
REAL-TIME LEARNING FOR SUBOPTIMAL CONTROL OF UNKNOWN SYSTEMS

By

WANJIKU APRILE MAKUMI

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2024

© 2024 Wanjiku Aprile Makumi

2

To my mother, Clare, and my father, James, and my brother, Munga, for their endless
love and support

3

I thank my advisor, Dr. Warren Dixon, for his mentorship and inspiration during my

PhD career. Dr. Dixon has continuously showed unwavered support and encourage-

ment for everything I’ve done and has taught me many lessons on perseverance and

determination as well as challenged me to not only meet but exceed my goals. I extend

my gratitude to my committee members Dr. Jane Shin, Dr. Yu Wang, and Dr. Chris Hass

for their recommendations and insights. I thank Dr. Zachary Bell for advising me as an

intern for two years in the Air Force Research Lab Scholars program. I am grateful to

my colleagues in the Nonlinear Control and Robotics Laboratory, at the University of

Florida, and at the Air Force Research Laboratory, who have challenged and encour-

aged me throughout my career. I appreciate my friends and family for their relentless

support. Finally, I thank Aidan Leaird for lifting me up each and every day.

4

TABLE OF CONTENTS

page

LIST OF TABLES . 7

LIST OF FIGURES . 8

LIST OF ABBREVIATIONS . 10

ABSTRACT . 11

CHAPTER

1 INTRODUCTION . 15

1.1 Literature Review . 15
1.1.1 Reinforcement Learning . 15
1.1.2 Reinforcement Learning for Control 16
1.1.3 Approximate Optimal Control . 19
1.1.4 Actor-Critic Methodology . 22
1.1.5 Approximate Dynamic Programming 25

1.2 Outline of Dissertation . 34
1.3 Notation . 41

2 HIERARCHICAL REINFORCEMENT LEARNING-BASED SUPERVISORY
CONTROL OF UNKNOWN NONLINEAR SYSTEMS 44

2.1 Problem Formulation . 44
2.1.1 Control Objective . 45
2.1.2 Value Function Approximation . 46

2.2 Hierarchical Agent . 47
2.2.1 Switching Rule . 47
2.2.2 System Identification . 48

2.3 Bellman Error . 49
2.4 Update Laws for Actor and Critic Weights 50
2.5 Stability Analysis . 51

2.5.1 Subsystem Stability Analysis . 51
2.5.2 Switched UUB Stability Analysis . 53

2.6 Simulations . 53
2.7 Concluding Remarks . 55

3 APPROXIMATE OPTIMAL INDIRECT REGULATION OF AN UNKNOWN
AGENT WITH A LYAPUNOV-BASED DEEP NEURAL NEWORK 60

3.1 Problem Formulation . 60
3.2 System Identification . 64
3.3 Online Learning . 66

3.3.1 Bellman Error . 66

5

3.3.2 Actor and Critic Weight Update Laws 67
3.4 Stability Analysis . 68
3.5 Simulations . 71
3.6 Concluding Remarks . 72

4 LYAPUNOV-BASED DEEP REINFORCEMENT LEARNING FOR APPROXI-
MATE OPTIMAL CONTROL . 76

4.1 Background Information . 76
4.2 Deep System Identification . 78

4.2.1 Output-Layer Weight Updates . 78
4.2.2 Inner-Layer Feature Updates . 79

4.3 Control Objective . 79
4.4 Deep Value Function Approximation . 80
4.5 Bellman Error . 82

4.5.1 Bellman Error Extrapolation . 83
4.6 DNN Value Function Update Laws . 84

4.6.1 Actor-Critic Output-Layer Weight Updates 84
4.6.2 Inner-Layer Feature Updates . 84

4.7 Stability Analysis . 85
4.8 Simulation Example . 87
4.9 Concluding Remarks . 89

5 LYAPUNOV-BASED ADAPTIVE DEEP LEARNING FOR APPROXIMATE DY-
NAMIC PROGRAMMING . 95

5.1 Background DNN Information . 95
5.2 Problem Formulation . 96
5.3 System Identification . 97

5.3.1 Dynamics Estimate . 98
5.3.2 Adaptation Laws . 99
5.3.3 Stability Analysis . 101

5.4 Approximate Optimal Control . 104
5.4.1 Value Function Approximation . 104
5.4.2 Bellman Error . 105
5.4.3 Update Laws for Actor and Critic Weights 107

5.5 Stability Analysis . 108
5.6 Simulations . 109
5.7 Concluding Remarks . 111

6 CONCLUSION . 114

REFERENCES . 118

BIOGRAPHICAL SKETCH . 129

6

LIST OF TABLES

Table page

2-1 Simulation Performance Metrics . 59

5-1 Performance Comparison . 112

7

LIST OF FIGURES

Figure page

1-1 Actor-critic-identifier framework . 30

1-2 Diagram of ADP-based literature review results 43

2-1 The high-level logic in the hierarchical supervisory control architecture con-
tains the RL-based supervisory agent and the system identifier. The super-
visory agent evaluates the family of V̂ps and outputs the number of the sub-
system with the lowest value function approximation. The system identifier
approximates the uncertain model parameters; these parameter estimates
are used to update the actor and critic weight estimates. Each ADP controller
contains a different cost function, and the objective is to minimize each sub-
system’s respective cost-to-go. Together, the high-level logic and low-level
controllers select the control input with the lowest approximated cost-to-go.
The selected controller in (2–12) is applied to the dynamical system in (2–1).
Then history stack data is provided to the high-level system identifier, the new
state is provided to the low-level ADP controllers, and the policy in (2–12) is
evaluated again. 57

2-2 State trajectory for the two-state system while using the HRL controller. The
black dashed lines represent the time at which the system switches to the
controller with the lowest-valued approximate cost-to-go. 58

2-3 Comparison of the state convergence of three controllers and one HRL
switching controller. The state ∥x∥ converges in less time while using the de-
veloped HRL controller in comparison to controllers 1-3. 58

3-1 Simulation example where the pursuer is initialized in the bottom-right (blue
circle with white plus), the goal region is to the left of the pursuer (orange cir-
cle), and the evader is initialized in the top-left (orange circle with white plus).
The pursuer trajectory and evader trajectory over the experiment are shown
in blue and orange, respectively. Simulation shows evader initially flees to-
wards top-left; however, the pursuer approximates the interaction dynamics
and optimal policy in real-time and quickly escorts the evader to the goal region. 74

3-2 Function approximation where the true values are shown in solid lines and
the estimated values are shown in dashed lines. The ICL-DNN estimates
quickly converged near the true values using the data collected online. The
left figure shows the ICL-DNN approximation and right figure shows the ICL-
SNN approximation demonstrating that the ICL-DNN outperforms the ICL-SNN. 75

3-3 The evader tracking error steadily decays after the evader initially flees. The
auxiliary errors also converge to a small radius of the goal. 75

8

4-1 Function approximation of the dynamics with the DNN system identifier. The
solid lines represent the true values of the dynamics and the dashed lines
represent the DNN approximation of the dynamics 90

4-2 Simulation example showing the positions of the pursuing agent, the evad-
ing agent, and the goal location. The trajectories for each agent are shown
in their respective colors. The simulation shows the pursuing agent escorting
the evading agent to the goal location at four different instances in time dur-
ing the simulation. 91

4-3 Comparative plots of the BE convergence for the baseline method (TOP)
compared to the developed deep value function approximation (BOTTOM).
The developed deep value function approximation method achieved signifi-
cantly better BE. 92

4-4 Comparative plots of the norm of the state error convergence x for the base-
line method (TOP) compared to the developed deep value function approxi-
mation (BOTTOM). Both methods resulted in similar mean norm error. 93

4-5 Comparative plots of the norm of the input for the baseline method (TOP)
compared to the developed deep value function approximation (BOTTOM).
Both methods resulted in similar mean norm input. 94

5-1 Comparative plots of the regulation error norms ∥x∥ for the developed
method consisting of adaptive updates of all the DNN layers compared to the
previous method consisting of multi-timescale updates of the DNN. 112

5-2 Comparative plots of the RMS function approximation error norm∥∥∥f(x)− Φ
(
X, θ̂

)∥∥∥ for the developed method consisting of adaptive updates
of all the DNN layers compared to the previous method consisting of multi-
timescale updates of the DNN. 113

5-3 Comparative plots of the control input ∥u∥ for the developed method con-
sisting of adaptive updates of all the DNN layers compared to the previous
method consisting of multi-timescale updates of the DNN. 113

9

LIST OF ABBREVIATIONS

ADP Approximate Dynamic Programming

AQL Approximate Q-Learning

BE Bellman Error

CL Concurrent Learning

DNN Deep Neural Network

HDP Heuristic Dynamic Programming

HJB Hamilton-Jacobi-Bellman

HRL Hierarchical Reinforcement Learning

ICL Integral Concurrent Learning

Lb-DNN Lyapunov-based Deep Neural Network

LQR Linear Quadratic Regulator

LQT Linear Quadratic Tracking

NN Neural Network

PD Positive Definite

PE Persistence of Excitation

PSD Positive Semi-Definite

RISE Robust Integral of the Sign of the Error

RL Reinforcement Learning

RMS Root Mean Square

SNN Shallow Neural Network

STaF State Following

UUB Uniformly Ultimately Bounded

10

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

REAL-TIME LEARNING FOR SUBOPTIMAL CONTROL OF UNKNOWN SYSTEMS

By

Wanjiku Aprile Makumi

May 2024

Chair: Warren E. Dixon
Major: Aerospace Engineering

Approximate dynamic programming (ADP) has emerged as a leading method for

solving optimal control problems using reinforcement learning (RL) with many benefits

and also many open research problems. Model-based methods allow for off-trajectory

learning, but they require exact model knowledge. When exact model knowledge is not

readily available a priori, approximate models can be used to obtain approximations

of the optimal value function and the optimal control policy. This dissertation focuses

on the intersection of optimality and uncertainty by filling the gaps in the literature

and advancing real-time learning in ADP. Specifically the methods developed in this

dissertation highlight the advancements of approximate optimal control in the presence

of unknown model dynamics with stability guarantees.

Chapter 1 provides an literature overview containing background on RL and RL in

control, actor-critic methods, and ADP. An outline of the dissertation is also provided in

this chapter. The subsequent chapters of this dissertation elaborate on the evolution

of system identification techniques for ADP in the presence of unknown systems for

different problems.

Chapter 2 introduces a hierarchical agent to facilitate switched ADP. The standard

switched ADP result lacks guidance on how/when to switch. This chapter introduces

a framework that uses hierarchical reinforcement learning (HRL) to create a switching

pattern. Previous results contained unsupervised switching, and this chapter provides

11

a method for supervised switching to be used to achieve optimality by using a hierarchy

to optimize a selected performance method. The hierarchical agent selects which

subsystem to switch to based on which subsystem yields the lowest value function

approximation at that time. The control objectives are to minimize the infinite-horizon

cost function of each subsystem and to design a switching rule that yields a lower cost

for switching between subsystems. Uniformly ultimately bounded (UUB) regulation of

the system states to a neighborhood of the origin, and convergence of the approximate

control policy to a neighborhood of the optimal control policy, are proven using a

Lyapunov-based stability and dwell-time analysis. Simulation results are presented to

show that implementing the developed HRL controller yields a total cost of 37% less

than the total cost of implementing one ADP sub-controller and an improved rise time.

Chapter 3 introduces a deep system identification approach to the classical pursuit-

evasion herding game. This chapter develops an approximate optimal policy for a pur-

suing agent to indirectly regulate an evading agent coupled by an unknown interaction

dynamic. ADP is used to design a controller for the pursuing agent to optimally influence

the evading agent to a goal location. Since the interaction dynamic between the agents

is unknown, integral concurrent learning (ICL) is used to update a Lyapunov-based deep

neural network (Lb-DNN) to facilitate sustained learning and system identification. The

integral data collected online is used to update the output-layer weights and optimize

the inner-layer features of the Lb-DNN in a new ICL-based deep learning technique.

The contribution of this chapter lies in the fact that this is the first time ICL has been

used in a DNN system identifier framework. The deep learning and approximate optimal

architecture is informed by a Lyapunov-based analysis that ensures UUB convergence

of the states as well as estimation of the control policy to within a neighborhood of the

optimal control policy. The simulation shows that the pursuer is able to intercept and

regulate the evader towards the desired goal location and that the Lb-DNN system

identifier outperforms the shallow NN system identifier.

12

Chapter 4 uses DNNs to facilitate function approximation through multiple parts

of the ADP process. Within the context of ADP, a DNN has been used for online

system identification; however, a DNN has not been used for online value function

approximation. The standard actor-critic framework in ADP uses a single neural network

(NN) to approximate the optimal value function. This chapter presents the first method

of using a DNN to improve the value function approximation, and thus improving the

optimal control policy approximation, with real-time adaptation. Two separate DNNs are

used for simultaneous online value function approximation and system identification.

A Lyapunov-based stability analysis that accounts for piecewise-in-time continuous

dynamics is used to show UUB states and derive the analytical adaptation law for the

outer layer weights of the Lb-DNN. The presented simulation results show that the deep

value function approximation method results in 95.04% improvement in BE minimization

and 5.06% faster convergence.

In Chapter 5, an adaptive DNN-based system identifier is developed to update the

dynamics fully online. This dissertation presents the first ADP result with Lyapunov-

based real-time weight adaptation laws for each layer of the DNN, with stability guar-

antees. A robust integral of the sign of the error (RISE)-based dynamics observer is

developed to provide a secondary estimate of the dynamics. The difference between

the two estimates is calculated as an identification error which is used to develop a

least squares adaptive update law. The least squares adaptation law is used with a

bounded gain forgetting factor to update the weights of all layers of the DNN. UUB

convergence of the DNN weight estimation error, provided the Jacobian of the DNN

satisfies the persistence of excitation (PE) condition, is shown via a Lyapunov-based

stability analysis. Simulation results show that the Lb-DNN yields 65.73% improved root

mean square RMS regulation error, 31.82% improved RMS controller error, and 78.97%

improved RMS function approximation error in comparison to the previously developed

multi-timescale DNN.

13

Chapter 6 concludes the dissertation by highlighting the contributions of each

chapter. Additionally, future extensions of the work in this dissertation are proposed in

this chapter.

14

CHAPTER 1
INTRODUCTION

1.1 Literature Review

1.1.1 Reinforcement Learning

RL is a framework in which an agent (or controller) learns behavior via feedback

from interacting with its environment. An agent learns behaviors through trial and

error interactions with its environment, based on “reinforcement” signals from the

environment. Over the past few decades, the potential of RL has motivated researchers

in machine learning, intelligent systems, and artificial intelligence communities [1].

In a general RL model, an agent interacts with its environment by taking actions.

Each interaction typically proceeds as follows: the agent receives inputs that indicate the

state of the environment, and then the agent selects and takes an action. After taking

an action in some state, the agent receives a scalar reward from the environment, which

gives the agent an indication of the quality of that action. This action changes the state

of the environment, transitioning it to a “better” or a “worse” state which is interpreted

by the agent by either a reward or a penalty from the environment. The amount of the

reward/penalty has the effect of a reinforcement signal to the agent. The function that

indicates the action to take in a certain state is called the policy. The agent aims to find

a policy that maximizes the total accumulated reward, also called the return, through a

trial and error learning process. The function representing this estimated return is known

as the value function. The value function allows the agent to make indirect use of past

experiences to decide on future actions to take.

RL can be formulated as the process of bringing the current policy estimate and

the corresponding value function estimate closer to the optimal policy and the optimal

value function. The two components that ususally make up RL consist of estimating the

value function based on the current policy and improving the policy by making it greedy

with respect to the current estimate of the value function. Improving the policy greedily

15

means selecting the actions where the value function shows the highest expected

return. This general process facilitates learning via reinforcement; see [2–15].

RL is thought of as a third machine learning paradigm, alongside supervised

learning and unsupervised learning [16]. RL differs from supervised and unsupervised

learning mainly in the kind of feedback received from the environment. In supervised

learning, labeled input and output datasets are used to train/supervise learning where

the model can measure its accuracy and learn overtime. In unsupervised learning,

underlying hidden structures and patterns are sought out in collections of unlabeled data

without any assistance or supervision. In RL, on the other hand, the agent only receives

a more general, composite reward/punishment signal, and learns from this using an

operating principle of increasing the amount of reward it receives over time [1].

1.1.2 Reinforcement Learning for Control

RL enables a cognitive agent to learn desirable behavior from interactions with its

environment. In control theory, the desirable behavior is typically quantified using a cost

function, and the control problem is formulated as the desire to find the optimal policy

that minimizes a cumulative cost. RL techniques were first used for control systems

in [17–19].

In [20], Richard Bellman first introduced dynamic programming to study multistage

decision processess. He defined the concept of a policy as a rule that determines the

optimal decision/control. Dynamic programming-based methods use a state value

function or an action value function. The state value function is the expected reward

from starting from a certain state under a certain policy. The action value function, or

Q-function, is the expected reward from starting from a state and performing certain

actions. The Q-function assigns each state-action pair a value, which is the total optimal

cost when the action is performed in the state and the optimal policy is followed.

Dynamic programming is made up of two methods, policy evaluation and policy

improvement, and was first introduced in the following probabalistic formulation. Policy

16

evaluation, which can also be thought of as policy prediction, finds the value function for

a given arbitrary policy. An initial condition is arbitrarily selected, and then the Bellman

equation is used as an update rule for the following approximations. Policy improvement

constructs a new policy that greedily improves the policy. The combination of policy

evaluation and policy improvement is called generalized policy iteration. In generalized

policy iteration, starting with a random policy, the value function is evaluated, and then

the policy is greedily improved, and then a new value function is evaluated, and then the

policy is greedily improved again alternating until the unique optimal policy is found. In

generalized policy iteration the cost of the control is not completely evaluated at each

step, instead only the current cost estimate towards that value is updated. The control

policy is not fully updated to the greedy policy for the new cost estimate, but the policy is

only updated towards the greedy policy. Most dynamic programming-based approximate

optimal control methods consist of generalized policy iteration [16, 21–24]. The policy

iteration algorithm was first developed by Bellman in [20], and then a policy improvement

theorem was provided in [25] for Markov processes.

In continuous time, the policy evaluation step aims to find a solution to the general-

ized Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation is the continous-time

counterpart of the Bellman equation for discrete-time systems. The HJB equation is first

introduced in [26] for a fixed policy. The policy improvement step aims to improve the

policy by solving the minimization problem for a fixed value function.

Some disadvantages of policy iteration are that each of its iterations involves policy

evaluation which requires multiple sweeps through the state set while only reaching

convergence at the limit and that an initial admissable policy is required. Through a

method called value iteration, policy evaluation is shortened as it is stopped after just

one sweep (one update of each state) [16]. In other words, there is no need to wait

for the policy to converge. Value iteration is a generalized policy iteration algorithm

for discrete-time systems. Value iteration uses Bellman’s recurrence relation, which is

17

the discrete time counterpart of the HJB equation, as an update rule, similar to policy

iteration. Also, the initialization is not required to be a Lyapunov function or a value

function corresponding to an admissible policy. Therefore, value iteration does not

require an initial admissible policy like policy iteration.

The applicability of classical dynamic programming techniques like policy iteration

and value iteration is limited by the curse of dimensionality and the need for model

knowledge. In results like [27–31], the need for model knowledge is circumvented

by developing a policy iteration algorithm that converges to the optimal solution of

the discrete-time linear quadratic regulator (LQR) problem using Q functions, which

is known as Q-learning. Q-learning is a technique to compute the optimal policy

and the associated value function based on state and input observations without

model knowledge. Watkins introduced this technique in his thesis [32] and provided a

complete convergence proof in [33] which was the first convergence result for dynamic

programming-based RL for a continuous system.

Q-learning was first only applied to the LQR problem because of additional com-

plexities associated with computing the feedforward term in the linear quadratic tracking

(LQT) problem. An online model-free solution is developed in [28] using a reinforcement

Q-learning algorithm to the infinite-horizon LQT for discrete-time systems. Results such

as [29] and [30] use Q-learning for continuous linear systems. One of the disadvantages

of Q-learning is that the learning process is expensive for the agent since every state-

action pair needs to be visited frequently to get convergence. Q-learning is classified as

an online value iteration method. Advantage updating was proposed as an extension of

the Q-learning algorithm [31]. Advantage updating does not require a model to be given

or learned. It can be implemented in continuous-time and provides faster convergence,

but there are no stability results.

18

1.1.3 Approximate Optimal Control

In classic optimal control, if full state knowledge is assumed and if the system

dynamics are modeled by linear dynamics and the cost functional is quadratic in the

state and control, then the optimal control problem can be solved through Riccati

equations. If the system is modeled with nonlinear dynamics or the cost functional is not

quadratic, then the optimal control problem depends on solving the HJB equation. Since

it is difficult to find an analytical solution to the HJB equation, classical optimal control

techniques are of limited use for nonlinear systems, and there have been many research

aims dedicated to approximating the HJB equation.

Open-loop solutions for approximating the HJB equation are presented in [34–38].

In [34], the problem is reduced to a two-point boundary-value problem which can be

solved by various methods. In [35], the authors reduce the optimal bilinear control prob-

lem to successive iterations of a sequence of Riccati equations, and in [36] the same

problem is further reduced to successive approximations of a sequence of Lyapunov

equations. In [37], the authors reduce the bilinear control problem to a sequence of

linear control problems that converge uniformly to the optimal bilinear control. In [38],

the nonlinear optimal control problem is cast in the form of a nonlinear programming

problem. In this method, the point that solves the nonlinear programming problem is the

optimal path of the system. Unfortunately, open-loop control is undesirable for practical

systems because it lacks feedback of the system. Closed-loop approximations of the

HJB equation have resulted in several promising approaches.

The authors in [39–42] present a perturbation method. Perturbation methods

assume that the nonlinear system is a perturbation of a linear system. The optimal cost

and control are assumed to be analytic and are expanded in a Taylor series. These

papers employ various techniques to find the first few terms in the series. The first term

is the solution of the matrix Riccati equation resulting from linearizing the system about

the origin. The next term is a third-order approximation to the control and can also be

19

expressed as matrix equations. The process usually terminates after the first two terms

since the higher-order terms need the solution of a linear partial differential equation.

The theory of viscous solutions is another method for approximate optimal control.

Normally, the solution to the HJB needs to be differentiable over the domain of interest

for it to be defined in a classical sense. For the theory of viscosity solutions, a contin-

uous function can be defined as the unique solution to the HJB equations that do not

admit continuous solutions. The viscosity solution to the HJB equation equals the value

function of the associated optimal control problem. Therefore, the viscosity solution and

the classical solution are identical if the solution of the HJB equation is differentiable.

Other numerically approximated viscous solutions including finite difference and

finite element approaches have since been investigated. In [43], a discrete approxi-

mation to the continuous-time, deterministic optimal control problem is analyzed. The

approximate solutions are interpreted as value functions of discrete time control so

that a minimizing sequence of constant contols can be constructed. The basic idea is

to approximate the system equations by an Euler formula. Then the discrete dynamic

programming problem is solved. The result in [44] shows improved convergence using a

Runge-Kutta formula instead of Euler’s method to approximate the system dynamic.

Using a finite-element method, [45] looks at stationary systems and uses an

algorithm for finite-time problems with continuous and impulse control. Following the

previous work in [46], the non-stationary case is considered. A similar approach is

considered for infinite-time horizon problems in [47] where the HJB is solved via the

viscosity solution related to the infinite horizon deterministic control problem. The

method converges to the viscosity solution and presents the error estimates for the

convergence of the algorithm.

The main disadvantage of both finite-element and finite-difference methods is that

they require a discretization of the state space. Discretization is problematic because

20

of the computational burden and a large amount of data is required to be stored and

recalled in real-time for feedback control, i.e. Bellman’s curse of dimensionality.

To avoid discretizing the state space, Galerkin’s spectral method (projection) was

developed. Previously, successful application of the policy iteration method was limited

for nonlinear systems. Galerkin’s spectral method uses Galerkin’s spectral approxi-

mation methods to solve the nonlinear Lyapunov equations for the policy evaluation

step in the policy iteration algorithm. The curse of dimensionality does not disappear

completely, as it shows up as weighted averages of the dynamics over a compact set,

but this creates more possible solutions for dealing with the dimensionality issues.

Galerkin’s spectral method is used to approximate the generalized HJB equation, and

the generalized HJB equation is used to approximate the HJB equation. The resulting

control is in feedback form and stabilizes the closed-loop system. The authors in [48]

build on the previous result by combining successive approximation and Galerkin ap-

proximation methods to develop closed-loop control laws with well-defined stability

regions. In [49] the authors use successive approximation to reduce the HJB equation

to a sequence of linear partial differential equations; then Galerkin’s spectral method is

used to approximate them.

Approximate Q-learning (AQL) for nonlinear continuous systems is presented in

results such as [50–52]. In [50] the steepest descent Q-learning algorithm to obtain

the optimal approximation of the Hamiltonian is implemented. A convex optimization

problem that characterizes the best approximation of the Q-function within a given

class is formulated; however, closed-loop stability of the developed controller is not

analyzed. The experimental results in [51] show that the AQL method performs better

than the conventional Q-learning method. AQL is used because of its ability to solve the

nonlinear optimal control problem when model knowledge of the plant is unavailable.

21

As a result of function approximation errors, the AQL algorithms can just give a near-

optimal solution, and [52] includes a quantitative analysis result of the the error bound

between the optimal cost and the actual cost.

Another method, which will be the focus of the rest of this document, is approximate

dynamic programming (ADP) which is essentially a juxtaposition of RL and dynamic

programming ideas [1]. ADP is an approach to balance computational demands with

optimal decision-making. An optimal policy is obtained by solving the HJB equation, but

since the solution to the HJB is intractable in general, actor-critic-based RL methods can

be used to approximate the value function and the optimal controller.

1.1.4 Actor-Critic Methodology

Before discussing ADP, the necessary actor-critic-based RL methods must be

defined. Several classes of RL algorithms include actor-only, critic-only, and actor-critic

methods. The methods that learn approximations of both the policy and the value

function are referred to as actor-critic methods. In these methods, the actor references

the learned policy and the critic references the learned value function.

The actor-only methods use optimization procedures on a parameterized family of

policies. The methods are advantageous because a spectrum of the continous actions

can be generated. However, usually policy gradient optimization methods are used

and these suffer from high variance in the estimates of the gradient which results in

slow learning [53]. In policy gradient (actor-only) methods, instead of approximating

the value function, the policy is directly approximated by computing the gradient of the

cost functional with respect to the unknown parameters in the approximation of the

policy [54–56]. Both policy iteration and value iteration are typically critic-only methods

and can be considered as special cases of generalized policy iteration [16]. The

critic-only methods use temporal difference learning and have a lower variance in the

estimates of expected returns [57]. Critic methods learn the policy by selecting greedy

actions. Therefore, actions are selected where the value function shows the highest

22

expected return. The actor-critic methods, which are modern policy gradient methods,

use an approximation of the value function to estimate the gradients. These methods

are helpful for implementing generalized policy iteration algorithms because they

combine the benefits of the actor-only and critic-only. The actor supplies the advantage

of continuous actions without needing to implement optimization procedures on a value

function, and the critic allows for the actor to update with gradients that have lower

variance via its estimate of the expected return leading to faster learning. Additionally,

the combined actor-critic methods usually have better convergence properties than

critic-only methods [53].

The idea of learning with a critic first appeared in [58, 59] where the state-space

was partitioned to make the computations tractable. Further development of critic based

methods to learn optimal actions in sequential decision problems appears in [60–62].

Actor-critic methods initiated in [63] for systems with finite state and action-spaces,

and in [64] for systems with continuous state and action-spaces using neural networks

(NNs) to implement the actor and the critic. For deterministic systems, the analysis of

the actor-critic convergence properties can be found in [65] and [66]. For stochastic

systems, they can be found in [53].

The iterative nature of actor-critic methods makes them particularly suitable for

offline computation and for discrete-time systems, which is why RL has been mostly

constrained to problems where discrete actions are taken in discrete time steps based

on the observation of the discrete state of the system. The drawbacks of discretization

are that the control output is not smooth which can result in poor performance, the

number of states and the number of iteration steps can become very large which

requires a large memory storage and many learning trials, and in order to keep the

number of states manageable, an elaborate partitioning of the variables has to be found

using prior knowledge. Research motivated by these shortcomings eventually extended

the concept of ADP to apply actor-critic methods online to continuous-time systems.

23

Some benefits of a continuous framework are that a smooth control performance

can be achieved, an efficient control policy can be derived using the gradient of the

value function, and the function approximation and numerical integration algorithms

determine how to partition the state, action and time. For nonlinear continuous-time

systems, the HJB equation is used since it is the continous-time counterpart of the

Bellman equation.

A continuous-time formulation of actor-critic methods was first developed by

Doya in [67] which is one of the first papers to use RL for continuous-time dynamical

systems without a priori discretization of time, state, and action. A set of RL algorithms

is proposed for nonlinear dynamical systems based on the HJB equation for infinite-

horizon discounted reward problems. Algorithms are derived for estimating value

functions and for improving polices with the use of function approximators.

First, the authors determine methods for learning the value function by minimizing

a continuous-time form of the temporal difference error or the Bellman error (BE). Then

the continuous actor-critic method and a value gradient based policy are formulated

to improve the policy using the value function. In [67], the value function and the

optimal policy do not depend explicitly on time, which is convenient for using function

approximators to estimate them. The actor and the critic weights are tuned continuously

using an adaptive update law. The developed algorithms can be used to simultaneously

learn and utilize an approximate optimal feedback controller in real-time for nonlinear

systems; however there are no stability or convergence results stated.

Convergence properties of actor-critic methods for continuous-time systems where

both the networks are tuned simultaneously are examined in [68], and a Lyapunov-

based analysis that examines both convergence and stability properties of an online

implementation of the actor-critic method is developed in [69]. The standard actor-critic

fomulation discussed next is based on the algorithms in [67] and the analysis techniques

in [69].

24

ADP uses NNs to approximately solve dynamic programming forward-in-time,

therefore avoiding the curse of dimensionality. The value function can be approximated

using the Stone-Weierstrass Theorem to approximate a function with a single layer

NN. The value function can be represented as an NN with a user-defined vector of

basis functions, an ideal weight vector, and a function approximation error. The function

approximation error can be made arbitrarily small by increasing the number of basis

functions. Approximate policy iteration is model-free and estimates the weights with

the critic weight. Approximate generalized policy iteration is model-based and the

minimization occurs over a specific trajectory as opposed to the whole state space in

model-free [70, 71]. Unfortunately, these algorithms cannot generally be shown to be

stabilizing, and therefore are not well-suited for online optimal feedback control and

learning. The two-network actor-critic framework is utilized to overcome this by ensuring

stability of the system during learning.

The optimal value function is replaced with a parametric estimate resulting in the

NN representation, and the optimal control policy is replaced with a parametric estimate

resulting in the NN representation. Both sets of weights are used to estimate the same

set of ideal weights. The accuracy of the actor and critic estimates to their ideal weight

values is measured by the BE. The BE is zero without approximation; hence, it is a

measure of the suboptimality. Therefore, the goal is to minimize the BE.

1.1.5 Approximate Dynamic Programming

Werbos proposed ADP as an effective adaptive learning control approach to solve

optimal control problems forward-in-time [19]. Werbos defined actor-critic online learning

algorithms to solve the optimal control problem based value iteration, which does not

require an initial stabilizing control policy [17, 72]. He defined a family of value iteration

algorithms, which he termed ADP algorithms, where he used a critic NN for value

function approximation and an actor NN for approximation of the control policy. ADP

25

combines the advantages of the learning algorithms previously discussed in this review

and can be implemented in discrete-time or continuous-time.

Solving the discrete-time HJB equation is more difficult than solving the discrete-

time Riccati equation that is used for linear systems because it involves solving non-

linear partial differential equations. Several results have used dynamic programming-

based techniques and NNs to investigate solving the discrete-time nonlinear optimal

control problem such as [73, 74]. Heuristic dynamic programming (HDP) techniques

were utilized by [73] to develop an iteration-based solution to the HJB, and it was shown

that the algorithm converges to the optimal control policy and the optimal value func-

tion that solves the HJB equation. Two NNs are utilized in the implementation of this

algorithm to learn the optimal control policy and to learn the optimal cost function. The

reconstruction errors of the NNs are ignored, and the internal dynamics are considered

unknown whereas the control coefficient matrix has to be known. An iterative solution

to the generalized HJB equation is proposed in [74] and a nearly optimal state feedback

control law for affine nonlinear discrete-time systems is derived. The complete dynamics

of the affine nonlinear system are assumed to be known. A single NN is utilized to learn

the cost function while, again, the NN reconstruction errors are considered negligi-

ble. Due to the assumption that there are no NN reconstruction errors, it is unlikely to

continue to grow as a research thread where other threads are more applicable.

To implement ADP on discrete-time systems, partial knowledge of the system

dynamics must be known, in addition to the value of the controlled plant one step ahead.

Since it can be challenging to obtain partial knowledge of the system dynamics, [75]

developed an approach where the need for partial knowledge of the system is relaxed.

The authors develop a NN system identification scheme to learn the system dynamics

online. The NN system identification is achieved by asserting that the reconstruction

errors lie within a small-gain type norm bounded conic sector. The identification errors

are proven to converge to zero asymptotically even with the NN reconstruction error.

26

Furthermore, ADP training takes place offline using the learned NN model to yield the

optimal control law. The iterative NN system identification scheme is shown to converge

to the optimal solution. Therefore, there is no requirement of explicit knowledge of

the system dynamics because an online learned NN model is utilized for the offline

ADP training. While intriguing, these results lack a stability analysis for guaranteed

performance and cannot be applied to a patient population.

More discrete-time results include [76–79]. In [76], multilayer NNs are used to

design an optimal tracking neuro-controller for discrete-time nonlinear dynamic systems,

and generalized back-propogation through time is used to solve a finite horizon tracking

problem with offline training of NNs. Multiple results [77–79] investigate greedy HDP

based algorithms to transform nonautonomous systems into autonomous systems to

achieve approximate convergence of the value function to the optimal value function. In

[77], the optimal tracking controller is composed of two sub-controllers: the feedforward

controller and the feedback controller. The feedforward controller is designed by an

implicit function theorem, while the feedback controller uses the greedy globalized HDP

iteration algorithm. Three NNs are used to facilitate the implementation; the model

network, the critic network, and the actor network. In [78], an iterative ADP algorithm

to design a finite-horizon near-optimal tracking controller is developed for a class of

discrete-time nonlinear systems. The ADP via HDP technique is introduced to solve for

the optimal tracking controller that gets the cost function within an ε error bound of the

optimal value. The result in [79] is one of the first results to solve the optimal tracking

control problem with ADP, specifically by the HDP iteration algorithm. The optimal

tracking problem is transformed into an optimal regulation problem which then uses the

greedy HDP iteration algorithm to assess the convergence of the regulation problem.

The common problem with these discrete-time system approaches is the lack of an

accompanying stability analysis.

27

In contrast to the previous results, [80] develops a time-based optimal controller

design for affine nonlinear discrete-time systems without using value and policy iteration.

Therefore, a closed-loop stability analysis is introduced which is not possible with value

and policy iteration-based ADP methods. The framework learns the HJB equation and

the optimal control policy online and forward-in-time using NNs. Real-time control is

introduced where the cost function and the control policy are updated with respect to

time at each sampling instance.

ADP approximation techniques are used on continuous-time systems in [81]

and [82] to address the tracking problem. In these results, the value function and

controller are time-varying functions of the tracking error. The authors in [82] develop

a single online approximator (SOLA)-based framework to learn the HJB equation and

optimal control input online and forward-in-time in comparison to [81] where two online

approximators are used. The boundedness of the system states and the success of

the optimal cost\HJB function and control input are ensured by an online parameter

tuning law thoughout the learning process. An initial stabilizing control is not required for

stability such as in the previous result in [81]. In [82], the optimal regulation and tracking

control of affine nonlinear continuous-time systems with known dynamics is achieved

using a SOLA-based scheme. The SOLA-based adaptive approach is designed to learn

the infinite horizon continuous time HJB equation and its corresponding optimal control

input.

The authors in [83] proposed a new formulation of the proportional algorithm which

converges to the optimal control solution without using internal dynamics of the system.

Furthermore, [70] extends the result in [83] to nonlinear continuous-time systems where

the knowledge of the input-to-state dynamics is still required. The algorithms used in

these results were based on sequential updates of the critic and actor NNs. For the

implementation of these NNs, while one is tuned, the other remains constant. These

ADP methods still cannot be applied directly to unknown general nonlinear systems.

28

Motivated by the previous results, [84] is the one of the first papers to apply the

ADP method to the continuous-time optimal control tracking problem with unknown

general nonlinear dynamics. In [84], a data-driven model based on a recurrent NN

is proposed to reconstruct the unknown system dynamics. Input-output data is used

so that knowledge of known nonlinear dynamics is not required. The authors add an

adjustable term related to the modeling error to the data-driven model. The adjustable

term guarantees that the modeling error will converge to zero. The input-output data-

driven model is used to design the controller. The controller in [84] consists of the

steady-state controller, the optimal feedback controller, and a robustifying term. The

goal of the steady-state controller is to achieve the desired tracking performance at the

steady-state stage. The goal of the optimal feedback controller is to stabilize the state

tracking error dynamics at the transient stage in an optimal way. The critic and actor

NNs are updated simultaneously as opposed to sequentially in most existing literature at

the time. While both of these results have contributions, time does not live on a compact

set for the infinite horizon optimal control problem. Therefore, it is not explained how the

NNs can approximate the time-varying value function and controller since the tracking

error is an input.

Also, inspired by the previous results in [83] and [70] synchronous update laws

for actor and critic were first introduced in [69] as synchronous policy iteration. Syn-

chronous policy iteration is an online adaptive algorithm which involves simultaneous

tuning of both actor and critic NNs and an extremal version of the generalized policy

iteration introduced in [16] where the algorithm learns the optimal solution to the HJB

equation online in real-time. The method in [69] requires complete system model knowl-

edge. Also, [69] introduces a nonstandard ’normalized’ critic NN tuning algorithm, along

with guarantees for its convergence based on a persistence of excitation (PE) condi-

tion, and adds nonstandard extra terms to the actor NN tuning algorithm to guarantee

closed-loop stability.

29

Motivated by the work in [69], [85] proposes an actor–critic–identifier to approxi-

mately solve the continuous-time infinite horizon optimal control problem for uncertain

nonlinear systems. A continuous-time control-affine nonlinear dynamical system is

considered in the following. The difference from [69] is that knowledge of the system

drift dynamics is not required. The actor-critic-identifier framework, seen in Figure

1-1, is composed of the actor and critic NNs to approximate the optimal controller

and optimal value function respectively and an identifier dynamic NN to estimate the

system dynamics online. Learning of the actor, critic, and identifier is simultaneous

and continuous. The result in [85] is the first indirect adaptive control approach to RL

where an identification-based online learning scheme is applied. The actor NN uses a

gradient-based update law, the critic NN uses a least-squares-based update law, and

the identifier dynamic NN uses a combination of a Hopfield-type component [86] with a

robust integral of sign of the error (RISE) component [87]. Uniformly Ultimately Bounded

(UUB) stability of the closed-loop system is guaranteed with the use of a PE condition

as well as exponential convergence to the neighborhood of the optimal control. The

diagram in Figure 1-1 contains the framework used in [85].

Figure 1-1. Actor-critic-identifier framework

30

In [88], a new controller is developed for ADP tracking problems for continuous-

time nonlinear systems. In trajectory tracking problems, the value function explicitly

depends on time. The tracking error and the desired trajectory both serve as inputs

to the NN. A different HJB equation is required to be solved where its solution is a

time-varying function of the tracking error. The partial derivative of the value function

with respect to the desired trajectory is included in the HJB equation. The technical

challenges that come with a time-varying optimal control problem are highlighted in [88].

The problem must be converted so that value function is a time-invariant function of

the transformed states allowing the value function to be approximated using a NN.

The problem must be reformulated as a stationary optimal control problem so that the

time invariant value function can be approximated using the NN function approximation

techniques. The time-invariant optimal value function can be interpreted as a time-

varying map [88, Lemma 1.] is used to prove that it is positive definite and decrescent

and therefore can be used as a candidate Lyapunov function. To transform the time-

varying optimal control problem into a time-invariant optimal control problem, a new

concatenated state is defined consisting of the tracking error and the desired trajectory.

The value function (critic) weights are updated to minimize the BE using a normalized

least squared update law, and the policy (actor) weights are updated to track the critic

weights. The drawbacks of this result, are that PE is required and the dynamics must be

known.

Convergence of the parameter estimates to a neighborhood of their ideal values is

required to achieve convergence of the RL-based controller to a neighborhood of the

optimal controller. Gradient descent-based and least squares update laws generally

require PE in the system to attain parameter convergence, yet it is impossible to

guarantee PE a priori. The unknown value function parameter estimates are updated

based on evaluation of the BE along the system trajectory. Subsequent challenges

are that the system states need to be persistently excited, and the BE needs to be

31

evaluated over enough points in the state space to result in a good approximation.

Sufficient exploration in a neighborhood around the desired trajectory is necessary so

that information around the desired trajectory can be used to learn the value function.

For the stochastic systems in [16,50,53], a randomized stationary policy is used. For the

deterministic systems in [69, 75, 85, 89], a probing noise is added to the derived control

law. Other results in [28, 90, 91] add an exploration signal to the control input to ensure

sufficient exploration in the desired region of the state space. However, for nonlinear

systems there are no analytical methods to compute the appropriate exploration signal,

and the exploration signal is not included in the stability analysis.

For the BE to measure the quality of the value function estimate, it needs to be

evaluated along the system trajectories. Similarly, state derivative estimators can only

estimate the state derivative along the system trajectories. In [92], the aforementioned

challenges are addressed for an infinite horizon optimal regulation problem on a

nonlinear, control affine plant with linear in the parameters uncertainties in the drift

dynamics by observing that if the system dynamics are known, the BE can be computed

at any desired point in the state space. Therefore, unknown parameters in the value

function can be adjusted using least squares minimization of the BE evaluated at

arbitrary points in the state space. The results of [92] indicate that convergence of the

unknown parameters in the value function is guaranteed provided the selected points

satisfy a rank condition that is weaker than the PE condition. Sufficient exploration

can be achieved based on appropriate selection of the points in the state space. If the

system dynamics are partially unknown, an estimate of the system dynamics can be

used for the BE to be evaluated at any desired point in the state space.

The aforementioned method, called BE extrapolation, is used to facilitate simulation

of experience, since a model is used to evaluate the BE at unexplored points in the state

space and is gaining experience from exploration. Simulation of experience has been

investigated in results such as [4,15] for stochastic model-based RL, but these problems

32

are solved offline and system stability during the learning phase is not analyzed. In [92],

a concurrent learning (CL)-based parameter estimator is developed to exponentially

identify the unknown parameters in the system model, and the parameter estimates are

used to compute an approximation to the BE. The unknown parameters in the value

function are updated based on the approximate BE. UUB regulation of the system states

to a neighborhood of the origin, UUB convergence of the parameter estimates, and

UUB convergence of the developed policy to the optimal policy, is established using a

Lyapunov-based analysis.

The authors combine the results in [88] and [92] to provide an approximate online

adaptive solution to the infinite-horizon optimal tracking problem for control-affine

continuous-time nonlinear systems with unknown drift dynamics using model-based

RL with a CL-based system identifier to simulate experience in [93]. As mentioned

previously, the trajectory tracking result in [88] requires exact model knowledge. Since

the optimal tracking problem requires knowledge of the steady-state controller, the

extension to uncertain systems presents technical challenges because obtaining a good

estimate of the desired steady-state controller and using the estimation error in the

stability analysis are quite complex. In [93], the authors use the technique developed

in [92] to obtain an estimate of the steady-state controller using CL-based system

identifiers. Since the use of an estimate in place of the true steady-state controller

results in additional approximation errors that could threaten the stability during the

learning phase, [93] analyzes the stability of the closed-loop system. The error between

the actual steady-state controller and the estimate is included in the stability analysis by

examining the trajectories of the concatenated system under the implemented control

signal.

Previous work in [91] shows the PE condition is relaxed to a finite excitation

condition using integral RL along with experience replay, where each evaluation of the

BE is interpreted as gained experience, and these experiences are stored in a history

33

stack and are repeatedly used in the learning algorithm to improve data efficiency.

In, [93] a different approach is used where a dynamic system identifier is developed

to generate a parametric estimate of the drift dynamics. Therefore, experience can

be simulated by extrapolating the BE over unexplored off-trajectory points of the

state space. Optimal policy learning laws can utilize simulated experience along with

experience gained and stored along the state trajectory. The CL-based identifier system

from [92] is used to relax the PE condition and simulate experience by evaluating the BE

over unexplored areas of the state space [94].

1.2 Outline of Dissertation

Chapter 2 leverages supervisory control methods within the ADP framework.

Supervisory control methods provide alternatives to traditional continuously-tuned

adaptive control laws and are useful when traditional control methodologies based on

a single continuous controller do not provide satisfactory performance [95]. Switching

between multiple controllers is orchestrated by a supervisory agent that uses data

obtained to dictate the active control policy at each instance of time [95].

Supervised switching can be used in the context of optimality by using a hierarchy

to optimize a certain performance index. The infinite-horizon value function is a valuable

metric to observe because it provides the cost-to-go of implementing its respective opti-

mal controller [96]. Supervisory control approaches have been used to obtain optimality

in [97–100]. Many results in this field do not consider nonlinear systems because it is

challenging to solve optimal control problems for nonlinear systems. However, recent

advancements in [101–103] have created a framework for approximating optimal control

policies online, and these methods can be integrated into a supervisory control problem.

For unknown systems, i.e., systems that contain unknown parametric uncertainties,

the optimal value function cannot be determined offline; hence, there is a need to

approximate it online. Due to the parametric uncertainties, it is difficult to know which

controller yields the lowest cost for the system. The HRL framework exploits the

34

generalized policy iteration technique introduced in Section 1.1.2 to decide which

controller to select. For multiple different cost functions, policy improvement is used to

calculate an approximate optimal controller, and policy evaluation is used to calculate

a value function approximation. A hierarchical agent is developed that compares the

value function approximation of the several approximately optimal lower-level controllers

as a metric to select which controller should be active in the feedback loop; i.e, the

hierarchical agent selects the controller associated with the least approximated cost-to-

go at each instance in time. Since the system model contains parametric uncertainties,

then an estimate of the system model must be used for BE extrapolation. An integral

concurrent learning (ICL)-based parameter identifier, as in [104], is used in the feedback

loop of the HRL structure with the supervisory agent to identify the unknown drift

dynamics online.

At each instance in time, the HRL closed-loop system continuously switches

between control policies, resulting in a switched system. In general, switched systems

are challenging to analyze due to discontinuities and instantaneous growth of the

Lyapunov function(s) [105]. Switching between multiple stable subsystems can result in

an unstable switched system; hence, a switched systems stability analysis is motivated

[106]. Since optimal value functions are generally distinct between subsystems, and

are a part of the candidate Lyapunov function for each subsystem, a common Lyapunov

function cannot be constructed. Hence, a multiple Lyapunov function-based approach

is motivated. One way to ensure stability using multiple Lyapunov functions is to ensure

that each subsystem remains active a minimum amount of time (i.e., a minimum

dwell-time analysis [105, Ch. 3]) or to establish an upper bound on the number of

switches in any given time interval (i.e., an average dwell-time analysis [105, Ch. 3]).

While a switched ADP technique that uses a minimum dwell-time analysis is available

in [107], the analysis therein assumes that the optimal value function is upper and lower

bounded by quadratic functions. In [107, Assumption 6], a very restrictive bound on

35

the optimal value function in the Lyapunov function is used to facilitate an exponential

result; however, for general nonlinear systems, the assumption cannot be verified. The

Lyapunov-based switched system stability analysis in Chapter 2 relaxes that previous

assumption.

The contribution of Chapter 2 is the development of an HRL-based framework that

uses a hierarchical supervisory control strategy to determine the policy corresponding

to the lowest cost-to-go between lower-level ADP controllers and optimize the corre-

sponding subsystem. The hierarchical framework identifies which controller should be

active at a given time and generates a switching signal indicating the most desirable

switching pattern based on comparing multiple value function estimates. A Lyapunov-

based dwell-time analysis is used to establish stability while relaxing the constraints

and assumptions in [107]. The dwell-time analysis uses a Lyapunov-based stability

theorem that is generally applicable to switched systems where all subsystems can be

shown to be UUB using multiple Lyapunov-like functions. Simulation results show that

implementing the developed HRL controller yields a total cost that is 37% less than the

total cost of implementing one ADP sub-controller and an improved rise time.

Chapter 3 and the result in [108] consider an indirect herding problem where a

pursuing agent is tasked with intercepting and regulating an evading agent to a desired

goal location through an interaction dynamic. Optimal solutions for indirect herding

problems are sought in [109–111] using tools such as dynamic programming and

calculus of variations. Drawbacks of such methods include computational inefficiency,

due to the curse of dimensionality, and the need for known dynamics. ADP can be

used as an alternative approach. The previous ADP indirect herding result in [112]

used a shallow NN (SNN) to approximate the unknown drift dynamics; however, recent

evidence shows that using a deep neural network (DNN) for system identification results

in improved tracking performance [113].

36

Previously, [113] used an Lb-DNN for a control affine system with CL. CL is an

adaptive update scheme that uses input/output data to guarantee parameter con-

vergence without requiring persistent excitation. CL requires estimates of the state

derivatives if the true values are not known or measurable. In Chapter 3, we are gen-

eralizing to a larger class of systems that are not control affine, and not even directly

controlled, by using ICL to remove the need to measure the state derivatives. In existing

literature, DNNs have never been used within an ICL-based system identification tech-

nique. The result in [112] used ICL solely for the output weights in an SNN, but now we

develop a framework that uses the integral data to additionally train the Lb-DNN inner

features by optimizing an integral form of the loss.

In Chapter 3, a multi-timescale Lb-DNN, similar to the one introduced in [113]

and [114], is used for system identification. A multi-timescale framework is used to

merge typically offline deep learning techniques with online adaptation to result in

real-time deep learning (lifelong learning). In contrast to those previous works, this

multi-timescale framework consists of output-layer weights being updated in real-time

via an ICL-based adaptive update law and inner-layer features being updated concurrent

to real-time via iterative batch updates training on integrated data sets. The challenges

associated with applying this framework to the ADP-based indirect herding problem

include piecewise-in-time discontinuities in the dynamics estimate, adaptation laws,

and closed-loop error system from the iterative updates of the inner-layer features.

These challenges restrict the adaptive update law used in [114] from being used in this

problem, resulting in a new analysis used in this chapter that considers piecewise-in-

time discontinuities. Simulation results demonstrate the performance of the developed

method and the improved function approximation compared to an SNN.

Building on the DNN-based system identifier introduced in Chapter 3, Chapter

4 introduces a joint DNN-based system identification and DNN-based value function

37

approximation technique for ADP. Recent results in ADP have leveraged the multi-

timescale Lb-DNN introduced in [114]. Within the context of ADP, the multi-timescale

Lb-DNN in [114] has been used for online system identification in [108, 113, 115,

116] and Chapter 3; however, deep learning has not yet been used for simultaneous

online value function approximation, which could be especially beneficial given the

complexity of approximating the solution to the HJB equation for nonlinear systems.

Some RL-based results, such as the deep Q network (DQN) approach in [117], have

investigated using DNNs to learn the action-value function. The result in [117] uses the

AQL method introduced in Section 1.1.3, and was one of the first to address instability

concerns when nonlinear function approximators are used to approximate the action-

value function (or Q-function). The popular deep deterministic policy gradient (DDPG)

method in [118] combines insights from the DQN in [117] with the actor-critic approach.

Specifically, in [118], DNN function approximators are used to approximate the action-

value function within an actor-critic, model-free algorithm. While the methods in [117]

and [118], AQL and DDPG, that train DNNs offline are useful tools, they lack the ability

to adapt in real-time (i.e., lack lifelong learning). In adversarial environments, if an

adversary modifies the environment or the features of the offline-trained DNN, this could

result in instability of the dynamical system (e.g., a vehicular crash). Hence, to build

robust tools for adversarial, changing, or unknown environments, there is motivation to

implement deep RL methods that update online to facilitate lifelong learning.

In Chapter 4, leveraging the results in [108, 113, 114] and Chapter 3, two separate

Lb-DNNs are used for simultaneous online system identification and value function ap-

proximation. The multi-timescale Lb-DNNs used for simultaneous system identification

and value function approximation use adaptation policies to update the output-layers of

the Lb-DNN weights in real-time. Concurrently to real-time execution, data is collected

and DNN training algorithms are performed iteratively for the inner-layer weights using

38

Adam [119]. Similar to batch updates, the slower timescale update of the inner-layer fea-

tures results in a time-varying switch, which introduces piecewise-in-time discontinuities

into the dynamics estimate. Hence, a Lyapunov-based stability analysis that accounts

for piecewise-in-time continuous dynamics is used to show uniform ultimate bounded-

ness of the states and derive the analytical adaptation law for the outer layer weights

of the Lb-DNN. The contribution of this chapter lies in the multi-timescale Lb-DNN

approach to value function approximation. Value function approximation corresponds

to the policy evaluation step in the generalized policy iteration method introduced in

Section 1.1.2. In policy evaluation, the BE is used to update the value function ap-

proximation. This chapter provides a framework to use deep policy evalutation where

the off-policy data points collected through BE extrapolation are used to update the

output-layer weights of the Lb-DNN in real-time and are also used in the loss function

to update the inner-layer features concurrent to real-time. The comparative simulation

results show that the deep policy evaluation method results in 95.04% improvement in

BE minimization and 5.06% faster convergence.

Chapter 5 advances the deep learning techniques in Chapters 3 and 4. Previous

works have used linear parameterization (cf., [120–122] and Chapter 2), NNs (cf., [93,

104,112, 123,124]), and DNNs (cf., [108,113,115, 116] and Chapters 3 and 4) to obtain

an approximation of the dynamics. Chapter 3 shows that DNN-based approximators

yield better approximation of the dynamics when compared to single-layer NNs and

[113] shows that DNN-based approximators improve system performance. However,

the aforementioned results, known as multi-timescale DNNs, update only the output-

layer weights in real-time, whereas the inner-layer weights are updated iteratively by

minimizing a loss function based on datasets obtained over discrete training intervals.

As a result, the inner-layer weights are not updated via adaptive update laws. Moreover,

there are no guarantees provided on the identification of inner-layer weights under any

sufficient excitation condition.

39

Recent advancements in adaptive control provide Lb-DNN controllers with real-time

updates for all weights for several architectures in [125–131]. Although these recent

online DNN results eliminate the restriction of offline training and allow for sustained

learning, they are designed to address the trajectory tracking problem based on tracking

error feedback, and are not applicable to perform system identification for ADP due

to the lack of parameter convergence guarantees. Thus, it is desirable to construct

adaptation laws to identify the system for incorporation in ADP.

A common challenge in system identification is the lack of availability of state-

derivative information. Previous results such as [108, 115, 116] and Chapter 3 use

integrators to eliminate the requirement of state derivative information. However,

integrators do not assist in identifying the inner-layer weights due to the nonlinear

parameterization of the DNN. Additionally, the nonlinear parameterization also makes it

difficult to yield performance guarantees on the system identification.

This chapter introduces the first ADP method involving an Lb-DNN as an adaptive

system identifier. The developed identifier uses a least squares adaptation law with

a bounded gain forgetting factor to update the weights of all layers of the DNN. To

overcome the challenges posed by the lack of state-derivative information, we construct

a RISE-based observer that provides a secondary estimate of the dynamics. While

the RISE-based observer can provide an estimate of the dynamics, it would only be

an instantaneous estimate and could not be used in BE extrapolation. The difference

between the two estimates is calculated as an identification error which is used to

develop a least squares adaptive update law [132]. Through a combined Lyapunov-

based stability analysis, the system identifier composed of the DNN and RISE-based

dynamics observer is shown to exponentially converge to a neighborhood of the DNN

weight estimation error, provided the Jacobian of the DNN satisfies the persistence of

excitation (PE) condition. Simultaneously, the approximate DNN-based model is used

to achieve approximate BE extrapolation. The resulting ADP formulation is shown to

40

achieve convergence of the developed control policy to a neighborhood of the optimal

control policy. Comparative simulation results show that the adaptive DNN yields 65.73%

improved RMS regulation error, 31.82% improved controller error, and 78.97% improved

function approximation error in comparison to the previously developed multi-timescale

DNN.

1.3 Notation

For notational brevity, time-dependence is omitted while denoting trajectories of the

dynamic systems. For example, given the trajectories x : R≥0 → Rm and y : R≥0 → Rn,

the equation f + h (y, t) = g (x) should be interpreted as f (t) + h ((y (t)) , t) = g (x (t)).

The Jacobian
[
∂f(x,y)
∂x1

T
, . . . , ∂f(x,y)

∂xn

T
]
is denoted by ∇xf (x, y). Unless otherwise specified,

let ∇ ≜ ∇x. A square diagonal matrix with elements of vector y on the main diagonal is

denoted by diag(y). Matrices of ones and zeros with n rows and m columns are denoted

by 1n×m and 0n×m, respectively. An n × n identity matrix is denoted by In×n. Both the

Euclidean norm for vectors and the Frobenius norm for matrices are denoted by ∥·∥.

The vectorization operator is denoted by vec (·). The operator λmin (·) represents the

minimum eigenvalue of the argument.The cardinality of a set A is denoted by |A|. Let

the subscript p define the quantity or function belonging to the pth subsystem of the

overall system. Let p ∈ P, where P ⊂ N and |P| < ∞ represent a family of switched

subsystems.

The space of essentially bounded Lebesgue measurable functions is denoted by

L∞. The pseudo-inverse of full row rank matrix A ∈ Rn×m is denoted by A+, where

A+ ≜ A⊤ (AA⊤)−1. The right-to-left matrix product operator is represented by
↶∏

, i.e.,
↶
m∏
p=1

Ap = Am . . . A2A1 and
↶
m∏
p=a

Ap = I if a > m. The Kronecker product is denoted by

⊗. Function compositions are denoted using the symbol ◦, e.g., (g ◦ h)(x) = g(h(x)),

given suitable functions g and h. Given w ∈ R and some functions f and g, the notation

f(w) = Om(g(w)) means that there exists some constants M ∈ R>0 and w0 ∈ R such

that ∥f(w)∥ ≤ M ∥g(w)∥m for all w ≥ w0. Given some matrix A ≜ [ai,j] ∈ Rn×m, where

41

ai,j denotes the element in the ith row and jth column of A, the vectorization operator is

defined as vec(A) ≜ [a1,1, . . . , an,1, . . . , a1,m, . . . , an,m]
⊤ ∈ Rnm. The space of continuous

functions with continuous first n derivatives is denoted by Cn. The notation
a.a.t.

(·) denotes

that the relation (·) holds for almost all time (a.a.t.). Given any A ∈ Rp×a, B ∈ Ra×r, and

C ∈ Rr×s, the vectorization operator satisfies the property [133, Proposition 7.1.9]

vec(ABC) = (C⊤ ⊗ A)vec (B) . (1–1)

Differentiating (1–1) on both sides with respect to vec (B) yields the property

∂

∂vec (B)
vec(ABC) = C⊤ ⊗ A. (1–2)

A function y : Iy → Rn is called a Filippov solution of ẏ = h(y, t) on the interval

Iy ⊆ R≥0, given some Lebesgue measurable and locally essentially bounded function

h : Rn × R≥0 → Rn, if y is absolutely continuous on Iy, and ẏ ∈ K [h] (y, t) for almost all

t ∈ Iy, where K [·] denotes the Filippov set-valued map defined in [134, Equation 2b].

42

Figure 1-2. Diagram of ADP-based literature review results

43

CHAPTER 2
HIERARCHICAL REINFORCEMENT LEARNING-BASED SUPERVISORY CONTROL

OF UNKNOWN NONLINEAR SYSTEMS

In this chapter and the work in [120], a supervisory control approach using HRL is

developed to approximate the solution to optimal regulation problems for a control-affine,

continuous-time nonlinear system with unknown drift dynamics. This result contains two

objectives. The first objective is to approximate the optimal control policy that minimizes

the infinite-horizon cost function of each ADP sub-controller. The second objective is

to design a switching rule, by comparing the approximated optimal value functions of

the ADP sub-controllers, to ensure that switching yields a lower cost than not switching.

An ICL-based parameter identifier approximates the unknown drift dynamics. UUB

regulation of the system states to a neighborhood of the origin, and convergence of

the approximate control policy to a neighborhood of the optimal control policy, are

proven using a Lyapunov-based stability and dwell-time analysis. Simulation results are

presented which demonstrate the effectiveness of the developed method. Implementing

the developed HRL controller yields a total cost that is 37% less than the total cost of

implementing one ADP sub-controller and an improved rise time.

2.1 Problem Formulation

Consider a continuous-time, control-affine nonlinear dynamical system

ẋ = f (x) + g (x)u (2–1)

where x ∈ Rn denotes the system state trajectory, u ∈ Rm denotes the control input,

f : Rn → Rn denotes the drift dynamics, and g : Rn → Rn×m denotes the control

effectiveness.

Assumption 2.1. The function f is an unknown locally Lipschitz function and f (0) = 0.

Furthermore, ∇f : Rn → Rn×n is continuous.

44

Assumption 2.2. The function g is a known locally Lipschitz function, bounded such

that 0 < ∥g (x)∥ ≤ g ∀x ∈ Rn, where g ∈ R>0 is the supremum over all x of the maximum

singular values of g (x).

2.1.1 Control Objective

Let P ⊂ N with P < ∞ represent a family of subsystems, and let the subscript p

define the quantity or function belonging to the pth subsystem of the overall system. Let

p ∈ P, where P ⊂ N and |P| < ∞ represent a family of switched subsystems. The cost

function

Jp (x, up) =

� ∞

t0

Qp (x) + u⊤p Rpup dτ, (2–2)

denotes the cost of running subsystem p the entire time. The cost function

Jp(t) (x, u) =

� ∞

t0

Qp(t) (x) + u⊤p(t)Rp(t)up(t) dτ, (2–3)

denotes the cost of switching between subsystems. The control objective is to solve the

infinite horizon optimal regulation problem online i.e. find an optimal control policy u that

minimizes the cost functional for the pth subsystem and to design the switching rule so

that the cost in (2–3) is smaller than the cost in (2–2).

In (2–2), Qp : Rn → R≥0 is a positive definite (PD) cost function where Qp satisfies

qp (∥x∥) ≤ Qp (x) ≤ qp (∥x∥) for qp, qp : R≥0 → R≥0, and Rp ∈ Rm×m is a user-defined

constant PD symmetric cost matrix.

The infinite horizon value function (i.e. the cost-to-go) for the pth mode V ∗
p : Rn →

R≥0 is defined as

V ∗
p (x) ≜ min

u∈U

� ∞

t

Qp (x) + u⊤p Rpup dτ, (2–4)

where U ⊆ R is the action space for up.

45

Remark 2.1. While each subsystem has the same set of dynamics, each has a different

state penalty function Qp, a different cost penalty matrix Rp and, thereby, a different re-

spective controller. There are a user-defined number of cost functions that yield different

desirable behavior, but since (2–1) is unknown a priori, supervised switching between

the cost functions with different parameters will result in different expressions for (2–4),

which motivates selecting the V ∗
p with the lowest value for the specific unknown system.

Assumption 2.3. The optimal value function V ∗
p is continuously differentiable for all

p ∈ P [92].

The optimal value function is the solution to the corresponding HJB equation

0 = ∇V ∗
p (x)

(
f (x) + g (x)u∗p

)
+Qp (x) + u∗⊤p Rpu

∗
p, (2–5)

where u∗p : Rn → Rm is the optimal control policy for the pth mode. The HJB equation in

(2–5) has the boundary condition V ∗
p (0) = 0. The optimal control policy u∗p is defined as

u∗p (x) = −1

2
R−1
p g (x)⊤

(
∇V ∗

p (x)
)⊤
. (2–6)

Remark 2.2. Under Assumptions 2.1-2.3, the optimal value function is the unique PD

solution of the HJB equation for each system. The approximation of the PD solution to

the HJB is guaranteed by the appropriate selection of Lyapunov-based update laws and

initial weight estimates [104].

2.1.2 Value Function Approximation

The optimal control policy in (2–6) requires knowledge of the optimal value function,

which is generally unknown for nonlinear systems. Let Ω ⊂ Rn be a compact set. The

subsequent stability analysis guarantees that if x is initialized in an appropriately-sized

subset of Ω, then it will stay in Ω. Using the Universal Function Approximation Theorem,

the optimal value function can be approximated with an NN in Ω as

V ∗
p (x) = W⊤

p ϕp (x) + ϵp (x) ∀x ∈ Ω, (2–7)

46

where Wp ∈ RL is a vector of unknown weights, ϕp : Rn → RL is a user-defined vector

of basis functions, and ϵp : Rn → R is the bounded function reconstruction error. For

brevity, each subsystem uses the same number of elements in the basis function vector

L. Substituting (2–7) into (2–6), the NN representation of the pth mode optimal control

policy in (2–6) is

u∗p (x) = −1

2
R−1
p g (x) (∇ϕp (x)Wp +∇ϵp (x))⊤ . (2–8)

Assumption 2.4. There exists a set of known positive constants W,ϕ,∇ϕ, ϵ,∇ϵ ∈ R>0

such that supp∈P ∥Wp∥ ≤ W, supx∈Ω, p∈P ∥ϕp (x)∥ ≤ ϕ, supx∈Ω, p∈P ∥∇ϕp (x)∥ ≤ ∇ϕ,

supx∈Ω, p∈P ∥ϵp (x)∥ ≤ ϵ, and supx∈Ω, p∈P ∥∇ϵp (x)∥ ≤ ∇ϵ for all p [135, Assumptions

9.1.c-e].

The critic weight estimate vector Ŵc,p ∈ RL is used to approximate (2–7), resulting

in the optimal value function estimate V̂p : Rn × RL → R, defined as

V̂p

(
x, Ŵc,p

)
≜ Ŵ⊤

c,pϕp (x) . (2–9)

The actor weight estimate vector Ŵa,p ∈ RL is used to approximate (2–8), resulting in the

optimal control policy estimate ûp : Rn × RL → Rm, defined as

ûp

(
x, Ŵa,p

)
≜ −1

2
R−1
p g (x)⊤

(
∇ϕp (x)⊤ Ŵa,p

)
. (2–10)

2.2 Hierarchical Agent

2.2.1 Switching Rule

The hierarchical agent is tasked with identifying which policy minimizes the infinite

horizon cost functional based on a switching policy. The supervisory algorithm

σ ≜ argminp∈P

{
V̂p

(
x, Ŵc,p

)}
(2–11)

returns the number of the subsystem associated with the smallest approximated cost-

to-go, computed using estimates of the optimal value function corresponding to each

subsystem. The switched signal in (2–11) will switch in real-time; therefore, to guarantee

47

closed-loop stability of the overall system, a subsequently defined dwell-time condition

must be satisfied. The optimal value function approximations are used to quantitatively

compare all individual ADP controllers p ∈ P in real-time. The switching rule in (2–11)

evaluates all of the approximated costs-to-go and selects the applied control input u in

(2–1) as

u = ûσ

(
x, Ŵa,p

)
, (2–12)

that corresponds to the smallest optimal value function approximation at a given time

as seen in Figure 2-1. The goal is to determine which control policy provides the least

approximate cost-to-go for the system.

2.2.2 System Identification

In addition to approximating the optimal value function for each subsystem, there is

also uncertainty in the drift dynamics, and those uncertain parameters are approximated

using system identification. All subsystem controllers have the same dynamical system.

The system parameters are being identified strictly in one drift dynamics model. To

facilitate the online system identification, assume the drift dynamics f are linearly

parameterizable such that f (x) = Y (x) θ, where Y : Rn → Rn×s is the known regression

matrix and θ ∈ Rs is a vector of constant unknown parameters. Let θ̂ ∈ Rs be an

approximation of the unknown parameter vector θ, which is updated according to the

subsequently defined parameter update policy. The uncertain drift dynamics f are

approximated by f̂ : Rn×Rs → Rn which is defined as f̂
(
x, θ̂
)
≜ Y (x) θ̂. The parameter

estimate θ̂ is updated with the ICL-based update policy [136]

˙̂
θ (t) ≜ kICLΓθ

M∑
j=1

Y⊤
j

(
x (tj)− x (tj −∆t)− Uj − Yj θ̂

)
, (2–13)

where kICL ∈ R>0 and Γθ ∈ Rs×s are user-selected PD constants, Yj ≜ Y (tj) ,

Uj ≜ U (tj), Y (t) ≜
� t
max[t−∆t,0]

Y (x (τ)) dτ , and U (t) ≜
� t
max[t−∆t,0]

g (x (τ))u (τ) dτ . The

48

parameter update law in (2–13) can be rewritten in an analytical form as

˙̂
θ = kICLΓθ

M∑
j=1

Y⊤
j Yj θ̃, (2–14)

where θ̃ ≜ θ − θ̂ is the parametric error.

Assumption 2.5. A history stack of recorded state and control inputs {x (tj) , u (tj)}Mj=1

is available that satisfies Y ≜ λmin

{∑M
j=1 Y⊤

jYj

}
> 0 and ensures the finite excitation

condition in [136] is satisfied a priori. The a priori availability of the history stack is used

for ease of exposition but is not necessary [92].

2.3 Bellman Error

The BE indicates how close the actor and critic weight estimates are to their ideal

weight values. By substituting the approximate optimal value function V̂p
(
x, Ŵc,p

)
and

approximate optimal control policy ûp
(
x, Ŵa,p

)
into (2–5), the BE δ̂p : Rn×RL×RL×Rs →

R is defined as

δ̂p

(
x, Ŵc,p, Ŵa,p, θ̂

)
≜ Qp (x) + ûp

(
x, Ŵa,p

)⊤
Rpûp

(
x, Ŵa,p

)
+∇V̂p

(
x, Ŵc,p

)(
Y (x) θ̂ + g (x) ûp

(
x, Ŵa,p

))
. (2–15)

While (2–15) is used for implementation, to facilitate the subsequent stability analysis,

the BE can be expressed in terms of the weight approximation errors W̃c,p ≜ Wp − Ŵc,p

and W̃a,p ≜ Wp − Ŵa,p. Subtracting (2–5) from (2–15) and substituting (2–7)-(2–10), the

analytical form of the BE in (2–15) can be expressed as

δ̂p

(
x, Ŵc,p, Ŵa,p, θ̂

)
= −ω⊤

p W̃c,p −W⊤
p ∇ϕpY (x) θ̃ +

1

4
W̃⊤
a,pGϕ,p (x) W̃a,p +Op (x) , (2–16)

where ωp : Rn × RL × Rs → Rn is ωp
(
x, Ŵa,p, θ̂

)
≜ ∇ϕp (x)

(
f̂
(
x, θ̂
)
+ g (x) ûp

(
x, Ŵa,p

))
and Op (x) ≜ 1

2
∇ϵp (x)GR,p∇ϕp (x)⊤Wp +

1
4
Gϵ,p −∇ϵp (x) f (x). The functions GR,p, Gϕ,p,

and Gϵ,p are defined as GR,p (x) ≜ gp (x)R
−1
p gp (x)

⊤, Gϕ,p (x) ≜ ∇ϕp (x)GR,p (x)∇ϕp (x) ⊤,

and Gϵ,p (x) ≜ ∇ϵp (x)GR,p (x)∇ϵp (x)⊤ respectively.

49

Bellman Error Extrapolation

As described in [92], the BE in (2–15) can be calculated at any user-defined point

in the state space using a user-selected state xi, the critic weight estimate Ŵc,p, and

the actor weight estimate Ŵa,p. To estimate the value function over the compact set,

the estimate of the system model from the aforementioned online system identifier

is used to evaluate the BE along a set of off-trajectory points via BE extrapolation.

BE extrapolation yields simultaneous exploration and exploitation, and can provide

simulation of experience, enabling faster policy learning.

To facilitate sufficient exploration, the BE is extrapolated from the user-defined

off-trajectory points {xi : xi ∈ Ω}Npi=1, where Np ∈ N denotes a user-specified number

of total extrapolation trajectories in the compact set Ω. Each subsystem p has its own

distinct set of gain values, data, and update laws.

Assumption 2.6. On the compact set, Ω, a finite set of off-trajectory points

{xi : xi ∈ Ω}Npi=1 are user-selected such that 0 < cp ≜ inf
t∈R≥0

λmin

{
1
Np

∑Np
i=1

ωi,pω
⊤
i,p

ρ2i,p

}
for all p ∈ P, where ρi,p = 1 + νpω

⊤
i,pΓpωi,p, νp ∈ R>0 is a user-defined gain, Γp : RL×L is

a time-varying least-squares gain matrix, and cp is a constant scalar lower bound of the

value of each input-output data pair’s minimum eigenvalues for the pth subsystem [92].

2.4 Update Laws for Actor and Critic Weights

The actor and critic weights for each subsystem are updated simultaneously via BE

error extrapolation. In the subsequent weight update laws, ηc,p, ηa1,p, ηa2,p, λp ∈ R>0 are

positive constant adaptation gains, and Γp, Γp ∈ R>0 denote lower and upper bounds for

Γp. The critic update law for the pth mode ˙̂
W c,p ∈ RL is defined as

˙̂
W c,p ≜ −ηc,pΓ

1

Np

Np∑
i=1

ωi,p
ρi,p

δi,p. (2–17)

The actor update law for the pth mode ˙̂
W a,p ∈ RL is defined as

˙̂
W a,p ≜ −ηa1,p

(
Ŵa,p − Ŵc,p

)
− ηa2,pŴa,p + ηc,p

1

Np

Np∑
i=1

G⊤
ϕi,pŴa,pω

⊤
i,p

4ρi,p
Ŵc,p. (2–18)

50

The least-squares gain matrix update law of the pth mode Γ̇p ∈ RL×L is defined as

Γ̇p ≜

(
λpΓp −

ηc,pΓp
Np

Np∑
i=1

ωi,pω
⊤
i,pΓp

ρ2i,p

)
· 1{Γp≤∥Γp∥≤Γp}, (2–19)

where 1{·} denotes the indicator function. Using (2–19) ensures that each Γp ≤ ∥Γp∥ ≤

Γp for all t ∈ R>0. The on-trajectory points can be included in the weight update

laws, such as in [92], but to focus the Lyapunov-based analysis, only off-trajectory BE

extrapolation is performed.

The update laws in (2–17)-(2–19) are always active for each subsystem regardless

of a subsystem’s activity or inactivity. Hence, the update laws will update each subsys-

tem p’s weight estimates and least-squares gain matrix even if subsystem p is not active.

Since the update laws are always learning for each subsystem, convergence of the

states of each subsystem can be proven concurrently.

2.5 Stability Analysis

2.5.1 Subsystem Stability Analysis

To facilitate the stability analysis, a concatenated state z ∈ Rn+2L|P|+s is defined

as z ≜
[
x⊤, W̃⊤

c,1, . . . , W̃
⊤
c,p, W̃

⊤
a,1, . . . , W̃

⊤
a,p, θ̃

⊤]⊤
, and the candidate Lyapunov function

VL,p : Rn+2L|P|+s → R≥0 is defined as

VL,p (z) ≜ V ∗
p (x) +

1

2

∑
p∈P

W̃⊤
c,pΓ

−1
p W̃c,p +

1

2

∑
p∈P

W̃⊤
a,pW̃a,p +

|P|
2
θ̃⊤Γ−1

θ θ̃. (2–20)

According to [101, Lemma 4.3], (2–20) can generally be bounded as α1,p (∥z∥) ≤

VL,p (z) ≤ α2,p (∥z∥) using class K functions α1,p, α2,p : R≥0 → R≥0. The normalized re-

gressors ωp
ρp

and ωi,p
ρi,p

are bounded as supt∈R≥0

∥∥∥ωpρp ∥∥∥ ≤ 1

2
√
νpΓp

and supt∈R≥0

∥∥∥ωi,pρi,p

∥∥∥ ≤ 1

2
√
νpΓp

for all x ∈ Ω and xi ∈ Ω, respectively. The function GR,p is bounded as

supx∈Ω ∥GR,p∥ ≤ G
2

pλmax

{
R−1
p

}
, Gϕ,p is bounded as supx∈Ω ∥Gϕ,p∥ ≤

(
∇ϕGp

)2
λmax

{
R−1
p

}
,

and Y (x) is bounded as supx∈Ω ∥Y (x)∥ ≤ Y . To facilitate the subsequent analysis,

define r ∈ R>0 to be the radius of a compact ball Br ∈ Rn+2L|P|+s centered at the origin.

51

Theorem 2.1. Let x (·) denote the trajectory of the pth subsystem for a fixed p. Pro-

vided the control policy in (2–10) is used, the weight update laws in (2–17)-(2–19) are

implemented, Assumptions (2.1)-(2.6) hold, and the conditions

ηa1,p + ηa2,p ≥
5

4
√
νpΓp

ηc2,pWGϕ,p (2–21)

cp ≥ 3
ηa1,p
ηc2,p

+
3η2c,pW

2

4ηc,pνpΓp

(
∇ϕ2

Y
2

kICLY
+

5Gϕ,p
2

16 (ηa1,p + ηa2,p)

)
(2–22)

v−1
L,p (Lp) < α−1

2,p (α1,p (r)) (2–23)

are satisfied for each individual subsystem, where Lp is a positive constant that depends

on the NN bounding constants in Assumption 2.4, then the state x, every critic weight

estimate error W̃c,p ∀p ∈ P, every actor weight estimate error W̃a,p ∀p ∈ P, and the

parameter estimation error θ̃ are UUB. Hence, each control policy ûp converges to a

neighborhood of its respective optimal control policy u∗p.

Proof. Using the HJB equation in (2–5), the BE in (2–16), the gain conditions in (2–21)

and (2–22), and the weight update laws in (2–17)-(2–19), the time derivative of (2–20)

can be bounded as

V̇L,p ≤ −vL,p (∥z∥) ∀ ∥z∥ ≥ v−1
L,p (Lp) (2–24)

for all p ∈ P and t ∈ R>0, where vL,p ≜ 1
2
q
p
(∥x∥) +∑

p∈P

[
1
12
ηc,pcp

∥∥∥W̃c,p

∥∥∥2 + 1
20
(ηa1,p + ηa2,p)

∥∥∥W̃a,p

∥∥∥2] + |P|
4
kICLY

∥∥∥θ̃∥∥∥2. Using (2–24),

vL,p (∥z∥), and (2–23), [137, Theorem 4.18] can be invoked to conclude that z is

UUB such that lim supt→∞ ∥z∥ ≤ α−1
1,p

(
α2,p

(
v−1
L,p (Lp)

))
and the control policy ûp con-

verges to a neighborhood of the optimal control policy u∗p. Since z ∈ L∞, it follows that

x, W̃c,1, ..., W̃c,|P|, W̃a,1, ..., W̃a,|P|, θ̃ ∈ L∞; hence, x, Ŵc,1, . . . , Ŵc,|P|, Ŵa,1, . . . , Ŵa,|P|, θ̂ ∈ L∞

and u ∈ L∞. Additionally, every trajectory z that is initialized in the ball Br is

52

bounded such that z ∈ Br, ∀t ∈ R≥0, ∀p ∈ P. Since z ∈ Br, the states

x, W̃c,1, ..., W̃c,|P|, W̃a,1, ..., W̃a,|P|, θ̃ similarly lie in a compact set.

Remark 2.3. See [92] for insight into satisfying the gain conditions in (2–21) and (2–22).

See [92, Algorithm 1] for insight into selecting the size of the compact set Ω.

2.5.2 Switched UUB Stability Analysis

Since the unknown optimal value function V ∗
p (x) in (2–20) is different for each

subsystem, (2–20) is not a common Lyapunov function. The previous theorem proves

stability of the individual subsystems, but not stability of the overall switched system.

The Lyapunov function for the switched system may instantaneously increase due to

the increase in the optimal value function and the real-time updates of the weights. Due

to switching between multiple Lyapunov functions, a dwell-time analysis is necessary;

therefore [138, Theorem 5.2] is used to prove convergence of the overall switched

system [105, Ch. 3].

2.6 Simulations

To demonstrate the effectiveness of the developed ADP technique, a simulation is

performed on a control-affine nonlinear dynamical system with a two dimensional state

x = [x1, x2]
⊤. The control objective is to minimize each cost in (2–2) and switch between

three controllers to ensure that the cost in (2–3) is lower than the cost in (2–2). There

are three different reward functions and, thus, three subsystems such that P = {1, 2, 3}.

For value function approximation, the basis function for every subsystem is selected

as ϕ = [x21, x1x2, x
2
2]. The initial conditions for the subsystems are x (0) = [−15, 15]⊤,

Γ (0) = 250 ∗ 13×1, Ŵc,1 (0) = Ŵa,1 (0) = 0.5 ∗ 13×1, Ŵc,2 (0) = Ŵa,2 (0) = 0.05 ∗ 13×1, and

Ŵc,3 (0) = Ŵa,3 (0) = 0.1 ∗ 13×1. The system dynamics in (2–1) are

f =

 x1 x2 0 0

0 0 x1 x2
(
1− (cos (2x1) + 2)2

)
 θ, g =

 0

cos (2x1) + 2

 (2–25)

53

where θ =[−1, 1,−0.5,−0.5]⊤ is the vector of unknown parameters. The simulation

parameters are selected as ηc,p = 10, ηa1,p = 15, ηa2,p = 0.1, Γp = 1000, Γp = 1, λp = 0.1,

νp = 0.2, and Np = 10 ∀p ∈ P. The cost functions for each subsystem are

J1 (x, u) =

� ∞

t0

Q1 (x) + u⊤R1u dτ, (2–26)

J2 (x, u) =

� ∞

t0

Q2 (x) + u⊤R2u dτ, (2–27)

J3 (x, u) =

� ∞

t0

Q3 (x) + u⊤R3u dτ, (2–28)

where Q1 = 0.1x⊤
(
xx⊤

)
x, Q2 = x⊤diag ([5, 1])x, Q3 = x⊤diag ([1, 12])x, R1 = 1, R2 = 5,

and R3 = 5.

Figure 2-2 shows that the developed HRL method enables the system states to

converge to the origin while switching between subsystems with different cost functions.

The dwell time is selected as 0.25 seconds. In this example, the switching instances

occur at approximately 0.25 and 1.83 seconds. Figure 2-2 illustrates that the state

converges as the system switches to the controller with the lowest-valued approximate

cost-to-go. Specifically, after the first switching instance, the convergence rate of x2

significantly improves. Because of the different cost functions in (2–26)-(2–28), it is

expected that each transient behavior, generally, will differ.

Figure 2-3 shows the performance of four subsystems: Controller 1, Controller

2, Controller 3, and the HRL controller. The results illustrate that the HRL controller,

which switches to the controller with the lowest-valued approximated cost-to-go in real-

time, results in the fastest state convergence. Therefore, it is shown that the controller

with the HRL agent yields more desirable behavior for the unknown system than the

controllers without hierarchical agents.

Table 2-1 compares the four methods. The costs of Controllers 1, 2, and 3 are

summed continuously throughout the duration of the simulation. The cost of the HRL

54

controller is calculated by summing the cost of each controller while active. The HRL

controller has a lower total cost and 99% rise time in comparison to Controllers 1-3.

Excluding the developed HRL controller, Controller 2 has the lowest cost, and Controller

1 has the fastest rise time. By switching between these control policies, the developed

HRL controller captures the positive qualities of both controllers and outperforms them

using these two metrics. The HRL controller yields a total cost that is 37% less than

that of Controller 2. The HRL controller also yields a rise time that is 30% faster than

that of Controller 1. The strengths of the HRL controller compared to the individual

sub-controllers are shown in Table 2-1 and are illustrated in Figure 2-3.

2.7 Concluding Remarks

In this chapter, supervisory control is implemented within ADP to develop a su-

pervised switching signal. The method introduced in this chapter presents a way to

intelligently switch between controllers using a hierarchy to optimize a certain perfor-

mance index. A supervisory switching policy is used to switch between the control

policy with the least approximated cost-to-go in real-time. Stability of each subsys-

tem is proven via a Lyapunov-based stability analysis. The overall switched system is

proven to be stable in the sense that the system states converge to a neighborhood of

the origin and the applied policy converges to a neighborhood of the selected optimal

policy. Simulation results are presented to show that implementing the developed HRL

controller yields a total cost of 37% less than the total cost of implementing one ADP

sub-controller and an improved rise time.

The developed technique will be significant for problems that require more than

one cost function to achieve the desired control objective. This chapter provides inroads

for ADP to become more integrated into switched system/hybrid control problems.

Additional, this chapter introduces a hierarchical framework that can be implemented in

a multi-agent control scenario. Using the framework subsequently introduced in Chapter

55

3, HRL can be used to switch between controlling different pursuing agents depending

on the behavior of the evading agent(s) to achieve the desired objective.

56

Figure 2-1. The high-level logic in the hierarchical supervisory control architecture
contains the RL-based supervisory agent and the system identifier. The
supervisory agent evaluates the family of V̂ps and outputs the number of the
subsystem with the lowest value function approximation. The system
identifier approximates the uncertain model parameters; these parameter
estimates are used to update the actor and critic weight estimates. Each
ADP controller contains a different cost function, and the objective is to
minimize each subsystem’s respective cost-to-go. Together, the high-level
logic and low-level controllers select the control input with the lowest
approximated cost-to-go. The selected controller in (2–12) is applied to the
dynamical system in (2–1). Then history stack data is provided to the
high-level system identifier, the new state is provided to the low-level ADP
controllers, and the policy in (2–12) is evaluated again.

57

0 1 2 3 4

-20

-10

0

10

20

Figure 2-2. State trajectory for the two-state system while using the HRL controller. The
black dashed lines represent the time at which the system switches to the
controller with the lowest-valued approximate cost-to-go.

0 1 2 3 4

0

5

10

15

20

25

Figure 2-3. Comparison of the state convergence of three controllers and one HRL
switching controller. The state ∥x∥ converges in less time while using the
developed HRL controller in comparison to controllers 1-3.

58

Table 2-1. Simulation Performance Metrics
Controller Total Cost 99% Rise Time (s)

HRL Controller 1073 2.08
Controller 1 2683 2.97
Controller 2 1701 4.11
Controller 3 1940 3.07

59

CHAPTER 3
APPROXIMATE OPTIMAL INDIRECT REGULATION OF AN UNKNOWN AGENT WITH

A LYAPUNOV-BASED DEEP NEURAL NEWORK

While ICL can facilitate system identification to update linear parameterized

estimates in Chapter 2, and ICL has been used for system identification to update

SNNs, ICL has never been used for more advanced function approximation methods

such as DNNs. In this chapter and the work in [108], we build on the concepts in

Chapter 2 to explore another class of problems known as indirect control problems

where the states of a dynamic system are regulated by an influencing agent through

an interaction dynamic. Specifically, the indirect herding problem is considered where

a pursuing agent is tasked with intercepting and regulating and evading agent to a

desired goal location. An approximate optimal policy is developed for a pursuing agent

to indirectly regulate an evading agent coupled by an unknown interaction dynamic.

ADP is used to design a controller for the pursuing agent to optimally influence the

evading agent to a goal location. Since the interaction dynamic between the agents is

unknown, ICL is used to update an Lb-DNN to facilitate sustained learning and system

identification. A Lyapunov-based stability analysis is used to show UUB convergence.

Comparative simulations are provided which show that the DNN outperforms the SNN.

3.1 Problem Formulation

The problem is formulated as a pursuing agent tasked with optimally intercepting

and escorting an uncooperative evading agent to a desired goal state using unknown

interaction dynamics between the pursuer and evader. The evader dynamics are

ż = f (z, η) , (3–1)

where z : R≥t0 → Rn denotes the state of the evader, η : R≥t0 → Rn denotes the state

of the pursuer, t0 ∈ R≥0 denotes the initial time, and f : Rn × Rn → Rn denotes the

non-affine, unknown locally Lipschitz interaction function. While the evader dynamics in

(3–1) cannot be directly controlled, the evader can be influenced through interaction with

60

the pursuer, which is directly controllable. The pursuer dynamics are

η̇ = h (z, η) + g (η)u, (3–2)

where h : Rn × Rn → Rn denotes an unknown locally Lipschitz function representing the

pursuer drift dynamics, g : Rn → Rn×mη denotes the known control effectiveness matrix,

and u : R≥t0 → Rmη is the pursuer’s control input.

Assumption 3.1. There exist class K functions α1, α2 ∈ R≥0 that allow the uncertain

dynamics in (3–1) to be bounded as ∥f (z, η)∥ ≤ α1 (∥z − η∥) + α2 (∥z − zg∥), where

zg ∈ Rn denotes a fixed goal location [112].

Assumption 3.2. The control effectiveness matrix g (η) is bounded and full column rank

for all η ∈ Rn, and g+ ∈ Rmη×n is a locally Lipschitz and bounded pseudo inverse defined

as g+ ≜
(
g⊤g

)−1
g⊤ [88].

To quantify the control objective, a regulation error denoted by ez : R≥t0 → Rn is

defined as

ez ≜ z − zg, (3–3)

where zg ∈ Rn denotes a fixed user-defined goal location that is only known to the

pursuer. It is not possible to directly control the error in (3–3). To address this, a back-

stepping formulation is used to design a virtual desired state that enables the pursuer to

indirectly minimize (3–3) by tracking a virtual desired state denoted by ηd : R≥t0 → Rn.

Traditional backstepping cannot be used due to the nonlinear relationship in the dy-

namics; hence, additional error system development is motivated by backstepping

approaches. To quantify the pursuer’s ability to track the virtual desired state, an auxil-

iary error eη : R≥t0 → Rn is defined as

eη ≜ η − ηd. (3–4)

61

To quantify the virtual desired state objective, an additional auxiliary error ed : R≥t0 → Rn

is defined as

ed ≜ ηd − zg − kdez, (3–5)

where kd ∈ R denotes a positive control gain. The time derivative of the virtual desired

state ηd is designed as η̇d ≜ µd, where µd : R≥t0 → Rn is the subsequently designed

virtual input that minimizes (3–5). To facilitate the minimization of (3–3)-(3–5), let

x ≜
[
e⊤z , e

⊤
d , e

⊤
η

]⊤ and xd ≜
[
e⊤z , e

⊤
d , 01×n

]⊤ denote the concatenated state and desired

concatenated state, respectively. Additionally, the mappings s1, s2 : R3n → Rn are

defined as s1 (x) ≜ ez + zg and s2 (x) ≜ eη + ed + kdez + zg. Using the error systems in

(3–3)-(3–5), the evader and pursuer states are represented as z = s1 (x) and η = s2 (x),

respectively.

Following the problem formulation in [112], a composite autonomous error system

can be written as

ẋ = F (x) +G (x)µ, (3–6)

where µ ≜

[
µ⊤
η µ⊤

d

]⊤
∈ Rm is the total vector of control policies with m = mη + n,

where µη : R≥t0 → Rmη is defined as µη ≜ u − ud, ud : R≥t0 → Rmη denotes a

desired input defined as ud ≜ g+ (ηd) (µd − h (z, ηd)) where locally Lipschitz pseudo

inverse g+ : Rn → Rmη×n is defined as g+ ≜
(
g⊤g

)−1
g⊤ , and F : R3n → R3n and

G : R3n → R3n×m are defined as

F (x) ≜


f (s1 (x) , s2 (x))

−kdf (s1 (x) , s2 (x))

h (s1 (x) , s2 (x))− Fsd (x)

 ,

62

and

G (x) ≜


0n×mη 0n×n

0n×mη In

g (s2 (x)) Gsd (x)

 ,
where Fsd (x) ≜ g (s2 (x)) g

+ (s2 (xd))h (s1 (x) , s2 (xd)) , and Gsd (x) ≜

g (s2 (x)) g
+ (s2 (xd)) − In. The pursuer’s objective is achieved if η → ηd and z, ηd → zg;

hence, ez, eη, and ed → 0.

The goal is to formulate an optimal control problem to regulate the states based on

a given cost function. To minimize the errors in (3–3)-(3–5), µd and µη are designed to

minimize the cost function

J (x, µ) ≜
� ∞

t0

Q (x) + P (x) + µ⊤Rµ dτ, (3–7)

where Q : R3n → R≥0 is a user-defined PD function that satisfies q ∥x∥2 ≤ Q (x) ≤ q ∥x∥2

for all x ∈ R3n, where q, q ∈ R>0, R ≜ blkdiag {Rη, Rd}, Rη ∈ Rmη×mη and Rd ∈ Rn×n are

user-defined PD symmetric cost matrices, and P : R3n → R is a positive semi-definite

(PSD) user-defined penalty function described in [112].

Following the standard actor-critic-based approximate optimal control framework

(see [101], [135]) in [112], the optimal value function approximation V̂ : R3n × RL → R is

defined as

V̂
(
x, Ŵc

)
= Ŵ⊤

c σ (x) , (3–8)

where Ŵc ∈ RL is the critic weight estimate, and σ : R3n → RL is a user-selected

bounded vector of basis functions. The control objective is to determine an approxima-

tion of the optimal control policy µ̂ : R3n × RL → Rm, defined as

µ̂
(
x, Ŵa

)
= −1

2
R−1G (x)⊤∇σ (x)⊤ Ŵa, (3–9)

where Ŵa ∈ RL is the actor weight estimate, to minimize the cost given in (3–7).

Minimizing this cost ensures that the errors in (3–3)-(3–5) are regulated to zero.

63

3.2 System Identification

A challenge for the control objective is that the approximate optimal control formu-

lation requires the dynamic model of the pursuer and the evader. Since the interaction

dynamics and pursuer dynamics are unknown, an approximation of the composite

dynamics F (x) must be used to approximate the solution to the HJB equation. The

interaction dynamics between the pursuer and evader in (3–1) must be estimated using

data collected online and in real-time to achieve the control objective since interaction

data will often be unavailable a priori. The result in [112] estimated F (x) online using

a single layer NN and CL; however, recent evidence has shown that DNNs can learn

more complex features and improve function approximation performance [139]. The

recent results in [113] and [140] demonstrated a novel method for estimating dynamics

online using a multi-timescale Lb-DNN framework with CL for system identification and

control. Building on the previous results, this section develops an advanced ICL-based

multi-timescale Lb-DNN framework.

The ICL-based multi-timescale learning framework approximates functions online

by pairing a Lb-ICL adaptive update law for the output-layer weights of a DNN with a

concurrent to real-time iterative ICL batch update for the inner-layer features of the

DNN. Specifically, data is collected online in batches and each batch iteratively updates

the inner-layer features of the Lb-DNN concurrent to real-time control using integral

history stack data in a user-defined loss function and an optimizer such as Adam [119].

Since the inner-layer features are updated concurrent to real-time, but not in real-time

like the output-layer weights, the inner-layer features actively used by the controller

are iteratively switched to the most recently updated inner-layer features after a batch

update.

Motivated by improved function approximation, (3–1) and (3–2) can be stacked and

represented as

˙̆x = ϕ (Φ (x)) θ + ϵθ (x) + Ğ (x, u) , (3–10)

64

where the concatenated state derivative vector is defined as ˙̆x ≜ [kdż η̇]⊤ ∈ R2×n,

and Ğ (x, u) ≜

[
0n×1 g (x)u

]⊤
∈ R2×n. To streamline the subsequent development,

a stacked matrix representation is used rather than a stacked vector representation.

The drift dynamics are approximated on a compact set C ⊂ Rn with a DNN where

θ ≜

[
θ⊤z θ⊤η

]⊤
∈ Rp×n denotes an unknown bounded ideal output-layer weight

matrix with the subscripts z and η representing the evader and pursuer dynamics,

respectively, and p = pz + pη is the total number of rows of θ. Additionally, ϕ (Φ (x)) ≜ ϕ⊤
z (Φz (x)) 01×pη

01×pz ϕ⊤
η (Φη (x))

 where ϕ : R2p → R2×p denotes the user-defined basis

functions and Φ (x) : R3n → R2p denotes a function that represents the ideal DNN

inner-layer features as Φ ≜

[
Φ⊤
z Φ⊤

η

]⊤
, and ϵθ (x) : R3n → R2×n denotes the function

approximation errors. The ith DNN-based estimate of the system dynamics is defined as

ˆ̆̇xi = ϕ
(
Φ̂i (x)

)
θ̂ + Ğ (x, u) , (3–11)

where θ̂ ∈ Rp×n is the output-layer ideal weight matrix θ estimate, and Φ̂i : R3n → R2p is

the ith iteration selection of the inner features consisting of estimated inner-layer weights

and user-selected activation functions.

Assumption 3.3. There is a constant weight matrix θ and known positive constants θ,

ϕ, ∇xϕ, ϵθ, and ∇xϵθ ∈ R≥0, such that ∥θ∥ ≤ θ, sup
x∈C

∥ϕ (·)∥ ≤ ϕ, sup
x∈C

∥∇xϕ (x)∥ ≤ ∇xϕ,

sup
x∈C

∥ϵθ (x)∥ ≤ ϵθ, and sup
x∈C

∥∇xϵθ (x)∥ ≤ ∇xϵθ [141, Ch. 4].

Assumption 3.4. The inner-layer features selection of Φ̂i ensures that Φ(x) − Φ̂i (x) ≤

Φ̃i (x) , where Φ̃i : R3n → R2p is the function approximation error of the ith iteration inner-

layer Lb-DNN features, and sup
x∈C, i∈N

∥∥∥Φ̃i (x)
∥∥∥ ≤ Φ̃, where Φ̃ ∈ R≥0 is a bounded constant

for all i. Using the Mean Value Theorem,
∥∥∥ϕ (Φ (x))− ϕ

(
Φ̂i (x)

)∥∥∥ ≤ ∇xϕ Φ̃ [113].

Unlike the result in [113], which uses CL to learn the unknown ideal weights of the

DNN, this result uses an ICL-based weight update policy. Following the ICL strategy

in [136], let ∆tθ ∈ R>0 be the time window of integration, where the integral of (3–10)

65

at time tj ∈ [∆tθ, t] can be represented as ∆x̆j = x̆ (tj) − x̆ (tj −∆tθ) = φjθ + Ej + Gj

where φj = φ
(
Φ̂i (tj)

)
≜

� tj
tj−∆tθ

ϕ
(
Φ̂i (x (τ))

)
dτ, Ej = E (tj) ≜

� tj
tj−∆tθ

ϵθ (x (τ)) dτ, and

Gj = G (tj) ≜
� tj
tj−∆tθ

Ğ (x (τ) , u (τ)) dτ. An ICL-based parameter estimate update law is

designed as

˙̂
θ (t) = kθΓθ

M∑
j=1

φ⊤
j

(
∆x̆j − Gj − φj θ̂

)
, (3–12)

where kθ,Γθ ∈ R>0 are update gains, and M ∈ Z>0 is the amount of data points saved

for the history stack.

Remark 3.1. The ith approximation of Φ is updated with the i + 1th batch optimization

using the ICL history stack data in the loss function

Li+1 =
1

M

M∑
j=1

∥∥∥∆x̆j − Gj − φj θ̂
∥∥∥2 (3–13)

and using Adam for the offline training optimization method. The estimates Φ̂i are not

computed a priori. Concurrent to real-time learning, input-output data is saved in a

history stack, and then Φ̂ is recomputed during the batch update.

Assumption 3.5. There exists T1 ∈ R>0 such that T1 > ∆tθ, and there exists a constant

λ1 ∈ R>0 that facilitates λ1Ip ≤
∑M

j=1 φ
⊤
j φj, ∀t ≥ T1 [136].

3.3 Online Learning

3.3.1 Bellman Error

The optimal value function V ∗ : R3n → R≥0 and optimal control policy µ∗ : R3n → Rm

satisfy the HJB equation

0 = ∇V ∗ (x) (F +Gµ∗) +Q (x) + P (x) + µ∗⊤Rµ∗, (3–14)

where V ∗ (0) = 0. While (3–14) represents the HJB equation under optimal conditions,

substituting the approximate terms from (3–8), (3–9), and (3–11), yields the BE

66

δ
(
x, θ̂, Ŵc, Ŵa

)
≜ Q (x) + P (x) + µ̂⊤Rµ̂+∇V̂

(
x, Ŵc

)(
F̂i

(
x, θ̂
)
+G (x) µ̂

(
x, Ŵa

))
,

(3–15)

where

F̂i

(
x, θ̂
)
≜

[(
1

kd
θ̂⊤z ϕz

(
Φ̂z,i (x)

))⊤
,
(
−θ̂⊤z ϕz

(
Φ̂z,i (x)

))⊤
,

(
θ̂⊤η ϕη

(
Φ̂η,i (x)

))⊤
−
(
g (xη) g

+ (η
d
) θ̂⊤η ϕη

(
Φ̂η,i (xd)

))⊤]⊤

and µ̂
(
x, Ŵa

)
≜
[
µ̂⊤
η

(
x, Ŵa

)
, µ̂⊤

d

(
x, Ŵa

)]⊤
from (3–9). The pursuer controller is

û
(
x, θ̂, Ŵa

)
≜ µ̂η

(
x, Ŵa

)
+ ûd

(
x, θ̂, Ŵa

)
, where ûd

(
x, θ̂, Ŵa

)
≜ g+ (ηd)

(
µ̂d

(
x, Ŵa

)
−

θ̂Tη ϕη

(
Φ̂η,i (xd)

))
. To facilitate the subsequent stability analysis, the BE can also be

expressed in terms of the error W̃c ≜ W − Ŵc and W̃a ≜ W − Ŵa. Subtracting (3–15)

from (3–14) and, substituting (3–8) and (3–9), the BE in (3–15) can be rewritten as

δ = −ω⊤W̃c +
1

4
W̃⊤
a GσW̃a −W⊤∇σF̃i +O (3–16)

where ω ≜ ∇σ
(
F̂i +Gµ̂

)
, F̃i ≜ F − F̂i , Gσ ≜ ∇σGR∇σ⊤, GR ≜ GR−1G⊤, and O is

uniformly bounded over the compact set Ω.

As explained in [92], the user-selected state xe can be used to evaluate the BE

in (3–15) at off-trajectory points within the state space Ω. The extrapolated BEs are

evaluated as δe ≜ δ
(
xe, θ̂, Ŵc, Ŵa

)
.

3.3.2 Actor and Critic Weight Update Laws

The on and off-trajectory BEs are used in the subsequently defined adaptive update

laws to improve the actor and critic weight approximations online. The critic weight

update law is defined as

˙̂
W c ≜ −Γc

(
kc1

ω

ρ2
δ +

kc2
N

N∑
e=1

ωe
ρ2e
δe

)
, (3–17)

67

and the least-squares gain matrix update law is defined as

Γ̇c ≜ βcΓc − Γckc1
ωω⊤

ρ2
Γc − Γc

kc2
N

N∑
e=1

ωeω
⊤
e

ρ2e
Γc, (3–18)

where ρ ≜ 1 + γ1ω
⊤ω, ρe ≜ 1 + γ1ω

⊤
e ωe, ωe ≜ ω

(
δe, θ̂, Ŵa

)
, and kc1, kc2, γ1, βc ∈ R>0 are

user-defined learning gains. The actor weight update law is defined as

˙̂
W a ≜ −Kaka1

(
Ŵa − Ŵc

)
+Ka

kc1
4
G⊤
σ Ŵa

ω⊤

ρ2
Ŵc −Kaka2Ŵa +Ka

kc2
4N

N∑
e=1

G⊤
σeŴa

ω⊤
e

ρ2e
Ŵc,

(3–19)

where ka1, ka2 ∈ R≥0 are user-defined learning gains, and Ka ∈ RL×L is a user-defined

positive-definite symmetric matrix.

Assumption 3.6. There exist constants T2, c1, c2, c3 ∈ R≥0 such that

c1IL ≤ inf
t∈R≥t0

1

N

N∑
e=1

ωeω
⊤
e

ρ2e
,

c2IL ≤
� t+T2

t

(
1

N

N∑
e=1

ωe (τ)ω
⊤
e (τ)

ρ2e (τ)

)
dτ, ∀t ∈ R≥t0 ,

c3IL ≤
� t+T2

t

(
ω (τ)ω⊤ (τ)

ρ2 (τ)

)
dτ, ∀t ∈ R≥t0 ,

where T2 and at least one of the constants c1, c2, or c3 is strictly positive [142].

Remark 3.2. See [112] for insight into Assumption (3.6).

3.4 Stability Analysis

Let Bζ ⊂ R3n+2L+np represent a closed ball with a radius ζ ∈ R>0 centered

at the origin. Let Z ∈ R3n+2L+np denote a concatenated state vector defined as ZL ≜[
x⊤, W̃⊤

c , W̃⊤
a , Z⊤

θ

]⊤
where Zθ = vec

(
θ̃
)

and θ̃ ≜ θ−θ̂. Let VL : R3n+2L+np×R≥t0 →

R denote a candidate Lyapunov function defined as

VL (ZL, t) ≜ V ∗ (x, t) +
1

2
W̃⊤
c Γ

−1
c (t) W̃c +

1

2
W̃⊤
a K

−1
a W̃a + Vθ (Zθ, t) , (3–20)

68

where Vθ (Zθ, t) ≜ 1
2
tr
(
θ̃⊤Γ−1

θ (t) θ̃
)

, that can be bounded by class K functions vl, vl :

R → R≥0 as

vl (∥ZL∥) ≤ VL (ZL, t) ≤ vl (∥ZL∥) (3–21)

for all t ∈ R≥t0 where ZL ∈ R3n+2L+np. The sufficient conditions for ultimate boundedness

of Z are derived based on the subsequent analysis as

kd ≥ 1, λmin {H} > 0,

√
l

κ
≤ v−1

l (vl (ζ)) , (3–22)

where

κ ≜ min

{
1

2
q,

1

4
kθλmin [Σθ] ,

1

6
kc2c,

1

6
(ka1 + ka2)

}
,

c ≜

(
βc

2kc2Γc
+
c1
2

)
,

φa ≜
(kc1 + kc2)

4
∥Gσ∥

kρ√
γ1

∥W∥+ 1

2

1

λmin {Ka}
∥∇WGR∇σ⊤∥,

Σθ ≜

[
M∑
j=1

φ⊤
j φj

]
,

φac ≜ ka1 +
kc1 + kc2

4
∥Gσ∥∥W∥ kρ√

γ1
+

1

2

1

Γc
∥∇W∥∥GR∥∥∇σ⊤∥,

φcθ ≜ (kc1 + kc2)
kρ√
γ1

(
∥W⊤∥∥∇σ∥∥ϕ∥

(
1 +

1

kd
+ ∥g∥∥g+∥

))
,

and l ∈ R>0 is a constant that depends on the bounded NN constants.

In contrast to the result in [112], the multi-timescale Lb-DNN identifier introduces

piecewise-in-time discontinuities in the dynamics which complicates the stability analysis

in the sense that common actor-critic methods cannot be readily applied in the stability

analysis of the closed-loop system. The following theorem contains a Lyapunov-like

69

stability analysis which considers functions containing discontinuities that are piecewise

continuous in time.

Theorem 3.1. Provided all assumptions are satisfied, and conditions in (3–22) are met,

then the error state x, the critic weight estimate error W̃c, the actor weight estimate error

W̃a, and the parameter estimation error θ̃ are UUB. Hence, the approximate control

policy µ̂ converges to a neighborhood of the optimal control policy µ∗.

Proof. Taking the time derivative of (3–20), and substituting (3–14), V̇ ∗ (x) =

∇V ∗ (F (x) +G (x)µ), ˙̃
W c ≜ Ẇ − ˙̂

W c,
˙̃
W a ≜ Ẇ − ˙̂

W a, and Ẇ ≜ ∇W (x) (F (x) +G (x)µ)

yields

V̇L = ∇V ∗ (F +Gµ) + V̇θ (Zθ)−
1

2
W̃⊤
c

(
Γ−1
c Γ̇cΓ

−1
c

)
W̃c

+ W̃⊤
c Γ

−1
c

(
∇W (F +Gµ)− ˙̂

W c

)
+ W̃⊤

a K
−1
a

(
∇W (F +Gµ)− ˙̂

W a

)
.

Using (3–15), the update laws in (3–12) and (3–17)-(3–19), Ŵa = W−W̃a, Ŵc = W−W̃c,

Assumptions 3.3-3.6, and implementing bounding and completing the square yields

V̇L ≤ −κ ∥ZL∥2 − κ ∥ZL∥2 + l − Z⊤
v HZv, where Zv ≜

[∥∥∥W̃a

∥∥∥ , ∥∥∥W̃c

∥∥∥ , ∥Zθ∥
]⊤

.

Specifically, Assumption 3.4 is used to bound the system identification parameter

estimation term V̇θ in the Lyapunov function. Provided the sufficient conditions in (3–22)

are met, then V̇L can be bounded as

V̇L ≤ −κ ∥ZL∥2 , ∀ ∥ZL∥ ≥
√
l

κ
> 0. (3–23)

As a result of the discontinuities in the update laws in (3–12) and (3–17)-(3–19) being

piecewise continuous in time, and by using (3–22) and (3–23), [137, Theorem 4.18]

can be enforced to conclude that ZL is UUB such that ∥ZL∥ ≤ v−1
(
v
(√

l
κ

))
and

µ̂ converges to a neighborhood around the optimal policy µ∗. Since ZL ∈ L∞, then

x, W̃c, W̃a, θ̃ ∈ L∞ and thus µ ∈ L∞. Moreover, since x ∈ L∞, and since W is a

continuous function of x, it follows that W (x) ∈ L∞. Furthermore, since x ∈ L∞, then

70

eη, ez, ed ∈ L∞. Using (3–3)-(3–5), z ∈ L∞, and ηd ∈ L∞; hence, η, (z − η) ∈ L∞ follows.

Lastly, since ηd, µ, g+, θ̃ ∈ L∞, it follows that θ̂, ud ∈ L∞ and u ∈ L∞.

3.5 Simulations

An example scenario is simulated to illustrate the performance of the developed

ICL-Lb-DNN ADP architecture where an evader and pursuer are uniformly randomly

placed in a 1000 × 1000 unit area with the goal of position control (n = 2). The goal

region is set to a uniformly random location within a 100 unit radius of the pursuer while

the evader is uniformly randomly initialized at least 500 units from the goal region. The

pursuer must therefore leave the goal area to catch the evader, learn the interaction

dynamics in real-time using the deep ICL learning architecture, and approximate the

optimal influencing policy using ADP. The typical performance of the architecture in

simulation is shown in Figure 3-1 to indirectly control the position of the evader, where

the pursuer is initially in the top-right (blue circle with white plus) near the goal (orange

circle) and the evader is initially in the bottom-left (orange circle with white plus).

Without loss of generality, the dynamics for the pursuer were h (z, η) = 02×1 and

g (η) = I2×2. The evader dynamics were f (z, η) = (z − η) exp
(
− 1

20,000
(z − η)⊤ (z − η)

)
.

In the simulation, the ICL-DNN function approximation was implemented using PyTorch,

and all the history stack data was collected online in real-time (approximately 45 Hz).

The ICL-Lb-DNN and the history stack remained on the graphics card for optimiza-

tion using a maximum of approximately 1GB of memory. At each time step, the data

was added to the history stack which was a sliding buffer containing the most recent

second of data (∆tθ = 1.0 second). At each time step the integrals of the data were

approximated using the trapezoidal rule to update the output weights using (3–12) and

update the DNN inner-layer features using the loss discussed in Remark 3.1, where

a single optimizer step was performed for each simulation step on a batch of integral

data from the history stack using Adam with a linearly annealing learning rate (initialized

to 0.001 and linearly decayed to 0.0001). To enable online optimization, the DNN was

71

constrained to 3 inner layers, each with 64 neurons and hyperbolic tangent activation

functions while the final layer had 64 output weights. The output weights and inner-layer

weights were randomly initialized using a zero mean and standard deviation of 0.01

(θ̂z (0) ∼ N (0, 0.01)) with Γθ = 0.1 and kθ = 1.0. The function approximation results in

Figure 3-2 show that in the 35 second simulation, the ICL-DNN function approximation

converges to within 10% of the true value of the nonlinear interaction dynamics while

the loss converges to 0.04. Additionally, the SNN from [112], with 256 output weights,

converges to within 50% of the true value of the dynamics demonstrating the DNN

outperforms the SNN used in [112].

The efficient State following (StaF) kernels method from [142] was used to approx-

imate the optimal policy online in real-time (approximately 45 Hz) while simultaneously

estimating the dynamics using the ICL-DNN function approximation. The value function

was approximated using 7 StaF kernels σ (x, c (x)) =
[
σ1 (x, c1 (x)) . . . σ7 (x, c7 (x))

]⊤
where each kernel σq (x (t) , cq (x (t))) =

x⊤(t)cq(x(t))

∥x(0)∥2 , cq (x (t)) = x (t) + ∥x (0) ∥ν (x (t)) dq,

ν (x (t)) = x⊤(t)x(t)+0.01∥x(0)∥2
∥x(0)∥2+x⊤(t)x(t)

, and dq are the vertices of a 6-simplex. The actor and critic

weights were initialized as Ŵa(0) = 17 and Ŵc (0) = 2Ŵa (0) while Γc (0) = 5I7×7. The

gains used to update the weights were selected as kc1 = 0.9, kc2 = 0.1, Ka = 1.0,

ka1 = 0.25, ka2 = 0.005, βc = 0.001, γ1 = 0.75, and N = 10 extrapolation points

were selected within a radius of ν (x) of x. The cost and control gains selected were

Q = 0.0001I6×6, R = 0.01, and kd = 1.3. Using the selected gains resulted in excellent

tracking performance as shown by the tracking errors in Figure 3-3 where the tracking

error ez → 0. These results demonstrate that the DNN-ICL-based ADP architecture is an

excellent approach for real-time approximation of the optimal policy when dynamics are

unknown and highly nonlinear.

3.6 Concluding Remarks

This chapter presents the first result where ICL is used to update a DNN, specif-

ically an ICL-based adaptive update law is used to update output-layer weights in

72

real-time and integrated datasets in the loss function are used to batch update the

inner-layer features concurrent to real-time. A deep ICL-based implementation of ADP

is presented to achieve an approximate optimal online solution to the indirect regulation

herding problem for unknown agents. An ICL-based system identifier is facilitated by an

Lb-DNN to estimate the unknown interaction dynamic between the pursuer and evader.

A Lyapunov-based analysis is provided to prove UUB convergence of the evader to the

desired goal location known by the pursuer. The simulation shows that the pursuer is

able to intercept and regulate the evader towards the desired goal location and that the

DNN system identifier outperforms the SNN system identifier.

This chapter opens the door for the unknown interaction dynamics of multiple

agents to be learned online via deep learning. Future work consists of extending this

result to problems with multiple pursuers, multiple evaders, or both. Additional future

ideas consist of extensions to problems with more complex dynamical agent interaction

such as the evader optimally evading the pursuer or an asymmetric interaction between

the pursuer and evader.

73

Figure 3-1. Simulation example where the pursuer is initialized in the bottom-right (blue
circle with white plus), the goal region is to the left of the pursuer (orange
circle), and the evader is initialized in the top-left (orange circle with white
plus). The pursuer trajectory and evader trajectory over the experiment are
shown in blue and orange, respectively. Simulation shows evader initially
flees towards top-left; however, the pursuer approximates the interaction
dynamics and optimal policy in real-time and quickly escorts the evader to
the goal region.

74

Figure 3-2. Function approximation where the true values are shown in solid lines and
the estimated values are shown in dashed lines. The ICL-DNN estimates
quickly converged near the true values using the data collected online. The
left figure shows the ICL-DNN approximation and right figure shows the
ICL-SNN approximation demonstrating that the ICL-DNN outperforms the
ICL-SNN.

Figure 3-3. The evader tracking error steadily decays after the evader initially flees. The
auxiliary errors also converge to a small radius of the goal.

75

CHAPTER 4
LYAPUNOV-BASED DEEP REINFORCEMENT LEARNING FOR APPROXIMATE

OPTIMAL CONTROL

Chapter 3 used a DNN for system identification and an SNN for value function

approximation. Building on the results in Chapter 3, in this chapter a DNN is used for

value function approximation for the first time. Both the unknown drift dynamics and the

unknown optimal value function are approximated online via Lb-DNNs. This chapter

approximates an online solution to the infinite-horizon optimal tracking problem for

control-affine continuous-time nonlinear systems. Similar to Chapter 3, the Lb-DNNs

operate on a multi-timescale where the output-layer weights are updated online in real-

time and the inner-layer features are updated concurrent to online execution via batch

updates. In this chapter the output-layer weight update laws are formulated motivated

by a Lyapunov-based stability analysis, and the inner-layer features use optimization

algorithms for batch updates. The approximation of the optimal control policy is proven

to converge to a neighborhood of the optimal control policy, and UUB stability of the

states is proven via a Lyapunov-based stability analysis. The comparative simulation

results show that the deep value function approximation method results in 95.04%

improvement in BE minimization and 5.06% faster convergence.

4.1 Background Information

Consider the class of nonlinear control-affine systems introduced in (2–1) and

Assumptions 2.1 and 2.2. The tracking error is defined as e ≜ x − xd where xd ∈ Rn

denotes a time-varying continuously differentiable desired state trajectory. The following

assumptions facilitate the development of the approximately optimal tracking controller

[93].

Assumption 4.1. The desired trajectory is bounded from above by an unknown positive

constant xd ∈ R such that supt∈R≥0
∥xd∥ ≤ xd.

Assumption 4.2. There exists a locally Lipschitz function hd : Rn → Rn, such

that hd (xd) ≜ ẋd and g+ (xd) g (xd) (hd (xd)− f (xd)) = hd (xd) − f (xd) ∀t ∈ R≥0,

76

where g+ : Rn → Rm×n is defined as g+ (x) ≜
(
g⊤ (x) g (x)

)−1
g⊤ (x) . It follows that

supt∈R≥0
∥g+ (xd)∥ ≤ g+d .

Remark 4.1. Assumption 4.1 and Assumption 4.2 are classical assumptions used to

transform a time-varying tracking problem to a time-invariant optimal control problem.

The user selection of xd and hd can satisfy Assumptions 4.1 and 4.2. [93]

Leveraging the technique in [93] to transform the time-varying tracking problem into

a time-invariant infinite horizon regulation problem, the nonlinear control-affine dynamics

are rewritten as

ζ̇ = F (ζ) +G (ζ)µ, (4–1)

where ζ ≜
[
e⊤, x⊤d

]⊤ is a concatenated state vector, F : R2n → R2n is defined as

F (ζ) ≜

 f (e+ xd)− hd (xd) + g (e+ xd)ud (xd)

hd (xd)

 , (4–2)

G : R2n → R2n×m is defined as

G (ζ) ≜
[
g (e+ xd)

⊤ ,0m×n

]⊤
, (4–3)

µ ≜ u − ud (xd) is the transient component of the controller, and ud : Rn → Rm is the

trajectory tracking component of the controller defined as

ud (xd) ≜ g+ (xd) (hd (xd)− f (xd)) .

From Assumption 4.2, it follows that supt∈R≥0
∥g+ (xd)∥ ≤ g+d . Since the drift dynamics f

are unknown, ud cannot be calculated and thus must be approximated. The approxima-

tion of the trajectory tracking component ûd is subsequently defined in Section 4.4. The

action space for µ is U ⊂ Rm.

77

4.2 Deep System Identification

This section uses the multi-timescale deep system identification formulation in

Section 3.2 to approximate the drift dynamics with a DNN as

f (x) = θ⊤ϕ (Φ (x)) + ϵθ (x) , (4–4)

and the ith DNN estimate of the drift dynamics as

f̂i

(
x, θ̂
)
= θ̂⊤ϕ

(
Φ̂i (x)

)
. (4–5)

Assumptions 3.3 and 3.4 contain the bounds on the NN parameters. Unlike Chapter 3,

in this chapter CL is used to update the output-layer weights and inner-layer features.

Assumption 4.3. A history stack consisting of input-output data pairs {ẋj, xj, uj}Mj=1

is collected online where ẋj ≜ f (xj) + g (xj)uj. In some cases the system

identification history stack may be available a priori, but it is not necessary [93].

There exists a constant λ such that the history stack satisfies the inequality

λmin

(∑M
j=1 ϕ

(
Φ̂i (xj)

)
ϕ
(
Φ̂i (xj)

)⊤)
> λ .

Remark 4.2. The selected data must be sufficiently exciting to satisfy the inequality in

Assumption 4.3.

Input-output data stored in the CL history stack can be collected online and can

simultaneously update the output-layer weights and inner-layer features of the system

identification DNN on a multi-timescale. Specifically, the CL history stacks consisting of

{ẋ (t) , x (t) , u (t)} can update θ̂ in real-time and update Φ̂i (x) from i to i+ 1 iteratively.

4.2.1 Output-Layer Weight Updates

The output-layer DNN weights θ̂ are updated according to the CL-based update law

˙̂
θ = Γθϕ

(
Φ̂i (x)

)
x̃⊤ + kθΓθ

M∑
j=1

ϕ
(
Φ̂i (xj)

)
·
(
ẋj − gj (xj)uj − θ̂⊤ϕ

(
Φ̂i (xj)

))⊤
, (4–6)

where Γθ ∈ Rp×p is a user-selected constant.

78

4.2.2 Inner-Layer Feature Updates

Motivated by the subsequent analysis, the output-layer weights of the DNNs

are updated online in real-time using the aforementioned adaptive update law in (4–

6); however, updating the inner-layer features may improve function approximation.

Therefore, using the CL history stack, the inner-layer features are updated concurrent to

task execution (but slower than real-time) using an optimization technique to minimize

the mean squared error based on the saved data {ẋ (t) , x (t) , u (t)}. The i + 1th batch

optimization is used to update the ith approximation of Φ through the loss function

Li+1 =
1

M

M∑
j=1

∥∥∥ẋj − gj (xj)uj − θ̂⊤ϕ
(
Φ̂i (xj)

)∥∥∥2 .
4.3 Control Objective

The control objective can be satisfied by solving the infinite-horizon optimal tracking

problem, i.e. finding a control policy µ that minimizes the cost functional

J (ζ, µ) =

∞�

0

Q (ζ (τ)) + µ (τ)⊤Rµ (τ) dτ, (4–7)

where Q ∈ R2n → R≥0 is a PSD user-defined state cost function, and R ∈ Rm×m is

user-defined PD symmetric input cost matrix. Let Q (ζ) ≜ Q (e) , where Q : Rn → R≥0 is

a PD user-defined cost function that penalizes the error e and not the desired trajectory

xd, e.g, Q (ζ) = e⊤Qe+ x⊤d 0n×nxd.

Property 1. The function Q is PSD and satisfies q (∥e∥) ≤ Q (ζ) ≤ q (∥e∥) for q, q : R≥0 →

R≥0.

The infinite-horizon value function, i.e., the cost-to-go, is denoted by V ∗ : R2n → R≥0

and given by V ∗ (ζ) = minµ∈U
�∞
t
Q (ζ (τ)) +µ (τ)⊤Rµ (τ) dτ with the boundary condition

V ∗ (0) = 0. If the optimal value function is continuously differentiable, then the optimal

control policy µ∗ : R2n → Rm can be obtained from the corresponding HJB equation

0 = ∇ζV
∗ (ζ) (F (ζ) +G (ζ)µ∗) +Q (ζ) + µ∗ (ζ)⊤Rµ∗ (ζ) , (4–8)

79

the solution to which is the analytical optimal control policy

µ∗ (ζ) = −1

2
R−1G (ζ)⊤ (∇ζV

∗ (ζ))⊤ .

4.4 Deep Value Function Approximation

Simultaneous to DNN-based system identification, the unknown optimal value

function is approximated with an additional Lb-DNN. Motivated to improve value function

approximation, this section presents the problem formulation for applying the multi-

timescale Lb-DNN method to approximate the optimal value function. Leveraging results

based on the universal function approximation property of NNs, let ζ ∈ Ω ⊂ R2n be

a compact domain of the state space. Theorem 4.1 proves that if ζ is initialized within

a compact set, then it will remain in a compact set. Refer to [101, Algorithm A.2] for

discussion on establishing the size of compact sets. The optimal value function V ∗ can

be approximated on Ω with a DNN as

V ∗ (ζ) = W⊤ψ (Ψ (ζ)) + ϵv (ζ) , (4–9)

where W ∈ RL is a vector of ideal constant output-layer weights, ψ : Rh → RL is a vector

of user-selected activation functions, Ψ : R2n → Rh is a function that represents the ideal

DNN inner-layer features, and ϵv : R2n → R is the function approximation error. Based

on the approximation in (4–9), the optimal control policy µ∗ : R2n → Rm is

µ∗ (ζ) = −1

2
R−1G (ζ)⊤ ·

(
W⊤∇ζψ (Ψ (ζ)) +∇ζϵv (ζ)

)⊤
. (4–10)

If V ∗ (ζ) is known, then it can be substituted into (4–10) to obtain an optimal control

policy; however, the ideal output-layer weights W and ideal inner-layer features Ψ are

unknown a priori. Leveraging an actor-critic-based framework, the optimal value function

in (4–9) can be approximated with an estimate of the ideal weights Ŵc ∈ RL. The

80

optimal value function approximation V̂ : R2n × RL → R can then be defined as

V̂
(
ζ, Ŵc

)
≜ Ŵ⊤

c ψ
(
Ψ̂k (ζ)

)
, (4–11)

where Ψ̂k : R2n → Rh is an approximation of the ideal DNN inner-layer features Ψ.

The subscript k ∈ N≥0 refers to the index of the inner-layer features, which increases

when the new set of inner-layer features are implemented (i.e., when the DNN training

is complete). Furthermore, the optimal control policy in (4–10) can be approximated

with an estimate of the ideal weights Ŵa ∈ RL, resulting in the optimal control policy

approximation µ̂ : R2n × RL → Rm defined as

µ̂
(
ζ, Ŵa

)
≜ −1

2
R−1G (ζ)⊤ ·

(
Ŵ⊤
a ∇ζψ

(
Ψ̂k (ζ)

))⊤
. (4–12)

Assumption 4.4. There exist constant weights W and positive constants W , ψ, ∇ζψ,

ϵv, and ∇ζϵv ∈ R≥0, such that ∥W∥ ≤ W, sup
ζ∈Ω

∥ψ (·)∥ ≤ ψ, sup
ζ∈Ω

∥∇ζψ (·)∥ ≤ ∇ζψ,

sup
ζ∈Ω

∥ϵv (ζ)∥ ≤ ϵv, and sup
ζ∈Ω

∥∇ζϵv (ζ)∥ ≤ ∇ζϵv [141, Ch. 4].

Assumption 4.5. The kth user-selected inner-layer features Ψ̂k are selected such that

ψ
(
Ψ̂k (ζ)

)
+ ϵv,k (ζ) = ψ (Ψ (ζ)), where ϵv,k : R2n → RL is an approximation error of

the ideal and kthuser-selected inner-layer features, and ∇ζψ
(
Ψ̂k (ζ)

)
+ ∇ζϵv,k (ζ) =

∇ζψ (Ψ (ζ)). Furthermore, sup
ζ∈Ω, k∈N

∥ϵv,k (ζ)∥ ≤ ϵv and sup
ζ∈⊗, k∈N

∥∇ζϵv,k (ζ)∥ ≤ ∇ζϵv, where

ϵv,∇ζϵv ∈ R≥0 are constants for all k iterations.

Recall, the trajectory tracking component of the controller ud is not known a priori

due to unknown drift dynamics. An approximation of the trajectory tracking component

ûd : Rn × Rp×n → Rm is defined as ûd
(
xd, θ̂

)
≜ g+ (xd)

(
hd (xd)− f̂i

(
xd, θ̂

))
; hence, the

control policy u applied to the dynamical system ẋ = f (x) + g (x)u is [93]

u ≜ µ̂
(
ζ, Ŵa

)
+ ûd

(
xd, θ̂

)
. (4–13)

81

4.5 Bellman Error

The left-hand side of the HJB in (4–8) is equal to zero under optimal conditions.

However, substituting (4–11), (4–12), and the approximated drift dynamics f̂i
(
x, θ̂
)

into

(4–8) yields a residual term δ̂ : R2n × Rp×n × RL × RL → R known as the BE. The BE is

defined as

δ̂
(
ζ, θ̂, Ŵc, Ŵa

)
≜ µ̂

(
ζ, Ŵa

)⊤
Rµ̂
(
ζ, Ŵa

)
+Q (ζ)

+∇ζ V̂
(
ζ, Ŵc

)(
F̂i

(
ζ, θ̂
)
+G (ζ) µ̂

(
ζ, Ŵa

))
, (4–14)

where F̂i : R2n × Rp×n → R2n is defined as

F̂i

(
ζ, θ̂
)
≜

[
f̂i

(
e+ xd, θ̂

)⊤
− hd (xd)

⊤ + ud

(
xd, θ̂

)⊤
g (e+ xd)

⊤ , hd (xd)
⊤
]⊤

. (4–15)

The BE in (4–14) is an indirect measure of the suboptimality of the value function

approximation which defines the error between the weight estimates and the unknown

ideal values as W̃c ≜ W − Ŵc and W̃a ≜ W − Ŵa. Substituting (4–9) and (4–10) into

(4–8) and subtracting the BE in (4–14) yields an analytical form of the BE, given as

δ̂ = −ω̂T W̃c +
1

4
W̃ T
a Gψ̂W̃

T
a −W T

(
∇ζψ

(
Ψ̂k (ζ)

))(
F − F̂i

)
+O (ζ) , (4–16)

where

ω̂
(
ζ, Ŵa, θ̂

)
≜ ∇ζψ

(
Ψ̂k (ζ)

)(
F̂i

(
ζ, θ̂
)
+G (ζ) µ̂

(
ζ, Ŵa

))
,

O (ζ) ≜
1

2
W⊤∇ζψ (Ψ (ζ))GR∇ζϵv (ζ)

⊤ +
1

4
Gϵ −W⊤∇ζϵv (ζ)F (ζ)

+
1

4
W⊤GψW − 1

4
W⊤Gψ̂W −∇ζϵv (ζ)F (ζ) ,

GR (ζ) ≜ G (ζ)R−1G (ζ)⊤ ,

Gψ (ζ) ≜ ∇ζψ (Ψ (ζ))GR (ζ)∇ζψ (Ψ (ζ))⊤ ,

82

Gψ̂ (ζ) ≜ ∇ζψ
(
Ψ̂k (ζ)

)
GR (ζ)∇ζψ

(
Ψ̂k (ζ)

)⊤
,

and

Gϵ (ζ) ≜ ∇ζϵv (ζ)G (ζ)∇ζϵv (ζ)
⊤ .

4.5.1 Bellman Error Extrapolation

The BE is extrapolated from the user-defined, off-policy trajectories {ζe : ζe ∈ Ω}Ne=1

set by the user, where N ∈ N denotes a user-specified number of extrapolated trajec-

tories in the compact set Ω. The extrapolated trajectories ζe ∈ Ω are used to evaluate

the BE in (4–14) such that δ̂e ≜ δ̂
(
ζe, θ̂, Ŵc, Ŵa

)
. The data stacks corresponding to Ω

are represented as (Σc,Σa,ΣΓ) such that Σc ≜ 1
N

∑N
e=1

ωe
ρe
δ̂e, Σa ≜ 1

N

∑N
e=1

G⊤
ψ̂e
Ŵaω⊤

e

4ρe
, and

ΣΓ ≜ 1
N

∑N
e=1

ωeω⊤
e

ρ2e
, where ωe ≜ ω

(
ζe, θ̂, Ŵa

)
, and ρe = ρ

(
ζe, θ̂, Ŵa

)
= 1 + νω⊤

e Γωe

containing ν ∈ R>0 as a user-defined gain and Γ : RL×L as a user-defined learning

gain. The normalized regressors ω
ρ

and ωe
ρe

can be bounded as supt∈R≥0

∥∥∥ωρ∥∥∥ ≤ 1

2
√
νΓ

and

supt∈R≥0

∥∥∥ωeρe ∥∥∥ ≤ 1

2
√
νΓ

for all ζ ∈ Ω and ζe ∈ Ω, respectively. From Assumption ?? it

follows that 0 < ∥G(ζ)∥ ≤ G, where G ∈ R>0. The matrices GR and Gψ̂ can be bounded

as supζ∈Ω ∥GR∥ ≤ λmax {R−1}G2
≜ GR and supζ∈Ωk

∥∥∥Gψ̂

∥∥∥ ≤
(
∇ζψG

)2
λmax {R−1} ≜ Gψ̂,

respectively, where λmax {·} denotes the maximum eigenvalue. The expression for

the BE in (4–14) and (4–16) are equivalent, but (4–14) is used in implementation, and

(4–16) is used in the subsequent Lyapunov-based stability analysis.

Assumption 4.6. On the compact set Ω, there exists a finite set of off-policy trajectories

{ζe : ζe ∈ Ω}Ne=1 such that 0 < c ≜ inft∈R≥0
λmin {ΣΓ} for all t ∈ R≥0, where c is a

constant scalar lower bound of the value of each input-output data pairs minimum

eigenvalues [92].

Remark 4.3. Assumption 4.6 can be verified online and heuristically satisfied by

selecting a greater amount BE extrapolation points than amount of neurons in ψ such

that N ≫ L [92].

83

4.6 DNN Value Function Update Laws

Similar to the CL history stack used to update the system identifier, BE extrapolation

is used to update the value function approximation by treating the BE as the cost to

be minimized. The data stacks consisting of {Σc,Σa,ΣΓ} are collected online and

simultaneously update the output-layer weights and inner-layer features of the DNN.

Specifically the BE extrapolation data stacks can update Ŵc and Ŵa in real-time and

update Ψ̂k (ζ) from k to k + 1 iteratively.

4.6.1 Actor-Critic Output-Layer Weight Updates

The actor and critic weights are updated using the instantaneous BE δ̂ and extrapo-

lated BEs δ̂e. In the subsequent update laws, ηc1, ηc2, ηa1, ηa2, λ ∈ R are positive constant

learning gains.

The critic weight update policy ˙̂
W c ∈ R is defined as

˙̂
W c ≜− ηc1Γ

ω̂

ρ
δ̂ − ηc2ΓΣc, (4–17)

and the actor weight update policy ˙̂
W a is defined as

˙̂
W a ≜− ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa + ηc1

G⊤
ψ̂
Ŵaω̂

⊤

4ρ
Ŵc + ηc2ΣaŴc. (4–18)

The least-squares gain update policy Γ̇ : RL×L is defined as

Γ̇ ≜

(
λΓ− ηc1

Γω̂ω̂⊤Γ

ρ2
− ηc2ΓΣΓΓ

)
1{Γ≤∥Γ∥≤Γ}, (4–19)

where 1{·} denotes the indicator function used to ensure that Γ ≤ ∥Γ∥ ≤ Γ for all t ∈ R>0.

4.6.2 Inner-Layer Feature Updates

Offline function approximation methods are used to update the inner-layer DNN

weight estimates simultaneous to the online execution using a random set of Nδ ∈ Z

states from the saved history of states. The inner-layer features are updated periodically

using an optimization technique to minimize the normalized mean squared error of the

BE. The k + 1th batch optimization is used to update the kth approximation of Ψ(ζ)

84

through the loss function

Lδ,k+1 =
1

Nδ

Nδ∑
e=1

δ̂2e
ρe

(1− we (πe, µ̂e)) + (πe − µ̂e)
2we (πe, µ̂e) , (4–20)

where πe ∈ Rm is any exploration policy (e.g. StaF policy [143]) and we : Rm×Rm → [0, 1]

is the dynamic confidence weighting assigned to the exploration policy that considers

the confidence of the current policy compared to the confidence of the exploration policy.

The use of an exploration policy is to accelerate the training of the value function DNN.

A general exploration policy is used, and a specific example is provided in [108] and

used as an example application in Section 4.8.

4.7 Stability Analysis

Because the optimal value function V ∗ is PSD, the optimal value function is not a

valid Lyapunov function. However, the optimal value function can be represented in a

nonautonomous form, denoted as V ∗
na : Rn × R≥0 → R and defined as V ∗

na (e, t) ≜ V ∗ (ζ),

that is PD and decrescent where V ∗
na (0, t) = 0 [88]. Class K∞ functions v, v : R≥0 → R≥0

exist that bound v (∥e∥) ≤ V ∗
na (e, t) ≤ v (∥e∥) ∀e ∈ Rn, t ∈ R≥0, therefore ensuring

V ∗
na (e, t) is a valid Lyapunov function. Let Z ∈ Rn+2L+pn be a concatenated state defined

as Z ≜

[
e⊤, W̃⊤

c , W̃
⊤
a , vec

(
θ̃
)⊤]⊤

where θ̃ ≜ θ − θ̂. Let VL : Rn+2L+pn × R≥0 → R be a

candidate Lyapunov function defined as

VL (Z, t) ≜ V ∗
na (e, t) +

1

2
W̃⊤
c Γ (t)−1 W̃c +

1

2
W̃⊤
a W̃a +

1

2
tr
(
θ̃⊤Γ−1

θ θ̃
)
. (4–21)

According to [137, Lemma 4.3], and the properties of V ∗
na (e, t), there exist class K∞

functions α1, α2 : R≥0 → R≥0 that bound (4–21) as α1 (∥Z∥) ≤ VL (Z, t) ≤ α2 (∥Z∥).

See [92, Algorithm 1] for insight into selecting the subsequently defined gain conditions.

Theorem 4.1. Given the dynamics in (4–1), provided that Assumptions 4.1-4.6, as well

as 2.1 and 2.2, hold, the weight update laws in (4–17)-(4–19) are implemented, and the

85

conditions

ηa1 + ηa2 ≥
ηc1 + ηc2√

νΓ
W Gψ̂, (4–22)

c ≥ 3
ηa1
ηc2

+
3 (ηc1 + ηc2)

2W
2
Gψ̂

2

16νΓηc2 (ηa1 + ηa2)
+

9 (ηc1 + ηc2)
2W

2∇ψ2
ϕ
2 (

1 + g (x) g+
)2

8νΓηc2kθλ
, (4–23)

v−1
L (l) < α−1

2 (α1 (r)) , (4–24)

are satisfied, where vL is a subsequently defined PD function, l is a positive constant

depending on the NN bounding constants in [113, Assumptions 6 & 7] and Assumptions

4.4 and 4.5 and r ∈ R>0 is the radius of the compact ball χ ⊂ Rn+2L+pn centered at the

origin, then the tracking error e, weight estimation errors W̃c and W̃a, and the output-

layer weight matrix error θ̃ are UUB, and therefore the control policy û converges to a

neighborhood of the optimal control policy u∗.

Proof. Using the class of dynamics in (4–1), the fact that V ∗
na (e, t) ≜ V ∗ (ζ), V̇ ∗ (ζ) =

∇ζV
∗ (ζ) ∗ F (ζ) + G (ζ)µ, (4–6), (4–17)-(4–19), Young’s inequality, nonlinear damping,

Assumptions 4.3 and 4.6, and substituting the sufficient gain conditions in (4–22) and

(4–23) yields

V̇L ≤ −vL (∥Z∥) ∀α−1
2 (α1 (r)) ≥ ∥Z∥ ≥ v−1

L (l) , (4–25)

for all t ∈ R≥0, where vL (∥Z∥) ≜ 1
2
q (e) + 1

12
ηc2c

∥∥∥W̃c

∥∥∥2 + 1
16
(ηa1 + ηa2)

∥∥∥W̃a

∥∥∥2 +

1
6
kθλ

∥∥∥vec(θ̃)∥∥∥2.
Since the update laws in (4–6) and (4–17)-(4–19) contain discontinuities that are

piecewise continuous in time, and (4–21) is a common Lyapunov function across each

DNN iteration i and k, [137, Theorem 4.18] can be invoked to conclude that Z is UUB

such that lim supt→∞ ∥Z (t)∥ ≤ α−1
1

(
α2

(
ν−1
l (l)

))
and µ̂ converges to a neighborhood

86

of the optimal policy µ∗. Since Z ∈ L∞, then e, W̃c, W̃a, θ̃ ∈ L∞, and it follows that,

x, Ŵc, Ŵa, θ̂ ∈ L∞ and µ ∈ L∞.

Using (4–25), every trajectory Z (t) that satisfies the initial condition ∥Z (0)∥ <

α−1
2 (α1 (r)) can be shown to be bounded for all t ∈ R≥0, by invoking the result in [137,

Theorem 4.18], such that Z ∈ χ∀t ∈ R≥0. Since Z ∈ χ, then the states e⊤, W̃⊤
c , W̃

⊤
a , θ̃

⊤

lie on compact sets. Additionally, since xd ≤ xd, it follows that x ∈ C and ζ ∈ Ω where

C is the compact set that facilitates the DNN-based system identification, and Ω is the

compact set that facilitates the DNN-based value function approximation.

4.8 Simulation Example

The performance of the developed deep reinforcement learning framework is

examined for the application of approximate optimal indirect herding with unknown

interaction dynamics [108], [112]. Similar to [108], a DNN is used to estimate the

interaction dynamics between the pursuing and evading agents; however, in this result

we demonstrate the benefits of using the additional separate DNN to estimate the value

function. Additionally, the developed method is compared to the method in [108], using

CL for the dynamics estimate, as a baseline.

The exploration policy used in the simulation environment is the policy from [108]

where the confidence weighting we, defined in (4–20), is derived from the approximate

BE in (4–14) and the approximate BE from [108] as w ≜ wπwµ, where wπ ≜ 1
1+kπ |δ(π)| ,

wµ ≜ kµ|δ(µ)|
1+kµ|δ(µ)| , δ (π) is the BE of the exploration policy, kπ = 0.01 is a gain for the

exploration policy, δ (µ) is the BE of DNN policy, and kµ = 0.01 is a gain for the DNN

policy. The confidence weighting is used since the BE is a measure of the optimality of

each policy, therefore as the DNN policy improves, the weight of the exploration policy

decreases to minimize the bias of an inaccurate exploration policy. Specifically, this is

summarized in the following effects: |δ (µ) | → 0 then w → 0, |δ (µ) | >> 0 and |δ (π) | → 0

then w → 1, and |δ (π) | >> 0 then w → 0.

87

The dynamics DNN and value function DNN are both initialized with small random

weights with a uniform distribution of −
√
k to

√
k, where k=1/layer size, and use a

residual network architecture with a tanh(·) output activation function for the dynamics

DNN and a (·)2 + log (cosh (·)) activation function for the value function DNN. The

dynamics DNN consists of an input layer mapping the state size to the hidden layer size,

5 hidden layers of size 64, and an output layer of size 32 with the tanh (∗) activation.

The value DNN also consists of an input layer mapping the input size to the hidden layer

size, 2 hidden layers of size 64, an output layer of size 32 through the log (cosh (·)), and

a skip connection from the input layer mapped to the output layer size through the (·)2.

The output weights are initialized as Ŵa = 1L, Ŵc = 2Ŵa, Γ = 5IL×L, and θ̂ ∼ N (0, 1).

The gains are initialized ηc1 = ηc2 = 0.01, ηa1 = 0.25, ηa2 = 0.005, λ = 0.001, with kθ = 1

and Γθ = 10. The batch sizes are chosen to be Nδ = 8, M = 20, and the extrapolation

stack size size is N = 16. The cost parameters are Q = 0.01I6×6 and R = 0.01.

Figure 4-1 shows the function approximation error from using the DNN to identify

the dynamics. The DNN estimate of the dynamics is used in the subsequently shown

BE to facilitate model-based deep reinforcement learning. The training for both policies

consisted of simulating four different initial conditions around the goal region, the top-

right, top-left, bottom-left, and bottom-right locations around the goal, where in all

scenarios the dynamics model and value function estimate for both the exploration and

DNN policies were updated online (both policies used the same dynamics model). The

final simulation results shown are for a fifth scenario as shown in Figure 4-2, where the

position of the pursuing agent is represented with a blue circle with a white plus, the

position of the evading agent is represented with an orange circle with a white plus, and

the goal location is represented with a solid orange circle.

Figure 4-3 compares the BE approximation of the developed method to the method

in [108]. Since the BE is used as an indirect measure of optimality, it is shown that

the DNN outperforms the policy from [108] for value function approximation using the

88

BE as a metric of performance. The BE starts very large with the baseline method

and converges at about 3 seconds, whereas the BE starts small with the DNN and

converges in less than 2 seconds. Using the deep value function approximation method

results in 95.04% improvement in BE minimization in terms of mean absolute BE.

Using the selected gains results in excellent tracking performance as shown by the

norm tracking error in Figure 4-4. Recall that the state x is a concatenated vector of

the errors. Using the developed deep value function approximation method results in a

similar norm tracking error mean but 5.06% faster convergence. The baseline method

from [108] takes more than 4 seconds to regulate the evading agent to the goal location,

while the DNN method takes less than 4 seconds. Figure 4-5 compares the norm inputs

between the DNN method and the baseline method which have similar policies with the

DNN method having a slightly larger mean norm input which resulted in 5.06% faster

convergence with a 95.04% lower BE.

4.9 Concluding Remarks

Lb-DNN function approximation of the system dynamics has been used in Chapter

3, but Lb-DNN value function approximation (policy evaluation) has never been inves-

tigated before. This chapter develops a framework for simultaneous Lb-DNN function

approximation of the system dynamics and the value function online. A multi-timescale

Lb-DNN control method is implemented to update the output-layer DNN weights online

via real-time adaptive weight update laws and the inner-layer features via optimization

loss functions concurrent to online execution. This framework leverages CL data for the

system identification DNN and BE data for the value function DNN. The Lyapunov-based

stability analysis proves the states are UUB, and the applied control policy is approxi-

mated to within a neighborhood of the optimal control policy. The presented simulation

results show that the deep value function approximation method results in 95.04%

improvement in BE minimization and 5.06% faster convergence.

89

This chapter introduces the first result of Lyapunov-based deep reinforcement

learning, specifically Lyapunov-based deep policy evaluation. Future work consists of

implementing Lyapunov-based deep policy evaluation using a DNN that updates the

weights in all of the layers with real-time adaptive update laws using the adaptive DNN

analysis subsequently introduced in Chapter 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

20

0

20

40

60

80

f

Function
fz1

fz1
fz2

fz2

Figure 4-1. Function approximation of the dynamics with the DNN system identifier. The
solid lines represent the true values of the dynamics and the dashed lines
represent the DNN approximation of the dynamics

90

Figure 4-2. Simulation example showing the positions of the pursuing agent, the evading
agent, and the goal location. The trajectories for each agent are shown in
their respective colors. The simulation shows the pursuing agent escorting
the evading agent to the goal location at four different instances in time
during the simulation.

91

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

0

50

100

150

200

250

300
|

|

Absolute Bellman Error mean(| |): 33.96

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s)

0

5

10

15

20

25

30

35

|
|

Absolute Bellman Error mean(| |): 1.68

Figure 4-3. Comparative plots of the BE convergence for the baseline method (TOP)
compared to the developed deep value function approximation (BOTTOM).
The developed deep value function approximation method achieved
significantly better BE.

92

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

20

40

60

80

100

120

140

x

Norm Tracking Error mean(x): 38.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s)

20

40

60

80

100

120

140

x

Norm Tracking Error mean(x): 37.94

Figure 4-4. Comparative plots of the norm of the state error convergence x for the
baseline method (TOP) compared to the developed deep value function
approximation (BOTTOM). Both methods resulted in similar mean norm
error.

93

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

0

50

100

150

200

u

Norm Input mean(u): 58.22

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (s)

0

50

100

150

200

u

Norm Input mean(u): 60.07

Figure 4-5. Comparative plots of the norm of the input for the baseline method (TOP)
compared to the developed deep value function approximation (BOTTOM).
Both methods resulted in similar mean norm input.

94

CHAPTER 5
LYAPUNOV-BASED ADAPTIVE DEEP LEARNING FOR APPROXIMATE DYNAMIC

PROGRAMMING

The DNNs in Chapters 3 and 4 were updated using a multi-timescale approach

where the output-layer weights are updated using a Lyapunov-based adaptive update

law in real-time and the inner-layer weights are updated using iterative batch updates

concurrent to real-time. Advancing the DNNs in Chapters 3 and 4, in this chapter an

adaptive DNN is used where the weights in all of the layers of the DNN are updated

using adaptive update laws in real-time. ADP is performed using an Lb-DNN adaptive

identifier to approximate the unknown drift dynamics. Provided the Jacobian of the

Lb-DNN satisfies the PE condition, the Lb-DNN is shown to be exponentially convergent

to a neighborhood of the DNN weight estimation error, and the control policy is shown

to converge to a neighborhood of the optimal control policy. Simulation results show

that the Lb-DNN yields 65.73% improved RMS regulation error, 31.82% improved RMS

controller error, and 78.97% improved RMS function approximation error in comparison

to the previously developed multi-timescale DNN.

5.1 Background DNN Information

DNNs are known to approximate any given continuous function on a compact set,

based on the universal function approximation theorem [144]. Although various DNN

architectures can be used, a fully-connected DNN is described here as an example. Let

σ ∈ RLin denote the DNN input with size Lin ∈ Z>0, and θ ∈ Rp denote the vector of DNN

parameters (i.e., weights and bias terms) with size p ∈ Z>0. Then, a fully-connected

feedforward DNN Φ(σ, θ) with output size Lout ∈ Z>0 is defined using a recursive relation

Φj ∈ RLj+1 modeled as

Φj ≜


V ⊤
j ϕj (Φj−1) , j ∈ {1, . . . , k} ,

V ⊤
j σa, j = 0,

(5–1)

95

where Φ(σ, θ) = Φk , and σa ≜

[
σ⊤ 1

]⊤
denotes the augmented input that accounts

for the bias terms, k ∈ Z>0 denotes the total number of hidden layers, Vj ∈ RLj×Lj+1

denotes the matrix of weights and biases, Lj ∈ Z>0 denotes the number of nodes in the

jth layer for all j ∈ {0, . . . , k} with L0 ≜ Lin + 1 and Lk+1 = Lout. The vector of smooth

activation functions is denoted by ϕj : RLj → RLj for all j ∈ {1, . . . , k}. If the DNN

involves multiple types of activation functions at each layer, then ϕj may be represented

as ϕj ≜

[
ςj,1 . . . ςj,Lj−1 1

]⊤
, where ςj,p : R → R denotes the activation function

at the pth node of the jth layer. For the DNN architecture in (5–1), the vector of DNN

weights is θ ≜

[
vec(V0)

⊤ . . . vec(Vk)
⊤

]⊤
with size p = Σk

j=0LjLj+1. The Jacobian

of the activation function vector at the jth layer is denoted by ϕ′
j : RLj → RLj×Lj ,

and ϕ′
j(y) ≜ ∂

∂z
ϕj(z)

∣∣
z=y

, ∀y ∈ RLj . Let the Jacobian of the DNN with respect to

the weights be denoted by Φ′ (σ, θ) ≜ ∂
∂θ
Φ(σ, θ), which can be represented using

Φ′ (σ, θ) =

[
Φ′

0, Φ′
1, . . . , Φ′

k

]
, where Φ′

j ≜
∂

∂vec(Vj)
Φ (σ, θ) for all j ∈ {0, . . . , k}. Then,

using (5–1) and the property of the vectorization operator in (1–2) yields

Φ′
0 =


↶
k∏
l=1

V̂ ⊤
l ϕ

′
l (Φl−1)

 (IL1 ⊗ σ⊤
a), (5–2)

and

Φ′
j =


↶
k∏

l=j+1

V̂ ⊤
l ϕ

′
l (Φl−1)

(ILj+1
⊗ ϕ⊤

j (Φj−1)
)
, (5–3)

for all j ∈ {1, . . . , k}.

5.2 Problem Formulation

This chapter uses the dynamics in (2–1) and Assumptions 2.1 and 2.2.

Assumption 5.1. The function f is C2

96

The control objective is to solve the infinite horizon optimal regulation problem

online, i.e. find an optimal control policy u that minimizes the cost function

J (x, u) =

� ∞

0

Q (x (τ)) + u (τ)⊤Ru (τ) dτ. (5–4)

In (5–4), Q : Rn → R≥0 is a PD cost function where Q satisfies q (∥x∥) ≤ Q (x) ≤ q (∥x∥)

for q, q : R≥0 → R≥0, and R ∈ Rm×m is a user-defined constant PD symmetric cost

matrix.

The cost-to-go (i.e. the infinite horizon value function) V ∗ : Rn → R≥0 is defined as

V ∗ (x) ≜ min
u∈U

� ∞

t

Q (x (τ)) + u (τ)⊤Ru (τ) dτ, (5–5)

where U ⊆ R is the action space for u.

A major roadblock in finding the approximately optimal control policy is that the

drift dynamics f are unknown and involve complex nonlinearities. The following section

provides a method for identifying the unknown drift dynamics in real-time using DNNs.

5.3 System Identification

DNNs are known to be effective at approximating unknown nonlinear functions such

as the drift dynamics f . Previous results in [108, 113, 115, 116], Chapter 3, and Chapter

4 have used DNNs for system identification in the approximate optimal control problem.

However, in those results, the inner-layer weights of the DNN were updated concurrent

to real-time in batches using offline training techniques. Traditional offline training

techniques require large amounts of data and do not account for disturbances and

uncertainties in real-time. In this chapter, the system dynamics are identified using an

Lb-DNN with real-time weight adaptation laws for all layers of the DNN. The developed

DNN weight estimates are shown to approximately converge to their true values under

an explicit PE condition, unlike the previously cited results.

97

5.3.1 Dynamics Estimate

Let Φ : Rn × Rp → Rn denote a generalized DNN defined in the Appendix

where p represents the total number of DNN weights. DNNs are known to approximate

continuous functions on a compact set using the Universal Function Approximation

theorem [144]. The subsequent stability analysis guarantees that if x is initialized in

an appropriately-sized subset of Ω, then it will stay in Ω. The drift dynamics can be

approximated with a DNN on a compact set Ω ⊂ Rn as

f(x) = Φ(x, θ∗) + ε(x) (5–6)

where ε : Rn → Rn denotes an unknown function approximation error that can

be bounded as supx∈Ω ∥ε(x)∥ ≤ ε, and θ∗ ∈ Rp denotes ideal weights such that

supx∈Ω ∥f(x)− Φ(x, θ∗)∥ ≤ ε. An estimate of the dynamics is represented as Φ
(
x, θ̂
)

where θ̂ ∈ Rp is the subsequently designed adaptive estimate of the ideal DNN weights

θ∗. Various different architectures such as fully-connected DNNs, ResNets, LSTMs

found in [125], [126], and [128] respectively, can be used in the system identifier.

Assumption 5.2. There exists a known constant θ ∈ R>0 such that the unknown ideal

weights can be bounded as ∥θ∗∥ ≤ θ.

Real-time system identifiers typically use an identification error as feedback.

However, the identification error of the dynamics cannot be directly evaluated due to

the absence of state-derivative information. Results in [108, 115, 116] and Chapter

3 use integrators to avoid requiring state-derivative information while identifying the

output-layer weights. However, integrators do not assist in identifying the inner-layer

weights due to the nonlinear parameterization of DNNs. To overcome these challenges,

a RISE-based dynamics observer is used to obtain an instantaneous second estimate

of the dynamics [145]. The subsequent RISE-based dynamics observer is capable of

exponentially identifying uncertainty and disturbances in the function and is designed as

˙̂x = f̂ + gu+ α1x̃ (5–7)

98

˙̂
f = x̃+ kf

(
˙̃x+ α1x̃

)
+ βfsgn (x̃) (5–8)

where x̂, f̂ ∈ Rn are the observer estimates of x and f , respectively, x̃, f̃ ∈ Rn are the

observer errors x̃ ≜ x − x̂ and f̃ ≜ f(x) − f̂ , respectively, and α1, kf , βf ∈ R>0 denote

constant observer gains. The observer error x̃ is known because x and x̂ are known.

However, since ˙̃x is unknown, (5–8) can be implemented by integrating both sides and

using the relation
� t
0
˙̃x (τ) dτ = x̃(t) − x̃(0) to obtain f̂(t) = f̂(0) + kf x̃(t) − kf x̃(0) +� t

0
[(kfα1 + 1)x̃(τ) + βfsgn (x̃ (τ))] dτ which is a solution to (5–8). Taking the derivative of

x̃ and substituting (5–7) yields

˙̃x = f̃ − α1x̃. (5–9)

Additionally, taking the derivative of f̃ and substituting (5–8) and (5–9) yields

˙̃f = ḟ − x̃− kf f̃ − βfsgn (x̃) , (5–10)

where ḟ ≜ ∂f
∂x
ẋ. An identification error E ∈ Rn based on the observer estimate of f and

the DNN estimate of f is calculated as

E = f̂ − Φ
(
x, θ̂
)

(5–11)

and is used to update the weights of the DNN in real-time.

Remark 5.1. Although a RISE-based observer is capable of producing an instantaneous

estimate of the drift dynamics by essentially acting as a state-derivative estimator, the

subsequent control development requires extrapolation of the dynamics to unexplored

areas of the state space that can only be achieved using the identified DNN.

5.3.2 Adaptation Laws

To facilitate the subsequent analysis, the least squares adaptive update law is

designed as

˙̂
θ = ΓθΦ

′⊤
(
x, θ̂
)
E, (5–12)

99

where the Jacobian Φ′
(
x, θ̂
)

∈ Rn×p is calculated using (5–2) and (5–3), and the

term Γθ ∈ Rp×p denotes a symmetric, positive-definite (PD) time-varying least squares

adaptation gain matrix that is a solution to [146, Eqns. (16) and (17)]

d

dt
Γ−1
θ = −β(t)Γ−1

θ + Φ′⊤
(
x, θ̂
)
Φ′
(
x, θ̂
)
, (5–13)

where the bounded-gain time-varying forgetting factor β : R≥0 → R≥0 is designed as

β(t) ≜ β0

(
1− λmax {Γθ}

κ0

)
, (5–14)

where β0, κ0 ∈ R>0 are user-selected constants that denote the maximum forgetting rate

and the prescribed bound on λmax {Γθ}, respectively. The adaptation gain in (5–13) is

initialized to be PD such that λmax {Γθ(0)} < κ0, and it can be shown that Γθ(t) remains

PD for all t ∈ R≥0 [146]. The term β(t) can be lower bounded as β ≥ β1, where β1 ∈ R≥0

is a constant which satisfies the properties stated in the subsequent remark.

If Φ′
(
x, θ̂
)

satisfies the PE condition, i.e., there exists constants φ1, φ2 ∈ R>0 for all

t1 ∈ R≥0 and some T ∈ R>0 such that φ1Ip ≤
� t1+T
t1

Φ′⊤
(
x(τ), θ̂(τ)

)
Φ′
(
x(τ), θ̂(τ)

)
dτ ≤

φ2Ip, then it can be shown that β1 > 0 [146, Sec. 4.2].

Remark 5.2. The PE condition requires the Jacobian Φ′ to be sufficiently rich, which

yields sufficient exploration of the state-space. Under this condition, the weight esti-

mates are shown to converge to a neighborhood of their ideal values. As a result, the

DNN can generalize beyond the explored trajectory, thus allowing extrapolation in the

subsequent control development.

Analyzing the convergence properties of the adaptive update law in (5–12) is

challenging due to the nested nonlinear parameterization of the DNN. To address this

challenge, a first-order Taylor series approximation is used. A first-order Taylor series

approximation is introduced to overcome the challenges of the nested nonlinear param-

eterization introduced by the DNN. Applying a first-order Taylor series approximation to

100

the generalized DNN illustrated in the Appendix yields

Φ(x, θ∗)− Φ
(
x, θ̂
)
= Φ′

(
x, θ̂
)
θ̃ +O

(∥∥∥θ̃∥∥∥2) , (5–15)

where θ̃ ∈ Rp denotes the parameter estimation error θ̃ ≜ θ − θ̂, and O
(∥∥∥θ̃∥∥∥2) denotes

the higher-order terms. By adding and subtracting f and substituting (5–6) and (5–15),

the identification error E can be rewritten as

E = −f̃ + Φ′
(
x, θ̂
)
θ̃ +∆, (5–16)

where ∆ ≜ O
(∥∥∥θ̃∥∥∥2) + ε(x). Since ˙̃θ ≜ − ˙̂

θ, by substituting (5–12) and (5–16) the time

derivative of θ̃ is calculated as

˙̃θ = −ΓθΦ
′⊤
(
x, θ̂
)
Φ′
(
x, θ̂
)
θ̃ + ΓθΦ

′⊤
(
x, θ̂
)
f̃ − ΓθΦ

′⊤
(
x, θ̂
)
∆. (5–17)

5.3.3 Stability Analysis

To achieve exponential convergence, a P-function is included in the subsequent

Lyapunov analysis in addition to the typical sum of norm squared error terms [147]. The

P-function is designed as

P ≜ β ∥x̃∥1 − x̃⊤ḟ + e−λP t ∗
(
x̃⊤f̈

)
+ e−λP t ∗

(
(α1 − λP)

(
β ∥x̃∥1 − x̃⊤ḟ

))
, (5–18)

where λp ∈ R>0 is a user-selected constant, and f̈ ≜ ẋ⊤
(
∂2f
∂x2

)
ẋ + ∂f

∂x
ẍ. The con-

volutional integral e−λP t ∗ q =
� t
t0
e−λP (t−σ)q(σ)dσ is denoted by ‘∗‘ for any given

q : [t0,∞) → R, and can be verified using the Leibniz rule that d
dt

(� t
t0
e−λP (t−σ)q(σ)dσ

)
=

q(t) − λP
� t
t0
e−λP (t−σ)q(σ)dσ. The convolutional integral therefore satisfies the property

d
dt

(
e−λP t ∗ q

)
= q(t) − λP e

−λP t ∗ q. The mapping t 7→ ∥e(t)∥1 is differentiable for almost

all time since t 7→ e(t) is absolutely continuous and ∥·∥1 is globally Lipschitz; hence, the

use of the chain rule in [148, Theorem 2.2] yields d
dt
(∥e∥1)

a.a.t.
∈ K[sgn](e). Taking the

time-derivative of (5–18), using Leibniz’s rule, and substituting (5–9) and (5–18) results

101

in

Ṗ
a.a.t.
∈ −λpP + f̃⊤

(
βfsgn (x̃)− ḟ

)
.

A more detailed derivation can be found in [147, Proof of Lemma 3].

Let zθ ≜

[
x̃⊤ f̃⊤ θ̃⊤

√
2P

]⊤
∈ R2n+p+1 denote the concatenated state. The

candidate Lyapunov function Vθ : R2n+p+1 → R is defined as

Vθ (zθ) =
1

2
x̃⊤x̃+

1

2
f̃⊤f̃ +

1

2
θ̃⊤Γ−1

θ θ̃ + P. (5–19)

The Lyapunov function is bounded as

λ1 ∥zθ∥2 ≤ Vθ(zθ) ≤ λ2 ∥zθ∥2 , (5–20)

where λ1 ≜ min{1
2
, 1
2λmax{Γθ}

} and λ2 ≜ max{1
2
, 1
2λmin{Γθ}

}. Consider the compact domain

D ≜ {ζ ∈ R4n+p : ∥ζ∥ ≤ χ} where χ ∈ R>0 is a bounding constant. The subsequent

analysis shows that the concatenated state zθ(t) ∈ D for all t ∈ R≥0 if z is initialized

in the set S ≜
{
ζ ∈ R2n+p+1 : ∥ζ∥ ∈

√
λ1
λ2
χ2 − C

λ3

}
in the subsequent stability analysis.

Using [147, Lemma 4] it can be shown that P ≥ 0 if the gain conditions

α > λP (5–21)

and

β > Υ1 +
Υ2

α− λP
(5–22)

are satisfied, where bounds
∥∥∥ḟ∥∥∥ ≤ Υ1 and

∥∥∥f̈∥∥∥ ≤ Υ2 hold where Υ1 and Υ2 are

bounding constants based on Assumption 5.1 and the fact that ẋ and ẍ are bounded

when z ∈ D.

Theorem 5.1. Provided Assumptions 5.1 and 5.2 and the gain conditions in (5–21),

(5–22), and (5–25) are satisfied, the adaptive update laws in (5–12) and (5–13) ensure

102

that the estimation errors defined in zθ are uniformly ultimately bounded (UUB) such that

∥zθ(t)∥ ≤
√
λ2
λ1

∥zθ(0)∥2 e−
λ3
λ2
t
+
λ2C

λ1λ3

(
1− e

−λ3
λ2
t
)
.

Proof. Taking the time derivative of (5–19) yields

V̇θ
a.a.t.
∈ x̃⊤ ˙̃x+ f̃⊤ ˙̃f + θ̃⊤Γ−1

θ
˙̃θ +

1

2
θ̃⊤
(
d

dt
Γ−1
θ

)
θ̃ − λpP + f̃⊤

(
βfsgn (x̃)− ḟ

)
. (5–23)

By substituting (5–9), (5–10), and (5–17), and cancelling coupling terms, (5–23) can be

upper bounded as

V̇θ
a.a.t.

≤ −α1x̃
2 − kf

∥∥∥f̃∥∥∥2 − β(t)

2
θ̃⊤θ̃ − λpP

− θ̃⊤
(
1

2
Φ′⊤

(
x, θ̂
)
Φ′
(
x, θ̂
))

θ̃ + θ̃⊤Φ′⊤
(
x, θ̂
)(

f̃ −∆
)
.

The parameter estimation error can be bounded as ||θ̃|| ≤ χ when z ∈ D. Additionally,

since f and Φ are continuously differentiable, the bounds ∥∆∥ ≤ γ1 and
∥∥∥Φ′

(
x, θ̂
)∥∥∥ ≤ γ2

hold when zθ ∈ D, where γ1, γ2 ∈ R>0 denote bounding constants. Therefore, using

Young’s inequality yields the bound θ̃⊤Φ′⊤
(
x, θ̂
)(

f̃ −∆
)
≤ γ2

∥∥∥θ̃∥∥∥2 + γ2
2

∥∥∥f̃∥∥∥2 + γ2γ21
2

. As

a result, V̇θ can further be upper-bounded as

V̇θ
a.a.t.

≤ −λ3 ∥z∥2 + C − 1

2
θ̃⊤Φ′⊤

(
x, θ̂
)
Φ′
(
x, θ̂
)
θ̃, (5–24)

when zθ ∈ D, where λ3 ≜ min{α1, kf − γ2
2
, β1

2
− γ2, λP} and C ≜ γ2γ21

2
. Using (5–20) and

(5–24), when the gain condition

λ3 > 0 (5–25)

is satisfied, V̇ can be upper-bounded as

V̇θ
a.a.t.

≤ −λ3
λ2
Vθ + C, (5–26)

when zθ ∈ D. Solving the differential inequality in (5–26) yields

103

Vθ (z(t)) ≤ Vθ (z(0)) e
−λ3
λ2
t
+
λ2C

λ3

(
1− e

−λ3
λ2
t
)
,

when zθ ∈ D, and applying (5–20) yields the bound

∥zθ(t)∥ ≤
√
λ2
λ1

∥zθ(0)∥2 e−
λ3
λ2
t
+
λ2C

λ1λ3

(
1− e

−λ3
λ2
t
)
, (5–27)

when zθ ∈ D. To guarantee zθ (t) ∈ D for all t ∈ R≥0, (5–27) can be upper

bounded as ∥zθ(t)∥ ≤
√

λ2
λ1

∥zθ(0)∥2 + λ2c
λ1λ3

for all t ∈ R≥0. Due to the fact that

D ≜ {ζ ∈ R4n+p : ∥ζ∥ ≤ χ}, the relation zθ (t) ∈ D holds if
√

λ2
λ1

∥zθ(0)∥2 + λ2c
λ1λ3

≤ χ,

which is achieved if ∥zθ(0)∥ ≤
√

λ1
λ2
χ2 − c

λ3
, i.e., zθ (0) ∈ S; in this case, (5–27) holds for

all t ∈ [0,∞).

5.4 Approximate Optimal Control

The optimal value function in (5–5) is the solution to the corresponding HJB

equation

0 = ∇V ∗ (x) (f (x) + g (x)u∗) +Q (x) + u∗ (x)⊤Ru∗ (x) , (5–28)

with the condition V ∗ (0) = 0 and where u∗ : Rn → Rm is the optimal control policy.

Taking the partial derivative of (5–28) with respect to the minimizing argument u∗ (x),

setting it equal to zero, and solving for u∗ (x) results in the optimal control policy

u∗ (x) = −1

2
R−1g (x)⊤ (∇V ∗ (x))⊤ . (5–29)

Assumption 5.3. The optimal value function V ∗ is continuously differentiable [92].

5.4.1 Value Function Approximation

The optimal value function is generally unknown for nonlinear systems. To solve for

the optimal control policy in (5–29), the optimal value function can be approximated with

104

a NN in a compact set Ω ⊂ Rn using the Universal Function Approximation Theorem as

V ∗ (x) = W⊤ϕ (x) + ϵ (x) ∀x ∈ Ω, (5–30)

where W ∈ RL is a vector of unknown weights, ϕ : Rn → RL is a user-defined vector

of basis functions, and ϵ : Rn → R is the bounded function reconstruction error.

Substituting (5–30) into (5–31), the optimal control policy in (5–29) can be approximated

with a NN as

u∗ (x) = −1

2
R−1g (x)⊤

(
∇ϕ (x)⊤W +∇ϵ (x)⊤

)
. (5–31)

Assumption 5.4. There exists a set of known positive constants W,ϕ,∇ϕ, ϵ,∇ϵ ∈ R>0

such that sup ∥W∥ ≤ W, supx∈Ω, ∥ϕ (x)∥ ≤ ϕ, supx∈Ω ∥∇ϕ (x)∥ ≤ ∇ϕ, supx∈Ω ∥ϵ (x)∥ ≤ ϵ,

and supx∈Ω, ∥∇ϵ (x)∥ ≤ ∇ϵ [135, Assumptions 9.1.c-e].

The ideal weights W in (5–30) and (5–31) are unknown a priori. In this chapter, an

actor-critic NN architecture is used where actor and critic weight estimates are used

to approximate W . The critic weight estimate vector Ŵc ∈ RL is used to approximate

(5–30), resulting in the optimal value function estimate V̂ : Rn × RL → R, defined as

V̂
(
x, Ŵc

)
≜ Ŵ⊤

c ϕ (x) . (5–32)

The actor weight estimate vector Ŵa ∈ RL is used to approximate (5–31), resulting in the

optimal control policy estimate û : Rn × RL → Rm, defined as

û
(
x, Ŵa

)
≜ −1

2
R−1g (x)⊤

(
∇ϕ (x)⊤ Ŵa

)
. (5–33)

5.4.2 Bellman Error

The error resulting from approximating the system dynamics, the optimal value

function, and the optimal control input introduces an error in the HJB equation in (5–

28). This error, termed the BE, is representative of the performance of the developed

method, and is used to update the actor-critic weights in the subsequent development.

Replacing the drift dynamics f with the estimate Φ
(
x, θ̂
)

, the optimal value function

105

V ∗ (x) with the estimate V̂
(
x, Ŵc

)
, and the optimal control policy u∗ (x) with the esti-

mate û
(
x, Ŵa

)
in (5–28) results in the BE δ̂ : Rn × RL × RL → R defined as

δ̂
(
x, Ŵc, Ŵa

)
≜ Q (x) + û

(
x, Ŵa

)⊤
Rû
(
x, Ŵa

)
+∇V̂

(
x, Ŵc

)(
Φ
(
x, θ̂
)
+ g (x) û

(
x, Ŵa

))
. (5–34)

The BE represents the difference between the actor and critic weight approximations

and their ideal weight values. While (5–34) is used for implementation, to facilitate the

subsequent stability analysis, (5–34) can be rewritten in terms of the weight approxi-

mation errors W̃c ≜ W − Ŵc and W̃a ≜ W − Ŵa. Subtracting (5–28) from (5–34) and

substituting (5–30)-(5–31), the analytical form of the BE in (5–34) can be expressed as

δ̂
(
x, Ŵc, Ŵa

)
= −ω⊤W̃c +

1

4
W̃⊤
a Gϕ (x) W̃a +O (x) , (5–35)

where the Bellman regressor ω : Rn × RL → Rn is ω
(
x, Ŵa

)
≜

∇ϕ (x)
(
Φ
(
x, θ̂
)
+ g (x) û

(
x, Ŵa

))
and O (x) ≜ 1

2
∇ϵ (x)GR∇ϕ (x)⊤W + 1

4
Gϵ −

∇ϵ (x) f (x), where GR (x) ≜ g (x)R−1g (x) ⊤, Gϕ (x) ≜ ∇ϕ (x)GR (x)∇ϕ (x) ⊤,

and Gϵ (x) ≜ ∇ϵ (x)GR (x)∇ϵ (x)⊤. The function GR is bounded as supx∈Ω ∥GR∥ ≤

g2λmax {R−1} ≜ GR, and Gϕ is bounded as supx∈Ω ∥Gϕ∥ ≤
(
∇ϕg

)2
λmax {R−1} ≜ Gϕ.

The BE in (5–34) can be evaluated at any user-defined point in the state space us-

ing a user-selected state xi, the critic weight estimate Ŵc, and the actor weight estimate

Ŵa. Using the DNN system identifier and adaptive update laws developed in Section

5.3, experience can be simulated by extrapolating the BE over unexplored off-trajectory

points in the state space via BE extrapolation. BE extrapolation uses the estimated

dynamics to yield simultaneous exploration and exploitation providing simulation of ex-

perience and yielding faster policy learning. To gain experience for sufficient exploration,

the BE is extrapolated to user-defined off-trajectory points {xi : xi ∈ Ω}Ni=1, where N ∈ N

is a user-specified number of total extrapolation trajectories in the compact set Ω [92].

106

As the estimate of the identified dynamics becomes more accurate, the estimate of the

control policy becomes more accurate.

5.4.3 Update Laws for Actor and Critic Weights

The experience gained along the state trajectory and from the extrapolated points is

used to update the actor and critic weights simultaneously. In the subsequent adaptive

weight update laws, ηc1, ηc2, ηa1, ηa2, λ ∈ R>0 are positive constant adaptation gains,

ρ = 1 + νω⊤Γω, ρi = 1 + νω⊤
i Γωi, ν ∈ R>0 is a user-defined gain, Γ ∈ RL×L is a

time-varying least-squares gain matrix, and Γ, Γ ∈ R>0 denote lower and upper bounds

for Γ. The normalized regressors ω
ρ

and ωi
ρi

are bounded as supt∈R≥0

∥∥∥ωρ∥∥∥ ≤ 1

2
√
νΓ

and

supt∈R≥0

∥∥∥ωiρi ∥∥∥ ≤ 1

2
√
νΓ

for all x ∈ Ω and xi ∈ Ω, respectively. The critic update law

˙̂
W c ∈ RL is defined as

˙̂
W c ≜ −ηc1Γ

ω

ρ
δ̂ − ηc2Γ

1

N

N∑
i=1

ωi
ρi
δi. (5–36)

The least-squares gain matrix update law Γ̇ ∈ RL×L is defined as

Γ̇ ≜

(
λΓ− ηc1

Γωω⊤Γ

ρ2
− ηc2Γ

N

N∑
i=1

ωiω
⊤
i Γ

ρ2i

)
· 1{Γ≤∥Γ∥≤Γ}, (5–37)

where 1{·} denotes the indicator function ensuring that Γ ≤ ∥Γ∥ ≤ Γ for all t ∈ R>0. The

actor update law ˙̂
W a ∈ RL is defined as

˙̂
W a ≜ −ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa +

ηc1G
⊤
ϕ Ŵaω

⊤

4ρ
Ŵc + ηc2

1

N

N∑
i=1

G⊤
ϕiŴaω

⊤
i

4ρi
Ŵc. (5–38)

The following assumption aids in the subsequent stability analysis by imposing a

condition on sufficient richness of the Bellman regressor ω.

Assumption 5.5. On the compact set, Ω, a finite set of off-trajectory points

{xi : xi ∈ Ω}Ni=1 are user-selected such that 0 < c ≜ inf
t∈R≥0

λmin

{
1
N

∑N
i=1

ωiω
⊤
i

ρ2i

}
,

where c is a constant scalar lower bound of the value of each history stack’s minimum

eigenvalues [92].

107

5.5 Stability Analysis

To facilitate the stability analysis, let a concatenated state z ∈ Rn+2L be defined as

z ≜
[
x⊤, W̃⊤

c , W̃
⊤
a

]⊤
, and let the candidate Lyapunov function VL : Rn+2L → R≥0 be

defined as

VL (z) ≜ V ∗ (x) +
1

2
W̃⊤
c Γ

−1W̃c +
1

2
W̃⊤
a W̃a. (5–39)

According to [101, Lemma 4.3], (5–39) can generally be bounded as

vl (∥z∥) ≤ VL (z) ≤ vl (∥z∥) (5–40)

using class K functions vl, vl : R≥0 → R≥0. To facilitate the subsequent analysis, let

vl (∥z∥) = 1
2
q (∥x∥) + 1

12
ηc2c

∥∥∥W̃c

∥∥∥2 + 1
16
(ηa1 + ηa2)

∥∥∥W̃a

∥∥∥2 and define r ∈ R>0 to be

the prescribed radius of a compact ball Br ∈ Rn+2L centered at the origin where the

convergence of z is desired.

Theorem 5.2. Taking the time derivative of (5–39) yields

V̇L
a.a.t.

≤ ∇V ∗ẋ− W̃⊤
c Γ

−1 ˙̂
W c − W̃⊤

a
˙̂
W a −

1

2
W̃⊤
c Γ

−1Γ̇Γ−1W̃c. (5–41)

Provided the weight update laws in (5–36)-(5–38) are implemented, Assumptions

5.1-5.5, as well as 2.1 and 2.2, hold, and the conditions

ηa1 + ηa2 >
1√
νΓ

(ηc1 + ηc2)WGϕ (5–42)

c > 3
ηa1
ηc2

+
3 (ηc1 + ηc2)

2W
2

8ηc2νΓ

(
Gϕ

2

2 (ηa1 + ηa2)

)
(5–43)

l < vl
(
vl

−1
(
vl (r)

))
(5–44)

∥z (0)∥ ≤ vl
−1
(
vl (r)

)
(5–45)

108

are satisfied, where l is a positive constant that depends on the NN bounding constants

in Assumption 5.4, then x, W̃c, and W̃a are UUB. Hence, each control policy û converges

to a neighborhood of its respective optimal control policy u∗.

Proof. Using the HJB equation in (5–28), the BE in (5–35), the gain conditions in (5–42)

and (5–43), and the weight update laws in (5–36)-(5–38), the time derivative of (5–39)

can be bounded as

V̇L ≤ −vl (∥z∥) ∀ ∥z∥ ≥ v−1
l (l) (5–46)

for all t ∈ R>0. Using (5–40) and (5–46), [137, Theorem 4.18] can be invoked to

conclude that every trajectory z (t) that satisfies the initial condition ∥z (0)∥ ≤ vl
−1
(
vl (r)

)
is bounded for all t ∈ R, z is UUB such that lim supt→∞ ∥z∥ ≤ vl

−1
(
vl
(
v−1
l (l)

))
, and

the control policy û converges to a neighborhood of the optimal control policy u∗. Since

z ∈ L∞, it follows that x, W̃c, W̃a ∈ L∞; hence, x, Ŵc, Ŵa ∈ L∞ and u ∈ L∞. Additionally,

every trajectory z that is initialized in the ball Br is bounded such that z ∈ Br, ∀t ∈ R≥0.

Since z ∈ Br, the states x, Ŵc, Ŵa similarly lie in a compact set.

5.6 Simulations

To demonstrate the effectiveness of the developed ADP technique, comparative

simulations are performed on a control-affine nonlinear dynamical system with a two

dimensional state x = [x1, x2]
⊤. The developed method results are compared with the

multi-timescale DNN technique in [113] as the baseline. For the baseline method, the

inner-layer weights are retrained and updated once online, and the mean squared error

is used as the loss function for training.

For value function approximation, the basis function is selected as ϕ = [x21, x1x2, x
2
2].

The initial conditions for the system are x (0) = [−5, 5]⊤, Γ (0) = 10 · I3×3, and Ŵc (0) =

109

Ŵa (0) = 0.1 · 13×1. The system dynamics are

f =

 x1 x2 0 0

0 0 x1 x2
(
1− (cos (2x1) + 2)2

)
 θ, g =

 0

cos (2x1) + 2


where θ =[−1, 1,−0.5,−0.5]⊤ [135]. The simulation parameters are selected as ηc1 =

0.005, ηc2 = 0.1, ηa1 = 15, ηa2 = 0.1, λ = 0.4, ν = 0.005, N = 100, Γθ = 0.02 · IL×L, α1 = 30,

kf = 100, βf = 0.2. The cost parameters in (5–4) are selected as Q = xTdiag ([.001, 3])x

and R = 1. The implemented DNN contains 7 hidden layers with 7 neurons in each

layer.

Figure 5-1 presents the state errors of the infinite horizon regulation problem. It

is shown that using the developed system identifier to learn the dynamics in real-time

successfully yields faster convergence of the system states. The state errors rapidly

converged to steady state at approximately 5 seconds, whereas it took approximately 25

seconds for the state errors to converge with the baseline method.

Figure 5-2 shows the comparative plots of the RMS function approximation error

norm with the developed and baseline method. The initial function approximation

error is high with both methods because the DNN weights are randomly initialized.

There is an initial overshoot in the DNN weight estimates due to the initial learning

phase resulting from the exploration of the state-space by the system states. The initial

overshoot is higher with the developed method since it updates all of the DNN weights,

unlike the baseline method which updates only the output-layer weights. However,

the simultaneous update on all weights results in a rapid function approximation error

convergence with the developed method, i.e., within 5 seconds. In contrast, the baseline

method did not yield function approximation error convergence for the duration of the

simulation. The improved learning of the dynamics is beneficial to the ADP framework

as it provides a more accurate model to be used in BE extrapolation which results in

faster convergence to the optimal control policy as shown in Figure 5-3.

110

The aforementioned control objective is to find an optimal control policy u that

minimizes the cost function. Figure 5-3 shows that the control policy is minimized faster

in the developed method. Although the initial overshoot is higher, due to the initial

learning phase, the developed method converged to steady state at approximately

3 seconds while the baseline method converged to steady state at approximately 15

seconds.

Table 5-1 provides a quantitative representation of the comparative simulations.

The RMS regulation error, controller error, and function approximation error are shown

decrease by 65.73%, 31.82%, and 78.97%, respectively, when using the developed

method compared to the baseline. The steady-state RMS error values and the percent

improvement values show that the developed method yields significant improvement.

5.7 Concluding Remarks

The developed method uses an adaptive Lb-DNN system identifier in conjunction

with a RISE-based dynamics observer within an ADP framework. A least-squares

continuous-time update law is used to update all layers of DNN weights online. The

system identifier is used to obtain an estimate of the unknown system dynamics.

Exponential convergence to a neighborhood of the DNN weight estimation error,

provided the Jacobian of the DNN satisfies the PE condition, is shown via a Lyapunov-

based stability analysis. The entire system is shown to be UUB such that the developed

control policy is shown to converge to a neighborhood of the optimal control policy.

Simulation results show that the adaptive DNN yields 65.73% improved RMS regulation

error, 31.82% improved controller error, and 78.97% improved function approximation

error in comparison to the previously developed multi-timescale DNN. For future work,

the all-layer updates developed in this chapter can be combined with insight from

Chapter 4 to develop all-layer update laws for the actor and critic weight estimates.

111

Figure 5-1. Comparative plots of the regulation error norms ∥x∥ for the developed
method consisting of adaptive updates of all the DNN layers compared to
the previous method consisting of multi-timescale updates of the DNN.

Table 5-1. Performance Comparison
Multi-timescale Adaptive % Decrease

∥x∥
RMS

2.265 0.800 65.73
∥u∥

RMS
1.525 1.043 31.82∥∥∥f(x, ẋ)− Φ

(
X, θ̂

)∥∥∥
RMS

8.732 1.950 78.97

112

Figure 5-2. Comparative plots of the RMS function approximation error norm∥∥∥f(x)− Φ
(
X, θ̂

)∥∥∥ for the developed method consisting of adaptive updates
of all the DNN layers compared to the previous method consisting of
multi-timescale updates of the DNN.

Figure 5-3. Comparative plots of the control input ∥u∥ for the developed method
consisting of adaptive updates of all the DNN layers compared to the
previous method consisting of multi-timescale updates of the DNN.

113

CHAPTER 6
CONCLUSION

ADP is a powerful tool that leverages reinforcement learning and adaptive control

techniques to solve optimal control problems. ADP can be used for learning parametric

uncertainties and approximating optimal control policies in nonlinear dynamical systems.

This dissertation develops methods that advance the state-of-the-art in ADP-based

controllers in the presence of model uncertainty. First, linear parameterization is used

to estimate unknown system dynamics while switching between controllers. Then, the

system identification technique is advanced to using a multi-timescale DNN to estimate

the unknown dynamics between a pursuing and evading agent to facilitate indirect

herding to a desired goal location. Then, the value function approximation technique is

advanced to using a multi-timescale DNN to approximate the optimal value function in

conjunction with a multi-timescale DNN used to approximate the unknown dynamics.

Then, the multi-timescale DNN is advanced to an adaptive DNN that updates all the

weights in real-time to be used with a RISE-based dynamics observer to estimate

unknown dynamics.

Chapter 2 provides an HRL technique to control switching between approximately

optimal controllers. The hierarchical framework identifies which controller should be

active at a given time and generates a switching signal indicating the most desirable

switching pattern based on comparing multiple value function estimates. This chapter

is impactful because previous results contained unsupervised switching, and now

supervised switching can be used to achieve optimality by using a hierarchy to optimize

a selected performance method. This technique is especially important in the presence

of unknown dynamics where the control policy that minimizes the system cost is

unknown a priori. UUB regulation of the system states to a neighborhood of the origin,

and convergence of the approximate control policy to a neighborhood of the optimal

control policy, are proven using a Lyapunov-based stability and dwell-time analysis.

114

Simulation results show that implementing the developed HRL controller yields a total

cost that is 37% less than the total cost of implementing one ADP sub-controller and an

improved rise time. Future work will consist of implementing the HRL framework for the

optimal tracking problem.

Chapter 2 will be significant for problems that require more than one cost function

to achieve the desired control objective. This chapter provides inroads for ADP become

more integrated into switched system/hybrid controls problems Additionally, HRL can be

used in the class of problems introduced in Chapter 3 to facilitate multi-agent herding.

The HRL technique can be used to switch between different pursuers to regulate an

evader or multiple evaders based on specific metrics (e.g. distance between agents) to

the desired goal location.

Advancing the ICL result in Chapter 2, Chapter 3 develops a deep ICL-based

implementation of ADP to achieve an approximate optimal online solution to the indirect

regulation herding problem for unknown agents. The contribution of this chapter lies

in the fact that this is the first time ICL has been used in a DNN system identifier

framework, successfully removing the need to measure the state derivatives. The

ICL-based system identifier is facilitated by an Lb-DNN to estimate the unknown

interaction dynamic between the pursuer and evader. A Lyapunov-based analysis is

provided to prove UUB convergence of the evader to the desired goal location known

by the pursuer. The simulation shows that the pursuer is able to intercept and regulate

the evader towards the desired goal location and that the Lb-DNN system identifier

outperforms the SNN system identifier.

Future work for Chapter 3 consists of extending this result to problems with multiple

pursuers, multiple evaders, or both. Additionally, since the target agent in this chapter

is moving agnostically, future research directions will include more complex dynamical

agent interactions such as the evader optimally evading the pursuer or an asymmetric

interaction between the pursuer and evader where the evader is not just influenced

115

forward in a straight line. Lastly, this chapter can be extended to obstacle avoidance

herding problems consisting of avoidance regions characterized by penalty functions or

control barrier functions.

Using the multi-timescale DNN introduced in Chapter 3, Chapter 4 develops a

framework for using DNN-based value function approximation within the ADP framework

to solve the infinite-horizon optimal tracking problem online. In existing ADP literature,

while DNNs have been used for online system identification, the optimal value function

has only been approximated with a single-layer NN, therefore the contribution of this

chapter is using a multi-timescale DNN to approximate the optimal value function in

real-time in an attempt to achieve a more accurate approximation. The approximation of

the optimal control policy is proven to converge to a neighborhood of the optimal control

policy, and UUB stability of the states is proven via a Lyapunov-based stability analysis.

The simulation results show that the deep value function approximation method results

in 95.04% improvement in BE minimization and 5.06% faster convergence.

Improving upon the function approximation capabilities discussed in Chapters 3

and 4, Chapter 5 provides the first ADP result with Lyapunov-derived weight adaptation

laws for each layer of a DNN online. The developed method uses an adaptive Lb-DNN

system identifier in conjunction with a RISE-based dynamics observer within the ADP

framework. A least-squares continuous-time update law is used to update all layers of

DNN weights online. The system identifier is used to obtain an estimate of the unknown

system dynamics. UUB convergence of the DNN weight estimation error, provided

the Jacobian of the DNN satisfies the PE condition, is shown via a Lyapunov-based

stability analysis. The entire system is shown to be UUB such that the developed control

policy is shown to converge to a neighborhood of the optimal control policy. Simulation

results show that the adaptive DNN yields 65.73% improved RMS regulation error,

31.82% improved controller error, and 78.97% improved function approximation error in

comparison to the previously developed multi-timescale DNN.

116

While a multi-timescale DNN where the output-layer weights update in real-time

is used for value function approximation in Chapter 4, and an adaptive DNN where the

weights in all layers update in real-time is used for system identification in Chapter 5, the

parametric estimate for value function approximation has never consisted of all layers

updating in real-time. Because of the breakthroughs in Chapters 4 and 5, future work

could consist of investigating the use of online adaptation for each layer of the DNN to

approximate the optimal value function. Significant efforts will be required to combine

the results in the aforementioned chapters. With the large influx of machine learning

and reinforcement learning in the world over the past decades, the findings in this

dissertation will have an impactful role in the future of control for autonomous systems.

117

REFERENCES

[1] J. Si, A. Barto, W. Powell, and D. Wunsch, eds., Handbook of Learning and
Approximate Dynamic Programming. Wiley-IEEE Press, 2004.

[2] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multi-
agent reinforcement learning,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.,
vol. 38, no. 2, pp. 156–172, 2008.

[3] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement Learning
and Dynamic Programming Using Function Approximators. CRC Press, 2010.

[4] M. P. Deisenroth, Efficient reinforcement learning using Gaussian processes. KIT
Scientific Publishing, 2010.

[5] M. E. Harmon, L. C. Baird, and A. H. Klopf, “Reinforcement learning applied to a
differential game,” Adaptive Behavior, vol. 4, no. 1, pp. 3–28, 1995.

[6] J. Izawa, T. Kondo, and K. Ito, “Biological arm motion through reinforcement
learning,” Biol Cybern, vol. 91, no. 1, pp. 10–22, 2004.

[7] T. Jaakkola, S. Singh, and M. Jordan, “Reinforcement learning algorithm for
partially observable markov decision problems,” Adv Neural Inf Process Syst,
pp. 345–352, 1995.

[8] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement learning: A survey,” J.
Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[9] S. Kalyanakrishnan and P. Stone, “Batch reinforcement learning in a complex
domain,” in Proc. Int. Conf. Auton. Agents Multi-Agent Syst., (Honolulu, HI),
pp. 650–657, 2007.

[10] T. Landelius, Reinforcement learning and Distributed Local Model Synthesis. PhD
thesis, Linkoping University, Sweden, 1997.

[11] L.-J. Lin, “Self-improving reactive agents based on reinforcement learning,
planning and teaching,” Mach. Learn., vol. 8, no. 3-4, pp. 293–321, 1992.

[12] M. Littman, “Value-function reinforcement learning in markov games,” Cogn. Syst.
Res., vol. 2, no. 1, pp. 55–66, 2001.

[13] A. Mellouk, ed., Advances in Reinforcement Learning. InTech, 2011.

[14] A. Schwartz, “A reinforcement learning method for maximizing undiscounted
rewards,” in Proc. Int. Conf. Mach. Learn., vol. 298, pp. 298–305, 1993.

[15] S. P. Singh, “Reinforcement learning with a hierarchy of abstract models,” in AAAI
Natl. Conf. Artif. Intell., vol. 92, pp. 202–207, 1992.

118

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, MA, USA: MIT Press, 1998.

[17] P. J. Werbos, “Back propagation: past and future,” in Proc. Int. Conf. Neural Netw.,
vol. 1, pp. 1343–1353, 1989.

[18] P. Werbos, “A menu of designs for reinforcement learning over time,” Neural Netw.
for Control, pp. 67–95, 1990.

[19] P. J. Werbos, “Approximate dynamic programming for real-time control and
neural modeling,” in Handbook of intelligent control: Neural, fuzzy, and adaptive
approaches (D. A. White and D. A. Sorge, eds.), vol. 15, pp. 493–525, Nostrand,
New York, 1992.

[20] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton University
Press, 1 ed., 1957.

[21] J. Y. Lee, J. B. Park, and Y. H. Choi, “On integral generalized policy iteration for
continuous-time linear quadratic regulations,” Autom., vol. 50, pp. 475–489, 2014.

[22] Q. Lin, Q. Wei, and D. Liu, “A novel optimal tracking control scheme for a class
of discrete-time nonlinear systems using generalised policy iteration adaptive
dynamic programming algorithm,” International Journal of Systems Science,
vol. 48, pp. 525 – 534, 2017.

[23] D. Liu, Q. Wei, and P. Yan, “Generalized policy iteration adaptive dynamic pro-
gramming for discrete-time nonlinear systems,” IEEE Trans. Syst. Man Cybern.
Syst., vol. 45, no. 12, pp. 1577–1591, 2015.

[24] D. L. Vrabie and F. L. Lewis, “Generalized policy iteration for continuous-time
systems,” 2009 International Joint Conference on Neural Networks, pp. 3224–
3231, 2009.

[25] R. Howard, Dynamic programming and Markov processes. Technology Press of
Massachusetts Institute of Technology (Cambridge), 1960.

[26] R. Leake and R. Liu, “Construction of suboptimal control sequences,” SIAM J.
Control, vol. 5, p. 54, 1967.

[27] S. Bradtke, B. Ydstie, and A. Barto, “Adaptive linear quadratic control using policy
iteration,” in Proc. Am. Control Conf., pp. 3475–3479, IEEE, 1994.

[28] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and M.-B. Naghibi-Sistani,
“Reinforcement Q-learning for optimal tracking control of linear discrete-time
systems with unknown dynamics,” Automatica, vol. 50, pp. 1167–1175, Apr. 2014.

[29] S. K. Jha and S. Bhasin, “On-policy q-learning for adaptive optimal control,” in
Proc. IEEE Symp. Adapt. Dyn. Progr. Reinf. Learn., pp. 1–6, Dec. 2014.

119

[30] M. Palanisamy, H. Modares, F. L. Lewis, and M. Aurangzeb, “Continuous-time
q-learning for infinite-horizon discounted cost linear quadratic regulator problems,”
IEEE Trans. Cybern., vol. 45, pp. 165–176, Feb. 2015.

[31] L. Baird, “Advantage updating,” tech. rep., Wright Lab, Wright-Patterson Air Force
Base, OH, 1993.

[32] C. J. C. H. Watkins, Learning from delayed rewards. PhD thesis, University of
Cambridge England, 1989.

[33] C. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3, pp. 279–292,
1992.

[34] F. L. Lewis and V. L. Syrmos, Optimal Control. Wiley, 2 ed., 1995.

[35] E. Hofer and B. Tibken, “An iterative method for the finite-time bilinear-quadratic
control problem,” J Optim Theory Appl, vol. 57, no. 3, pp. 411–427, 1988.

[36] Z. Aganovic and Z. Gajic, “The successive approximation procedure for finite-time
optimal control of bilinear systems,” IEEE Trans. Autom. Control, vol. 39, no. 9,
pp. 1932–1935, 1994.

[37] W. Cebuhar and V. Costanza, “Approximation procedures for the optimal control of
bilinear and nonlinear systems,” Journal of Optimization Theory and Applications,
vol. 43, no. 4, pp. 615–627, 1984.

[38] O. Rosen and R. Luus, “Global optimization approach to nonlinear optimal
control,” Journal of Optimization Theory and Applications, vol. 73, no. 3, pp. 547–
562, 1992.

[39] E. Al’Brekht, “On the optimal stabilization of nonlinear systems,” J. Appl. Math.
Mech., vol. 25, no. 5, pp. 1254–1266, 1961.

[40] W. L. Garrard and J. M. Jordan, “Design of nonlinear automatic flight control
systems,” Automatica, vol. 13, no. 5, pp. 497–505, 1977.

[41] D. L. Lukes, “Optimal regulation of nonlinear dynamical systems,” SIAM J. Control,
vol. 7, no. 1, pp. 75–100, 1969.

[42] Y. Nishikawa, N. Sannomiya, and H. Itakura, “A method for suboptimal design of
nonlinear feedback systems,” Automatica, vol. 7, no. 6, pp. 703–712, 1971.

[43] I. C. Dolcetta, “On a discrete approximation of the hamilton-jacobi equation of
dynamic programming,” Appl. Math. Optim., vol. 10, no. 1, pp. 367–377, 1983.

[44] M. Falcone and R. Ferretti, “Discrete time high-order schemes for viscosity
solutions of hamilton-jacobi-bellman equations,” Numer. Math., vol. 67, no. 3,
pp. 315–344, 1994.

120

[45] R. Gonzalez and E. Rofman, “On deterministic control problems: An approxi-
mation procedure for the optimal cost i. the stationary problem,” SIAM J. Control
Optim., vol. 23, no. 2, pp. 242–266, 1985.

[46] R. Gonzalez and E. Rofman, “On deterministic control problems: An approxima-
tion procedure for the optimal cost ii. the nonstationary case,” SIAM J Control
Optim, vol. 23, no. 2, pp. 267–285, 1985.

[47] M. Falcone, “A numerical approach to the infinite horizon problem of deterministic
control theory,” Appl. Math. Optim., vol. 15, no. 1, pp. 1–13, 1987.

[48] R. W. Beard and T. W. Mclain, “Successive galerkin approximation algorithms for
nonlinear optimal and robust control,” Int. J. Control, vol. 71, no. 5, pp. 717–743,
1998.

[49] R. W. Beard, G. N. Saridis, and J. T. Wen, “Approximate solutions to the time-
invariant hamilton–jacobi–bellman equation,” J Optim Theory Appl, vol. 96, no. 3,
pp. 589–626, 1998.

[50] P. Mehta and S. Meyn, “Q-learning and pontryagin’s minimum principle,” in Proc.
IEEE Conf. Decis. Control, pp. 3598–3605, Dec. 2009.

[51] D. Pandey and P. Pandey, “Approximate q-learning: An introduction,” in Int. Conf.
Mach. Learn. Comput, pp. 317–320, IEEE, 2010.

[52] Y. Li, C. Yang, Z. Hou, Y. Feng, and C. Yin, “Data-driven approximate q-learning
stabilization with optimality error bound analysis,” Automatica, vol. 103, pp. 435–
442, 2019.

[53] V. Konda and J. Tsitsiklis, “On actor-critic algorithms,” SIAM J. Control Optim.,
vol. 42, no. 4, pp. 1143–1166, 2004.

[54] R. J. Williams, “Toward a theory of reinforcement-learning connectionist systems,”
Tech. Rep. NU-CCS-88-3, Northeastern University, College of Computer Science,
1988.

[55] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learn, vol. 8, no. 3, pp. 229–256, 1992.

[56] H. Kimura, K. Miyazaki, and S. Kobayashi, “Reinforcement learning in pomdps
with function approximation,” in Proc. Int. Conf. Mach. Learn., vol. 97, pp. 152–
160, 1997.

[57] R. Sutton, “Learning to predict by the methods of temporal differences,” Mach.
Learn., vol. 3, no. 1, pp. 9–44, 1988.

[58] K. S. Fu, “Learning control systems,” in Comput. Inf. Sci. Collect. Pap. Learn.
Adapt. Control Inf. Syst. (J. T. Tou and R. H. Wilcox, eds.), (Washington), pp. 318–
343, Spartan Books, 1964.

121

[59] K. S. Fu, “Learning control systems,” in Advances in Information Systems Sci-
ence: Volume 1 (J. T. Tou, ed.), pp. 251–292, Boston, MA: Springer US, 1969.

[60] B. Widrow, N. Gupta, and S. Maitra, “Punish/reward: Learning with a critic in
adaptive threshold systems,” IEEE Trans. Syst. Man Cybern., vol. 3, no. 5,
pp. 455–465, 1973.

[61] H. Zhang, K. Zhang, G. Xiao, and H. Jiang, “Robust optimal control scheme for
unknown constrained-input nonlinear systems via a plug-n-play event-sampled
critic-only algorithm,” IEEE Trans. Syst. Man and Cybern, vol. 50, no. 9, pp. 3169–
3180, 2019.

[62] H. Dong, X. Zhao, and H. Yang, “Reinforcement learning-based approximate
optimal control for attitude reorientation under state constraints,” IEEE Trans
Control Syst Technol, vol. 29, no. 4, pp. 1664–1673, 2020.

[63] I. H. Witten, “An adaptive optimal controller for discrete-time markov environ-
ments,” Inf. control, vol. 34, no. 4, pp. 286–295, 1977.

[64] A. Barto, R. Sutton, and C. Anderson, “Neuron-like adaptive elements that can
solve difficult learning control problems,” IEEE Trans. Syst. Man Cybern., vol. 13,
no. 5, pp. 834–846, 1983.

[65] J. Murray, C. Cox, G. Lendaris, and R. Saeks, “Adaptive dynamic programming,”
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 32, no. 2, pp. 140–153,
2002.

[66] X. Liu and S. Balakrishnan, “Convergence analysis of adaptive critic based
optimal control,” in Proc. Am. Control Conf., vol. 3, 2000.

[67] K. Doya, “Reinforcement learning in continuous time and space,” Neural Comput.,
vol. 12, no. 1, pp. 219–245, 2000.

[68] T. Hanselmann, L. Noakes, and A. Zaknich, “Continuous-time adaptive critics,”
IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 631–647, 2007.

[69] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to solve the
continuous-time infinite horizon optimal control problem,” Automatica, vol. 46,
no. 5, pp. 878–888, 2010.

[70] D. Vrabie and F. L. Lewis, “Neural network approach to continuous-time direct
adaptive optimal control for partially unknown nonlinear systems,” Neural Netw.,
vol. 22, no. 3, pp. 237–246, 2009.

[71] T. Bian, Y. Jiang, and Z.-P. Jiang, “Adaptive dynamic programming and optimal
control of nonlinear nonaffine systems,” Automatica, vol. 50, no. 10, pp. 2624–
2632, 2014.

122

[72] P. Werbos, “Beyond regression: new tools for prediction and analysis in the
behavioral sciences,” Ph. D. dissertation, Harvard University, 1974.

[73] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear HJB
solution using approximate dynamic programming: Convergence proof,” IEEE
Trans. Syst. Man Cybern. Part B Cybern., vol. 38, pp. 943–949, 2008.

[74] Z. Chen and S. Jagannathan, “Generalized Hamilton-Jacobi-Bellman formulation
-based neural network control of affine nonlinear discrete-time systems,” IEEE
Trans. Neural Netw., vol. 19, pp. 90–106, Jan. 2008.

[75] T. Dierks, B. Thumati, and S. Jagannathan, “Optimal control of unknown affine
nonlinear discrete-time systems using offline-trained neural networks with proof of
convergence,” Neural Netw., vol. 22, no. 5-6, pp. 851–860, 2009.

[76] Y. M. Park, M. S. Choi, and K. Y. Lee, “An optimal tracking neuro-controller for
nonlinear dynamic systems,” IEEE Trans. Neural Netw., vol. 7, no. 5, pp. 1099–
1110, 1996.

[77] Y. Luo and M. Liang, “Approximate optimal tracking control for a class of discrete-
time non-affine systems based on gdhp algorithm,” in IWACI Int. Workshop Adv.
Comput. Intell., pp. 143–149, 2011.

[78] D. Wang, D. Liu, and Q. Wei, “Finite-horizon neuro-optimal tracking control for a
class of discrete-time nonlinear systems using adaptive dynamic programming
approach,” Neurocomputing, vol. 78, no. 1, pp. 14–22, 2012.

[79] H. Zhang, Q. Wei, and Y. Luo, “A novel infinite-time optimal tracking control
scheme for a class of discrete-time nonlinear systems via the greedy hdp iteration
algorithm,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 38, no. 4, pp. 937–
942, 2008.

[80] T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear discrete-
time systems with unknown internal dynamics by using time-based policy update,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1118–1129, 2012.

[81] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, “Adaptive optimal controllers
based on generalized policy iteration in a continuous-time framework,” in Proc.
Mediterr Conf. Control Autom., pp. 1402–1409, 2009.

[82] T. Dierks and S. Jagannathan, “Optimal control of affine nonlinear continuous-time
systems,” in Proc. Am. Control Conf., pp. 1568–1573, 2010.

[83] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive optimal
control for continuous-time linear systems based on policy iteration,” Automatica,
vol. 45, no. 2, pp. 477–484, 2009.

[84] H. Zhang, L. Cui, X. Zhang, and Y. Luo, “Data-driven robust approximate optimal
tracking control for unknown general nonlinear systems using adaptive dynamic

123

programming method,” IEEE Trans. Neural Netw., vol. 22, pp. 2226–2236, Dec.
2011.

[85] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis, F. L. Lewis, and
W. E. Dixon, “A novel actor-critic-identifier architecture for approximate optimal
control of uncertain nonlinear systems,” Automatica, vol. 49, pp. 89–92, Jan. 2013.

[86] J. Hopfield, “Neurons with graded response have collective computational
properties like those of two-state neurons,” Proc. Nat. Acad. Sci. U.S.A., vol. 81,
no. 10, p. 3088, 1984.

[87] P. M. Patre, W. MacKunis, K. Kaiser, and W. E. Dixon, “Asymptotic tracking for
uncertain dynamic systems via a multilayer neural network feedforward and
RISE feedback control structure,” IEEE Trans. Autom. Control, vol. 53, no. 9,
pp. 2180–2185, 2008.

[88] R. Kamalapurkar, H. Dinh, S. Bhasin, and W. E. Dixon, “Approximate optimal
trajectory tracking for continuous-time nonlinear systems,” Automatica, vol. 51,
pp. 40–48, Jan. 2015.

[89] K. G. Vamvoudakis and F. L. Lewis, “Online synchronous policy iteration method
for optimal control,” in Recent Advances in Intelligent Control Systems (W. Yu,
ed.), pp. 357–374, London, UK: Springer, 2009.

[90] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal control of
unknown constrained-input systems using policy iteration and neural networks,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10, pp. 1513–1525, 2013.

[91] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral reinforcement
learning and experience replay for adaptive optimal control of partially-unknown
constrained-input continuous-time systems,” Automatica, vol. 50, no. 1, pp. 193–
202, 2014.

[92] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Model-based reinforcement
learning for approximate optimal regulation,” Automatica, vol. 64, pp. 94–104,
2016.

[93] R. Kamalapurkar, L. Andrews, P. Walters, and W. E. Dixon, “Model-based rein-
forcement learning for infinite-horizon approximate optimal tracking,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 753–758, 2017.

[94] G. Chowdhary, Concurrent Learning for Convergence in Adaptive Control without
Persistency of Excitation. PhD thesis, Georgia Institute of Technology, Dec. 2010.

[95] G. Battistelli, J. Hespanha, and P. Tesi, “Supervisory control of switched nonlinear
systems,” Int. J. Adapt. Control Signal Process., vol. 26, no. 8, pp. 723–738, 2012.

[96] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic methods.
Courier Corp., 1971.

124

[97] J. Raisch and S. D. O’Young, “Discrete approximation and supervisory control of
continuous systems,” IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 569–573,
1998.

[98] V. Pantelic and M. Lawford, “Optimal supervisory control of probabilistic discrete
event systems,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1110–1124, 2012.

[99] S. van Dooren, A. Amstutz, and C. H. Onder, “A causal supervisory control
strategy for optimal control of a heavy-duty diesel engine with scr aftertreatment,”
Control. Eng. Pract., vol. 119, p. 104982, 2022.

[100] G. Jing, H. Bai, J. George, and A. Chakrabortty, “Model-free optimal control of
linear multiagent systems via decomposition and hierarchical approximation,”
IEEE Control Netw. Syst., vol. 8, no. 3, pp. 1069–1081, 2021.

[101] R. Kamalapurkar, P. S. Walters, J. A. Rosenfeld, and W. E. Dixon, Reinforcement
learning for optimal feedback control: A Lyapunov-based approach. Springer,
2018.

[102] Y. Jiang and Z.-P. Jiang, Robust Adaptive Dynamic Programming. John Wiley &
Sons, 2017.

[103] F. L. Lewis and D. Liu, Reinforcement learning and approximate dynamic program-
ming for feedback control, vol. 17. John Wiley & Sons, 2013.

[104] P. Deptula, Z. Bell, E. Doucette, W. J. Curtis, and W. E. Dixon, “Data-based
reinforcement learning approximate optimal control for an uncertain nonlinear
system with control effectiveness faults,” Automatica, vol. 116, pp. 1–10, June
2020.

[105] D. Liberzon, Switching in Systems and Control. Birkhauser, 2003.

[106] M. Branicky, “Multiple Lyapunov functions and other analysis tools for switched
and hybrid systems,” IEEE Trans. Autom. Control, vol. 43, pp. 475–482, 1998.

[107] M. Greene, M. Abudia, R. Kamalapurkar, and W. E. Dixon, “Model-based rein-
forcement learning for optimal feedback control of switched systems,” in Proc.
IEEE Conf. Decis. Control, pp. 162–167, 2020.

[108] W. Makumi, Z. Bell, and W. E. Dixon, “Approximate optimal indirect regulation of
an unknown agent with a lyapunov-based deep neural network,” IEEE Control
Syst. Lett., vol. 7, pp. 2773–2778, 2023.

[109] P. Kachroo, S. A. Shedied, J. S. Bay, and H. Vanlandingham, “Dynamic program-
ming solution for a class of pursuit evasion problems: the herding problem,” IEEE
Trans. Syst. Man Cybern., vol. 31, pp. 35–41, Feb. 2001.

[110] A. D. Khalafi and M. R. Toroghi, “Capture zone in the herding pursuit evasion
games,” Appl. Math. Sci., vol. 5, no. 39, pp. 1935–1945, 2011.

125

[111] S. A. Shedied, “Optimal trajectory planning for the herding problem: a continuous
time model,” Int. J. Mach. Learn. Cybern., vol. 4, no. 1, pp. 25–30, 2013.

[112] P. Deptula, Z. Bell, F. Zegers, R. Licitra, and W. E. Dixon, “Approximate optimal
influence over an agent through an uncertain interaction dynamic,” Automatica,
vol. 134, pp. 1–13, Dec. 2021.

[113] M. Greene, Z. Bell, S. Nivison, and W. E. Dixon, “Deep neural network-based
approximate optimal tracking for unknown nonlinear systems,” IEEE Trans. Autom.
Control, vol. 68, no. 5, pp. 3171–3177, 2023.

[114] R. Sun, M. Greene, D. Le, Z. Bell, G. Chowdhary, and W. E. Dixon, “Lyapunov-
based real-time and iterative adjustment of deep neural networks,” IEEE Control
Syst. Lett., vol. 6, pp. 193–198, 2022.

[115] W. Makumi, Z. Bell, and W. E. Dixon, “Cooperative approximate optimal indirect
regulation of uncooperative agents with lyapunov-based deep neural network,” in
AIAA SciTech, 2024.

[116] J. Philor, W. Makumi, Z. Bell, and W. E. Dixon, “Approximate optimal indirect
control of an unknown agent within a dynamic environment using a lyapunov-
based deep neural network,” in Proc. Am. Control Conf., 2024.

[117] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015.

[118] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[119] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[120] W. Makumi, M. Greene, Z. Bell, S. Nivison, R. Kamalapurkar, and W. E. Dixon,
“Hierarchical reinforcement learning-based supervisory control of unknown
nonlinear systems,” in IFAC World Congr., 2023.

[121] W. Makumi, M. Greene, Z. Bell, B. Bialy, R. Kamalapurkar, and W. E. Dixon,
“Hierarchical reinforcement learning and gain scheduling-based control of a
hypersonic vehicle,” in AIAA SciTech, 2023.

[122] P. Walters, R. Kamalapurkar, F. Voight, E. Schwartz, and W. E. Dixon, “Online
approximate optimal station keeping of a marine craft in the presence of an
irrotational current,” IEEE Trans. Robot., vol. 34, pp. 486–496, April 2018.

126

[123] R. Kamalapurkar, J. R. Klotz, P. Walters, and W. E. Dixon, “Model-based reinforce-
ment learning for differential graphical games,” IEEE Trans. Control Netw. Syst.,
vol. 5, no. 1, pp. 423–433, 2018.

[124] N. Wang, Y. Gao, H. Zhao, and C. K. Ahn, “Reinforcement learning-based optimal
tracking control of an unknown unmanned surface vehicle,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 7, pp. 3034–3045, 2020.

[125] O. Patil, D. Le, M. Greene, and W. E. Dixon, “Lyapunov-derived control and
adaptive update laws for inner and outer layer weights of a deep neural network,”
IEEE Control Syst Lett., vol. 6, pp. 1855–1860, 2022.

[126] O. S. Patil, D. M. Le, E. Griffis, and W. E. Dixon, “Deep residual neural network
(ResNet)-based adaptive control: A Lyapunov-based approach,” in Proc. IEEE
Conf. Decis. Control, 2022.

[127] E. Griffis, O. Patil, W. Makumi, and W. E. Dixon, “Deep recurrent neural network-
based observer for uncertain nonlinear systems,” in IFAC World Congr., 2023.

[128] E. Griffis, O. Patil, Z. Bell, and W. E. Dixon, “Lyapunov-based long short-term
memory (Lb-LSTM) neural network-based control,” IEEE Control Syst. Lett., vol. 7,
pp. 2976–2981, 2023.

[129] E. Griffis, O. Patil, R. Hart, and W. E. Dixon, “Lyapunov-based long short-term
memory (Lb-LSTM) neural network-based adaptive observer,” IEEE Control Syst.
Lett., vol. 8, pp. 97–102, 2024.

[130] R. Hart, E. Griffis, O. Patil, and W. E. Dixon, “Lyapunov-based physics-informed
long short-term memory (LSTM) neural network-based adaptive control,” IEEE
Control Syst. Lett., vol. 8, pp. 13–18, 2024.

[131] R. Hart, O. Patil, E. Griffis, and W. E. Dixon, “Deep Lyapunov-based physics-
informed neural networks (DeLb-PINN) for adaptive control design,” in Proc. IEEE
Conf. Decis. Control, 2023.

[132] O. S. Patil, E. J. Griffis, W. A. Makumi, and W. E. Dixon, “Composite adap-
tive lyapunov-based deep neural network (lb-dnn) controller,” arXiv preprint
arXiv:2311.13056, 2023.

[133] D. S. Bernstein, Matrix Mathematics. Princeton university press, 2009.

[134] B. E. Paden and S. S. Sastry, “A calculus for computing Filippov’s differential
inclusion with application to the variable structure control of robot manipulators,”
IEEE Trans. Circuits Syst., vol. 34, pp. 73–82, Jan. 1987.

[135] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal Adaptive Control and
Differential Games by Reinforcement Learning Principles. The Institution of
Engineering and Technology, 2013.

127

[136] A. Parikh, R. Kamalapurkar, and W. E. Dixon, “Integral concurrent learning:
Adaptive control with parameter convergence using finite excitation,” Int J Adapt
Control Signal Process, vol. 33, pp. 1775–1787, Dec. 2019.

[137] H. K. Khalil, Nonlinear Systems. Prentice Hall, 3 ed., 2002.

[138] M. Greene, Nonsmooth Data-Based Reinforcement Learning for Online Approxi-
mate Optimal COntrol. PhD thesis, University of Florida, 2022.

[139] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[140] Z. Bell, R. Sun, K. Volle, P. Ganesh, S. Nivison, and W. E. Dixon, “Target tracking
subject to intermittent measurements using attention deep neural networks,” IEEE
Control Syst. Lett., vol. 7, pp. 379–384, 2023.

[141] F. L. Lewis, S. Jagannathan, and A. Yesildirak, Neural network control of robot
manipulators and nonlinear systems. Philadelphia, PA: CRC Press, 1998.

[142] R. Kamalapurkar, J. Rosenfeld, and W. E. Dixon, “Efficient model-based rein-
forcement learning for approximate online optimal control,” Automatica, vol. 74,
pp. 247–258, Dec. 2016.

[143] J. A. Rosenfeld, R. Kamalapurkar, and W. E. Dixon, “The state following (staf)
approximation method,” IEEE Trans. on Neural Netw. Learn. Syst., vol. 30,
pp. 1716–1730, June 2019.

[144] P. Kidger and T. Lyons, “Universal approximation with deep narrow networks,” in
Conf. Learn. Theory, pp. 2306–2327, 2020.

[145] A. Isaly, O. Patil, H. Sweatland, R. Sanfelice, and W. E. Dixon, “Adaptive safety
with a rise-based disturbance observer,” IEEE Trans. Autom. Control, 2024.

[146] J. J. Slotine and W. Li, “Composite adaptive control of robot manipulators,”
Automatica, vol. 25, pp. 509–519, July 1989.

[147] O. Patil, A. Isaly, B. Xian, and W. E. Dixon, “Exponential stability with RISE
controllers,” IEEE Control Syst. Lett., vol. 6, pp. 1592–1597, 2022.

[148] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth systems,” IEEE
Trans. Autom. Control, vol. 39 no. 9, pp. 1910–1914, 1994.

128

BIOGRAPHICAL SKETCH

Wanjiku Aprile Makumi was born in Raleigh, North Carolina in 1997. She received

her Bachelor of Science (B.S.) degree from the Joint Department of Biomedical En-

gineering at North Carolina State University and the University of North Carolina at

Chapel Hill. In August 2020, Wanjiku joined the Nonlinear Controls and Robotics Labo-

ratory at the University of Florida under the supervision of Dr. Warren Dixon to pursue

her Ph.D. She received her Master of Science (M.S) degree in mechanical engineering

in December 2021. She received the Science, Mathematics, and Research for Transfor-

mation (SMART) Scholarship in 2023. She received her Ph.D. in aerospace engineering

in May 2024. Wanjiku’s research focuses on using adaptive control, reinforcement

learning, and deep learning to study Lyapunov-based control of nonlinear and uncertain

dynamical systems.

129

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	1 INTRODUCTION
	1.1 Literature Review
	1.1.1 Reinforcement Learning
	1.1.2 Reinforcement Learning for Control
	1.1.3 Approximate Optimal Control
	1.1.4 Actor-Critic Methodology
	1.1.5 Approximate Dynamic Programming

	1.2 Outline of Dissertation
	1.3 Notation

	2 HIERARCHICAL REINFORCEMENT LEARNING-BASED SUPERVISORY CONTROL OF UNKNOWN NONLINEAR SYSTEMS
	2.1 Problem Formulation
	2.1.1 Control Objective
	2.1.2 Value Function Approximation

	2.2 Hierarchical Agent
	2.2.1 Switching Rule
	2.2.2 System Identification

	2.3 Bellman Error
	2.4 Update Laws for Actor and Critic Weights
	2.5 Stability Analysis
	2.5.1 Subsystem Stability Analysis
	2.5.2 Switched UUB Stability Analysis

	2.6 Simulations
	2.7 Concluding Remarks

	3 APPROXIMATE OPTIMAL INDIRECT REGULATION OF AN UNKNOWN AGENT WITH A LYAPUNOV-BASED DEEP NEURAL NEWORK
	3.1 Problem Formulation
	3.2 System Identification
	3.3 Online Learning
	3.3.1 Bellman Error
	3.3.2 Actor and Critic Weight Update Laws

	3.4 Stability Analysis
	3.5 Simulations
	3.6 Concluding Remarks

	4 LYAPUNOV-BASED DEEP REINFORCEMENT LEARNING FOR APPROXIMATE OPTIMAL CONTROL
	4.1 Background Information
	4.2 Deep System Identification
	4.2.1 Output-Layer Weight Updates
	4.2.2 Inner-Layer Feature Updates

	4.3 Control Objective
	4.4 Deep Value Function Approximation
	4.5 Bellman Error
	4.5.1 Bellman Error Extrapolation

	4.6 DNN Value Function Update Laws
	4.6.1 Actor-Critic Output-Layer Weight Updates
	4.6.2 Inner-Layer Feature Updates

	4.7 Stability Analysis
	4.8 Simulation Example
	4.9 Concluding Remarks

	5 LYAPUNOV-BASED ADAPTIVE DEEP LEARNING FOR APPROXIMATE DYNAMIC PROGRAMMING
	5.1 Background DNN Information
	5.2 Problem Formulation
	5.3 System Identification
	5.3.1 Dynamics Estimate
	5.3.2 Adaptation Laws
	5.3.3 Stability Analysis

	5.4 Approximate Optimal Control
	5.4.1 Value Function Approximation
	5.4.2 Bellman Error
	5.4.3 Update Laws for Actor and Critic Weights

	5.5 Stability Analysis
	5.6 Simulations
	5.7 Concluding Remarks

	6 CONCLUSION
	REFERENCES
	BIOGRAPHICAL SKETCH

