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Neuromuscular disorders can arise from disease (e.g., Parkinson’s, transverse

myelitis), disorders (e.g., cerebral palsy, spina bifida), or injury (e.g., spinal cord injury,

stroke, traumatic brain injury) and leave millions of people permanently disabled each

year. In an effort to mitigate the severity of such disorders and improve the overall

quality of life of those affected, several methods of rehabilitation are available. This

dissertation focuses on functional electrical stimulation (FES) and rehabilitation robotics.

FES results when neuromuscular electrical stimulation is used to induce an electric field

potential across the motor neurons of a muscle and artificially induce an involuntary

muscle contraction causing limb motion for some functional task. Because FES has

been shown to impart a number of health benefits including increasing muscular

strength, motor control, bone mineral density, cardiovascular parameters and others, it is

widely employed as a method of rehabilitation. However, FES has numerous challenges

including the nonlinear activation dynamics of the muscle and dynamically changing

muscle characteristics such as fatigue. Furthermore, because intense, coordinated,

repetitive exercise is encouraged in rehabilitation, a combination of robotic technology

and therapist interaction is motivated. However, challenges for using rehabilitation

robots include selecting the appropriate control scheme and ensuring participant safety.

Control schemes such as position, torque, and impedance control have been widely

used over the past decade, all of which require a rigorous stability analysis to enforce
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the desired behavior of the system and ensure the safety for a person interacting with

the robot. Furthermore, when FES is used on multiple muscles, and the robot switches

between tracking objectives or is periodically activated, a switched systems stability

analysis must be performed to ensure stability of the entire switched system. When

FES is combined with rehabilitation robots, hybrid exoskeletons arise and blend the

advantages of the two therapies while mitigating their respective drawbacks.

In Chapter 1, motivation for the use of technologies such as FES, rehabilitation

robots, and hybrid exoskeletons in rehabilitation settings is presented. A survey of

the literature on various control techniques for interfacing with these technologies is

provided, establishing a framework for this dissertation. Chapter 2 introduces the hybrid

exoskeleton used through this dissertation, an FES cycle, along with the corresponding

nonlinear, uncertain, time-varying, switched system dynamics and various properties

employed throughout the subsequent chapters. Autonomous state-dependent switching

is necessary because multiple muscle groups receive stimulation at different angles

throughout the crank cycle to produce positive torque about the crank and propel the

cycle forward. The nonlinear and adaptive controllers designed in subsequent chapters

are designed to interface with the FES cycle to accomplish various control objectives

such as position, cadence, and admittance tracking for the purposes of improving

rehabilitation options for people with neuromuscular disorders.

In Chapter 3, two nonlinear controllers are developed to accomplish simultaneous

cadence and power (i.e., torque) tracking; one to activate the rider’s muscle groups

through FES and one for the activation of the cycle’s electric motor. The cycle’s motor

utilizes a robust sliding-mode controller to regulate the cycle’s position and cadence

for all time. The rider’s muscles are activated using a similar robust sliding-mode

controller to regulate instantaneous power. To prevent backpedaling and the early

onset of fatigue, the rider’s muscles are not stimulated when kinematically inefficient

and the power tracking objective must be periodically relinquished because of the

12



lack of control authority available. Hence, incomplete control authority exists and a

switched systems dwell-time analysis must be completed to demonstrate stability of

the instantaneous power tracking objective. A Lyapunov-like switched systems stability

analysis is completed for both controllers and error systems proving global exponential

stability of the cadence objective and uniform ultimate boundedness of the power

objective. To prove the efficacy of the developed controllers, experiments are conducted

on seven able-bodied participants and six participants with neuromuscular disorders.

The controller is then compared to two previous developed FES cycling controllers for

simultaneous cadence and power tracking. The results indicate the controller developed

in this chapter is ideal for simultaneous cadence and power tracking compared to the

two previously developed controllers.

In Chapter 4, two new controllers are developed for the FES cycle to accomplish

simultaneous cadence and admittance tracking. The controllers are designed to

overcome challenges of Chapter 3; namely, selecting the appropriate desired torque

trajectory and preserving the rider’s safety. Compared to Chapter 3, the admittance

controller implemented on the cycle’s motor is capable of indirect torque tracking,

accomplished by injecting artificial desired dynamics between the rider and the cycle.

The rider’s muscles are now electrically stimulated using a cadence controller to actuate

the cycle. Using the admittance controller, the cycle assumes an assist-as-needed

control paradigm and assists the rider in maintaining a desired cadence if the FES is

unable to elicit muscle contractions powerful enough to overcome the passive torques of

the combined cycle-rider system. Correspondingly, the admittance controller resists the

rider if volitional pedaling exceeds the desired cadence. The admittance controller uses

a passivity-based stability analysis and is shown to be strictly passive with respect to

the rider and globally exponentially stable in isolation (i.e., when the rider is not coupled

to the cycle). The cadence controller is shown to be globally exponentially stable in the

FES regions. Experiments are conducted on three able-bodied participants and four

13



participants with neuromuscular disorders to demonstrate controller efficacy as well

as investigate the effects of selecting various admittance parameters. Results indicate

the admittance controller is a promising method to simultaneously elicit torque from the

rider’s muscles while introducing a degree of compliance to the system.

Chapter 5 seeks to improve upon the controllers presented in Chapter 4 by adding

adaptation to the admittance controller implemented on the cycle’s motor. Additionally,

to accommodate for asymmetric rider capabilities (as in post-stroke hemiparesis), two

cranks (one for each leg) are used to eliminate the mechanical coupling between the

left and right legs. Consequently, the cycle is instrumented with an additional motor,

encoder, powermeter, and chain to establish feedback and control authority on both

sides of the cycle. The muscles of each leg of the rider are tasked with maintaining

the cycle’s cadence on their respective sides and each motor is controlled using

a separate admittance controller. A Lyapunov-like stability analysis is conducted

to prove the admittance controllers globally asymptotically regulate the admittance

error systems and the cadence controller is passive with respect to the motor. When

implemented, the admitted trajectory is generated online by averaging the output

torques between the two sides such that the pedals are kept at a desired offset. If the

rider demonstrates hemiparesis, the stronger leg will experience resistance and the

weaker leg will experience assistance such that the two pedals are held in the desired

relative phase. Experiments are conducted on one able-bodied participant and three

participants with neuromuscular disorders to compare the effect of adding adaptation to

the cycle. Results indicate significant improvement in various performance metrics with

the use of adaptation.

In Chapter 6, the adaptive admittance controller in Chapter 5 is further modified

with the addition of a neural network to estimate the control effectiveness of the rider’s

muscles and more accurately track the admitted trajectory. The neural network is

shaped according to the anticipated rider output torque curve. As in Chapter 5, the
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rider’s muscles are assigned to regulate the cycle’s cadence. A stability analysis is

conducted and proves the admittance controller globally asymptotically regulates the

admittance error system and the cadence controller is passive with respect to the

motor. Experiments are conducted using the single-crank FES cycle on one able-

bodied participant and four participants with neuromuscular disorders. Results indicate

improvements of performance metrics in three of five participants when adaptation is

enabled.

Chapter 7 concludes the dissertation by highlighting the contributions of the

developed controllers and discussing future extensions.
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CHAPTER 1
INTRODUCTION

1.1 Background

Within the United States (US), there are an estimated 2.5 million new cases of

traumatic brain injury (TBI) [1], 800,000 cases of stroke [2], and nearly 18,000 cases

of spinal cord injury (SCI) [3] every year. Additionally, it is reported that there are 3.17

million people within the US with permanent disability from TBI [1] and 285,000 people

with a spinal cord injury [3]. Neuromuscular injuries such as these, as well as diseases

(e.g., Parkinson’s, etc.) and other congenital disorders (e.g., cerebral palsy, spina bifida,

etc.) can severely impact a person’s neuromuscular system by damaging the brain,

spinal cord, or nerves. Because neuromuscular disorders (NDs) can arise from injury,

disease, and other disorders, they can manifest themselves in incredibly complex ways.

Oftentimes NDs compromise a person’s ability to properly utilize and accurately control

their own neuromuscular system, causing partial/total paresis/paralysis, and significantly

affecting their activities of daily living [1–3]. Consequently, these individuals are at an

increased risk of negative secondary health effects such as obesity, heart disease,

muscle atrophy, diabetes, and others, due to sedentary lifestyles [4]. Moreover, as the

average age of the global population increases, people are becoming increasingly

susceptible to neurological disorders and injuries.

In an effort to reduce the negative secondary consequences of neuromuscular

disorders, promote rehabilitation, and improve the overall quality of life of individuals

affected by NDs, therapies such as neuromuscular electrical stimulation (NMES) may

be employed. NMES has been shown to impart a number of health benefits, including

improved bone mineral density [5], muscular strength [6], motor control [7], range of

motion [8], and cardiovascular parameters [9]. NMES works by applying an electric field

across the motor neurons of a muscle to induce an artificial, involuntary contraction.

When NMES is used to complete functional and assistive actions, it is termed functional
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electrical stimulation (FES). FES, however, possesses a number of inherent challenges,

including, but not limited to, the nonlinear activation dynamics exhibited by muscles

and dynamically changing muscle characteristics such as fatigue [10, 11]. Hence,

closed-loop control of FES is motivated to produce accurate regulation of generated

movements [12].

In addition to FES, another common method of rehabilitation is the use rehabili-

tation robots [13, 14]. Rehabilitation robots assist people in performing rehabilitative

tasks and have been shown to improve sensory perception and motor function [14–16].

In some studies, robotic rehabilitation has demonstrated improved clinical and biome-

chanical measures compared to intervention by physical therapists [17]. It has also

been shown that robot aided rehabilitation does not have negative effects, patients are

amenable to it, and it may influence brain recovery [14]. Numerous upper-limb rehabil-

itation robots have been developed, namely, MIME, MULOS, MIT-MANUS, GENTLE/s,

and lower-limb robots such as the commercially available LOKOMAT, Gait Trainer,

and Autoambulator, and research robots such as ALEX, Haptic Walker, PAM, and the

LOPES exoskeleton [18]. Traditionally in robotic therapy, the robot is physically coupled

to the human (including all the aforementioned robots), and results in physical human-

robot interaction. Hence, human safety must be prioritized and incorporated into the

robot’s control structure, especially when the human is in a compromised, unpredictable,

and unreliable state to avoid further injury [19,20].

Because every ND is unique, rehabilitation robots should be able to accommodate

each individual instead of tasking each individual to conform with identical rehabilitation

tasks (i.e., identical position, cadence, or torque trajectories) [21]. Previous studies have

developed various control strategies including assistive controllers, which aid rehabilita-

tive movements [22, 23], and challenge-based controllers, which resist movements [15].

Both classes of controllers impart rehabilitative benefits, with assistive controllers pro-

moting somatosensory stimulation [24, 25] and challenge-based controllers improving
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motor function [16, 26–29]. Additionally, muscle effort is thought to be essential for

eliciting motor plasticity [30, 31], which promotes the use of challenge-based control

strategies on rehabilitation robots. In creating rehabilitation-based controllers for robots,

strategies such as torque control (cf., [32, 33]), hybrid control (combining position and

force tracking) (cf., [34,35]), and admittance control (cf., [36–40]) are typically employed.

Admittance control, established by Hogan [41], provides an intuitive method for

rehabilitation robots to safely interact with humans without unduly forcing them to

adhere to predefined trajectories [20]. It is a control strategy capable of modifying

robot behavior based on force-feedback and artificial injected dynamics, offering a

method to promote safety over explicit tracking performance by resolving conflicts in

motion between the robot and human [42]. Admittance control allows force feedback to

modify desired position/velocity trajectories, and based on the admittance parameters

selected, can modify it to various degrees to assist or resist a person [43], creating an

assist-as-needed or resist-as needed control paradigm.

Numerous studies have investigated various control strategies, including [44]

which utilized invariance control to enforce dynamic constraints and keep the robot in

a safe configuration. Other studies have implemented a number of control modes for

the robot to operate under, such as the assist-as-needed control paradigm for upper-

limb rehabilitation robots [42, 45], human-in-charge/force control mode for use with

series elastic actuators [46], and patient-in-charge/robot-in-charge modes for elbow

rehabilitation [47]. Alternatively, [48] provides a framework where a therapist can be

injected into the control loop with the use of haptics-enabled telerobotic rehabilitation to

provide resistive/assistive motor therapy remotely to stabilize nonpassive, nonlinear, and

nonautonomous behavior. However, among the available control strategies, admittance

control provides an intuitive solution to many of the challenges arising from human-robot

interaction [10,49–52] because it modulates behavior instead of explicit force or position

trajectories [53,54].
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Admittance control is amenable to adaptive control methods and previous results

have integrated adaptation in the outer-loop of force-feedback to modify the admittance

parameters [55, 56] or within the inner-loop to modify the position controller using tech-

niques such as neural networks [43]. While admittance control has been implemented

on a number of rehabilitation robots [43, 57, 58], subsets of admittance control such as

stiffness control [59], and extensions such as dissipative control [60] (i.e., admittance

control with a minimum guarantee of passivity) have also been used to accomplish safe,

stable human-robot interaction. While admittance control is traditionally viewed as a

safer alternative than robust position/torque control in terms of physical human-robot

interaction [61], a stability analysis remains necessary to demonstrate safe interaction

between the human and robot [62]. Of note, when dealing with admittance controllers,

a passivity analysis is commonly performed to prove stability. Passive systems are ca-

pable of dissipating energy [63, 64] and are a common metric to prove safety in physical

human-robot interaction [46].

When a rehabilitation robot is utilized in conjunction with FES, a hybrid exoskeleton

arises and attempts to blend the advantages of rehabilitation robots and FES while

mitigating the drawbacks of each [43, 62, 65, 66]. However, like FES and rehabilita-

tion robots, hybrid exoskeletons are inherently challenging to implement due to the

nonlinear, uncertain, time-varying dynamics of both muscle and robotic systems [67].

While hybrid exoskeletons can be controlled similarly to rehabilitation robots, the studies

in [10, 62] specifically utilize admittance control. An example of a hybrid exoskeleton

(and the focus of this dissertation) is a motorized recumbent FES tricycle. FES cy-

cles utilize the application of FES across a person’s (i.e., rider’s) leg muscles (i.e., the

quadriceps, hamstring, and gluteal muscle groups) to cause elicit contractions and

cooperatively pedal the cycle alongside an electric motor attached to the cycle [67].

FES cycling combines the benefits of FES and rehabilitation robots and has been

shown to yield improvements in musculoskeletal and cardiorespiratory fitness as well as
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other neurological, physiological, and psychological measures [68–70]. FES cycling is a

popular rehabilitative therapy because the fall risks associated with other therapies are

mitigated, it can provide sufficient intensity and repetitive practice of coordinated limb

movements critical for facilitating nervous system reorganization, and promote potential

beneficial changes in the neuromuscular system [71,72].

Although FES cycling is a convenient rehabilitation option for many people, when

applied in practice, it is commonly applied open-loop without regard of the rider’s

performance. However, the metabolic efficiency of FES cycling is significantly lower

than volitional cycling [73] due to poor control of the muscle groups, unfavorable

biomechanics and nonphysiological muscle recruitment [74], non-optimal stimulation

parameters [75, 76], fatigue [77–79], and other factors (cf. [80–82]). Furthermore,

because the sensation from FES can be uncomfortable [77] and the benefits from FES

are reported to culminate over long time periods (cf. [77,79]), improved FES cycles (and

controllers) are needed to accelerate the benefits and reduce the discomforts.

To best promote rehabilitation, the increase of efficiency and power output (PO) of

FES cycling is desirable because it can reverse muscle atrophy and cultivate fatigue-

resistant muscle fibers [77]. Multiple strategies have been employed to increase the

PO of FES cycling such as the use of cadence control [74, 81], creating the optimal

pedal path [75], releasing the ankle joint [80], using a fixed gear cycle [83], using

higher stimulation currents [77], and modifying the stimulation frequency and pattern

[76]. Furthermore, when power (i.e., torque1 ) is tracked directly, it is unclear how

to best coordinate the FES and motor contributions and if power should be tracked

instantaneously or averaged over a period of time (i.e., discretized tracking). Based

on the idea that the limited bandwidth of electrically stimulated muscle groups inhibits

instantaneous torque tracking, few torque/power tracking results are available for

1 Within the scope of this work, power tracking and torque tracking are synonymous.
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instantaneous torque tracking (cf. [84–86]), discretized torque tracking (cf. [87, 88])

(which periodically updates the controller based on a power reading averaged over

a region of the crank), or track power only when kinematically efficient (cf. [89]), and

instead analyze power output (PO) outside the control loop (cf. [82,90,91]).

Although FES cycles are an invaluable research and rehabilitation tool for move-

ment disorders, when dealing with hemiparesis, FES cycles can often mask asymme-

tries in the rider due to coupled pedals and a single torque sensor. Previous works have

thus derived methods for isolating the torque contributions of each leg by instrumenting

cycles with torque sensors on each pedal [88,91], decoupling the pedals (i.e., split-crank

cycling) [92, 93], or pedaling with one leg at a time [94]. Because FES cycling has been

shown to improve symmetry in hemiplegic individuals [91], further research into asym-

metric rehabilitation is warranted. For example, asymmetric rehabilitation is supported

by studies such as [95] which indicated that children with unilateral brain injury have

separate control circuits for each leg and these circuits can be adapted independently

to improve symmetry; [96] which found that split-belt treadmills and individual limb-

weighting can improve spatiotemporal symmetry in post-stroke adults; and [97] which

demonstrated that decreases in asymmetry were observed in people with Parkinson’s

disease in cycling when average workload increased. As a whole, literature suggests

that within various NDs resulting in hemiparesis, symmetry can be improved, at least

in the short-term, by targeted rehabilitation of the affected and non-affected side of the

body. Moreover, motivation exists to have individuals participate in rehabilitation to the

greatest extent possible in an effort to reduce neuromuscular impairment [58].

FES cycling offers a method for neuromuscular rehabilitation, but because it in-

volves physically coupling a rehabilitation robot to the human rider, the aforementioned

challenges (e.g., safety, closed-loop control, nonlinearities) must be addressed. Further-

more, FES cycling has the added challenge of discretely switching muscle stimulation
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on/off with continuously evolving state-dynamics, resulting in a switched system. Split-

crank cycling is also highly susceptible to periodic torques (e.g., due to gravity) which

are no longer balanced about the cycle’s crankshaft due to decoupled pedals. Because

people have unique capabilities and every movement disorder is subtly different, adap-

tive control of FES cycling is warranted to not only account for cycle dynamics, but also

produce a customized experience for each rider while avoiding high frequency switching

in the control effort, typically found in robust control methods (e.g., sliding-mode control).

From a control systems perspective, FES cycling is an example of a switched

system in the sense that there are continuous physical dynamics of the limbs and

the cycle, yet there are discrete logical jumps necessary to engage different muscle

groups of the legs, potentially engage a motor for assistance, or discretely turn on/off

the control inputs (motivated by different stimulation schemes or the desire to allow the

rider to contribute all the torque). Furthermore, because not all muscles can contribute

to the forward motion of the crank at all times due to kinematic efficiency, switching

between muscles is necessary and a switched systems analysis is required to prove

stability [98]. However, few results consider the fact that such switching could yield

degraded performance or even destabilizing effects. Although past FES cycling studies

have been produced which control FES cycles using open-loop methods [91], or closed-

loop methods using linear control techniques [84] or nonlinear control techniques

(e.g., fuzzy logic, sliding mode) [85], generally, the FES-cycling community has only

addressed the ramifications of having a switched input by examining different regions

to activate the muscle if at all (cf. [74, 91, 99–101]). Few control developments include

a nonlinear stability analysis that considers the impacts of switching during FES cycling

(cf. [67, 102–107]). Moreover, a stability analysis is crucial because it is well known that

people with NDs possess a weakened/impaired musculoskeletal system and the utmost

care must be taken to avoid destabilizing behavior.
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While the majority of objectives of FES cycling include cadence [67, 76, 102, 105,

108] and torque tracking [86, 89, 109], admittance control strikes a balance between the

two, prioritizing safety over performance, and has only been implemented on FES cycles

in the author’s preliminary works (cf. [107, 110, 111]). Because each ND is unique,

not only is the need to utilize closed-loop control motivated, but the use of adaptive

control as well. While past results such as [67, 86, 102] have utilized robust closed-loop

methods, others have utilized learning-based methods such as neural networks (NN),

fuzzy logic, and repetitive learning controllers to improve cadence/torque tracking of

FES cycling, but few conduct or include a rigorous stability analysis (cf. exceptions

in [67,86,89,102,105,112]).

1.2 Outline of the Dissertation

Chapter 2 describes the uncertain, nonlinear, time-varying dynamic model of the

hybrid exoskeleton used in the context of this dissertation, a motorized recumbent FES

cycle. A rider is seated on the cycle and FES is implemented on his/her quadriceps

femoris, hamstrings, and gluteal muscle groups to elicit artificial, involuntary muscle

contractions to pedal the cycle alongside an electric motor coupled to the drive chain.

By discretely switching between muscle groups to control continuous dynamics, an

autonomous state-dependent switched system is created. Properties and assumptions

for the switched dynamic system are introduced which are employed in subsequent

chapters.

Chapter 3 presents the dual-objective of cadence and power tracking using the

FES cycle introduced in Chapter 2. While, simultaneous cadence and power tracking

are common objectives in FES cycling, it is unclear how to best coordinate the FES and

motor contributions and if power should be tracked instantaneously or averaged over a

period of time. This chapter develops a new FES cycling controller which has the cycle’s

motor regulate the system’s cadence and the rider’s muscles regulate instantaneous

power. Using a switched systems Lyapunov-like dwell-time analysis, it is proven that
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the developed controllers achieve global exponential cadence tracking and uniformly

ultimately bounded power tracking. To evaluate the performance of the developed

controller, comparisons are made with two previously developed FES cycling controllers

(cf. [86, 87]) through experiments on seven able-bodied participants and six participants

with neuromuscular disorders. For a desired cadence of 50 RPM and a desired power

of 10 W, the developed controller in this chapter demonstrated the smallest tracking

errors with an average cadence and power error of 0.01±1.03 RPM and 0.00±0.94 W,

respectively, in the able-bodied population and an average cadence and power error of

0.02±1.87 RPM and 0.00±2.46 W, respectively, in the population with neuromuscular

disorders. Results suggest that the electric motor should be used to track cadence and

the FES induced muscle torques should be used to track instantaneous power.

Chapter 4 seeks to improve upon the results in Chapter 3 by utilizing an admittance

controller on the cycle’s motor to preserve rider safety while indirectly tracking torque.

While the muscle controller is proven to globally exponentially track cadence in the FES

regions, the admittance controller is proven to be passive with respect to the rider’s

applied torque. Experiments are conducted on three able-bodied participants and four

participants with neuromuscular disorders to demonstrate the efficacy of the developed

controllers and investigate the effect of manipulating individual admittance parameters.

Results demonstrate an average admittance cadence error of -0.06±1.47 RPM for able

bodied participants and -0.02±0.93 RPM for participants with NDs.

Chapter 5 improves upon the results presented in Chapter 4 by adding adaptation

to the admittance controller implemented on a now decoupled split-crank FES cycle

capable of measuring and addressing rider asymmetries. Unlike Chapter 4, the ca-

dence controller used to stimulate the rider’s muscles is now passive with respect to

the motor’s applied torque. Theoretical development of the controllers is based on a

Lyapunov-based switched systems stability analysis where the admittance controller is

proven to globally asymptotically regulate the admittance error systems. Experiments
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were conducted on one able-bodied participant and three participants with various neu-

romuscular disorders, resulting in an average admittance tracking error of -0.13±1.77

RPM with adaptation and -0.03±4.05 RPM without adaptation between the two sides of

the cycle.

Chapter 6 seek to further improve upon the performance of the FES cycle over

Chapter 5 by adding a neural network on top of the adaptive controller. The neural

network is used to estimate and compensate for the rider’s muscle control effectiveness.

Through a Lyapunov-like switched systems stability analysis, global asymptotic stability

of the admittance controller is guaranteed and the cadence controller is proven to be

passive with respect to the cycle’s motor. Experiments on one able-bodied participant

and four participants with NDs were conducted to validate the control design with an

average admittance error of -0.09±1.14 RPM at 50 RPM.

Chapter 7 concludes the dissertation. A summary of the contributions is provided

along with a discussion on potential extensions and future research directions. The

experimental results presented in this dissertation quantify the FES cycling performance

using position, cadence, torque, and admittance control. A key contribution of this

dissertation is the development of various nonlinear and adaptive controllers for hybrid

exoskeletons, validated through experiments in people with NDs such as stroke, spinal

cord injury, spina bifida, and traumatic brain injury.
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CHAPTER 2
DYNAMIC MODEL

2.1 FES Cycling

In this chapter, the hybrid exoskeleton utilized in the subsequent chapters is

introduced, a motorized recumbent FES cycle. The dynamic model of a person riding

the motorized FES cycle is adopted from [67, 102]. While the human (i.e., rider) is

seated on the cycle, FES is implemented on the rider’s quadriceps femoris, hamstring,

and gluteal muscle groups to elicit muscle contractions, actuate the legs, and pedal the

cycle. Muscle contractions from FES must be coordinated in an appropriate manner

to produce forward motion of the cycle. Moreover, based on the position of the cycle

(e.g., the crank angle), it becomes more kinematically efficient to stimulate certain

muscles over others [113]. In limb configurations where all the muscle groups are

unable to efficiently contribute torque to pedal the cycle (e.g., kinematic deadzones), no

FES is applied. Therefore, any controller designed to implement FES on a cycle must

switch between multiple inputs (i.e., six muscle groups and a motor) to continuously

pedal the cycle and achieve desired behavior. Although continuous state dynamics

exist (i.e., position, cadence, etc.), discontinuous inputs result in the development of an

autonomous state-dependent switched system.

2.1.1 FES Cycle

For Chapters 3, 4, and 6 the experimental testbed consists of a stationary Ter-

raTrike Rover recumbent tricycle mounted on a Kinetic Bike Trainer. A 250 W, 24 V

DC brushed motor, by Unite Motor Co. Ltd., is mounted under the frame of the cycle

and coupled to the drive chain to allow for motor assistance/resistance. The motor is

interfaced with an ADVANCED Motion Controls (AMC) PS300W24 power supply and an

AMC AB25A100 motor driver. An AMC FC15030 filter card is wired between the motor

and power supply to reduce electrical noise. The crank angle is measured using a US

Digital H5 optical encoder coupled to the crank through spur gears. Brackets attached
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to commercially available bike pedals allow for the mounting of orthotic boots to fix the

rider’s feet to the pedals and prevent dorsiflexion/plantarflexion of the ankles, maintain-

ing sagittal alignment of the legs. Torque applied about the crank is measured using an

SRM Science Road Wireless Powermeter mounted to the bike crank. A Quanser QPIDe

DAQ is used to interface with the encoder, motor driver, and powermeter. Controllers

are implemented on a computer using Matlab/Simulink, Quarc, and Windows 7 at a

sample rate of 500 Hz. A Hasomed Rehastim 1 current-controlled stimulator delivers

biphasic, symmetric, rectangular pulses to the rider’s muscle groups via bipolar, self-

adhesive, PALSr electrodes. For all experiments, the stimulation is applied at 60 Hz and

amplitudes are fixed at 90, 80, and 70 mA for the quadriceps, hamstrings, and gluteals,

respectively. The stimulation pulsewidth for each muscle group is determined by the

subsequently designed controllers and commanded to the stimulator by the control soft-

ware. An emergency stop button is fastened to the tricycle that enabled the participant

to immediately stop the experiment if desired. A rider seated on the motorized FES

cycle is depicted in Figure 2-1.

For Chapter 5, the experimental testbed is modified by severing the crank shaft con-

necting the two pedals, decoupling them. Consequently, a second encoder, powermeter,

motor, and chain are mounted on both sides of the cycle for full feedback and actuation.

This cycle is referred to as the split-crank FES cycle.

2.1.2 Notation

≡ indentically equal

≈ approximately equal

6= not equal

, defined as

< (>) less (greater) than
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Figure 2-1. Motorized FES cycle: (A) Encoder (B) Power Meter (C) Electrodes (D)
E-Stop (E) Filter Card (F) Stimulator.
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≤ (≥) less (greater) than or equal to

× cross product

∀ for all

∞ infinity

∈ belongs to

⊂ (⊆) subset (strict) of

∪ union

∩ intersection

→ tends to

⇐⇒ equivalent to, if and only if∑
summation

|·| absolute value

‖·‖ the norm of a vector

max maximum

min minimum

sup supremum, the least upper bound

inf infimum, the greatest lower bound

N the set of natural numbers

Rn the n-dimensional Euclidean space

f : S1 → S2 a function f mapping a set S1 into a set S2

∇f the gradient vector

∂f the Clarke generalized gradient

ẏ the first derivative of y with respect to time

ÿ the second derivative of y with respect to time
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diag [a1, ..., an] a diagonal matrix with diagonal elements a1 to an

AT
(
xT
)

the transpose of matrix A (of a vector x)

L∞ the space of all essentially bounded functions

sgn (·) the signum function

ln (·) the natural logarithm

a.e. almost everywhere

O2 higher order terms of a Talyor series expansion

� designation of end of proofs

2.1.3 Dynamics

The combined cycle-rider dynamics can be modeled as [67]1

τm (q, q̇, t) + τe (t) = M (q) q̈ + V (q, q̇) q̇ +G (q) + P (q, q̇) + bcq̇ + d (t) , (2–1)

where q : R≥0 → Q, q̇ : R≥0 → R, and q̈ : R≥0 → R denote the measurable crank

angle, measurable velocity (cadence), and unknown acceleration, respectively. Time is

represented as a member of the set of positive reals, t ∈ R≥0, where R≥0 ≡ [0, ∞). The

set of Q ⊆ R denotes the possible angles of the crank. The torque applied by the rider’s

muscles is denoted as τm : Q× R× R≥0 → R, and defined as

τm (q, q̇, t) ,
∑
m∈M

bm (q, q̇)uFES (q, t) , (2–2)

where bm : Q × R → R>0 denotes the individual uncertain, nonlinear muscle control

effectiveness and uFES : Q× R≥0 → R denotes the subsequently designed FES muscle

control current input. The subscript m ∈ M = {RQ, RG, RH, LQ, LG, LH} indicates

1 For notational brevity, all explicit dependence on time, t, within the terms
q(t), q̇(t), q̈(t) is suppressed.
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the right (R) and left (L) quadriceps femoris (Q), gluteal (G), and hamstring (H) muscle

group, respectively, which denote the stimulated muscle groups. The torque applied by

the cycle’s electric motor is denoted as τe : R≥0 → R and defined as

τe (t) , beuMOT (t) , (2–3)

where be ∈ R>0 denotes the known motor control constant and uMOT : R≥0 → R denotes

the subsequently designed motor control current input. The torques applied about the

crank axis by the combined inertial, centripetal-Coriolis, and gravitational effects are

denoted by M : Q → R>0, V : Q × R → R, and G : Q → R, respectively, and

the torques applied about the crank by the rider’s passive viscoelastic tissue forces

are denoted by P : Q × R → R. The viscous damping effects applied by the cycle

are denoted by bc : R≥0 → R and unmodeled disturbances (e.g., dynamic fatigue,

electromechanical delays [114]) are denoted by d : R≥0 → R.

Although the parameters in (2–1) capture the torques affecting the dynamics of

the combined cycle-rider system, the exact value of these parameters are unknown

for each rider. However, several subsequently designed controllers only require known

bounds on the aforementioned parameters. Specifically, the following properties [67] are

provided for the dynamic system in (2–1):

Property 2.1. The inertia parameter is upper- and lower-bounded by cm ≤ M (q) ≤ cM ,

where cm, cM ∈ R>0 are known constants.

Property 2.2. The centripetal-Coriolis parameter is upper-bounded by |V (q, q̇)| ≤ cV |q̇|,

where cV ∈ R>0 is a known constant.

Property 2.3. The torque generated by gravity is upper-bounded by |G (q)| ≤ cG, where

cG ∈ R>0 is a known constant.

Property 2.4. The torque generated by the rider’s viscoelastic tissues is upper-bounded

by |P (q, q̇)| ≤ cP1 + cP2 |q̇|, where cP1, cP2 ∈ R>0 are known constants.

Property 2.5. The torque generated by the cycle’s friction is upper-bounded by b ≤ cb,

where cb ∈ R>0 is a known constant.
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Property 2.6. The torques generated by system disturbances are upper-bounded by

|d (t)| ≤ cd, where cd ∈ R>0 is a known constant.

Property 2.7. The system is skew-symmetric by the relation Ṁ (q)− 2V (q, q̇) = 0.

2.1.4 Switched System Dynamics

As in results such as [67, 102, 115, 116], FES-cycling is accomplished by switching

the stimulation input to different muscle groups based on the region of the crank cycle

designed a priori based on the kinematic effectiveness of the torque transferred to

the crank axis from the muscle (i.e., FES regions). In regions of the crank where it is

inefficient to stimulate muscle, a kinematic deadzone (KDZ) region exists and no muscle

stimulation is applied. The stimulation regions are based on the work in [67], denoted by

Qm ⊂ Q, and defined as

Qm , {q ∈ Q | Tm (q) > εm} , (2–4)

∀m ∈ M, where Tm : Q → R denotes the torque transfer ratio of each muscle

group about the cycle’s crank. The selectable torque transfer threshold is denoted

by εm ∈
(

0, max
(
Tm (q)

)]
and dictates the angles at which each muscle group is

stimulated based on its respective kinematic effectiveness. Because the torque transfer

ratios are dependent on each rider’s leg geometry, they are calculated independently

for each rider. The torque transfer threshold is selected such that backpedaling is

prevented, stimulation is only applied when each muscle group can positively contribute

to the motion of the crank (i.e., εm > 0, ∀m ∈ M), and muscle fatigue is delayed by

only stimulating muscles in kinematically efficient regions (i.e., τm (q) > εm, ∀m ∈ M).

The union of all muscle stimulation regions establishes the combined FES region of the

crank cycle, defined as QFES , ∪
m∈M

{Qm}, and the kinematic deadzone (KDZ) region

as the remainder QKDZ , Q\QFES. By discretely switching between muscle groups

to control continuous dynamics, an autonomous state-dependent switched system is

created. The FES and KDZ regions are depicted in Figure 2-2.
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Figure 2-2. Sample crank cycle illustrating the FES and KDZ regions. The crank
positions qFESn and qKDZn denote the points at which the crank enters the
FES and KDZ regions of cycle n, respectively. Cycle n refers to the nth time
the crank enters the FES/KDZ region.
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The stimulation input to the muscle groups and the current input to the electric

motor are defined as

uFES (q, t) , kmσm (q)uM (t) , (2–5)

uMOT (t) , keue (t) , (2–6)

∀m ∈ M, where km, ke ∈ R>0 are positive selectable control gains, uM , ue : R≥0 → R

denote the subsequently designed control inputs for the muscle and motor, respectively,

and σm : Q→ {0, 1} denotes the switching signal for each muscle group, defined as

σm (q) ,


1 q ∈ Qm

0 q /∈ Qm
, (2–7)

∀m ∈ M. Substituting (2–5) and (2–3) into (2–1) and rearranging terms yields the

switched system

BM (q, q̇)uM (t) +Beue (t) = M (q) q̈ + V (q, q̇) q̇ +G (q) + P (q, q̇) + bcq̇ + d (t) , (2–8)

where BM : Q× R → R is the combined, uncertain, nonlinear switched muscle control

effectiveness, and Be ∈ R>0, is the motor control effectiveness, respectively defined as

BM (q, q̇) ,
∑
m∈M

bm (q, q̇) kmσm (q) , (2–9)

Be , beke. (2–10)

Property 2.8. The uncertain individual muscle control effectiveness, bm (q, q̇), is subject

to nonlinear activation dynamics and a muscle fiber recruitment curve (commonly

represented by sigmoidal function) [117, 118]. However, based on [114], the function

relating the stimulation input current to output torque is bounded by bm ≤ bm (q, q̇) ≤

bm, ∀m ∈ M, where bm, bm ∈ R>0 are known constants. Hence, in the FES regions
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(i.e., q ∈ QFES) the lumped switched control effectiveness term is also bounded by

BM ≤ BM (q, q̇) ≤ BM , where BM , BM ∈ R>0 are known constants.

2.1.5 Torque Dynamics

To allow for torque tracking, the dynamics in (2–1) can be rewritten as

τm (q, q̇, t) + τe (t) = τp (q, q̇, q̈, t) + τc (q, q̇, q̈, t) , (2–11)

where the torques applied about the crank axis by the rider’s muscles, the electric motor,

the rider’s passive effects, and the cycle are denoted by τm : Q × R × R≥0 → R,

τe : R≥0 → R, τp : Q × R2 × R≥0 → R, and τc : Q × R2 × R≥0 → R, respectively.

Motivated by the need to separate the torque contribution of the motor and muscles,

when no stimulation is applied, τm (q, q̇, t) ≡ 0. Hence, (2–11) simplifies to

τest (t) = τp (q, q̇, q̈, t) + τc (q, q̇, q̈, t) , (2–12)

where τest : R≥0 → R is an auxiliary term defined as τest (t) , τe (t) when no

stimulation is applied. The structure of (2–12) is motivated by the fact that τp (q, q̇, q̈, t)

and τc (q, q̇, q̈, t) represent the passive rider and cycle dynamics, respectively, which

are amenable to pre-trial estimation. Based on the structure of (2–12), the following

assumptions are made.

Assumption 2.1. The disturbances and auxiliary terms are sufficiently smooth in the

sense that ḋ (t) , τest (t) , τ̇est (t) ∈ L∞.

Assumption 2.2. A continuously differentiable estimate of τest (t), denoted by τ̂est :

R≥0 → R, can be generated during preliminary testing such that the estimate error,

τ̃est : R≥0 → R defined as

τ̃est (t) , τ̂est (t)− τest (t) , (2–13)

is bounded by |τ̃est (t)| ≤ cest, where cest∈ R≥0 is a known constant. This assumption is

reasonable provided no stimulation is applied during preliminary testing (i.e. τm (q, q̇, t) =
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0), the disturbances are sufficiently small when τest (t) is generated, and the desired

trajectory is the same during the generation of τest (t) and the actual experimental trial.

The muscle torque can be rewritten by subtracting τ̂est (t) from (2–11) and using

(2–13) as

τm (q, q̇, t) = τ̂est (t)− τe (t) + τ̃est (t) . (2–14)

Defining the estimate of the muscle torque, denoted by τ̂m : R≥0 → R, and defined as

τ̂m (t) , τ̂est (t)− τe (t) , (2–15)

and subtracting (2–15) from (2–14) yields the muscle torque estimation error, denoted

by τ̃m : Q× R× R≥0 → R, defined as

τ̃m (q, q̇, t) , τ̂m (t)− τm (q, q̇, t) , (2–16)

which can be bounded by |τ̃m (q, q̇, t)| ≤ cest, where cest was defined in Assumption 2.2.
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CHAPTER 3
CLOSED-LOOP CADENCE AND INSTANTANEOUS POWER CONTROL ON A

MOTORIZED FUNCTIONAL ELECTRICAL STIMULATION CYCLE

Compared to the recent work in [105], which utilizes a repetitive learning controller

to track a time-periodic cadence trajectory, this chapter and the associated precursory

results in [86] and [87], examine simultaneous cadence and power tracking for the FES

cycle introduced in Chapter 2 using Lyapunov-based and switched systems analysis

tools, including a dwell-time analysis. Building on the development in [86], a running

integral is employed to allow for instantaneous power tracking. Additionally, the effect

of switching between different actuators is considered for both cadence and power

tracking objectives using a novel Lyapunov-like switched system stability analysis,

which yields global exponential cadence tracking and uniform ultimately bounded

(UUB) power tracking. The controller in this chapter updates the power tracking error

instantaneously, compared to once per crank cycle as in [87], and heuristically is

better able to accommodate for rider asymmetries because each leg receives a unique

stimulation pattern, compared to each leg receiving the same pattern, as in [87].

Furthermore, the electric motor is used for cadence tracking, which is the opposite

strategy of the development in [86].

To evaluate the performance of the developed controller, comparisons are made

with two previously developed FES cycling controllers through experiments on seven

able-bodied participants and six participants with neuromuscular disorders. For a

desired cadence of 50 RPM and a desired power of 10 W, the developed controller

demonstrated the smallest tracking errors with an average cadence and power error of

0.01±1.03 RPM and 0.00±0.94 W, respectively, in the able-bodied population and an

average cadence and power error of 0.02±1.87 RPM and 0.00±2.46 W, respectively,

in the population with neuromuscular disorders. Results suggest that the electric motor

should be used to track cadence and the FES induced muscle torques should be used

to track instantaneous power.
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3.1 Control Development

3.1.1 Robust Cadence Control

The position tracking objective is quantified by e1 : R≥0 → R, defined as

e1 , qd − q, (3–1)

where qd : R≥0 → R denotes the desired angular trajectory which is sufficiently smooth

(i.e., q̇d, q̈d ∈ L∞) and bounded by qd ≤ cq0, q̇d ≤ cq1, and q̈d ≤ cq2. To facilitate the control

development and stability analysis, an auxiliary tracking error e2 : R≥0 → R is defined as

e2 , ė1 + αe1, (3–2)

where α ∈ R>0 is a constant control gain. Taking the derivative of (3–2), multiplying

it by M , adding and subtracting e1, then substituting (2–8), (3–1), and (3–2) yields the

open-loop cadence error system

Mė2 = χ1 − e1 − V e2 −Beue −BMuM . (3–3)

The lumped auxiliary term, χ1 : Q × R × R≥0 → R, defined as χ1 , M (q̈d + αė1) +

V (q̇d + αe1) + G + P + bc (q̇d + αe1 − e2) + d + e1 can be upper bounded as |χ1| ≤

c1 + c2 ‖z‖ + c3 ‖z‖2 by Properties 2.1-2.6, where c1, c2, c3 ∈ R>0 are known constants,

defined as

c1 , cMcq2 + cV c
2
q1 + cG + cP1 + cP2cq1 + cbcq1 + cd, (3–4)

c2 , (cMα + cP2 + cb) (α + 1) + cV cq1 (2α + 1) + 1, (3–5)

c3 , cV α (α + 1) , (3–6)

where the error vector z ∈ R2 is defined as z , [e1 e2]T . Based on (3–3) and the

subsequent stability analysis, the motor controller is designed as
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ue =
1

Be

[(
k2 + k3 ‖z‖+ k4 ‖z‖2 + k5 |uM |

)
sgn(e2) + k1e2

]
, (3–7)

where ki ∈ R≥0 ∀i = 1, 2 , ..., 5 denote constant control gains. Substituting (3–7) into

(3–3) yields the closed-loop error system

Mė2 = χ1 − e1 − V e2 −BMuM −
[(
k2 + k3 ‖z‖+ k4 ‖z‖2 + k5 |uM |

)
sgn(e2) + k1e2

]
.

(3–8)

3.1.2 Robust Torque Control

Compared to discrete torque (i.e., power) tracking, instantaneous torque tracking

offers numerous benefits. With discretized tracking, because the error system is

updated once per crank cycle, the control input is updated once per crank cycle,

resulting in both legs receiving identical stimulation. Such an approach fails to isolate

the capabilities of either leg as the control input is based on the error generated from

the contribution of both the legs as a whole. Additionally, because the error is updated

at the same point every cycle, the initially (i.e., soon after the error update) stimulated

muscle groups receive a control input that reflects the error with little delay, but other

muscle groups receive a considerably delayed error. Over the course of an experiment,

this effect can culminate in one-sided fatigue and could potentially mitigate rehabilitation

outcomes. For this reason, the torque tracking objective in this chapter is to prove that

the estimated muscle torque instantaneously tracks the desired muscle torque (i.e.,

τ̂m → τm,d), where τm,d : R≥0 → R denotes the sufficiently smooth (i.e., τm,d, τ̇m,d ∈ L∞)

desired torque trajectory which is bounded by τm,d ≤ cτ0 and τ̇m,d ≤ cτ1. To facilitate the

subsequent analysis, the torque tracking objective is represented as a integral, denoted

by e3 : R≥0 → R, and defined as [119]

e3 ,
∫ t

t0

(τm,d(ψ)− τ̂m(ψ)) dψ, (3–9)
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where t0 ∈ R≥0 represents the initial time, and the derivative of (3–9), given by

ė3 = τm,d(t)− τ̂m(t), (3–10)

represents the true torque tracking error. Motivated by the result in [119] and the

subsequent stability analysis, the form of the tracking error in (3–9) was designed

such that the subsequently designed torque controller is able to directly influence the

derivative in (3–10), and hence, the closed-loop error system. Substituting (2–15) into

(3–9) and taking its derivative, then inserting (2–5), (2–9), (2–11), and (2–12) yields the

open-loop torque error system

ė3 = χ2 −BMuM . (3–11)

The lumped auxiliary term, χ2 : Q× R2 × R≥0, defined as χ2 , τ̃est + τm,d, can be upper

bounded as |χ2| ≤ c4, by Assumption 2.2, where c4 ∈ R>0 is a known constant defined

as

c4 , cest + cτ0. (3–12)

Based on (3–11) and the subsequent stability analysis, the muscle controller is designed

as

uM =
1

Bσ

[k6e3 + k7sgn(e3)] , (3–13)

where k6, k7 ∈ R≥0 denote constant control gains. Substituting (3–13) into (3–11),

respectively, yields the closed-loop error systems

ė3 = χ2 −
Bσ

Bσ

[k6e3 + k7sgn(e3)] . (3–14)

Figure 3-1 displays the combined closed-loop systems.
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Figure 3-1. Block diagram representing the closed-loop feedback structure of combined
cycle-rider system.

3.2 Stability Analysis

To ensure overall system stability, both the cadence and torque error systems must

be analyzed in the FES and KDZ regions along with analyzing the effect of switching be-

tween the subsystems. Because cadence is regulated with the electric motor throughout

the entire crank cycle, switching occurs between stabilizable subsystems. Therefore,

Theorem 3.1 includes a common Lyapunov function to demonstrate exponential ca-

dence tracking for all time. Torque, however, is only regulated in the FES region using

the rider’s muscles; this leads to incomplete control authority and opportunities for error

growth in the KDZ region. Theorems 3.2-3.4 include an additional candidate Lyapunov

function that not only establishes an ultimate bound on the torque error system, but also

its derivative (i.e., the true torque objective). For the following analysis, let V1 : R2 → R

and V2 : R→ R denote continuously differentiable, positive definite candidate Lyapunov

functions respectively defined as

V1 ,
1

2
e2

1 +
1

2
Me2

2, (3–15)

V2 ,
1

2
e2

3. (3–16)

The candidate Lyapunov function V1 satisfies the following inequalities:
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λ ‖z‖2 ≤ V1 ≤ λ ‖z‖2 , (3–17)

where λ, λ ∈ R>0 are known constants defined as λ , min
(

1
2
, cm

2

)
, λ , max

(
1
2
, cM

2

)
.

Theorem 3.1. For q ∈ Q, the closed-loop error system in (3–8) yields global exponential

position and cadence tracking in the sense that

‖z(t)‖ ≤

√
λ

λ
‖z(tn)‖ exp

[
−1

2
Λ(t− tn)

]
, (3–18)

∀t ∈ [t0,∞), ∀n, where n ∈ N represents the nth iteration the crank enters/exits an FES

region, and consequently, the nth iteration the crank enters/exits a KDZ, and Λ ∈ R>0 is

defined as

Λ =
1

λ
min (α, k1) , (3–19)

provided the following gain conditions are satisfied

k2 ≥ c1, k3 ≥ c2, k4 ≥ c3, (3–20)

and k5 ≥ BM if q ∈ QFES, k5 = 0 if q ∈ QKDZ , where c1, c2, c3 and BM are defined in

(3–4)-(3–6), and Property 2.8, respectively.

Proof. Let z(t) be a Filippov solution to the differential inclusion ż ∈ K[h1](z), where K[·]

is defined as in [120], and where h1 : R2 → R2 is defined using (3–2) and (3–8), as

h1 ,

 ė1

ė2

 . (3–21)

The time derivative of (3–15) exists almost everywhere (i.e., for almost all t ∈ [t0, ∞)),

and V̇1(z)
a.e.
∈ ˙̃V1(z), where ˙̃V1 is the generalized time derivative of (3–15) along the

Filippov trajectories of ż = h1(z) and is defined as [121] ˙̃V1 , ∩
ξ∈∂V1(z)

ξTK

[
h1 (z) 1

]T
,
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where ∂V1 is the Clarke generalized gradient of V1. Since V1 is continuously differen-

tiable in z, ∂V1 = {∇V1} ; thus, ˙̃V1 ⊆
[
e1 Me2

1
2
Ṁe2

2

]
K

[
h1 (z) 1

]T
. Using the

calculus of K [·] from [121], substituting (3–2), (3–13), (3–8), and (3–21) into the result

yields

˙̃V1 ⊆ −αe2
1 + e2χ1 +

(
1

2
Ṁ − V

)
e2

2 − k1e
2
2 −

(
k2 + k3 ‖z‖+ k4 ‖z‖2)K[sgn(e2)]e2

− k5

BM

(k6 |e3|+ k7K [|sgn (e3)|])K [sgn(e2)] e2 − e2
K [BM ]

BM

(k6e3 + k7K[sgn (e3)]) .

(3–22)

where, K [sgn(·)] = SGN (·) such that SGN (·) = {1} if (·) > 0, [−1, 1] if (·) = 0, and {−1}

if (·) < 0; and K [|sgn(·)|] = |SGN (·)| such that |SGN (·)| = {1} if (·) 6= 0, and [0, 1] if

(·) = 0. To illustrate convergence for all time, the expression in (3–22) must be evaluated

when q ∈ QFES and q ∈ QKDZ .

For q ∈ QFES, K[BM ] can be upper bounded by BM , hence by Properties 2.7 and

2.8, and since V̇1(z)
a.e.
∈ ˙̃V1(z), (3–22) can be bounded as

V̇1

a.e.
≤ −αe2

1 + |e2χ1| − k1e
2
2 − |e2|

(
k2 + k3 ‖z‖+ k4 ‖z‖2)− (k5 −BM)

BM

|e2| (k6 |e3|+ k7)

(3–23)

Using Properties 2.1-2.6 allows (3–23) to be further upper bounded as

V̇1

a.e.
≤ −αe2

1 − k1e
2
2 − λ1 |e2| − λ2 |e2| ‖z‖ − λ3 |e2| ‖z‖2 − λ4

BM

|e2| (k6 |e3|+ k7) ,

(3–24)

where λi ∈ R, ∀i ∈ I = {1, 2, 3, 4} are known constants defined as λ1 , k2 − c1, λ2 ,

k3 − c2, λ3 , k4 − c3, λ4 , k5 − BM . By Property 2.8, (3–24) holds for all BM ; hence, (3–

15) is verified as a common Lyapunov function across the controlled regions. Provided

the gain conditions in (3–20) are satisfied, λi ≥ 0 ∀i ∈ I, and (3–24) can be upper

bounded as

43



V̇1

a.e.
≤ −ΛV1, (3–25)

where Λ was defined in (3–19). Solving the differential inequality yields

V1

a.e.
≤ V1

(
tFESn

)
exp

(
−Λ

(
t− tFESn

))
. (3–26)

When evaluating (3–22) for q ∈ QKDZ , Property 2.7, and the fact that k5 = 0 if

q ∈ QKDZ , allows (3–22) to be bounded as

V̇1

a.e.
≤ −αe2

1 + |e2χ1| − k1e
2
2 − |e2|

(
k2 + k3 ‖z‖+ k4 ‖z‖2) . (3–27)

Properties 2.1-2.6 allow (3–27) to be further upper bounded as

V̇1

a.e.
≤ −αe2

1 − k1e
2
2 − λ1 |e2| − λ2 |e2| ‖z‖ − λ3 |e2| ‖z‖2 , (3–28)

which can further be upper bounded as (3–25) provided the gain conditions in (3–20)

are satisfied. Hence, (3–15) is a common Lyapunov function for all time. Based on

(3–17) and (3–25), the result in (3–18) can be obtained, and from the closed-loop error

systems, the controller in (3–7) is bounded. Hence, the first control objective is satisfied

(i.e., cadence).

Because incomplete control authority exists over the torque tracking objective (i.e.,

the rider’s muscles are stimulated in the FES region, but not in the KDZ region), the

following theorem is employed to establish a decay rate on the torque error system in

the FES region and a growth rate in the KDZ region.

Theorem 3.2. For q ∈ QFES, the closed-loop error system in (3–14) yields exponential

torque tracking in the sense that

|e3(t)| ≤
∣∣e3(tFESn )

∣∣ exp
[
−k6(t− tFESn )

]
, (3–29)
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∀t ∈
[
tFESn , tKDZn

)
and ∀n, where tFESn ∈ R≥0 is the time the crank enters QFES of cycle

n, provided the gain conditions in (3–20) and the following constant gain condition is

satisfied:

k7 ≥ c4, (3–30)

where c4 was introduced in (3–12). Additionally, for q ∈ QKDZ , the torque tracking error

can be bounded as

|e3(t)| ≤


√
|e3 (tKDZn )|2 + c4

√
8 (t− tKDZn ) for |e3| ≤

√
2∣∣e3

(
tKDZn

)∣∣ exp
(
c4√

2

(
t− tKDZn

))
for |e3| >

√
2

(3–31)

∀t ∈
[
tKDZn , tFESn+1

)
, and ∀n, where tKDZn ∈ R≥0 is the time the crank enters QKDZ (i.e.,

exits QFES) of cycle n.

Proof. Let e3(t) for t ∈ [t0, ∞) be a Filippov solution to the differential inclusion ė3 ∈

K[h2](e3), where h2 : R→ R is defined using (3–14) as

h2 , ė3. (3–32)

The time derivative of (3–16) exists almost everywhere and V̇2(e3)
a.e.
∈ ˙̃V2(e3), where ˙̃V2

is the generalized time derivative of (3–15) along the Filippov trajectories of ė3 = h2(e3),

defined as [121] ˙̃V2 , ∩
ξ∈∂V2(e3)

ξTK

[
h2 (e3)

]
, where ∂V2 is the Clarke generalized

gradient of V2. Since V2 is continuously differentiable in e3, ∂V2 = {∇V2} ; thus, ˙̃V2 ⊆

e3 K

[
h2 (e3)

]
. Using the calculus of K [·] from [121], (3–14), and (3–32), yields

˙̃V2 ⊆ e3χ2 −
BM

BM

(
k6e

2
3 + k7K [sgn (e3)] e3

)
, (3–33)

where K [BM ] = BM within the FES regions. By Property 2.8, and since V̇2(e3)
a.e.
∈ ˙̃V2(e3),

(3–33) can be bounded as

V̇2

a.e.
≤ |e3χ2| − k6e

2
3 − k7 |e3| . (3–34)
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Assumption 2.2 allows (3–34) to be further upper bounded as

V̇2

a.e.
≤ − k6e

2
3 − λ5 |e3| , (3–35)

where λ5 ∈ R is a known constant defined as λ5 , k7 − c4. By Property 2.8, (3–16) is

verified as a common Lyapunov function across the controlled regions. Provided the

gain condition in (3–30) is satisfied, (3–35) can be upper bounded as

V̇2

a.e.
≤ −2k6V2. (3–36)

Solving the differential inequality in (3–36) yields

V2

a.e.
≤ V2

(
tFESn

)
exp

(
−2k6

(
t− tFESn

))
. (3–37)

Hence, by (3–16) the result in (3–29) can be obtained.

When q ∈ QKDZ , the control input term uM = 0, and the expression in (3–33) can be

written as

˙̃V2 ⊆ e3χ2, (3–38)

because BM = 0. Using (3–16), and since V̇2(e3)
a.e.
∈ ˙̃V2(e3), (3–38) can be upper

bounded as

V̇2

a.e.
≤ c4

√
2V2. (3–39)

From (3–39),

V̇2

a.e.
≤


c4

√
2 if V2 ≤ 1

c4

√
2V2 if V2 > 1

. (3–40)

By invoking the Comparison Lemma [63, Lemma 3.4] for each case,
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V2

a.e.
≤


V2

(
tKDZn

)
+ c4

√
2
(
t− tKDZn

)
if V2 ≤ 1

V2

(
tKDZn

)
exp

(
c4

√
2
(
t− tKDZn

))
if V2 > 1

. (3–41)

Using (3–16) provides the result in (3–31), and from the closed-loop error systems, the

controller in (3–13) is bounded.

Despite the growth of the torque error system in the KDZ region, the following

theorem leverages the results of Theorem 3.2 to guarantee convergence to an ultimate

bound through dwell-time conditions which manifest themselves as a minimum and

maximum allowable cadence.

Theorem 3.3. For q ∈ Q, the closed-loop error system in (3–14) yields a uniformly

ultimately bounded torque tracking error in the sense that

|e3(t)| ≤ 4

√
exp (−2k6∆tFESmin ) + c4

√
2∆tKDZmax ≤

√
2, (3–42)

∀t ∈ [t0, ∞) when (3–30) and the following gain condition is satisfied

k6 ≥ max

(
c4

√
2∆tKDZmax

2∆tFESmin

,
ln
(
1− c4

√
2∆tKDZmax

)
2∆tFESmin

)
,

∆tKDZmax <
1

c4

√
2
,

where ∆tFESmin , ∆tKDZmax ∈ R>0 are known constants defined as

∆tFESmin
, min

(
tKDZn − tFESn

)
, (3–43)

∆tKDZmax , max
(
tFESn+1 − tKDZn

)
, (3–44)

which denote the minimum allowable dwell-time in the FES region and the maximum

allowable dwell-time in the KDZ region, ∀n, as dictated by (2–4) and the selectable

minimum and maximum allowable cadences, respectively.
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Proof. By evaluating V2 at the switching instances
(
i.e., V2

(
tFESn

))
and enforcing

V2

(
tFESn+1

)
≤ V2

(
tFESn

)
, (3–45)

an ultimate bound is guaranteed to exist. Specifically, using (3–37) and (3–41), (3–45)

can be rewritten as

V2

(
tFESn+1

)
≤


V2

(
tFESn

)
exp

(
−2k6

(
tKDZn − tFESn

))
+ c4

√
2
(
tFESn+1 − tKDZn

)
if V2 ≤ 1

V2

(
tFESn

)
exp

(
− 2k6

(
tKDZn − tFESn

)
+ c4

√
2
(
tFESn+1 − tKDZn

) )
if V2 > 1

.

(3–46)

By examining the worst case scenario (i.e., inserting the minimum and maximum

allowable dwell-times), (3–46) can be bounded as

V2

(
tFESn+1

)
≤


V2

(
tFESn

)
exp

(
−2k6∆tFESmin

)
+ c4

√
2∆tKDZmax if V2 ≤ 1

V2

(
tFESn

)
exp

(
c4

√
2∆tKDZmax − 2k6∆tFESmin

)
if V2 > 1

. (3–47)

Examining (3–47), when V2 ≤ 1, and inserting the largest possible initial condition (i.e.,

V2

(
tFESn

)
= 1), (3–47) simplifies to

V2

(
tFESn+1

)
≤ exp

(
−2k6∆tFESmin

)
+ c4

√
2∆tKDZmax . (3–48)

To enforce overall decay, V2

(
tFESn+1

)
needs to be less than the initial condition (i.e.,

V2

(
tFESn+1

)
< 1), and (3–48) becomes

1 ≥ exp
(
−2k6∆tFESmin

)
+ c4

√
2∆tKDZmax ,

which can be solved for the gain condition

k6 ≥
ln(1− c4

√
2∆tKDZmax )

2∆tFESmin

. (3–49)

Hence, for V2 ≤ 1, the ultimate bound is

V2 ≤ exp
(
−2k6∆tFESmin

)
+ c4

√
2∆tKDZmax ≤ 1. (3–50)
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Examining (3–47) when V2 > 1 and imposing the following gain condition will result in

overall exponential decay to the smallest possible bound (i.e., limt→∞ V2 = 1),

k6 ≥
c4

√
2∆tKDZmax

2∆tFESmin

. (3–51)

Because overall decay is enforced for both of the above conditions (i.e., V2 ≤ 1 and

V2 > 1), the overall ultimate bound is given by (3–50) provided the gain conditions in

(3–49) and (3–51) are satisfied. Figure 3-2 provides an example decay to the ultimate

bound using (3–37) and (3–41). Bounding (3–50) with (3–16) provides the result in

(3–42).

Theorem 3.3 establishes an ultimate bound for the integral torque tracking error

(i.e., e3). Theorem 3.4 provides a bound on the instantaneous torque tracking error (i.e.,

ė3).

Theorem 3.4. For q ∈ Q, the closed-loop error system in (3–14) yields a uniformly

ultimately bounded instantaneous torque tracking error in the sense that

|ė3|
a.e.
≤ c4 +

BM

BM

(
k7 + 4k6

√
exp (−2k6∆tFESmin ) + c4

√
2∆tKDZmax

)
. (3–52)

Proof. To establish an ultimate bound on ė3, the result in (3–33) is evaluated for q ∈

QFES and q ∈ QKDZ as

˙̃V2 ⊆


e3χ2 − BM

BM

(
k6e

2
3 + k7K [sgn (e3)] e3

)
if q ∈ QFES

e3χ2 if q ∈ QKDZ
. (3–53)

Using (3–16), and since V̇2(e3)
a.e.
∈ ˙̃V2(e3), (3–53) can be rewritten as

ė3
a.e.
=


χ2 − BM

BM
(k6e3 + k7K [sgn (e3)]) if q ∈ QFES

χ2 if q ∈ QKDZ
. (3–54)

Establishing the most aggressive decay and growth rate for the FES and KDZ regions,

respectively, will provide an ultimate bound on ė3. For q ∈ QFES, (3–54) must be lower
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Figure 3-2. Sample Lyapunov function evolution over n = 8 cycles with parameters
V2(t0) = 4, c4

√
2 = 1.28, k6 = 3.56, ∆tKDZ = 0.5s, ∆tFES = 0.7s (i.e., constant

50 RPM with the FES regions representing 58% of the crank cycle and
KDZs representing 42%). The Lyapunov function V2,1 represents the
exponential growth bound for V2 > 1 in the KDZ, V2,2 represents the linear
growth bound for V2 ≤ 1 in the KDZ, and V2,3 represents the exponential
decay bound in the FES regions. (b) The same sequence of Lyapunov
functions, with an emphasis on the ultimate bound being less than 1,
obtained by adhering to the gain conditions in (3–49) and (3–51).

bounded. Using Property 2.8, and bounding yields

ė3

a.e.
≥ −c4 −

BM̄

BM

(k6 |e3|+ k7) . (3–55)

For q ∈ QKDZ , (3–54) must be upper bounded, which when combined with (3–12) yields

the most aggressive growth rate in the KDZ regions given by

ė3

a.e.
≤ c4. (3–56)

After combining the bounds in both the FES and KDZ regions (i.e., (3–55) and (3–56))

with the ultimate bound on e3 given in (3–42), the maximum of the two is taken to obtain

the ultimate bound on ė3in (3–52).
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Table 3-1. Controller operational details for FES and KDZ regions for Controllers A, B,
and C

Controller Region Motor Objective Muscle Objective

A FES Cadence Instantaneous Power
KDZ Cadence None

B∗ [86] FES Instantaneous Power Cadence
KDZ Cadence None

C∗ [87] FES Cadence Discretized Power
KDZ Cadence None

3.3 Experiments

Experiments were conducted to validate the performance of the developed con-

troller, henceforth labeled Controller A, in both an able-bodied population and a popula-

tion with varied neurological conditions. To further examine the performance compared

to alternate methods of cadence and power control, two other controllers were im-

plemented, labeled Controller B and Controller C, whose development and stability

analyses are available in [86] and [87], respectively. While the forms of the three con-

trollers are different, all have the same objective of cadence and power tracking. Though

the tracking objectives in the FES regions vary, all three controllers utilize the motor to

track cadence in the KDZ regions because no muscles are activated; see Table 3-1 for

details. Although the error systems and controllers take different forms, a side-by-side

comparison is made because all controllers possess the same desired cadence and

power trajectories for a given participant. By comparing the three controllers, insights

are provided to determine which actuator (i.e., muscle or motor) results in better tracking

performance of the objectives (i.e., cadence or power) and which is the better method to

track power (i.e., instantaneously or discretely).

3.3.1 Experimental Testbed

The experimental testbed used in this chapter is introduced in Chapter 2.

3.3.2 Experimental Methods

Seven able-bodied participants (five male and two female) with ages ranging from

21 to 43 years old, and six participants with neurological impairments (four male and
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two female) with ages ranging from 20 to 48 years old participated in the experimental

protocol. Participants were either recruited through the University of Florida (UF) Health

Integrated Data Repository (UF Consent2Share project) and completed the FES-cycling

protocol at UF or were enrolled at Brooks Rehabilitation Hospital in Jacksonville, FL.

All participants gave written informed consent approved by the UF Institutional Review

Board. Able-bodied participants were blind to the desired trajectories, and asked to

remain passive for the duration of the experiment unless otherwise noted. Removing

volitional contribution simulates a worst case scenario where the participant’s muscles

provide no contribution to the trajectory. Although, some contribution is still possible,

any voluntary contribution was only partially informed by stimulation cues as participants

were unaware of the desired trajectories. As is common in active therapy, participants

with a neurological condition were asked to volitionally pedal with stimulation added

as needed. These participants were shown a graph of the tracking performance of

e3, exclusively, and asked to contribute to the control objective to the greatest extent

possible. In the able-bodied population, all three controllers were implemented in

random order. In the population possessing neurological disorders, Controllers A and C

were implemented in random order.

In preparation for experimentation, electrodes were placed on the quadriceps

femoris, hamstrings, and gluteal muscle groups of a person who was seated with their

feet inserted securely into the orthotic pedals attached to the cycle. The tricycle’s seat

position was adjusted for the person’s comfort while ensuring that full extension of the

knees could not be achieved (i.e., maintaining a minimum bend of 15o at the knee)

while cycling. Measurements including the person’s thigh and shank length, as well as

distance from the person’s greater trochanter to the crank in both the horizontal and

vertical directions, were made to calculate the torque transfer ratios and determine the

stimulation pattern based on (2–4). Prior to stimulation, the participant’s range of motion

and comfort was verified by running the cycle at 30, 40, and 50 RPM, sequentially.
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Upon reaching 50 RPM, open-loop stimulation was applied and modulated until muscle

contractions were visible. For comfort, if the person’s threshold was reached during

calibration, the stimulation value was saved by the controller and the stimulation was

saturated at this level for the duration of the experiment.

The estimate of the rider’s passive dynamics, τ̂est, was generated by simultaneously

running the cycle at the desired cadence (50 RPM) while recording the torque from the

powermeter; the rider was instructed to provide no volitional effort. Subsequently, an

eighth-order Fourier fit was applied to the recorded torque measurements to satisfy

Assumption 2.2. Afterward, a 180 second experimental protocol was performed on

the participant, which began with an exponential ramp to the desired cadence using

only the motor. Upon reaching the desired cadence, the power trajectory then began

increasing along an exponential ramp until the desired power was obtained, at which

point stimulation was applied. The cadence controller given in (3–7) was active during

and after the cadence ramp, where the torque controller given in (3–13) was only active

after the desired cadence had been reached because large muscle forces are required

to move the crank at low speeds [81]. While there is no clear consensus for the optimal

cadence of FES cycles for rehabilitation, it has been suggested that lower cadences

may be more ideal for torque production, while higher cadences may be better for power

production [81]. For feasibility purposes, however, the desired cadence was set to 50

RPM [84, 122] for both the able-bodied population and the population with neurological

impairments.

The desired power is denoted by Pd : R≥0 → R and defined as the product

of the desired torque and desired cadence (i.e., Pd , τm,dq̇d), and varied based on

participant capability. Although the muscles are stimulated with the controller in (3–

13) utilizing a torque-based error system, in the following, results are displayed in

terms of measured power, denoted by P : R≥0 → R, defined as the product of the

estimated rider torque and measured cadence (i.e., P , τ̂mq̇). To account for the
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electromechanical delay present in the rider’s muscles, the stimulation pattern was

advanced as a function of the cadence (i.e., qstim , q + 0.1q̇), where qstim : Q× R → Q

was substituted for q in (2–7). Although the aforementioned gain conditions (i.e.,

k2 ≥ c1, k3 ≥ c2, k4 ≥ c3, k5 ≥ BM , k6 ≥ max

(
c4
√

2∆tKDZmax

2∆tFESmin
,

ln(1−c4
√

2∆tKDZmax )
2∆tFESmin

)
, k7 ≥ c4

in (3–20), (3–30), (3–49), and (3–51)) are sufficient to achieve stability for the largest

uncertainties on the system parameters, they represent conservative gains required by

the controllers in (3–7) and (3–13). Therefore, the gain conditions provide guidelines

for the initial gain selection and the gains can be subsequently adjusted to achieve

desirable performance. Although the listed gains were adjusted using an empirical-

based method, the gains could have been adjusted using more methodical approaches.

For example, the nonlinear system in [123] was linearized at several operating points

and a linear controller was designed for each point, and the gains were chosen by

interpolating, or scheduling the linear controllers. In [124], a neural network is used

to tune the gains of a PID controller. In [125] a genetic algorithm was used to fine

tune the gains after initial guess were made by the controller designer. The authors

in [126] provide an extensive discussion on the use of extremum seeking for tuning the

gains of a PID controller. Additionally, in [127], the tuning of a PID controller for robot

manipulators is discussed.For Controller A, the controller gains in (3–2), (3–7), and

(3–13) were selected as k1 ∈ [5, 9], k2 ∈ [0.08, 0.10], k3 ∈ [0.02, 0.05], k4 ∈ [0.02, 0.05],

k5 = 0.01, k6 ∈ [15, 60], k7 ∈ [0.75, 4.0], α = 6; for Controller B, the controller gains were

selected as k1 = 0.75, k2 = 0.1, k3 = 0.05, k4 = 0.05, k5 = 1.5, k6 = 0.85, k7 = 0.35, α = 6;

and for Controller C, the controller gains were selected as k1 = 15, k2 = 1.5, k3 = 7.5,

k4 ∈ [35, 50], k5 = 6, k6 ∈ [30, 35], α ∈ [1, 6] across all trials.

3.3.3 Results from Able-Bodied Population

To validate the proposed controller, experiments were conducting using Controllers

A, B, and C on able-bodied participants. The able-bodied population’s cadence and
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power results are displayed in Table 3-2; each controller was implemented on each

participant for a single trial.

The developed controller (i.e., Controller A) demonstrated average cadence and

power tracking errors of 0.01±1.03 RPM and 0.00±0.94 W, respectively; Controller

B demonstrated average cadence and power tracking errors of -0.10±5.35 RPM and

-0.01±1.72 W, respectively; and Controller C demonstrated average cadence and power

tracking errors of 0.01±0.96 RPM and -0.06±1.70 W, respectively. For Participant

C (as a typical result), plots of Controller A’s cadence and power performance, and

stimulation input are provided in Figures 3-3-3-5; plots of Controller B’s cadence and

power performance, and stimulation input are provided in Figures 3-6-3-7, respectively;

and plots of Controller C’s cadence and power performance, and stimulation input are

provided in Figures 3-8-3-9, respectively. To compare the current sent to the cycle’s

motor for each controller, Figure 3-10 displays the motor control input for Controllers

A, B, and C. For Participant C, compared to Controller C, Controller A drew 27% more

current on average and Controller B drew 58% more current on average.

To determine if the controller significantly affected the results, a Friedman test was

conducted on the average cadence error, cadence standard deviations, average power

error, and power standard deviations of Controllers A, B, and C. The Friedman test

used only the data from the participants who were used for all three controllers. Post-

hoc comparisons between the three controllers were developed using Fisher’s Least

Significant Difference (LSD) method to determine statistical significant differences. The

first Friedman test was performed on the average cadence error, ė1, and determined that

the choice of controller significantly affected the error (P = 0.0062). From the post-test,

it was determined that Controller A was significantly different from Controller B (P =

0.0026), as was Controller B from C (P = 0.0159). Noting the average cadence errors

in Table 3-2, it is then concluded that Controllers A and C are both significantly superior

than Controller B, but not from each other. The second Friedman test was conducted on
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the cadence standard deviations, STD(ė1), and indicated that the controller significantly

affected the result (P = 0.0094). The post-test determined that Controllers A and B

are significantly different (P = 0.0039) and so are Controllers B and C (P = 0.0209),

with Controllers A and C superior to B. The third Friedman test was run on the average

power errors, ė3, and indicated that the choice of controller did not significantly affect

the result (P = 0.1146). However, the post-test found only Controllers A and C were

significantly different (P = 0.0433) from each other, with A being superior. The final

Friedman test, ran on the power standard deviations, STD(ė3), again determined

significant differences among the controllers (P = 0.0057). The post-test determined

Controllers A and B were significantly different (P = 0.0015) and Controllers A and C

were significantly different (P = 0.0433), with Controller A being superior in both cases.

Hence, experimental results from the able-bodied population, indicate that Controllers

A and C outperform B in both cadence and power tracking. These results indicate that

the motor should control cadence for all time and the muscle should track power in the

FES regions. Having the motor control cadence resulted in a reduction in the cadence

standard deviation and a more comfortable participant experience due to less oscillatory

pedaling performance.

Regardless of the controller, it can be observed in Figures 3-3, 3-6, and 3-8 that the

measured cadence and power values fluctuate around the desired values throughout

the experiment. The cause of these fluctuations can arise from system disturbances

such as chain links, the rider, or inaccurate modeling. Because each controller is

designed to account for these disturbances, when the disturbance occurs, the controller

is capable of compensating for it and correcting the measured trajectory. The degree of

these fluctuations can be quantified using the standard deviation of cadence, displayed

in Table 3-2.

Across all trials (i.e., controllers), the participant begins to show signs of fatigue,

evidenced by the increasing amount of stimulation required to complete the tracking
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Figure 3-3. Controller A, Participant C: Desired vs. actual cadence and power. The
mean cadence is 50.01±0.70 RPM and mean power is 10.00±0.50 W.

objective (e.g., see Figures 3-4, 3-7, and 3-9). Because FES nonselectively recruits

muscle fibers, closed-loop control offers one solution to compensate for the effect of

fatigue, but the rapid degree to which fatigue occurs remains an outstanding challenge

in the use of FES [117]; however strategies such as [128–130] provide inroads to this

problem. Furthermore, although the effect of input delay was captured as a system

disturbance [114], future works should consider this factor in the control design, as

in [131].

3.3.4 Results from Population with Neuromuscular Disorders

Since Controllers A and C had comparable performance on the control population

and superior performance over Controller B, only they were implemented on the
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Figure 3-4. Controller A, Participant C: Stimulation input to the participant’s six muscle
groups. Muscle groups are indicated by RQ, LQ, RH, LH, RG, LG which
represent right and left quadriceps, right and left hamstrings, and right and
left gluteals, respectively. The stimulation input is displayed as the maximum
stimulation for each muscle group in each FES region, at the corresponding
time.
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Figure 3-5. Controller A, Participant C: Stimulation input over three revolutions.

59



Figure 3-6. Controller B, Participant C: Desired vs. actual cadence and power. The
mean cadence is 49.96±4.84 RPM and mean power is 9.98±1.46 W .
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Figure 3-7. Controller B, Participant C: Stimulation input to the participant’s six muscle
groups.
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Figure 3-8. Controller C, Participant C: Desired vs. actual cadence and power. The
mean cadence is 50.00±0.66 RPM and mean power is 9.70±0.98 W.
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Figure 3-9. Controller C, Participant C: Stimulation input to the participant’s six muscle
groups. Stimulation is identical for the right and left leg.
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Figure 3-10. Controllers A, B, and C, Participant C: Current input to the cycle’s electric
motor, filtered with a 1.2 s moving average for visual clarity.
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population with neurological impairments to draw further conclusions. The population

with neurological impairments is labeled numerically. These participants possess

neurological conditions such as hemorrhagic and ischemic stroke, spinal cord injury

(SCI), spina bifida, and traumatic brain injury (TBI). They also had varying degrees of

exposure to FES; those who had prior experience were typically quicker to acclimate

to the stimulation and had higher stimulation thresholds. To evaluate a participant’s

level of activity (i.e., how often they regularly perform exercise) and capabilities, they

were asked to self-report if they regularly participate in physical or occupational therapy

(PT/OT) and if they used any physical aid in ambulation. The participants’ self-reported

demographics are provided in Table 3-3. Of the six participants, three suffered a

stroke, all of which had hypersensitivity to electrical stimulation due to hemiparesis,

resulting in lower stimulation thresholds. Stroke participants also had asymmetric motor

impairments which, to varying degrees, affected limb coordination. Participant 3 lacks

any sensation below the injury location, and was unable to volitionally contribute to the

task due to a SCI (AIS A). Controller A was implemented on all six participants and

Controller C was implemented on five of the six. Experimental results are displayed in

Table 3-4.

Controller A demonstrated average cadence and power tracking errors of

0.02±1.87 RPM and 0.00±2.46 W, respectively, and Controller C demonstrated average

cadence and power tracking errors of 0.01±1.82 RPM and -0.54±3.96 W, respectively.

To highlight the efficacy of the designed controllers, Participant 3’s results are displayed

in Figures 3-11-3-15. Participant 3’s results are depicted because he is paraplegic and

unable to volitionally contribute to the forward motion of the crank; hence, any torque

produced by the leg muscles is only caused by the controllers. Using Controller A, plots

of his cadence and power performance and stimulation input are provided in Figures

3-11-3-13. Using Controller C, plots of his cadence and power performance and stimu-

lation input are provided in Figures 3-14 and 3-15, respectively. To compare the current
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Figure 3-11. Controller A, Participant 3: Desired vs. actual cadence and power. The
mean cadence is 50.02±2.35 RPM and mean power is 9.98±0.52 W.

sent to the cycle’s motor for each controller, Figure 3-16 displays the motor control input

for Controllers A and C. For Participant 3, Controller A drew an average of 33% more

current than Controller C.

While the cadence error and standard deviation are comparable for the two con-

trollers, the average power error and standard deviation are smaller for Controller A

than Controller C, though not statistically significant, i.e., α = 0.05 (using the available

paired data sets, i.e., Participants 1-5). It should be noted, however, because Controller

C tracks power discretely, it potentially masks asymmetries in the rider. That is, because

it updates the error and control input only once per cycle, Controller C delivers identical

stimulation to both the right and left leg. Controller A uses a running integral to track
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Figure 3-12. Controller A, Participant 3: Stimulation input to the participant’s six muscle
groups.
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Figure 3-13. Controller A, Participant 3: Stimulation input over three revolutions.
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Figure 3-14. Controller C, Participant 3: Desired vs. actual cadence and power. The
mean cadence is 50.02±2.79 RPM and mean power is 9.80±0.74 W.
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Figure 3-15. Controller C, Participant 3: Stimulation input to the participant’s six muscle
groups.
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Figure 3-16. Controllers A and C, Participant C: Current input to the cycle’s electric
motor for Controllers A, and C. Filtered with a 1.2 s moving average for
visual clarity.
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power, updates continuously, and can potentially better accommodate asymmetries.

As in the able-bodied population, the measured cadence and power values fluctuated

around the desired values due to unmodeled disturbances, shown in Figures 3-11 and

3-14. Future tests on a split-crank cycle could further explore differences for such asym-

metries. Controller A outperformed C in terms of power tracking and power standard

deviation, but had a larger cadence standard deviation. Accounting for the errors, stan-

dard deviations, and potential masking of asymmetric characteristics, it is determined

that Controller A should be used for the population with neurological impairments, and

power should be tracked instantaneously, not discretely. Controllers A and C were able

to achieve power results comparable to those reported in other experiments involving

people with SCIs (e.g., an average PO of 8.0±2.1 W with one leg at 25 RPM [75], an

average steady state PO of 16.0±3.6 W ranged 8.5-29.5 W in five participants after

one year of training [78], and an improvement from 8.4±1.0 W to 18.4±2.6 W in 11

participants after one year of training [79]).

3.4 Concluding Remarks

In this chapter, an FES cycling controller is developed to track both cadence and

instantaneous torque. The torque error system uses a running integral to update the

torque error in real-time, compared to once per cycle in discretized tracking prevalent in

other cycling methods. Using the proposed controller, a Lyapunov-like switched system

stability analysis is conducted which guarantees global exponential cadence tracking

and uniform ultimate boundedness of the power objective. Experiments were conducted

on seven able-bodied participants and six participants with neurological impairments

to evaluate the performance of the proposed controller. A comparison is then made

to two previously developed FES-cycling controllers using experimental results. While

the controllers varied in their control authority and their method of tracking torque, all

controllers demonstrated the ability to accomplish the dual-objective of cadence and

power tracking; however, the developed controller exhibited favorable performance and

72



characteristics. These results indicate that cadence should be controlled by the electric

motor for all time (i.e., within the FES and KDZ regions) and power should be tracked

instantaneously using the large muscle groups of the legs in the FES regions.

A difficulty observed throughout experiments was selecting the desired torque

trajectory for each rider. If the torque trajectory was too difficult, the rider’s muscles soon

saturated and experienced undue fatigue. Consequently, the experiment needed to be

restarted and/or gain tuning performed. Chapter 4 seeks to improve upon this result

by transitioning from direct torque tracking to indirect tracking while adding a degree of

compliance to the system.
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Table 3-2. Comparative results for able-bodied population: mean error of tracking
objectives given as ė± STD(ė), and percent error of ė during steady state
operation for cadence and power∗

Controller Participant ė1 (RPM) ė1 (% Error) ė3/eτ (W)†,‡ ė3/eτ (% Error)†

A

A 0.01±0.88 0.02 -0.08±0.33 0.76
B 0.03±0.72 0.05 -0.04±0.38 0.38
C 0.01±0.70 0.03 -0.00±0.50 0.02
D 0.02±0.93 0.03 -0.05±0.69 0.48
E 0.01±1.03 0.03 0.01±0.70 0.06
F (6W)|| 0.02±0.99 0.04 0.16±0.69 2.60
G (15W)# 0.00±1.65 0.00 0.02±2.05 0.11
Mean 0.01±1.03 0.03 0.00±0.94 0.63

B

A -0.19±5.38 0.39 -0.03±1.48 0.28
B -0.15±5.46 0.30 -0.05±1.43 0.51
C -0.04±4.84 0.07 -0.02±1.46 0.18
D -0.03±5.24 0.05 0.07±1.47 0.68
E -0.10±6.16 0.19 -0.03±2.76 0.30
F (6W) -0.11±4.90 0.21 -0.02±1.26 0.32
G (15W)∆ - - - -
Mean -0.10±5.35 0.21 -0.01±1.72 0.38

C

A 0.01±1.10 0.01 -0.10±0.69 1.00
B 0.02±0.90 0.04 -0.10±0.76 0.99
C 0.00±0.66 0.00 -0.30±0.98 0.27
D 0.03±0.96 0.06 0.02±1.70 0.24
E 0.00±1.21 0.00 -0.21±1.50 2.13
F (6W) 0.02±0.89 0.04 -0.00±0.74 0.01
G (15W)# 0.02±0.90 0.04 0.24±3.54 1.61
Mean 0.01±0.96 0.03 -0.06±1.70 0.89

∗Unless otherwise noted, all participants provided no volitional contribution; the desired
cadence and power are 50 RPM and 10 W, respectively.
†The notation ė3 is valid for the error systems of Controllers A and B. For Controller C
in [87], it is analogous to eτ (k), which represents the average torque error eτ : N → R
per crank cycle, k.
‡For post-processing, a two crank cycle (a moving window of approximately 2.4 sec-
onds) averaging filter was applied on ė3/eτ .
||Due to participant comfort, this trial ended at two minutes.
#The participant provided volitional contribution.
∆Due to time constraints by the participant, this experiment was not performed, and
therefore, this participant was excluded from the statistical analysis.
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Table 3-3. Demographics of population with neuromuscular disorders

Participant Age Sex Injury* Physical Aid‡ TSI†

1 45 M Ischemic Stroke (L) AFO 3yr 9mo
2 48 F Hemorrhagic Stroke (L) AFO, Cane 9mo
3 20 M SCI T8-9 Complete, T9-10 Fusion Wheelchair 8mo
4 25 M Spina Bifida (L5-S1), Arnold Chiari Malformation AFO, Wheelchair 25yr
5 37 M Traumatic Brain Injury AFO, Wheelchair 9yr 11mo
6 29 F Ischemic Stroke (R) Wheelchair 1mo

∗L = Left Hemiparesis, R = Right Hemiparesis
†Time since injury (TSI)
‡AFO = Ankle Foot Orthosis

Table 3-4. Comparative tracking results for population with neuromuscular disorders:
average error of tracking objectives given as ė± STD(ė), and percent error of
ė during steady state operation for cadence and power∗

Controller Participant ė1 (RPM) ė1 (% Error) ė3/eτ (W)†,‡ ė3/eτ (% Error)†

A

1 (8W) 0.01±1.69 0.03 0.09±3.08 1.11
2 (10W) 0.02±1.85 0.05 -0.18±2.80 1.78
3 (10W)|| 0.02±2.35 0.04 -0.02±0.52 0.16
4 (5W)# 0.03±0.66 0.05 -0.24±0.50 4.76
4 (5W)|| 0.01±0.56 0.02 0.01±0.41 0.21
5 (10W) 0.02±1.50 0.05 0.29±4.12 2.90
6 (5W)# 0.02±1.54 0.03 0.02±2.72 0.40
Mean 0.02±1.87 0.04 0.00±2.46 1.47

C

1 (8W) 0.02±1.69 0.04 -2.31±3.61 -28.91
2 (10W) 0.01±1.68 0.02 -0.81±3.10 -8.05
3 (10W)|| 0.02±2.79 0.05 -0.20±0.74 -2.01
4 (5W)|| 0.00±0.73 0.00 0.02±0.19 0.36
5 (10W) 0.01±1.59 0.02 0.58±7.44 5.81
Mean 0.01±1.82 0.03 -0.54±3.96 9.03

∗Unless otherwise noted, all participants provided volitional contribution; the desired
cadence and power are 50 RPM and 10 W, respectively.
†The notation ė3 is valid for the error systems of Controllers A and B. For Controller C
in [87], it is analogous to eτ .
‡A two crank cycle filter was applied on ė3/eτ .
||Participant did not provide any volitional contribution.
#Due to time constraints by the participant, the Controller C counterpart was not run,
therefore this result was excluded from the signed-rank test.
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CHAPTER 4
CONTROLLING THE CADENCE AND ADMITTANCE OF A FUNCTIONAL

ELECTRICAL STIMULATION CYCLE

The motorized FES cycle in this chapter utilizes a combined admittance/cadence

controller to simultaneously pedal the FES cycle and stimulate the rider’s muscles

while preserving rider comfort and safety. The admittance controller is implemented

on the cycle’s motor and a robust sliding-mode cadence controller is applied to the

rider’s muscle groups. The FES delivered to the rider’s muscle groups is saturated

for comfort, and due to the admittance controller, the cycle responds appropriately by

assisting the rider if the delivered stimulation is insufficient to produce the desired torque

at the desired cadence. Heuristically, the cycle strikes a balance between rider safety

(which addresses muscle/joint spasticity by allowing the rider to deviate from the desired

cadence) and capability. Using a Lyapunov-like switched systems stability analysis,

the cadence controller is proven to be globally exponentially stable and the admittance

controller is proven to be passive with respect to the rider. By selectively modifying the

admittance parameters (i.e., the injected inertia and damping), the admittance controller

is capable of emulating a cadence controller (by increasing the inertia and damping) or

admitting to the rider significantly (by decreasing the inertia and damping). Hence, by

appropriately selecting the admittance parameters, the cycle can be made increasingly

stiff or compliant by activating the cycle’s motor accordingly. By merging an admittance

controller with a cadence controller, an assist-as-needed control methodology is

realized; i.e., if the rider’s muscles are unable to meet the desired interaction torque

requirement as dictated by admittance filter, the admittance controller assists in keeping

the rider held to the desired cadence trajectory through injected artificial dynamics.

Conversely, if the rider surpasses the desired interaction torque (as is possible in

volitional cycling) the cycle will resist-as-needed and challenge the rider. In other words,

admittance control is more concerned about the dynamic behavior of the system instead
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of explicit position or torque tracking as in Chapter 3. This chapter demonstrates the first

use of admittance control on an FES cycle.

Experiments were conducted on four participants with various NDs (i.e., spina

bifida, spinal cord injury, post-stroke hemiparesis, and Parkinson’s disease) and three

able-bodied participants to demonstrate feasibility and desired performance metrics.

Admittance parameters were varied across all protocols and the admittance controller

achieved an average admittance cadence error of -0.06±1.47 RPM for able bodied

participants and -0.02±0.93 RPM for participants with NDs. The developed controllers

hold promise for a new person-specific cycling experience to promote rehabilitation

while ensuring safety and comfort.

4.1 Control Development

The following section includes the development of an admittance controller for the

cycle’s motor and cadence controller for the rider’s muscles. The admittance controller is

designed to be passive with respect to the rider to ensure safety and used to indirectly

track a desired torque to assist the rider in maintaining cycle cadence. The cadence

controller is used to directly regulate cycle cadence in the FES regions by rejecting the

torque from the admittance controller.

4.1.1 Robust Admittance Control

While the rider’s muscles regulate cadence in the FES regions (i.e., while q ∈

QFES), the cycle’s controller is designed such that it will resist the rider if the cadence is

too high (i.e., q̇ > q̇d) or assist the rider if the cadence is too low (i.e., q̇ < q̇d) in both the

FES and KDZ regions (i.e., q ∈ Q) , where q̇d : R≥0 → R denotes the desired cadence.

The assistance modality is vital because the rider’s muscles only contribute torque about

the crank in the FES regions; therefore when the rider’s muscles are inactive in the KDZ

regions, the cycle is expected to decelerate. Admittance control is commonly used as

a method of indirect torque tracking, and therefore, employs an interaction torque error,
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quantified by eτ : R≥0 → R, and defined as

eτ , τint − τd, (4–1)

where the desired interaction torque is denoted by τd : R≥0 → R, and τint : R≥0 → R

denotes the measurable bounded interaction torque between the cycle and rider (i.e.,

τint ∈ L∞) [56, 132]. By subsequently implementing an admittance filter, the interaction

torque error can be transformed into an admitted trajectory, which can be tracked using

an inner-loop position controller. The admittance filter is designed as

eτ , Mdq̈a +Bdq̇a, (4–2)

where qa, q̇a, q̈a : R≥0 → R denote the admitted position, velocity, and acceleration,

respectively; and Md, and Bd ∈ R>0 denote the desired inertia and damping. To ensure

boundedness of the admitted trajectory, the parameters in (4–2) are selected such that

the transfer function of (4–2) is passive [63, Lemma 6.4]. After the admitted trajectory is

generated by (4–2), an inner-loop position controller is designed to track the admittance

error system, quantified by ξ : R≥0 → R and ψ : R≥0 → R, defined as

ξ , qa + qd − q, (4–3)

ψ , ξ̇ + βξ, (4–4)

where qd : R≥0 → R denotes the desired position, designed to be sufficiently smooth

(i.e., qd, q̇d, q̈d ∈ L∞). Hence, if the position controller can regulate the errors in (4–

3) and (4–4), the controller will preserve the admitted dynamics of the filter in (4–2)

and accomplish its indirect torque tracking objective. The open-loop admittance error

system is generated by taking the time derivative of (4–4), multiplying by M , adding and

subtracting ξ, and substituting (2–8), (4–3), and (4–4) to yield

Mψ̇ = χ1 −Beue − τm − V ψ − ξ, (4–5)
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where the lumped auxiliary signal χ1 : Q × R × R≥0 → R is defined as χ1 ,

M (q̈a + q̈d + βψ − β2ξ) + V (q̇d + βξ + q̇a) + G + P + bc (q̇a + q̇d − ψ + βξ) + d + ξ and

is bounded by Properties 2.1-2.6 as |χ1| ≤ c1 + c2||φ|| + c3||φ||2, where c1, c2, c3∈ R>0

are known constants, and the error vectors φ ∈ R4 and ζ ∈ R2 are defined as φ ,[
ζT , q̇a, q̈a

]T and ζ , [ξ, ψ]T , respectively. Based on (4–5) and the subsequent stability

analysis, the admittance controller is designed as

ue ,
1

Be

[
k1ψ +

(
k2 + k3 ‖φ‖+ k4 ‖φ‖2) sgn (ψ)

]
, (4–6)

where sgn(·) is included to provide robustness to the uncertainty in χ1, and ki ∈

R>0 ∀i = 1, 2, 3, 4 denote constant control gains. Substituting (4–6) into (4–5) yields the

closed-loop admittance error system

Mψ̇ = χ1 − τm − V ψ − ξ −
[
k1ψ +

(
k2 + k3 ‖φ‖+ k4 ‖φ‖2) sgn (ψ)

]
. (4–7)

4.1.2 Robust Cadence Control

While the cycle is assigned to regulate the admitted error system throughout the

entire crank cycle (i.e., q ∈ Q), the cycle’s cadence is regulated using the rider’s muscles

in the FES regions (i.e., q ∈ QFES). The cadence tracking objective is quantified by

e : R≥0 → R and r : R≥0 → R, each defined as

e , qd − q, (4–8)

r , ė+ αe, (4–9)

where α ∈ R>0 denotes a constant control gain. The open-loop cadence error system

is obtained by taking the derivative of (4–9), multiplying by M , adding and subtracting e,

and substituting (2–8), (4–8), and (4–9) to yield

Mṙ = χ2 −BMuM −Beue − V r − e, (4–10)
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where the lumped auxiliary signal χ2 : Q × R × R≥0 → R is defined as χ2 ,

M (q̈d + αr − α2e) + V (q̇d + αe) + G + P + bc (q̇d − r + αe) + d + e and bounded by

Properties 2.1-2.6 as |χ2| ≤ c4 + c5 ‖z‖ + c6 ‖z‖2 , where c4, c5 c6 ∈ R>0 are known

constants, and the error vector z ∈ R2 is defined as z , [e, r]T . Based on (4–10) and

the subsequent stability analysis, the cadence controller is designed as

uM =
1

BM

[
k5r +

(
k6 + k7 ‖z‖+ k8 ‖z‖2 + k9 |ue|

)
sgn(r)

]
, (4–11)

where sgn (·) is included to provide robustness to the uncertainty in χ2, ki ∈ R>0 ∀i =

5, 6, ..., 9 denote constant control gains, BM is introduced in Property 2.8, and ue is

included to overcome the torque supplied by the motor. Substituting (4–11) into (4–10)

yields the closed-loop cadence error system

Mṙ = χ2 −Beue − V r − e−
BM

BM

[
k5r +

(
k6 + k7 ‖z‖+ k8 ‖z‖2 + k9 |ue|

)
sgn(r)

]
.

(4–12)

4.2 Stability Analysis

For the following theorems, let V1 : R2 → R denote a continuously differentiable,

positive definite storage function defined as

V1 ,
1

2
Mψ2 +

1

2
ξ2, (4–13)

which satisfies the following inequalities: γ ‖ζ‖2 ≤ V1 ≤ γ ‖ζ‖2 , where γ, γ ∈ R>0 are

known constants defined as γ , 1
2
min (cm, 1) , and γ , 1

2
max (cM , 1) . Let V2 : R2 → R

denote a continuously differentiable, positive definite Lyapunov function candidate

defined as

V2 ,
1

2
Mr2 +

1

2
e2, (4–14)

which satisfies the following inequalities: γ ‖z‖2 ≤ V2 ≤ γ ‖z‖2 .
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Theorem 4.1. Given the closed-loop admittance error system in (4–7) and the admit-

tance relation in (4–2), the admittance controller in (4–6) is passive from input |τm| to

output |ψ| , provided the constant gain conditions are satisfied: k2 ≥ c1, k3 ≥ c2, k4 ≥ c3.

Furthermore, when in isolation (i.e., decoupled from the rider and τm = 0) the admit-

tance error system is globally exponentially stable in the sense that

‖ζ‖
a.e.
≤
√
γ

γ
‖ζ(t0)‖ exp

[
− δ

2γ̄
(t− t0)

]
, (4–15)

∀t ∈ [t0, ∞), where δ , min(k6, β).

Proof. Let ζ(t) for t ∈ [t0, ∞) be a Filippov solution to the differential inclusion ζ̇ ∈

K[h1](ζ), where K[·] is defined as in [120], and where h1 : R2 → R2 is defined as

h1 ,

[
ξ̇ ψ̇

]T
. Because of the discontinuity in the motor controller in (4–6), the time

derivative of V1 exists almost everywhere (a.e.) (i.e., for almost all t ∈ [t0, ∞)), and

V̇1(ζ)
a.e.
∈ ˙̃V1(ζ), where ˙̃V1 is the generalized time derivative of V1 along the Filippov

trajectories of ζ̇ = h1(ζ) [121]. Using the calculus of K [·] from [121], and substituting

(4–4) and (4–5) into ˙̃V1 yields

˙̃V1 ⊆ −βξ2 + ψχ1 +

(
1

2
Ṁ − V

)
ψ2 − k1ψ

2 − ψτm −
(
k2 + k3||φ||+ k4||φ||2

)
K[sgn(ψ)]ψ.

(4–16)

Hence, by Properties 2.1-2.6, and since V̇1(ζ)
a.e.
∈ ˙̃V1(ζ), (4–16) can bounded above as

V̇1

a.e.
≤ |ψ| |τm| − βξ2 − k1ψ

2 − |ψ|
(
λ1 + λ2 ‖φ‖+ λ3 ‖φ‖2) , (4–17)

where λ1, λ2, λ3 ∈ R are defined as λ1 , k2 − c1, λ2 , k3 − c2, λ3 , k4 − c3. Provided

the gain conditions listed above are satisfied, λ1, λ2, λ3 ≥ 0, thus (4–17) can be upper

bounded as

V̇1

a.e.
≤ |ψ| |τm| − δ ‖ζ‖ 2, (4–18)
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where δ was defined previously. Hence, by [63, Definition 6.3] the robot system is output

strictly passive with input |τm|, output |ψ|, and storage function V1. When the robot acts

in isolation (i.e., the human is decoupled from the robot), τm = 0, and (4–18) can be

rewritten using (4–13) as

V̇1

a.e.
≤ − δ

γ̄
V1. (4–19)

Hence, the storage function qualifies as a radially unbounded positive definite Lyapunov

function per the zero-state observability condition [63, Definition 6.5] and results in

global exponential stability when τm = 0. Using (4–13) with (4–19) provides the result

in (4–15). Because the interaction torque is bounded, from the perspective of the robot,

the physically applied rider torque is similarly bounded. Hence, from the closed-loop

error system in (4–7), the admittance relation in (4–2), and the passivity result in (4–18),

the robot admittance controller in (4–6) is bounded.

Remark 4.1. The rider’s stimulation-elicited torque contribution is defined as τm ,

BMuM , however, τm can be redefined to include the riders volitional torque contribution,

τvol : R≥0 → R , as τm , BMuM + τvol [133] and the conclusion of Theorem 4.1 still

holds. Hence, if the rider volitionally contributes to pedaling the cycle in addition to the

stimulation, the admittance controller is still passive.

For the following theorem, let tFESn ∈ R≥0 denote the time the crank enters QFES of

cycle n, and tKDZn ∈ R≥0 as the time the crank enters QKDZ (i.e., exits QFES) of cycle n.

Theorem 4.2. Given the closed-loop cadence error system in (4–12), for q ∈ QFES,

global exponential tracking is guaranteed in the sense that

‖z‖
a.e.
≤
√
γ

γ

∥∥z(tFESn )
∥∥ exp

[
− ρ

2γ
(t− tFESn )

]
, (4–20)

82



∀t ∈
[
tFESn , tKDZn

)
, ∀n, where γ, γ ∈ R>0 maintain their definitions from above, and

ρ , min (k5, α), provided the constant gain conditions are satisfied: k6 ≥ c4, k7 ≥

c5, k8 ≥ c6, k9 ≥ Be.

Proof. Similar to the proof of Theorem 4.1, let z(t) for t ∈ [t0, ∞) be a Filippov solution

to the differential inclusion ż ∈ K[h2](z) and let h2 : R2 → R2 be defined as h2 ,[
ė ṙ

]T
. Using Property 2.7, and substituting (4–9) and (4–10) into ˙̃V2(z) yields

˙̃V2 ⊆ −αe2 − K [BM ]

BM

k5r
2 − rBeK [ue]−

K [BM ]

BM

(
k6

+k7 ‖z‖+ k8 ‖z‖2 + k9K [|ue|]
)
K[sgn(r)]r + rχ2, (4–21)

where K [|sgn(·)|] = |SGN (·)| such that |SGN (·)| = {1} if (·) 6= 0, [0, 1] if (·) = 0. Note

K [BM ] can be lower bounded by K [BM ] by Property 2.8 and in the FES regions, BM is

continuous; therefore K [BM ] can be replaced with BM . This fact, along with Properties

2.1-2.6, and the fact that V̇2(z)
a.e.
∈ ˙̃V2(z), allows (4–21) to be evaluated in the FES

regions and upper bounded as

V̇2

a.e.
≤ −αe2 − k5r

2 − |r|
(
λ4 + λ5 ‖z‖+ λ6 ‖z‖2 + λ7K [|ue|]

)
, (4–22)

where λi ∈ R>0 ∀i = 4, 5, ..., 7 are defined as λ4 , k6 − c4, λ5 , k7 − c5, λ6 ,

k8 − c6, and λ7 , k9 − Be. Provided the aforementioned gain conditions are satisfied,

λi ≥ 0 ∀i; thus, (4–22) can be upper bounded using (4–14) as

V̇2

a.e.
≤ −ρ

γ̄
V2, (4–23)

where ρ was introduced in (4–20). Based on (4–14) and (4–23) the result in (4–20) can

be obtained. From the result of Theorem 4.1, and from the closed-loop error systems,

the cadence controller in (4–11) is bounded.

Remark 4.2. Redefining the rider’s torque contribution as τm , BMuM + τvol no longer

guarantees exponential tracking; instead, by assuming the rider is contributing positive
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torque about the crank, it guarantees the actual cadence will be at least the desired

cadence (i.e., q̇ ≥ q̇d).

4.3 Experiments

4.3.1 Experimental Testbed

The experimental testbed used in this chapter is introduced in Chapter 2.

4.3.2 Experimental Methods

Four experimental protocols (i.e., Protocols A, B, C, and D) were conducted on

three able-bodied participants and four participants with NCs, whose demographics

are listed in Table 4-1. Each protocol had a duration of two minutes with the first twenty

seconds consisting of a smooth motor-only ramp to the desired cadence of 50 RPM.

Subsequently, the controllers in (4–6) and (4–11) were activated for the remaining

duration of the experiment. Across all protocols, the desired inertia parameter was

held constant at Md = 2 Nm·s2
rad

and the damping parameter was selected to be a

low
(
1 Nm·s

rad

)
, medium

(
2.5 Nm·s

rad

)
, or high value

(
5 Nm·s

rad

)
(i.e., Protocols A, B, and C,

respectively) to investigate the effects of modifying the parameter. For Protocols A, B,

and C, all participants were asked to remain passive, contribute no volitional torque,

and were blind to the desired trajectory for the duration of the experiment. An additional

protocol was conducted with the medium damping parameter, but with added volition

(i.e., Protocol D) where the participants were shown a running plot of the measured

and desired cadences. For Participants 1-3, the interaction torque was selected as

τd = 0.5 Nm for Protocols A-C, and as τd = 2.0 Nm for Protocol D. For Participants 4-7,

the interaction torque was selected as τd = 0.0 Nm for Protocols A-D, unless otherwise

noted.

The stimulation input in (4–11) was saturated based on individual participant

comfort and was determined prior to experimentation. The experimental protocols were

approved by the Institutional Review Board at the University of Florida. Participants

are referred to by the letter “P” followed by their participant number. Unique trials
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Table 4-1. Demographics of participants with and without neuromuscular disorders

Participant Age Sex Condition Physical Aid† TSI‡

P1 25 M None - - - -
P2 25 M None - - - -
P3 24 F None - - - -
P4 25 M Spina Bifida (L5-S1), Arnold Chiari Malformation AFO, Wheelchair 25yr
P5 28 F Spinal Cord Injury (T8-T9) Wheelchair 12yr
P6 50 F Hemorrhagic Stroke Wheelchair 4yr
P7 64 M Parkinson’s Disease - - 19yr

†AFO: ankle-foot orthosis
‡TSI: Time since injury

are referred to by the participant number followed by the protocol letter; for example,

Participant 3 Protocol B is referred to as P3B.

4.3.3 Results and Discussion

To estimate the power generated by the rider, an average passive torque reading,

denoted by τp : R≥0 → R, was collected during each trial for 4.8 seconds prior to

controller activation (i.e., approximately four crank cycles at 50 RPM) to provide a

baseline estimate for the passive torque required to actuate the combined rider-cycle

system at the desired cadence. Subsequently, an average estimate of the power

generated by the rider, denoted by P : R≥0 → R, was obtained through the relation,

P = mean (q̇) (mean (τint) − τp). Results from the three able-bodied participants are

provided in Table 4-2 and from the participants with neurological disorders in Table 4-3,

with details on the average and standard deviation of the measured cadence, admitted

cadence, admitted cadence error, measured interaction torque, measured passive

torque, and generated power. The controller gains in (4–4), (4–6), (4–9), and (4–11)

were selected as k1 = 6, k2 = k3 = k4 = 0.01, k5 ∈ [2, 4], k6 = k7 = k8 = 0.1, k9 = 0.5,

α ∈ [1, 8], β ∈ [0.8, 1.2] across all trials. The aforementioned gain conditions are

sufficient to achieve stability based on conservative bounds on the uncertain parameters

in the dynamics. Therefore, the sufficient gain conditions provide guidelines for the

initial gain selection and the gains can be subsequently adjusted to achieve desirable

performance. Although the listed gains were adjusted using an empirical-based method,
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the gains could have been adjusted using more methodical approaches. For example,

the nonlinear system in [123] was linearized at several operating points and a linear

controller was designed for each point, and the gains were chosen by interpolating, or

scheduling the linear controllers. In [124], a neural network is used to adjust the gains of

a PID controller. In [125] a genetic algorithm was used to adjust the gains after an initial

guess. The authors in [126] provide an extensive discussion on the use of extremum

seeking for tuning the gains of a PID controller. Additionally, in [127], the tuning of a PID

controller for robot manipulators is discussed.
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Table 4-2. Experimental results for able-bodied population, reported as average±standard deviation

Participant Protocol q̇ (RPM) q̇a (RPM) ξ̇ (RPM) τint (Nm)∗ τp (Nm)4 P (W) ue (A) um (µs)�

P1

A 47.19±1.95 -2.95±1.48 -0.14±1.53 0.15±0.57 -0.61±0.51 3.80±2.84 2.19±1.00 134.51±26.98
B 48.48±1.64 -1.63±0.91 -0.12±1.56 0.04±0.59 -0.63±0.50 3.44±3.00 2.33±1.01 110.99±29.60
C 49.23±1.57 -0.90±0.65 -0.14±1.55 0.00±0.65 -0.57±0.49 2.93±3.38 2.16±1.04 83.19±20.87
D 49.88±1.68 -0.26±0.76 -0.15±1.84 1.87±0.84 -0.58±0.51 12.84±4.39 0.24±1.24 43.48±04.58

P2

A 48.38±2.05 -1.62±1.38 -0.01±1.65 0.29±0.63 -0.58±0.59 4.47±3.20 1.94±1.13 103.65±20.26
B 48.53±1.93 -1.48±1.16 -0.02±1.63 0.07±0.73 -0.69±0.58 3.91±3.72 2.27±1.15 106.79±25.18
C 48.74±1.55 -1.30±0.57 -0.04±1.47 -0.21±0.57 -0.74±0.55 2.70±2.91 2.57±1.03 88.45±25.14
D 49.54±1.70 -0.52±0.67 -0.06±1.72 1.79±0.84 -0.66±0.67 12.79±4.36 0.34±1.23 48.63±07.07

P3

A 49.19±2.20 -0.83±1.87 -0.03±1.26 0.38±0.45 -0.43±0.33 4.26±2.34 1.93±0.87 90.61±11.52
B 49.22±1.76 -0.79±1.14 -0.01±1.36 0.28±0.51 -0.38±0.31 3.47±2.65 2.02±1.10 87.14±16.57
C 49.25±1.41 -0.78±0.68 -0.04±1.24 0.06±0.50 -0.45±0.31 2.72±2.59 2.14±0.91 72.39±17.36
D 50.01±1.44 -0.05±0.55 -0.07±1.43 1.93±0.60 -0.27±0.30 11.60±3.16 0.37±1.02 32.23±03.56

Mean A 48.25±2.06 -1.80±1.59 -0.06±1.48 0.20±0.55 - - 4.17±2.81 2.02±1.00 109.59±20.58
Mean B 48.74±1.78 -1.30±1.07 -0.05±1.52 0.13±0.61 - - 3.60±3.15 2.20±1.08 101.64±24.39
Mean C 49.07±1.65 -0.99±0.86 -0.07±1.42 -0.05±0.57 - - 2.78±2.95 2.29±0.99 81.34±21.36
∗A positive interaction torque signifies the participant was able to overcome the torque deficit required to passively actuate
their legs.
4The average passive torque is participant-dependent and was not averaged.
�The average and standard deviation of the applied stimulation was calculated using the maximum stimulation delivered to
each muscle group for each FES region.
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Table 4-3. Experimental results for population with neuromuscular disorders, reported as average±standard deviation

Participant Protocol q̇ (RPM) q̇a (RPM) ξ̇ (RPM) τint (Nm)∗ τp (Nm)4 P (W) ue (A) um (µs)�

P4

A 46.23±1.20 -3.79±0.92 -0.02±0.87 -0.41±0.22 -0.46±0.25 0.22±1.08 2.56±0.60 60.38±10.69
B 48.46±1.00 -1.56±0.41 -0.03±0.96 -0.42±0.23 -0.47±0.27 0.25±1.19 2.67±0.65 55.64±12.90
C 49.29±0.97 -0.72±0.23 -0.02±0.96 -0.39±0.23 -0.46±0.27 0.37±1.22 2.55±0.65 46.10±11.95
D† 49.53±1.61 -0.51±0.86 -0.05±1.46 0.82±0.72 -0.47±0.26 6.75±3.75 1.31±1.02 45.62±06.70

P5

A 44.42±1.27 -5.60±1.12 -0.03±0.73 -0.61±0.18 -0.56±0.22 -0.20±0.84 2.44±0.50 356.76±182.84
B 47.86±0.87 -2.17±0.40 -0.03±0.81 -0.58±0.19 -0.53±0.27 -0.26±0.96 2.39±0.55 233.13±162.57
C 48.95±0.86 -1.04±0.20 0.00±0.85 -0.56±0.20 -0.51±0.27 -0.24±1.03 2.46±0.58 172.88±109.94
D|| - - - - - - - - - - - - - - - -

P6

A 45.52±1.05 -4.51±0.89 -0.03±0.64 -0.49±0.16 -0.61±0.15 0.56±0.77 2.22±0.44 56.01±09.90
B 47.60±0.92 -2.42±0.50 -0.03±0.83 -0.65±0.26 -0.54±0.22 -0.54±1.29 2.38±0.57 53.31±11.58
C 48.98±0.84 -1.04±0.30 -0.02±0.80 -0.55±0.26 -0.45±0.17 -0.52±1.38 2.30±0.56 42.51±12.72
D 49.53±1.12 -0.48±0.65 -0.02±0.97 -0.13±0.42 -0.15±0.27 0.1±2.18 1.82±0.68 29.27±06.09

P7

A‡ 44.80±1.82 -5.25±1.37 -0.05±1.47 1.39±0.92 -0.13±0.21 7.19±4.31 0.20±1.03 86.87±12.58
B‡ 48.29±1.30 -1.75±0.74 -0.04±1.16 0.51±0.55 -0.31±0.15 4.16±2.79 1.16±0.81 84.06±16.33
C 50.04±0.87 0.01±0.26 -0.02±0.86 0.00±0.31 -0.19±0.18 1.06±1.62 1.66±0.60 29.38±03.45
D† 49.94±1.23 -0.09±0.44 -0.03±1.27 0.94±0.67 -0.19±0.21 5.97±3.51 0.72±0.88 30.67±03.40

Mean A 45.24±1.36 -4.78±1.09 -0.03±0.98 -0.03±0.48 - - 1.94±2.29 1.85±0.68 140.00±91.92
Mean B 48.05±1.03 -1.97±0.53 -0.03±0.95 -0.28±0.33 - - 0.90±1.71 2.15±0.65 106.53±82.15
Mean C 49.31±0.90 -0.55±0.25 -0.01±0.86 -0.37±0.25 - - 0.16±2.03 2.24±0.59 72.71±55.68
∗A positive interaction torque signifies the participant was able to overcome the torque deficit required to passively actuate
their legs.
†Due to volitional ability, the desired interaction torque was lowered to τd = 1.0 Nm.
‡Due to minor volitional contributions by P7, the interaction torque was increased to τd = 2.0 Nm for Protocol A and τd = 1.0
for Protocol B.
||This run was not performed because the participant was unable to contribute volitionally.
4The average passive torque is participant-dependent and was not averaged.
�The average and standard deviation of the applied stimulation was calculated using the maximum stimulation delivered to
each muscle group for each FES region.
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By varying the damping parameter in the admittance filter in (4–2), various behav-

iors can be obtained from the cycle without changing any other aspect of the control

system. For example, a high damping parameter results in a stiffer, less compliant cycle

that admits less to any rider-applied torque. Based on Tables 4-2 and 4-3, it can be

seen that increasing the damping parameter results in better cadence tracking, but less

torque production (e.g., compare P1A to P1C). This is due to less position error accu-

mulating in the cadence controller (because the cycle admits less) and consequently,

less stimulation and torque production over time. With a low damping parameter, the ad-

mitted trajectory (i.e., q̇a) is allowed to deviate more than with a high damping parameter

(see Column 4 of Tables 4-2 and 4-3), and the position error accumulates more quickly,

resulting in more stimulation and torque production. Regardless of the cadence track-

ing error, the admittance tracking error is small in comparison across all experiments

and participants (see Column 5 of Tables 4-2 and 4-3), indicating the motor is able to

emulate the dynamics dictated by the admittance filter in (4–1) and (4–2). As the rider

is stimulated, their muscles produce an interaction torque about the crank (i.e,. τint); if

this torque is greater than the passive amount it takes to actuate their body (i.e., τp), the

interaction torque will be positive. Any torque reading greater than τp is assumed to be

the result of torque generated by the rider’s muscles and the difference is multiplied by

the measured cadence to get an estimate of the power generated by the rider.

To facilitate the following discussion, let q̇α : R≥0 → R denote the admitted cadence

trajectory, defined as q̇α , q̇d + q̇a, in contrast to the admitted trajectory denoted by

q̇a. Note that although admittance error system is passive with respect to the rider, the

admittance controller tracks the admitted trajectory closely. The cadence error system is

proven to be exponentially stable, and Figure 4-11 indicates that when the participant is

1 For visual clarity, a one-second moving average filter was applied to all ca-
dence/torque plots.
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below their saturation level of 110 µs, the measured cadence converges to the desired

cadence. Figure 4-1 also illustrates P3B’s torque production, which over time, reaches

the desired value of 0.5 Nm and demonstrates indirect regulation of the torque tracking

error eτ . Upon reaching the desired torque, the stimulation begins to plateau, as shown

in Figure 4-22 . With the desired torque reached, the admitted cadence trajectory begins

to align with the desired cadence trajectory, and the participant is able to achieve the

desired cadence at the desired torque. An estimate of the power produced by P3B is

displayed in Figure 4-1 alongside the torque produced. Taken together, Figures 4-1 and

4-2 indicate that as the participant’s stimulation increases, her muscles produce stronger

contractions. Correspondingly, she is able to offset a portion of the torque required by

the motor because it needs to assist the rider less. This results in a decrease of the

amount of current required to actuate the motor. Of note, by offsetting a portion of the

motor current needed to actuate the cycle with FES, smaller motors can be utilized,

resulting in lighter, less powerful, and less expensive FES cycles.

To highlight the performance of a participant with a ND, Figures 4-3 and 4-4

display the tracking results and control inputs for P4B, respectively. As shown in

Tables 4-2 and 4-3, the admittance tracking error is small as in the other participants,

demonstrating convergence of the admittance error system. However, unlike P3,

P4 had a low tolerance to the electrical stimulation. Consequently, only low levels of

torques were able to be evoked, and the desired interaction torque was reduced from

0.5 Nm to 0 Nm. Note that due to the passive torque required to actuate P4’s legs

(i.e., approximately 0.46 Nm), an interaction torque of 0 Nm would still require P4’s

leg muscle to produce an average torque of 0.46 Nm. As illustrated in Figure 4-3, P4

2 For visual clarity, a half-second moving average filter was applied to the motor cur-
rent input and the stimulation input is represented as the maximum stimulation for each
FES region at the corresponding time.
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Figure 4-1. P3B: (Top) Measured (q̇), admitted (q̇a), and desired cadences (q̇d); (Bottom)
Measured torque (τ ) and estimated power (P ) produced by the rider. Vertical
lines represent time of controller activation, horizontal lines represent
desired values (for cadence and torque).
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Figure 4-2. P3B: (Top) Control effort sent to motor (Bottom) Control effort sent to rider’s
right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal (G),
respectively. Stimulation was saturated at 110 µs for rider comfort.
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was unable to achieve the desired torque production; hence, the admitted cadence

trajectory consistently lagged the desired cadence trajectory. However, P4 was able

to produce a small amount of torque, as indicated in Figure 4-3. As the experiment

progresses, the participant begins to show signs of fatigue and his torque begins

to decline (at approximately t = 55 s). As mentioned in [117], the early onset of

fatigue remains an outstanding challenge in the use of FES. Despite the participant

not achieving the desired cadence or desired torque (due to stimulation limitations, or

actuator saturation), the admittance controller was still able to achieve stable operation

and ensure participant safety and comfort. As seen in Tables 4-2 and 4-3, the average

cadence achieved is directly related to the selected damping parameter, regardless of

stimulation saturation.

To testify to the admittance controller’s capabilities to handle participant variability

and ability, all participants were asked to repeat Protocol B, but with added volition

(Protocol D). Figures 4-5 and 4-6 display the tracking results and control inputs for

P4D, respectively. Compared to Figure 4-3, which displays P4’s performance when he

was asked to remain passive and not contribute to the pedaling task, Figure 4-5 shows

notably improved tracking performance. When P4 was instructed to pedal, he not only

was able to keep his stimulation levels below his saturation level, but also produce the

desired torque (without modifying any gains). This trial more closely reflects the results

displayed in Figures 4-1 and 4-2 for P3B. Meaning, if a participant is able to tolerate

the required stimulation to produce the desired amount of torque, their performance will

be similar to that as when they volitionally pedal (in the sense that they will be able to

achieve the desired cadence at the desired torque). Therefore, the controller is capable

of being applied to an individual with a complete spinal cord injury or an able-bodied

individual that is volitionally pedaling, without any adjustment to the controller.

Figures 4-7 and 4-8 are provided to highlight the performance of P5, the participant

with a spinal cord injury. Because she was unable to contribute volitionally to the
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Figure 4-3. P4B: (Top) Measured (q̇), admitted (q̇a), and desired cadences (q̇d); (Bottom)
Measured torque (τ ) and estimated power (P ) produced by the rider.
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Figure 4-4. P4B: (Top) Control effort sent to motor (Bottom) Control effort sent to rider’s
right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal (G),
respectively. Stimulation was saturated at 65 µs for rider comfort.
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Figure 4-5. P4D: (Top) Measured (q̇), admitted (q̇a), and desired cadences (q̇d); (Bottom)
Measured torque (τ ) and estimated power (P ) produced by the rider.
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Figure 4-6. P4D: (Top) Control effort sent to motor (Bottom) Control effort sent to rider’s
right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal (G),
respectively. Stimulation was saturated at 65 µs for rider comfort.
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Figure 4-7. P5C: (Top) Measured (q̇), admitted (q̇a), and desired cadences (q̇d); (Bottom)
Measured torque (τ ) and estimated power (P ) produced by the rider.

cycling task, Protocol D was not completed. As illustrated in Figure 4-7, there was

no improvement in the cadence tracking error over the course of the experiment.

Correspondingly, this is attributed to the near-zero torque production elicited by the

stimulation. It is hypothesized that because P5 experienced a spinal cord injury 12 year

prior, her muscles had atrophied significantly and were small in comparison to other

tissues present. According to [134], this can prevent the electricity from penetrating

sufficiently deep into the leg to recruit muscle fibers for contraction. Consequently,

despite reaching the maximum amount of stimulation deliverable by the stimulator (i.e.,

500 µs) as shown in Figure 4-8, P5 is likely not receiving the full benefits of FES, but

only of participating in range-of-motion exercises.
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Figure 4-8. P5C: (Top) Control effort sent to motor (Bottom) Control effort sent to rider’s
right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal (G),
respectively. Stimulation was saturated at 500 µs.
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Figure 4-9. P6D: (Top) Measured (q̇), admitted (q̇a), and desired cadences (q̇d); (Bottom)
Measured torque (τ ) and estimated power (P ) produced by the rider.

Despite P6 suffering a hemorrhagic stroke four years prior to her involvement in

the study, she had regained some functional ability in the affected right arm and leg.

Figure 4-9 displays the tracking results for P6D, when she was tasked with volitionally

contributing to the cycling objective. Because P6 was able to pedal the cycle near the

desired cadence, but with slight undershoot, she accumulated position and cadence

error and correspondingly received an increasing amount of stimulation over the course

of the experiment, as displayed in Figure 4-10. Because P6 was contributing volitionally,

despite the increase in stimulation, she showed no sign of fatigue or decrease in torque

production.
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Figure 4-10. P6D: (Top) Control effort sent to motor (Bottom) Control effort sent to
rider’s right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal (G),
respectively. Stimulation was saturated at 60 µs for rider comfort.
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Although P7 had Parkinson’s disease, he had ample muscle tone and strength due

to his regular exercise regime. Accordingly, he was able to produce large amounts of

torque and the desired interaction torque was varied according to Tables 4-3.

When examining P7’s trial with volition (P7D), it can be seen in Figure 4-11 that

he is able to quickly track the desired cadence and meet the desired interaction torque.

Compared to the counterpart protocol with the medium damping parameter (Protocol B),

P7 was able to produce 44% more torque without significantly affecting the performance

of the admittance controller. As depicted in Figure 4-12, P7 was able to keep his

stimulation levels low by contributing volitionally. Furthermore, it can been seen that the

rider is able to offset the current required by the motor to actuate the cycle.

Across all participants undergoing Protocols A-C, the low damping parameter

selected for Protocol A resulted in the generation of the least-stiff admitted trajec-

tory. The admitted trajectory was allowed to deviate the most, and consequently, the

position/cadence errors were the largest across all protocols; this resulted in high

stimulation and in the highest torque production. Comparatively, the highest damping

parameter in Protocol C held the admitted trajectory close to the desired, reduced

the position/cadence error, and resulted in the lowest torque production. Hence, with-

out modifying the controller structure or gains, the FES cycle can place more or less

emphasis on cadence tracking or torque production. Allowing riders to contribute

volitionally (if possible) further increased the torque production, especially when the

desired interaction torque was set to a high value (e.g., 2.0 Nm). Accordingly, volition

does not destabilize the controllers, nor compromise their performance, and should be

encouraged whenever possible.

4.4 Concluding Remarks

In this chapter, two new controllers are developed for the FES cycle to accomplish

simultaneous cadence and admittance tracking. The controllers are designed to

overcome challenges of Chapter 3; namely, selecting the appropriate desired torque
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Figure 4-11. P7D: (Top) Measured (q̇), admitted (q̇a), and desired cadences (q̇d);
(Bottom) Measured torque (τ ) and estimated power (P ) produced by the
rider.
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Figure 4-12. P7D: (Top) Control effort sent to motor (Bottom) Control effort sent to
rider’s right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal (G),
respectively. Stimulation was saturated at 120 µs for rider comfort.
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trajectory for direct torque tracking. Compared to Chapter 3, the admittance controller

implemented on the cycle’s motor is capable of indirect torque tracking, accomplished by

injecting artificial desired dynamics between the rider and the cycle. Consequently, the

rider’s muscles are now electrically stimulated using a cadence controller to actuate the

cycle. Using the admittance controller, the cycle assumes an assist-as-needed control

paradigm and assists the rider is maintaining a desired cadence if the FES is unable

to elicit muscle contractions powerful enough to overcome the passive torques of the

combined cycle-rider system. Correspondingly, the admittance controller resists the

rider if volitional pedaling exceeds the desired cadence. Experiments conducted on

three able-bodied participants and four participants with NDs demonstrate controller

efficacy and practicality. The experiments also investigated the effect of selecting

various admittance parameters and show that a compliant cycle is not only desirable

for rider safety, but also for torque/power production. Results indicate the admittance

controller is a promising rehabilitation strategy to simultaneously elicit torque from the

rider’s muscles while introducing a degree of compliance to the system.

To improve upon the controller developed in this chapter, Chapter 5 seeks to add

adaptation to the admittance controller while simultaneously measuring and addressing

rider asymmetries.
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CHAPTER 5
SPLIT-CRANK FUNCTIONAL ELECTRICAL STIMULATION CYCLING: AN ADAPTING

ADMITTING REHABILITATION ROBOT

This chapter is developed to promote rehabilitation in individuals with asymmetric

movement disorders, specifically hemiparesis. Closed-loop adaptive admittance

controllers are implemented on the decoupled motors of the split-crank FES cycle,

introduced in Chapter 2, while the rider is electrically stimulated with a robust cadence

controller. Compared to past literature and previous work on admittance control of

FES cycling (cf. [107, 110, 111]), this chapter provides the first instance of adaptive

admittance control applied to a split-crank FES cycle with results on participants

possessing NDs. Specifically, compared to the precursory work in [107, 110, 111], the

theoretical development in this chapter focuses on adaptive admittance control that

adjusts in real-time to the user capabilities. Furthermore, by instrumenting the FES

cycle with sensors on each side, the cycle is now able to measure the performance of

each rider’s right and left leg, allowing for an estimate of asymmetries.

Because few results exist in terms of split-crank cycling, open questions remain

regarding how to best design the desired trajectories and select the appropriate admit-

tance parameters. Although the development of this chapter is agnostic to the desired

trajectories, various trajectories are hypothesized to have different clinical implications

for people with movement disorders [81]. Without loss of generality, the admitted tra-

jectory was selected to average the capabilities of the rider’s legs measured by the

split-crank FES cycle; that is, torque feedback is implemented on each side of the cycle

and averaged, such that the more capable leg experiences resistance and the less

capable leg experiences assistance to achieve the same cadence while preserving

cycling symmetry. A closed-loop robust cadence controller is subsequently designed to

implement FES on the large muscle groups of the rider’s legs (quadriceps, hamstrings,

gluteals) and maintain the desired cadence. To ensure rider safety, the combined

closed-loop cycle-rider system is proven to be energetically dissipative (i.e., stable and
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passive). A Lyapunov-based passivity analysis is used to prove the developed cadence

controller is passive. A second Lyapunov-based analysis is provided to prove global

asymptotic admittance tracking. The two controllers work in tandem to cooperatively

pedal the split-crank FES cycle while promoting rehabilitation outcomes using a hy-

brid exoskeleton. Experiments were conducted on one able-bodied participant, one

participant with spina bifida, one participant with post-stroke right-sided hemiparesis,

and one participant with Parkinson’s disease with and without controller adaptation. An

additional experiment was conducted on the participant with Parkinson’s to evaluate

the effect of adding rider volition to the experiment. Results demonstrate an average

admittance tracking error of -0.13±1.77 RPM with adaptation and -0.03±4.05 RPM

without adaptation. The split-crank FES cycle successfully admits to the rider, preserves

rider safety, and offers a promising robotic rehabilitation strategy for individuals affected

by movement disorders.

5.1 Control Development

In the following section, two controllers are developed for one side of the FES cycle,

a cadence controller for the rider’s muscles and an admittance controller for the cycle’s

motor; without loss generality, an identical analysis can be repeated for each side of the

cycle. To facilitate the following development, the following property is introduced:

Property 5.1. The dynamic equation of 2–8 can be linearly parameterized in terms of

M, V, G, and bc.

5.1.1 Robust Cadence Control

The subsequently presented cadence controller assumes the same form as the

result in [67]. However, because a new objective is presented in this work (i.e., admit-

tance tracking), a new stability analysis is required. For notational brevity, all functional

dependencies are hereafter suppressed unless required for clarity of exposition. As

in [67], the cycle’s cadence is regulated using the rider’s muscles in the FES regions

and the tracking objective is quantified by e : R≥0 → R and r : R≥0 → R, each defined
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as

e , qd − q, (5–1)

r , ė+ αe, (5–2)

where qd : R≥0 → R denotes the desired position, designed to be sufficiently smooth

(i.e., qd, q̇d, q̈d ∈ L∞), and α ∈ R>0 denotes a constant control gain. The open-loop

cadence error system is obtained by taking the derivative of (5–2), multiplying by M ,

adding and subtracting e, and substituting (2–8), (5–1), and (5–2) to yield

Mṙ = χ−BMuM − τe − V r − e, (5–3)

where the lumped auxiliary signal χ : R2×R≥0 → R is defined as χ ,M (q̈d + αr − α2e)+

V (q̇d + αe) + G + P + bc (q̇d − r + αe) + d + e and bounded by Properties 2.1-2.6 as

|χ| ≤ c1 + c2 ‖z‖ + c3 ‖z‖2 , where c1, c2 c3 ∈ R>0 are known constants, and the error

vector z ∈ R2 is defined as z , [e, r]T . Based on (5–3) and the subsequent stability

analysis, the cadence controller is designed as [67]

uM ,
1

BM

(
k1r +

(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
sgn(r)

)
, (5–4)

where ki ∈ R>0 ∀i = 1, 2, ..., 4 denote constant control gains and BM is introduced in

Property 2.8. Substituting (5–4) into (5–3) yields the closed-loop cadence error system

Mṙ = χ− τe − V r − e−
BM

BM

(
k1r +

(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
sgn(r)

)
. (5–5)

5.1.2 Adaptive Admittance Control

While the rider’s muscles regulate cadence, an admittance filter is employed to

generate the admitted trajectory, given by

τ − τd ,Mdq̈a +Bdq̇a, (5–6)
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where τd : R≥0 → R denotes the desired bounded interaction torque, and τ :

R≥0 → R denotes the bounded measurable interaction torque between the cycle

and rider (i.e., τ ∈ L∞) [44, 56]. The filter’s parameters, represented by the desired

inertial and damping constants Md, Bd ∈ R>0, respectively, are selected such that

the transfer function of (5–6) is passive [63, Lemma 6.4] (i.e., qa, q̇a q̈a ∈ L∞); where

qa, q̇a, q̈a : R≥0 → R denote the generated admitted position, velocity, and acceleration,

respectively.

The primary goal of the admittance controller is to promote rider safety by injecting

dynamics of the form in (5–6) that link the admitted trajectory to the desired trajectory.

Therefore, while tracking a desired cadence, the most influential admittance parameter

is the damping coefficient, Bd . Because damping is proportional to velocity or cadence,

increasing the damping coefficient results in a less compliant admitted cadence trajec-

tory and allows for less deviation from the desired cadence trajectory. A less compliant

admitted cadence trajectory has repercussions that cascade through the cadence con-

troller, such as reducing the cadence error and over time, position error (i.e., the integral

of the cadence error), resulting in less rider stimulation. Consequently, the cadence

controller requires more time to accumulate enough position/cadence error to yield

sufficiently high stimulation to produce positive torque about the crankshaft. This effect

can be compensated for by increasing the position gain in (5–2), which increases the

emphasis on the position error inside the cadence controller in (5–4).

Moreover, the admitted cadence trajectory can be made more volatile by decreasing

the desired inertia coefficient, Md. Decreasing the inertia is analogous to removing

mass from the system in that admitted trajectory is more susceptible to change. By

selectively modifying the admittance parameters, the robot tracks an admitted cadence

trajectory linked to the desired cadence trajectory through different dynamic relations of

the form in (5–6). The admitted trajectory only evolves if there exists a nonzero value

on the left side of (5–6); therefore, if the rider is able to generate the desired interaction
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torque, the robot will not assist the rider in maintaining the desired cadence trajectory.

Only if the rider falls short of the desired interaction torque does the assist-as-needed

control paradigm take effect. Conversely, if the rider exceeds the desired interaction

torque (such as is possible in volitional pedaling), the cycle will accelerate and enter a

resist-as-needed paradigm to challenge the rider.

To track the admitted trajectory, an inner-loop position controller is designed to

regulate the admittance error system, quantified by ξ : R≥0 → R and ψ : R≥0 → R, and

defined as

ξ , Ξ + qd − q, (5–7)

ψ , ξ̇ + βξ, (5–8)

where Ξ : R → Q represents a customizable continuously differentiable admitted

position trajectory generated using the admittance filter in (5–6) (i.e., Ξ = f (qa)),

and β ∈ R>0 denotes a constant control gain. Although the admitted trajectory is

generated on-line, it determines whether or not the pedals of the cycle act as if they

are coupled or decoupled. That is, if both sides share the same admitted trajectory,

symmetry is preserved, the pedals will appear to be coupled, and the two sides of

the cycle will operate at the same cadence. Otherwise, each side will have a unique

admitted trajectory, symmetry will be broken, the pedals will be uncoupled, and the two

sides will operate at their own independent cadence. The motivation behind such a

design is to establish a framework for which numerous trajectories can be investigated

to best promote rehabilitation outcomes without modifying the developed controller. The

open-loop admittance error system is generated by taking the time derivative of (5–8),

multiplying by M , adding and subtracting ξ, and substituting (2–8), (5–7), and (5–8) to

yield
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Mψ̇ = Y θ + Υ− τm −Beue − ξ − V ψ, (5–9)

Y θ , M
(

Ξ̈ + q̈d + βψ − β2ξ
)

+ V
(

Ξ̇ + q̇d + βξ
)

+G+ bc

(
Ξ̇ + q̇d − ψ + βξ

)
,

(5–10)

where Y : R2 × R≥0 → R1×8 denotes a computable regression matrix and by

Property 5.1 is linear in the parameters; and θ ∈ R8×1 denotes a matrix of constant

system parameters. The lumped auxiliary signal Υ : Q × R × R≥0 → R is defined

as Υ , P + d + ξ and is bounded by Properties 2.1-2.6 as |Υ| ≤ c4 + c5||φ||, where

c4, c5 ∈ R>0 are known constants, and the error vectors φ ∈ R3 and ζ ∈ R2 are defined

as φ ,
[
ζT , Ξ̇

]T
and ζ , [ξ, ψ]T , respectively. Based on (5–9) and the subsequent

stability analysis, the admittance controller is designed as

ue ,
1

Be

[
Y θ̂ + k5ψ + (k6 + k7 ‖φ‖+ k8 |uM |) sgn (ψ)

]
, (5–11)

where ki ∈ R>0 ∀i = 5, 6, ... , 8 denote constant control gains, and θ̂ : R≥0 → R8×1

denotes an estimate of the constant system parameters. Based on the subsequent

stability analysis, the estimates for the system parameters in (5–10) are generated

on-line according to

˙̂
θ , proj

(
ΓY Tψ

)
, (5–12)

where Γ ∈ R8×8 denotes a constant positive definite learning gain, and proj(·) denotes a

projection algorithm operator [119, Section 4.4]. Substituting (5–11) into (5–9) yields the

closed-loop admittance error system

Mψ̇ = Υ− τm − V ψ − ξ + Y θ̃ − k5ψ − [(k6 + k7 ‖φ‖+ k8 |uM |) sgn (ψ)] . (5–13)
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5.2 Stability Analysis

To facilitate the following theorems, let WL : R2 → R denote a continuously

differentiable, positive definite storage function defined as

WL ,
1

2
Mr2 +

1

2
e2, (5–14)

and let VL : R10 → R denote a continuously differentiable, positive definite Lyapunov

function candidate defined as

VL ,
1

2
Mψ2 +

1

2
ξ2 +

1

2
θ̃TΓ−1θ̃. (5–15)

Theorem 5.1. Given the closed-loop cadence error system in (5–5), when q ∈ QFES,

the cadence controller is passive from input |τe| to output |r|, ∀t, provided the following

constant gain conditions are satisfied: k2 ≥ c1, k3 ≥ c2, k4 ≥ c3, where c1, c2, and c3 are

the bounding constants on χ in (5–3).

Proof. Let z : R≥0 → R2 for t ∈ [t0, ∞) be a Filippov solution to the differential inclusion

ż ∈ K[h](z), where K[·] is defined as in [120], and where h : R2 → R2 is defined as

h ,

[
ė, ṙ

]T
. Because of the discontinuity in the muscle controller in (5–4), the time

derivative of WL exists almost everywhere (a.e.) (i.e., for almost all t ∈ [t0, ∞)), and

ẆL(z)
a.e.
∈ ˙̃WL(z), where ˙̃WL is the generalized time derivative of WL along the Filippov

trajectories of ż = h(z) [121]. Using the calculus of K [·] from [121], and substituting

(5–2) and (5–5) into ˙̃WL yields

˙̃WL ⊆ −αe2 + rχ+

(
1

2
Ṁ − V

)
r2 −

∑
m∈M

K [Bmσm]

BM

(
k1r

2 +(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
K [sgn(r)] r

)
− rτe, (5–16)

where K [Bmσm] , {0, Bm} . For q ∈ QM ,
∑

m∈MK [Bmσm] is nonzero and may be

bounded by Property 2.8 as BM , which is continuous. Hence, by Properties 2.1-2.7, and

since ẆL(z)
a.e.
∈ ˙̃WL(z), (5–16) can be bounded as
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ẆL

a.e.
≤ −αe2 − k1r

2 − λ1 |r| − λ2 |r| ‖z‖ − λ3 |r| ‖z‖2 + |r| |τe| , (5–17)

where λ1, λ2, λ3 ∈ R are defined as λ1 , k2− c1, λ2 , k3− c2, and λ3 , k4− c3. Provided

the gain conditions in Theorem 5.1 are satisfied, λ1, λ2, λ3 ≥ 0 ; thus, (5–17) can be

bounded further as

ẆL

a.e.
≤ −αe2 − k1r

2 + |r| |τe| . (5–18)

Because the interaction torque is bounded, from the perspective of the rider, the

physically applied motor torque is similarly bounded [44, 56]. Hence, by [63, Definition

6.3] the cadence error system is output strictly passive with input |τe|, output |r|, and

storage function WL, and the cadence controller is bounded (i.e., uM ∈ L∞).

Remark 5.1. Although the above analysis does not include volitional contribution

from the rider, a common assumption in human-robot interaction is that the human is

naturally passive [10]. If the rider volitionally contributes, the cadence controller and

rider would act in parallel. Because passive systems in parallel remain passive [63],

volitional contributions would not affect |r| being output strictly passive with respect

to |τe|. Hence, the rider is able to volitionally contribute towards the tracking objective

without destabilizing the cadence error system.

Theorem 5.2. Given the closed-loop error system in (5–13) and the admittance

relationship in (5–6), the admittance controller is proven to globally asymptotically

regulate the error in the sense that ζ ,
[
ξ, ψ

]T
→ 0 as t→∞, provided the following

constant gain conditions are satisfied: k6 ≥ c4, k7 ≥ c5, k8 ≥ BM , where c4 and c5 are

the bounding constants on Υ in (5–9), and BM̄ was introduced in Property 2.8.

Proof. Using an argument similar to the proof for Theorem 5.1, the time derivative of

(5–15) can be bounded above using (5–8), (5–13), and Properties 2.1-2.7, and 2.8 as

V̇L
a.e.
≤ −βξ2 − k5ψ

2 − |ψ| (λ4 + λ5 ‖φ‖+ λ6 |uM |) , (5–19)
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where λ4, λ5, λ6 ∈ R are defined as λ4 , k6 − c4, λ5 , k7 − c5, and λ6 , k8 − BM .

Provided the gain conditions listed in Theorem 5.2 are satisfied, λ4, λ5, λ6 ≥ 0, thus

(5–19) can be upper bounded as

V̇L
a.e.
≤ −βξ2 − k5ψ

2. (5–20)

Hence, (5–15) is a common Lyapunov function across both the FES and KDZ regions.

Subsequently, [135] can be invoked, along with the radially unboundedness of (5–15),

to show |ξ|, |ψ|, ‖ζ‖ → 0 as t → ∞. Since VL > 0 and V̇L
a.e.
≤ 0, VL ∈ L∞, hence,

ξ, ψ, θ̃ ∈ L∞, which implies q̇, θ̂ ∈ L∞. Since (5–6) is passive, q̇a, q̈a ∈ L∞, which

implies Y, ‖φ‖ ∈ L∞. Finally, because uM ∈ L∞ by Theorem 5.1, ue ∈ L∞.

5.3 Experiments

5.3.1 Experimental Testbed

The experimental testbed used in this chapter is the split-crank FES cycle, intro-

duced in Chapter 2.

5.3.2 Experimental Methods

Experiments were conducted on one able-bodied male participant, aged 26

years old (P1), one male participant with spina bifida, aged 25 years old (P2), one

female participant with post-stroke right-sided hemiparesis, aged 50 years old (P3),

and one male participant with Parkinson’s disease, aged 64 years old (P4). P2 has

spina bifida (L5-S1) with an Arnold Chiari malformation and regularly participates in

physical therapy; he uses ankle-foot orthoses and a wheelchair, and is familiar with

FES. P3 had her stroke in 2014 and is community ambulatory without aid; she has

regained some function in her right leg though this was her first experience with FES

cycling. P4 was diagnosed with Parkinson’s in 1997 and regularly participates in

physical therapy and exercise; although he had noticeable tremor in both arms, his

right arm had larger magnitude. Two primary protocols were conducted, Protocol A
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which implemented the controllers in (5–4) and (5–11), and Protocol B which also

implemented the controllers in (5–4) and (5–11), but with the adaptive feedforward

component disabled (i.e., Γ = 0). Participants 1-4 completed both Protocols A and B

in random order, with P1 receiving stimulation only on the quadriceps muscle group for

proof of concept, and P2-P4 receiving stimulation on the quadriceps, hamstrings, and

gluteals muscle groups. To investigate the effect of adding volition, P4 was asked to

repeat Protocol A with volition, denoted by Protocol C. Each protocol had a total duration

of 180 seconds, with the first 20 seconds consisting of a smooth motor-only ramp to the

desired cadence of 50 RPM. After the initial ramp, the controllers in (5–4) and (5–11)

were switched on and errors were recorded. For all protocols except Protocol C, the

participants were blind to the desired trajectories for the duration of the experiment.

The experimental protocols were approved by the Institutional Review Board at the

University of Florida (IRB201600881). For all experiments, the admittance parameters

in (5–6) were selected as Bd = 1 Nm·s
rad

, Md = 2 Nm·s2
rad

, τd = 0.5 Nm for P1, τd = 0.2 Nm

for P2, τd = 0.3 Nm for P3, and τd = 0.2 Nm for P4. The controller gains in (5–2),

(5–4), (5–8), (5–11), and (5–12) were selected as k1 ∈ [3.0, 5.5], k2 = k3 = k4 = 0.1,

k5 ∈ [5.0, 10.0], k6 = k7 = k8 = k9 = 0.001, α ∈ [2.0, 3.5], β ∈ [0.1, 0.2], and

Γ = 0.1 · diag (3.15, 3.15, 1.05, 2.10, 5.25, 5.25, 1.05, 0.63).

The admitted trajectory in the error system in (5–7) and (5–8) was generated using

Ξ , 1
2

(qa,L + qa,R) , where qa,x : R≥0 → R, ∀x ∈ X , {L, R} represent the trajectories

generated using the admittance filter in (5–6) for the left and right side of the cycle,

respectively. The motivation behind the admitted trajectory being an average of the

two sides is to synchronize the positions and cadences of each side so the natural

coordination of the legs is preserved. This trajectory strikes a dynamic balance between

the capabilities of both legs instead of holding the legs to a standard which they may be

incapable of reaching (e.g., having a non-dominant leg track the trajectory generated

from a dominant leg); instead the trajectory is set to the average capabilities of the
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legs, such that the more capable leg experiences resistance and the less capable

leg experiences assistance. However, many different trajectories could be selected,

with potential clinical differences. For example, the results in [81] suggest that lower

cadences may be optimal for strength training, but higher cadences may be best for

power training.

5.3.3 Results and Discussion

For the following sections, let participants and protocols be referred to by their

respective number and letter; for example, Participant 1 running Protocol B would be

referred to as P1B. Numerical results for Protocols A and B are displayed in Table 5-1

with details on the average and standard deviation of the measured cadence, admitted

cadence, admitted cadence tracking error, motor control input, and measured torque for

each leg. As shown in Table 5-1, the average cadences for each leg (i.e., q̇x, ∀x ∈ X )

were similar with adaptation enabled and disabled. However, with adaptation, the

standard deviation of the admitted tracking error was reduced by an average of 75% for

P1, 19% for P2, 47% for P3, and 50% for P4. Adaptation resulted in a reduction in the

average motor control effort by 15% for P1, 3% for P2, 4% for P3, and 15% for P4.
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Table 5-1. Experimental results, reported as average±standard deviation

Partic. Protocol q̇L (RPM)∗ q̇R (RPM)∗ q̇α (RPM)† ξ̇L (RPM) ξ̇R (RPM) ue,L (A) ue,R (A) τL (Nm) τR (Nm)

1 A 49.03±1.73 48.92±1.16 48.80±0.84 -0.23±1.64 -0.13±0.94 -2.42±4.64 1.98±4.69 0.20±3.70 0.15±3.51
B 47.70±4.90 47.63±5.18 47.58±0.91 -0.13±5.33 -0.05±4.67 -2.59±4.89 2.55±5.35 0.00±3.68 -0.27±3.60

2 A 49.00±1.60 48.98±1.52 48.89±0.09 -0.11±1.60 -0.10±1.53 -2.32±2.73 2.09±2.97 -0.13±1.54 -0.05±1.60
B 48.63±2.06 48.58±1.78 48.60±0.39 -0.03±1.87 0.30±1.97 -2.38±2.13 2.15±2.63 -0.19±1.55 -0.08±1.55

3 A 48.87±1.40 48.82±1.31 48.74±0.27 -0.13±1.40 -0.09±1.26 -1.97±2.94 2.20±3.01 0.22±2.33 -0.09±2.20
B 48.50±2.75 48.46±2.43 48.43±0.37 -0.08±2.73 -0.03±2.39 -1.99±3.12 2.37±3.25 0.17±2.33 -0.20±1.95

4
A 49.91±1.46 49.81±2.41 49.72±0.84 -0.19±1.52 -0.09±2.16 -1.91±3.77 2.35±5.15 0.17±2.56 0.07±4.04
B 49.65±3.68 49.53±4.02 49.51±0.86 -0.14±3.65 -0.03±3.81 -2.21±4.08 2.59±5.03 -0.03±2.49 -0.17±4.10
C 50.26±1.73 50.16±2.70 49.94±0.83 -0.20±1.87 -0.10±2.40 -1.46±4.11 2.10±5.43 0.36±2.70 0.66±4.37

Mean‡ A 49.20±1.79 49.13±1.93 49.03±0.70 -0.16±1.78 -0.10±1.77 -2.15±4.15 2.15±4.70 0.11±3.05 0.02±3.46
B 48.62±4.05 48.55±4.16 48.53±0.78 -0.09±4.19 0.04±3.91 -2.29±4.27 2.41±4.87 -0.01±3.03 -0.18±3.46

∗At steady state, the average cadence error is given as ėx = 50− q̇x, ∀x ∈ X .
†q̇α : R≥0 → R denotes the average admitted cadence given as q̇α , q̇d + 1

2
(q̇a,L + q̇a,R), identical for both legs.

‡Protocol C was not included in calculating the mean.
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Graphical results for P1-P4 running Protocol A are provided in Figures 5-1-5-10.

Figures 5-1, 5-3, 5-5, and 5-7 depict the cadence tracking results along with the root-

mean-square (RMS) (windowed at 0.5 seconds) values of ξ̇ and ė for P1A, P2A, P3A,

and P4A, respectively. Figures 5-2, 5-4, 5-6, and 5-8 illustrate the control inputs to the

cycle’s motors and rider’s muscle groups for P1A, P2A, P3A, and P4A, respectively.

For visual clarity, a half-second moving average filter was applied to all plots displaying

measured cadences and motor control inputs (i.e, q̇L, q̇R, ue). To directly compare results

with and without adaptation, Figures 5-9 and 5-10 are included for P4B, which display

the cadence tracking results and control inputs, respectively. To examine the effects of

the rider volitionally pedaling alongside the admittance and cadence controllers, Figures

5-11 and 5-12 display P4C, which is Protocol A with added volition.

Across all participants, adding adaptation to the admittance controller resulted in

significant improvement in the cadence tracking performance in terms of the average

cadence error and standard deviation. While adding adaptation increased the average

admittance cadence error to -0.13 RPM from -0.02 RPM without adaptation, it reduced

the standard deviation of the admitted cadence error from 4.05 RPM without adaptation

to 1.78 RPM with adaptation. Reducing the standard deviation of the measured cadence

results in smoother cycling performance and more comfortable stimulation for the rider.

By examining the results of P1, the effects of adaptation are evident; in Figure 5-1 the

RMS value of ξ̇ decreases steadily for the first 20 seconds after controller activation.

Additionally, as the stimulation input increases, the rider produces more torque and is

able to contribute more towards the cadence tracking objective (compare Figures 5-1

and 5-2). Furthermore, as the admittance controller adapts and the rider produces more

torque, the motor control effort is notably reduced through the experiment, as shown

in Figure 5-2. As the experiment progresses and the rider requires more stimulation

to produce torque about the crank, due to the rider’s comfort threshold, the stimulation

input is saturated. To avoid this case of actuator saturation, the desired torque trajectory
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Figure 5-1. P1A (Top) The measured cadence for the left (q̇L) and right (q̇R) leg,
admitted cadence (q̇a), and desired cadence (q̇d); (Middle) RMS error of ξ̇ for
the left and right legs; and (Bottom) RMS error of ė for the left and right legs.
Vertical lines represent the time of controller activation.
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Figure 5-2. P1A (Top) Control inputs to left and right motors and (Bottom) control inputs
to the rider’s quadriceps femoris muscle groups for the left and right legs.
The stimulation input was saturated at 130µs for rider comfort.
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Figure 5-3. P2A (Top) The measured cadence for the left (q̇L) and right (q̇R) leg,
admitted cadence (q̇a), and desired cadence (q̇d); (Middle) RMS error of ξ̇ for
the left and right legs; and (Bottom) RMS error of ė for the left and right legs.

121



Figure 5-4. P2A (Top) Control inputs to left and right motors and (Bottom) control inputs
to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal
(G) muscle groups. The stimulation input was saturated at 65µs for rider
comfort.
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Figure 5-5. P3A (Top) The measured cadence for the left (q̇L) and right (q̇R) leg,
admitted cadence (q̇a), and desired cadence (q̇d); (Middle) RMS error of ξ̇ for
the left and right legs; and (Bottom) RMS error of ė for the left and right legs.
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Figure 5-6. P3A (Top) Control inputs to left and right motors and (Bottom) control inputs
to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal
(G) muscle groups. The stimulation input was saturated at 40µs for the right
hamstring and gluteal and 45 µs for all other muscle groups.
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Figure 5-7. P4A (Top) The measured cadence for the left (q̇L) and right (q̇R) leg,
admitted cadence (q̇a), and desired cadence (q̇d); (Middle) RMS error of ξ̇ for
the left and right legs; and (Bottom) RMS error of ė for the left and right legs.
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Figure 5-8. P4A (Top) Control inputs to left and right motors and (Bottom) control inputs
to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H), and gluteal
(G) muscle groups. The stimulation input was saturated at 100µs for rider
comfort.
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Figure 5-9. P4B (Top) The measured cadence for the left (q̇L) and right (q̇R) leg,
admitted cadence (q̇a), and desired cadence (q̇d); (Middle) RMS error of ξ̇ for
the left and right legs; and (Bottom) RMS error of ė for the left and right legs.
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Figure 5-10. P4B (Top) Control inputs to left and right motors and (Bottom) control
inputs to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H),
and gluteal (G) muscle groups. The stimulation input was saturated at
100µs for rider comfort.

128



Figure 5-11. P4C (Top) The measured cadence for the left (q̇L) and right (q̇R) leg,
admitted cadence (q̇a), and desired cadence (q̇d); (Middle) RMS error of ξ̇
for the left and right legs; and (Bottom) RMS error of ė for the left and right
legs.
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Figure 5-12. P4C (Top) Control inputs to left and right motors and (Bottom) control
inputs to the rider’s right (R) and left (L) quadriceps (Q), hamstring (H),
and gluteal (G) muscle groups. The stimulation input was saturated at
100µs for rider comfort.
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can be reduced to lessen the amount of interaction torque between the cycle and the

rider, or the position gain αcan be reduced to prevent the rapid accumulation of the

position error term in the auxiliary error system denoted by r. Actuator saturation results

in the rider not being able to achieve the desired cadence, but due to the admittance

controller on the cycle’s motor, the rider is assisted in maintaining a nonzero cadence.

When comparing P2 to P1, it is noted P2 had a lower stimulation limit and expe-

rienced fatigue at a quicker rate, despite all muscle groups being stimulated. The low

stimulation limit made the experiments of P2A and P2B appear very similar in nature

(i.e., with and without adaptation), except the adaptation resulted in smoother cadence

tracking/performance. Due to adaptation of the motor controller, it can be seen in Figure

5-3 that the RMS value of ξ̇ was reduced over the course of the experiment, despite only

a subtle reduction in the motor control effort as depicted in Figure 5-4. Because P2’s

stimulation was saturated early in the experiment, he was unable to achieve the desired

cadence at the desired interaction torque. However, because the admittance controller

held the admitted cadence trajectory near the desired cadence trajectory, the robot

assisted the rider in maintaining his cadence. This exemplifies the assist-as-needed

control paradigm. Without the admittance controller, the rider would have been unable

to maintain cycle motion. Because the cadence controller is passive and the admittance

controller demonstrates asymptotic tracking, the FES-cycle exemplifies stable perfor-

mance through the remaining portion of the experiment. Although P2 has spina bifida,

the cycle detected no notable asymmetries in performance.

P3 presented a strong sensitivity to stimulation, and thus, the amount of stimulation

that could be applied (and hence torque contribution) was kept to a minimum. Like

P2, P3’s stimulation was saturated early in the experiment, however, the cycle was

still able to adapt and asymptotically track the admittance error system. According to

Table 5-1, her unimpaired leg (left) generated more torque than her impaired leg (right)

and both legs demonstrated improved tracking performance with adaptation enabled.
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Figure 5-5 depicts cadence tracking performance and Figure 5-6 depicts the control

efforts for P3A. Despite the fact that P3’s stimulation was saturated early in experiments,

it allowed for the most powerful contractions to be elicited from the stimulation, and

consequently, the best tracking possible. From a rehabilitation perspective, however,

there exist outstanding questions as to best balance stimulation levels with functional

improvements.

To directly examine the effects of adding adaptation to the admittance controller,

Figures 5-7 and 5-8 display the tracking results and control inputs with adaptation

enabled for P4 and Figures 5-9 and 5-10 display the tracking results and control inputs

with adaptation disabled for P4. By directly comparing Figure 5-7 to 5-9, it can be

seen that immediately after controller activation, the RMS admittance and cadence

tracking errors decayed to nearly half their pre-activation values when adaptation was

enabled. Although the adaptation only occurs on the robot, because the robot and

the rider are physically coupled, improved performance from the admittance controller

yielded improved performance from the cadence controller. One controller is able to

bolster the capabilities of the other, provided they are coupled. This effect is significant

because of the challenges when adding adaptation to the cadence controller due to the

unknown, nonlinear muscle control effectiveness; hence, adaptation can be added to the

robot’s controller to improve performance of the cadence controller applied to the rider’s

muscles. Because P4 did not reach his stimulation limit in either protocol (see Figures

5-8 and 5-10), this indicates he was able to produce the desired interaction torque and

align the admitted cadence trajectory with the desired cadence trajectory (shown in

Figures 5-7 to 5-9).

To compare the effect of adding rider volition alongside the admittance and cadence

controllers, Protocol C was run on P4. As evidenced by the reduction in tracking errors

(as seen previously in Figure 5-7), the admittance controller was able to adapt alongside

the rider. As displayed by Table 5-1, however, the controllers outperformed at tracking
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the desired trajectories than the rider was able to with volition while monitoring his

performance. In contrast, the rider was able to generate a larger interaction torque when

volition was included. Because the rider was able to track the desired cadence trajectory

accurately and quickly (i.e., the stimulation did not require error accumulation to ramp

up), the rider’s stimulation was kept well below his saturation threshold. According to

Table 5-1, P4 surpassed the desired interaction torque, and consequently, the cycle

accelerated (while resisting the rider). Furthermore, because the rider was able to

reduce the position and cadence errors, the rider’s stimulation was withdrawn (see

Figure 5-12). Hence, it is shown that if the rider is able to regulate the errors with

volition, stimulation is not necessary.

It is important to note that the saturation of the stimulation input (i.e., the cadence

controller) does not compromise the performance of the cycle. Regardless of satu-

ration, the admittance controller applied to the cycle’s motors asymptotically tracks

the admittance error system for all time. Because of the admittance filter, if the rider’s

muscles are unable to produce the desired interaction torque per the applied stimula-

tion, the cycle decelerates to accommodate the rider and enters the assist-as-needed

modality. By manipulating the desired interaction torque and the parameters in (5–6),

the cycle’s performance can be drastically changed; the interested reader can refer

to [111] for additional details. Whether the participant was able-bodied (P1), had a ND

with no asymmetry (P2/P4), or had a ND with asymmetry (P3), the combined cadence-

admittance controllers applied to the split-crank FES-cycle illustrated stable performance

with adaptation improving the tracking results and reducing oscillations (i.e., the stan-

dard deviation). The split-crank FES-cycle offers a novel method to treat and manage

movement disorders, with particular emphasis on asymmetries or hemiparesis, while

preserving rider safety.
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5.4 Concluding Remarks

This chapter seeks to improve upon the controllers presented in Chapter 4 by

adding adaptation to the admittance controller implemented on the cycle’s motor.

Additionally, to accommodate for asymmetric rider capabilities (as in post-stroke

hemiparesis), the cycle’s crank is severed and the cycle’s pedals are decoupled.

Consequently, the cycle is instrumented with an additional motor, encoder, powermeter,

and chain to establish feedback and control authority on both sides of the cycle. The

muscles of each leg of the rider are tasked with maintaining the cycle’s cadence

on their respective sides and each motor is controlled using a separate admittance

controller. Using a passivity-based stability analysis, it is shown that rider volition

does not destabilize the error systems. When implemented, the admitted trajectory

is generated online by averaging the output torques between the two sides such that

the pedals are kept at an offset of 180 degrees, maintaining the natural symmetry

of cycling. If the rider demonstrates hemiparesis, the stronger leg will experience

resistance and the weaker leg will experience assistance such that the two pedals are

held in phase. Experiments are conducted on one able-bodied participant and three

participants with neuromuscular disorders to compare the effect of adding adaptation

to the cycle. Results indicate significant improvement in various performance metrics

with the use of adaptation. Specifically, with adaptation, the cadence error was reduced

by 41%, the cadence standard deviation was reduced by 57%, the control input to

the motors was reduced by 9%, and the pedal phase error was reduced by 41%

to an average difference of 174o. Compared to other works on split-crank cycling

(cf. [92,93,136]), this chapter develops a combined stable cadence/admittance controller

to simultaneously actuate the FES cycle using the cycle’s electric motor and torque

arising from the rider’s muscles elicited by FES. Furthermore, using the developed

adaptive admittance controller on a split-crank FES cycle allows for the implementation

of highly customizable rehabilitation strategies to target and address rider asymmetries.
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CHAPTER 6
CYCLING WITH FUNCTIONAL ELECTRICAL STIMULATION AND NEUROADAPTIVE

ADMITTANCE CONTROL

This chapter is designed to improve upon the adaptive admittance controller de-

veloped in Chapter 5. The controller is modified with the addition of a neural network

to estimate the control effectiveness of the rider’s muscles and more accurately track

the admitted trajectory. While the neural network is shaped according to the anticipated

rider output torque curve, the admittance controller employs a gradient adaptive feed-

forward term. As in Chapter 5, the rider’s muscles are assigned to regulate the cycle’s

cadence. A stability analysis is conducted and proves the admittance controller globally

asymptotically regulates the admittance error system and the cadence controller is

passive with respect to the motor. Merging a passive muscle stimulation controller with

an asymptotically stable adapting NN admittance controller allows for accurate control

of the motorized FES cycle while preserving rider comfort and safety. The designed

controller is validated through experiments conducted on one able-bodied participant

and four participant with NDs (spina bifida, spinal cord injury, Parkinson’s disease, and

drug-induced Parkinsonism). Experiments indicate the proposed controller offers im-

proved performance with the feedforward adaptive compensation terms when compared

to the same feedback only controller in three of the five participants. The average admit-

tance cadence error is −0.07± 1.10 RPM with adaptation and −0.10± 1.18 RPM without

adaptation.

6.1 Control Development

In the following section, two controllers are developed, a robust sliding-mode

cadence controller for the rider’s muscles and an adaptive neural network admittance

controller for the cycle’s motor.

6.1.1 Robust Cadence Control

Although the cadence controller has the same form as in [67], a new stability

analysis is required (see Section 6.2) because a new objective is presented (i.e.,
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admittance tracking). For clarity, the cadence tracking errors and the controller are

presented here. The cycle’s cadence is regulated using the rider’s muscles in the FES

regions and quantified by the tracking errors e : R≥0 → R and r : R≥0 → R, each defined

as

e , qd − q, (6–1)

r , ė+ αe, (6–2)

where qd : R≥0 → R denotes the desired position, designed to be sufficiently smooth

(i.e., qd, q̇d, q̈d ∈ L∞), and α ∈ R>0 denotes a selectable constant control gain. The

open-loop cadence error system is obtained by taking the derivative of (6–2), multiplying

by M , adding and subtracting e, and substituting (2–8), (2–9), (6–1), and (6–2) to yield1

Mṙ = χ1 −BMuM − τe − Cr − e, (6–3)

where the lumped auxiliary signal χ1 : R2 × R≥0 → R is defined as χ1 ,

M (q̈d + αr − α2e) + C (q̇d + αe) + G + P + bc (q̇d − r + αe) + d + e and bounded by

Properties 2.1-2.6 as |χ1| ≤ c1 + c2 ‖z‖ + c3 ‖z‖2 , where c1, c2 c3 ∈ R>0 are known

constants, and the error vector z ∈ R2 is defined as z , [e r]T . Based on (6–3) and the

subsequent stability analysis, the cadence controller is designed as

uM =
1

BM

(
k1r +

(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
sgn(r)

)
, (6–4)

where ki ∈ R>0 ∀i = 1, 2, 3, 4 denote constant control gains and BM is introduced in

Property 2.8. Substituting (6–4) into (6–3) yields the closed-loop cadence error system

1 To facilitate the following development, let V (q, q̇) be redefined as C (q, q̇), (i.e.,
C (q, q̇) , V (q, q̇)).
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Mṙ = χ1 − τe − Cr − e−
BM

BM

(
k1r +

(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
sgn(r)

)
. (6–5)

6.1.2 Neuroadaptive Admittance Control

While the rider’s muscles regulate cadence, an interaction torque error is intro-

duced, quantified by eτ : R≥0 → R, and defined as

eτ , τ − τd, (6–6)

where τd : R≥0 → R denotes the desired bounded interaction torque and τ : R≥0 → R

denotes the bounded measurable interaction torque between the cycle and rider (i.e.,

τ ∈ L∞) [56, 132]. By implementing an admittance filter, the interaction torque error can

be transformed into an admittance error (i.e., a modified position and cadence error),

which can be regulated using an inner-loop position controller. The admittance filter is

given by

eτ ,Mdq̈a +Bdq̇a +Kdqa, (6–7)

where Md, Bd, Kd ∈ R>0 denote constant filter parameters, selected such that the

transfer function of (6–7) is passive (i.e., qa, q̇a, q̈a ∈ L∞) [63, Lemma 6.4]; and

qa, q̇a, q̈a : R≥0 → R denote the generated admitted position, velocity, and acceleration,

respectively. To track the admitted trajectory, an adaptive inner-loop position controller

is designed to regulate the admittance error system, quantified by ξ : R≥0 → R and

ψ : R≥0 → R, and defined as

ξ , qa + qd − q, (6–8)

ψ , ξ̇ + βξ, (6–9)

where β ∈ R>0 denotes a constant control gain. The open-loop admittance error

system is generated by taking the time derivative of (6–9), multiplying by M , adding and

subtracting ξ, and substituting (2–8), (6–8), and (6–9) to yield
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Mψ̇ = Y θ + d+ P − Cψ −BMuM −Beue, (6–10)

Y θ , M
(
q̈a + q̈d + βψ − β2ξ

)
+ C (q̇a + q̇d + βξ) +G+ bc (q̇a + q̇d − ψ + βξ) ,

(6–11)

where Y : R2 × R≥0 → R1×7 denotes a computable regression matrix (LP by Property

5.1), and θ ∈ R7×1 denotes a matrix of constant system parameters. To facilitate the

subsequent analysis, (6–10) is further modified by adding and subtracting ξ and fmuM ,

yielding

Mψ̇ = Y θ + χ2 − ξ − Cψ −Beue + (S − fm)uM , (6–12)

where fm , BM

(
sin2 (qd + qa) , q̇d + q̇a

)
. The sin2 (·) function is utilized to supply

a bounded input to the NN, as well as shape the input to match the positive torque

contribution of both legs. The auxiliary function χ2 : Q × R × R≥0 → R is defined

as χ2 , P + ξ + d, and bounded by Properties 2.4 and 2.6 as |χ2| ≤ c4 + c5 ‖φ‖ ,

where c4, c5 ∈ R>0 are known constants, and the error vectors φ ∈ R3, ζ ∈ R2 are

defined as φ ,
[
ζT q̇a

]T and ζ , [ξ ψ]T . The auxiliary function S : R2 → R in (6–12)

is defined as S , fm − Bm and can be bounded using the Mean Value Theorem [137]

and Property 2.8 as |S| ≤ c6 + c7 ‖ζ‖, where c6, c7 ∈ R>0 are known constants.

Knowing qd, q̇d, qa, q̇a ∈ L∞, let S be a compact simply connected set of R3 with map

fm : S→ R, where fm is continuous. Then, there exist weights and thresholds such that

the function fm (xd) can be represented by a neural network as [138,139]

fm = W Tρ
(
V Txd

)
+ ε (xd) , (6–13)

where xd ,
[

1 sin2 (qd + qa) q̇d + q̇a

]T
∈ S, V ∈ R3×L and W ∈ R(L+1)×1 are bounded

constant ideal weight matrices of the neural network, and L is the number of neurons in
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the hidden layer. The function ρ : RL → RL+1 is defined as ρ ,
[

1 ρ1 ρ2 ... ρL

]T
,

where ρi, ∀i = {1, 2, ..., L} represents the activation function for each neuron, and the

function reconstruction error is denoted by ε : S→ R.

Assumption 6.1. By [114] and Property 2.8, Bm is continuous and analytic on a

compact set except at known locations of discontinuities (i.e., σm transitions at known

locations based on a present muscle activation strategy). Accordingly, based on the

design of the discrete switching signals in (2–7), Bm is right-continuous with finite jumps

at known locations. Following a development similar to [139, Theorem 3.1.5], sigmoidal

jump approximation functions can be employed within the neural network to estimate the

jumps. For simplicity, within the current development, the jumps are approximated by

continuous functions and combined within the structure of the activation function ρ and

the error is captured within ε in (6–13).

Since the weights W and V are unknown, an approximated version of (6–13) is

generated as

f̂m , Ŵ Tρ
(
V̂ Txd

)
, (6–14)

where V̂ : R≥0 → R3×L and Ŵ ∈ : R≥0 → R(L+1)×1 are the estimates of V and W ,

respectively. To facilitate the following development, let the notation (̃·) , (·)− (̂·) denote

estimation errors, then ρ
(
V Txd

)
may be approximated at ρ

(
V̂ Txd

)
using a Taylor series

expansion as

ρ
(
V Txd

)
= ρ̂+ ρ̂′Ṽ Txd +O2, (6–15)

where ρ̂ , ρ
(
V̂ Txd

)
, ρ̂′ ,

∂ρ(V T xd)
∂V T xd

∣∣∣∣∣
V̂ T xd

denotes the partial derivative.

Assumption 6.2. The ideal weights, thresholds, function approximation error of (6–13),

and higher order terms of (6–15) are assumed to be bounded.

Based on (6–12) and the subsequent stability analysis, the admittance controller is

designed as
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ue ,
1

Be

(
Y θ̂ + k5ψ − f̂muM +

(
k6 + k7 ‖φ‖+ (k8 + k9 ‖ζ‖) |uM |

)
sgn (ψ)

)
,(6–16)

where ki ∀i ∈ {5, 6, ..., 9} ∈ R>0 denote constant control gains; |uM | ,
1
BM

[
k1 |r| + k2 + k3 ‖z‖ + k4 ‖z‖2

]
; and θ̂ : R≥0 → R7×1 denotes an estimate of

the constant system parameters. Substituting (6–16) into (6–12), adding and subtracting(
W T ρ̂+ Ŵ T ρ̂′Ṽ Txd

)
uM , utilizing (6–15), and performing some algebraic manipulation

yields the closed-loop admittance error system

Mψ̇ = Y θ̃ − ξ − Cψ − k5ψ −
(
k6 + k7 ‖φ‖+

(
k8 + k9 ‖ζ‖

)
|uM |

)
sgn (ψ)−

(
W̃ T ρ̂

+Ŵ T ρ̂′Ṽ Txd −N
)
uM + χ2, (6–17)

where θ̃ : R≥0 → R7×1 denotes the error between the actual and estimated system

parameters, and the auxiliary function N : R3 → R is defined as

N , S − ε− W̃ T ρ̂′Ṽ Txd −W TO2. (6–18)

Based on the subsequent stability analysis, the estimates for the system parameters in

(6–11) and the neural network weights in (6–14) are generated on-line as

˙̂
θ = proj

(
Γ1Y

Tψ
)
, (6–19)

˙̂
W = proj (−Γ2ρ̂uMψ) , (6–20)

˙̂
V = proj

(
−Γ3xduMψŴ

T ρ̂′
)
, (6–21)

where Γ1 ∈ R7×7, Γ2 ∈ R(L+1)×(L+1), Γ3 ∈ R3×3 denote constant positive definite learning

gains.

Property 6.1. By the Mean Value Theorem, Assumption 6.2, and the projection

algorithm, |N | ≤ c8 + c7 ‖ζ‖ for any combination of switching signals, where c8 ∈ R>0 is a

known constant and c7 was introduced above.
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6.2 Stability Analysis

To facilitate the following theorems, let V1 : R2 → R denote a continuously

differentiable, positive definite storage function defined as

V1 ,
1

2
Mr2 +

1

2
e2, (6–22)

and let V2 : R4L+10 → R denote a continuously differentiable, positive definite Lyapunov

function candidate defined as

V2 ,
1

2
Mψ2 +

1

2
ξ2 +

1

2
θ̃TΓ−1

1 θ̃ +
1

2

(
W̃ TΓ−1

2 W̃ + tr
(
Ṽ TΓ−1

3 Ṽ
))

, (6–23)

where tr(·) is the trace of a matrix.

Theorem 6.1. Given the closed-loop cadence error system in (6–5), when q ∈ QFES,

the cadence controller is passive from input |τe| to output |r|, ∀t provided the following

constant gain conditions are satisfied: k2 ≥ c1, k3 ≥ c2, k4 ≥ c3.

Proof. Let z : R≥0 → R2 for t ∈ [t0, ∞) be a Filippov solution to the differential

inclusion ż ∈ K[h1](z), where K[·] is defined as in [120], and h1 : R2 → R2 is defined

as h1 ,

[
ė ṙ

]T
. Because of the discontinuity in the muscle controller in (6–4), the

time derivative of V1 exists almost everywhere (a.e.) (i.e., for almost all t ∈ [t0, ∞)),

and V̇1(z)
a.e.
∈ ˙̃V1(z), where ˙̃V1 is the generalized time derivative of V1 along the Filippov

trajectories of ż = h1(z) [121]. Using the calculus of K [·] from [121], substituting (6–2)

and (6–5) into ˙̃V1 yields

˙̃V1 ⊆ −αe2 + rχ1 +

(
1

2
Ṁ − C

)
r2 − K [BM ]

BM

(
k1r

2 +
(
k2 + k3 ‖z‖

+k4 ‖z‖2
)
K [sgn(r)] r

)
− rτe, (6–24)

where K [BM ] , {0, BM} . For q ∈ QFES, K [BM ] is nonzero and may be bounded by

Property 2.8 as Bm, which is continuous. Hence, by Properties 2.7 and 2.8, and since

V̇1(z)
a.e.
∈ ˙̃V1(z), (6–24) can be bounded by
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V̇1

a.e.
≤ −αe2 + |r| |χ1| − k1r

2 + |r| |τe| −
(
k2 + k3 ‖z‖+ k4 ‖z‖2) |r| . (6–25)

Furthermore, (6–25) can be bounded above using Properties 2.1-2.6 as

V̇1

a.e.
≤ −αe2 − k1r

2 − λ1 |r| − λ2 |r| ‖z‖ − λ3 |r| ‖z‖2 + |r| |τe| , (6–26)

where λ1, λ2, λ3 ∈ R are defined as λ1 , k2 − c1, λ2 , k3 − c2, and λ3 , k4 − c3 (where

c1, c2, c3 represent the bounding constants of |χ1|). Provided the gain conditions are

satisfied, λ1, λ2, λ3 ≥ 0; thus, (6–26) can be bounded as

V̇1

a.e.
≤ −αe2 − k1r

2 + |r| |τe| . (6–27)

Because the interaction torque is bounded, from the perspective of the rider, the

physically applied motor torque is similarly bounded. Hence, by [63, Definition 6.3] the

cadence error system is output strictly passive with input |τe|, output |r|, storage function

V1, and the cadence controller is bounded (i.e., uM ∈ L∞).

Theorem 6.2. Given the closed-loop error system in (6–17) and the admittance relation

in (6–7), the admittance error system is globally asymptotically stable in the sense

that ‖ζ‖ → 0 as t → ∞, provided the following constant gain conditions are satisfied:

k6 ≥ c4, k7 ≥ c5, k8 ≥ c7, k9 ≥ c8.

Proof. Let Ω : R≥0 → R4L+10 be a Filippov solution to the differential inclusion Ω̇ ∈

K[h2](Ω), and h2 : R4L+10 → R4L+10 be defined as h2 ,

[
ξ̇ ψ̇ ˙̃θT ˙̃W T vec

(
˙̃V
)T ]T

,

where the operator vec(·) stacks the columns of a matrix A ∈ Rm×n to form a vector

vec(A) ∈ Rmn. Because of the discontinuity in the admittance controller in (6–16),

V̇2(Ω)
a.e.
∈ ˙̃V2(Ω) along the Filippov trajectories of Ω̇ = h2(Ω). Using a similar argument

to that made in the proof of Theorem 6.1, substituting (6–9) and (6–17) into ˙̃V2(Ω), and

performing cancellations yields
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˙̃V2 ⊆ −βξ2 + ψY θ̃ + ψχ2 +

(
1

2
Ṁ − C

)
ψ2 − k5ψ

2 − θ̃TΓ−1
1

˙̂
θ −

(
k6 + k7 ‖φ‖+

(
k8 + k9||ζ||

)
· |uM |

)
K[sgn(ψ)]ψ −

(
W̃ T ρ̂+ Ŵ T ρ̂′Ṽ Txd −N

)
K [uM ]ψ

−
(
W̃ TΓ−1

2
˙̂
W + tr

(
Ṽ TΓ−1

3
˙̂
V
))

, (6–28)

where K [uM ] = 1
BM

(
k1r +

(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
·K [sgn(r)]

)
, whose members can be

least upper bounded by the previously defined singleton |uM | such that sup(K [uM ]) =

|uM |. Utilizing Properties 2.1-2.8, inserting the update laws in (6–19)-(6–21), and

performing cancellations allows (6–28) to be further upper bounded as

˙̃V2 ⊆ −βξ2 − k5ψ
2 − (λ4 + λ5 ‖φ‖) |ψ| − (λ6 + λ7||ζ||) |ψ| |uM | , (6–29)

where λi ∈ R, ∀i ∈ {4, 5, 6, 7} are defined as λ4 , k6 − c4, λ5 , k7 − c5, λ6 , k8 − c8,

and λ7 , k9 − c7 (where c4, c5 represent the bounding constants of |χ2|, and c7, c8

represent the bounding constants of |N |). Provided the gain conditions are satisfied,

λ4, λ5, λ6, λ7 ≥ 0, and since V̇2(Ω)
a.e.
∈ ˙̃V2(Ω), (6–29) can be upper bounded in both the

FES and KDZ regions as

V̇2

a.e.
≤ −βξ2 − k5ψ

2. (6–30)

Hence, (6–23) has a negative semi-definite derivative across both the FES and KDZ

regions. Subsequently, [135] can be invoked, along with the radially unboundedness of

(6–23), to show |ξ|, |ψ|, ‖ζ‖ → 0 as t → ∞. Since V2 > 0 and V̇2

a.e.
≤ 0, V2 ∈ L∞. Hence,

ξ, ψ, θ̃ ∈ L∞, which implies q̇, θ̂ ∈ L∞. Since (6–7) is passive, q̇a, q̈a ∈ L∞, which

implies Y, ‖φ‖, xd ∈ L∞. By (6–20), (6–21), and xd ∈ L∞, f̂m ∈ L∞. Finally, because

uM ∈ L∞ by Theorem 6.1, ue ∈ L∞.

6.3 Experiments

6.3.1 Experimental Testbed

The experimental testbed used in this chapter is introduced in Chapter 2.
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6.3.2 Experimental Methods

Experiments were conducted on one able-bodied male participant (P1) aged

26, one male participant with spina bifida (L5-S1, Arnold Chiari Malformation) (P2)

aged 25, one female participant with a complete spinal cord injury (AIS A, T8-T9) (P3)

aged 26, one male participant with Parkinson’s disease (P4) aged 64, and one male

participant with drug-induced Parkinsonism (P5) aged 52. P2 is familiar with FES,

regularly participates in physical and occupational therapy, and uses a wheelchair

part-time; he is community ambulatory with ankle-foot orthoses. P3 suffered her

spinal cord injury ten years prior, uses a wheelchair full-time, and also has previous

experience with FES. P4 is highly active, participating in recreational activities including

swimming and boxing, and is familiar with FES. P5 had no previous exposure to FES

and reported low activity levels. All participants completed two FES cycling protocols in

random order: Protocol A, which ran the controllers in (6–4) and (6–16); and Protocol

B, which disabled both the NN feedforward and adaptive feedforward components of

(6–16). The purpose of such a design was to isolate the contribution of the feedforward

components of the cycle’s motor controller. Each protocol had a total duration of

180 seconds, with the first 30 seconds consisting of a smooth motor-only ramp to

the desired cadence of 50 RPM using (6–16), i.e., with the admittance controller

active. After the initial ramp, the controller in (6–4) was switched on, the rider was

stimulated, and steady-state (SS) errors were recorded. For all experiments, the

participants were blind to the desired trajectories for the duration of the experiment.

The experimental protocols were approved by the Institutional Review Board at the

University of Florida. For all experiments, the admittance parameters in (6–6) and (6–7)

were selected as Kd = 0 Nm
rad
, Bd = 2 Nm·s

rad
, Md = 2 Nm·s2

rad
, and τd ∈ [0, 0.2] Nm.

The controller gains in (6–2), (6–4), (6–9), (6–16), and (6–19)-(6–21) were selected

as k1 ∈ [2, 6], k2 = k3 = k4 = 0.1, k5 = 4, k6 = k7 = 0.01, k8 = k9 = 0.001,

α ∈ [1.0, 6.0], β = 0.1, Γ1 = γ · diag (0.175, 0.25, 0.125, 0.5, 1.25, 1.25, 0.05), γ ∈ [1, 2],
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Γ2 = 10−6 · diag (1.5, 1.0, 0.9, 0.75, 0.5, 2.0), and Γ3 = diag (0.8, 4, 0.8). The activation

function of the NN was selected as the soft-plus function, ρ (x) , ln (1 + exp (x)), and

the number of neurons was set to 5 (i.e., L = 5). To disable each component of the

controller in (6–16) as dictated by the protocol design, the respective learning gains (i.e.,

Γ1, Γ2, and Γ3) were set to zero. To avoid transient effects from switching the admittance

controller in (6–16) on at 30 seconds, it was enabled for all time.

6.3.3 Results and Discussion

Since the cycle’s motor tracks an online-generated admittance trajectory, and

the rider’s muscles track a set cadence trajectory, the achieved cadence is a function

of the torque generated by the rider. Thus, if the rider is able to produce the desired

amount of interaction torque (through FES), the admittance trajectory will align with the

desired cadence trajectory, and both controllers will work in conjunction to pedal the

cycle at the desired cadence. If the rider is unable to meet the desired torque (due to

stimulation comfort or strength limitations), the achieved cadence will lag the desired

cadence. Table 6-1 illustrates this point, which provides details on the average and

standard deviation of the measured cadence, admitted cadence, admittance cadence

error, current input to the cycle’s motor, torque error, and estimated power production by

the rider. The average estimated power production is denoted by P̂ : R≥0 → R, which

is defined as P̂ , mean (q̇) (mean (τ)− τp) , where τp : R≥0 → R denotes an estimate

of the passive torque required to actuate the combined rider-cycle system at the desired

cadence, collected during each trial for 4.8 seconds prior to controller activation (i.e.,

approximately four crank cycles at 50 RPM).

In the following, the participants and protocols are denoted by their respective

number and letter; for example, P1 running Protocol B is referred to as P1B. Numerical

results for P1-P5 are provided in Table 6-1, calculated at steady state (i.e., after the

initial cadence ramp to 50 RPM). Figure 6-1 displays cadence tracking results, including

errors and root-mean-squared (RMS) errors for P1A; for visual clarity, a one second
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Table 6-1. Experimental results, reported as average ± standard deviation
Participant Protocol q̇ (RPM)∗ q̇α (RPM)† ξ̇ (RPM) P̂ (W)

1‡ A 48.84±1.87 -1.24±1.49 -0.08±1.30 3.31±2.79
B 49.04±1.90 -1.15±1.30 -0.19±1.53 3.22±2.72

2 A 48.14±1.13 -1.95±0.21 -0.10±1.13 0.14±1.09
B 48.14±1.19 -2.04±0.81 -0.19±1.19 0.24±1.04

3 A 47.56±0.95 -2.52±0.13 -0.08±0.95 -0.14±0.92
B 47.48±0.96 -2.57±0.13 -0.05±0.97 -0.15±0.88

4 A 49.04±1.36 -0.94±0.77 0.01±1.08 3.70±3.13
B 48.64±1.43 -1.47±0.68 -0.11±1.27 2.53±2.67

5 A 46.66±1.04 -3.47±0.33 -0.13±1.02 -0.07±1.11
B 47.15±0.90 -2.85±0.44 0.00±0.81 -0.02±1.06

Mean A 48.04±1.31 -2.02±0.77 -0.07±1.10 1.38±2.04
Mean B 48.09±1.32 -2.01±0.77 -0.10±1.18 1.16±1.87
∗At SS, the average cadence error is calculated as ė = 50− q̇.
†q̇α : R≥0 → R denotes the average admitted cadence defined as q̇α , q̇d + q̇a.
‡τd = 0.2 Nm.

moving average filter was applied. Figure 6-2 displays the control inputs to both the

motor and the rider’s muscle groups for P1A, and for visual clarity, a half second moving

average filter was applied. Figures 6-3 and 6-4 display the evolution of θ̂ and f̂m,

respectively, in accordance with the update laws in (6–19)-(6–21).

Prior to the muscle controller in (6–4) being activated, the rider’s legs act as a

drag on the system, generating negative torque, and therefore decreasing the admitted

cadence, as depicted in Figure 6-1. Because only the admitted error system is being

regulated at this point, the position error (i.e., e) begins to accumulate; therefore,

when the muscle controller in (6–4) is activated, a nonzero stimulation is applied,

as displayed in Figure 6-2. Under normal circumstances, this error accumulation

would be undesirable; however, because the rider’s muscles do not generate torque

at low levels of stimulation, this effect becomes desirable to “prime” the muscles for

torque generation. By applying low stimulation levels and increasing them over the

course of the experiment, torque production is gradually increased and results in a

more comfortable experience for the rider. Furthermore, by decreasing the derivative

gain (i.e., k1) on muscle stimulation, sharp increases in stimulation due to system
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Figure 6-1. P1A: (Top) The actual, admitted, and desired cadence; (Middle) cadence
errors; and (Bottom) RMS cadence errors, with the vertical lines
representing the time of activation of (6–4).
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disturbances are avoided and results in a smoother stimulation pattern. The position

gain (i.e., α) on the cadence error system heavily influences the degree to which the

stimulation is increased over time; because the primarily tracking objective is concerned

with cadence, the position gain acts as an integral-like gain and stimulation increases

steadily until the measured cadence aligns with the desired. As the stimulation level

increases, the torque from the rider’s leg muscles gradually increases to the desired

torque (contrast Figures 6-1 and 6-2, at t ≈70 s) and due to the admittance filter in

(6–7), the admitted trajectory begins to align with the desired, resulting in less error

accumulation (i.e., e) and a less aggressive ramp in the stimulation input. As the

muscles begin to fatigue, their cumulative torque production lessens and the admitted

trajectory begins to decrease; consequently, the stimulation input increases to maintain

torque levels.

As depicted in Figures 6-3 and 6-4, at t=30 s, the update laws for both θ̂ and f̂m are

activated and the estimates begin to evolve. Although the framework for designing the

parameter estimates is motivated by the system parameters in the dynamics, there is no

guarantee the estimates will approach their true values. Using more advanced forms of

learning such as integral concurrent learning [140], however, can be leveraged to ensure

parameter convergence with the finite excitation condition. Because the NN is used to

estimate the muscle control effectiveness, it continues to evolve over the duration of

the experiment as the muscles experience fatigue. Note, the NN estimate in Figure 6-4

begins to increase when the rider’s muscles begin generating torque. A single crank

cycle view is supplemented in Figure 6-4, to demonstrate the NN emulating the form of

a sin2 (·) wave, as expected and encouraged per the two FES regions in the crank cycle

and by the construction of the NN in (6–13). The estimate of the NN is subsequently

multiplied by the stimulation input (6–4) before being added into the control input of the

motor. The adaptive and NN feedforward components simultaneously estimate system

dynamics, and affect each other over time; therefore, the gains on the adaptive gradient
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component were set significantly higher than those of the NN to encourage learning on

two different time scales.

To demonstrate the effect of the feedforward components of (6–16), the adaptive

gradient and NN components were disabled (i.e., Protocol B). As illustrated by Table

6-1, for P1, using adaptation results in the reduction of the admittance cadence error ξ̇

by 58% and the standard deviation of the admittance cadence error by 15%. Despite

the reduction in error, the average control inputs to the motor were similar, with similar

torque production by the rider.

Subsequently, P2 and P3 completed both protocols, with Figures 6-5 and 6-6

displaying cadence results and control inputs, respectively, from P2A. Because P2 was

limited in terms of his ability to generate torque from FES (due to comfort thresholds),

the NN estimate of the control effectiveness relating stimulation input to torque output

was near zero. However, as illustrated by Table 6-1, adaptation results in the reduction

of the admittance cadence error by 48% and the standard deviation of the admittance

cadence error by 5%, illustrating the effect of the gradient adaptive component of the

controller. P2 was unable to produce the desired amount of torque, hence his measured

cadence lagged the desired for the duration of the experiment; however, the admittance

error system was closely tracked by the motor controller. Due to the position error

accumulating, P2’s stimulation steadily increased until it reached his comfort threshold,

depicted in Figure 6-6.

P3 was limited in her ability to produce torque elicited from the applied stimulation

and consequently relied exclusively on the electric motor to actuate the cycle at a near-

constant cadence. Figure 6-7 displays the resulting cadence and error systems for P3A.

Unlike P2, however, P3 was limited because of significant muscle atrophy occurring

in the ten years since her injury. Because P3 had no sensation below mid-abdomen,

the stimulation pulsewidth was allowed to reach the hardware maximum of 500µs, as

indicated in Figure 6-8. Despite the high stimulation level, according to Table 6-1, P3
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Figure 6-2. P1A: (Top) Control input to the motor and (Bottom) to the rider’s quadriceps
femoris, hamstrings, and gluteal muscle groups of the right leg. Due to
identical muscle gains (i.e., km, ∀m ∈ {Q,H}) the quadriceps and hamstring
control inputs overlap. Although stimulation is applied in a pulsetrain
(dependent on the fixed frequency and amplitude, and controller-modulated
pulsewidth) it is plotted as the maximum stimulation pulsewidth for each FES
region.
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Figure 6-3. P1: Evolution of θ̂i ∀i ∈ {1, 2, ...,7}.
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Figure 6-4. P1: (Top) Evolution of f̂m over the experiment and (Bottom) evolution of f̂m
over one crank cycle.
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Figure 6-5. P2A: (Top) The actual, admitted, and desired cadence; (Middle) cadence
errors; and (Bottom) RMS cadence errors.

153



Figure 6-6. P2A: (Top) Control input to the motor and (Bottom) to the rider’s muscle
groups. Due to identical muscle gains (i.e., km, ∀m ∈ {Q,H}) the
quadriceps and hamstring control inputs overlap. The input to the rider’s
muscle groups was subject to a saturation limit of 65 µs.
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Figure 6-7. P3A: (Top) The actual, admitted, and desired cadence; (Middle) cadence
errors; and (Bottom) RMS cadence errors.

was unable to produce any positive torque about the crank; however, P3 did get the

benefit of a range-of-motion exercise on the FES cycle. Using adaptation on P3 did not

result in any improvement in tracking errors; however, due to time constraints, minimal

gain tuning was conducted.

The experimental results for P4A are depicted in Figures 6-9 and 6-10. As shown

in Figure 6-9, the cycle’s measured cadence is above the desired cadence and does

not decrease significantly upon controller activation at t=30 s; by examining the stim-

ulation input plot in Figure 6-10, it is also shown that the stimulation pulsewidth was

approximately 20-30 µs at t=30 s. Although each participant reacts differently to the
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Figure 6-8. P3A: (Top) Control input to the motor and (Bottom) to the rider’s muscle
groups. Due to identical muscle gains (i.e., km, ∀m ∈ {Q,H}) the
quadriceps and hamstring control inputs overlap. The input to the rider’s
muscle groups was subject to a saturation limit of 500 µs.
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applied stimulation (hence, the uncertain nonlinear control effectiveness Bm), the au-

thors have not previously witnessed visible contractions at these low stimulation levels.

Consequently, we have surmised that the participant was volitionally contributing to

the cycling task, despite not measuring muscle activity levels with methods such as

electromyography. Although the participant was blind to his performance and the desired

trajectory, upon controller activation, the applied stimulation can be used as cues to

trigger the rider to pedal the cycle, and based on the stimulation intensity, to an appro-

priate magnitude. As the experiment progressed, however, the stimulation was observed

to increase at approximately t ≈60 s, at which point we assume the rider began to

relax and withdraw his volitional contributions. When the rider relaxed, the observed

cadence decreased and both error systems increased, as shown in Figure 6-9. As

the experiment progressed and the stimulation evoked stronger contractions, it began

to plateau, indicating that the applied stimulation was sufficient to evoke contractions

powerful enough to pedal the cycle and overcome the passive torque required to actuate

the rider’s limbs. Despite the results of P4 indicating he contributed to the cycling task

volitionally, the adaptive admittance controller was able to reduce the admittance error to

0.01±1.08 RPM compared to the non-adaptive case of -0.11±1.27 RPM.

Compared to P2, P3, and P4, P5’s neurological condition was unique in that his

symptoms (i.e., tremor) were induced through oral medications and resulted in drug-

induced Parkinsonism. When P5 participated in the current study, however, he had

since changed medications and demonstrated no signs of discernible tremor. The

results from P5A are shown in Figures 6-11 and 6-12. Because of P5’s low activity

levels and sensitivity to stimulation, similar to P2, the applied stimulation was unable

to evoke strong muscle contractions. Furthermore, due to participant comfort, the

hamstring muscle groups were not stimulated and further limited the available rider

torque. P5 was the only participant where adding the adaptation detracted from the
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Figure 6-9. P4A: (Top) The actual, admitted, and desired cadence; (Middle) cadence
errors; and (Bottom) RMS cadence errors.
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Figure 6-10. P4A: (Top) Control input to the motor and (Bottom) to the rider’s muscle
groups. Due to identical muscle gains (i.e., km, ∀m ∈ {Q,H}) the
quadriceps and hamstring control inputs overlap. The input to the rider’s
muscle groups was subject to a saturation limit of 77 µs.
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Figure 6-11. P5A: (Top) The actual, admitted, and desired cadence; (Middle) cadence
errors; and (Bottom) RMS cadence errors.

performance of the cycle and increased the admittance error from 0.00±0.81 RPM

without adaptation to -0.13±1.02 RPM with adaptation.

As demonstrated by the tracking results of P1-P5, the FES cycle remained stable

under a wide range of participant capabilities. In three participants (i.e., P1, P2, and

P4) adaptation was able to noticeably improve the tracking performance, whereas in

P5, adaptation detracted from the cycle’s performance. Although four of the participants

reached their stimulation threshold, the position gain (i.e., α) could be reduced to

increase the amount of time until saturation. Balancing stimulation levels with fatigue,

comfort, and torque output remains one of the foremost challenging and promising

topics in FES cycling.
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Figure 6-12. P5A: (Top) Control input to the motor and (Bottom) to the rider’s muscle
groups. Due to participant comfort, the hamstring muscle groups were not
stimulated. The input to the rider’s muscle groups was subject to a
saturation limit of 65 µs.
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6.4 Concluding Remarks

This chapter modifies the adaptive admittance controller developed in Chapter 5

with the addition of a neural network designed to estimate the control effectiveness of

the rider’s muscles and more accurately track the admitted trajectory. While the neural

network is shaped according to the anticipated rider output torque curve, the cycle’s

admittance controller simultaneously employs a gradient adaptive feedforward term

to estimate the linear-in-the-parameter dynamics. Experiments are conducted using

the single-crank FES cycle on one able-bodied participant and four participants with

neuromuscular disorders. Results demonstrate improvements of performance metrics in

three of five participants when adaptation is enabled.
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CHAPTER 7
CONCLUSIONS

For individuals suffering from neuromuscular disorders (e.g., spinal cord injury, trau-

matic brain injury, spina bifida, etc.), hybrid exoskeletons offer a number of rehabilitative

benefits (e.g., increased muscle mass, range of motion, cardiovascular parameters,

etc.). Hybrid exoskeletons combine functional electrical stimulation (FES) with rehabil-

itation robots to merge the benefits and reduce the drawbacks of the two therapeutic

strategies. Because hybrid exoskeletons exhibit uncertain, time-varying, nonlinear,

switched system dynamics, appropriate control strategies must be selected to not only

ensure safe operation, but simultaneously promote rehabilitation for individuals with

neuromuscular disorders. Moreover, because physical human-robot interaction arises

from hybrid exoskeletons, a switched systems stability analysis is crucial to ensure

desired behavior and prevent injury. In this physical human-robot interaction problem,

both the human and the robot are controlled subsystems and require control objectives.

To promote rehabilitation, objectives such as position/cadence control, torque/power

control, and admittance control have all been proposed and investigated.

Over the course of this dissertation, numerous stabilizing controllers have been

developed to safely implement human-machine interaction with an emphasis on reha-

bilitation robots and hybrid exoskeletons. In Chapter 1, motivation for the use of FES,

robots, and hybrid exoskeletons in rehabilitation settings is presented. A survey of

the literature on various control techniques for interfacing with these technologies is

then introduced, establishing a framework for this dissertation to build upon. Chapter 2

introduces the hybrid exoskeleton used through this dissertation, an FES cycle, along

with the corresponding nonlinear, uncertain, time-varying, switched system dynamics.

Autonomous state-dependent switching is necessary because multiple muscle groups

receive stimulation at different angles throughout the crank cycle to produce positive
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torque about the crank and propel the cycle forward. The controllers designed in sub-

sequent chapters are designed to interface with the FES cycle to accomplish various

control objectives such as position, cadence, and admittance tracking.

In Chapter 3, an FES cycling controller is developed to track both cadence and

instantaneous power. The torque error system uses a running integral to update the

torque error in real-time, compared to once per cycle in discretized tracking prevalent in

other cycling methods. Using the proposed controller, a Lyapunov-like switched system

stability analysis is conducted which guarantees global exponential cadence tracking

and uniform ultimate boundedness of the instantaneous power objective. Experiments

were conducted on seven able-bodied participants and six participants with NDs to

evaluate the performance of the proposed controller. A comparison is then made to

two previously developed FES-cycling controllers using experimental results. While

the controllers varied in their control authority and their method of tracking torque, all

controllers demonstrated the ability to accomplish the dual-objective of cadence and

power tracking; however, the developed controller exhibited favorable performance and

characteristics. These results indicate that cadence should be controlled by the electric

motor for all time (i.e., within the FES and KDZ regions) and power should be tracked

instantaneously using the large muscle groups of the legs in the FES regions. The

contributions of this chapter include a novel switched-systems stability analysis to prove

the stability of the instantaneous torque error system supported by experimental results

obtained from individuals with NDs.

In Chapter 4, two new controllers are developed for the FES cycle to accom-

plish simultaneous cadence and admittance tracking. The controllers are designed to

overcome challenges of Chapter 3; namely, selecting the appropriate desired torque

trajectory for direct torque tracking. Compared to Chapter 3, the admittance controller

implemented on the cycle’s motor is capable of indirect torque tracking, accomplished

by injecting artificial desired dynamics between the rider and the cycle. Consequently,
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the rider’s muscles are now electrically stimulated using a cadence controller to actuate

the cycle. Using the admittance controller, the cycle assumes an assist-as-needed

control paradigm and assists the rider is maintaining a desired cadence if the FES is

unable to elicit muscle contractions powerful enough to overcome the passive torques

of the combined cycle-rider system. Correspondingly, the admittance controller resists

the rider if s/he pedals volitionally and exceeds the desired cadence. Experiments con-

ducted on three able-bodied participants and four participants with NDs demonstrated

controller efficacy. The experiments also investigated the effects of selecting various

admittance parameters and show that a compliant cycle is not only desirable for rider

safety, but also for torque/power production. Results indicate the admittance controller

is a promising rehabilitation strategy to simultaneously elicit torque from the rider’s

muscles while introducing a degree of compliance to the system. The contributions of

this chapter include developing the first admittance controller on an FES cycle, along

with arguments to select the appropriate admittance structure and parameter values.

Furthermore, experiments show that the torque requirement from the exoskeleton can

be offset by torque supplemented from FES, allowing for the use of smaller motors and

batteries on hybrid exoskeletons.

Chapter 5 seeks to improve upon the controllers presented in Chapter 4 by adding

adaptation to the admittance controller implemented on the cycle’s motor. Additionally,

to accommodate for asymmetric rider capabilities (as in post-stroke hemiparesis), the

cycle’s crank is severed and the cycle’s pedals are decoupled. Consequently, the cycle

is instrumented with an additional motor, encoder, powermeter, and chain to establish

feedback and control authority on both sides of the cycle. The muscles of each leg of

the rider are tasked with maintaining the cycle’s cadence on their respective sides and

each motor is controlled using a separate admittance controller. Using a passivity-based

stability analysis, it is shown that rider volition does not destabilize the error systems.

When implemented, the admitted trajectory is generated online by averaging the output
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torques between the two sides such that the pedals are kept at an offset of 180 degrees,

maintaining the natural symmetry of cycling. If the rider demonstrates hemiparesis, the

stronger leg will experience resistance and the weaker leg will experience assistance

such that the two pedals are held in phase. Experiments are conducted on one able-

bodied participant and three participants with neuromuscular disorders to compare the

effect of adding adaptation to the cycle. Results indicate significant improvement in

various performance metrics with the use of adaptation. Specifically, with adaptation,

the cadence error was reduced by 41%, the cadence standard deviation was reduced

by 57%, the control input to the motors was reduced by 9%, and the pedal phase

error was reduced by 41% to an average difference of 174o. The contributions of this

chapter include developing the first adaptive admittance controller for FES cycles and

designing a novel admitted trajectory to balance the contributions of both the rider’s

legs while simultaneously promoting symmetry training. Furthermore, because of the

physical coupling between the rider and the cycle, it has been demonstrated that adding

adaptation to the cycle also adds a form of pseudo-adaptation to the rider as well,

reducing tracking errors.

In Chapter 6, the adaptive admittance controller developed in Chapter 5 is modified

with the addition of a neural network designed to estimate the control effectiveness of

the rider’s muscles and more accurately track the admitted trajectory. While the neural

network is shaped according to the anticipated rider output torque curve, the cycle’s

admittance controller simultaneously employs a gradient adaptive feedforward term

to estimate the linear-in-the-parameter dynamics. Experiments are conducted using

the single-crank FES cycle on one able-bodied participant and four participants with

neuromuscular disorders. Results demonstrate improvements of performance metrics in

three of five participants when adaptation is enabled. The contributions of this chapter

include developing a neuroadaptive controller to estimate the rider’s muscle control

effectiveness.
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Supported by experimental evidence, this dissertation provides robust arguments

on the development and usage of various nonlinear and adaptive control strategies for

physical human-robot interaction on hybrid exoskeletons. Previous chapters include

controller development, rigorous switched system stability analyses, and experimental

results demonstrating the efficacy of the controllers. While all controllers included a

cadence control objective, based on the desire to better accommodate individual and

asymmetric NDs, this dissertation has evolved from robust direct torque control on

single-crank FES cycles to adaptive admittance control on split-crank FES cycles. Along

these lines, an effort has been made to fuse control systems engineering with clinical

science and rehabilitation. Due to the collaboration with the Brooks Rehabilitation

Hospital in Jacksonville, FL and the Shands Hospital on the University of Florida

campus, experiments have been conducted on participants with NDs such as spinal

cord injury, traumatic brain injury, hemorrhagic and ischemic stroke, spina bifida,

Parkinson’s disease, and drug-induced Parkinsonism, validating the controllers across a

broad spectrum of NDs.

While FES cycles offer a promising rehabilitation strategy for individuals with NDs,

there is ample room for additional research directions. Future works may include more

accurately accounting for the electromechanical delay demonstrated by muscles under

neuromuscular electrical stimulation, or modifying the desired trajectories online to avoid

saturating the muscles with stimulation. Regardless of the selected strategy, clinical

trials are necessary to demonstrate the benefits of closed-loop control methods over the

open-loop methods prevalently seen in clinical practice today.
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