain

nonlinear aircraft system. Several control strategies have been developed in recent

years to suppress LCO behavior in aeroelastic systems that require knowledge of the
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system dynamics. A linear-quadratic regulator (LQR) controller with a Kalman state

estimator was developed in [6] to stabilize a two degree of freedom airfoil section. The

unsteady aerodynamics were modeled using an approximation of Theodorsen’s theory.

The developed controller was shown to be capable of stabilizing the system at velocities

over twice the flutter velocity. However, when the control system was employed after

the onset of LCO behavior, it was only effective near the flutter velocity. A feedback lin-

earization controller was developed in [7] that uses a quasi-steady aerodynamic model

and requires exact cancellation of the nonlinearities in the system. An output feedback

LQR controller was designed in [8] using a linear reduced order model for the unsteady

transonic aerodynamics. Danowsky et al. [9] developed an active feedback control

system based on a linear reduced order model (ROM) of a restrained aeroservoelastic

high-speed fighter aircraft. The effectiveness of the designed controller was verified

using simulations of the full-order aircraft model. A linear input-to-output ROM of an

unrestrained aeroservoelastic high-speed fighter aircraft model was developed in [10]

that included rigid body aircraft dynamics. Linear control techniques were proven to

stabilize the states of linear vehicle dynamics while suppressing aeroelastic behavior.

A control system based on an aerodynamic energy concept was designed for a four

control surface forward swept wing in [11]. The aerodynamic energy concept determines

the stability of an aeroelastic system by examining the work done per oscillation cycle

by the system. The controller is designed to produce positive work per oscillation cycle

which corresponds to the dissipation of energy in the system and thus the system will

remain stable. Prime et al. [12] developed an LQR controller based on a linear param-

eter varying (LPV) model based on freestream velocity of a three degree of freedom

wing section. The LPV controller auto-schedules with freestream velocity and was

shown to suppress LCO behavior over a wide range of velocities. A comparison of

State-Dependent Riccati Equation (SDRE) and sliding mode control (SMC) approaches
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for LCO suppression in a wing section without an external store was performed in [13].

Both control approaches used linearized dynamics and exact model knowledge.

Multiple adaptive controllers have been developed to compensate for uncertainties

only in the torsional stiffness model. An adaptive nonlinear feedback control strategy

was designed in [14] for a wing section with structural nonlinearities and a single trailing

edge control surface. The design assumes linear-in-the-parameters (LP) structural

nonlinearities in the model of the pitch stiffness only, and achieves partial feedback

linearization control. Experimental results using the adaptive controller developed in [14]

and the multivariable linear controller developed in [6] were presented in [15]. The re-

sults showed that the adaptive controller was capable of suppressing the LCO behavior

at velocities up to 23% higher than the flutter velocity. A structured model reference

adaptive control (SMRAC) strategy was developed in [16] to suppress the LCO behavior

of a typical wing section with LP uncertainties in the pitch stiffness model. The SMRAC

strategy was compared with an adaptive feedback linearization method and was shown

to suppress LCO behavior at higher freestream velocities. A control strategy that uses

multiple control surfaces and combines feedback linearization via Lie algebraic methods

and model reference adaptive control was developed in [17] to improve the control of

LCO behavior on a typical wing section with the same uncertainties as in [14]. The pro-

posed controller showed improved transient performance and was capable of stabilizing

the wing section at higher freestream velocities when compared to the control strategy

developed in [16].

Previously developed controllers either use linearized system dynamics and are

restricted to specific flight regimes, require exact knowledge of the system dynamics,

or consider only uncertainties in the dynamics that satisfy the linear-in-the-parameters

assumption. When any of these conditions are not met, the previously developed con-

trollers can no longer guarantee stability. Furthermore, these controllers have neglected

the fact that the commanded control input may exceed the actuation limits of the system,
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which can result in unpredictable closed-loop responses. Chapter 2 proposes a control

strategy to suppress LCO in a two degree of freedom airfoil section in the presence

of bounded disturbances using the full nonlinear system model. Uncertainties in the

system are assumed to be present in the structural and aerodynamic models and are

not required to satisfy the LP condition. The developed control strategy consists of a

neural network (NN) feedforward term to approximate the uncertain system dynamics

while a Robust Integral of the Sign of the Error (RISE) feedback term ensures asymp-

totic tracking in the presence of unknown bounded disturbances. Chapter 3 extends the

result in Chapter 2 to compensate for actuator constraints. While Chapter 3 builds on

the work in Chapter 2, the error system, control development, and stability analysis are

all redesigned to account for actuator limitations. Asymptotic tracking of a desired angle

of attack (AoA) is achieved through the implementation of an auxiliary error system that

features hyperbolic functions and a continuous RISE feedback control structure [18].

Previous research, including the development in Chapters 2 and 3, focus on sup-

pressing LCO behavior in an airfoil section, which is described by a set of ordinary

differential equations (ODE). However, the airfoil section model is a simplified de-

scription of what is happening in reality. To improve the fidelity of the plant model, it is

neccessary to examine the interactions between the structural dynamics and aerody-

namics on a flexible wing. The dynamics of a flexible wing are described by a set of

partial differential equations (PDE), which requires a different control method. Typically,

the control actuator is located at the spatial boundary of the system (e.g., at the wingtip)

and so the control design must use the boundary conditions to exert control over the

states of the system across the entire spatial domain. Chapter 4 examines the LCO

problem for a flexible wing described by a set of PDEs and associated boundary condi-

tions. Hamilton’s principle has been used previously to model the flexible dynamics of
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physical systems, including helicopter rotor blades [19–21] and flexible robot manipula-

tors [22–24], and can be applied to obtain the PDE system describing the dynamics of a

flexible wing undergoing bending and twisting deformations.

Two control strategies have been developed for systems described by a set of

PDEs. The first strategy uses Galerkin or Rayleigh-Ritz methods [25–27], or operator

theoretic tools [28–31] to approximate the PDE system by a finite number of ODEs,

then a controller is designed using the reduced-order model approximation. The main

concern of using a reduced-order model in the control design is the potential for spillover

instabilities [32, 33], in which the control strategy excites the higher-order modes that

were neglected in the reduced-order model. In special cases, sensor and actuator

placement can guarantee the neglected modes are not affected [34]. Specifically, when

the zeros of the higher-order modes are known, placing actuators at these locations will

mitigate spillover instabilities; however this can conflict with the desire to place actuators

away from the zeros of the controlled modes.

The second strategy retains the full PDE system for the controller design and

only requires model reduction techniques for implementation. PDE-based control

techniques [35, 36] are often developed with the desire to implement boundary control

in which the control actuation is applied through the boundary conditions. The PDE

backstepping method described in [35] compensates for destabilizing terms that

act across the system domain by constructing a state transformation, involving an

invertible Volterra integral, that maps the original PDE system to an exponentially stable

target PDE system. Since the transformation is invertible, stability of the target system

translates directly to stability of the closed-loop system that consists of the original

system plus boundary feedback control. While the PDE backstepping method yields

elegant solutions to boundary control of PDE systems, it is limited to linear PDEs and

nonlinear PDEs in which the nonlinearities are not destabilizing. The boundary control

methods described in [36, 37] use Lyapunov-based design and analysis arguments
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to control PDE systems. The crux of this method is the assumption that for a physical

system, if the energy of the system is bounded, then the states that compose the

energy of the system are also bounded. Based on this assumption, the objective of

the Lyapunov-based stability analysis is to show that the energy in the closed-loop

PDE system remains bounded and decays to zero asymptotically. This method is

applicable to both linear and nonlinear PDE systems; however, more complex systems

typically require more complex controllers and candidate Lyapunov functions. A notable

difference, from an implementation perspective, between the backstepping method

in [35] and the Lyapunov-based energy approach in [36, 37] is the signals that are

required to be measurable. The backstepping approach typically requires knowledge of

the distributed state throughout the spacial domain while the Lyapunov-based energy

method only requires measurements at the boundary, however these measurement are

typically higher-order spatial derivatives. A PDE-based boundary control approach has

been previously used to stabilize fluid flow through a channel [38], maneuver flexible

robotic arms [39], control the bending in an Euler beam [40–42], regulate a flexible rotor

system [37, 43], and track the net aerodynamic force, or moment, of a flapping wing

aircraft [44].

Several PDE and ODE controllers have been previously developed to control

the bending in a flexible beam [30, 31, 40, 42]; however this body of work is primarily

concerned with structural beams and robotic arms which don’t encounter the closed-

loop interactions between the flexible dynamics and aerodynamics intrinsic to flexible

aircraft wings. Recently, [44] used the PDE-based backstepping control technique

from [35] to track the net aerodynamic forces on a flapping wing micro air vehicle using

either root-based actuation or tip-based actuation. The control objective in [44] is not

concerned with the performance of the distributed state variables, instead the boundary

control is designed to track a spatial integral of the distributed state variables. The focus

of Chapter 4 is the development of a PDE-based controller to suppress LCO behavior
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in a flexible aircraft wing described by a linear PDE via regulation of the distributed

state variables. The backstepping technique in [35] is used to ensure the wing twist

decays exponentially, and a Lyapunov-based stability analysis of the wing bending

dynamics is used to prove that the oscillations in the wing bending dynamics decay

asymptotically and the wing bending state reaches a steady-state profile. Chapter 5

uses Lyapunov-based boundary control design and analysis methods motivated by the

approaches in [36, 37] to regulate the distributed states of a flexible wing described by

a set of uncertain nonlinear PDEs. The considered PDE model has uncertainties that

are linear-in-the-parameters and are compensated for using a gradient-based adaptive

update law.

1.2 Contributions

The contributions of Chapters 2-5 are as follows:

1.2.1 Chapter 2: Lyapunov-Based Tracking of Store-Induced Limit Cycle Oscilla-
tions in an Aeroelastic System

The main contribution of Chapter 2 is the development of a RISE-based control

strategy for the suppression of LCO behavior in an uncertain nonlinear aeroelastic

system. A NN feedforward term is used to compensate for uncertainties in the struc-

tural dynamics and aerodynamics while a continuous RISE feedback term ensures

asymptotic tracking of a desired AoA trajectory. Numerical simulations illustrate the per-

formance of the developed controller as well as providing a comparison with a previously

developed controller. Furthermore, a Monte-Carlo simulation is provided to demonstrate

robustness to variations in the plant dynamics and measurement noise.

1.2.2 Chapter 3: Saturated RISE Tracking Control of Store-Induced Limit Cycle
Oscillations

The contribution of Chapter 3 is to extend the result in Chapter 2 to compensate

for actuator limits. To account for actuator constraints, the error system and control

development are augmented with smooth, bounded hyperbolic functions. A numerical

simulation demonstrated the unpredictable closed-loop response of the RISE-based
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controller from Chapter 2 when an ad hoc saturation is applied to the commanded

control effort. Furthermore, the simulations show the developed saturated controller

achieves asymptotic tracking of the desired AoA without breaching actuator constraints.

1.2.3 Chapter 4: Boundary Control of Limit Cycle Oscillations in a Flexible
Aircraft Wing:

The contribution of Chapter 4 is the development of a boundary control strategy

for the suppression of LCO in a flexible aircraft wing described by a set of linear PDEs.

The control strategy uses a PDE-based backstepping technique to transform the original

system to an exponentially stable system in which the destabilizing terms in the original

system are shifted to the boundary conditions. A boundary control is then developed

to compensate for the destabilizing terms. The backstepping approach ensures the

wing twist decays exponentially while a Lyapunov-based stability analysis proves

the oscillations in the wing bending are suppressed and the wing bending achieves

a steady-state profile. Numerical simulations demonstrate the performance of the

proposed control strategy.

1.2.4 Chapter 5: Adaptive Boundary Control of Limit Cycle Oscillations in a
Flexible Aircraft Wing

The contribution of Chapter 5 is the design of a boundary control strategy to

suppress LCO motion in an uncertain nonlinear flexible aircraft wing model. The

control strategy uses a gradient-based adaptive update law to compensate for the LP

uncertainties and a Lyapunov-based analysis is used to show that the energy in the

system remains bounded and asymptotically decays to zero. Arguments that relate the

energy in the system to the distributed states are used to conclude that the distributed

states are regulated asymptotically.
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CHAPTER 2
LYAPUNOV-BASED TRACKING OF STORE-INDUCED LIMIT CYCLE OSCILLATIONS

IN AN AEROELASTIC SYSTEM

The focus of this chapter is to develop a controller to suppress LCO behavior in a

two degree of freedom airfoil section with an attached store, one control surface, and an

additive unknown nonlinear disturbance that does not satisfy the LP assumption. The

unknown disturbance represents unsteady nonlinear aerodynamic effects. A NN is used

as a feedforward control term to compensate for the unknown nonlinear disturbance and

a RISE feedback term [45–47] ensures asymptotic tracking of a desired state trajectory.

2.1 Aeroelastic System Model

The subsequent development and stability analysis is based on an aeroelastic

model (see Figure (2-1)), similar to [1], given as

Mq̈ + Cq̇ +Kq = F (2–1)

where q ,

[
h α

]T
∈ R2 is a composite vector of the vertical position and AoA of the

wing-store section, respectively. It is assumed that ‖q‖ ≤ κ1, ‖q̇‖ ≤ κ2, and ‖q̈‖ ≤ κ3

where κ1, κ2, κ3 ∈ R are known positive constants, which is justified by the bounded

oscillatory nature of LCO behavior. In (2–1), M ∈ R2×2, C ∈ R2×2, K ∈ R2×2 and F ∈ R2

are defined as

M ,

 m1 m2

m2 m4

 , C ,

 ch1 ch2α̇

0 cα

 (2–2)

K ,

 kh 0

0 kα

 , F ,

 −L
PM

 . (2–3)

In (2–2), the terms m1,m2,m4 ∈ R are defined as

m1 , ms +mw (2–4)

m2 (q) , (rx − a)mwb cos (α) + (sx − a)msb cos (α)
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Figure 2-1. Diagram depicting the two degree of freedom airfoil section with attached
store based on that in [1].

− (rh − ah)mwb sin (α)− (sh − ah)msb sin (α) (2–5)

m4 ,
[
(rx − a)2 + (rh − ah)2] b2mw

+
[
(sx − a)2 + (sh − ah)2] b2ms + Iw + Is (2–6)

where mw, ms, b, rx, rh, a, ah, sx, sh, Iw, and Is ∈ R are unknown constants. Specifi-

cally, mw is the mass of the wing section, ms is the mass of the attached store, b is the

semichord length of the wing, rx, rh are the distances from the wing center of mass

to the wing midchord and the wing chordline in percentage of the wing semichord, re-

spectively, a, ah are the distances from the elastic axis of the wing to the wing midchord

and the wing chordline in percentage of the wing semichord, respectively, sx, sh are

the distances from the store center of mass to the wing midchord and wing chordline

in percentage of the wing semichord, respectively, and Iw, Is are the wing and store

moments of inertia, respectively. In Eqn. (2–2), ch1 , cα ∈ R are the unknown constant

damping coefficients of the plunge and pitch motion, respectively, and ch2 ∈ R is defined
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as

ch2 (q) , − (rx − a)mwb cos (α)− (sx − a)msb cos (α)

− (sh − ah)msb sin (α)− (rh − ah)mwb sin (α) .

In (2–3), kh ∈ R is the unknown plunge stiffness coefficient, and kα (q) ∈ R is the

unknown nonlinear pitch stiffness coefficient modeled as

kα (q) = kα1 + kα2α + kα3α
2 + kα4α

3 + kα5α
4

where kα1, kα2 , kα3, kα4, and kα5 ∈ R are constant unknown stiffness parameters. Also

in (2–3), L and PM ∈ R are the lift force and pitch moment acting on the wing-store

section, respectively, and are modeled as

L = ρU2bSClααef + Clδδ (2–7)

PM = ρU2b2SClα

(
1

2
+ a

)
αef + Cmδδ (2–8)

where ρ, U , S, Clα, Clδ , and Cmδ ∈ R are unknown constant coefficients. Specifically, ρ

is the atmospheric density, U is the freestream velocity, S is the wing span, Clα is the lift

coefficient of the wing, and Clδ , Cmδ are the control effectiveness coefficients for lift and

pitching moment, respectively. In Eqns. (2–7) and (2–8), δ (t) ∈ R is the control surface

deflection angle, and αef ∈ R is defined as αef , α + ḣ
U

+
b( 1

2
−a)α̇
U

.

The dynamics in (2–1) can be rewritten as1

q̈ = M−1
[
Cδδ − C̃q̇ − K̃q

]
+ d (2–9)

where the auxiliary terms Cδ ,

[
−Clδ Cmδ

]T
∈ R2, d ,

[
dh dα

]T
∈ R2 denotes

an unknown, nonlinear disturbance that represents unmodeled, unsteady aerodynamic

1 See Appendix A for details on the invertibility of M (α).
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effects. Moreover, in (2–9), C̃ ∈ R2×2 and K̃ ∈ R2×2 are defined as

C̃ ,

 ch1 + CL ch2α̇ + CLb
(

1
2
− a
)

−CLb
(

1
2

+ a
)

cα − CLb2
(

1
4
− a2

)
 =

 C̃11 C̃12

C̃21 C̃22


K̃ ,

 kh CLU

0 kα − CLUb
(

1
2

+ a
)
 =

 K̃11 K̃12

0 K̃22

 ,
and CL , ρUbSClα ∈ R is an unknown constant. The subsequent control development is

based on the assumption that the nonlinear disturbances are bounded as

|dh| ≤ ξ1,
∣∣∣ḋh∣∣∣ ≤ ξ2, |dα| ≤ ξ3,

∣∣∣ḋα∣∣∣ ≤ ξ4, (2–10)

where ξj ∈ R, (j = 1, ..., 4) are positive, known constants.

2.2 Control Objective

The control objective is to ensure the airfoil section AoA, α, tracks a desired

trajectory defined as αd ∈ R. The formulation of an AoA tracking problem enables the

AoA of the wing to be optimized for a given metric and flight condition. For the extension

to the three dimensional case, the control objective provides the ability to alter the

wing twist for a given flight condition to optimize a given performance metric, such as

aerodynamic efficiency. The subsequent control development and analysis is based on

the assumption that αd, α̇d, α̈d,
...
αd ∈ L∞. To quantify the control objective and facilitate

the control design, a tracking error, e1 ∈ R, and two auxiliary tracking errors, e2, r ∈ R,

are defined as

e1 , α− αd (2–11)

e2 , ė1 + γ1e1 (2–12)

r , ė2 + γ2e2 (2–13)

where γ1, γ2 ∈ R are positive constants. The subsequent development is based on the

assumption that q and q̇ are measurable. Hence, the auxiliary tracking error, r, is not
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measurable since it depends on q̈. Substituting the system dynamics from (2–9) into the

error dynamics in (2–13) yields the following expression

r = f + gδ + dα (2–14)

where the auxiliary terms f ∈ R and g ∈ R are defined as

f = − m2

det (M)

(
−C̃11ḣ− C̃12α̇− K̃11h− K̃12α

)
+

m1

det (M)

(
−C̃21ḣ− C̃22α̇− K̃22α

)
− α̈d + γ1ė1 + γ2e2 (2–15)

g =
m2

det (M)
Clδ +

m1

det (M)
Cmδ (2–16)

and g is invertible2 provided that sufficient conditions on the wing geometry and store

location are met.

2.3 Control Development

After some algebraic manipulation, the open-loop error system for r (t) can be

obtained as
1

g
r = χ+

1

gd
fd + δ + dα (2–17)

where gd ∈ R and fd ∈ R are defined as

fd = − m2 (qd)

det (M (qd))

(
−C̃11ḣd − C̃12 (qd, q̇d) α̇d − K̃11hd − K̃12αd

)
+

m1

det (M (qd))

(
−C̃21ḣd − C̃22α̇d − K̃22 (qd)αd

)
− α̈d, (2–18)

gd =
m2 (qd)

det (M (qd))
Clδ +

m1

det (M (qd))
Cmδ , (2–19)

where qd ,
[
hd αd

]T
∈ R2, and hd ∈ R is a desired trajectory for the vertical position

of the wing. The subsequent development is based on the assumption that the desired

trajectories, hd and ḣd, are bounded. In (2–17), the auxiliary function χ ∈ R is defined as

2 See Appendix B for details.
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χ = 1
g
f − 1

gd
fd. Based on the universal function approximation property, a multi-layer NN

is used to approximate the uncertain dynamics fd
gd

(
hd, ḣd, αd, α̇d

)
as [45]

fd
gd

= W Tσ
(
V Txd

)
+ ε (xd) (2–20)

where the NN input xd ∈ R7 is defined as xd (t) ,

[
1 hd ḣd ḧd αd α̇d α̈d

]T
. In

(2–20), V ∈ R7×n2 is a constant ideal weight matrix for the first-to-second layer of the

NN, W ∈ Rn2+1 is a constant ideal weight matrix for the second-to-third layer of the

NN, n2 is the number of neurons in the hidden layer, σ ∈ Rn2+1 denotes the activation

function, and ε ∈ R is the function reconstruction error. Since xd is defined in terms

of desired bounded terms, the inputs to the NN remain on a compact set. Since the

desired trajectories are assumed to be bounded, then [45] |ε (xd)| ≤ ε1, |ε̇ (xd, ẋd)| ≤

ε2, |ε̈ (xd, ẋd, ẍd)| ≤ ε3, where ε1, ε2, ε3 ∈ R are known positive constants.

Based on the open-loop error system in (2–17) and the subsequent stability

analysis, the control surface deflection angle is designed as

δ = − f̂d
gd
− µ (2–21)

where f̂d
gd
∈ R is defined as

f̂d
gd

, Ŵ Tσ
(
V̂ Txd

)
(2–22)

and µ ∈ R denotes the subsequently defined RISE feedback term. In (2–22), Ŵ ∈ Rn2+1

and V̂ ∈ R7×n2 denote estimates for the ideal weight matrices whose update laws are

defined as

˙̂
W , proj

(
Γ1σ̂

′
V̂ T ẋde2

)
(2–23)

˙̂
V , proj

(
Γ2ẋd

(
σ̂
′T Ŵe2

)T)
(2–24)

where Γ1 ∈ R(n2+1)×(n2+1), Γ2 ∈ R7×7 are constant, positive definite control matrices and

σ̂
′
,

dσ(V̂ T xd)
d(V̂ T xd)

. The smooth projection algorithm in (2–23) and (2–24) is used to ensure
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that the ideal NN weight estimates, Ŵ and V̂ , remain bounded [48] . The RISE feedback

term in (2–21) is defined as

µ , (ks1 + ks2) e2 − (ks1 + ks2) e2 (0) + ν (2–25)

where ν ∈ R is the Filippov solution to the following differential equation

ν̇ = (ks1 + ks2) γ2e2 + β1 sgn (e2) , ν (0) = ν0 (2–26)

where ks1 , ks2 , β1 ∈ R are positive, constant control gains and ν0 ∈ R is a known initial

condition. The existence of solutions for ν̇ ∈ K [w1] can be shown using Filippov’s

theory of differential inclusions [49–52] where w1 : R → R is defined as the right-hand

side of (2–26) and K [w1] ,
⋂
τ>0

⋂
µSm=0

cow1 (e1, B − Sm), where
⋂

µSm=0

represents the

intersection of all sets Sm of Lebesgue measure zero, co represents convex closure, and

B = {ξ ∈ R| |e2 − ξ| < τ} [53,54].

The closed-loop error system is obtained by substituting (2–21) into (2–17) as

1

g
r = χ+

fd
gd
− f̂d
gd
− µ+ dα. (2–27)

To facilitate the subsequent stability analysis, the time derivative of (2–27) is determined

as

1

g
ṙ = − d

dt

(
1

g

)
r + χ̇+

d

dt

(
fd
gd

)
− d

dt

(
f̂d
gd

)
− µ̇+ ḋα. (2–28)

Using (2–20) and (2–22), the closed-loop error system in (2–28) can be rewritten as

1

g
ṙ = − d

dt

(
1

g

)
r + χ̇+W Tσ

′ (
V Txd

)
V T ẋd − Ŵ Tσ

′
(
V̂ Txd

)
˙̂
V Txd

− ˙̂
W Tσ

(
V̂ Txd

)
− Ŵ Tσ

′
(
V̂ Txd

)
V̂ T ẋd + ε̇− µ̇+ ḋα. (2–29)

After some algebraic manipulation, (2–29) can be rewritten as

1

g
ṙ = − d

dt

(
1

g

)
r + Ŵ T σ̂

′
Ṽ T ẋd − ˙̂

W T σ̂ + ε̇+ χ̇− µ̇+ ḋα + W̃ T σ̂
′
V̂ T ẋd
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−Ŵ T σ̂
′ ˙̂
V Txd −W T σ̂

′
V̂ T ẋd +W Tσ

′
V T ẋd − Ŵ T σ̂

′
Ṽ T ẋd (2–30)

where σ′ = σ
′ (
V Txd

)
∈ Rn2+1×n2, σ̂ = σ̂

(
V̂ Txd

)
∈ Rn2+1 and the parameter estimation

error matrices W̃ ∈ Rn2+1 and Ṽ ∈ R7×n2 are defined as W̃ = W − Ŵ and Ṽ = V − V̂ ,

respectively. Using the NN weight update laws in (2–23) and (2–24) and the time

derivative of the RISE feedback term in (2–25), the closed-loop error system in (2–30)

can be expressed as

1

g
ṙ = Ñ +Nd +NB − e2 − (ks1 + ks2) r − β1 sgn (e2)− 1

2

d

dt

(
1

g

)
r (2–31)

where Ñ ∈ R, Nd ∈ R, and NB ∈ R are defined as

Ñ , −1

2

d

dt

(
1

g

)
r + χ̇1 + e2 − proj

(
Γ1σ̂

′
V̂ T ẋde2

)T
σ̂

−Ŵ T σ̂
′
proj

(
Γ2ẋd

(
σ̂
′T Ŵe2

)T)T
xd (2–32)

Nd , W Tσ
′
V T ẋd + ε̇+ χ̇2 + ḋα (2–33)

NB , NB1 +NB2 . (2–34)

In (2–34), the terms NB1 ∈ R and NB2 ∈ R are defined as

NB1 , −W T σ̂
′
V̂ T ẋd − Ŵ T σ̂

′
Ṽ T ẋd (2–35)

NB2 , Ŵ T σ̂
′
Ṽ T ẋd + W̃ T σ̂

′
V̂ T ẋd. (2–36)

The terms in (2–31) are segregated based on their bounds. All the terms in (2–33)

are dependent on the desired trajectories, therefore Nd and its derivative can be

upper bounded by a constant, which will be rejected by the RISE feedback term in

the controller. The terms in (2–34) are segregated into terms that will be rejected by

the RISE feedback, NB1, and terms that will be rejected by a combination of the RISE

feedback and NN weight estimate adaptive update laws, NB2. In (2–32) and (2–34), χ̇

has been segregated into χ̇1 and χ̇2 where χ̇1 denotes the components of χ̇ that are

state dependent or can be upper bounded by the norm of the states, and χ̇2 denotes the
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components that can be upper bounded by a constant3 . The terms in Ñ can be upper

bounded as4 ∣∣∣Ñ ∣∣∣ ≤ η ‖z‖ (2–37)

where z ,

[
e1 e2 r

]T
∈ R3, and η ∈ R is a positive bounding constant. Similar

to [45], the following inequalities can be developed

|Nd| ≤ ζ1,
∣∣∣Ṅd

∣∣∣ ≤ ζ2, |NB| ≤ ζ3,
∣∣∣ṄB

∣∣∣ ≤ ζ4 + ζ5 |e2| (2–38)

where ζi ∈ R, (i = 1, 2, . . . , 5) are positive bounding constants.

2.4 Stability Analysis

To facilitate the subsequent Lyapunov-based stability analysis, let P ∈ R be defined

as the Filippov solution to the following differential equation

Ṗ = −r (NB1 +Nd − β1 sgn (e2))− ė2NB2 + β2e
2
2, (2–39)

P (0) = β1 |e2 (0)| − e2 (0) (Nd (0) +NB (0)) .

The existence of solutions for P (t) can be established in a similar manner as in (2–26)

by using Filippov’s theory of differential inclusions for Ṗ (t) ∈ K [w2], where w2 ∈ R is

defined as the right-hand side of (2–39). Provided that β1 and β2 are selected based on

the sufficient conditions in (2–40), P (t) ≥ 0 [45]. Furthermore, let Q ∈ R be defined as

Q ,
γ2

2
W̃ TΓ−1

1 W̃ +
γ2

2
tr
(
Ṽ TΓ−1

2 Ṽ
)
,

where Q ≥ 0 since Γ1 and Γ2 are constant positive definite matrices, and γ2 ∈ R+.

3 See Appendix C for details

4 See Appendix D for details.
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Theorem 2.1. The controller given in (2–21)-(2–26) ensures that all closed-loop signals

are bounded and the tracking error is regulated in the sense that e1 (t) → 0 as t → ∞

provided that the control gains are selected as

β1 > ζ1 + ζ2 +
1

γ2

ζ3 +
1

γ2

ζ4, β2 > ζ5, γ1 >
1

2
, γ2 > β2 + 1. (2–40)

Proof. Let D ⊂ R5 be a domain containing y = 0, where y ∈ R5 and is defined as

y ,

[
e1 e2 r

√
P
√
Q

]T
.

Let VL (y) : D → R be a positive definite, continuously differentiable function defined as

VL , e2
1 +

1

2
e2

2 +
1

2

1

g
r2 + P +Q. (2–41)

Equation (2–41) satisfies U1 ≤ VL ≤ U2 provided that β1 and β2 are selected based on

the sufficient conditions in (2–40). The continuous positive definite functions U1, U2 ∈ R

are defined as U1 , λ1 ‖y‖2, U2 , λ2 ‖y‖2 where λ1, λ2 ∈ R are defined as λ1 ,

1
2

min {1, gl}, λ2 , min
{

1
2
gm, 1

}
and gl ≤ |g| ≤ gm.

The time derivative of (2–41) exists almost everywhere (a.e), and V̇L ∈ ˙̃VL where
˙̃VL =

⋂
Ξ∈∂VL

ΞTK

[
ė1 ė2 ṙ P−

1
2 Ṗ

2
Q−

1
2 Q̇

2
1

]T
, where ∂VL is the generalized gradient

of VL. Since VL is a continuously differentiable function, ˙̃VL can be expressed as

˙̃VL = ∇V T
L K

[
ė1 ė2 ṙ P−

1
2 Ṗ

2
Q−

1
2 Q̇

2
1

]T
, (2–42)

where ∇VL =

[
2e1 e2

1
g
r 2P

1
2 2Q

1
2

1
2
d
dt

(
1
g

)
r2

]
. Using the calculus for K

from [54], (2–12), (2–13), (2–31), and (2–39), (2–42) can be expressed as

˙̃VL ⊂ 2e1 (e2 − γ1e1) + e2 (r − γ2e2)

+r
(
Ñ +Nd +NB − e2 − (ks1 + ks2) r − β1K [sgn (e2)]

)
−r (NB1 +Nd − β1K [sgn (e2)])− ė2NB2

+β2e
2
2 − γ2W̃

TΓ−1
1

˙̂
W − γ2tr

(
Ṽ TΓ−1

2
˙̂
V
)
, (2–43)
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where K [sgn (e2)] = sgn (e2) such that sgn (e2) = 1 if e2 > 0, [−1, 1] if e2 = 0, and −1 if

e2 < 0. The set of times Λ , {t ∈ [0,∞) : rβ1K [sgn (e2)]− rβ1K [sgn (e2)] 6= {0}} ⊂ [0,∞)

is equal to the set of times {t : e2 (t) = 0 ∧ r (t) 6= 0}. From Eqn. (2–13), this set can also

be expressed as {t : e2 (t) = 0 ∧ ė2 (t) 6= 0}. Since e2 is continuously differentiable, it can

be shown using [55], Lemma 2 that the set of time instances {t : e2 (t) = 0 ∧ ė2 (t) 6= 0} is

isolated and measure zero; hence Λ is measure zero. Since Λ is measure zero, (2–43)

can be reduced to the following scalar inequality

V̇L
a.e.

≤ 2e1e2 − 2γ1e
2
1 − γ2e

2
2 + β2e

2
2 + rÑ − ks1r2 − ks2r2

+γ2e2

[
Ŵ T σ̂

′
Ṽ T ẋd + W̃ T σ̂

′
V̂ T ẋd

]
− γ2W̃

TΓ−1
1

˙̂
W − γ2tr

(
Ṽ TΓ−1

2
˙̂
V
)
, (2–44)

By using Young’s inequality and the NN weight update laws in (2–23) and (2–24) along

with the upper bound on Ñ given in (2–37), the expression in (2–44) can be rewritten as

V̇L
a.e.

≤ − (2γ1 − 1) e2
1 − (γ2 − β2 − 1) e2

2 − ks1r2 +
η2

4ks2
‖z‖2 . (2–45)

The expression in (2–45) can be further simplified as

V̇L
a.e.

≤ −
(
λ3 −

η2

4ks2

)
‖z‖2 , (2–46)

where λ3 = min {2γ1 − 1, γ2 − β2 − 1, ks1} is a positive constant provided that γ1, γ2 are

selected according to (2–40). The expression in (2–46) can be upper bounded as

V̇L
a.e.

≤ −c ‖z‖2 , (2–47)

where c ∈ R is a positive constant provided that λ3 >
η

4ks2
. The expressions in (2–41)

and (2–47) can be used to show that VL ∈ L∞, and hence, e1, e2, r, P,Q ∈ L∞. Given

that e1, e2, r ∈ L∞, (2–12) and (2–13) indicate that ė1, ė2 ∈ L∞. Since e1, e2, r ∈ L∞ and

αd, α̇d, α̈d ∈ L∞ by assumption, (2–11)-(2–13) can be used to show that α, α̇, α̈ ∈ L∞. If

α, α̇ ∈ L∞, (2–2) can be used to show that M,C,K ∈ L∞. Given that M ∈ L∞, (2–16)

indicates that g ∈ L∞. Since α (t) , α̇ (t) ∈ L∞ in D and ḣ (t) ∈ L∞ then, (2–2), (2–7),
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and (2–8) can be used to show that F ∈ L∞; hence, with the bounds in (2–10) it can be

concluded from (2–1) that the control input δ ∈ L∞. Given that Ñ ,Nd, NB, r, e2, g ∈ L∞,

it can be concluded from (2–31) that ṙ ∈ L∞. Since ė1, ė2, ṙ ∈ L∞, the definition of z (t)

can be used to show that z is uniformly continuous. Corollary 1 from [56] can be used to

show that ‖z‖ → 0, and therefore, e1 → 0 as t→∞.

2.5 Simulation Results

A numerical simulation is presented to illustrate the performance of the developed

controller and provide a comparison with the controller in [15]. The controller from [15]

was selected for comparison because it is one of the few controllers that consider

structural uncertainties. However, this is not an equal comparison, since the controller

in [15] considers uncertainties in the pitch stiffness only, while the control strategy

developed in this paper considers uncertainties in all parameters in the structural and

aerodynamic models. For this reason, the structural and aerodynamic parameters that

are assumed to be known in [15] are taken to be off by 10% from the actual values. The

controller in [15] is given by

δ =
1

g4U2

(
−FL (q, q̇)− Θ̂TR (q)− k̄1α− k̄2α̇

)
,

where g4 ∈ R is a control effectiveness parameter, U ∈ R denotes the freestream

velocity, FL (q, q̇) ∈ R is a feedback linearization term that requires exact model

knowledge of certain parameters in the structural model and all parameters in the

aerodynamic model, Θ̂ ∈ Ri denotes a vector of the estimates of the uncertain

parameters in the pitch stiffness model, R (q) ∈ Ri represents a known regression

matrix, and k̄1, k̄2 ∈ R are positive control gains. The control gains were selected as

k̄1 = k̄2 = 60 based on improving the resulting transient performance of the controller

while keeping the control effort within tolerable limits (±10 deg). The estimate, Θ̂, is
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updated via a gradient update law given by

˙̂
Θ = α̇RT (q) .

The model parameters for the simulation are shown in Table 2-1 and (2–48)

Table 2-1. Aeroelastic Model Parameters
Parameter Parameter
mw 4.0 kg Is 0.0050 kg·m2

ms 4.0 kg ch1 2.743x101 kg/s
rx 0.0 cα 0.036 kg·m2/s
rh 0.0 kh 2.200x103 N/m
a -0.6 ρ 1.225 kg/m3

ah 0.0 U 1.20x101 m/s
b 0.14 m S 1.0 m
sx 0.098 Clα 6.8 1/rad
sh 1.4 Clδ 9.3x101 N/rad
Iw 0.043 kg·m2 Cmδ 2.3 N·m/rad

kα (q) = 0.5− 11.05α + 657.75α2 − 4290α3 + 8644.85α4. (2–48)

The control objective is to regulate the AOA to zero degrees from the initial condition

h (0) = 0 m, ḣ (0) = 0 m/s, α (0) = 3.0 deg, and α̇ (0) = 0 deg/s. From Figure (2-2) it

is evident that the system, under the above conditions, experiences LCO behavior in

the absence of a control strategy and exogenous disturbances. The developed control

strategy was applied to the system in the absence of exogenous disturbances with the

following gains: γ1 = 2, γ2 = 3, ks1 + ks2 = 3, β1 = 0.1, n2 = 25, Γ1 = 10I26, and Γ2 = 10I7,

where Im denotes an m×m identity matrix.

Figures (2-3) and (2-4) show the states of the wing section and the control surface

deflection, respectively. The figures indicate that the developed controller suppresses

the LCO behavior with control surface deflections that remain within reasonable limits.

Furthermore, the developed controller requires a smaller control effort than the controller

in [15] and has better transient performance. The two controllers were also applied to

the system in the presence of an additive exogenous disturbance selected as N (t) =
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Figure 2-2. Aeroelastic system free response without disturbances

[
0.25 cos (t) 0.25 sin (t)

]T
. Figures (2-5) and (2-6) show the system states and control

effort in the presence of the additive disturbance, respectively. The developed controller

is capable of regulating the AOA of the wing section in the presence of exogenous

disturbances with control surface deflections that remain within tolerable limits. However,

the controller in [15] is not capable of eliminating the effects of the disturbance in the

wing section vertical position. Due to the coupled nature of the aeroelastic system

dynamics and the availability of a single control surface, any disturbance in the AOA will

propagate into the vertical position as an unmatched disturbance. One solution to this

issue is to include an additional control surface at the leading edge that could be used to

suppress unwanted motion in the vertical position.

A 1500 sample Monte Carlo simulation was executed to demonstrate the robust-

ness of the developed controller to plant uncertainties and sensor noise. The uncertain

model parameters were uniformly distributed over a range that extended from 80% to

120% of the nominal values found in Table 2-1 and (2–48). A zero mean noise signal

uniformly distributed over an interval was added to each measurement. For the vertical
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Figure 2-3. Comparison of the controlled aeroelastic system response
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Figure 2-4. Control surface deflections, δ (t), for the developed controller and the
controller from [15]
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Figure 2-5. Aeroelastic system states in the presence of an additive disturbance
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Figure 2-6. Control surface deflection, δ (t), for the developed controller and the
controller from [15]
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Table 2-2. Monte Carlo Simulation Results
Mean Standard Deviation

Maximum Error 2.9 deg 0.0038 deg
RMS Error 0.97 deg 0.073 deg
Maximum Control Effort 7.5 deg 2.6 deg

displacement and velocity, the interval was ±2.5 × 10−3 m and ±2.5 × 10−3 m/s, respec-

tively. For the AOA and AOA rate, the interval was ±4.5 × 10−3 rad and ±1 × 10−2 rad/s.

For each sample, the maximum of the absolute value of the tracking error and control

surface deflection, and the RMS value of the tracking error were calculated. The results,

presented in Table 2-2, indicate that the maximum error and RMS error of the system do

not vary significantly over the range of the uncertainties considered.

Figures (2-7) - (2-9) show the average trajectory and 3σ confidence bounds for

the system states and control effort for the 1500 Monte Carlo samples. Figure (2-7)

shows that the AOA for all samples converges to zero in approximately 3.5 seconds and

the tight confidence bounds indicate that the system performance is not significantly

impacted by variations in the uncertain parameters. It is evident from Figure (2-8)

that the uncontrolled vertical displacement damps out for all samples. Figure (2-9)

shows that the control surface deflection is more sensitive to changes in the system

parameters. The 3σ confidence bound for the maximum control effort is approximately

three times that of the numerical result shown in Figure (2-6). This sensitivity indicates

that in a more severe LCO, variations in the uncertain parameters could lead to a control

effort greater than the actuator limits.

2.6 Summary

A robust adaptive control strategy is developed to suppress store-induced LCO

behavior of an aeroelastic system. The developed controller uses a NN feedforward

term to account for structural and aerodynamic uncertainties and a RISE feedback

term to guarantee asymptotic tracking of a desired AOA trajectory. A Lyapunov-based

stability analysis is used to prove an asymptotic tracking result. Numerical simulations
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Figure 2-7. Monte Carlo AOA trajectories
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Figure 2-8. Monte Carlo vertical position trajectories

38



0 2 4 6 8 10
−10

−5

0

5

10

15

20

Time, s

C
on

tr
ol

 S
ur

fa
ce

 D
ef

le
ct

io
n,

 d
eg

 

 
Average
± 3σ Interval

Figure 2-9. Monte Carlo control effort

illustrate LCO suppression and AOA tracking performance over a range of uncertainty.

A potential drawback to the developed control strategy is that the control law does not

account for actuator limits. As the severity of the LCO behavior increases, the developed

controller can demand a large control surface deflection. Additionally, the Monte Carlo

simulation results indicated that the maximum control effort is sensitive to variations in

the parameter uncertainties, which could lead to unexpected actuator saturation.
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CHAPTER 3
SATURATED RISE TRACKING CONTROL OF STORE-INDUCED LIMIT CYCLE

OSCILLATIONS

The focus of this chapter is to develop a saturated controller to suppress LCO

behavior in a two degree of freedom airfoil section in the presence of structural and

aerodynamic uncertainties without breaching actuator limits. A smooth saturation

function is included in the closed-loop error system design to ensure the commanded

control effort remains within actuator limits and a continuous saturated RISE feedback

control structure ensures asymptotic tracking of the AoA [18].

3.1 Control Objective

The subsequent control development and stability analysis is based on the aeroe-

lastic model described in (2–9) (see Figure (2-1)). The control objective is to ensure

the airfoil section AoA, α, tracks a desired trajectory defined as αd ∈ R using a limited

amplitude, continuous controller. As in Chapter 2, it is assumed that αd, α̇d, α̈d,
...
αd ∈ L∞.

The control objective is quantified by defining a tracking error e1 ∈ R as

e1 , α− αd. (3–1)

To facilitate the control design, the auxiliary tracking errors e2 ∈ R and r ∈ R are defined

as [18]

e2 , ė1 + γ1 tanh (e1) + tanh (ef ) , (3–2)

r , ė2 + γ2 tanh (e2) + γ3e2, (3–3)

where γ1, γ2, γ3 ∈ R are positive constant control gains, and the auxiliary signal ef ∈ R is

defined as the solution to the following differential equation

ėf , cosh2 (ef ) (−γ4e2 + tanh (e1)− γ5 tanh (ef )) , ef (t0) = ef0 , (3–4)
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where ef0 ∈ R is a known initial condition and γ4, γ5 ∈ R are positive constant control

gains. The subsequent development is based on the assumption that q and q̇ are mea-

surable. Hence, e1 and e2 are measurable, and ef can be computed from measurable

terms, but r is not measurable since it depends on q̈. The following inequality properties

will be used in the subsequent development [57]:

|ξ| ≥ |tanh (ξ)| , |tanh (ξ)|2 ≥ tanh2 (|ξ|) , (3–5)

ξ tanh (ξ) ≥ tanh2 (ξ) , |ξ|2 ≥ ln (cosh (ξ)) ≥ 1

2
tanh2 (|ξ|) . (3–6)

3.2 Control Development

Substituting the dynamics from (2–9) into (3–3) and multiplying by det(M)
g

yields

det (M)

g
r =

f

g
+

det (M)

g
dα + δ, (3–7)

where the auxiliary terms f ∈ R and g ∈ R are defined as

f , −m1

(
C̃21ḣ+ C̃22α̇ + K̃22α

)
+m2

(
C̃11ḣ+ C̃12α̇ + K̃11h+ K̃12α

)
− det (M) α̈d + det (M) γ1 cosh−2 (e1) (e2 − γ1 tanh (e1)− tanh (ef ))

− det (M) γ5 tanh (ef ) + det (M) (tanh (e1) + γ2 tanh (e2) + γ3e2 − γ4e2) ,

g , m2Clδ +m1Cmδ .

Based on the open-loop error system in (3–7), the control surface deflection is designed

as

δ = −γ4 tanh (v) , (3–8)

where v ∈ R is the generalized Filippov solution to the differential equation

v̇ = β cosh2 (v) sgn (e2) , v (t0) = v0, (3–9)

where β ∈ R is a positive constant control gain, and v0 ∈ R is a known initial condition.

The existence of solutions for v̇ ∈ K [w1] can be shown using differential inclusions as
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in Chapter 2, where w1 : R → R is defined as the right-hand side of (3–9), K [w1] ,⋂
τ>0

⋂
µSm=0

cow1 (e1, B − Sm), and B = {ε ∈ R| |e2 − ε| < τ}. The desire to inject a smooth

saturation function into the control structure motivates the usage of the hyperbolic

tangent function in (3–8). Furthermore, it is clear that the control surface deflection

is bounded and will not breach the actuator limits provided that the control gain γ4 is

selected to be less than the limit. The design of the auxiliary term v in (3–9) is motivated

by the extra time derivative that will be applied to the closed-loop system obtained by

substituting (3–8) into (3–7). The extra derivative introduces a cosh−2 (v) term in the

closed-loop dynamics which will be canceled by the cosh−2 (v) term in (3–9).

The closed-loop tracking error dynamics can be obtained by differentiating (3–7)

with respect to time and substituting the time derivative of (3–8) to yield

det (M)

g
ṙ = −1

2

d

dt

(
det (M)

g

)
r+ Ñ +Nd + Ω− tanh (e2)− e2−

det (M)

g
γ4r− βγ4 sgn (e2) ,

(3–10)

where Ñ ∈ R, Nd ∈ R, and Ω ∈ R are defined as

Ñ , −1

2

d

dt

(
det (M)

g

)
r +

d
dt

(det (M))

g
γ1 cosh−2 (e1) (e2 − γ1 tanh (e1)− tanh (ef ))

−2 det (M)

g
γ1 cosh−2 (e1) tanh (e1) ė2

1 −
det (M)

g
γ2

1 cosh−4 (e1) ė1 + tanh (e2) + e2

−det (M)

g2
Clδṁ2

(
γ1 cosh−2 (e1) ė1 − γ5 tanh (ef ) + tanh (e1) + γ2 tanh (e2) + γ3e2

)
−

d
dt

(det (M))

g
(γ5 tanh (ef )− tanh (e1)− γ2 tanh (e2)− γ3e2)

−det (M)

g

(
γ5 tanh (e1)− γ2

5 tanh (ef )− cosh−2 (e1) ė1 − γ2 cosh−2 (e2) ė2 − γ3ė2

)
+

det (M)

g
γ1 cosh−2 (e1) (ė2 − tanh (e1) + γ5 tanh (ef )) , (3–11)

Nd ,
ṁ2

g

(
C̃11ḣ+ C̃12α̇ + K̃11h+ K̃12α

)
− m1

g

(
C̃21ḧ+ C̃22α̈ + K̃22α̇ + ˙̃K22α

)
+
m2

g

(
C̃11ḧ+ C̃12α̈ + ˙̃C12α̇ + K̃11ḣ+ K̃12α̇

)
−

d
dt

(det (M))

g
α̈d
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+
Clδṁ2

g2

(
m1

(
C̃21ḣ+ C̃22α̇ + K̃22α

)
−m2

(
C̃11ḣ+ C̃12α̇ + K̃11h+ K̃12α

)
+ det (M) α̈d)−

det (M)

g

...
αd +

det (M)

g
ḋα +

d

dt

(
det (M)

g

)
dα, (3–12)

Ω , γ4e2

(
det (M)

g

(
γ1 cosh−2 (e1) + γ5 + γ3

)
−

d
dt

(det (M))

g

+
ṁ2Clδ det (M)

g2

)
+

det (M)

g
γ2γ4 tanh (e2) . (3–13)

Using the assumptions on the desired trajectories and boundedness of the LCO states,

upper bounds can be developed for (3–11) and (3–12) as∣∣∣Ñ ∣∣∣ ≤ ζ0 ‖x‖ , |Nd| ≤ ζ1,
∣∣∣Ṅd

∣∣∣ ≤ ζ2, (3–14)

where ζ0, ζ1, ζ2 ∈ R are known bounding constants, and x ∈ R4 is defined as

x ,

[
tanh (e1) e2 r tanh (ef )

]T
. (3–15)

3.3 Stability Analysis

To facilitate the subsequent analysis, let z ,

[
e1 e2 r ef

]T
∈ R4 and y ,[

zT
√
P

]
∈ R5 where P ∈ R is a Filippov solution to the differential equation

Ṗ = −r (Nd − βγ4 sgn (e2)) , (3–16)

P (t0) = βγ4 |e2 (t0)| − e2 (t0)Nd (t0) .

Provided βγ4 is selected such that βγ4 > ζ1 + ζ2
γ3

, P (t) ≥ 0, ∀t ∈ [0,∞) [18]. To further

facilitate the stability analysis, let the control gain γ4 be expressed as γ4 = γa + γb, where

γa and γb ∈ R are positive constants.

Theorem 3.1. The controller given in (3–8) and (3–9) yields global asymptotic tracking

of the airfoil section AoA in the sense that all Filippov solutions to the differential

equations in (3–2)-(3–4), (3–10), and (3–16) are bounded and e1 → 0 as t → ∞,
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provided that the control gains are selected to satisfy the following sufficient conditions

γ1 >
1

2
, γ3 > γ2

4 + 1, βγ4 > ζ1 +
ζ2

γ3

, λ1γa >
c2

1

2
, γ5 >

γ2
4

2
, λ >

ζ2
0

4λ1γb
, (3–17)

where

λ , min

{
γ1 −

1

2
, 2γ2 + γ3, γ3 − γ2

4 − 1, λ1γa −
c2

1

2
, γ5 −

γ2
4

2

}
,

where c1 and λ1 ∈ R are positive bounding constants, λ1 ≤ det(M)
g

, and

c1 ≥

∣∣∣∣∣∣
(

det (M)

g
(γ1 + γ3 + γ5)−

d
dt

(det (M))

g
+
ṁ2Clδ det (M)

g2

)2

+

(
γ2

det (M)

g

)2
∣∣∣∣∣ ,

≥ (cm1 (γ1 + γ3 + γ5) + cm2 + cm3Clδ)
2 + γ2

2c
2
m1
,

where cm1 >
det(M)

g
, cm2 >

d
dt

det(M)

g
, and cm3 >

ṁ2 det(M)
g2

.1

Remark 3.1. The control gains γ1 and γ2 can be selected independently of the remain-

ing control gains and γ4 is selected less than the actuator limit. After γ4 is selected, the

lower bounds on γ3, γ5, and β can be calculated. The selection of γa depends on the

severity of the LCO motion which is captured in the bounding constant c1. If the LCO

motion is too severe, the gain condition for γa can’t be satisfied without increasing the

saturation limit.

Proof. Let VL (y) : R5 → R be a positive-definite, continuously differentiable function

defined as

VL , ln (cosh (e1)) + ln (cosh (e2)) +
1

2
e2

2 +
1

2

det (M)

g
r2 +

1

2
tanh2 (ef ) + P. (3–18)

1 See Appendix E for details.
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From the inequalities in (3–5) and (3–6), VL satisfies the following inequalities

1

2
min (λ1, 1) tanh2 (‖y‖) ≤ VL (y) ≤ λ2 ‖y‖2 , (3–19)

where λ2 ∈ R is a known positive constant. Let y denote a Filippov solution to the

closed-loop system described by (3–2)-(3–4), (3–10), and (3–16). The time derivative of

(3–18) along the Filippov solution y exists almost everywhere (a.e) and V̇L
a.e
∈ ˙̃VL where

˙̃VL , ∩
Ξ∈∂VL

ΞTK

[
ė1 ė2 ṙ ėf

Ṗ
2
√
P

1

]T
and ∂VL denotes the generalized gradient of

VL [58]. Since VL is a continuously differentiable function, ˙̃VL can be expressed as

˙̃VL ⊂ ∇V T
L K

[
ė1 ė2 ṙ ėf

Ṗ
2
√
P

1

]T
, (3–20)

where

∇V T
L ,

[
tanh (e1) tanh (e2) + e2

det(M)
g

r tanh (ef ) cosh−2 (ef ) 2
√
P 1

2
d
dt

(
det(M)

g

)
r2

]
.

Using the calculus for K from [54], (3–1)-(3–4), (3–10), and (3–16), the expression in

(3–20) can be written as

˙̃VL ⊂ tanh (e1) (e2 − γ1 tanh (e1)) + tanh (e2) (−γ2 tanh (e2)− γ3e2)

+e2 (−γ2 tanh (e2)− γ3e2) + r

(
Ñ + Ω− det (M)

g
γ4r − βγ4K [sgn (e2)]

)
+ tanh (ef ) (−γ4e2 − γ5 tanh (ef )) + rβγ4K [sgn (e2)] , (3–21)

As in Chapter 2, (3–21) reduces to a scalar inequality since the right-hand side is con-

tinuous except for the Lesbegue negligible set of time instances when rβγ4K [sgn (e2)]−

rβγ4K [sgn (e2)] 6= {0}. The resulting scalar inequality is expressed as

V̇L
a.e.

≤ −γ1 tanh2 (e1)− γ2 tanh2 (e2)− γ3e
2
2 −

det (M)

g
γ4r

2 − γ5 tanh2 (ef )

+rÑ + rΩ + tanh (e1) e2 − (γ3 + γ2) tanh (e2) e2 − γ4 tanh (ef ) e2. (3–22)
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Using Young’s Inequality and the bounds on the system states, the term rΩ can be

upper bounded as

|rΩ| ≤ 1

2

(
det (M)

g

(
γ1 cosh−2 (e1) + γ5 + γ3

)
−

d
dt

(det (M))

g
+
ṁ2Clδ det (M)

g2

)2

r2

+γ2
4e

2
2 +

1

2

(
γ2

det (M)

g

)2

r2

≤ c2
1

2
r2 + γ2

4e
2
2. (3–23)

By applying Young’s Inequality, the inequalities in (3–5) and (3–6), and the upper bounds

on Ñ and rΩ given in (3–11) and (3–23), (3–22) can be upper bounded as

V̇L
a.e.

≤ −γ1 tanh2 (e1)− γ2 tanh2 (e2)− γ3e
2
2 − λ1γ4r

2 − γ5 tanh2 (ef ) + ζ0 ‖x‖ |r|+
c2

1

2
r2

+
1

2
tanh2 (e1) + e2

2 − (γ3 + γ2) tanh2 (e2) +
1

2
γ2

4 tanh2 (ef ) + γ2
4e

2
2. (3–24)

Combining common terms and completing the squares on the term − (λ1γbr
2 − ζ0 ‖x‖ |r|)

yields

V̇L
a.e.

≤ −
(
γ1 −

1

2

)
tanh2 (e1)− (2γ2 + γ3) tanh2 (e2)−

(
γ3 − 1− γ2

4

)
e2

2

−
(
λ1γa −

c2
1

2

)
r2 −

(
γ5 −

γ2
4

2

)
tanh2 (ef ) +

ζ2
0 ‖x‖

2

4λ1γb
. (3–25)

Provided the sufficient gain conditions in (3–17) are satisfied, (3–15) and the definition

of z can be used to show

V̇L
a.e.

≤ −
(
λ− ζ2

0

4λ1γb

)
tanh2 (‖z‖) ≤ −c tanh2 (‖z‖) , (3–26)

where c ∈ R is a positive constant. From the inequalities in (3–19) and (3–26), VL ∈ L∞;

therefore, e1, e2, r, and tanh (ef ) ∈ L∞. Equations (3–2) and (3–3) can be used to

show that ė1 and ė2 ∈ L∞. From (3–8), δ ∈ L∞. Since e2, r ∈ L∞, it can be concluded

from (3–15) that x ∈ L∞. Equations (3–10) and (3–14) can be used to show that

ṙ ∈ L∞. Since e2 ∈ L∞, (3–4) can be used to show that cosh−2 (ef ) ėf ∈ L∞. Since
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ė1, ė2, ṙ, cosh−2 (ef ) ėf ∈ L∞, the definition of z can be used to show that ż ∈ L∞, and

hence, z is uniformly continuous (UC). Since z is UC, the function −c tanh2 (‖z‖) is UC.

Based on (3–26), Corollary 1 from [56] can be used to prove that tanh (‖z‖) → 0 as

t→∞. From the definition of z it can be concluded that e1 → 0 as t→∞.

3.4 Simulation Results

A numerical simulation is presented to illustrate the performance of the developed

controller and to provide a comparison with the controller in Chapter 2.

The model parameters for the simulation are shown in Table 3-1 and (3–27).

The open-loop system was simulated with the following initial conditions: h (0) = 0

m, ḣ (0) = 0 m/s, α (0) = 11.5 deg, and α̇ (0) = 0 deg/s. It is evident from Figure

(3-1) that the open-loop system, under the above initial conditions and no exogenous

disturbances, experiences LCO behavior.

Table 3-1. Aeroelastic Model Parameters
Parameter Parameter
mw 4.0 kg Is 0.0050 kg·m2

ms 4.0 kg ch1 2.743x101 kg/s
rx 0.0 cα 0.036 kg·m2/s
rh 0.0 kh 2.200x103 N/m
a -0.6 ρ 1.225 kg/m3

ah 0.0 U 1.50x101 m/s
b 0.14 m S 1.0 m
sx 0.098 Clα 6.8 1/rad
sh 1.4 Clδ 9.3x101 N/rad
Iw 0.043 kg·m2 Cmδ 2.3 N·m/rad

kα (q) = 0.5− 11.05α + 657.75α2 − 4290α3 + 8644.85α4. (3–27)

The control objective in the subsequent numerical simulations is to regulate

the AoA to zero degrees. In addition, an external disturbance, selected as d (t) =[
0 0.25 sin (t)

]T
, was added to the numerical simulation and a zero-mean noise

signal uniformly distributed over an interval was added to each measurement. For the
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vertical displacement and velocity, the interval was ±2.5 × 10−3 m and ±2.5 × 10−3

m/s, respectively. For the AoA and AoA rate, the interval was ±4.5 × 10−2 rad and

±1× 10−2 rad/s. Based on the identification performance of the NN, the NN feedforward

parameters for the controller developed in Chapter 2 were selected as n2 = 25,

Γ1 = 10I26, and Γ2 = 10I7, where Im denotes an m × m identity matrix. The RISE

feedback control gains for the controller developed in Chapter 2 were determined

through a 1500 sample Monte Carlo simulation in which the RISE feedback control

gains for each sample were selected at random from within a specified interval. The

gains used in the comparison study were selected as those that returned the minimum

value for the following cost function

J =

√√√√ 1

n

(
n∑
i=1

α2 (ti)

)
, (3–28)

where n is the total number of time steps in the numerical simulation. The set of control

gains that produced the smallest AoA RMS error were α2 = 3.9513, ks = 2.6112,

and β1 = 0.9966. Figures (3-2) and (3-3) depict the performance of the unsaturated

RISE controller developed in Chapter 2 and that same RISE controller with an ad

hoc saturation applied to the commanded control. While the unsaturated controller

suppressed the LCO behavior, the commanded control effort breached the actuator

limit several times. When the ad hoc saturation was applied to the controller, the

LCO behavior could not be suppressed and the system returned to an LCO state.

This highlights the unpredictable response that can occur when applying an ad hoc

saturation without considering the stability of the resulting closed-loop system.

The developed control strategy was applied to the system with the following gains:

γ1 = 0.8375, γ2 = 17.7604, γ3 = 33.9025, γ4 = 0.1745, γ5 = 15.4652, and β = 5.5539. Note

that γ4 represents the actuator limit in radians, which was taken to be ±10 deg. The

control gains for the developed controller were determined by applying the same Monte

Carlo approach used to select the gains for the controller in Chapter 2.
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Figure 3-1. Aeroelastic system open-loop response without disturbances
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Figure 3-2. State trajectories of the controller developed in [2] with and without an ad
hoc saturation.
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Figure 3-3. Commanded control effort for the controller developed in [2] with and without
an ad hoc saturation.

The states and control surface deflection of the ad hoc saturated controller and the

developed saturated controller are shown in Figures (3-4) and (3-5), respectively. While

different gain selections will alter the performance, Figures (3-4) and (3-5) illustrate that

the developed control strategy is capable of supressing LCO behavior in the presence

of actuator limits. The benefit of the developed method is that the saturation limit is

included in the stability analysis guaranteeing asymptotic tracking, versus the ad hoc

saturation which yields an unpredictable response.

A 1500 sample Monte Carlo simulation was also performed to demonstrate the

robustness of the developed saturated controller to plant uncertainties and measure-

ment noise. The model parameters were varied uniformly over a range that extended

from 95% to 105% of the parameter values listed in Table 3-1. While the developed

saturated controller successfully regulated the AoA for all 1500 samples, the transient

performance varied significantly between samples.

The average trajectory and 3σ confidence bounds for the angle of attack, vertical

position, and control surface deflection of the Monte Carlo samples are shown in
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Figure 3-4. Comparison of the closed-loop aeroelastic system response of the controller
in [2] with an ad hoc saturation and the developed saturated controller.
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Figure 3-5. Comparison of the control surface deflections for the developed saturated
controller and ad hoc saturated controller from [2]

Table 3-2. Monte Carlo Simulation Results
Mean Standard Deviation

Maximum Tracking Error 1.272x101 deg 3.04 deg
RMS Tracking Error 2.13 deg 2.53 deg
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Figure 3-6. AoA trajectories for all 1500 Monte Carlo samples. The developed saturated
controller suppressed the LCO behavior in all samples and the majority of
the samples exhibit similar transient performance.

Figures (3-6) - (3-8). Figure (3-6) indicates that the AoA for all samples converge to zero

after approximately 7 seconds, however the considered range of model uncertainties

does impact the transient performance of the controller. The sensitivity in transient

performance can be attributed to the saturation on the commanded control effort. As

noted previously, under certain conditions the severity of the LCO can become more

than the saturated controller can suppress and the system will return to an LCO state.

3.5 Summary

A saturated control strategy is developed to suppress store-induced LCO behavior

of an aeroelastic system. The control strategy uses a saturated RISE controller to

asymptotically track a desired AoA trajectory without exceeding actuator limits. A

Lyapunov-based stability analysis guarantees asymptotic tracking in the presence of

actuator constraints, exogenous disturbances, and modeling uncertainties. Simulations

results are presented to illustrate the performance of the developed control strategy.
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Figure 3-7. Vertical position trajectories of all 1500 Monte Carlo samples. The vertical
position remained bounded for all samples despite being an uncontrolled
state.
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Figure 3-8. Control surface deflection for all 1500 Monte Carlo samples. The control
effort for all samples remain within the actuation limit and demonstrate
similar steady state performance.
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A numerical simulation was presented that demonstrated the unpredictable closed-

loop system response when an ad hoc saturation strategy is applied to the controller

in Chapter 2. A comparison study revealed that the saturated controller developed

in this paper achieved asymptotic tracking of the desired AoA trajectory while the ad

hoc saturation strategy was unable to suppress the LCO behavior. A 1500 sample

Monte Carlo simulation was presented to demonstrate the robustness of the developed

controller to variations in the model parameters. A potential drawback of the developed

control strategy is that under certain conditions, the severity of the produced LCO may

result in sufficient gain conditions that can’t be satisfied. That is, if the disturbances to

the system are large enough, then the system could be destabilized. This is a direct

result of the actuator limit; increasing the actuator limit relaxes the sufficient gain

conditions and allows for larger disturbances. Furthermore, an adaptive feedforward

term could potentially be included to compensate for the uncertain dynamics, thereby

relaxing the sufficient gain conditions. However, for any controller that has restricted

control authority, it is possible for some disturbance to dominate the controller’s ability to

yield a desired or even stable performance.
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CHAPTER 4
BOUNDARY CONTROL OF LIMIT CYCLE OSCILLATIONS IN A FLEXIBLE AIRCRAFT

WING

The focus of this chapter is to develop a boundary control strategy for suppressing

LCO motion in an aircraft wing whose dynamics are described by a system of linear par-

tial differential equations (PDEs). A PDE backstepping method guarantees exponential

regulation of the wing twist dynamics while a Lyapunov-based stability analysis is used

to show boundedness of the wing bending dynamics.

4.1 Aircraft Wing Model

Consider a flexible wing of length l ∈ R, mass per unit length of ρ ∈ R, moment

of inertia per unit length of Iw ∈ R, and bending and torsional stiffnesses of EI ∈ R

and GJ ∈ R, respectively, with a store of mass ms ∈ R and moment of inertia Js ∈ R

attached at the wing tip. The bending and twisting dynamics of the flexible wing are

described by the following PDE system1

ρωtt + EIωyyyy + ηωEIωtyyyy = Lw, (4–1)

Iwφtt −GJφyy − ηφGJφtyy = Mw, (4–2)

where ω (y, t) ∈ R and φ (y, t) ∈ R denote the bending and twisting displacements,

respectively, y ∈ [0, l] denotes spanwise location on the wing, ηω ∈ R and ηφ ∈ R

denote Kelvin-Voigt damping coefficients in the bending and twisting states, respectively,

and Lw = L̄wφ ∈ R and Mw = M̄wφ ∈ R denote the aerodynamic lift and moment

on the wing, respectively, where L̄w and M̄w ∈ R denote aerodynamic lift and moment

coefficients, respectively. In (4–1) and (4–2), the subscripts t and y denote partial

derivatives. The boundary conditions for tip-based control are ω (0, t) = ωy (0, t) =

1 See Appendix F for details regarding the derivation of the dynamics.
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ωyy (l, t) = φ (0, t) = 0 and

EIωyyy (l, t) + ηwEIωtyyy (l, t) = msωtt (l, t)− Ltip, (4–3)

GJφy (l, t) + ηφGJφty (l, t) = −Jsφtt (l, t) +Mtip, (4–4)

where Ltip ∈ R and Mtip ∈ R denote the aerodynamic lift and moment at the wing tip

which can be implemented through flaps located at the wing tip [44]. It is assumed in

(4–1) and (4–2) that the center of mass and shear center are coincident and all model

parameters are constant.

4.2 Boundary Control of Wing Twist

The control objective is to ensure that the wing twist is regulated in the sense

that φ (y, t) → 0, ∀y ∈ [0, l] as t → ∞ via boundary control at the wing tip. A PDE

backstepping method will be used to transform the system in (4–2) into an exponentially

stable target system using an invertible Volterra integral transformation [35]. The state

transformation is defined as

Φ (y, t) , φ (y, t)−
ˆ y

0

k (y, x)φ (x, t) dx, (4–5)

where the function k (x, y) ∈ R denotes the gain kernel. The exponentially stable target

system is selected as

IwΦtt −GJΦyy − ηφGJΦtyy +
(
cGJ − M̄w

)
Φ + ηφcGJΦt = 0, (4–6)

where c ∈ R is a positive constant selected to satisfy the inequality, c > M̄w

GJ
− π2

4l2
, and the

boundary conditions are Φ (0, t) = 0 and GJΦy (l, t) + ηφGJΦty (l, t) = 02 . Due to the fact

that the state transformation is invertible, stability of the target system in (4–6) translates

to stability of the system in (4–2) with the boundary control in (4–13) [35]. The task

2 See Appendix G
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is now to find the gain kernel k (y, x) that satisfies (4–6) and its boundary conditions.

A linear PDE and associated boundary conditions that describe the gain kernel are

obtained by substituting the state transformation in (4–5) into (4–6). Substituting the

state transformation into the first term in (4–6) yields

IwΦtt = Iwφtt − Iw
ˆ y

0

k (y, x)φtt (x, t) dx

= M̄wφ (y, t) +GJφyy (y, t) + ηφGJφtyy (y, t)

−
ˆ y

0

k (y, x)
(
M̄wφ (x, t) +GJφxx (x, t) + ηφGJφtxx (x, t)

)
dx. (4–7)

After integrating the last two terms by parts, (4–7) can be expressed as

IwΦtt = M̄wφ (y, t) +GJφyy (y, t) + ηφGJφtyy (y, t)−GJk (y, y)φy (y, t)

+GJk (y, 0)φy (0, t) +GJkx (y, y)φ (y, t)− ηφGJk (y, y)φty (y, t)

+ηφGJk (y, 0)φty (0, t) + ηφGJkx (y, y)φt (y, t)

−
ˆ y

0

[
k (y, x) M̄w +GJkxx (y, x)

]
φ (x, t) dx

−ηφGJ
ˆ y

0

kxx (y, x)φt (x, t) dx, (4–8)

where kx (y, y) , ∂
∂x
k (y, x) |x=y. Similarly, expressions for the second and third terms in

(4–6) can be obtained as

GJΦyy = GJφyy (y, t)−GJ d

dy
(k (y, y))φ (y, t)−GJk (y, y)φy (y, t)

−GJky (y, y)φ (y, t)−GJ
ˆ y

0

kyy (y, x)φ (x, t) dx, (4–9)

ηφGJΦtyy = ηφGJφtyy (y, t)− ηφGJ
d

dy
(k (y, y))φt (y, t)− ηφGJk (y, y)φty (y, t)

−ηφGJky (y, y)φt (y, t)− ηφGJ
ˆ y

0

kyy (y, x)φt (x, t) dx, (4–10)

where d
dy

(k (y, y)) , ∂
∂x
k (y, x) |x=y + ∂

∂y
k (y, x) |x=y and ky (y, y) , ∂

∂y
k (y, x) |x=y.

Substituting the state transformation in (4–5) into the last two terms in (4–6) and utilizing
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the expressions in (4–8)-(4–10) yields(
2GJ

d

dy
(k (y, y)) + cGJ

)
φ (y, t) +GJk (y, 0)φy (0, t)

+ηφGJk (y, 0)φty (0, t) + ηφ

(
2GJ

d

dy
(k (y, y)) + cGJ

)
φt (y, t)

+

ˆ y

0

(GJkyy (y, x)−GJkxx (y, x)− cGJk (y, x))φ (x, t) dx

+ηφ

ˆ y

0

(GJkyy (y, x)−GJkxx (y, x)− cGJk (y, x))φt (x, t) dx = 0.

For the non-trivial solution of φ (y, t), the gain kernel k (y, x) must satisfy the following

PDE

kyy (y, x)− kxx (y, x) = ck (y, x) , (4–11)

with the boundary conditions k (y, 0) = 0 and 2 d
dy
k (y, y) = −c. Integration of the second

boundary condition yields k (y, y) = − c
2
y. The solution to the gain kernel PDE in (4–

11) con be obtained by converting the PDE into an integral equation and applying the

method of successive approximations [35]. The solution to (4–11) is

k (y, x) = −cx
I1

(√
c (y2 − x2)

)
√
c (y2 − x2)

,

where Iε (µ) ∈ R denotes a modified Bessel function defined as

Iε (µ) ,
∞∑
τ=0

(
µ
2

)ε+2τ

τ ! (τ + ε)!
.

The boundary condition at y = l can then be expressed as

GJΦy (l, t) + ηφGJΦty (l, t) = GJφy (l, t) + ηφGJφty (l, t)

− (GJφ (l, t) + ηφGJφt (l, t)) k (l, l)

−GJ
ˆ l

0

ky (l, x) (φ (x, t) + ηφφt (x, t)) dx, (4–12)
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where k (l, l) = − c
2
l and

ky (l, x) =
−clxI2

(√
c (l2 − x2)

)
(l2 − x2)

.

From the boundary condition of the target system, GJΦy (l, t) + ηφGJΦty (l, t) = 0,

the left-hand side of (4–12) is equal to zero. From (4–4), the first two terms on the

right-hand side of (4–12) can be replaced with −Jsφtt (l, t) +Mtip yielding

0 = Mtip − Jsφtt (l, t)− (GJφ (l, t) + ηφGJφt (l, t)) k (l, l)

−GJ
ˆ l

0

ky (l, x) (φ (x, t) + ηφφt (x, t)) dx,

which can be solved for the boundary control at the wing tip

Mtip = Jsφtt (l, t) + (GJφ (l, t) + ηφGJφt (l, t)) k (l, l)

+GJ

ˆ l

0

ky (l, x) (φ (x, t) + ηφφt (x, t)) dx. (4–13)

Due to the fact that the state transformation is invertible, stability of the target system in

(4–6) translates to stability of the system in (4–2) with the boundary control in (4–13).

Remark 4.1. The modified Bessel function used in the solution for k (x, y) is an infinite

sum, which for implemenation purposes must be approximated using a finite sum.

It can be shown using the ratio test [59] that Iε (µ) converges for any ε and µ ∈ R.

Since Iε (µ) converges, for any small arbitrary number ∆ > 0, there exists T such that

|Iε (µ; τ0)− Iε (µ)| ≤ ∆ for all τ0 ≥ T and µ ∈ R, where Iε (µ; τ0) ,
∑τ0

τ=0

(µ2 )
ε+2τ

τ !(τ+ε)!
. For the

particular system used in the subsequent simulation section, the input µ ∈
[
0,
√

5
]

and

for T = 10, ∆ = 6.7× 10−16. Figure (4-1) shows a plot of I1 (µ; 10) and I1 (µ).

4.3 Boundary Control of Wing Bending

The control objective is to ensure the wing bending state ω (y, t) remains bounded

and achieves a steady state profile. Based on the system dynamics and boundary

conditions given in (4–1) and (4–3) along with the subsequent stability analysis, the
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Figure 4-1. Approximation of the modified Bessel function used in the subsequent
simulation section.

boundary control Ltip is designed as

Ltip = −ω (l, t)−Kωt (l, t) , (4–14)

where K ∈ R is a positive constant control gain.

Theorem 4.1. The boundary controllers given in (4–13) and (4–14) ensure that ω (y, t) ∈

L∞ and ωt (y, t)→ 0 as t→∞.

Proof. To facilitate the subsequent stability analysis, let c1 ∈ R be defined as c1 ,

sup
y∈[0,l]

|φ (y, 0)| and let VL (σ) : R4 → R be a positive-definite, continuously differentiable

function defined as

VL =
1

c2
1l

(
1

2

ˆ l

0

(
ρω2

t + EIω2
yy

)
dy +

1

2
ω2 (l, t) +

ms

2
ω2
t (l, t)

)
, (4–15)

where σ ∈ R4 is defined as σ ,

[ (´ l
0
ω2
t dy
)1/2 (´ l

0
ω2
yydy

)1/2

ω (l, t) ωt (l, t)

]T
. The

upper and lower bounds on VL can be expressed as λ1 ‖σ‖2 ≤ VL ≤ λ2 ‖σ‖2, where

λ1 , min
{

ρ
2c21l

, EI
2c21l

, 1
2c21l

, ms
2c21l

}
∈ R and λ2 , max

{
ρ

2c21l
, EI

2c21l
, 1

2c21l
, ms

2c21l

}
∈ R. Taking the time
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derivative of (4–15) yields

V̇L =
1

c2
1l

(ˆ l

0

ρωttωtdy +

ˆ l

0

EIωyyωtyydy + ω (l, t)ωt (l, t) + ωt (l, t)msωtt (l, t)

)
. (4–16)

Substituting the bending dynamics from (4–1) into the first integral of (4–16) results in

V̇L =
1

c2
1l

(ˆ l

0

ωt (Lwφ− EIωyyyy) dy −
ˆ l

0

ηωEIωtωtyyyydy +

ˆ l

0

EIωyyωtyydy

)
+

1

c2
1l

(ω (l, t)ωt (l, t) + ωt (l, t)msωtt (l, t)) .

Evaluating the second and third integral using integration by parts and applying the

bending boundary conditions yields

−
ˆ l

0

ηωEIωtωtyyyydy = −ηωEIωt (l, t)ωtyyy (l, t)−
ˆ l

0

ηωEIω
2
tyydy (4–17)

ˆ l

0

EIωyyωtyydy = −EIωt (l, t)ωyyy (l, t) +

ˆ l

0

EIωtωyyyydy. (4–18)

After substituting (4–17) and (4–18) into (4–16) and canceling like terms, V̇L can be

expressed as

V̇L =
1

c2
1l

(ˆ l

0

ωtLwφdy −
ˆ l

0

ηωEIω
2
tyydy

)
+
ωt (l, t)

c2
1l

(ω (l, t) +msωtt (l, t)− ηωEIωtyyy (l, t)− EIωyyy (l, t)) . (4–19)

Using Lemmas A.12 and A.13 of [36], the two integrals in (4–19) can be bounded as

ˆ l

0

ωtLwφdy ≤
1

κ

ˆ l

0

ω2
t dy + κ

ˆ l

0

L2
wφ

2dy, (4–20)

−
ˆ l

0

ηωEIω
2
tyydy ≤ −

ˆ l

0

ηωEI

l4
ω2
t dy, (4–21)

where δ ∈ R is a positive constant. Substituting the boundary condition in (4–3), the

inequalities in (4–20) and (4–21), and the control law in (4–14) into (4–19) yields

V̇L ≤ −
K

c2
1l
ω2
t (l, t)− 1

c2
1l

(
ηωEI

l4
− 1

κ

) ˆ l

0

ω2
t dy +

κL2
w

c2
1l

ˆ l

0

φ2dy. (4–22)
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To facilitate the stability analysis, let z ,

[
ωt (l, t)

(´ l
0
ω2
t dy
)1/2

]T
∈ R2. The

expression in (4–22) can be written as

V̇L ≤ −γ (‖z‖) + γ (ζ)ϕ (t) , (4–23)

where γ (‖z‖) = λ3 ‖z‖2, λ3 , min
{
K
c21l
, 1
c21l

(
ηωEI
l4
− 1

κ

)}
, ζ =

√
κL2

w

λ3
, and ϕ (t) = 1

c21l

´ l
0
φ2dy.

Since φ is exponentially stable, the function ϕ ∈ L1. Due to the selection of the constant

c1, |ϕ| ≤ 1. Corollary 2.18 from [60] can be applied to conclude that ‖σ‖ ∈ L∞ and

‖z‖ → 0 as t→∞; hence |ω (y, t)| ∈ L∞ and |ωt (y, t)| → 0 as t→∞.

4.4 Numerical Simulation

A numerical simulation is presented to illustrate the performance of the developed

controller. The simulations are performed using a Galerkin-based method to approxi-

mate the PDE system with a finite number of ODEs. It should be noted that the control

design does not use the approximation, therefore the issue of spillover instabilites is

avoided. The twisting and bending deflections are represented as a weighted sum of

basis functions

φ (y, t) = a0 (t)h0 (y) +
n∑
i=1

ai (t)hi (y) ,

ω (y, t) = b0 (t) g0 (y) +

p∑
i=1

bi (t) gi (y) ,

where n and p ∈ R denote the number of basis functions used in the approximations of

the wing twisting deflection and bending deflection, respectively, and h0 (y), hi (y), g0 (y),

and gi (y) ∈ R are basis functions selected to satisfy the boundary conditions

h0 (0) = hi (0) = 0, hy0 (l) = 1, hyi (l) = 0,

g0 (0) = gi (0) = 0, gy0 (0) = gyi (0) = 0,

gyy0 (l) = gyyi (l) = 0, gyyy0 (l) = 1, gyyyi (l) = 0.
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Substituting the approximations of the system states, the PDE system in (4–1) and (4–2)

can be expressed as

ρ

(
btt0 (t) g0 (y) +

p∑
i=1

btti (t) gi (y)

)
+ EI

(
b0 (t) gyyyy0 (y) +

p∑
i=1

bi (t) gyyyyi (y)

)

+ ηωEI

(
bt0 (t) gyyyy0 (y) +

p∑
i=1

bti (t) gyyyyi (y)

)
= L̄w

(
a0 (t)h0 (y) +

n∑
i=1

ai (t)hi (y)

)
,

(4–24)

Iw

(
att0 (t)h0 (y) +

n∑
i=1

atti (t)hi (y)

)
−GJ

(
a0 (t)hyy0 (y) +

n∑
i=1

ai (t)hyyi (y)

)

− ηφGJ

(
at0 (t)hyy0 (y) +

n∑
i=1

ati (t)hyyi (y)

)
= M̄w

(
a0 (t)h0 (y) +

n∑
i=1

ai (t)hi (y)

)
.

(4–25)

Using Galerkin’s method, (4–24) and (4–25) are converted to a set of ODEs as

B1b̈ (t) + ηwB2ḃ (t) +B2b (t)−B3a (t) = 0, (4–26)

IwT1ä (t)− ηφT2ȧ (t)−
(
T2 + M̄wT1

)
a (t) = 0, (4–27)

where b (t) ,

[
b0 (t) b1 (t) . . . bp (t)

]T
, a (t) ,

[
a0 (t) a1 (t) . . . an (t)

]T
,

B1 , ρ
´ l

0
g (y) gT (y) dy, B2 , EI

´ l
0
g (y) gTyyyy (y) dy, B3 , L̄w

´ l
0
g (y)hT (y) dy,

T1 ,
´ l

0
h (y)hT (y) dy, T2 , GJ

´ l
0
h (y)hTyy (y) dy, g (y) ,

[
g0 (y) g1 (y) . . . gp (y)

]T
,

and h (y) ,

[
h0 (y) h1 (y) . . . hn (y)

]T
. The expressions in (4–26) and (4–27) are

simulated to approximate the response of the PDE system.

The open-loop system was simulated with the following initial conditions: ω (y, 0) = 0

m and φ (y, 0) = y2

2l2
rad. It is evident from Figures (4-2) - (4-4) that the open-loop

system, under the above initial conditions, experiences LCO behavior.

The control objective for the closed-loop system is to regulate the twisting and

bending deformations of the flexible wing. Based on the transient performance of the
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Figure 4-2. Open-loop twist deflection of the flexible aircraft wing.
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Figure 4-3. Open-loop bending deflection of the flexible aircraft wing.
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Figure 4-4. Open-loop response at the wing tip of the flexible aircraft wing.

closed-loop system, the control gains were selected as c = 5 and k = 10. The flexible

state trajectories are shown in Figures (4-5) - (4-7). It is evident that the developed

control strategy is capable of supressing LCO behavior in the flexible aircraft wing.

Figure (4-8) shows the force and moment commanded by the developed control

strategy.

4.5 Summary

This chapter presents the construction of a boundary control strategy for suppress-

ing LCO behavior in a flexible aircraft wing. The control design is separated into two

parts: a backstepping-based control strategy used to design the aerodynamic moment

at the wing tip and a Lyapunov-based controller for the aerodynamic lift at the wing tip.

The developed control strategy ensures exponential regulation of the wing twist and

asymptotic regulation of the wing bending to a steady-state profile. Numerical simula-

tions illustrate the performance of the developed backstepping-based control design.

One drawback of the developed controller is that it relies on the assumption that the

distances from the wing elastic axis to the wing center of gravity and store center of

gravity are zero. If this assumption is dropped, the PDE describing the dynamics of the
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Figure 4-5. Closed-loop twist deflection of the flexible aircraft wing.
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Figure 4-6. Closed-loop bending deflection of the flexible aircraft wing.
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Figure 4-7. Closed-loop response at the wing tip of the flexible aircraft wing.
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Figure 4-8. Lift and Moment commanded at the wing tip.
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wing deformations becomes nonlinear which becomes a challenge for the backstep-

ping strategy employed in this chapter. Instead, an approach similar to that of [36, 37],

in which a Lyapunov-based analysis proves that the energy in the system decays to

zero, could be used to generate the aerodynamic lift and moment at the wing tip. This

strategy is considered in Chapter 5.

68



CHAPTER 5
ADAPTIVE BOUNDARY CONTROL OF LIMIT CYCLE OSCILLATIONS IN A FLEXIBLE

AIRCRAFT WING

The focus of this chapter is to develop an adaptive boundary control strategy for

suppressing LCO motion in an aircraft wing whose dynamics are described by a system

of nonlinear partial differential equations (PDEs). A Lyapunov-based stability analysis

guarantees asymptotic regulation of the wing twist and bending dynamics.

5.1 Aircraft Wing Model

Consider a flexible wing of length l ∈ R, mass per unit span of ρ ∈ R, moment

of inertia per unit length of Iw ∈ R, and bending and torsional stiffnesses of EI ∈ R

and GJ ∈ R, respectively, with a store of mass ms ∈ R and moment of inertia Js ∈ R

attached at the wing tip. The bending and twisting dynamics of the flexible wing are

described by the following PDE system1

ρωtt − ρxcc sin (φ)φ2
t + ρxcc cos (φ)φtt + EIωyyyy = Lw, (5–1)(

Iw + ρx2
cc

2
)
φtt + ρxcc cos (φ)ωtt −GJφyy = Mw, (5–2)

where ω (y, t) ∈ R and φ (y, t) ∈ R denote the bending and twisting displacements,

respectively, y ∈ [0, l] denotes spanwise location on the wing, xcc ∈ R represents the

distance from the wing elastic axis to the wing center of gravity, and Lw = L̄wφ ∈ R

and Mw = M̄wφ ∈ R denote the aerodynamic lift and moment on the wing, respectively,

where L̄w and M̄w ∈ R denote aerodynamic lift and moment coefficients, respectively.

In (5–1) and (5–2), the subscripts t and y denote partial derivatives. The boundary

conditions for tip-based control are ω (0, t) = ωy (0, t) = ωyy (l, t) = φ (0, t) = 0 and

Ltip = msωtt (l, t)−msxsc sin (φ (l, t))φ2
t (l, t) +msxsc cos (φ (l, t))φtt (l, t)

1 See Appendix F for details regarding the derivation of the dynamics.
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−EIωyyy (l, t) , (5–3)

Mtip =
(
msx

2
sc

2 + Js
)
φtt (l, t) +msxsc cos (φ (l, t))ωtt (l, t) +GJφy (l, t) , (5–4)

where Ltip ∈ R and Mtip ∈ R denote the aerodynamic lift and moment at the wing tip and

xsc ∈ R represents the distance from the wing elastic axis to the store center of gravity.

It is assumed, based on Remark 5.1 in [36], that the system has the following properties

Property 1. If the potential energy of the system, EP , 1
2

´ l
0

(
EIω2

yy +GJφ2
y

)
dy ∈ L∞

∀t ∈ [0,∞), then ∂n

∂yn
ω (y, t) ∈ L∞ and ∂m

∂ym
φ (y, t) ∈ L∞ for n = 2, 3, 4 and m = 1, 2

∀t ∈ [0,∞) and ∀y ∈ [0, l].

Property 2. If the kinetic energy of the system,

EK ,
1

2

ˆ l

0

(
ρω2

t + 2ρxcc cos (φ)φtωt +
(
Iw + ρx2

cc
2
)
φ2
t

)
dy

+
1

2
msω

2
t (l, t) +

1

2
Jsφ

2
t (l, t) ,

is bounded ∀t ∈ [0,∞), then ∂q

∂tq
ω (y, t) ∈ L∞ and ∂q

∂tq
φ (y, t) ∈ L∞ for q = 1, 2, 3

∀t ∈ [0,∞) and ∀y ∈ [0, l].

5.2 Boundary Control Development

The control objective is to ensure the wing bending and twisting deformations are

regulated in the sense that ω (y, t) → 0 and φ (y, t) → 0, ∀y ∈ [0, l] as t → ∞ via

boundary control at the wing tip. To facilitate the subsequent stability analysis, let the

auxiliary signal e (t) ∈ R2 and M̄ ∈ R2×2 be defined as

e ,

[
ωt (l, t)− ωyyy (l, t) φt (l, t) + φy (l, t)

]T
, (5–5)

M̄ ,

 ms msxsc cos (φ (l, t))

msxsc cos (φ (l, t)) msx
2
sc

2 + Js

 .
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The open-loop dynamics of the auxiliary signal are obtained by multiplying the time

derivative of e by M̄ to yield

M̄ė =

 msωtt (l, t) +msxsc cos (φ (l, t))φtt (l, t)

msxsc cos (φ (l, t))ωtt (l, t) + (msx
2
sc

2 + Js)φtt (l, t)


+

 msxsc cos (φ (l, t))φty (l, t)−msωtyyy (l, t)

(msx
2
sc

2 + Js)φty (l, t)−msxsc cos (φ (l, t))ωtyyy (l, t)

 . (5–6)

Substituting the boundary conditions in (5–3) and (5–4) into (5–6) yields

M̄ė =

 Ltip

Mtip

+

 msxsc sin (φ (l, t))φ2
t (l, t) + EIωyyy (l, t)

(msx
2
sc

2 + Js)φty (l, t)−msxsc cos (φ (l, t))ωtyyy (l, t)


+

 −msωtyyy (l, t) +msxsc cos (φ (l, t))φty (l, t)

−GJφy (l, t)

 . (5–7)

After some algebraic manipulation, (5–7) can be expressed as

M̄ė = U − 1

2
˙̄Me+ Y θ, (5–8)

where U ,

[
L M

]T
∈ R2, θ ∈ R5 is a vector of unknown parameters, and Y ∈ R2×5 is

a regression matrix of known quantities. Specifically, θ and Y are defined as

θ ,

[
msxsc EI ms GJ (msx

2
sc

2 + Js)

]T
,

Y ,

 1
2

sin (φ (l, t)) (φ2
t (l, t)− φt (l, t)φy (l, t)) + cos (φ (l, t))φty (l, t) ωyyy (l, t)

1
2

sin (φ (l, t))φt (l, t) (ωyyy (l, t)− ωt (l, t))− cos (φ (l, t))ωtyyy (l, t) 0

−ωtyyy (l, t) 0 0

0 φy (l, t) φty (l, t)

 .
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Based on the open-loop dynamics in (5–8), the boundary control is designed as

U = −Ke− Y θ̂, (5–9)

where K ∈ R is a positive constant control gain and θ̂ ∈ R5 is a vector of estimates of

the uncertain parameters in θ. The vector of parameter estimates θ̂ is updated according

to the gradient update law defined as

˙̂
θ = ΓY T e, (5–10)

where Γ ∈ R5×5 is a positive constant control gain. Substituting (5–9) into (5–8) yields

the following closed-loop dynamics

M̄ė = −1

2
˙̄Me−Ke+ Y θ̃, (5–11)

where θ̃ , θ − θ̂.

5.3 Stability Analysis

To facilitate the subsequent stability analysis, let the auxiliary terms ET ∈ R and

Ec ∈ R be defined as

ET ,
1

2

ˆ l

0

(
ρω2

t + 2ρxcc cos (φ)φtωt +
(
Iw + ρx2

cc
2
)
φ2
t

)
dy

+
1

2

ˆ l

0

(
EIω2

yy +GJφ2
y

)
dy, (5–12)

Ec , β1

ˆ l

0

ρωyy (ωt + xcc cos (φ)φt) dy

+β1

ˆ l

0

φyy
((
Iw + ρx2

cc
2
)
φt + ρxcc cos (φ)ωt

)
dy, (5–13)

where β1 ∈ R is a positive weighting constant. The auxiliary term ET is analogous to the

energy in the wing, and Ec contains cross terms used to facilitate the stability analysis.

Using Young’s Inequality, an upper bound on ET can be expressed as

ET ≤ 1

2

ˆ l

0

(
(ρ+ ρ |xcc|)ω2

t +
(
Iw + ρx2

cc
2 + ρ |xcc|

)
φ2
t + EIω2

yy +GJφ2
y

)
dy
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≤ 1

2
max

{
(ρ+ ρ |xcc|) ,

(
Iw + ρx2

cc
2 + ρ |xcc|

)
, EI,GJ

}
Eb,

where Eb ∈ R is defined as

Eb ,
ˆ l

0

(
ω2
t + ω2

yy + φ2
t + φ2

y

)
dy. (5–14)

In a similar manner, ET can be lower bounded as

ET ≥
1

2
min

{
(ρ− ρ |xcc|) ,

(
Iw + ρx2

cc
2 − ρ |xcc|

)
, EI,GJ

}
Eb. (5–15)

Provided that |xcc| < 1 and Iw > ρx2
cc

2 − ρ |xcc|, ET will be non-negative.

Remark 5.1. The conditions |xcc| < 1 and Iw > ρx2
cc

2 − ρ |xcc| are engineering design

considerations that ensure the store is mounted sufficiently close to the wing center of

mass.

After using Young’s Inequality, the cross term Ec can be upper bounded as

|Ec| ≤ β1ρl (1 + |xcc|)
ˆ l

0

ω2
t dy + β1ρl (1 + |xcc|)

ˆ l

0

ω2
ydy

+β1l
(
Iw + ρx2

cc
2 + ρ |xcc|

) ˆ l

0

(
φ2
t + φ2

y

)
dy. (5–16)

Lemma A.12 in [36] can be applied to the second integral in (5–16) to yield

|Ec| ≤ β1ρl (1 + |xcc|)
ˆ l

0

ω2
t dy + β1ρl

3 (1 + |xcc|)
ˆ l

0

ω2
yydy

+β1l
(
Iw + ρx2

cc
2 + ρ |xcc|

) ˆ l

0

(
φ2
t + φ2

y

)
dy

≤ β1lmax
{

(ρ+ ρ |xcc|) , l2 (ρ+ ρ |xcc|) ,
(
Iw + ρx2

cc
2 + ρ |xcc|

)}
Eb. (5–17)

From (5–17), Ec can be lower bounded as

Ec ≥ −β1lmax
{

(ρ+ ρ |xcc|) , l2 (ρ+ ρ |xcc|) ,
(
Iw + ρx2

cc
2 + ρ |xcc|

)}
Eb. (5–18)

From (5–15) and (5–18), if β1 is selected as

β1 <
min {(ρ− ρ |xcc|) , (Iw + ρx2

cc
2 − ρ |xcc|) , EI,GJ}

2lmax {(ρ+ ρ |xcc|) , l2 (ρ+ ρ |xcc|) , (Iw + ρx2
cc

2 + ρ |xcc|)}
,
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then

ζ1Eb ≤ ET + Ec ≤ ζ2Eb (5–19)

where the constants ζ1 and ζ2 are defined as

ζ1 ,
1

2
min

{
(ρ− ρ |xcc|) ,

(
Iw + ρx2

cc
2 − ρ |xcc|

)
, EI,GJ

}
−β1lmax

{
(ρ+ ρ |xcc|) , l2 (ρ+ ρ |xcc|) ,

(
Iw + ρx2

cc
2 + ρ |xcc|

)}
,

ζ2 ,
1

2
min

{
(ρ+ ρ |xcc|) ,

(
Iw + ρx2

cc
2 + ρ |xcc|

)
, EI,GJ

}
+β1lmax

{
(ρ+ ρ |xcc|) , l2 (ρ+ ρ |xcc|) ,

(
Iw + ρx2

cc
2 + ρ |xcc|

)}
.

Remark 5.2. β1 will be positive provided that the store is mounted sufficiently close

to the wing center of mass, as mentioned in Remark 5.1. If β1 is positive, then the

constants ζ1 and ζ2 will also be positive.

Theorem 5.1. The boundary control law in (5–9) along with the adaptive update law in

(5–10) ensure the system states ω (y, t) → 0 and φ (y, t) → 0 as t → ∞ provided the

following sufficient gain conditions are satisfied:

K >
1

2
max {EI + β1EIl} , β1 < 1, β1ρ− β1ρxcc− L̄w > 0, (5–20)

3EI

2
− L̄wl

3

2
> 0, β1

(
Iw + ρx2

cc
2
)
− β1ρxcc− M̄w > 0, (5–21)

β1GJ − β1M̄wl
3 − β1M̄wl − β1L̄wl

3 −
(
M̄w + L̄w

)
l2 > 0, (5–22)

β1EIl + EI − β1ρ− β1ρxccl > 0, GJ − β1l
(
Iw + ρx2

cc
2
)
− β1ρxccl > 0. (5–23)

Remark 5.3. The sufficient gain conditions in (5–20)-(5–23) can be satisfied by a

combination of gain selection and engineering design consideration. Selection of the

wing aerodynamic properties can be done to satisfy aircraft performance criteria (e.g.,

minimum takeoff distance, maximum range, etc.). The structural properties of the wing

can then be selected to satisfy the sufficient conditions above. Increasing the stiffness

and mass of the wing or mounting the store closer to the wing center of gravity will

satisfy the sufficient conditions.
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Proof. Let VL be a positive-definite, continuously differentiable function defined as

VL , ET + Ec +
1

2
eTM̄e+

1

2
θ̃TΓ−1θ̃. (5–24)

Based on (5–24) and the inequalities in (5–19), VL can be bounded as

ζ1Eb +
λmin

(
M̄
)

2
‖e‖2 +

λmin (Γ−1)

2

∥∥∥θ̃∥∥∥2

≤ VL ≤ ζ2Eb +
λmax

(
M̄
)

2
‖e‖2 +

λmax (Γ−1)

2

∥∥∥θ̃∥∥∥2

,

(5–25)

where λmin (ξ) and λmax (ξ) denote the minimum and maximum eigenvalue of ξ, respec-

tively.

Differentiating (5–24) and substituting (5–10) and (5–11) into the resulting expres-

sion yields

V̇L = ĖT + Ėc − eTKe. (5–26)

In (5–26), ĖT is determined by differentiating (5–12) with respect to time to obtain

ĖT =

ˆ l

0

ωt
(
ρωtt + ρxcc cos (φ)φtt − ρxcc sin (φ)φ2

t

)
dy +

ˆ l

0

(EIωyyωtyy +GJφyφty) dy

+

ˆ l

0

φt
((
Iw + ρx2

cc
2
)
φtt + ρxcc cos (φ)ωtt

)
dy. (5–27)

Substituting (5–1) and (5–2) into the first and third integrals of (5–27) yields

ĖT =

ˆ l

0

(
L̄wφωt + M̄wφφt

)
dy −

ˆ l

0

EIωtωyyyydy +

ˆ l

0

EIωyyωtyydy +

ˆ l

0

GJφtφyydy

+

ˆ l

0

GJφyφtydy. (5–28)

Integrating by parts the third and fifth integrals in (5–28) and applying the boundary

conditions of the PDE system results in

ˆ l

0

EIωyyωtyydy = −EIωyyy (l, t)ωt (l, t) +

ˆ l

0

EIωtωyyyydy, (5–29)
ˆ l

0

GJφyφtydy = GJφy (l, t)φt (l, t)−
ˆ l

0

GJφtφyydy. (5–30)
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Using the expressions in (5–29) and (5–30), (5–28) can be rewritten as

ĖT =

ˆ l

0

(
L̄wφωt + M̄wφφt

)
dy − EIωyyy (l, t)ωt (l, t) +GJφy (l, t)φt (l, t) . (5–31)

Using the auxiliary signal definition in (5–5), (5–31) can be expressed as

ĖT =

ˆ l

0

(
L̄wφωt + M̄wφφt

)
dy + eT

 EI
2

0

0 GJ
2

 e− EI

2
ω2
t (l, t)− EI

2
ω2
yyy (l, t)

−GJ
2
φ2
y (l, t)− GJ

2
φ2
t (l, t) .

In (5–26), Ėc is determined by differentiating (5–13) with respect to time to yield

Ėc = β1

ˆ l

0

ωyy
(
ρωtt + ρxcc cos (φ)φtt − ρxcc sin (φ)φ2

t

)
dy

+β1

ˆ l

0

ρxcc cos (φ)φtωtyydy + β1

ˆ l

0

ρωtωtyydy

+β1

ˆ l

0

φyy
((
Iw + ρx2

cc
2
)
φtt + ρxcc cos (φ)ωtt − ρxcc sin (φ)φtωt

)
dy

+β1

ˆ l

0

φtyy
((
Iw + ρx2

cc
2
)
φt + ρxcc cos (φ)ωt

)
dy. (5–32)

The expression for Ėc can be simplified by integrating the second integral as

β1

ˆ l

0

ρxcc cos (φ)φtωtyydy = β1ρxccl cos (φ (l, t))φt (l, t)ωt (l, t)

−β1

ˆ l

0

ρxcc cos (φ)φtωtdy

+β1

ˆ l

0

ρxcc sin (φ)φyφtωtydy

−β1

ˆ l

0

ρxcc cos (φ)φtyωtydy. (5–33)

Substituting the expression in (5–33) and the system dynamics in (5–1) and (5–2) into

(5–32) yields

Ėc = β1

ˆ l

0

(
L̄wφ− EIωyyyy

)
ωyydy + β1

ˆ l

0

ρωtωtyydy

+β1ρxccl cos (φ (l, t))φt (l, t)ωt (l, t)
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−β1

ˆ l

0

ρxcc cos (φ)φtωtdy + β1

ˆ l

0

(
M̄wφ+GJφyy

)
φyydy

+β1

ˆ l

0

(
Iw + ρx2

cc
2
)
φtφtyydy. (5–34)

After integrating by parts the terms −β1

´ l
0
EIωyyyyωyydy, β1

´ l
0
ρωtωtyydy,

β1

´ l
0
GJφyyφyydy, and β1

´ l
0

(Iw + ρx2
cc

2)φtφtyydy from (5–34)2 , Ėc can be expressed as

Ėc = β1

ˆ l

0

(
L̄wφωy + M̄wφφy

)
ydy − β1EIlωyyy (l, t)ωy (l, t)− 3

2
β1EI

ˆ l

0

ω2
yydy

+
1

2
β1ρω

2
t (l, t)− 1

2
β1ρ

ˆ l

0

ω2
t dy − β1ρxcc

ˆ l

0

cos (φ)φtωtdy

+β1ρxccl cos (φ (l, t))φt (l, t)ωt (l, t) +
1

2
β1GJφ

2
y (l, t)

−1

2
β1GJ

ˆ l

0

φ2
ydy +

1

2
β1l
(
Iw + ρx2

cc
2
)
φ2
t (l, t)− 1

2
β1

(
Iw + ρx2

cc
2
) ˆ l

0

φ2
tdy.

Using Young’s Inequality and Lemma A.12 from [36], Ėc can be upper bounded as

Ėc ≤ − (1− xcc)
β1ρ

2

ˆ l

0

ω2
t dy −

(
3EI

2
− L̄wl

3

2

)
β1

ˆ l

0

ω2
yydy

−
((
Iw + ρx2

cc
2
)
− ρxcc

) β1

2

ˆ l

0

φ2
tdy +

1

2
β1ρω

2
t (l, t)

−
(
GJ − M̄wl

3 − M̄wl − L̄wl3
) β1

2

ˆ l

0

φ2
ydy − β1EIlωyyy (l, t)ωy (l, t)

+β1ρxcclφt (l, t)ωt (l, t) +
1

2
β1GJφ

2
y (l, t) +

1

2
β1l
(
Iw + ρx2

cc
2
)
φ2
t (l, t) . (5–35)

Using (5–5), −β1EIlωyyy (l, t)ωy (l, t) can be expressed as

− β1EIlωyyy (l, t)ωy (l, t) = −β1EIl

2
ω2
yyy (l, t)− β1EIl

2
ω2
t (l, t) +

β1EIl

2
e2

1, (5–36)

where e1 denotes the first element of the vector e, (i.e., e1 , ωt (l, t) − ωyyy (l, t)). Using

(5–36), (5–35) can be rewritten as

Ėc ≤ − (1− xcc)
β1ρ

2

ˆ l

0

ω2
t dy −

(
3EI

2
− L̄wl

3

2

)
β1

ˆ l

0

ω2
yydy

2 See Appendix H
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−
((
Iw + ρx2

cc
2
)
− ρxcc

) β1

2

ˆ l

0

φ2
tdy +

β1EIl

2
e2

1 +
1

2
β1l
(
Iw + ρx2

cc
2
)
φ2
t (l, t)

−
(
GJ − M̄wl

3 − M̄wl − L̄wl3
) β1

2

ˆ l

0

φ2
ydy −

β1EIl

2
ω2
yyy (l, t)− β1EIl

2
ω2
y (l, t)

+
1

2
β1ρω

2
t (l, t) + β1ρxcclφt (l, t)ωt (l, t) +

1

2
β1GJφ

2
y (l, t) . (5–37)

Inserting (5–31) and (5–37) into (5–26) and using Young’s inequality yields

V̇L ≤ −1

2

(
β1ρ− β1ρxcc− L̄w

) ˆ l

0

ω2
t dy −

(
3EI

2
− L̄wl

3

2

)
β1

ˆ l

0

ω2
yydy

−1

2

(
β1

(
Iw + ρx2

cc
2
)
− β1ρxcc− M̄w

) ˆ l

0

φ2
tdy

−1

2

(
β1GJ − β1M̄wl

3 − β1M̄wl − β1L̄wl
3 −

(
M̄w + L̄w

)
l2
) ˆ l

0

φ2
ydy

−1

2
(β1EIl + EI − β1ρ− β1ρxccl)ω

2
t (l, t)

−1

2

(
GJ − β1l

(
Iw + ρx2

cc
2
)
− β1ρxccl

)
φ2
t (l, t)− 1

2
(β1EIl + EI)ω2

yyy (l, t)

−1

2
(GJ − β1GJ)φ2

y (l, t)−
(
K − 1

2
max {EI + β1EIl,GJ}

)
‖e‖2 . (5–38)

Provided the sufficient conditions in (5–20)-(5–23) are satisfied, (5–38) can be ex-

pressed as

V̇L ≤ −λ1Eb (t)− λ2e
2 (t) , (5–39)

where λ1 ∈ R and λ2 ∈ R are positive constants defined as

λ1 ,
1

2
min

{
β1ρ− β1ρxcc− L̄w,

3EI

2
− L̄wl

3

2
, β1

(
Iw + ρx2

cc
2
)
− β1ρxcc− M̄w

β1GJ − β1M̄wl
3 − β1M̄wl − β1L̄wl

3 −
(
M̄w + L̄w

)
l2
}
,

λ2 , K − 1

2
max {EI + β1EIl,GJ} .

It can be concluded from (5–24) and (5–39) that VL ∈ L∞; hence Eb ∈ L∞, e ∈ L∞,

and θ̃ ∈ L∞. Since Eb ∈ L∞, it can be concluded that
´ l

0
ω2
yydy ∈ L∞ and

´ l
0
φ2
ydy ∈ L∞;

hence the elastic potential energy in the wing EP ∈ L∞ and by Property 1 ωyyy (l, t) ∈

L∞ and φy (l, t) ∈ L∞. Since e ∈ L∞, ωyyy (l, t) ∈ L∞, and φy (l, t) ∈ L∞, (5–5) can be
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used to show ωt (l, t) ∈ L∞ and φt (l, t) ∈ L∞. Since ωt (l, t) ∈ L∞, φt (l, t) ∈ L∞, and

Eb ∈ L∞, the kinetic energy of the system EK ∈ L∞ and by Property 2, ∂q

∂tq
ω (y, t) ∈ L∞

and ∂q

∂tq
φ (y, t) ∈ L∞ for q = 1, 2, 3. Equations (5–3) and (5–4) can be used to show that

the boundary control input, U ∈ L∞. Differentiating g (t) from (5–39) with respect to time

yields

ġ = λ1Ėb + 2λ2eė, (5–40)

where

Ėb = 2

ˆ l

0

(ωtωtt + ωyyωtyy + φtφtt + φtyφy) dy. (5–41)

After integrating by parts the second and fourth terms in (5–41), Ėb can be expressed as

Ėb = 2

ˆ l

0

(ωt (ωtt + ωyyyy) + φt (φtt − φyy)) dy − 2ωt (l, t)ωyyy (l, t) + 2φt (l, t)φy (l, t) .

(5–42)

Since ωt (y, t), ωtt (y, t), ωyyyy (y, t), φt (y, t), φtt (y, t), φyy (y, t), ωt (l, t), ωyyy (l, t), φt (l, t),

and φy (l, t) ∈ L∞ (from Properties 1 and 2), (5–42) can be used to conclude that

Ėb ∈ L∞. Equations (5–11) and (5–40) can be used to show that ġ ∈ L∞. Lemma A.6

from [36] can be applied to(5–39) to conclude lim
t→∞

g (t) = 0 and hence

lim
t→∞

Eb (t) , e (t) = 0.

Using (5–14) and Lemma A.12 in [36] the following inequalities can be developed

Eb ≥
ˆ l

0

ω2
yydy ≥

1

l3
ω2 (y, t) ≥ 0, (5–43)

Eb ≥
ˆ l

0

φ2
ydy ≥

1

l
φ2 (y, t) ≥ 0. (5–44)

Since Eb → 0 as t → ∞, it can be concluded from (5–43) and (5–44) that ω (y, t) → 0

and φ (y, t)→ 0 as t→∞.
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5.4 Summary

This chapter presents the construction of a boundary control strategy for suppress-

ing LCO behavior in an uncertain flexible aircraft wing. The boundary control strategy

retains the full PDE system, thereby avoiding potential spillover instabilities, and ensures

asymptotic regulation of the distributed states in the presence of parametric uncertain-

ties. A potential drawback to the developed method is the need for measurements of

high-order spatial derivatives of the distributed states (e.g., ωyyy (l, t)).
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CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Dissertation Summary

The focus of this work is to develop control methods for the suppression of limit

cycle oscillations (LCO) in aircraft systems. The driving mechanism behind LCO

behavior remains unknown; however, the behavior is prevalent on the current generation

of fighter aircraft and is expected to persist on next generation aircraft. The major

concerns associated with LCO behavior are its impact on the safe release of ordnance

and the ability of the pilot to perform necessary mission-related tasks.

Chapter 2 focuses on the development of an adaptive control strategy to suppress

LCO behavior in an uncertain two degree of freedom airfoil section. The developed con-

troller features a neural network (NN) feedforward term to compensate for uncertainties

in the airfoil dynamics and a robust integral of the sign of the error (RISE) feedback term

to ensure asymptotic tracking of the airfoil angle of attack. The simulation results of

Chapter 2, as seen in previous RISE-based control strategies, indicate that the RISE-

based controller can demand a large control effort in respone to large initial offsets or

large disturbances. In Chapter 3, a saturated RISE-based controller is developed in

which the RISE control structure is enbedded in smooth hyberbolic functions to ensure

actuator contraints are not breached while maintaining asymptotic tracking with a con-

tinuous controller. The actuator limit is known a priori and can be adjusted via changing

the control gains.

Chapters 4 and 5 focus on the development of partial differential equation (PDE)-

based boundary control methods for the suppression of LCO behavior in a flexible

aircraft wing. Chapter 4 uses a PDE-based backstepping method to transform a linear

PDE system describing the dynamics of the distributed states to an exponentially

stable linear PDE system. Chapter 5 develops a boundary control strategy that uses a

gradient-based adaptive update law to compensate for linear-in-the-parameters (LP)
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uncertainties and a Lyapunov-based analysis to show that the energy in the system

remains bounded and asymptotically decays to zero. The differences between the two

PDE-based control strategies are the type of system used in the design and the required

measurements for implementation. The strategy in Chapter 4 is designed for a linear

PDE model of the flexible aircraft wing and uses measurements of the flexible states

across the entire wing span. The controller in Chapter 5 is designed for a nonlinear PDE

model and requires measurements of the higher spatial derivatives of the flexible states

at the actuator location (e.g., ωyyy (l, t)).

6.2 Limitations and Future Work

The work in this dissertation develops new robust and adaptive controllers for the

suppression of LCO behavior in aircraft systems. In this section, open problems related

to the work in this dissertation are discussed.

From Chapter 2:

1. A practical limitation in the developed RISE-based control strategy is that as the

severity of the LCO behavior increases, the developed controller can demand a

large control surface deflection. Additionally, the Monte Carlo simulation results

indicated that the maximum control effort is sensitive to variations in the parameter

uncertainties, which could lead to unexpected actuator saturation. This limitation is

addressed in Chapter 3.

From Chapter 3:

1. A potential drawback of the saturated RISE-based control strategy is that under

certain conditions, the LCO produced could be too severe resulting in sufficient

gain conditions that can’t be satisfied. This is a direct result of the actuator limit;

increasing the actuator limit relaxes the sufficient gain conditions. Furthermore,

an adaptive feedforward term could potentially be included to compensate for

the uncertain dynamics, thereby relaxing the sufficient gain conditions. However,

for any controller that has restricted control authority, it is possible for some
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disturbance to dominate the controller’s ability to yield a desired or even stable

performance.

From Chapter 4:

1. One drawback of the developed PDE-based backstepping controller is that it

relies on the assumption that the distances from the wing elastic axis to the wing

center of gravity and store center of gravity are zero. Without this assumption, the

PDE describing the dynamics of the wing deformations becomes nonlinear which

does not facilitate the use of the backstepping strategy employed in this chapter.

Instead, an approach similar to that of [36,37], in which a Lyapunov-based analysis

proves that the energy in the system decays to zero, could be used to generate the

aerodynamic lift and moment at the wing tip. Chapter 5 addresses this limitation.

2. Due to the lack of clarity amongst researchers as to the driving mechanism behind

LCO, a common practice in literature, and in the work of Chapters 2 and 3, is

to replicate the symptoms of LCO behavior by including nonlinearities in the

wing structure. In most cases, this is a nonlinear torsional stiffness. The control

strategies in Chapters 2 and 3 provide a framework that can be readily adapted

to compensate for the driving mechanism as it becomes better understood.

However, due to the structure of the PDE-based backstepping method, if the

driving mechanism is nonlinear, its incorporation into the developed control

structure may not be feasible, and a method similar to [36,37] must be employed.

From Chapter 5:

1. Since the controller in Chapter 5 was developed for a nonlinear PDE, it can be

adapted more readily to compensate for the inclusion of the driving mechanism

behind LCO behavior. The control structure will require small changes, mostly

to the sufficient gain conditions to include the influence of the uncertainties

associated with the driving mechanism; however, more complex systems typically

require more complex candidate Lyapunov functions (i.e., the definition for Ec

83



will change to account for cross-terms associated with the model of the driving

mechanism).

2. A potential drawback to the developed method is the need for measurements of

high-order spatial derivatives of the distributed states (e.g., ωyyy (l, t)). A shear

sensor attached at the wingtip can be used to measure ωyyy (l, t) and torque

measurments at the wingtip can be used to determine φy (l, t). Future efforts are

focused on developing PDE-based output feedback boundary control strategies

that would eliminate the need for high-order spatial derivative measurements.
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APPENDIX A
PROOF THAT M IS INVERTIBLE (CH 3)

Lemma A.1. M , given by the expressions in (2–2) and (2–4)-(2–6), is invertible.

To show that M is invertible, it is necessary to show that det (M) 6= 0. The det (M)

can be expressed as det (M) = m1m4 −m2
2 where m1,m2,m4 ∈ R are defined in (2–4)-

(2–6). Since det (M) appears in g, which is used in the Lyapunov function, the following

condition is desirable

m1m4 − |m2|2 > 0. (A–1)

From (2–5), m2 can be written as m2 = p cos (α) − l sin (α), where p = (rx − a)mwb +

(sx − a)msb ∈ R and l = (sh − ah)msb + (rh − ah)mwb ∈ R. The maximum value of m2

can be expressed as |m2| ≤
√
p2 + l2. Substituting for the values of p and l, |m2|2 can be

expressed as

|m2|2 ≤ (rx − a)2 b2m2
w + 2 (rx − a) (sx − a) b2msmw

+2 (sh − ah) (rh − ah) b2mwms + (rh − ah)2 b2m2
w

+ (sx − a)2 b2m2
s + (sh − ah)2 b2m2

s. (A–2)

Using (2–4) and (2–6), m1m4 can be expressed as

m1m4 = (rx − a)2 b2m2
w + (rx − a)2 b2mwms

+ (rh − ah)2 b2m2
w + (rh − ah)2 b2mwms

+ (sx − a)2 b2msmw + (sh − ah)2 b2msmw

+ (sx − a)2 b2m2
s + (sh − ah)2 b2m2

s

+ (Iw + Is) (mw +ms) . (A–3)

Evaluating the det (M) using (A–2) and (A–3) yields

det (M) ≥
[
(rx − a)2 − 2 (rx − a) (sx − a)

]
b2mwms

+
[
(sh − ah)2 + (sx − a)2] b2mwms
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+
[
(rh − ah)2 − 2 (rh − ah) (sh − ah)

]
b2mwms

+ (Iw + Is) (ms +mw) . (A–4)

After some algebraic manipulation, the expression in (A–4) can be rewritten as

det (M) ≥ [(rx − a)− (sx − a)]2 b2mwms

+ [(rh − ah)− (sh − ah)]2 b2mwms

+ (Iw + Is) (ms +mw) . (A–5)

Since the first two terms in (A–5) and the mass and moment of inertia of the wing and

store are always positive, det (M) > 0; hence M−1 is invertible.
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APPENDIX B
PROOF OF g > 0 (CH 3)

Lemma B.1. Given the expression in (2–16), g > 0 if the following condition is satisfied

m1Cmδ
Clδ

> ς (B–1)

To prove that g must be strictly greater than zero, (2–16) is used to write g as

g = 1
det(M)

[m2Clδ +m1Cmδ ]. Using the results of Appendix A, 1
det(M)

> 0. Therefore,

for g > 0, the term [m2Clδ +m1Cmδ ] must be positive. From (2–5), m2 is sign indefinate

so for [m2Clδ +m1Cmδ ] to remain positive, m1Cmδ > m2Clδ . From (2–5), m2 can be

upper bounded as |m2| ≤ ς, where ς ∈ R is a known positive constant. From (2–16)

and the upper bound on m2, g > 0 provided that m1Cmδ
Clδ

> ς. This sufficient condition

can be satisfied by adjusting the geometry of the wing-store system. For example, the

left-hand side can be increased by increasing the control surface effectiveness ratio Cmδ
Clδ

,

which can be done by changing the wing airfoil. The constant ς can be made smaller by

decreasing the distance between the wing elastic axis and the store center of gravity.
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APPENDIX C
GROUPING OF TERMS IN χ̇1 AND χ̇2 (CH 3)

From (2–17), the auxiliary function χ ∈ R is defined as

χ ,
1

g
f − 1

gd
fd = χ1 + χ2,

where χ1 ∈ R contains all terms in χ whose time derivative is bounded by the norm

of the states and χ2 ∈ R contains all terms whose time derivative is bounded by a

constant. The auxiliary functions χ1 and χ2 are explicitly defined as

χ1 =
det(M)

(m1Cmδ +m2Clδ)
(γ1ė1 + γ2e2)

χ2 =
m2

(
C̃11ḣ+ C̃12α̇ + K̃11h+ K̃12α

)
(m1Cmδ +m2Clδ)

−
m1

(
C̃21ḣ+ C̃22α̇ + K̃22α

)
(m1Cmδ +m2Clδ)

− det (M) α̈d
(m1Cmδ +m2Clδ)

.
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APPENDIX D
DEVELOPMENT OF THE BOUND ON Ñ (CH 3)

Recall from (2–32), the auxiliary function Ñ is defined as

Ñ , −1

2

d

dt

(
1

g

)
r + χ̇1 + e2 − proj

(
Γ1σ̂

′
V̂ T ẋde2

)T
σ̂

−Ŵ T σ̂
′
proj

(
Γ2ẋd

(
σ̂
′T Ŵe2

)T)T
xd. (D–1)

From the assumption on the desired trajectories and (2–23) and (2–24), the last two

terms in Ñ can be upper bounded as

∣∣∣∣proj (Γ1σ̂
′
V̂ T ẋde2

)T
σ̂

∣∣∣∣ ≤ c1 |e2| ≤ c1 ‖z‖∣∣∣∣∣Ŵ T σ̂
′
proj

(
Γ2ẋd

(
σ̂
′T Ŵe2

)T)T
xd

∣∣∣∣∣ ≤ c2 |e2| ≤ c2 ‖z‖ ,

where c1, c2 ∈ R are known positive constants. Taking the time derivative of χ1, defined

in Appendix C, yields

χ̇1 =

(
d
dt

(det (M))

(m1Cmδ +m2Clδ)
− det (M) (ṁ2Clδ)

(m1Cmδ +m2Clδ)
2

)
(γ1ė1 + γ2e2)

+
det(M)

(m1Cmδ +m2Clδ)
(γ1ë1 + γ2ė2) .

From Appendix B and the expression for det (M) in Appendix A, the terms

(m1Cmδ +m2Clδ) and (m1Cmδ +m2Clδ)
2 are bounded below by a constant while det (M)

is upper bounded by a constant. Taking the time derivative of det (M) yields

d

dt
(det (M)) = −2m2ṁ2

= 2m2mwbα̇ (rh − ah) cos (α) + 2m2mwbα̇ (rx − a) sin (α)

+2m2msbα̇ (sh − ah) cos (α) + 2m2msbα̇ (sh − a) sin (α) .

Since ‖q̇‖ ≤ κ2 and using the result in Appendix B, d
dt

(det (M)) ≤ c3, where c3 ∈ R is a

known positive constant.
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The upper bound on χ̇1 can be expressed as

|χ̇1| ≤

∣∣∣∣∣
(

d
dt

(det (M))

(m1Cmδ +m2Clδ)
− det (M) (ṁ2Clδ)

(m1Cmδ +m2Clδ)
2

)∣∣∣∣∣ |(γ1ė1 + γ2e2)|

+

∣∣∣∣ det(M)

(m1Cmδ +m2Clδ)
(γ1ë1 + γ2ė2)

∣∣∣∣ .
Using the upper bounds on d

dt
(det (M)), ṁ2, and the expressions in (2–12) and (2–13),

the upper bound on χ̇1 can be rewritten as

|χ̇1| ≤ c4 |e1|+ c5 |e2|+ c6 |r| ≤ c
′

1 ‖z‖ ,

where c4, c5, c6, c
′
1 ∈ R are known positive constants.

The first term in (D–1) can be expressed as

− 1

2

d

dt

(
1

g

)
r =

r

2g2

(
(−2m2ṁ2) (m1Cmδ +m2Clδ)

det (M)2

)
+

rṁ2Clδ
2g2 det (M)

. (D–2)

Using the upper bounds on ṁ2 and m2 and the lower bounds on g and det (M), the

expression in (D–2) can be upper bounded as∣∣∣∣12 d

dt

(
1

g

)
r

∣∣∣∣ ≤ c
′

2 |r| ≤ c
′

2 ‖z‖ .

The upper bound on Ñ can then be expressed as∣∣∣Ñ ∣∣∣ ≤ ∣∣∣∣12 d

dt

(
1

g

)
r

∣∣∣∣+ |χ̇1|+ |e2|+
∣∣∣∣proj (Γ1σ̂

′
V̂ T ẋde2

)T
σ̂

∣∣∣∣
+

∣∣∣∣∣Ŵ T σ̂
′
proj

(
Γ2ẋd

(
σ̂
′T Ŵe2

)T)T
xd

∣∣∣∣∣ .
Therefore, using the developed upper bounds on the individual terms,∣∣∣Ñ ∣∣∣ ≤ (c′1 + c

′

2 + 1 + c1 + c2

)
‖z‖ ≤ η ‖z‖ ,

where η ∈ R is a known positive constant.
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APPENDIX E
DETAILS ON THE DEVELOPMENT OF THE CONSTANTS cm1, cm2, AND cm3 (CH 4)

Using the results of Appendix B, g > ε1 where ε1 ∈ R is a known positive constant.

Since m2
2 ≥ 0, |det (M)| ≤ m1m4 and

∣∣∣det(M)
g

∣∣∣ ≤ m1m4

g
< cm1.

Taking the time derivative of det (M) yields

d

dt
(det (M)) = −2m2ṁ2

= 2m2mwbα̇ (rh − ah) cos (α) + 2m2mwbα̇ (rx − a) sin (α)

+2m2msbα̇ (sh − ah) cos (α) + 2m2msbα̇ (sx − a) sin (α) .

Since ‖q̇‖ ≤ κ2 and using the result in Appendix B, the time derivative of det (M) can be

upper bounded as d
dt

(det (M)) < ε2 where ε2 ∈ R is a known positive constant. Since

g > ε1,
d
dt

(det(M))

g
can be upper bounded as∣∣∣∣∣ ddt (det (M))

g

∣∣∣∣∣ ≤ ε2

ε1

= cm2 .

Using the result in Appendix B and the upper bound on d
dt

(det (M)), ṁ2 can be

upper bounded as ṁ2 ≤ ε3 where ε3 ∈ R is a known positive constant. Using the result

in Appendix A, the term ṁ2Clδ det(M)

g2
can be upper bounded as

ṁ2Clδ det (M)

g2
≤ ε3Clδε4

ε2
1

< cm3 ,

where ε4 > |det (M)|.

91



APPENDIX F
DERIVATION OF THE BENDING AND TWISTING DYNAMICS OF A FLEXIBLE WING

(CH 5/6)

Consider a flexible wing with a store attached at the wing tip and uniform cross

section undergoing bending and twisting motions. The wing has span l ∈ R, chord

length c ∈ R, mass per unit length of ρ ∈ R, polar moment of inertia per unit length of

Iw ∈ R, bending rigidity EI ∈ R, and torsional rigidity GJ ∈ R. The attached store has

mass ms ∈ R and moment of inertia Js ∈ R. Define a right-hand coordinate system as

follows: the origin is on the shear center at the root of the wing, the x axis points out the

rear of the wing, and the y axis extends to the wing tip. Let ω , ω (y, t) ∈ R denote the

bending deflection and φ , φ (y, t) ∈ R denote the twisting deformation at the spanwise

location y ∈ [0, l]. Furthermore, it is assumed that the center of gravity and aerodynamic

center of the wing cross section and the center of gravity of the store are not colinear

with the elastic axis of the wing. Let xcc ∈ R and xsc ∈ R represent the distances from

the wing elastic axis to the wing center of gravity and store center of gravity, respectively.

Let the vectors p (y, t) ∈ R3 and pl (t) ∈ R3 denote the position of the center of gravity

of an arbitrary wing cross section and the position of the center of gravity of the store,

respectively. These vectors are expressed as

p (y, t) ,

[
xcc cos (φ (y, t)) y ω (y, t) + xcc sin (φ (y, t))

]T
,

pl (t) ,

[
xsc cos (φ (l, t)) l ω (l, t) + xsc sin (φ (l, t))

]T
.

The kinetic energy of the wing and store can be expressed as

Twing =
ρ

2

ˆ l

0

pTt (y, t) pt (y, t) dy +
Iw
2

ˆ l

0

φ2
t (y, t) dy

=
1

2

ˆ l

0

ρ
(
ω2
t (y, t) + 2xcc cos (φ (y, t))ωt (y, t)φt (y, t) + x2

cc
2φ2

t (y, t)
)
dy

+
1

2

ˆ l

0

Iwφ
2
t (y, t) dy,

Tstore =
ms

2
pTlt (t) plt (t) +

Js
2
φ2
t (l)
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=
ms

2

(
ω2
t (l) + 2xsc cos (φ (l))ωt (l)φt (l) + x2

sc
2φ2

t (l)
)

+
Js
2
φ2
t (l) ,

where the subscript t denotes the partial derivative with respect to t, ω (l) , ω (l, t), and

φ (l) , φ (l, t). The potential energy in the wing can be written as

U =
1

2

ˆ l

0

(
EIω2

yy +GJφ2
y

)
dy,

where the subscript y denotes the partial derivative with respect to y. The Lagrangian for

the wing-store system is defined as

L , Twing + Tstore − U

=
1

2

ˆ l

0

(
ρω2

t + 2ρxcc cos (φ)ωtφt +
(
ρx2

cc
2 + Iw

)
φ2
t − EIω2

yy −GJφ2
y

)
dy

+
ms

2
ω2
t (l) +msxsc cos (φ (l))ωt (l)φt (l) +

(
ms

2
x2
sc

2 +
Js
2

)
φ2
t (l) .

Hamilton’s principle is given as

ˆ t2

t1

(δW + δL) dt = 0,

where δL denotes the variation in the Lagrangian and δW denotes the virtual work

expressed as

δW =

ˆ l

0

(Lwδω +Mwδφ− ηwEIωtyyδωyy − ηφGJφtyδφy) dy + Ltipδω (l) +Mtipδφ (l) ,

where Lw ∈ R and Mw ∈ R represent the aerodynamic lift and moment per unit length,

respectively, Ltip ∈ R and Mtip ∈ R denote the aerodynamic lift and moment at the wing

tip, respectively, and ηw ∈ R and ηφ ∈ R denote Kelvin-Voigt damping coefficients. The

variation in the Lagrangian can be written as

δL =
∂L
∂ωt

δωt +
∂L
∂ωyy

δωyy +
∂L
∂φ

δφ+
∂L
∂φt

δφt +
∂L
∂φy

δφy

+
∂L

∂ωt (l)
δωt (l) +

∂L
∂φ (l)

δφ (l) +
∂L

∂φt (l)
δφt (l) ,
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where the partial derivatives are evaluated as

∂L
∂ωt

=

ˆ l

0

(ρωt + ρxcc cos (φ)φt) dy,

∂L
∂ωyy

= −
ˆ l

0

EIωyydy,

∂L
∂φ

= −ρxcc
ˆ l

0

sin (φ)φtωtdy,

∂L
∂φt

=

ˆ l

0

(
ρxcc cos (φ)ωt +

(
ρx2

cc
2 + Iw

)
φt
)
dy,

∂L
∂φy

= −
ˆ l

0

GJφydy,

∂L
∂ωt (l)

= msωt (l) +msxsc cos (φ (l))φt (l) ,

∂L
∂φ (l)

= −msxsc sin (φ (l))φt (l)ωt (l) ,

∂L
∂φt (l)

= msxsc cos (φ (l))ωt (l) +
(
msx

2
sc

2 + Js
)
φt (l) .

Substituting the expressions for δW and δL into Hamilton’s principle yields

−
ˆ t2

t1

ˆ l

0

EIωyyδωyydydt+

ˆ t2

t1

ˆ l

0

(ρωt + ρxcc cos (φ)φt) δωtdydt

−
ˆ t2

t1

ˆ l

0

GJφyδφydydt+

ˆ t2

t1

ˆ l

0

(
ρxcc cos (φ)ωt +

(
ρx2

cc
2 + Iw

)
φt
)
δφtdydt

− ηw
ˆ t2

t1

ˆ l

0

EIωtyyδωyydydt− ηφ
ˆ t2

t1

ˆ l

0

GJφtyδφydydt

+

ˆ t2

t1

(msωt (l) +msxsc cos (φ (l))φt (l)) δωt (l) dt

+

ˆ t2

t1

(
msxsc cos (φ (l))ωt (l) +

(
msx

2
sc

2 + Js
)
φt (l)

)
δφt (l) dt

−msxsc

ˆ t2

t1

sin (φ (l))φt (l)ωt (l) δφ (l) dt+

ˆ t2

t1

ˆ l

0

(Lwδω +Mwδφ) dydt

− ρxcc
ˆ t2

t1

ˆ l

0

sin (φ)φtωtδφdydt+

ˆ t2

t1

(Ltipδω (l) +Mtipδφ (l)) dt = 0. (F–1)

The equations of motion and boundary conditions for the wing-store system are ob-

tained by integrating by parts select terms from (F–1). Integrating by parts the first eight
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integrals in (F–1) and recalling that the variations at t = t1 and t = t2 are zero yields

−
ˆ t2

t1

ˆ l

0

EIωyyδωyydydt = −
ˆ t2

t1

EIωyy (l) δωy (l) dt+

ˆ t2

t1

EIωyy (0) δωy (0) dt

+

ˆ t2

t1

∂

∂y
(EIωyy (l)) δω (l) dt−

ˆ t2

t1

∂

∂y
(EIωyy (0)) δω (0) dt

−
ˆ t2

t1

ˆ l

0

∂2

∂y2
(EIωyy) δωdydt, (F–2)

−
ˆ t2

t1

ˆ l

0

GJφyδφydydt = −
ˆ t2

t1

GJφy (l) δφ (l) dt+

ˆ t2

t1

GJφy (0) δφ (0) dt

+

ˆ t2

t1

ˆ l

0

∂

∂y
(GJφy) δφdydt, (F–3)

ˆ t2

t1

ˆ l

0

(ρωt + ρxcc cos (φ)φt) δωtdydt = −
ˆ t2

t1

ˆ l

0

(
ρωtt − ρxcc sin (φ)φ2

t

)
δωdydt

−
ˆ t2

t1

ˆ l

0

ρxcc cos (φ)φttδωdydt (F–4)

ˆ t2

t1

ˆ l

0

ρxcc cos (φ)ωtδφtdydt

+

ˆ t2

t1

ˆ l

0

(
ρx2

cc
2 + Iw

)
φtδφtdydt =

ˆ t2

t1

ˆ l

0

ρxcc sin (φ)ωtφtδφdydt

−
ˆ t2

t1

ˆ l

0

ρxcc cos (φ)ωttδφdydt,

−
ˆ t2

t1

ˆ l

0

(
ρx2

cc
2 + Iw

)
φttδφdydt (F–5)

− ηw
ˆ t2

t1

ˆ l

0

EIωtyyδωyydydt = −ηw
ˆ t2

t1

EIωtyy (l) δωy (l) dt

+ηw

ˆ t2

t1

EIωtyy (0) δωy (0) dt

+ηw

ˆ t2

t1

∂

∂y
(EIωtyy (l)) δω (l) dt

−ηw
ˆ t2

t1

∂

∂y
(EIωtyy (0)) δω (0) dt
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−ηw
ˆ t2

t1

ˆ l

0

∂2

∂y2
(EIωtyy) δωdydt, (F–6)

− ηφ
ˆ t2

t1

ˆ l

0

GJφtyδφydydt = −ηφ
ˆ t2

t1

GJφty (l) δφ (l) dt

+ηφ

ˆ t2

t1

GJφty (0) δφ (0) dt

+ηφ

ˆ t2

t1

ˆ l

0

∂

∂y
(GJφty) δφdydt, (F–7)

ˆ t2

t1

msωt (l) δωt (l) dt

ˆ t2

t1

msxsc sin (φ (l))φ2
t (l) δω (l) dt

+

ˆ t2

t1

msxsc cos (φ (l))φt (l) δωt (l) dt = −
ˆ t2

t1

msxsc cos (φ (l))φtt (l) δω (l) dt

−
ˆ t2

t1

msωtt (l) δω (l) dt, (F–8)

ˆ t2

t1

msxsc cos (φ (l))ωt (l) δφt (l) dt

+

ˆ t2

t1

(
msx

2
sc

2 + Js
)
φt (l) δφt (l) dt =

ˆ t2

t1

msxsc sin (φ (l))ωt (l)φt (l) δφ (l) dt

−
ˆ t2

t1

msxsc cos (φ (l))ωtt (l) δφ (l) dt

−
ˆ t2

t1

(
msx

2
sc

2 + Js
)
φtt (l) δφ (l) dt, (F–9)

Substituting (F–2)-(F–9) into (F–1) yields the following PDE system and boundary

conditions

Lw = ρωtt − ρxcc sin (φ)φ2
t + ρxcc cos (φ)φtt +

∂2

∂y2
(EIωyy)

+ηw
∂2

∂y2
(EIωtyy) , (F–10)

Mw =
(
Iw + ρx2

cc
2
)
φtt + ρxcc cos (φ)ωtt −

∂

∂y
(GJφy)

−ηφ
∂

∂y
(GJφty) , (F–11)

ω (0) = ωy (0) = ωyy (l) = φ (0) = 0, (F–12)
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Ltip = msωtt (l)−msxsc sin (φ (l))φ2
t (l) +msxsc cos (φ (l))φtt (l)

− ∂

∂y
(EIωyy (l)− ηwEIωtyy (l)) , (F–13)

Mtip =
(
msx

2
sc

2 + Js
)
φtt (l) +msxsc cos (φ (l))ωtt (l) +GJφy (l)

+ηφGJφty (l) (F–14)

The development in Chapter 4 is based on the assumptions that EI and GJ are

constants and xc = xs = 0. Under these assumptions, (F–10), (F–11), (F–13), and

(F–14) become

Lw = ρωtt + EIωyyyy + ηwEIωtyyyy, (F–15)

Mw = Iwφtt −GJφyy − ηφGJφtyy, (F–16)

EIωyyy (l) + ηwEIωtyyy (l) = msωtt (l)− Ltip,

GJφy (l) + ηφGJφty (l) = −Jsφtt (l) +Mtip.

The development in Chapter 5 is based on the assumptions that EI and GJ are

constants and the Kelvin-Voigt damping coefficients are zero. Under these assumptions,

(F–10), (F–11), (F–13), and (F–14) become

Lw = ρωtt − ρxcc sin (φ)φ2
t + ρxcc cos (φ)φtt + EIωyyyy, (F–17)

Mw =
(
Iw + ρx2

cc
2
)
φtt + ρxcc cos (φ)ωtt −GJφyy (F–18)

Ltip = msωtt (l)−msxsc sin (φ (l))φ2
t (l) +msxsc cos (φ (l))φtt (l)− EIωyyy (l) ,

Mtip =
(
msx

2
sc

2 + Js
)
φtt (l) +msxsc cos (φ (l))ωtt (l) +GJφy (l)
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APPENDIX G
EXPONENTIAL STABILITY OF THE TARGET SYSTEM (CH 5)

The target system in Chapter 5 is given as

IwΦtt −GJΦyy − ηφGJΦtyy +
(
cGJ − M̄w

)
Φ + ηφcGJΦt = 0, (G–1)

where c ∈ R is a constant control gain and the boundary conditions are Φ (0, t) = 0 and

GJΦy (l, t) + ηφGJΦty (l, t) = 0. Since (G–1) is a linear PDE, its solution is assumed to

be of the form Φ (y, t) = g (t)h (y). Substituting the assumed solution into (G–1) yields

Iwh (y) gtt (t)−GJg (t)hyy (y)− ηφGJgt (t)hyy (t) +
(
cGJ − M̄w

)
g (t)h (y)

+ηφcGJgt (t)h (y) = 0.

Gathering the like terms on opposite sides of the equation results in

Iwgtt (t) +
(
cGJ − M̄w

)
g (t) + ηφcGJgt (t)

−GJg (t)− ηφGJgt (t)
= −hyy (y)

h (y)
. (G–2)

The equality in (G–2) can only hold if the right-hand side and left-hand side are equal

to a constant σ. Examining the right-hand side of (G–2) results in the following ordinary

differential equation for h (y)

hyy (y) + σh (y) = 0 (G–3)

with the boundary conditions h (0) = 0 and hy (l) = 0. The cases where σ < 0 and σ = 0

lead directly to the trivial solution (i.e., h (y) = 0). A non-trivial solution to the case where

σ > 0 exists and is expressed as h (y) = a1 cos (
√
σx) + a2 sin (

√
σx) where a1 and a2 ∈ R

are constants determined through the application of the boundary conditions. Applying

the boundary conditions yields a1 = 0 and
√
σl = (2n+1)

2
π, where n = 0, 1, 2, . . . The

general solution to (G–3) can be written as

h (y) =
∞∑
n=0

An sin

(
(2n+ 1) π

2l
x

)
,

where An ∈ R is a constant associated with the nth particular solution.
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Examining the left-hand side of (G–2) yields

Iwgtt (t) + ηφGJ (c+ σ) gt (t) +
(
(c+ σ)GJ − M̄w

)
g (t) = 0,

whose nth pair of eigenvalues ξn satisfy the following quadratic expression

Iwξ
2
n + ηφGJ (c+ σn) ξn + (c+ σn)GJ − M̄w = 0,

where σn = (2n+1)2π2

4l2
. The nth pair of eigenvalues can be expressed as

ξn =
−ηφGJ (c+ σn)±

√
η2
φGJ

2 (c+ σn)2 + 4IwM̄w − 4IwGJ (c+ σn)

2Iw
. (G–4)

For the case in which η2
φGJ

2 (c+ σn)2 + 4IwM̄w − 4IwGJ (c+ σn) = 0, the resulting

eigenvalues are ξn = −ηφGJ(c+σn)

2Iw
. In the case where η2

φGJ
2 (c+ σn)2 + 4IwM̄w −

4IwGJ (c+ σn) < 0, the eigenvalues will be complex with Re (ξn) = −ηφGJ(c+σn)

2Iw
,

where Re (ξn) denotes the real part of ξn. Lastly, when η2
φGJ

2 (c+ σn)2 + 4IwM̄w −

4IwGJ (c+ σn) > 0, the resulting eignevalues will be real and distinct. Since the square

root term in (G–4) is positive, both real eigenvalues will be negative if the following

inequality is satisfied,

−ηφGJ (c+ σn) +
√
η2
φGJ

2 (c+ σn)2 + 4IwM̄w − 4IwGJ (c+ σn) < 0.

After some algebraic manipulation and recalling that σn = (2n+1)2π2

4l2
, the sufficient

condition above can be expressed as

c >
M̄w

GJ
− (2n+ 1)2 π2

4l2
. (G–5)

As n → ∞, the right-hand side of (G–5) gets smaller; hence, if the inequality is satisfied

for n = 0, it will be satisfied for all n. Substituting n = 0 into (G–5) yields the following

sufficient condition

c >
M̄w

GJ
− π2

4l2
.
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Since all eigenvalues have negative real parts, the target system in (G–1) is exponen-

tially stable.
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APPENDIX H
INTEGRATION BY PARTS OF SELECT TERMS IN ĖC (CH 6)

The development of an upper bound for Ėc relies on the integration by parts of the terms

−β1

´ l
0
EIωyyyyωyydy, β1

´ l
0
ρωtωtyydy, β1

´ l
0
GJφyyφyydy, and β1

´ l
0

(Iw + ρx2
cc

2)φtφtyydy

from (5–34). Integration of the first term,

−β1

´ l
0
EIωyyyyωyydy yields

− β1

ˆ l

0

EIωyyyyωyydy = −β1EIlωyyy (l, t)ωy (l, t) + β1EI

ˆ l

0

ωyyyωydy

+β1EI

ˆ l

0

ωyyyωyyydy,

−β1

ˆ l

0

EIωyyyyωyydy = −β1EIlωyyy (l, t)ωy (l, t)− β1EI

ˆ l

0

ω2
yydy

+β1EI

ˆ l

0

ωyyyωyyydy, (H–1)

−β1

ˆ l

0

EIωyyyyωyydy = −β1EIlωyyy (l, t)ωy (l, t)− 2β1EI

ˆ l

0

ω2
yydy

−β1EI

ˆ l

0

ωyyyωyyydy. (H–2)

After adding (H–1) to (H–2) and combining like terms, −β1

´ l
0
EIωyyyyωyydy can be

expressed as

− β1

ˆ l

0

EIωyyyyωyydy = −β1EIlωyyy (l, t)ωy (l, t)− 3

2
β1EI

ˆ l

0

ω2
yydy. (H–3)

The terms β1

´ l
0
ρωtωtyydy, β1

´ l
0
GJφyyφyydy, and β1

´ l
0

(Iw + ρx2
cc

2)φtφtyydy are evalu-

ated as

β1

ˆ l

0

ρωtωtyydy = β1ρlω
2
t (l, t)− β1ρ

ˆ l

0

ω2
t dy − β1

ˆ l

0

ρωtωtyydy, (H–4)

β1

ˆ l

0

GJφyyφyydy = β1GJlφ
2
y (l, t)− β1GJ

ˆ l

0

φ2
ydy

−β1

ˆ l

0

GJφyyφyydy, (H–5)

β1

ˆ l

0

(
Iw + ρx2

cc
2
)
φtφtyydy = β1

(
Iw + ρx2

cc
2
)
lφ2
t (l, t)− β1

(
Iw + ρx2

cc
2
) ˆ l

0

φ2
tdy
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−β1

ˆ l

0

(
Iw + ρx2

cc
2
)
φtφtyydy, (H–6)

which after some algebraic manipulation are rewritten as

β1

ˆ l

0

ρωtωtyydy =
1

2
β1ρlω

2
t (l, t)− 1

2
β1ρ

ˆ l

0

ω2
t dy, (H–7)

β1

ˆ l

0

GJφyyφyydy =
1

2
β1GJlφ

2
y (l, t)− 1

2
β1GJ

ˆ l

0

φ2
ydy, (H–8)

β1

ˆ l

0

(
Iw + ρx2

cc
2
)
φtφtyydy =

1

2
β1

(
Iw + ρx2

cc
2
)
lφ2
t (l, t)

−1

2
β1

(
Iw + ρx2

cc
2
) ˆ l

0

φ2
tdy. (H–9)
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