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Safety is an essential element in all control applications. This dissertation will

explore how the safety of a control system can be defined and methods that can be

used to provide safety guarantees. In the literature, set invariance and safety are

often used synonymously, since the invariance of a safe set of states guarantees that

system trajectories will never escape to an unsafe state. Invariance can be achieved

by converting constraints on the state into constraints on the control input. In other

cases, safety can be achieved by ensuring compliance of the system to external

disturbances by requiring that the system can only dissipate energy. This dissertation

extends currently available control strategies that can yield safety through two means:

set invariance and passivity. The first is a control barrier function (CBF) method that

allows for the use of an optimization-based controller to yield invariance while also

adhering to other design specifications. The other is a passivity-based control (PBC)

approach which uses a constructive design method to yield a safe controller. This

Ph.D. dissertation consists of a literature review and research developments relating

to safe control methods for nonlinear dynamical systems that are, in many cases, less

restrictive than constructive Lyapunov-based methods.

Chapter 1 provides a general background and a literature review of safe control

methods, including methods to ensure safety such as CBFs and PBC methods. Section

1.1 defines safety from a control systems perspective and provides background. In
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Sections 1.2 and 1.3, I discuss how CBFs and PBC have been used to ensure safety of

control systems and some limitations of previous works. Section 1.5 discusses works

involving safety for human-robot interaction, including works on functional electrical

stimulation (FES)-cycling systems. Some mathematical notation and other preliminaries

are also briefly discussed.

Chapter 2 develops a high-order control barrier function (HOCBF) method for

differential inclusions that can be applied to systems with more general dynamics than

possible using previous HOCBF works. The effectiveness of the developed approach is

demonstrated on a motorized rehabilitative cycle. An allowable set of motor controllers

is designed to constrain the crank position to a time-varying user-defined safe range.

Because of the uncertain and nonlinear dynamics of the system, robust control methods

are borrowed from Lyapunov theory to develop worst-case controllers that render the

intersection of a series of sets forward invariant. The implemented controller is designed

so that it provides minimal assistance within the safe range, maximizing the efforts of the

rider (facilitating more effective therapy), while guaranteeing forward invariance of the

safe set.

In Chapter 3, adaptive deep neural network (DNN) CBFs (aDCBFs) are developed

to ensure safety while learning the system’s uncertain dynamics in real-time. The goal

of this chapter is to ensure safety while reducing the conservative behavior often intro-

duced when bounding the model uncertainty in CBF works. This chapter provides the

first result combining CBFs with an adaptive DNN that updates in real-time, eliminating

the need for pre-training. The DNN adaptation law is not based on the tracking error as

in all previous Lyapunov-based (Lb)-DNN literature. Instead, a least squares adaptation

law is designed by constructing an identification error. Since computing an identification

error requires state-derivative information, an interlaced approach is used where a

secondary state-derivative estimator is combined with the adaptive DNN to generate

the adaptation laws. A combined Lyapunov-based analysis yields guarantees on the

13



DNN parameter estimation. The convergent upper-bound of the parameter estimation

error is then used to formulate candidate CBF-based constraints in an optimization-

based control law to guarantee the forward invariance of the safe set, while reducing the

conservative behavior often seen in robust approaches. As a result, during intermittent

loss of feedback, the identified DNN can be used to make open-loop predictions that

are then used to reformulate CBF-based constraints to guarantee safety. Thus, the

developed method can be used for safe operation of uncertain systems in environments

with feedback occlusion zones, where intermittent loss of feedback typically occurs.

Chapter 4 combines the ideas of PBC and multiple CBFs to design an optimization-

based controller that renders the closed-loop system passive and a safe set forward

invariant despite an external disturbance, which can be especially important in human-

machine interaction. By using a quadratic program (QP) to enforce both passivity

and safety constraints, a set of allowable controllers is developed, generalizing the

control design while providing performance guarantees. While the developed passivity

constraint resembles a Lyapunov constraint, PBC and Lyapunov-based control are

separate concepts with separate applications. Previous results combining PBC and

CBFs require the initial design of a passive nominal controller and provide conditions

for which the passivity of that specific nominal controller is not disrupted by a safety

constraint, while the developed technique produces a set of passivating and safety-

ensuring controllers. The developed approach results in a forward invariant safe set that

is robust to the external disturbance.

In Chapter 5, the previous chapters are summarized. Additionally, potential future

work is presented based on Chapters 2, 3, and 4.
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CHAPTER 1
LITERATURE REVIEW AND DISSERTATION OUTLINE

1.1 Safety

Safety-critical systems are present in all industries and include numerous devices

such as spacecrafts, automobiles, pacemakers, and nuclear power plants. The failure or

malfunction of one of these safety-critical systems can result in death or serious injury to

to the people using them or damage to surrounding equipment or environment, but the

notion of safety tends to be somewhat abstract. Inherently, it is desirable for a system to

be “safe”, but there is often a question of how exactly to define safety and what must be

done to achieve it. A precise definition of safety was introduced in [1], where safety is

said to be a property that states something bad will not happen. Safety is a counterpart

to liveness, which is a property that states something good will happen. An example of

a liveness property is asymptotic stability, where a system’s state eventually reaches a

stable equilibrium point. The definitions for safety and liveness were formalized in [2]

and [3]. In these results, if a safety property does not hold, then at some point a “bad

thing” must happen, and there is an identifiable time that it occurs. A safety property

cannot specify that a “bad thing” does not happen at a particular time, instead, if it

occurs at any time, the execution is not safe. Similarly, a liveness property cannot

guarantee that a “good thing” happens at a certain time, only that it eventually happens.

This dissertation focuses on how “bad” events are defined and prevented in control

systems.

An important type of safety property called invariance is discussed in works such

as [4–7] where a set is said to be invariant if trajectories that start within an invariant

safe set will never reach the complement of the set, where “bad things” happen. The

initial study of safety in the context of dynamical systems is credited to Mitio Nagumo

in [4], dating back to the 1940s. In [4], necessary and sufficient conditions for set

invariance are developed. Given a dynamical system ẋ = f (x) with x ∈ Rn, if the safe
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set C is the superlevel set of a smooth function h : Rn → R, which can also be written as

C = {x ∈ Rn : h (x) ≥ 0} , and if ∂h
∂x
6= 0 for all x such that h (x) = 0, then based on the

derivative of h on the boundary of C,

C is invariant⇔ ḣ (x) ≥ 0,∀x ∈ ∂C.

A similar analysis is performed in [5] and [8], which each arrive at the same conclusion

for the conditions for invariance.

In dynamical systems, safety is can be verified by invariance of a set of some

permitted states. A subset of the state space is said to be invariant if the inclusion of the

state at some time implies the inclusion in both the future and the past. More commonly

used in the literature, the set of permitted states is forward invariant if at some point in

time it contains the system’s state, then it contains the state for all future times. This

idea can also be applied to cases in which there is a control input; a set is controlled

invariant or viable if the trajectory can be kept inside a set via a proper control action, for

all initial conditions inside the set [6]. Contractivity is a strong form of forward invariance

that is also introduced in [6]. A contractive set is a forward invariant set where when a

solution starts from its boundary, it immediately leaves the boundary and evolves toward

its interior. If liveness is equated to asymptotic stability, and safety is equated to forward

invariance, then historically, liveness has received more attention in control theory.

Another common way of ensuring safety in dynamical systems is through a passiv-

ity analysis. Instead of considering safety as a forward invariance problem, passivity-

based approaches view safety as an energy-transfer problem. Passive systems are

often desirable due to their compliant behavior stemming from the fact that they can only

dissipate energy and cannot generate any energy of their own [9]. This means that they

yield to external inputs. Specifically in the context of human-robot interaction, passivity

can be used to ensure the machine yields to inputs from the human operator. A passive
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machine will not overpower the person in contact with it and therefore will not transfer

undue torques to the person [10].

1.2 Control Barrier Functions

1.2.1 History

Control barrier functions (CBFs) are the first method that will be investigated in this

dissertation to ensure the safety of a dynamic system. CBFs play a role in safety similar

to control Lyapunov functions (CLFs) in liveness. Instead of constructively designing a

specific controller (as is done in Lyapunov-based control), CLFs and CBFs define sets of

controllers satisfying conditions that ensure stability and forward invariance, respectively.

Nearly twenty years ago, researchers began to investigate barrier certificates as a way

to formally prove the safety of nonlinear systems [11–13]. Barrier certificates separate

the state space into safe and unsafe parts. The early work in [12] use barrier certificates

as a way to identify contradictions between model and experimental data. In these

papers, the unsafe set Cu is chosen to be the complement of the safe set C with a set

of initial conditions C0 and a function B : Rn → R, where B (x) ≤ 0 for all x0 ∈ C0

and B (x) > 0 for all x ∈ Cu. The function B is a barrier certificate if Ḃ (x) ≤ 0 ⇒ C

is invariant. The conditions in [12] ultimately reduce to Nagumo’s conditions in [4].

Barrier certificates were further studied in [14] and were extended to stochastic settings

in [15]. As means to broaden safety guarantees beyond the boundary of the safe set,

some other barrier certificate-based approaches can be described as Lyapunov-like.

If the invariant level sets of a Lyapunov function are contained in the safe set, one

can guarantee safety. The work in [16] uses a barrier Lyapunov function similar to the

function B above, but with the additional requirement that it is positive definite. Again, by

enforcing Ḃ ≤ 0 on the safe set C, the safe set can be shown to be forward invariant. In

these early works, every sublevel set of the barrier certificate is required to be invariant,

which is overly restrictive for most applications.
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The above works describe closed systems without control inputs. In papers such

as [17–19], viability theory is investigated which extends barrier certificates to controlled

dynamical system, typically of the form

ẋ = f (x) + g (x)u, (1–1)

where x ⊆ Rn denotes the state, u ∈ U ⊂ Rm denotes the control input, f : Rn → Rn

denotes the drift dynamics, and g : Rn → Rn×m denotes the known control effec-

tiveness matrix, where U : Rn × Rm → Rk denotes set of admissible control inputs.

Dynamics of the form in (1–1) with the inclusion of the control input u require the intro-

duction of controlled invariant sets, which are sets can be made invariant by a suitably

designed controller. The first definition of a CBF is introduced in [20], which is slightly

different than the definition introduced in the next subsection that is currently used in

the literature. The CBF definition in [20] was formally combined with control Lyapunov

functions in [21] to design controllers that ensure safety and stability simultaneously.

The conditions for invariance in [17–22] reduce to finding a control input that satisfies

ḣ (x, u) ≥ 0, which still requires that each sublevel set of the CBF is invariant, which is

more restrictive than is often necessary.

More recent works such as [23] lessen the conditions of the above works and

extend Nagumo’s conditions to the entirety of the safe set. In [23], the proposed CBF is

unbounded at the set boundary and is defined such that

inf
x∈Int(C)

B (x) ≥ 0, lim
x→∂C

B (x) =∞. (1–2)

The barrier function defined in (1–2) is now called a reciprocal barrier function. Recip-

rocal type barrier functions are not well-defined outside the operating region and can

require potentially unbounded control actions to ensure invariance. While reciprocal

barrier functions can be well-suited for some applications, the more refined definition of

CBFs in [23,24] is usually preferable.
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1.2.2 Modern Control Barrier Functions

The goal of achieving safety while still leaving the system with as much freedom as

possible motivates the modern definition of CBFs. The definition of a CBF in [23–25],

sometimes called a zeroing CBF, for a safe set C and barrier function h is

sup
u∈U

[Lfh (x) + Lgh (x)u] ≥ −α (h (x))⇒ C is invariant, (1–3)

where α is an extended class K∞ function and Lfh and Lgh are the Lie derivatives of

h with respect to f and g, respectively. The condition in (1–3) is minimally restrictive

because it is necessary and sufficient for compact sets. Previous to these works, the

condition that Ḃ ≤ 0 means that solutions are not allowed to leave a sub-level set of

the CBF even if the solution would still be contained in the safe set. The condition in

(1–3) is true over the entire set C and allows trajectories to move toward the boundary

at states far from the boundary of the safe set. The work in [24] provides robust safety

guarantees such as asymptotic stability of the safe set in addition to forward invariance.

With the formulation of a CBF in (1–3), safety can be united with stability using

pointwise optimal controllers as is done in works such as [23] and [26], among others.

These controllers are usually implemented via an optimization problem that allows for

some nominal (typically but not necessarily stabilizing) control input to be modified

such that it ensures safety while minimizing some cost function. Suppose a feedback

controller unom : Rn → Rm is a continuous nominal control input designed to stabilize the

system. It is possible that unom 6∈ Kcbf (x) , {u ∈ U : Lfh (x) + Lgh (x)u+ α (h (x)) ≥ 0},

meaning that the stabilizing control input may not be in the set of admissible safety-

ensuring control inputs. Therefore, unom can be modified using an optimization problem

in the form of

u∗ (x) = argmin
u∈Rm

Q (x, u) , (1–4)

s.t. Lfh (x) + Lgh (x)u ≥ −α (h (x))
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so that it is safe, where Q : Rn × Rm. Because (1–4) can be solved online in real-time,

the modified controller u∗ can be computed at each time step during operation. In some

cases, it may be favorable to define a closed-form solution to (1–4) so the controller can

be implemented without the need for the use of an optimization program. When the cost

function Q is selected to be Q = ‖u− unom‖2, as is often the case, (1–4) is a quadratic

program (QP) and closed-form solution to (1–4) is given by

u∗ (x)


−Lfh(x)+α(h(x))

Lgh(x)
, Lfh (x) + Lgh (x)u+ α (h (x)) > 0,

unom, otherwise.
(1–5)

1.2.3 Limitations

Though [23] focuses mainly on the applications to automotive control problems,

the paper provides a foundation for many problems in safety-critical control. This

version of a CBF can be applied to a variety of control systems such as multi-robot

systems [27–29], walking robots [30], and human-machine interaction problems [31].

While asymptotic stability of the safe set can be guaranteed using CBFs under some

conditions, the typical result of CBF-based control design is forward invariance, which

is weaker than stability. Despite a weaker result, CBFs have advantages in safe control

design. A CBF-based approach can allow for more freedom inside the safe set meaning

that the states are not necessarily forced to follow a set trajectory as long as they

are not near the boundary of the safe set, allowing for other control objectives to be

considered while state constraints are enforced. CBF-based controllers have merit, but

there are some limitations to be considered.

1.2.3.1 High-Order Control Barrier Functionss

CBFs are typically used to constrain systems of relative degree one, meaning

that the control input shows up explicitly in the first derivative of the state that is being

constrained. Constraints for systems of relative degree one typically correspond to

a velocity constraint, so these CBFs may be ineffective in many robotic systems that
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would benefit more from a position constraint. To broaden the potential applications

of CBFs, some works such as [32] and [33] have used a backstepping approach,

which have been shown to work for position-based constraints for systems of relative

degree two. For systems with an arbitrarily high relative degree, recent work in [34]

has developed high-order control barrier functions (HOCBFs) which are not restricted

to exponential functions and can be used in systems with control affine dynamics.

HOCBFs work by iteratively redefining CBF candidates until the state being constrained

appears in the derivative of the CBF, eliminating problem states from the safe set.

A motorized recumbent cycle is an example of a safety-critical dynamic system

and can be an effective method of rehabilitation for people with neuromuscular disor-

ders [35]. Closed-loop motor control can help to produce safe and consistent cycling

repetitions that the rider may not be able to generate under their own volition. When-

ever possible, it is desirable to forgo motor assistance and have the rider pedal entirely

volitionally to cause higher intensity training where the rider’s heart rate and cardiac

output increase [36], improving cardiovascular health. Controllers for the cycle-rider

system have been designed with this idea of forced-use therapy in mind, such as the

three-mode controller in [37] where the motor assistance (or resistance) is only activated

when the rider’s cadence exits the safe range. CBFs have been used to render a safe

range of cadence values forward invariant in [31] and [38], which differs from the work

in [37] because the controller gradually increases effort as the cadence approaches the

boundary of the safe cadence set.

In the related results in [31,37,38], the cycle cadence is restricted to a user-defined

range, but in some cases, it may be desirable to instead constrain the position of the

cycle crank to a time-varying set of safe positions. Previously, it has not been possible

to use CBFs to formulate this type of position constraint because by considering the

position as an output, the system is of relative degree two. With recent developments

in HOCBFs, we can now develop a controller that ensures the forward invariance of a
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user-defined range of position values while minimizing the control input when the rider is

able to maintain the crank’s position near the midpoint of that range. Using a HOCBF to

constrain the cycle crank’s position has the potential to be especially useful in the case

of teleoperation as in [39] or in the use of a split-crank cycle where the rider’s dominant

side tracks a position that is offset from the position of the non-dominant leg such as

in [40].

1.2.3.2 Uncertain Dynamics

CBF-based control input constraints depend on the dynamic model of the system.

As a result, uncertainties in modeling the dynamics can endanger safety. To address

challenges posed by the modeling uncertainty, robust safety methods can be used,

where safety guarantees are provided using the worst-case bounds on the uncertainty.

However, robust methods yield an overly conservative constraint on the control input

that restricts the state to an operating region that is a subset of the safe set.

Adaptive CBFs have been developed to ensure the forward invariance of a safe

set through online parameter adaptation [41–44], but because the adaptive CBF

approaches developed in [41] and [42] include the parameter estimation error, the

state is restricted to a subset of the safe set, dependent on the upper-bound of the

estimation error. Methods such as set membership identification [42], integral concurrent

learning [45], and parameter-adaptive CBFs [44] reduce the conservativeness with

sufficient data, but these methods involve a white-box approach where the uncertainty

is required to have a known structure based on traditional modeling techniques. In

contrast, recent results such as [46–48] use black-box models such as pre-trained deep

neural networks (DNNs) and Gaussian processes to identify uncertain dynamics using

training datasets and therefore reduce conservativeness; however, since these methods

are not adaptive, they result in static models that may become obsolete over time.

Moreover, they require state-derivative information and do not provide any performance

guarantees.
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Other recent works reduce conservativeness by combining CBFs with disturbance

observers [48–51]. Disturbance observers are used to produce an estimate of the

uncertainty which is then used in the CBF constraint, expanding the state’s operating

region when compared to a robust approach. Adaptive safety is achieved in [48] through

a modular approach that can combine a pre-trained DNN model with a robust integral of

the sign of the error (RISE)-based disturbance observer, eliminating conservativeness of

the safe set over time. Although disturbance observers can estimate general nonlinear

and time-varying uncertainties, the estimates are only instantaneous and do not involve

a model that can be used for subsequent predictions. In contrast, models such as DNNs

can extrapolate through unexplored regions, and thus can be employed to ensure safety

under intermittent loss of feedback. Therefore, instead of using disturbance observers

or pre-trained DNNs as in [48–51] it is desirable to construct adaptive CBFs using DNNs

such as those in [52–56] with analytic real-time adaptation laws without the need for

pre-training. Previous Lyapunov-based (Lb-) DNN adaptive controllers address the

trajectory tracking problem; however, the tracking error-based adaptation laws in these

results are not suitable for the adaptive safety problem since safety does not typically

require tracking error convergence. Thus, to combine adaptive DNNs with CBFs, a novel

weight adaptation law must be formulated to instead yield parameter estimation error

convergence.

1.2.3.3 Other Considerations

Many CBF results assume that infinite control effort is available. Input constrained

CBFs (ICCBFs) were formalized in [57], but were initially investigated in works such

as [33, 58–60]. If a state trajectory is approaching the boundary of the safe set, there

exists some input that will slow it down or reverse it so that it does not exit the set.

Eventually, the state will reach a point too close to the boundary or will be approaching

the boundary too quickly for a reasonable or achievable control input to maintain

invariance. In the presence of input constraints, only a subset of the safe set may be
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rendered forward invariant. To compute this subset of the safe set, several methods

could be used such as a Hamilton-Jacobi partial differential equation over the state

space [61] or a sum-of-squares (SOS)-based semi-definite program that uses the

Positivestellensatz theorem [62, 63]. Both of these methods scale poorly with the

increasing dimension of the state-space. Some of the works regarding ICCFs focus on

only specific classes of systems such as Euler-Lagrange systems [58] or mechanical

systems on a manifold [33]. The ICCBFs in [57] are considered a generalization of

HOCBFs (meaning they can also be applied to systems of higher relative degree) and

work similarly to HOCBFs by iteratively redefining CBF candidates until the intersection

of the safe sets defined by the CBF recursions can be rendered forward invariant by the

available input. These ICCBF methods need further investigation into their robustness to

noise and perturbations, as well as potential methods to efficiently automate the search

for ICCBFs.

For systems with multiple constraints, multiple CBFs often need to be defined, but

theoretical results to ensure the invariance of sets defined by multiple CBFs are limited.

Works such as [29] and [64], combine CBFs using min or max operations. The work

in [65] provides a method for synthesizing forward invariance-ensuring controllers for

continuous-time differential inclusions with flow constraints on the state and control

input, but only investigate continuous-time dynamics. Many real-life dynamical system

have a combination of continuous-time and discrete time behaviors. Systems that can

be modeled as a combination of continuous and discrete dynamics are considered to

be hybrid dynamical systems. These systems are described by differential inclusions or

ordinary differential equations called the flow map that model the continuous evolution of

the state paired with a set of flow states where flows occur and by difference equations

modeling the jumps paired with the jump map describing the set of states where those

discrete events occur. A hybrid systems approach can be used to model a wide range of

systems including switched systems. The work in [66] can be used to enforce multiple
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CBF constraints for the continuous-time portions of a hybrid dynamical system, but

does not provide any guidance on the discrete part of the dynamics. While results

in [67] and [68] can be used to prove the forward invariance or asymptotic stability of

sets defined by a scalar CBF in the context of hybrid systems, there are few results for

noncompact safe sets or safe sets defined by multiple CBFs. In [69], an approach is

developed to establish the forward invariance of a safe set defined by multiple barrier

functions for uncontrolled hybrid dynamics. There are results available to aid in the

design of controllers that ensure the forward invariance of sets defined by multiple CBFs

for systems with continuous dynamics [66] and the forward invariance of sets defined

by single CBFs for systems with hybrid dynamics [31], but there are currently no results

at the intersection of those two groups, where the safe set of a system with hybrid

dynamics is defined by multiple CBFs.

1.3 Passivity-Based Control Methods

1.3.1 History

Another method of ensuring the safety of a system is through passivity theory,

which can be used as an alternative to a Lyapunov-based stability analysis commonly

seen in nonlinear control. Passivity notions can be traced back to Lagrange and Dirichlet

in the late 1700s and early 1800s who showed that the stable equilibria of mechanical

systems correspond to the minima of the potential function. Modernly, the use of

passivity in control theory has been motivated by the use of passivity in circuit theory

and electrical network theory, which began in the 1950s. In early works such as [70]

and [71], the distinction between active and passive networks is that active networks

may contain internal energy sources, while passive ones do not. Analogies can be

drawn between this case and more general control systems, where passive control

systems only store or release the energy provided to them.

Passivity is broadly defined as a nonnegativity condition on the system’s input en-

ergy. The Kalman-Yakubovich-Popov Lemma, also known as the Positive Real Lemma,
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is an important result that can be used to establish the passivity of linear systems

based on its transfer function [72–75]. A system’s transfer function is positive real, and

therefore passive, if and only if, a certain set of matrix equations has a nonnegative

definite solution. While the Positive Real Lemma applies only to linear systems, works

such as [76–78] are some of the first to extend similar ideas to nonlinear systems. An

approach similar to the Positive Real Lemma for nonlinear systems is developed in [78],

which shows that a system is passive if an only if there exists a scalar function of the

state which is nonnegative. The approach in [78] can be applied to nonlinear systems

with the restriction that the state equation of the system should only involve the control

vector linearly.

The requirements of passive nonlinear systems are more precisely outlined in [79].

If a system is passive, the power absorbed by the system over any period of time

[0, t] must be greater than or equal to the increase in the energy stored in the system

(represented by V (x)) over the same period, that is

tˆ

0

u (s) y (s) ds ≥ V (x (t))− V (x (0)) , (1–6)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rm is the output, and

V : Rn → R≥0 is a positive semidefinite storage function. If (1–6) holds with strict

inequality, then the difference between the absorbed energy and increase in the stored

energy must be the energy dissipated in the resistive components of the network. For

every t ≥ 0, it must be true that the instantaneous power inequality u (t) y (t) ≥ V̇ (x (t))

holds. In other words, the flow of energy to the system must be greater than or equal to

the rate of change of the energy being stored in the system. Specific cases of passivity

can be considered when there is no dissipation or strict dissipation when the input and/

or output are not identically zero.
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In the subsequent chapters, the definition of passivity in [79] is used. For the

passivity of a system with dynamic model represented by

ẋ = f (x, u) , (1–7)

y = h (x, u) , (1–8)

where f : Rn ×Rm → Rn denotes a locally Lipschitz function, h : Rn ×Rm → Rm denotes

the continuous output function, f (0, 0) = 0, and h (0, 0) = 0.

Definition 1.1. [79, Definition 6.3] The system in (1–7) and (1–8) is passive if there

exists a continuously differentiable positive semi-definite storage function V (x) such that

u>y ≥ V̇ =
∂V

∂x
f (x, u) ,∀ (x, u) ∈ Rn × Rm.

Moreover, the system is said to be

• lossless if u>y = V̇ ,

• input-feedforward passive if u>y ≥ V̇ + u>ϕ (u) for some function ϕ,

• input strictly passive if u>y ≥ V̇ + u>ϕ (u) and u>ϕ (u) > 0, ∀u 6= 0,

• output-feedback passive if u>y ≥ V̇ + y>ρ (y) for some function ρ,

• output strictly passive if u>y ≥ V̇ + y>ρ (y) and y>ρ (y) > 0, ∀y 6= 0.

In all cases, the inequality should hold for all (x, u).

If a system is output-feedback passive, the term y>ρ (y) can represent an excess or

shortage of passivity. If y>ρ (y) > 0 for all u 6= 0, there is an excess of passivity because

the energy supplied is greater than the increase in the stored energy unless the output

y (t) is identically zero. If y>ρ (y) < 0 for all u 6= 0, there is a shortage of passivity in the

system.

Passivity of a dynamic system is a desirable property for a variety of reasons. One

of the main motivations for studying passivity in the context of control theory is its close

relationship with stability. This is first mentioned in [76], where passivity is deemed
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a sufficient condition for stability. The relationship between passivity and stability is

shown in Section 6.4 of [79]. A system is 0-input asymptotically stable if it is strictly

passive or output strictly passive and zero-state observable. These stability results hold

globally if its storage function is radially unbounded. Furthermore, a passive system

can be stabilized by output feedback u = −ky, and the passivity of each component of

an interconnected system ensures that the overall interconnected system is passive,

as well [80, 81], regardless of system nonlinearities. These passivity properties hold

for series, parallel, and feedback interconnections, enabling the analysis of complex

large-scale systems in a component-wise fashion. Additionally, because passivity is an

input-output property, the system’s dynamics do not necessarily need to be explicitly

known which can be beneficial in the case of human-robot interaction where a dynamic

model for the behavior of the operator is not available. Passivity is a diverse tool that can

be used to handle issues such as input saturation, time delays, and switching between

control inputs.

1.3.2 Applications

Beginning in the 1980s, passivity started to play a bigger role in robotics applica-

tions, including robust [82, 83] and adaptive [84–86] control of manipulators. Passivity-

based control (PBC) was introduced in [87] in the context of adaptive control of rigid

manipulators with its roots tracing back to circuit and electronic systems theory. While

typical control schemes for nonlinear systems are signal-based, PBC is energy-based,

viewing controls in terms of an energy balance between interconnections and can be

used in systems that can be modeled as an Euler-Lagrange system [88], port-controlled

Hamiltonian (PCH) system [89], switched system [90], or hybrid system [68]. The

concept of PBC has been applied to the control of electric motors [91, 92], chemical

processes [93,94], bipedal locomotion [95], and teleoperation [96], among others.

Feedback passive systems can be made passive with respect to an input/output

pair with preliminary feedback. In [97], the system in (1–7)-(1–8) is said to be feedback
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equivalent to passive if there exists a feedback law u = α (x) + β (x) ν such that the

system with new input ν is strictly passive. Passivation methods allow for passive

system tools to be used for systems that may are not initially passive. Related to

passivity, modifications of the energy function and dissipation rate are often called

energy-shaping and damping injection, respectively, and can be used to ensure stable

closed-loop behavior that is robust to disturbances [98–100]. These methods are well-

suited for PCH systems, which focus on the geometric description of systems as an

interconnection of their subsystems based on Hamiltonian equations [89]. Works such

as [94, 101, 102] use an energy-shaping plus damping injection approach to stabilize

robotic manipulators, chemical process, and multi-agent systems.

Because of the interconnection properties of passivity, a PBC approach is well-

suited for the stabilization of bilateral teleoperators. In bilateral teleoperation, a follower

robot imitates the motion of a leader robot, while simultaneously interacting with a

remote environment. The control objective is to ensure motion tracking between the

leader and follower robots, often with a secondary goal of having the force acting

on the follower system being accurately transmitted to the leader. A common issue

in the control of bilateral teleoperators is time delays between subsystems which

often introduce a non-negligible time delay on the signals between agents, which can

destabilize an otherwise stable system [103]. Passivity-based approaches to address

time delays are investigated in [104, 105], where control schemes are derived to

overcome the constant delay while ensuring passivity from input torques to their joint

velocities. The approaches in [104, 105] are often victim of position drift and sluggish

response at high delays. Other works such as [96, 104–110] demonstrate how PBC

can be used to stabilize bilateral teleoperators with time delays. Output synchronization

of networked passive systems in the presence of constant and time-varying delays

were studied in [111, 112] and demonstrate that under some mild assumptions the

synchronization of networked passive systems is robust to unknown delays. While
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these works were limited to network passive systems, the same results can be applied

to systems that are feedback equivalent to passive [97, 113]. Control schemes built

on these concepts have been developed to improve performance based on position

feedback, impedance matching, robustness to delays, and other objectives [110].

In [90, 114–117], dissipativity and passivity properties are investigated for switched

systems. Since switched control systems are a class of hybrid systems, more analysis

is done for PBC of hybrid systems in [68, 118–122]. In [122], a general notion of

dissipativity is presented for a class of hybrid systems that is linked with detectability

to conclude asymptotic stability for large-scale interconnections of hybrid systems.

Many works have investigated passivity in the context of hybrid systems such as

[121, 123, 124]. More recently, explicit definitions of passivity for hybrid systems similar

to those in Definition 1.1 are presented in [68, Chapter 9]. Additionally, conditions for the

synthesis of passivity-based feedback laws and for guaranteeing pre-asymptotic stability

of a point or set based on the passivity of the continuous and/ or discrete dynamics are

provided in [68].

Like forward invariance, a passivity result is again generally considered to be

weaker than stability because it does not guarantee convergence to an equilibrium point.

However, because passivity is robust to time delays, interconnections between systems,

and unknown external disturbances, a passivity result can be advantageous in some

cases.

1.4 Combining Control Barrier Functions with Passivity-Based Control

Though PBC and CBFs have typically been regarded as independent concepts,

both PBC and CBFs have implications in safe control and can be combined to stabilize

systems interacting with an unknown external disturbance while satisfying prescribed

state constraints. As discussed in Section 1.2, in CBF works, safety refers to a more

specific mathematical notion, where a system is considered to be safe if it is restricted

to a forward invariant set of safe states [125]. As discussed in Section 1.3, in the context
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of PBC, there is no rigid mathematical definition of what is considered safe. Instead,

in PBC, safety generally refers to ensuring robust stability with respect to the system’s

environment [126]. While PBC and CBF-based methods are typically unable to prevent

all adverse events from occurring, each approach introduces different notions of a safe

control action, each of which can be important to enforce.

When merging passivity and state constraints, the literature developed for multiple

CBFs in [29, 64, 65] can be a powerful tool. By reformulating the passivity constraint

into a CBF-like constraint on the control input, optimization techniques can be used to

synthesize a set of controllers that yield overall passivity of the system. Construction

of the specific controller that yields passivity or forward invariance of the safe set is not

required. Instead, an optimization problem such as the one in (1–4) can be used to

select a control input from a set of safe passivating controllers for each point in the state

space, enabling easier integration with potential CBF-based state constraints.

Several works have explored combining the concepts of PBC and CBFs [127–131].

Both [127] and [128] use optimization-based methods to passivate nonpassive control

actions, and [130] and [131] introduce control storage functions and control dissipation

functions as aids to design stabilizing controllers for receding horizon control problems.

In [127], the energy tank framework introduced in [126] is used to model the flow

of energy in the system. In each of these works, optimization techniques are used

only to enforce passivity [127, 128] or dissipativity [130, 131] but do not consider any

state-based safety constraints. The work in [129] develops conditions under which a

passive controller remains passive after being modified by a safety-filtering QP. Despite

using optimization techniques to enforce safety constraints, the result in [129] requires

the initial design of a specific nominal controller that renders the system passive.

Furthermore, [129] neglects the effect of the external disturbance on the evolution of

the state in the design of the CBF constraint. As a result, there is a potential for these

external disturbances to compromise the forward invariance of the safe set.
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1.5 Safe Control Methods in Human-Robot Interaction

Some of the most safety-critical systems are those involving the close physical

interaction between person and machine. Motivation exists to design minimally invasive

controllers for human-robot interaction that ensure safety while allowing the human to

operate with minimal interference [31, 38, 39, 132–139]. In the literature on human-robot

interaction, CBFs and PBC are commonly used to ensure safe interaction between

industrial robots and their human operators. In industrial settings, it is typically important

to prevent robots and their human counterparts from coming in direct contact to prevent

injuries. The work in [132, 133] uses CBFs to restrict the operating region of industrial

robots to prevent the robot from colliding with a person. In [132, 133, 138, 140, 141],

PBC is used to control robots that must maintain certain position or velocity tracking

objectives while also ensuring passivity with respect to external perturbations that may

arise from a human or the environment.

Closed-loop control of robotic systems that interact with humans should have a

way to resolve conflicting inputs between a human and robot, and should do so in a

stable manner to avoid larger forces being transmitted to the operator. Controllers that

ensure passivity in the human-robot system can help to yield safe performance due

to their compliant behavior. Many works share the philosophy that passivity implies

safety [142, 143]. While passivity is a good property to have because it is necessary

to ensure a stable interaction with any unknown environment [9, 144], passivity alone

may not be “safe” in the context of human-machine interaction. Therefore, control

laws should be robust providing asymptotic stability guarantees while being passive

specifically with respect to the human’s input [145]. A common assumption in human-

robot interaction literature is that the operators behave passively [146], and because of

this assumption, as long as the controlled robot is energetically passive, the interaction

between robot and human will be stable [147].
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Rehabilitative robotics is a specific type of human-robot interaction where robots are

used to help in physical therapy methods for people with neurological disorders (NDs).

The limiting factor in many rehabilitative robotics applications is that they move the

individual through a rigid predetermined trajectory instead of allowing the user to move

under their own control which can lead to a phenomenon called learned helplessness

where the individual will begin to rely too much on motorized assistance instead of their

own volitional efforts [148]. Assist-as-needed or forced-use controllers allow the user

to maintain some control authority letting them better practice appropriate movement

patterns and relearn normal motion. In [134, 135], CBFs are used for movement

planning and motor control, respectively, for lower limb exoskeletons, and in works such

as [149,150], passivity is used to design assist-as-needed controllers that transfer some

control authority back to the user.

A motorized recumbent cycle is an example of a safety-critical dynamic system

and can be an effective method of rehabilitation for people with NDs [35]. Closed-loop

motor control can help to produce safe and consistent cycling repetitions that the rider

may not be able to generate under their own volition. Whenever possible, it is desirable

to forgo motor assistance and have the rider pedal entirely volitionally to cause higher

intensity training where the rider’s heart rate and cardiac output increase [36], improving

cardiovascular health. Controllers for the cycle-rider system have been designed with

this idea of forced-use therapy in mind, such as the three-mode controller in [151–153]

where the motor assistance (or resistance) is only activated when the rider’s cadence

exits the safe range. Works such as [31, 38, 39, 136] have used CBFs to constrain the

cadence error of a motorized rehabilitative cycle to some prescribed range. In these

papers, the some nominal controller, often zero [31, 38], remains unchanged while the

error is near the center of the safe set. As the rider’s cadence begins to exit the safe

range, the controller starts to assist or resist the rider to keep the trajectory inside the

safe set. The approaches in [31, 38, 39, 136] differ from the work in [151–153] because
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the controller is gradually activated with increasing effort as the cadence approaches

the boundary of the safe cadence set instead of discontinuously switching between

assistive, passive, and resistive modes. Though the controller in [151] is shown to cause

the cadence error to exponentially converge to the boundary of the desired set, the

controller was unable to ensure forward invariance of the desired cadence set, and in

experiments, the cycle spent nearly 50% of the time operating outside of the desired

cadence region.

Several of these works, namely [38, 136], only use motor input, while [31, 39]

incorporate FES before resorting to motor assistance as a way to increase power

output from the rider. The addition of FES control adds switched inputs to the system

and requires switching or hybrid systems approach to conclude forward invariance or

stability. The cycle is modeled as a hybrid system in [31] and is constrained by only

one CBF. While a hybrid systems analysis yields some robustness properties and

asymptotic stability of the safe set with reduced gain conditions than would be achieved

with a switched systems analysis, similar results would not be possible for systems with

constraints defined by multiple CBFs because of current gaps in theoretical results.

CBF results such as [31, 38, 39, 136] are only able to enforce cadence constraints,

representative of a system of relative degree one. HOCBFs could be used for position

constraints on the cycle, which would be especially useful in the case of split-crank

cycling where the two sides of the cycle are decoupled and controlled separately or in

the case of teleoperation where a leader (hand-) cycle sets the desired trajectory for the

follower cycle.

1.6 Outline

This dissertation focuses on the design of safe controllers through the use of

CBFs in Chapters 2, 3, and 4 and passivity-based analyses in Chapter 4 to ensure that

desired state constraints are met and to ensure stable interaction with an unknown
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environment, respectively. While controllers developed using constructive Lyapunov-

based methods are safe in the sense that they are asymptotically or exponentially

stable, they are potentially overly conservative. The approaches in this dissertation

aim to ensure the weaker notion of safety of the system through the less conservative

methods of CBFs and PBC that yield forward invariance and passivity, respectively.

Chapter 2 provides a HOCBF approach for differential inclusions without flow con-

straints which can be applied to an even wider range of dynamic systems than previous

works such as [34]. To illustrate the functionality of the result, I use the developed

HOCBF approach to design a motor controller for a rehabilitative cycle. In the related

results such as [31, 37, 38] the cycle cadence is restricted to a user-defined range,

which is representative of a system of relative degree one. In some cases, it may be

desirable to instead constrain the position of the cycle crank to a time-varying set of safe

position errors. Previously, it has not been possible to use CBFs to formulate this type

of position constraint because by considering the position as an output, the system is

of relative degree two. With recent developments in HOCBFs, a controller can now be

developed that ensures the forward invariance of a user-defined range of position error

values while minimizing the control input when the rider is able to maintain the crank’s

position in the midpoint of that range. Using a HOCBF to constrain the cycle crank’s

position has the potential to be especially useful in the case of teleoperation as in [39]

or in the use of a split-crank cycle where the rider’s dominant side tracks a position

that is offset from the position of the non-dominant leg such as in [40]. The developed

method can be applied to systems with more general dynamics than those in [34] and

includes a term that provides the safe set with some robustness to perturbations. The

HOCBF method in this chapter allows us to constrain the cycle crank to a prescribed

range about the time-varying desired position. I use theory from previous work in [66]

to prove the forward invariance of the set defined by the developed HOCBF approach

and an additional CBF-based constraint on the cycle’s cadence. The motor controller in
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this chapter uses minimal motor control effort when the position error is close to zero,

with increasing control effort as the error approaches the boundary of the user-defined

allowable set. This approach favors the rider’s volitional efforts when they are able to

stay at a near-zero error without assistance while still ensuring forward invariance of the

safe set. An experiment was performed on one healthy subject to validate the developed

motor controller. For the selected error range of ±30 degrees, the controller was able to

constrain the position to the prescribed error for the duration of the test while minimizing

control effort when the rider pedaled volitionally.

Chapter 3 overcomes the problems discussed in Section 1.2.3.2 by developing an

adaptive deep neural network (DNN)-based CBFs that ensures safety while learning

the dynamics of an uncertain system. This chapter provides the first result combining

CBFs with an adaptive DNN that updates in real-time, eliminating the need for pre-

training. The DNN adaptation law is not based on the tracking error as in all previous

Lb-DNN literature. Instead, a least squares adaptation law is designed by constructing

an identification error. Since computing an identification error requires state-derivative

information, an interlaced approach is used where a secondary state-derivative esti-

mator is combined with the adaptive DNN to generate the adaptation laws. A combined

Lyapunov-based analysis yields convergence guarantees on the DNN parameter esti-

mation. The convergent upper-bound of the parameter estimation errors is then used to

formulate candidate CBF-based constraints in an optimization-based control law to guar-

antee the forward invariance of the safe set, while reducing the conservative behavior

often seen in robust approaches. As a result, during intermittent loss of feedback, the

identified DNN can be used to make open-loop predictions that are then used to refor-

mulate CBF-based constraints to guarantee safety. Thus, the developed method can be

used for safe operation of uncertain systems in environments with feedback occlusion

zones, where intermittent loss of feedback typically occurs. Comparative simulation
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results are presented to demonstrate the performance of the developed method on two

control systems with baseline results in [23] and [48].

In Chapter 4, CBFs and passivity are combined to design an optimization-based

controller that renders the closed-loop system passive and a safe set forward invariant

despite an external disturbance. By using a QP to enforce both passivity and safety

constraints, a set of allowable controllers is developed, generalizing the control design

while providing performance guarantees. While the developed passivity constraint

resembles a Lyapunov constraint, PBC and Lyapunov-based control are separate

concepts with separate applications. Previous results combining PBC and CBFs require

the initial design of a passive nominal controller and provide conditions for which the

passivity of that specific nominal controller is not disrupted by a safety constraint, while

the developed technique produces a set of passivating and safety-ensuring controllers.

The developed approach results in a forward invariant safe set that is robust to the

external disturbance. Additionally, we provide a method to determine the feasibility of

the synthesized controller using sum of squares programming. Simulation results on a

planar two-link robot disturbed by an interaction torque injected by a human operator

demonstrate the ability of the developed approach to achieve both passivity and safety

objectives.

1.7 Notation

For notational brevity, all explicit dependence on time, t, is omitted except for when

it is necessary for clarity. For example, given the trajectory x : R≥0 → Rn, the equation

ẋ = Ax+Bu should be interpreted as ẋ (t) = A (t)x (t)+B (t)u (t). For vectors x, y ∈ Rn,

the gradient of a function, denoted ∇f (x, y), is defined as
[
∂f(x,y)
∂x1

>
, ..., ∂f(x,y)

∂xn

>]>
. The

inner product of two vectors is defined as 〈(x1, x2, ..., xn) , (y1, y2, ..., yn)〉 = x1y1 + x2y2 +

x3y3 + ... + xnyn. Let R≥0 , [0,∞), R>0 , (0,∞), and Rn×m represent the space

of n × m dimensional matrices. The identity matrix of size n is denoted by In. The

p-norm is denoted by ‖·‖p, ‖·‖ is the 2-norm, and ‖·‖F is the Frobenius norm defined as
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‖·‖F , ‖vec (·)‖, where vec (·) denotes the vectorization operator, which satisfies the

property vec (ABC) =
(
C> ⊗ A

)
vec (B) [154, Proposition 7.1.9] and ⊗ denotes the

Kronecker product. Let the notation [d] be defined as [d] , {1, 2, . . . , d}. Given a function

B : Rn → Rd, the components are indexed as B (x) , (B1 (x) , B2 (x) , ..., Bd (x)) and the

inequality B (x) ≤ 0 means that Bi (x) ≤ 0 for all i ∈ [d]. For a set A ⊂ Rn, the boundary

of X is denoted ∂X, the closure of X is denotes X, the interior of X is denoted Int (X),

and an open neighborhood about X is denoted N (X). A set-valued mapping M : X ⇒

Rm associates every point x ∈ X with a set M (x) ⊂ Rm. The mapping G is called

locally bounded if, for every x ∈ S, there exists a neighborhood NX (x) , N (x) ∩ S

such that G (NX (x)) is bounded, and G is outer semicontinuous if GraphX (G) ,

{(x, u) ∈ S × Rm : u ∈ G (x)} is relatively closed in S × Rm. A function f : X → R is

called inf-compact if for every λ ∈ R, the sublevel set Lf (λ) , {x ∈ X : f (x) ≤ λ} is

compact.

Given a controller κ : Rn → Rm with κ (x) ∈ Ψ (x) for all x ∈ Rn, we refer to the

closed-loop dynamics defined by ẋ = f (x) + g (x)u and κ as fcl (x) , f (x) + g (x)κ (x).

A solution to the closed-loop dynamics t 7→ x (t) is complete if domx is unbounded and

maximal if there is no solution y such that x (t) = y (t) for all t ∈ domx, where domx is a

proper subset of domy. The set S is forward pre-invariant for the closed-loop dynamics

ẋ = fcl (x) if, for each x0 ∈ S and each maximal solution x starting from x0, x (t) ∈ S

for all t ∈ domx [155, Definition 2.5]. The set is forward invariant for the closed-loop

dynamics if it is forward pre-invariant and additionally, for each x0 ∈ S, every maximal

solution x starting from x0 is complete [155, Definition 2.6].

1.8 Preliminaries

1.8.1 Deep Neural Network Model

For simplicity in the illustration, a fully-connected DNN will be described here.

The following control and adaptation law development can be generalized for any

network architecture Φ with a corresponding Jacobian Φ′. The reader is referred
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to [156] and [157] for extending the subsequent development to ResNets and LSTMs,

respectively. Given some matrix A , [ai,j] ∈ Rn×m, where ai,j denotes the element

in the ith row and jth column of A, the vectorization operator is defined as vec(A) ,

[a1,1, . . . , an,1, . . . , a1,m, . . . , an,m] > ∈ Rnm. Let σ ∈ RLin denote the DNN input with size

Lin ∈ Z>0, and θ ∈ Rp denote the vector of DNN parameters (i.e., weights and bias

terms) with size p ∈ Z>0. Then, a fully-connected feedforward DNN Φ (σ, θ) with output

size Lout ∈ Z>0 is defined using a recursive relation Φj ∈ RLj+1 given by

Φj ,


V >j φj (Φj−1) , j ∈ [k] ,

V >j σa, j = 0,

(1–9)

where Φ (σ, θ) = Φk , and σa ,
[
σ> 1

]>
denotes the augmented input that accounts

for the bias terms, k ∈ Z>0 denotes the total number of hidden layers, Vj ∈ RLj×Lj+1

denotes the matrix of weights and biases, and Lj ∈ Z>0 denotes the number of nodes

in the jth layer for all j ∈ {0, . . . , k} with L0 , Lin + 1 and Lk+1 = Lout. The vector of

smooth activation functions is denoted by φj : RLj → RLj for all j ∈ [k]. If the DNN

involves multiple types of activation functions at each layer, then φj may be represented

as φj ,
[
ςj,1 . . . ςj,Lj−1 1

]>
, where ςj,i : R → R denotes the activation function

at the ith node of the jth layer. For the DNN architecture in (1–9), the vector of DNN

weights is θ ,
[

vec(V0)> . . . vec(Vk)
>

]>
with size p = Σk

j=0LjLj+1. The Jacobian

of the activation function vector at the jth layer is denoted by φ′j : RLj → RLj×Lj ,

and φ′j(y) , ∂
∂z
φj (z)

∣∣
z=y

, ∀y ∈ RLj . Let the Jacobian of the DNN with respect to

the weights be denoted by Φ′ (σ, θ) , ∂
∂θ

Φ (σ, θ), which can be represented using

Φ′ (σ, θ) =

[
Φ′0, Φ′1, . . . , Φ′k

]
, where Φ′j ,

∂
∂vec(Vj)

Φ (σ, θ) for all j ∈ [k]. Then, using

(1–9) and the property ∂
∂vec(B)

vec (ABC) = C> ⊗ A yields

Φ′0 =


x
k∏
l=1

V >l φ
′
l (Φl−1)

 (IL1 ⊗ σ>a ), (1–10)
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and

Φ′j =


x
k∏

l=j+1

V >l φ
′
l (Φl−1)

(ILj+1
⊗ φ>j (Φj−1)

)
, (1–11)

for all j ∈ [k]. In (1–10) and (1–11), the notation
x∏

denotes the right-to-left matrix

product operation, i.e.,
x
m∏
p=1

Ap = Am . . . A2A1 and
x
m∏
p=a

Ap = I if a > m, and ⊗ denotes the

Kronecker product.

1.8.2 Differential Inclusions and Hybrid Systems

Many systems can be modeled as a hybrid dynamical system, which is a system

that exhibits both continuous- and discrete-time behavior. The model of a hybrid

system requires descriptions of both the continuous and discrete dynamics and the

regions where these dynamics apply. The general model of an open-loop hybrid system

H , (Cu, F,Du, G) with state x ∈ Rn and control input u ∈ Rm is written as [67]

H :


ẋ ∈ F (x, u) , (x, u) ∈ Cu,

x+ ∈ G (x, u) , (x, u) ∈ Du,

(1–12)

where F : Rn × Rm ⇒ Rn represents the flow map, C ⊂ Rn × Rm denotes the flow set

where the state evolves according to the continuous dynamics, G : Rn ⇒ Rn denotes

the jump map, and D ⊂ Rn denotes the jump set where the discrete dynamics occur.

Note that ẋ ∈ F (x) is a differential inclusion and x+ ∈ G (x, u) is a difference inclusion,

where ẋ and x+ describe the continuous and discrete dynamics, respectively. The

set-valued nature of F and G can capture multiple possibilities at a given time, helping

to model potential disturbances or other model uncertainty. For a hybrid controller

κ , (κC , κD) : Rn → RmC ×RmD the closed-loop hybrid system Hκ , (C,F,D,G) is given

by

H :


ẋ ∈ Fcl (x) , F (x, κ) , x ∈ C,

x+ ∈ Gcl (x) , G (x, κ) , x ∈ D,
(1–13)
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where C , {x ∈ Rn : (x, κC) ∈ C} and D , {x ∈ Rn : (x, κD) ∈ D}. The hybrid arc

φ is a solution to the closed-loop hybrid system Hκ defined on a hybrid time domain

domφ ⊂ R≥0 × N. The solution to Hκ denoted φ is parameterized by the ordinary time

variable t ∈ R≥0 and discrete jump variable j ∈ N. This dissertation focuses on analysis

tools for the continuous-time portion of the dynamics in (1–12) and (1–13).
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CHAPTER 2
HIGH-ORDER CONTROL BARRIER FUNCTION FOR CONSTRAINING POSITION IN

MOTORIZED REHABILITATIVE CYCLING

2.1 Introduction

CBFs have commonly been used to encode the safety requirements of a dynamical

system and to constrain the control input to guarantee forward invariance of a safe

set. HOCBFs are a method of ensuring the safety of a system of high relative degree.

The method developed in this chapter can be applied to a variety of nonlinear systems

with more general dynamics than previous works, and is demonstrated on a motorized

rehabilitative cycle of relative degree two. A motor controller is designed to constrain the

crank position to a time-varying user-defined safe range. Because of the uncertain and

nonlinear dynamics of the system, robust control methods are borrowed from Lyapunov

theory to develop worst-case controllers that render the intersection of a series of sets

forward invariant. The controller is designed so that it provides minimal assistance within

the safe range, maximizing the efforts of the rider and facilitating more effective therapy.

2.2 General System

This section describes the HOCBF approach from a general perspective. The

technique is inspired by the development in [34], but our work applies to a more general

class of dynamics and therefore requires the application of alternative theoretical results.

We consider here a specialization of our development in [66] to differential inclusions

without flow constraints. A differential inclusion is modeled as

ẋ ∈ F (x, u) (2–1)

where F : Rn × Rm ⇒ Rn is a set-valued mapping that associates every point

(x, u) ∈ Rn×Rm with a set F (x, u) ⊂ Rn. The set-valued nature of the dynamics in (2–1)

can be used to model uncertainty, which is useful for robust control (see [158] for more

information on set-valued mappings and differential inclusions). We assume that F is
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locally bounded, outer semicontinuous, and has nonempty and convex images [66, Sec.

2].

CBFs are defined to guarantee the existence of control inputs that ensure forward

invariance (i.e., safety) of a given set of states S ⊂ Rn. The following definition of a

vector-valued CBF from [66] permits the use of multiple barrier functions to define a set

of safe states.

Definition 2.1. [66, Definition 1] A vector-valued function B : Rn → Rd with components

B (x) = (B1(x), B2 (x) , . . . , Bd (x)) is called a CBF candidate defining the safe set

S ⊂ Rn if S = {x ∈ Rn : Bi (x) ≤ 0, ∀i ∈ {1, . . . , d}}. Also let Si , {x ∈ Rn : Bi (x) ≤ 0}

and Mi , {x ∈ ∂S : Bi (x) = 0} for each i ∈ {1, . . . , d}.

Definition 2.2. [66, Definition 2] A continuously differentiable CBF candidate B : Rn →

Rd defining the set S ⊂ Rn is a CBF for F and S on a set O ⊂ Rn with respect to a

function γ : Rn → Rd if 1) there exists a neighborhood of the boundary of S such that

N (∂S) ⊂ O, 2) for each i ∈ [d], γi (x) ≥ 0 for all x ∈ N (Mi) \Si, and 3) the set

Kc (x) , {u ∈ Rm : Γi (x, u) ≤ −γi (x) , ∀i ∈ [d]} (2–2)

is nonempty for all x ∈ O, where for each i ∈ {1, . . . , d},

Γi (x, u) , sup
f∈F (x,u)

〈∇Bi (x) , f〉 . (2–3)

Based on theoretical conditions for forward invariance, the set-valued mapping

Kc defines a set of control inputs that ensure safety. More specifically, the following

corollary of Theorem 2 in [66] shows that, when B is a CBF and some additional

conditions are satisfied, continuous controllers selected from the mapping Kc render the

safe set S forward invariant.

Corollary 2.1. Suppose B : Rn → Rd is a CBF for F and S on a set O ⊂ Rn with respect

to a function γ : Rn → Rd. Let D , O ∪ S, and suppose the control law κ : Rn → Rm is

continuous on D with κ (x) ∈ Kc (x) for all x ∈ O. If one of the following conditions hold:
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2.1.1) S is compact,

2.1.2) the closed-loop dynamics Fcl (x) , F (x, κ (x)) are bounded on S, or

2.1.3) Fcl has linear growth on S, namely, there exists c > 0 such that, for all x ∈ S,

supv∈Fcl(x) |v| ≤ c (|x|+ 1),

then S is forward invariant for the closed-loop dynamics ẋ ∈ Fcl (x).

In practice, a constructive method is needed for choosing controllers κ (x) ∈ Kc (x).

Such selections can be made using an optimization-based controller given generically

by

κ∗ (x) , arg min
u∈Rm

|u− unom (x)|2 (2–4)

s.t. Ci (x, u) ≤ 0, ∀i ∈ {1, . . . , d},

where unom : Rn → Rm is a continuous nominal control input. By choosing C (x, u) ,

Γ (x, u) + γ (x), we have κ∗ (x) ∈ Kc (x) for each x ∈ O. The following specialization of

Theorem 3 in [66] provides conditions for when κ∗ is a continuous function.

Corollary 2.2. Given O ⊂ Rn, let C : Rn × Rm → Rd be continuous on O × Rm, and

suppose u 7→ Ci (x, u) is convex for each x ∈ O and each i ∈ {1, . . . , d}. Suppose

unom : Rn → Rm is continuous and the mapping K◦ (x) , {u ∈ Rm : Ci (x, u) < 0, ∀i ∈

{1, . . . , d}} is nonempty for every x ∈ O. Then κ∗ : O → Rm in (4–9) is continuous.

HOCBFs are used in situations when the control input does not appear in the

function Γi defined in (2–3), typically due to the fact that Bi does not depend on a state

whose dynamics contain the control input. In this case, it may not be possible to render

the set Si , {x ∈ Rn : Bi (x) ≤ 0} forward invariant, and we seek a subset of Si that can

be made forward invariant. The subset is obtained constructively by recursively defining

a new CBF candidate that constrains the system to operate in a region where Bi is a

CBF, i.e., where the set Ki (x) , {u ∈ Rm : Γi (x, u) ≤ −γi (x)} is nonempty for an

appropriately selected function γi.
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To simplify the description of the HOCBF approach, we turn our attention to a

scalar CBF candidate B1 : Rn → R. The following assumption corresponds to the CBF

candidate for a system with a relative degree greater than one [34, Definition 6].

Assumption 2.1. For CBF candidate i, the expression defining Γi does not depend on

the control input, i.e., there is Γi : Rn → R such that sup
f∈F (x,u)

〈∇Bi (x) , f〉 = Γi (x) for all

x ∈ Rn and u ∈ Rm.

Under Assumption 2.1 and for a fixed γ1, there are two possibilities at a given state

x ∈ Rn: either K1 (x) = Rm or K1 (x) = ∅. When K1 (x) is empty at certain key states

(particularly, those near the boundary of S1), we cannot render S1 forward invariant, and

we seek a subset of S1 that can be made forward invariant. To do so, we recursively

define new CBF candidates which will ultimately define a vector-valued CBF as in

Definition 2.2. The following assumption is needed to ensure that the recursive CBF is

continuously differentiable.

Assumption 2.2. The functions Γi and γi are continuously differentiable.

Definition 2.3. For CBF candidate Bi : Rn → R, let γi : Rn → R be such that γi (x) ≥ 0

for all x ∈ N (Si) \Si and let Assumptions 2.1 and 2.2 hold. The recursion of Bi is

defined as

Bi+1 (x) , Γi (x) + γi (x) + εi, (2–5)

where εi > 0 is a user-selected constant.

Remark 2.1. It is problematic if trajectories reach states where Γi (x) > 0, since this

condition would indicate a potential for the trajectory to continue moving away from the

safe set. For certain acceptable choices of γi (e.g., γi (x) = 0 for all x ∈ Rn), it is possible

that Γi (x) > 0 at points just outside of the set Si+1. The constant εi is included in (2–5)

to ensure that Γi (x) + γi (x) ≤ 0 in a region outside of Si+1, thereby providing robustness

to perturbations from the safe set.

The recursive CBF candidate Bi+1 is used to restrict the system to operate in the

set Si+1 = {x ∈ Rn : Bi+1 (x) ≤ 0} where Γi (x) ≤ −γi (x). In other words, we have
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that Ki (x) = {u ∈ Rm : Γi (x) ≤ −γi (x)} = Rm for all x ∈ Si+1. For the new CBF

candidate, the function Γi+1, defined according to (2–3), may or may not depend on the

control input. The procedure is to define multiple recursions until either one obtains a

CBF, or the set S , ∩ki=1Si is empty. The following theorem shows how a CBF for the

intersection S , ∩ki=1Si is found when a CBF is obtained after k > 1 recursions.

Theorem 2.1. Consider a CBF candidate B1 : Rn → R defining the set S1. For some

k > 1 and each i ∈ {1, . . . , k − 1}, let Bi+1 : Rn → R be the recursion of Bi defined

according to Definition 2.3. Suppose that S , ∩ki=1Si is nonempty, γk : Rn → R is

continuous with γk (x) ≥ 0 for all x ∈ N (Mk) \Sk, and there exists a set Ok ⊃ N (S) such

that

Kk (x) , {u ∈ Rm : Γk (x, u) ≤ −γk (x)} (2–6)

is nonempty for every x ∈ Ok. Then there is a set O ⊃ N (S) such that B (x) ,

(B1 (x) , . . . , Bk (x)) is a CBF for F and S on O with respect to γ (x) , (γ1 (x) , . . . , γk (x)),

and Kc (x) = Kk (x) for all x ∈ O, where

Kc (x) , {u ∈ Rm : Γk (x, u) ≤ −γk (x) , Γi (x) ≤ −γi (x) i ∈ {1, . . . k − 1}}.

Proof. By the recursive definition in (2–5), the function B (x) , (B1 (x) , . . . , Bk (x)) is a

CBF candidate defining the set S. For x ∈ S and 1 ≤ i < k, Γi (x) ≤ −γi (x) − εi since

Bi+1 (x) ≤ 0. Using continuity of Bi, Γi, and γi, and because Ok contains a neighborhood

of S, there is a set O such that N (S) ⊂ O ⊂ Ok and for which, for any 1 ≤ i < k,

Γi (x) ≤ −γi (x) for all x ∈ O. Thus, for any x ∈ O, Kc (x) = Kk (x). Since Kk is

nonempty on O, it follows that Kc is also nonempty on O, which implies that B is a

CBF.

Remark 2.2. In addition to the HOCBF candidate B (x) = (B1 (x) , . . . , Bk (x)) defining

the set S , ∩ki=1Si, there may be additional CBF candidates Bv : Rn → Rd defining

the set Sv ⊂ Rn. The conclusions of Theorem 2.1 hold for the CBF candidate B̃ (x) ,

(B (x) , Bv (x)) by replacing the assumption that Kk in (2–6) is nonempty with the
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assumption that the set Kk (x) ∩ Kv (x) is nonempty for all x in some set Ok ⊃ N (S̃),

where S̃ , S ∩ Sv and Kv is defined by Bv and an appropriately selection function γv

according to (2–2). The key difference is that Ok need only contain a neighborhood of

the smaller set S̃.

Since we have established the HOCBF approach for the general dynamics in

(2–1), the following sections provide a specific example of how this development can be

applied for a person riding a motorized recumbent cycle for rehabilitation.

2.3 Cycle Dynamic Model

The Euler-Lagrange dynamics of the motorized cycle-rider system are [159]

M (q) q̈ + V (q, q̇) q̇ +G (q) + P (q, q̇) + τb (q̇) + τd (t) = τvol (t) + τe (t) , (2–7)

where q ∈ Q denotes the measurable crank angle, q̇ ∈ R denotes the calculable rider

cadence (i.e., the crank velocity), and q̈ ∈ R denotes the crank acceleration. The set

Q ⊆ R denotes all possible crank angles. The continuously differentiable inertial forces

from the combination of the cycle and the rider’s legs are denoted by M : R→ R>0.

The centripetal-Coriolis, gravitational, and viscoelastic tissue forces are denoted by

V : R2 → R, G : R → R, and P : R2 → R, respectively. The unknown viscous

damping torque is denoted by τb : R → R. The torque due to unknown disturbances

(typically from muscle spasticity) is denoted by τd : R≥0 → R, and the torque produced

by volitional efforts of the rider is denoted by τvol : R≥0 → R. The torque produced by the

electric motor is defined as τe , ceu, where ce > 0 is the known electric motor control

constant that relates the input current u : R≥0 → R to the motor output torque.

The open-loop dynamics of the motorized cycle-rider system in (2–7) can be

rewritten as a continuous time system where Fu is the flow map (see [159] and [38])
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ż ∈


z2

M−1 (z1) τf (z)

1

+


0

M−1 (z1)

0

 τe , Fu (z, u) , (2–8)

where the state z = [z1, z2, z3]T is defined as z , [q, q̇, t]T , and the auxiliary term

τf : R3 → R is defined as

τf (z) , τvol (t)− τd (t)− V (z) z2 −G (z1)− P (z)− τb (z2) .

The dynamics in (2–8) are unknown because of the unknown input by the rider, the

disturbance torques, and the parametric uncertainty in the dynamics. However, each

of these physical quantities can be upper bounded by known constants, as described

in [159]. The boundedness of each of these terms and other properties from [159] are

provided below to facilitate the subsequent control development.

Property 1. The unknown terms in (2–8) can be bounded as cI ≤ M (z1) ≤ cI ,

|Vp (z)| ≤ cV |z2|, |G (z1)| ≤ cG, |P (z)| ≤ cP1 + cP2 |z2|, |τb (z2)| ≤ cb |z2|, τd ≤ cd, and

τvol ≤ cvol where cI , cI , cV , cG, cP1, cP2, cb, cd, cvol ∈ R>0 are known constants.

Property 2. 1
2
Ṁ (z1) = V (z).

Property 3. The set-valued mapping Fu : R3 × U ⇒ R3 is outer semicontinuous, locally

bounded, and convex-valued [31].

2.4 Control Design

A crank position control (versus a cadence control) objective is motivated by

motorized cycling applications such as teleoperation and the use of a split-crank cycle.

In teleoperation, the desired trajectory of the cycle crank is defined by the angular

position of a separate leader cycle [39]. Split-crank cycling is a form of asymmetric

rehabilitation where the two sides of the cycle are physically decoupled and controlled

independently, preventing the rider from relying too heavily on one leg [40]. Typical

split-crank control schemes have the dominant leg track a position that is 180 degrees
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offset from the nondominant leg. Because of the symmetry of the cycle, the dynamic

model in Section 2.3 can also be used to model a single side of the cycle.

2.4.1 Control Objective

Unlike our previous work in [31] where a CBF was used to constrain the cycle

system to a desired cadence range, the control objective is to restrict the position of the

cycle crank to a prescribed error range while it follows a desired time-varying position.

To quantify this objective, we define the crank position error as

e , z1d (t)− z1, (2–9)

where z1d (t) is the desired angle of the crank. We define eL < 0 < eH as user-selected

allowable position errors, and the goal is to constrain the position of the crank to a safe

set S = {z ∈ R3 : eL ≤ e ≤ eH}. The absolute values of eL and eH are not required to

be equal, so the safe set may be asymmetric about e = 0. We then aim to create a

controller for the system that renders the allowable set of states forward invariant while

using the least amount of motorized input as possible when the state is within the safe

set, necessitating the rider’s voltional efforts. When the rider begins to stray from a

near-zero position error, the motor will assist. We apply the HOCBF approach in Section

2.2 to this motorized cycle-rider system.

2.4.2 Barrier Function Design

The electric motor control input is designed to ensure the safety of the set S1 =

{z ∈ R3 : eL ≤ e ≤ eH} by designing the barrier function candidate B1 : R→ R to be

B1 (z) ,
1

2

(
e2

β (z)
− 1

)
, (2–10)

where

β (z) ,


e2
L e ≤ 0

e2
H e > 0

.
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Based on the definition of β (z), an equivalent expression for S1 is

S1 =
{
z ∈ R3 : B1 (z) ≤ 0

}
. (2–11)

As discussed in Section 2.2, one of the requirements for the function B1 to be a CBF is

for the set

K1 (z) = {u ∈ R : Γ1 (z, u) ≤ −γ1 (z)}

to be nonempty for all z in some neighborhood U (∂S1), where γ1 (z) is a given function

such that γ1 (z) ≥ 0 for all z ∈ U (S1) \S1. In this case, we can select

γ1 (z) , kb1M
−1 (z1)B1 (z) , (2–12)

where kb1 > 0 is a control gain. The definition in (2–12) satisfies the condition that

γ1 (z) ≥ 0 for all z ∈ U (S1) \S1 because M−1 (z1) is always positive. Although (2–12)

contains the uncertain term M (z1), γ1 is not needed for the controller implementation.

Based on (2–3), Γ1 is given by

Γ1 (z) =
e

β (e)
ż1d −

e

β (e)
z2. (2–13)

Given (2–12) and (2–13), Γ1 and γ1 satisfy Assumptions 2.1 and 2.2.

Because the control input does not appear in (2–13), the set S1 cannot be rendered

forward invariant, and we seek a subset of S1 that can be made forward invariant. We

must iteratively define a new CBF candidate based on (2–5) as

B2 (z) ,M (z1)
e

β (e)
ż1d −M (z1)

e

β (e)
z2 + kb1B1 (z) + ε1. (2–14)

The ε1 term is included in (2–14) to provide some robustness to perturbations. This

recursively defined barrier function candidate defines a new safe set

S2 ,
{
z ∈ R3 : B2 (z) ≤ 0

}
. (2–15)
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Remark 2.3. The CBF in (2–14) is defined as in (2–5) and is then multiplied by M (z1).

Since M (z1) > 0, it is possible to include the M (z1) term because the set of states S2

defined in (2–15) is equivalent to the set of states z ∈ R3 such that M−1 (z1)B2 (z) ≤ 0.

The M (z1) term is included in (2–14) to simplify the subsequent analysis by compensat-

ing for the unknown M−1 (z1) terms in (2–8).

Similar to the analysis in Section 2.4.2, the function B2 is a CBF if there exists a set

O2 ⊃ U (∂S2) such that the set

K2 (z) = {u ∈ R : Γ2 (z, u) ≤ −γ2 (z)} , (2–16)

is non-empty for all z ∈ O2, where γ2 (z) is defined as

γ2 (z) ,


kb2 (cIΓ1 (z) + kb1B1 (z) + ε1) if Γ1 ≥ 0

kb2 (cIΓ1 (z) + kb1B1 (z) + ε1) otherwise
,

where kb2 > 0 is a control gain. The control input u appears in Γ2, so another recursive

barrier function is not needed.

Remark 2.4. As discussed in Section 2.2, the function γ2 should be nonnegative on a

neighborhood outside the boundary of the safe set. A natural choice that satisfies this

condition is the function B2. However, because the M (z1) term in (2–14) is uncertain,

we use the bound of M (z1) from Property 1 to define γ2 such that γ2 (z) ≥ kb2B2 (z) for

all z ∈ R3, which implies that γ2 (z) ≥ 0 for all z ∈ U (S2) \S2.

There are uncertainties in the dynamics of the system, so the inequality in (2–16)

cannot be directly computed. Instead we turn to Lyapunov-based robust control tech-

niques where we develop a worst-case bound of the unknown terms in Γ2. Properties

1-3 are used to show that the unknown terms can be bounded as

Γ2 (z, u) ≤ −τe
e

β (z)
+ C (z) , (2–17)
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for all z ∈ R3,u ∈ R, and for positive constants c1 and c2 where

C (z) , c1 + c2 |e| . (2–18)

To facilitate the control design, we define a function χ (z) , k1 + k2 |e| and select k1

and k2 such that

C (z) ≤ χ (z) ∀e ∈ R. (2–19)

Based on the gain conditions in (2–19), the inequality in (2–17) can be further bounded

as

Γ2 (z, u) ≤ − ce
β (e)

eu+ χ (z) , (2–20)

for all z ∈ R3, u ∈ R. A new regulation map K̄2 : R⇒ R is defined based on the bound in

(2–20) as

K̄2 (z) ,

{
u ∈ R : − ce

β (e)
eu+ χ (z) ≤ −γ2 (z)

}
. (2–21)

Proposition 2.1. If the gains k1 and k2 are selected according to (2–19), then, for any

z ∈ R3 and u ∈ K̄2 (z), it follows that u ∈ K2 (z).

Proof. When the gains k1 and k2 are selected according to (2–19), Γ2 (z, u) ≤ − ce
β(e)

eu +

χ (z). The set K̄2 (z) in (2–21) defines the set of control inputs such that − ce
β(e)

eu+χ (z) ≤

−γ2 (z), implying that Γ2 (z, u) ≤ −γ2 (z). Therefore, any u ∈ K̄2 also satisfies the

inequality in (2–16).

A new safe set S is defined as the intersection of the two previously defined sets

S , S1 ∩ S2, (2–22)

which is defined by the CBF candidate B (z) , (B1 (z) , B2 (z)). The cadence state

z2 is unbounded in the set S. To resolve this problem, we follow the analysis in [31]

to design a separate CBF to restrict the cycle’s cadence to a user-defined safe set.
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To add a cadence constraint, we will define the cadence error ev , z2 − z2d, where

z2d > 0 is a constant setpoint. We will limit the cycle’s cadence to the safe set Sv =

{z ∈ R3 : evL ≤ ev ≤ evH} where evL ≤ 0 ≤ evH are user-selected constants. The safe

cadence set is encoded by a CBF candidate

Bv (z) ,
1

2
M (z1)

(
e2
v

βv (z)
− 1

)
, (2–23)

where

βv (z) ,


e2
vL

ev ≤ 0

e2
vH

ev > 0

.

The safe set will be defined as the intersection of the set defined by the HOCBF

approach in (2–22) and the safe set of cadences defined by (2–23) as

S̃ , S ∩ Sv. (2–24)

This additional CBF construction necessitates the addition of a second CBF-based

constraint to the QP in Section 2.4.3. Such a constraint was developed in [31] for the

dynamics in (2–8), where [31] included an additional functional electrical stimulation

(FES) control input. The constraint derivation is the same in the absence of FES and is

given by the following mapping [31, Eq. 18]

K̄v (z) ,

{
u ∈ R : χv (z) +

ce
β (z)

evu ≤ −γv (z)

}
, (2–25)

where χv (z) , kv1 + kv2 |ev| + kv3e
2
v, and the control gains kv1, kv2, and kv3 are

positive constants selected according to [31, Eq. 16]. The function γv is defined as

γv (z) , kc1

(
e2v

βv(z)
− 1
)
,where kc1 > 0 is a control gain.

2.4.3 Controller Design

While electric motor assistance may be intermittently required in rehabilitative

cycling, greater physiological benefits are achieved when assistance is only provided
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when the rider is unable to meet cycling objectives on their own [160]. Otherwise, the

rider should be expected to pedal under their own volition. The over-reliance on motor

assistance can lead to learned helplessness [149], so in the below forced-use approach,

the motor control input is designed to be minimized when the rider is able to maintain a

position near the desired position volitionally.

The implementable form of the motor controller can be written as the following QP:

u∗ (z) = arg min
u∈R

|u− unom (z)|2

s.t. − ce
β (z)

eu+ χ (z) ≤ −γ2 (z) ,

ce
βv (z)

evu+ χv (z) ≤ −γv (z) , (2–26)

where u∗ : R3 → R denotes the motor control input and unom : R3 → R is any continuous

nominal controller. For the purpose of the experiment in Section 2.6, the nominal

controller is defined as unom (z) , 0 and the controller is completely off whenever

possible. The nominal controller can be defined as some positive or negative constant

so that the motor provides some amount of assistance or resistance, respectively, as

long as this constant does not violate the safety constraint. A number of other types of

nominal controllers can be used depending on the goal of the exercise.

Remark 2.5. When there is only one constraint on the motor controller (i.e., the position

constraint in (2–21)), a closed-form solution to (2–26) can be developed from [31,

Eq. 8] as u∗ (z) = − b(z)
a(z)

when a (z)unom + b (z) > 0, where a (z) , − ce
β(z)

e and

b (z) , χ (z)+γ2 (z), and as u∗ (z) = unom (z) otherwise. The closed-form solution without

the cadence constraint is feasible and locally Lipschitz continuous according to Lemma

1 of [31] if e = 0 implies that a (z)unom + b (z) < 0 when a (z) = 0. Equivalently, k1,

kb1, and kb2 should be selected such that k1 + kb2
(
ε1 − 1

2
kb1
)
< 0. When the cadence

constraint is included in the motor controller, the analysis becomes more complicated

and SOS programming can be used to verify feasibility as in [66, Section V].
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2.5 Forward Invariance

The closed-loop system Fcl defined by the open-loop dynamics Fu in (2–8) and the

controller u∗ in (2–26) is

ż ∈ Fu (z, u∗ (z)) , Fcl (z) . (2–27)

Define the set of safe control inputs as K (z) , K2 (z) ∩Kv (z), where Kv is defined as

in [31, Eq. 10], and define an additional set K̄ (z) , K̄2 (z) ∩ K̄v (z) as the intersection of

the mappings in (2–21) and (2–25). We define a mapping of the interior of K̄ using the

constraints in (2–26) as

K̄◦ (z) , {u ∈ R : − ce
β (e)

eu+ χ (z) < −γ2 (z) ,
ce
β (z)

evu+ χv (z) < −γv (z)}.

For the controller in (2–26) to be feasible and continuous, the set K̄◦ must be nonempty,

which we assume in the subsequent theorem. The nonemptiness of K̄◦ can be verified

using sum of squares programming [66, Section V].

The following theorem shows that by implementing the QP in (2–26), the position

and cadence tracking errors are contained in the desired operating range (i.e., the

safe set is forward invariant). The desired operating range is defined by user-selected

bounds on the position and cadence of the cycle crank with an additional constraint

on the cadence imposed by the HOCBF that is necessary to prevent the position from

reaching a state outside of the safe set.

Theorem 2.2. Consider the motorized cycle-rider system in (2–8). If K̄◦ is nonempty on

O2 ⊃ N (S̃), then the safe set S̃ is forward invariant for the closed-loop dynamics defined

by Fu and u∗ in (2–27), provided that the gain conditions in (2–19) and [31, Eq. 16] are

met.

Proof. The function B̃ (z) , (B1 (z) , B2 (z) , Bv (z)) is a CBF candidate defining the

set S̃. Since K̄◦ is nonempty, K̄2 is nonempty. By Proposition 2.1, K̄2 ⊂ K2 if the gain

conditions in (2–19) are met, so K2 is nonempty. Similarly, by [31, Prop. 1], K̄v ⊂ Kv
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if the gains are selected according to [31, Eq. 16]. Therefore, if K̄ is nonempty, K is

nonempty on O2 ⊃ N (S̃). Recalling Remark 2.2, we apply Theorem 2.1 to conclude that

there exists a set O2 ⊃ N (S̃) such that B̃ (z) is a CBF for Fu and S̃ on O2 with respect to

the function γ̃ (z) , (γ1 (z) , γ2 (z) , γv (z)).

The motor controller u∗ is defined in (2–26), and has continuous constraints defined

by C1 (z, u) , − ce
β(z)

eu + χ (z) + γ2 (z) and C2 (z, u) , ce
β(z)

evu + χv (z) + γv (z) so that

u∗ (z) ∈ K (z). By definition, the nominal controller unom is continuous. The functions

C1 and C2 are convex in the control input u, so by Corollary 2.2, the controller u∗ in

(2–26) is continuous. To prove the forward invariance of S̃, we first prove the closed-loop

dynamics given in (2–27) are bounded on S̃. From Property 1, it can be concluded that

Fcl is bounded on any set for which z2 and u∗ are bounded. The errors e and ev take

bounded values in S̃, and thus the state z2 is bounded. The rate at which the desired

position changes ż1d is bounded by assumption, so it follows that the functions Γ1, γ2,

and γv take bounded values on S̃. From the boundedness of e, ev, γ2, and γv and the

continuity of u∗, the controller u∗ is bounded on S̃. By Property 1 unknown terms in Fu

are bounded by known constants, and by Property 3, the flow map Fu : R3 × U ⇒ R3

is locally bounded, ensuring that compact inputs to the mapping will result in compact

outputs. Therefore, the closed-loop dynamics are bounded on S̃, and by Corollary 2.1.2,

S̃ is forward invariant.

2.6 Experiments

Experiments were conducted to validate the performance of the proposed motor

controller in (2–26). The results of the experiments were compared to uncontrolled

volitional pedaling. The developed controller was evaluated by its ability to constrain the

position of the cycle’s crank to a desired position error range and reduce the variance in

the cycle crank position compared to volition-only pedaling. Two HOCBF configurations

were tested to demonstrate the relationship between the selected safe set and resulting

motor input. Experiments were performed on three able-bodied subjects, who gave
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written informed consent as approved by the Institutional Review Board at the University

of Florida (IRB201600881). Participants 1 and 2 were female, Participant 3 was male,

and all ranged in age from 22 to 26 years old.

2.6.1 Experimental Testbed

The experimental testbed consisted of a commercially available recumbent cycle

that was modified to have a 250 W, 24 V motor coupled to the drive chain. Orthotic

boots were attached to each of the pedals to couple the rider’s feet to the crank. An

optical encoder with an angular resolution of 20,000 pulses per revolution was mounted

to the crank to measure position and cadence. The encoder output was measured

using a data acquisition board (Quanser QPIDe) at a sampling rate of 1000 Hz for a

duration of 180 s. Real-time control software was run on a desktop computer (Windows

10, QUARC, Matlab/ Simulink). A closed-form solution was found for the QP in (2–26)

so that the controller could be run without the need for MATLAB’s optimization tools.

Although the controller could be implemented without a closed-form solution using

Matlab’s quadprog function, the closed-form solution is less computationally expensive

and can be run in real-time. Further details on the experimental setup are available

in [152].

An additional experiment was performed on a split-crank cycling testbed like the

one in [151]. The left and right sides of the split-crank cycle are mechanically decoupled

and controlled separately. Due to the decoupling, the opposing leg does not offset

gravitational effects during up-stroke and down-stroke, leading to larger position errors

compared to the single-crank cycle [151]. Because the split-crank cycle is symmetric

by design, the cycle dynamics in (2–7) can be used to model a single side of the split

crank cycle-rider system, without loss of generality. Therefore, the developed HOCBF

approach can also be used to constrain the position error on the split-crank cycle.
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2.6.2 Procedure

Protocol A is used to validate the developed controller on one participant by

demonstrating forward invariance of the safe set of position states even if no volitional

effort is provided. Protocol B is designed to investigate whether the HOCBF-based

controller in (2–26) reduces the variance in the crank’s position compared to volition-

only pedaling. Protocol C was performed only on Participant 1 and tests volitional

pedaling and the developed HOCBF method on a split-crank cycle [151].

For each protocol, the subject was seated on the cycle and adjustments were

made to the seat to prevent knee hyperextension during pedaling. The rider’s feet were

strapped into orthotic boots. The participant was asked to begin pedaling to bring the

cycle’s cadence up to 50 RPM, at which point the controller was turned on. For the

duration of the trial, the inverted measured position error was displayed for the rider to

see. Based on the definition of the position error in (2–9), it was more intuitive for the

rider to view the inverted value of the measured position error. The tests for Protocols

A and B were 180 s including an initial ramp-up period. The test for Protocol C was 120

s including an initial ramp-up period. To ensure the presented data is representative

of steady-state operation, transient data is removed in post-processing. In Protocol A

only, the rider was asked not to pedal volitionally for a period of 30 s to demonstrate how

the motor controller functions in the absence of volitional effort. For each experiment

in Protocols B and C, once the ramp-up period was over, the rider was asked to pedal

volitionally and attempt to follow the desired trajectory as closely as possible (i.e.,

maintain the position error at a near-zero value) for the remaining time.

Protocol A was performed on Participant 1. The purpose of Protocol A is to demon-

strate that the controller in (2–26) can render the safe set forward invariant for each

of the participants even if the participant provides no volitional effort. A warm-up trial

was performed before data was recorded. The warm-up trial allowed the participant to

get used to the cycle and controller. The control gains were tuned during this warm-up
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trial to ensure the gain condition in (2–19) was met and that the rider was comfortable.

The rider was shown a live plot of the inverted position error with a visible indication

of the setpoint at 50 RPM and was asked to try to maintain a near-zero position error

for the majority of the trial. At 120 s, the rider was asked to withdraw volitional effort

and let the motor take over for 30 s. The acceptable low and high position errors eL

and eH were set to −30 degrees and +30 degrees, respectively. The the position error

limits were selected based on data from previous volitional pedaling tests. The desired

position changed at a rate of 50 RPM, and the lower and upper allowable cadence errors

were set to evL = −30 RPM and evH = 30 RPM, encoding a cadence range of 20 − 80

RPM. The cadence limits were chosen to be large so that the majority of the control

effort would come from the position constraint, not the cadence constraint. The position

and cadence error limits can be tightened or relaxed based on the goal of the cycling

exercise.

Protocol B was performed for each of the three participants. For each of the

participants in Protocol B, the volitional pedaling trial was performed first of the three

trials (two HOCBF trials and one volition-only trial). The order of the two HOCBF trials

were randomly selected. The riders were asked to track a desired position z1d that

changed at a rate of 50 RPM. The nominal controllers were set to unom = 0 for each

trial. For the one of the HOCBF trials (hereafter HOCBF20), the acceptable low and high

errors eL and eH were set to −20 degrees and +20 degrees, respectively, and for the

other HOCBF trial (hereafter HOCBF30), the acceptable low and high errors eL and eH

were set to −30 degrees and +30 degrees. For both HOCBF trials, the lower and upper

allowable cadence errors were selected be the same as in Protocol A. For each of the

trials in Protocol B, the rider was shown a live plot of the inverted position error with a

visible indication of the setpoint at 50 RPM. A warm-up trial was performed for each

controller so the controller could be tuned and the rider could become accustomed to
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the controller. During the warm-up trials, the control gains were tuned to ensure the

forward invariance of the safe set. None of the warm-up trials were recorded.

Protocol C was performed with only Participant 1 to validate the use of the de-

veloped controller on the split-crank cycle. Due to the lack of gravitational offset from

the opposite leg during split-crank cycling, it is difficult to produce consistent cycling

repetitions volitionally. For Protocol C, the HOCBF30 safe set was used, where the ac-

ceptable low and high errors eL and eH were again set to −30 degrees and +30 degrees.

Because of how difficult it is to pedal volitionally on the split-crank cycle, Protocol C was

only tested for one minute after the ramp-up period, instead of two minutes as in Proto-

cols A and B. The participant was unable to complete a volitional effort only comparison

test.

Remark 2.6. When the HOCBF method was implemented in the experiment, the terms

γ2 (z) and γv (z) in (2–26) were replaced with γ2 (z)3 and γv (z)3, respectively. This

selection improves feasibility on the interior of the safe set by allowing the state to evolve

more freely near the center of the safe set. The cubic function can be used because

meets the requirements for the constraint function outlined in Theorem 2.1.

2.6.3 Results

The position error and motor current for Protocol A are shown in Figure 2-1. For

the duration of the trial, the position error did not exit the prescribed safe position range.

The minimum position error was −20.83 degrees while the maximum position error was

16.75 degrees. While the rider was able to maintain a near-zero position error, the motor

input remained at the nominal control input of zero. At points where the position error

approached the upper boundary of the safe region, the motor resisted the rider, driving

the error down. For the period of the test where the rider withdrew volitional efforts, the

motor input increased, assisting the rider and successfully maintaining a position error

inside the safe set. For the duration of the trial, the cadence error did not approach the

boundary of the allowable cadence range at ±30 RPM. The minimum cadence error
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was -5.56 RPM, and the maximum cadence error was 4.26 RPM. It was determined

computationally that the control input was never impacted by the cadence constraint

during the trial. Based on these results, further investigation may enable the removal of

the cadence constraint, simplifying the closed-form solution and feasibility analysis of

the controller as discussed in Remark 2.5.

Table 2-1 shows relevant statistics for each participant under Protocol B, including

the average and standard deviation of the position error, minimum and maximum

position error, and time outside safe set during steady-state operation for the HOCBF

trials. The torque terms in Table 2-1 are included to differentiate the resistive motor

torque that made pedaling more difficult for the rider, and the assistive motor torque,

which implies work was done by the motor and not the rider. Resistive torque is defined

as the negative component of
´
u∗dt, and assisitive torque is defined as the positive

component of
´
u∗dt. Controller HOCBF20 produced the lowest standard deviation in

position error between the three methods but required the greatest motor assistance.

Because the safe range of position errors was larger for HOCBF30, the standard

deviation of errors was larger but still ensured forward invariance of the safe set with

less motor effort. In the two HOCBF trials across all participants, the error state never

escaped the safe set. Data from the duration of the HOCBF20 test for Participant 2 can

be seen in Figure 2-2.

Table 2-2 shows relevant statistics for Protocol C. The safe set in Protocol C was

defined to be the same as the safe set in Protocol B HOCBF30. Despite the fact that

the allowable error range is defined to be the same in Protocol B, the average and

standard deviation of the position error using the HOCBF approach in Protocol C are

much greater than Protocol B HOCBF30. Furthermore, the assistive torque used for the

HOCBF approach in Protocol C is almost five times greater than Protocol B HOCBF30,

despite the trial being half as long. The motor is active more regularly in the split-crank

configuration because of the increased effect of gravity. Despite the challenges that
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Figure 2-1. Inverted position error (top) and motor current (bottom) for an able-bodied
rider for Protocol A. The horizontal lines are representative of the upper and
lower desired error range. The ramp-up phase is excluded. The motor
current input was filtered with a 0.5 s moving average.

arise due to the lack of gravitational offset from the decoupled opposite side of the

crank, the developed HOCBF approach is able to keep the position error inside the safe

set for the entire duration of the test.

2.6.4 Discussion

The experimental results show that the HOCBF approach was successful in

assisting three riders in maintaining a position error of less than ±20 or ±30 degrees

on the single-crank cycle and one rider in maintaining a position error of less than ±30

degrees on the split-crank cycle. Across the three participants, the developed HOCBF

approach reduced the standard deviation of the single-crank cycle’s position error an
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Figure 2-2. Inverted position error (top) and motor current (bottom) for Participant 2
under Protocol A HOCBF20. The horizontal lines are representative of the
upper and lower desired error range. The ramp-up phase is excluded. The
motor current input was filtered with a 0.5 s moving average.
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Table 2-1. Protocol B: Results during steady-state operation on single-crank cycle for 60
s to 180 s.

Participant Number
Controller Metric 1 2 3 Avg.

HOCBF20

Avg. e [degrees] 4.10 1.84 2.96 2.97
SD of e [degrees] 3.70 4.56 4.13 4.13

Min./Max. e [degrees] -8.61/10.83 -8.76/11.73 -7.57/10.52 -8.31/11.03
Assistive Torque [A·s] 15.90 25.24 22.55 21.23
Resistive Torque [A·s] -0.65 -8.52 -2.09 -3.75

Avg. |u∗| [A] 0.14 0.14 0.17 0.15
Time Outside S [s] 0 0 0 0

HOCBF30

Avg. e [degrees] -1.04 -0.82 1.14 -0.24
SD of e [degrees] 7.59 6.40 8.15 7.38

Min./Max. e [degrees] -15.00/15.96 -14.15/14.12 -16.88/18.90 -15.34/16.33
Assistive Torque [A·s] 1.25 4.11 17.46 7.61
Resistive Torque [A·s] -1.12 -2.76 -6.32 -3.4

Avg. |u∗| [A] 0.001 0.01 0.09 0.03
Time Outside S [s] 0 0 0 0

Volition-Only
Avg. e [degrees] 4.69 -0.49 4.18 2.1
SD of e [degrees] 12.48 10.27 10.84 11.38

Min./Max. e [degrees] -44.22/35.41 -39.31/28.11 -27.90/37.88 -41.76/31.76

Table 2-2. Protocol C: Results during steady-state operation on split-crank cycle for 60 s
to 120 s.

Participant Number
Controller Metric 1

HOCBF30

Avg. e [degrees] 17.03
SD of e [degrees] 6.85

Min/Max e [degrees] 6.21/27.78´
(u∗)

+
dt (Assistive Torque) [A·s] 101.00´

(u∗)
−
dt (Resistive Torque) [A·s] 0

Avg. |u∗| [A] 1.70
Time Outside S [s] 0
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average of 35.14% and 63.70% for HOCBF20 and HOCBF30, respectively. Figures 2-1

and 2-2 show how the motor input varies as the position error changes. The control

input is inactive near the center of the safe set and ramp up as the position error gets

closer to the boundary of S. The nominal control range can be widened or narrowed

by the operator by increasing or decreasing the allowable position error. In Protocol B,

HOCBF20 had a small allowable position range of ±20 degrees, while HOCBF30 had a

larger allowable position range of ±30 degrees. As can be seen in Table 2-1, average

motor input over the duration of the trial decreased as the allowable position range

was increased, which is to be expected. Results from Protocol C, which can be seen in

Table 2-2, show that the developed approach is also able to constrain the cycle crank

position on a split-crank cycle, which typically suffer from a larger position variation than

the single-crank cycle. With an increase in control effort compared to the single-crank

cycle, developed approach constrained the split-crank’s position error to a range of ±30

degrees, despite the lack of gravitational offset from the opposite side.

2.7 Conclusion

This chapter develops a new HOCBF approach for nonlinear dynamical systems.

The technique can be applied to a more general class of dynamics than previous

works, and provides the safe set with more robustness to perturbations. The approach

was applied to a motorized rehabilitation cycle, and a motor controller is developed

to constrain the cycle’s crank to an allowable range about the desired time-varying

position. Previous works using CBFs on this system were only able to constrain the

crank’s cadence. In an effort to improve therapy outcomes, the control scheme is

designed in such a way that it provides minimal assistance near the center of the safe

set, with increasing control effort as the cycle crank approaches the boundary of the

safe range, causing the rider to rely less heavily on motor assistance. The safe set is

shown to be forward invariant provided certain gain conditions are met. Preliminary

experimental results on a single individual demonstrate the designed controller’s
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ability to maintain the position of the crank to a prescribed safe range while minimizing

assistance when the rider is able to do so volitionally. It can be seen in Figures 2-1 and

2-2 that although the error trajectory never leaves the safe set, it also never reaches

states near the boundary of the safe set, which is a good example of conservativeness

due to uncertain dynamics as discussed in Section 1.2.3.2. Although this conservative

behavior is not problematic in the case of the cycling problem, conservativeness can

impact performance in other applications. Therefore, the next chapter investigates a

method to expand the state’s operating region by generating an estimate of the system’s

uncertain dynamics.
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CHAPTER 3
ADAPTIVE DEEP NEURAL NETWORK-BASED CONTROL BARRIER FUNCTIONS

3.1 Introduction

Safety constraints of nonlinear control systems are commonly enforced through

the use of control barrier functions (CBFs). Uncertainties in the dynamic model can

disrupt forward invariance guarantees or cause the state to be restricted to an overly

conservative subset of the safe set. In this chapter, adaptive deep neural networks

(DNNs) are combined with CBFs to produce a family of controllers that ensure safety

while learning the system’s dynamics in real-time without the requirement for pre-

training. By basing the least squares adaptation law on a state derivative estimator-

based identification error, the DNN parameter estimation error is shown to be uniformly

ultimately bounded. The convergent bound on the parameter estimation error is then

used to formulate CBF-constraints in an optimization-based controller to guarantee

safety despite model uncertainty. Furthermore, the developed method is applicable

for use under intermittent loss of state-feedback. Comparative simulation results

demonstrate the ability of the developed method to ensure safety in an adaptive cruise

control problem and when feedback is lost, unlike baseline methods.

3.2 Problem Formulation

3.2.1 Dynamic Model and Control Objective

Consider the nonlinear dynamic system modeled by

ẋ = f (x) + g (x)u, (3–1)

where x ∈ Rn denotes the state, f : Rn → Rn denotes an unknown continuously

differentiable function, u ∈ Ψ ⊂ Rm denotes the control input, and g : Rn → Rn×m

denotes the known control effectiveness matrix, where Ψ : Rn ⇒ Rm denotes the set

of admissible control inputs. The control objective is to design a controller that ensures

the forward invariance of a safe set S ⊂ Rn despite the uncertainty in (3–1). Forward
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invariance is a common safety objective as trajectories beginning inside a forward

invariant safe set will never reach an unsafe region.

CBFs are a method used to encode a system’s safety requirements. Using the

development in [65], multiple scalar-valued CBF candidates can be used to define the

safe set.

Definition 3.1. [65, Definition 1] A vector-valued function B : Rn → Rd is a

CBF candidate defining a safe set S ⊂ Rn if S = {x ∈ Rn : B (x) ≤ 0}, where

B (x) , (B1 (x) , B2 (x) , . . . , Bd (x)). Also let Si , {x ∈ Rn : Bi (x) ≤ 0} and

Mi , {x ∈ ∂S : Bi (x) = 0} for each i ∈ [d].

The state constraints defined by the CBF candidate can then be translated to

constraints on the control input, through the introduction of a performance function

γ : Rn → Rd. The design parameter γ limits the worst-case growth of B to ensure

forward invariance of S based on conditions derived in [69].

Definition 3.2. A continuously differentiable CBF candidate B : Rn → Rd defining the set

S ⊂ Rn is a CBF for (3–1) and S on a set O ⊂ Rn with respect to a function γ : Rn → Rd

if 1) there exists a neighborhood of the boundary of S such that N (∂S) ⊂ O, 2) the

function γ is such that, for each i ∈ [d], γi (x) ≥ 0 for all x ∈ N (Mi) \Si, and 3) the set

Kc (x) ,
{
u ∈ Ψ (x) : ∇B> (x) (f (x) + g (x)u) ≤ −γ (x)

}
(3–2)

is nonempty for every x ∈ O.

Since f (x) is unknown, the inequality defining Kc in (3–2) cannot be guaranteed to

be satisfied without using a conservative bound on the dynamics that would restrict the

state’s operating region to a subset of the safe set. Thus, there is motivation to develop

an estimate of the uncertain dynamics to expand the operating region. DNNs are a

powerful tool that can be used to produce a real-time approximation of f (x).
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3.2.2 Deep Neural Network (DNN) Approximation

Based on the universal function approximation theorem, DNNs can be used to

approximate continuous functions that lie on a compact set [161]. Lyapunov-based

methods have been developed to update the layer weights of a number of neural

network (NN) architectures including fully-connected DNNs [52], long short-term

memory NNs [157], deep recurrent NNs [56], and deep residual NNs (ResNets) [156].

On a compact set Ω ⊂ Rn, the uncertain dynamics in (3–1) can be modeled as

f (x) = Φ (x, θ∗) + ε (x) , (3–3)

where Φ : Rn × Rp → Rn denotes the selected DNN architecture, θ∗ ∈ Rp denotes a

vector of ideal weights defined as θ∗ = arg min
θ

sup
x∈Ω

(
‖f (x)− Φ (x, θ)‖2 + σ ‖θ‖2), where

σ ∈ R>0 is a regularizing constant, and ε : Rn → Rn denotes the unknown function

reconstruction error. By the universal function approximation property, for any prescribed

ε ∈ R>0, there exist ideal DNN weights such that sup
x∈Ω
‖f (x)− Φ (x, θ∗)‖ ≤ ε. The

function approximation error in (3–3) satisfies sup
x∈Ω
‖ε (x)‖ ≤ ε on the compact domain Ω.

The subsequent CBF analysis ensures the input to the DNN, x, remains in the forward

invariant safe set S ⊆ Ω for all time, so the universal function approximation property can

be applied.

The DNN has a nested nonlinearly parameterized structure, so traditional adaptive

control techniques used for linearly parameterized systems are not applicable. To help

overcome the complexities introduced by the nonlinearities, a first-order Taylor series

approximation can be used to estimate Φ (x, θ∗) as [52]

Φ (x, θ∗) = Φ
(
x, θ̂
)

+ Φ′θ̃ + ∆2
O

(∥∥∥θ̃∥∥∥) , (3–4)

where θ̂ ∈ Rp denotes a vector composed of the adaptive estimates the DNN layer

weights that are generated using the subsequently designed adaptation laws, Φ′ ∈ Rn×p

denotes the Jacobian of the DNN architecture defined as Φ′ ,
∂Φ(x,θ̂)

∂θ̂
, θ̃ ∈ Rp denotes
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the weight estimation error defined as θ̃ , θ∗ − θ̂, and ∆2
O : Rp → Rn denotes higher-

order terms. The following assumption is made to facilitate the subsequent analysis.

Assumption 3.1. There exists a known constant θ ∈ R>0 such that the unknown ideal

weights can be bounded as ‖θ∗‖ ≤ θ [162, Assumption 1]. Additionally, there exists a

known constant Ξ ∈ R>0 such that ‖f (x)− Φ (x, θ)‖2 + σ ‖θ‖2 is convex with respect to θ

for all θ ∈ B , {ϑ ∈ Rp : ‖θ∗ − ϑ‖ ≤ Ξ}.

Remark 3.1. In Assumption 3.1, local convexity of the regularized loss function

‖f (x)− Φ (x, θ)‖ + σ ‖θ‖2 is assumed to facilitate convergence to a local minimum

in the subsequent analysis. A number of theoretical results in deep learning literature

that indicate that for some DNN architectures such as deep residual neural networks

(ResNets), every local minimum is a global minimum [163–166]. Furthermore, the

regularizing term σ ‖θ‖2 assists in convexifying the loss function and mitigating practical

issues in deep learning such as overfitting [167, Chapter 7].

Substituting the DNN estimate in (3–3) and Taylor series approximation in (3–4) into

the left-hand side of the inequality in (3–2) yields

Ḃ (x, u) = ∇B> (x)
(

Φ
(
x, θ̂
)

+ Φ′θ̃ + ∆ + g (x)u
)
, (3–5)

where ∆ ∈ Rn is defined as ∆ , ∆2
O

(∥∥∥θ̃∥∥∥) + ε (x). Although the DNN approximation

alone is less conservative than bounding the entire uncertainty, (3–5) is still composed

of the unknown terms θ̃ and ∆. Assumption 3.1 could be used to bound θ̃ in the CBF

constraint in (3–5), but instead we introduce an adaptive identifier in the following

subsection to further reduce conservative behavior due to the uncertainty in θ̃.

3.2.3 Adaptive DNN-Based Identifier Design

All previous Lb-DNN-based adaptive control results update the DNN weights using

the tracking error [52, 55, 56, 156, 157, 168]; however, the objective in those results is to

track a desired trajectory. To achieve adaptive safety, the adaptive weight updates need

to be performed with system identification as the objective. Therefore, a least squares
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weight adaptation law is introduced to adaptively identify the system dynamics based

on an identification error. Performing least squares-based real-time identification is

challenging for continuous-time systems because it requires state-derivative information

which is often unknown or noisy. Therefore, the identification error is quantified using the

high-gain state-derivative estimator

˙̂x = f̂ + g (x)u+ kxx̃,
˙̂
f = kf

(
˙̃x+ kxx̃

)
+ x̃, (3–6)

where x̂, f̂ ∈ Rn denote the observer estimates of x and f , respectively, kx, kf ∈ R>0 are

positive constant observer gains, and observer errors x̃, f̃ ∈ Rn are defined as x̃ , x− x̂

and f̃ , f (x) − f̂ , respectively. Although state feedback is available and therefore x̃

is known, ˙̃x is unknown. An implementable form of f̂ can be found by integrating both

sides of ˙̂
f in (3–6) to yield f̂ (t) = f̂ (t0) + kf x̃ (t)− kf x̃ (t0) +

´ t
t0

(kfkx + 1) x̃ (τ) dτ . Taking

the time derivative of the definitions of x̃ and f̃ and substituting (3–6) yields

˙̃x = f̃ − kxx̃, ˙̃f = ḟ − kf f̃ − x̃, (3–7)

where ḟ (x) , ∇f> (x) ẋ. The following lemma is provided to establish the boundedness

of ḟ based on the continuous differentiablility of f under common assumptions in CBF

literature.

Lemma 3.1. Consider the function f , a continuous controller κ ∈ Ψ and the set S ⊂ Rn.

Based on the continuous differentiability of f , the continuity κ, and the boundedness of

x on S, the signals f and κ are bounded on S. Therefore, there exists a known constant
¯̇f ∈ R>0 such that

∥∥∥ḟ (x)
∥∥∥ ≤ ¯̇f for all x ∈ S.

Proof. The safe set S is compact because it is a closed subset of the compact set Ω.

Because of the continuity of f and the fact that S is compact, there exists a known

constant f ∈ R≥0 such that ‖f (x)‖ ≤ f for all x ∈ S. The controller κ and control

effectiveness g are continuous and therefore bounded for all x ∈ S. Thus, because

ẋ = f (x)+g (x)κ (x), it follows that ẋ is bounded for all x ∈ S based on the boundedness
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Figure 3-1. An illustration of the sets Ω and S in R2. On the blue set Ω the universal
function approximation property holds. Flows generated by the CBF are
constrained to the red set S, where

∥∥∥ḟ (x)
∥∥∥ ≤ ¯̇f .

of f , x, and κ on S. The function f is continuously differentiable, so ∇f is bounded on

S. Therefore, since ḟ (x) = ∇f> (x) ẋ, there exists a constant ¯̇f ∈ R>0 such that∥∥∥ḟ (x (t))
∥∥∥ ≤ ¯̇f for all x ∈ S.

Figure 3-1 provides a visualization of the sets Ω and S. The CBF constraints restrict

the state trajectories to the safe set S, where
∥∥∥ḟ (x)

∥∥∥ ≤ ¯̇f . Because S ⊆ Ω, the universal

function approximation property of DNNs holds on S.

Based on the subsequent analysis, the DNN adaptation law ˙̂
θ ∈ Rp is defined as

˙̂
θ = proj

(
Γ
(
−kθθ̂ + Φ′>

(
x, θ̂
)(

f̂ − Φ
(
x, θ̂
))))

, (3–8)

where kθ ∈ R>0 denotes a constant gain and the projection operator proj (·) is defined as

in [169, Appendix E] and ensures that θ̂ (t) ∈ B. The term Γ ∈ Rp×p denotes a symmetric
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positive-definite time-varying least squares adaptation gain matrix that is a solution to

d

dt
Γ−1 = −β (t) Γ−1 + Φ′>

(
x, θ̂
)

Φ′
(
x, θ̂
)
, (3–9)

with the bounded-gain time-varying forgetting factor β : R≥0 → R≥0 designed as

β (t) , β0

(
1− ‖Γ‖

κ0

)
, where β0, κ0 ∈ R>0 are user-defined constants that denote the

maximum forgetting rate and the bound prescribed on ‖Γ‖, respectively. The adaptation

gain matrix is initialized to be positive-definite such that ‖Γ (t0)‖ < κ0, and Γ (t) remains

positive-definite for all t ∈ R≥0 [170]. Because Γ (t) is positive-definite, there exists a

constant κ1 ∈ R>0 such that λmin (Γ (t)) ≥ κ1 for all t ∈ R≥t0. If Φ′
(
x, θ̂
)

satisfies the

persistence of excitation (PE) condition, meaning there exist constants ϕ1, ϕ2 ∈ R>0

such that ϕ1Ip ≤
´ t1+T

t1
Φ′>

(
x (τ) , θ̂ (τ)

)
Φ′
(
x (τ) , θ̂ (τ)

)
dτ ≤ ϕ2Ip for all t1 ∈ R≥0 and

T ∈ R>0, it can be shown that β1 > 0 [170, Sec. 4.2], where β1 ∈ R≥0 is a constant such

that β ≥ β1.

3.3 Stability Analysis

Taking the time derivative of θ̃, adding and subtracting f , and substituting (3–3) and

(3–4) into (3–8), the parameter estimation error dynamics are

˙̃θ = −proj
(

Γ
(
kθθ̃ + Φ′>

(
x, θ̂
)(

Φ′θ̃ + ∆− f̃
)
− kθθ∗

))
. (3–10)

The subsequent Lyapunov-based stability analysis demonstrates the convergence

properties of (3–7) and (3–10).

To facilitate the subsequent stability analysis, let z ,
[
x̃> f̃> θ̃>

]>
∈ R2n+p denote

the concatenated state vector. Let the Lyapunov function candidate V : R2n+p → R be

defined as

V (z) ,
1

2
x̃>x̃+

1

2
f̃>f̃ +

1

2
θ̃>Γ−1θ̃, (3–11)

which can be bounded as

λ1 ‖z‖2 ≤ V (z) ≤ λ2 ‖z‖2 , (3–12)
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where λ1 , min
{

1
2
, 1

2κ0

}
, λ2 , max

{
1
2
, 1

2κ1

}
. Taking the time-derivative of (3–11),

substituting (3–7), (3–9), and (3–10), and applying the property of projection operators

−θ̃>Γ−1proj (µ) ≤ −θ̃>Γ−1µ [169, Lemma E.1.IV], yields

V̇ ≤ −kx ‖x̃‖2 − kf
∥∥∥f̃∥∥∥2

+ f̃>ḟ

−
(
β1

2κ0

+ kθ

)∥∥∥θ̃∥∥∥2

− 1

2
θ̃>Φ′>

(
x, θ̂
)

Φ′
(
x, θ̂
)
θ̃

+ θ̃>Φ′>
(
x, θ̂
)(

f̃ −∆
)

+ kθθ̃
>θ∗. (3–13)

Because f and Φ are continuously differentiable ‖∆‖ ≤ c1 and
∥∥∥Φ′

(
x, θ̂
)∥∥∥

F
≤ c2 when

z ∈ D , {ζ ∈ R2n+p : ‖ζ‖ ≤ χ}, where c1, c2, χ ∈ R>0 are known constants. Recall that by

Lemma 3.1, there exists a known bound ḟ ∈ R>0 such that
∥∥∥ḟ∥∥∥ ≤ ḟ for all x ∈ S. Using

Young’s Inequality and Assumption 3.1, θ̃>Φ′>
(
x, θ̂
)(

f̃ −∆
)
≤ c2

∥∥∥θ̃∥∥∥2

+ c2
2

∥∥∥f̃∥∥∥2

+
c2c21

2
,

f̃>ḟ ≤ ḟ
2

∥∥∥f̃∥∥∥2

+ ḟ
2
, and kθθ̃>θ∗ ≤ kθ

2

∥∥∥θ̃∥∥∥2

+ kθ
2
θ

2
, so (3–13) can be further bounded as

V̇ ≤ −λ3 ‖z‖2 + C − 1

2
θ̃>Φ′>

(
x, θ̂
)

Φ′
(
x, θ̂
)
θ̃, (3–14)

where λ3 , min
{
kx, kf − ḟ

2
− c2

2
, β1

2κ0
+ kθ

2
− c2

}
and C , ḟ+c2c21+kθθ

2

2
. Additionally, let

Q ,
{
ζ ∈ R2n+p : ‖ζ‖ ≤

√
λ1
λ2
χ2 − C

λ3

}
, which is defined to initialize z in the subsequent

analysis. The initial condition x (t0) is considered to be in the interior of S to ensure I

is not measure-zero, thus ruling out solutions that instantly escape S. The following

theorem provides conditions under which the adaptation law in (3–8) yields parameter

estimation error convergence.

Theorem 3.1. Let t 7→ x (t) be such that x (t0) ∈ int (S) and there exists a time interval

I , [t0, tI) such that x (t) ∈ S for all t ∈ I. If Assumption 3.1 is satisfied, κ is continuous,

and χ >
√

λ2C
λ1λ3

, then the weight update law in (3–8) ensures that
∥∥∥θ̃ (t)

∥∥∥ ≤ θ̃UB (t) for all

t ∈ I, where

θ̃UB (t) ,

√
λ2

λ1

‖z (t0)‖2 e
−λ3
λ2
t
+
λ2C

λ1λ3

(
1− e−

λ3
λ2
t
)
,
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provided z (t0) ∈ Q, θ̂ (t0) ∈ B, and λ3 > 0.

Proof. From the Lyapunov function candidate in (3–11) and the inequalities in (3–12)

and (3–14), V̇ can be further bounded as V̇ ≤ −λ3
λ2
V + C, for all z ∈ D and t ∈ I if

the gain condition is satisfied. Solving the differential inequality over the time interval I

yields

V (z (t)) ≤ V (z (t0)) e
−λ3
λ2
t
+
λ2C

λ3

(
1− e−

λ3
λ2
t
)
, (3–15)

for all z ∈ D. From (3–11) and (3–15), it follows that

‖z (t)‖ ≤
√
λ2

λ1

‖z (t0)‖2 e
−λ3
λ2
t
+
λ2C

λ1λ3

(
1− e−

λ3
λ2
t
)
, (3–16)

for all z ∈ D and t ∈ I. To ensure z (t) ∈ D for all t ∈ I, further upper-bounding (3–16)

yields ‖z (t)‖ ≤
√

λ2
λ1
‖z (t0)‖2 + λ2C

λ1λ3
for all t ∈ I. Since D = {ζ ∈ R2n+p : ‖ζ‖ ≤ χ}, z (t) ∈

D always holds if
√

λ2
λ1
‖z (t0)‖2 + λ2C

λ1λ3
≤ χ, which is guaranteed if ‖z (t0)‖ ≤

√
λ1
λ2
χ2 − C

λ3
,

i.e., z (t0) ∈ Q. Thus, trajectories of z do not escape D if z is initialized in Q. Additionally,

because
∥∥∥θ̃∥∥∥ ≤ ‖z‖, (3–16) implies

∥∥∥θ̃ (t)
∥∥∥ ≤√λ2

λ1

‖z (t0)‖2 e
−λ3
λ2
t
+
λ2C

λ1λ3

(
1− e−

λ3
λ2
t
)
, (3–17)

for all t ∈ I and z ∈ D if z (t0) ∈ Q. For the initial conditions to be feasible, Q is required

to be non-empty, which is ensured by selecting χ >
√

λ2C
λ1λ3

.

The bound in (3–17) cannot be implemented without information about the concate-

nated initial state z (t0). Since the state information is available, x̂ is initialized such that

x̃ (t0) = 0. While f̃ and θ̃ are unknown, each have known bounds. Recall that because

of the continuity of f and the fact that S is a closed subset of the compact set Ω and is

therefore compact, there exists a known constant f ∈ R≥0 such that ‖f (x)‖ ≤ f for all

x ∈ S. Thus, it follows that f̃ is bounded. The bound on θ̃ is a result of the projection

operator in (3–10). If
∥∥∥f̂ (t0)

∥∥∥ ≤ f and θ̂ (t0) ∈ B, then
∥∥∥f̃ (t0)

∥∥∥ ≤ 2f and
∥∥∥θ̃ (t0)

∥∥∥ ≤ Ξ.
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Therefore, there exists a known constant Z ∈ R>0 such that ‖z (t0)‖ ≤ Z ,
√

Ξ2 + 4f
2

and (3–17) can be further bounded as∥∥∥θ̃ (t)
∥∥∥ ≤√λ2

λ1

Z2e
−λ3
λ2
t
+
λ2C

λ1λ3

(
1− e−

λ3
λ2
t
)
, (3–18)

for all t ∈ I and z ∈ D if z (t0) ∈ Q.

Because the bound in (3–18) may initially be more conservative than Ξ, we design a

function χθ ∈ R>0 as

χθ , min

{
Ξ,

√
λ2

λ1

Z2e
−λ3
λ2
t
+
λ2C

λ1λ3

(
1− e−

λ3
λ2
t
)}

, (3–19)

such that
∥∥∥θ̃ (t)

∥∥∥ ≤ χθ for all time. When the observer gains kx and kf are selected

to be sufficiently high, λ3 = β1
2κ0

+ kθ
2
− c2, which implies the rate of convergence

in (3–18) depends primarily on β1 and kθ. Thus, when the PE condition is satisfied,

β1 > 0, resulting in a larger λ3 which implies χθ converges faster and to a smaller

value. When the PE condition is not satisfied, the gain kθ helps achieve the uniform

ultimate boundedness of θ̃ based on sigma modification; however, selection of a larger

kθ yields a larger C, worsening parameter estimation performance. By substituting

the developed upper-bound of the parameter estimation error in (3–19) into (3–5) and

recalling ‖∆‖ ≤ c1, a new CBF notion composed of only the known signals can be

defined.

Definition 3.3. A continuously differentiable CBF candidate B : Rn → Rd defining the

set S ⊆ Ω is an adaptive DNN CBF (aDCBF) for the dynamics in (3–1) and safe set S

on a set O ⊂ Rn with respect to γ : Rn → Rd if 1) there exists a neighborhood of the

boundary of S such that N (∂S) ⊂ O, 2) for each i ∈ [d], γi (x) ≥ 0 for all x ∈ N (Mi) \Si,

and 3) the set

Kd (x) ,

{
u ∈ Ψ :

∥∥∇B> (x) Φ′
∥∥ (χθ + c1) +∇B> (x)

(
Φ
(
x, θ̂
)

+ g (x)u
)
≤ −γ (x)

}
,

is nonempty for all x ∈ O.
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The set Kd represents the set of control inputs that will render the set S forward

invariant. A selection of Kd that minimizes some cost function can be made at each

x ∈ O using an optimization-based control law. The controller κ∗ : Rn → Ψ is defined as

κ∗ (x) , arg min
u∈Ψ

Q (x, u) , (3–20)

s.t. CF (x, u) ≤ 0,

where Q (x, u) : Rn × Ψ → R is a cost function typically selected as ‖u− unom‖2,

unom ∈ Ψ is a nominal continuous control input, and C : Rn × Ψ → Rd are the

constraints on the control input. By choosing CF (x, u) ,
∥∥∇B> (x) Φ′

∥∥ (χθ + c1) +

∇B> (x)
(

Φ
(
x, θ̂
)

+ g (x)u
)

+ γ (x), the optimization problem yields a controller

κ∗ (x) ∈ Kd for all x ∈ O assuming Kd is nonempty on the set O. To obtain an

implementable form of the controller, we impose the following conditions on the set

of admissible control inputs Ψ.

Assumption 3.2. There exists a function ψ : Rn × Rm → Rs such that Ψ (x) =

{u ∈ Rm : ψ (x, u) ≤ 0} for all x ∈ Rn. Additionally, for each r ∈ [s], the function

u 7→ ψr (x, u) is convex on Kd and (x, u) 7→ ψ (x, u) is continuous on O × Rm.

The following lemma of [65, Theorem 4] provides conditions that result in a continu-

ous κ∗.

Lemma 3.2. [65, Theorem 4] Let C : Rn × Rm → Rh be continuous on

O × Rm, and, for each g ∈ [h], let u 7→ Cg (x, u) be convex on the set K (x) ,

{u ∈ Rm : Cg (x, u) ≤ 0,∀g ∈ [h]}. Suppose Q : Rn × Rm → R is continuous and

for each x ∈ O, u 7→ Q (x, u) is strictly convex and inf-compact on K (x). If the

set K◦ (x) , {u ∈ Rm : Cg (x, u) < 0,∀g ∈ [h]} is nonempty for every x ∈ O, then

κ∗ (x) , arg min
u∈K

Q (x, u) is continuous.

The continuity of κ∗ established in Lemma 3.2 allows Lemma 3.1 and Theorem 3.1

to be used in the proof of the following theorem, which presents the main result of this

chapter. The implication of the theorem is that the developed DNN-based optimization
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problem in (3–20) ensures system trajectories beginning in the user-selected safe set S

will remain in S for all time.

Theorem 3.2. Suppose B : Rn × Rp → R is an aDCBF for the system defined

by (3–1) and (3–20) defining a safe set S ⊆ Ω. Let x̂, f̂ , and θ̂ update according to

(3–6) and (3–8), respectively. Let the system be initialized such that x̂ (t0) = x (t0),∥∥∥f̂ (t0)
∥∥∥ ≤ f , z (t0) ∈ Q, and θ̂ (t0) ∈ B. If Assumptions 3.1 and 4.1 hold, Q is selected

to be continuous, and u 7→ Q (x, u) is strictly convex and inf-compact on Kd (x), then

the safe set S is forward invariant for the closed-loop dynamics defined by (3–1), the

controller κ∗ in (3–20), and the adaptive weight update law in (3–8), provided λ3 > 0.

Proof. Let t 7→ x (t) be a solution to the closed-loop dynamics fcl defined by (4–1)

and (3–20). Because B is an aDCBF in the sense of Definition 3.3, the set Kd (x) is

nonempty on O ⊃ N (S). Thus, the optimization-based control law in (3–20) yields

a controller κ∗ ∈ Kd. Because Q is continuous and u 7→ Q (x, u) is strictly convex

and inf-compact on Kd (x) by assumption, Assumption 4.1 holds, CF is continuous on

O × Rm, and u 7→ CF (x, u) is convex on Kd. Therefore, the conditions of Lemma 3.2

hold, thus implying κ∗ is single-valued and continuous on O. By Lemma 3.1, there exists

a constant ¯̇f such that
∥∥∥ḟ∥∥∥ ≤ ¯̇f for all x ∈ S, so Theorem 3.1 can be used to show that

the weight update law in (3–8) ensures
∥∥∥θ̃∥∥∥ is uniformly ultimately bounded by (3–17) for

all t ∈ I. Since
∥∥∥f̂ (t0)

∥∥∥ ≤ f , z (t0) ∈ D, θ̂ (t0) ∈ B, and f is continuously differentiable,

it follows that
∥∥∥θ̃ (t0)

∥∥∥ ≤ Ξ,
∥∥∥f̃ (t0)

∥∥∥ ≤ 2f , and ‖∆‖ ≤ c1. Therefore, for every u ∈ Ψ and

t ∈ I, ∇B> (x) ẋ ≤
∥∥∇B> (x (t)) Φ′

∥∥ (χθ + c1) + ∇B> (x (t))
(

Φ
(
x (t) , θ̂

)
+ g (x (t))u

)
,

implying κ∗ (x (t)) ∈ Kd (x (t)) ⊂ Kc (x (t)) for all t ∈ I. Since Kd is nonempty for all

x ∈ O, Kc is nonempty on O and B is a CBF defining the set S in the sense of Definition

4.1. By Theorem 1 of [65], S is forward pre-invariant for the closed-loop dynamics

defined by (4–1) and (3–20). Maximal solutions to fcl are either complete or escape

in finite-time by flowing [69, Proposition 3]. The safe set S is compact by definition,

eliminating the possibility of finite-time escape from the safe set [158, Theorem 10.1.4],
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which implies all maximal solutions to the closed-loop system are complete, i.e., the

maximal I = [t0,∞). Thus, it follows that the safe set S is forward invariant.

3.4 Safety Under Intermittent State Feedback

During intermittent loss of feedback, the state measurements are not available, so it

is impossible to use any feedback mechanisms; however, because the developed DNN

yields parameter estimation error guarantees, it can be used to make state predictions

at times when feedback is lost. Let k ∈ Z≥0 denote the time index such that feedback

is unavailable in the time interval [t2k+1, t2k+2). When feedback is not available, an

open-loop estimation of the current state X̂ ∈ Rn can be updated according to

˙̂
X = Φ

(
X̂, θ̂ (t2k+1)

)
+ g

(
X̂
)
u, (3–21)

where the initial condition for the state estimate is X̂ (t2k+1) = x (t2k+1). When feedback

becomes available, X̂ (t) is reset as X̂ (t) = x (t) for all (t, k) ∈ [t2k, t2k+1) × Z≥0.

In disturbance observer-based methods such as [48], the CBF-based constraint is

reliant on the observer estimate of the dynamics and therefore on state measurements,

so safety cannot be ensured when feedback is lost. In the developed approach, the

constraint in (3–20) can be modified to ensure safety until feedback is restored.

3.4.1 Modified CBF Constraint Development

The open-loop estimator error X̃ ∈ Rn is defined as X̃ , x− X̂; thus, X̃ (t2k+1) = 0.

Exclusively for the purpose of this section, it is assumed that there exists a known

constant ū ∈ Rn such that ‖u‖ ≤ ū, for all u ∈ Ψ, the drift f is globally bounded and

Lipschitz, and g is globally Lipschitz. Such an assumption on the boundedness of f

is mild since finite-time escape is not inherent to the uncontrolled dynamics for most

physical systems of practical interest. Based the assumptions on the boundedness

of u and f and the continuous differentiability of Φ, there exists a Lipschitz constant
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LU ∈ R>0 such that∥∥∥Φ (x, θ∗)− Φ
(
X̂, θ∗

)
+
(
g (x)− g

(
X̂
))

u
∥∥∥ ≤ LU

∥∥∥X̃∥∥∥ , (3–22)

and, additionally, there exists a constant ∆U ∈ R>0 such that∥∥∥Φ
(
X̂, θ∗

)
− Φ

(
X̂, θ̂ (t2k+1)

)
+ ε (x)

∥∥∥ ≤ ∆U . (3–23)

Let the Lyapunov function candidate during loss of feedback VU : R2n+p → R be defined

as VU , 1
2
X̃>X̃. Taking the time-derivative of VU , adding and subtracting Φ

(
X̂, θ∗

)
,

substituting in (3–22) and (3–23), and using Young’s Inequality, it can be shown that

V̇U ≤ λUVU + ∆U

2
when feedback is unavailable, where λU , 2LU + ∆U . Solving for

VU yields VU (t) ≤ (V (t2k+1) + δU) eλU (t−t2k+1) − δU for all (t, k) ∈ [t2k+1, t2k+2) × Z≥0,

where δU , 2∆U

2LU+∆U
. Therefore, the open-loop estimation error dynamics can be shown

to satisfy the form
∥∥∥ ˙̃X
∥∥∥ ≤ LU

∥∥∥X̃∥∥∥ + ∆U , which is exponentially unstable (cf., [171, 172])

such that ∥∥∥X̃ (t)
∥∥∥ ≤ X̃ (t) ,

√
δU (eλU (t−t2k+1) − 1) (3–24)

for all (t, k) ∈ [t2k+1, t2k+2) × Z≥0. The system dynamics can be bounded as ‖ẋ‖ ≤∥∥∥ ˙̃X
∥∥∥ +

∥∥∥ ˙̂
X
∥∥∥ ≤ LUX̃ + ∆U +

∥∥∥Φ
(
X̂, θ̂ (t2k+1)

)
+ g (x)u

∥∥∥, and if ∇B is locally Lipschitz,

then
∥∥∥∇B> (x)−∇B>

(
X̂
)∥∥∥ ≤ ρX̃ (t), where ρ ∈ R>0 is a positive constant. Thus, the

controller in (3–20) becomes κ∗
(
X̂
)
, arg min

u∈Ψ
Q
(
X̂, u

)
, s.t. CU

(
X̂, u

)
≤ 0 in absence

of state feedback, where

CU
(
X̂, u

)
, X̃ (t) ρ

(
LUX̃ (t) + ∆U +

∥∥∥Φ
(
X̂, θ̂ (t2k+1)

)
+ g

(
X̂
)
u
∥∥∥)+

∥∥∥∇B> (X̂)∥∥∥(LUX̃ (t) + ∆U

)
+∇B>

(
X̂
)(

Φ
(
X̂, θ̂ (t2k+1)

)
+ g

(
X̂
)
u
)

+ γ
(
X̂
)
. (3–25)
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3.4.2 Maximum Loss of Feedback Dwell-Time Condition

As the time without feedback increases, the worst-case bound on X̃ grows expo-

nentially, causing the constraint in (3–25) to shrink the system’s operating region. To

ensure the feasibility of the controller with the modified constraint in (3–25), a maximum

loss of feedback dwell-time condition ∆tk ∈ R>0 can be developed using (3–24). In

this subsection, it is additionally assumed that B is globally Lipschitz, implying that

‖∇B (x)‖ ≤ B̄, where B̄ ∈ R>0 is a known positive constant. While a global Lipschitz-

ness requirement may appear restrictive, many safe sets of practical interest such as

polytopes (i.e., sets described by the intersection of hyperplanes) can be described

using globally Lipschitz CBF candidates. To ensure the existence of a safety-ensuring

control input, the time without feedback must be such that the inequality

CU
(
X̂, u

)
− C∗ (x, u) ≤ C̄ (3–26)

is satisfied, where C∗ (x, u) , ∇B> (x) ẋ and C̄ ∈ Rd is the user-selected maximum offset

between the boundary of the safe set and the boundary of the operating region enforced

by CU . Recall that, for the purpose of this section, the control input is assumed to be

bounded such that ‖u‖ ≤ ū, for all u ∈ Ψ. Substituting (3–25) into (3–26) and solving for

∆tk , t2k+1 − t2k+2 yields a maximum loss of feedback dwell-time condition of

∆tk ≤
1

λU
ln

(
1

δU

((
C̄ − 6B̄∆U −KU

6LU B̄

)2

+ 1

))
, (3–27)

where KU , 4B̄
∥∥∥Φ
(
X̂, θ̂ (tk)

)∥∥∥+ 4B̄
∥∥∥g (X̂)∥∥∥ ū.

3.5 Simulation Studies

Two simulations are provided to demonstrate the effectiveness of the developed

aDCBFs. The optimization problem in (3–20) is used to define the control law with a cost

function of Q (x, u) = ‖u− unom (x)‖2 , where unom ∈ Ψ is the nominal control input that

tracks the desired trajectory.
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Figure 3-2. The value of the barrier functions over time for the ACC problem. A negative
value of B indicates the follower vehicle remains in the safe set.

3.5.1 Adaptive Cruise Control

In this section, the developed technique is applied to an adaptive cruise control

(ACC) problem [23]. Suppose there are two vehicles traveling along a straight line. The

lead vehicle travels forward with a velocity vlead ∈ R of vlead = 10 m/s, while the follower

vehicle trails behind the lead vehicle. The follower vehicle has dynamics in the form of ẋ

v̇

 =

 v

− 1
m
Fr (v) + δ (v)

+

 0

1
m

u,
where x ∈ R is the position of the vehicle in meters, v ∈ R is the velocity of the vehicle

in meters per second, m ∈ R is the mass in kg, the nonlinear function Fr : R → R

represents the vehicle’s rolling resistance, the function δ : R → R represents an

unknown disturbance, and u ∈ R is the control input. As described in [23], the rolling

resistance is modeled as Fr (v) = f0 + f1v + f2v
2, where f0 = 0.1 N, f1 = 5 N·s

m , and

f2 = 0.25 N·s2
m . The added disturbance δ (v) = 30 sin (0.1v) represents unmodeled forces

on the vehicle and the mass of the vehicle is m = 100 kg. In the aDCBF method, the

rolling resistance function is considered to be unknown and f (x) = − 1
m
Fr (v) + δ (v) is

the nonlinear function that the DNN learns. The desired velocity of the follower vehicle

vd ∈ R is set to a constant vd , 20 m/s. The distance between the lead and follower
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vehicles D ∈ R is defined as D , xlead − x, where xlead ∈ R is the position of the

lead vehicle. The vehicles are initialized such that v (t0) = 16 m/s, vlead (t0) = 10 m/s,

and D (t0) = 60 m. Because vlead < vd, the nominal velocity tracking controller defined

as unom , −Φ
(
v, θ̂
)
− mk1 (v − vd), where k1 = 10 is a user-selected control gain,

would eventually cause the follower vehicle to collide with the leader. The developed

aDCBF approach is used to enforce a safe following distance. The safe set is defined

as S , {v ∈ R : B (v) = −D + 1.8v ≤ 0}, where 1.8 s represents the desired time

headway as in [23]. A deep residual network (ResNet) is used with 2 hidden layers, a

shortcut connection between each layer, and 6 neurons in each layer, for a total of 122

individual layer weights. The weights are initialized from the normal distribution N (0, 3)

and the DNN gains are selected as Γ (t0) = 5I122, kθ = 0.001, β0 = 2, and κ0 = 3. The

state-derivative estimator is used to produce the secondary estimate of f uses gains of

kx = 5 and kf = 10. Figure 3-2 shows how the controller in (3–20) with γ (v) = 10B (v) is

able to constrain the follower vehicle to a safe distance behind the lead vehicle.

Results for two comparison simulations are also provided in Figure 3-2. Using

a standard CBF approach [23], the nominal controller is given access to Fr and m

but does not have information about the disturbance term, meaning unom , Fr (v) −

mk1 (v − vd) and the CBF constraint is defined as C (v, u) , Ḋ + 1.8
(
− 1
m
Fr (v) + 1

m
u
)

+

10B (v). The unmodeled uncertainty δ pushes the state trajectory out of the safe set

(B reaches a positive steady-state value of 3.15, thus violating the safe following

distance requirements). If it is known that the model of Fr is imperfect, a robust CBF

approach can be used, with unom , Fr (v) − mδ̄ − mk (v − vd) and C (v, u) , Ḋ +

1.8
(
− 1
m
Fr (v) + δ̄ + 1

m
u
)

+ 10B (v), where δ̄ ∈ R>0 is a known constant such that

‖δ‖ ≤ δ̄. Although the robust approach is able to keep the trajectory inside the safe set,

the use of a worst-case bound on δ results in an overly conservative set of admissible

controllers, restricting the state trajectory to a subset of the safe set. Using the robust

CBF approach, B reaches a steady-state value of −8.81. Adaptive CBF methods such
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Figure 3-3. The state trajectory of the closed-loop system outlined in Section 3.5.2 using
the developed aDCBF approach (black line) compared to the same control
scheme without the ResNet approximation of the dynamics (green line). The
orange markers corresponds to the instances state feedback is lost, and the
purple markers correspond to when feedback is restored. The red line
represents the boundary of the safe set.

as those in [41] and [42] cannot be directly applied to this problem because of the

nonlinearly parameterized uncertainty in δ. Using the developed method, B reaches

a stead state value of −1.27. The developed aDCBF method ensures safety while

reducing undesirable conservative behavior by 85.6%, unlike in the baseline methods.

3.5.2 Non-Polynomial Dynamics

Consider the nonlinear dynamical system in (3–1) with f (x) =[
x2 sin (x1) tanh2 (x2) , x1x2 cos (x2) sech (x2)

]> and g (x) = [1, 1]>, where x = [x1, x2]> .
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Figure 3-4. The top plot shows the desired versus actual value of each position state for
the baseline and developed methods over the first 14 seconds of the
simulation. The bottom plot shows the position tracking error for the two
methods over the first 14 seconds of the simulation. The vertical orange
dotted line shows when state feedback is lost, and the vertical purple dotted
line shows when feedback is restored.
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The states are initialized as x (t0) = [0, 0]> and ẋ (t0) = [0, 0]>, and the desired tra-

jectory is defined as xd (t) = 0.1t [sin (t) , cos (t)]>. We define a vector-valued CBF as

B (x) , [x1 + x2 − 2, x1 − x2 − 2, −x1 + x2 − 2, −x1 − x2 − 2]> which defines a diamond

safe set S = {x ∈ R2 : B (x) ≤ 0} with height and width of 4. The deep ResNet has 3

hidden layers, a shortcut connection across each hidden layer, and with 5 neurons in

each layer, thus involving 174 total weights. The weights are initialized from the normal

distribution N (0, 5) and the DNN gains are selected as Γ (t0) = 5I174, kθ = 0.001,

β0 = 2, and κ0 = 10. The state-derivative estimator is used to produce the secondary

estimate of f using gains of kx = 10 and kf = 5. The nominal controller is defined

as unom = ẋd − Φ
(
x, θ̂
)
− ke (x− xd), where ke = 10. The function γ is selected as

γ (x) = 10B (x). Figure 3-3 shows the safe set and the desired and actual state trajecto-

ries. To simulate performance under intermittent state feedback, the state measurement

is made unavailable for 1 second intervals beginning at 10 seconds and 15 seconds,

denoted by the orange × markers in Figure 3-3. During loss of feedback, the procedure

in Section 3.4 is followed, where the identified DNN is used to make a prediction of the

state and the modified robust CBF constraint in (3–25) is used to ensure safety. The

method developed in Section 3.4 prevents the state from escaping the safe set until

the feedback is restored at 11 seconds and 16 seconds, respectively, indicated by the

purple ◦ markers.

For the baseline method in [48], the nominal controller is unom , ẋd − d̂− ke (x− xd),

where d̂ ∈ R2 represents the RISE-based disturbance observer estimate of f defined

in [48, Eq. 6], and the CBF constraint in the optimization-based controller is CF (x, u) ,∥∥∇B> (x)
∥∥ f + ∇B> (x) g (x)u + γ (x). Though trajectory tracking performance is

comparable to the developed approach at times when feedback is available, the state-

derivative observer alone only provides an instantaneous estimate of the dynamics

and fails to ensure safety in both instances of feedback loss, unlike the developed

method. Figure 3-4 shows the trajectory tracking performance of the two methods. The
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position tracking error for the developed method spikes at the start of the simulation,

which can be accredited to the random initialization of the DNN weights. The developed

weight adaptation law in (3–10) helps to enable the position error to settle in less than

0.5 seconds. When feedback is lost at 10 seconds, the position error norm grows to

a maximum value of 0.116 with the developed method compared to a value of 0.807

with the baseline method, thus achieving a 85.6% performance improvement. The root

mean square position error norm between 0 and 14 seconds is 0.031 with the developed

method compared to 0.071 with the baseline method, thus achieving a 56.3% tracking

performance improvement. The position tracking error from 14 seconds to 20 seconds

is omitted from the plot because the desired trajectory in this timespan is outside of the

safe set, rendering position error uninformative.

3.6 Conclusion

This chapter presented a method of ensuring the safety of an uncertain nonlin-

ear system with the development of aDCBFs with real-time weight adaptation. The

DNN adaptation law yields estimation error convergence, which is then used in an

optimization-based control law that yields forward invariance of the safe set. Simulation

results show improved performance compared to baseline methods and demonstrate

the ability of the developed method to ensure safety in feedback-denied environments.
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CHAPTER 4
OPTIMIZATION-BASED CONTROLLERS FOR PASSIVITY AND SAFETY

CONSTRAINTS

4.1 Introduction

Though historically regarded as unrelated concepts, passivity-based control (PBC)

and control barrier functions (CBFs) are methods used to establish the safety of control

systems. In this chapter, an optimization-based PBC technique is developed which can

be combined with CBF-based methods to find a set of controllers that each render a

nonlinear control system energetically passive while also adhering to state constraints

necessary for safety. Borrowing concepts from literature developed for multiple CBFs,

passivity and safety objectives are simultaneously achieved through the use of a

pointwise-optimal controller. Simulation results demonstrate the closed-loop system is

passive with respect to an external disturbance despite a nonpassive nominal control

input while also satisfying state constraints required for safety.

4.2 System Model

Consider a control system in the form

ẋ = f (x, ν) + g (x)u, (4–1)

where the state is denoted x ∈ Rn, the control input is denoted by u ∈ Ψ (x) ⊂ Rm, an

external disturbance is denoted by ν ∈ Φ (x) ⊂ Rp, and known continuous functions are

denoted by f : Rn×Rp → Rn and g : Rn → Rn×m. The set-valued mappings Ψ : Rn ⇒ Rm

and Φ : Rn ⇒ Rp represent the admissible values for the input and external disturbance,

respectively, at each state. The control input u has state-dependent constraints, so to

develop an implementable controller we impose the following assumption.

Assumption 4.1. There exists a function ψ : Rn × Rm → Rk such that Ψ (x) =

{u ∈ Rm : ψ (x, u) ≤ 0} is nonempty.
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4.3 Control Barrier Functions for State Constraints

The physical safety of a system is commonly defined by state constraints that must

be satisfied. For example, a system may have position or velocity limits that must be met

for obstacle avoidance. CBFs are a method of converting those state constraints into

constraints on the control input. A control input found through a CBF-based analysis

renders the safe set forward invariant, i.e., trajectories that begin within the safe set

remain there for all time [125]. Therefore, if the state begins in a safe region, it will be

unable to reach an unsafe region of the state space.

To enforce the forward invariance of the safe set, we must consider the effects of

the external disturbance in (4–1). While [129] investigates the combination of passivity

and state constraints, consideration of the external disturbance is omitted in the CBF

development, resulting in the potential for the state to be pushed into an unsafe region of

the state space by the external disturbance. Compared to previous results that combine

passivity and CBFs, the subsequent development systematically considers the impact

of the unknown external disturbance on the evolution of the state to ensure that it does

not disrupt the forward invariance of the safe set. To do so, the following conditions are

imposed on the system dynamics [65].

Assumption 4.2. The set-valued mapping F : Rn ⇒ Rn defined as F (x) ,

{f(x, ν) : ν ∈ Φ(x)} is nonempty, convex-valued, and bounded for every x ∈ Rn.

Assumption 4.3. The set Φ (x) ⊂ Rp is closed for every x ∈ Rn.

We adapt the definition of a CBF presented in [65, Definition 2] to fit the dynamic

system in (4–1). This definition considers a notion of vector-valued CBFs where the

safe set can be defined by multiple scalar-valued functions, corresponding to multiple

state constraints. A function B : Rn → Rd is a CBF candidate defining the safe set S if

S = {x ∈ Rn : B (x) ≤ 0}, where B (x) , [B1 (x) , B2 (x) , ..., Bd (x)]>. If B is continuous,

S is a closed set. The scalar-valued CBF candidates denoted by Bi : Rn → R each

define sets Si , {x ∈ Rn : Bi (x) ≤ 0} and Mi , {x ∈ ∂S : Bi (x) = 0}, for each i ∈ [d].
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For a continuously differentiable CBF candidate B, we define a function Γ :

Rn × Rm → Rd such that for each i ∈ [d], the i-th component of Γ is defined as

Γi (x, u) , supν∈Φ(x)

{
∇Bi (x)> (f (x, ν) + g (x)u)

}
. The function Γi represents the

worst-case growth of Bi (x) for any direction in the set-valued mapping F (x). We also

introduce a function γ : Rn → Rd defined as γ (x) , [γ1 (x) , γ2 (x) , ..., γd (x)]> which is

used to constrain the rate of growth of Γ to guarantee the forward invariance of S. The

function γ is a relaxation of the extended class-K functions used in results such as [23].

While the use of an extended class-K function can help to achieve asymptotic stability of

the safe set, extended class-K functions impose stronger conditions on the growth of Γ

than are necessary to achieve forward invariance of the safe set [65, Remark 1].

Definition 4.1. ( [65, Definition 2]) A continuously differentiable vector-valued CBF

candidate B : Rn → Rd defining the set S ⊂ Rn is a CBF for (4–1) and S on a set

OC ⊂ Rn with respect to a function γ : Rn → Rd if 1) there exists a neighborhood

of the boundary of S such that N (∂S) ⊂ OC, 2) for each i ∈ [d], γi (x) ≥ 0 for all

x ∈ N (Mi) \Si, and 3) the set

Kc (x) , {u ∈ Ψ (x) : Γ (x, u) ≤ −γ (x)} (4–2)

is nonempty for all x ∈ OC.

Based on theoretical conditions for forward invariance in [65], the set-valued map-

ping Kc in (4–2) defines a set of control inputs that ensure safety. More specifically, [65]

shows that, when B is a CBF and some additional conditions are satisfied, continuous

controllers selected from the mapping Kc render the safe set S forward invariant.

4.4 Passivity-Based Control

4.4.1 Control Development

If a system is passive, the output energy of the system can be no greater than the

energy that is put into the system [88]. Therefore, PBC is commonly used in systems
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that interact with a potentially unknown environment as a way to ensure stable interac-

tion between the system and environment. Based on typical definitions of passivity such

as the one in [79, Definition 6.3], the system in (4–1) is said to be passive if there exists

a continuously differentiable storage function V : Rn → R such that

V̇ (x, u, ν) ≤ ν>h (x, ν) . (4–3)

In a way similar to a Lyapunov stability analysis, this definition requires the design of

a single passivating control input u that makes the inequality in (4–3) true. We modify

the definition of passivity in [79] to present the notion of control passivity, resulting in a

set of controllers that each render the system passive. The developed control passivity

definition is compatible with optimization-based controller synthesis methods commonly

used with CBFs, allowing for simpler unification of passsivity and safety constraints.

Definition 4.2. For an output y = h (x, ν), the system in (4–1) is considered to be

controllably passive with respect to input ν and output h : Rn × Rp → Rp on a set

OP ⊆ Rn if there exists a continuously differentiable positive semi-definite storage

function V : Rn → R such that the set

Kp (x) ,

{
u ∈ Ψ (x) : sup

ν∈Φ(x)

{
V̇ (x, u, ν)− ν>h (x, ν)

}
≤ 0

}
, (4–4)

is nonempty for every x ∈ OP , where V̇ (x, u, ν) , ∇V (x)> (f (x, ν) + g (x)u).

Remark 4.1. The storage function can also be vector-valued, defined as V ,

[V1, V2, . . . , Va]
> : Rn → Ra, rendering the system in (4–1) passive with respect to

multiple input-output pairs. In this case, each storage function defines a constraint on

the control input such that

sup
ν∈Φ(x)

{
V̇i (x, u, ν)− ν>i hi (x, ν)

}
≤ 0,∀i ∈ [a] .

By designing the set of passivity-ensuring controllers in (4–4), controller synthesis

methods commonly used with CBFs can be used to enforce passivity. Selections of Kp
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ensure the system is passive in the same way selections of Kc render a safe set forward

invariant.

4.4.2 Implementation

A new representation of passivity based on Definition 4.2 is developed to better

integrate PBC with CBF mechanisms. To design a controller u that renders the closed-

loop system passive with respect to the external disturbance, we develop a function

P : Rn → R defined as

P (x) , sup
ν∈Φ(x)

{
∇V (x)> f (x, ν)− ν>h (x, ν)

}
. (4–5)

Note that P is finite when the system is controllably passive with storage function V . The

set of passivating control inputs in (4–4) can be rewritten as

Kp (x) ,

{
u ∈ Ψ (x) : ∇V (x)> g (x)u ≤ −P (x)

}
. (4–6)

Instead of designing a specific controller that renders the system passive, a

selection of (4–6) can be made using an optimization-based control law in the form of

κ∗ (x) , arg min
u∈Rm

Q (x, u) , (4–7)

s.t.∇V (x)> g (x)u ≤ −P (x) ,

ψ (x, u) ≤ 0,

yielding a controller that is a selection of Kp while minimizing some cost function

Q : Rn × Rm → R and satisfying the input constraints on u.

Example 4.1. We will demonstrate a few subtleties of the above development with a

simple example. Begin with the system
ẋ = x+ u+ ν,

y = x,

(4–8)
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where the state and control input are denoted by x, u ∈ R, and the external disturbance

is ν ∈ R. Selections of different storage functions can produce different values of P .

By selecting the storage function as V = 1
2
x2, the function P is defined as P (x) ,

supν∈Φ(x) {x2 + xν − νx} = x2 which is known and the system is therefore controllably

passive with respect to input-output pair (ν, x) using Definition 4.2, regardless of the

boundedness of Φ (x). For an unbounded external disturbance term, the above storage

function is the only possible selection that results in a finite P . If the storage function

was instead chosen as V = x2, the function P is P (x) , supν∈Φ(x) {2x2 + 2xν − νx} =

supν∈Φ(x) {2x2 + xν} which may be unbounded for an unbounded Φ (x).

4.5 Passivity-Preservation

The notion of control passivity is compatible with CBF literature and can be en-

forced using the same methods, meaning that passivity and safety constraints can each

be used as a condition in one point-wise optimal controller. The set of passivity- and

safety-ensuring control laws can be found at the intersection of Kp in (4–6) and Kc in

(4–2) and is defined as K (x) , Kp (x) ∩ Kc (x). A selection of K that minimizes some

cost function is implemented using the controller

κ∗ (x) , arg min
u∈Rm

Q (x, u) , (4–9)

s.t. Γ (x, u) ≤ −γ (x) ,

∇V (x)> g (x)u ≤ −P (x) ,

ψ (x, u) ≤ 0,

where the cost function Q : Rn × Rm → R is often chosen as Q =
∥∥u − unom (x)

∥∥2 to

minimally modify some continuous nominal control input unom : Rn → Rm.

Definitions 4.1 and 4.2 provide conditions for when the control system is rendered

passive or a set is rendered forward invariant, respectively. The optimization problem

in (4–9) yields a controller that is both passive and safe without the a priori design of a
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passive nominal controller. For the system to be both passive and safe, there must be at

least one control input for each x ∈ Rn that satisfies both conditions. Thus, passivity can

be preserved in the presence of safety constraints using the QP in (4–9) only when the

constraints are simultaneously feasible.

Although κ∗ (x) is feasible if K (x) 6= ∅, the optimization problem in (4–9) does not

necessarily generate a continuous controller. The following corollary of [65, Lemma 3]

provides conditions that will result in a single-valued and continuous control input.

Corollary 4.1. ( [65, Lemma 3]) Let C : Rn × Rm → Rd be continuous

on O × Rm, and, for each j ∈ [k], let u 7→ Cj (x, u) be convex on the set

K (x) , {u ∈ Rm : Cj (x, u) ≤ 0,∀j ∈ [k]}. Suppose Q : Rn × Rm → R is continu-

ous and, for each x ∈ O, u 7→ Q (x, u) is strictly convex and inf-compact on K (x).

If the set K◦ (x) , {u ∈ Rm : Ci (x, u) < 0,∀j ∈ [k]} is nonempty for every x ∈ O,

κ∗ (x) , arg min
u∈K

Q (x, u) is single-valued and continuous.

We impose the following assumption on the constraints in (4–9) to yield the neces-

sary continuity properties required by Corollary 4.1. The assumption allows the main

result establishing the forward (pre-)invariance of the safe set S and passivity of the

closed-loop system from the external disturbance ν to output y to be proven.

Assumption 4.4. For all i ∈ [d], the functions u 7→ Γi and u 7→ ψ (x, u) are convex on

Kc (x) for all x ∈ OC, and the functions (x, u) 7→ Γi (x, u) + γi (x) and (x, u) 7→ ψ (x, u) are

each continuous on OC ×Rm. The function (x, u) 7→ ∇V (x)> g (x)u+ P (x) is continuous

on OP ×Ψ.

The notion of forward pre-invariance allows for maximal solutions to the closed-loop

system that are not complete. A solution is said to be maximal if there is no solution φ′

such that φ (t) = φ′ (t) for all t ∈ domφ, where domφ is a proper subset of domφ′, and a

solution is complete if domφ is unbounded. The following assumption helps to establish

the forward invariance of S.
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Assumption 4.5. Maximal solutions to the closed-loop system defined by (4–1) and

(4–9) cannot escape in finite-time inside the safe set S.

Theorem 4.1. Consider the system in (4–1) with a control input selected by the

passivity- and safety-ensuring control input in (4–9). Suppose Assumptions 4.1-4.4

hold, the function B is a CBF defining the set S, the function V is a positive semi-definite

storage function, and OP ⊃ N (S). Let the cost function Q be continuous, u 7→ Q (x, u)

be strictly convex for each x ∈ OP , and, for each x ∈ OP , let u 7→ Q (x, u) be strictly

convex and inf-compact on K (x). Additionally, let the mapping

K◦ (x) ,


u ∈ Rm : Γ (x, u) < −γ (x)

∇V (x)> g (x)u < −P (x)

ψ (x, u) < 0


be nonempty on OP . If Assumption 4.5 holds, then the resulting closed-loop system

is passive with respect to V and input-output pair (ν, y), and the safe set S is forward

invariant despite the influence of the external disturbance.

Proof. We will first show that the set S is forward pre-invariant for closed-loop dynamics

defined by (4–1) and (4–9). Because Assumption 4.4 holds, Q is continuous, and u 7→

Q (x, u) is strictly convex and inf-compact for each x ∈ OP , the conditions of Corollary

4.1 are satisfied, and it can be concluded that the controller κ∗ in (4–9) is single-

valued and continuous on OP . The set-valued mapping F is outer semicontinuous by

Assumptions 4.2 and 4.3, and because of the continuity of κ∗, the closed-loop dynamics

defined by F (x) and κ∗ are continuous. By Theorem 1 of [65], the safe set is forward

pre-invariant, which means that solutions cannot escape S but may terminate due to

finite-time escape. To conclude forward invariance, it remains to be shown that maximal

solutions to the closed-loop system starting from S are complete. Under the continuous

closed-loop dynamics defined by (4–1) and (4–9), maximal solutions are either complete
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or escape in finite time [69, Proposition 3]. By Assumption 4.5, the possibility of finite-

time escape is eliminated, implying that all maximal solutions are complete. Therefore,

the safe set S is forward invariant. Because Kp ⊆ K, the controller in (4–9) yields a

controller in the set Kp. Therefore, any controller that is a selection of K ensures that

the system is passive according to the definition of passivity in [79, Definition 6.3].

Remark 4.2. Bounded solutions avoid finite-time escape from the safe set; however,

there is no guarantee that solutions to the closed-loop dynamics defined by (4–1) and

(4–9) remain bounded because it is not required that S is designed to be bounded.

There are a number of ways in which Assumption 4.5 can be satisfied. For example,

finite-time escape is eliminated if S is compact or if S is closed and additionally the

closed-loop dynamics defined by (4–1) and (4–9) are either bounded on S or have linear

growth on S.

With a passive control action and a state near the center of the safe set, κ∗ = unom.

As the state approaches the boundary of the safe set, or when the nominal control

action leads to a nonpassive closed-loop system, the QP minimally modifies the nominal

controller to meet both the passivity and state objectives. The implication of this control

design is that the system will remain passive with respect to some external disturbance

while operating within a forward invariant safe set defined by a vector-valued CBF. With

the addition of the consideration of the external disturbance in the CBF design, the safe

set is guaranteed to be forward invariant unlike in previous results, where there are no

safeguards preventing the external disturbance from pushing the state into an unsafe

region of the state space. Despite the energy being injected by the CBF, the system

remains passive if there is a solution to (4–9).

Remark 4.3. With only one constraint in (4–9) (either the passivity, safety, or input

constraint), a closed-form solution to (4–9) can be developed; however, developing a

closed-form solution is more difficult to do with the inclusion of each constraint. Sum of
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Figure 4-1. A visual representation of the sets of passivating and safety-ensuring control
inputs for the toy example in (4–8). The region outlined in blue represents
Kp and the pink region between the two red lines represents Kc. The purple
region represents K, where Kp and Kc overlap.

squares programming can be used as in [65, Section V] to identify the set where at least

one feasible solution to (4–9) exists, which is equivalent to states where K is nonempty.

Example 4.2. Continuing the example in Section 4.1, we will demonstrate the potential

of the developed passivation approach to be used in combination with CBFs. Suppose

the CBF is selected as B (x) = [−x− x̄, x− x̄]>, restricting the state to −x̄ ≤ x ≤ x̄,

and γ is selected as γ (x) = kbB (x), where kb ∈ R>0 is the CBF gain. From Section 4.1,

it is known that a control input satisfying xu ≤ −x2 will passivate the system. Similarly,

a control input of −kb (x+ x̄) + ν̄ ≤ u ≤ −kb (x− x̄) − ν will yield forward invariance of
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Figure 4-2. The simulated evolution of the state (left) and control input (right) of the
two-link manipulator system using the developed QP-based controller. The
two top plots correspond to the case where human input set to zero, and the
two bottom plots show the system’s behavior when there is a human input.

the safe set, where ν ∈ R>0 is a bound on ν ∈ R such that |ν| ≤ ν. It can be verified

analytically that Kc is nonempty if −kb (x+ x̄) + ν̄ ≤ −kb (x− x̄) − ν , which is true if kb

and x̄ are selected such that kbx̄ ≥ ν̄. As can be seen in Figure 4-1, not all passivating

control inputs are safe and vice versa, but a feasible solution exists at each state in the

safe set.

If the ν term was not included in the design of the CBF as in [129], the safe set of

control inputs Kc would be shifted to the right, and the CBF would be unable to keep

the state inside the safe set for certain values of the external disturbance. Another key

advantage of the developed approach over previous results is its ability to minimize the

control input that will achieve both objectives.

4.6 Simulation Study

A numerical simulation was performed to provide an example of the effectiveness

of the developed control scheme in ensuring both passivity of the closed-loop system as

well as satisfaction of some state constraints required for safety. Consider a frictionless

two-link planar and revolute robot modeled by Euler-Lagrange dynamics in the form
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Figure 4-3. The value of each of the CBFs over time. None of the CBFs reach a positive
value, meaning that the state never reaches an unsafe region of the state
space.
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of [173]

M (q) q̈ = −C (q, q̇) q̇ + τe + τh, (4–10)

where q , [q1 q2]> ∈ R2, q̇ , [q̇1 q̇2]> ∈ R2, and q̈ , [q̈1 q̈2]> denote the angular

position, velocity, and acceleration of each of the links, respectively. The inertia matrix

and centripetal-Coriolis matrix are denoted by M (q) : R2 → R2×2 and C (q, q̇) : R2×R2 →

R2×2, respectively, and are defined as

M (q) ,

 p1 + 2p3 cos (q2) p2 + p3 cos (q2)

p2 + p3 cos (q2) p2

 ,

C (q1, q2) ,

 −p3 sin (q2) q̇2 −p3 sin (q̇1 + q̇2)

p3 sin (q2) q̇1 0

 ,
where p1 = 3.473 kg · m2, p2 = 0.196 kg · m2, and p3 = 0.242 kg · m2. The electric

motor torque inputs are denoted by τe ∈ Ψ (q) ⊂ R2, where Ψ(q) ,
{
τe ∈ R2 :

∥∥τe∥∥ ≤
τ e
}

and τ e ∈ R>0 is a user-selected upper-bound on the magnitude of the control

input. The inertia and centripetal-Coriolis matrix satisfy the skew-symmetric relation:

q>
(

1
2
Ṁ (q)− C (q, q̇)

)
q = 0 for all q ∈ R2. The external disturbance τh ∈ Φ (q) ⊂ R2

can be thought of as a torque input from a human operator coming into contact with

the robotic system, where Φ (q) ,
{
τh ∈ R2 :

∥∥τh∥∥ ≤ τh
}

and τh ∈ R>0 is a known

upper-bound on the external disturbance term. The robot needs to remain passive

with respect to the human disturbance, while remaining inside some velocity bounds

enforced through the use of a CBF.

The output of the system y ∈ R2 is considered to be y = q̇, and the system’s storage

function is

V (q) =
1

2
q̇>M (q) q̇. (4–11)
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Invoking the skew symmetry property, the derivative of the storage function is given by

V̇ = sgn (q)> q̇ + q̇> (τe + τh), where sgn (·) denotes the signum function. The storage

function in (4–11) results in

P (q) = sup
τh∈Φ(x)

{
q̇>τh − τ>h q̇

}
= 0.

By the Definition 4.2, any control input in the set

Kp (q, q̇) ,

{
τe ∈ Ψ (q) : q̇>τe ≤ 0

}
, (4–12)

renders the system passive from disturbance τh to output q̇.

In addition to the passivity requirement, suppose also that each link of the robot arm

must comply to some energy (i.e., velocity) constraints. If procedures such as those in

[129] were followed, there would be no way to guarantee forward invariance of the safe

set if there is an external disturbance from the operator; however, using the developed

approach, it can be guaranteed that the state trajectories will not reach an unsafe

region of the state space despite the unknown disturbance from the person. Because

of physical limitations of the operator, the torque disturbance from the person τh can be

bounded by known constants. Considering the bound of the external disturbance in the

design of the CBF constraint provides robustness to the torque supplied by the operator,

insuring that the operator will not push the state outside of the safe set.

We consider a CBF candidate designed to limit the velocities of each of the links

defined as B (q, q̇) ,
[
−M(q)(q̇ + ¯̇q), M(q)(q̇ − q̇)

]>, where q̇ ∈ R2 is the user-selected

boundary of the safe set (i.e., the maximum allowable magnitude of the velocities of

each of the links). The set of safety ensuring control inputs is defined as

Kc (q, q̇) ,

{
τe ∈ R2 : ∇B (q, q̇)> (−C (q, q̇) q̇ + τe) (4–13)

+

∥∥∥∥∇B (q, q̇)

∥∥∥∥τh ≤ −γ (q, q̇)

}
,
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where the function γ is chosen as γ (q, q̇) = kbB (q, q̇) and kb = 10. The set Kc is

nonempty when both components of the CBF are simultaneously feasible. The first

component of the CBF, B1 (q, q̇) = −M(q)(q̇ + ¯̇q), imposes the condition on the

control input τe ≥ −M (q) kb (q̇ + ¯̇q) + C (q, q̇) q̇ − Ṁ (q) (q̇ + ¯̇q) + τh. The second

component of the CBF, B2 (q, q̇) = M (q) (q̇ − ¯̇q), imposes the condition on the control

input τe ≤ −M (q) kb (q̇ − ¯̇q) + C (q, q̇) q̇ − Ṁ (q) (q̇ − ¯̇q) − τh. It is possible for τe to

satisfy both inequalities only if −M (q) kb (q̇ + ¯̇q) + C (q, q̇) q̇ − Ṁ (q) (q̇ + ¯̇q) + τh ≤

−M (q) kb (q̇ − ¯̇q) + C (q, q̇) q̇ − Ṁ (q) (q̇ − ¯̇q) − τh. Therefore, (4–13) is nonempty for all

q ∈ R2 if kb is selected such that M (q) kb ¯̇q ≥ τ̄h.

In this example, the QP-based control law is defined as in (4–9), where the cost

function is defined as Q (q, u) , ‖τe − unom‖2 and the two constraints correspond to

the passivity and safety conditions in (4–12) and (4–13), respectively, and the third

constraint corresponds to a limit on the magnitude on the designable control input

u. By defining the cost function in this way, the nominal nonpassivating controller is

minimally modified such that it satisfies each constraint in the QP. We define the nominal

control input as unom = [−0.1 cos (0.5t) q, 0]>, which can be thought of as a variable

stiffness spring acting on the first link and would not always result in passivity with

respect to input-output pair (τh, q̇) and storage function (4–11). When Ψ (q) = R2,

the feasibility of the control law κ∗ in this problem can be verified analytically. The

intersection of Kp and Kc is nonempty for all q ∈ R2, provided kb is selected such

that Kc is nonempty. Because the passivity and stability constraints are both imposing

conditions on q̇ in this simulation, the feasibility analysis is simpler compared to the

case of the system being rendered passive with respect to a different input-output pair.

For more complex problems, the nonemptiness of K can be verified using the sum of

squares programming approach developed in [65].

The two top plots of Figure 4-2 show a simulation of the state and control input of

the mechanical system in (4–10) with τh =

[
0 0

]>
, i.e., the human disturbance was
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Figure 4-4. The value of each of the CBFs over time with the added human input. None
of the CBFs reach a positive value, meaning that the state never reaches an
unsafe region of the state space.
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set to zero. Both links started from rest, and the initial position of each of the links were

randomized between −π and π. The state trajectory stays within the desired range while

remaining passive to the disturbance. The top right plot of Figure 4-2 shows how the QP

modifies the control input to achieve the desired behavior. Figure 4-3 shows the value

of each of the CBFs over the 15 second simulation. The CBFs remain less than zero,

reaching a maximum value of −1.111, meaning that the states do not leave their safe

ranges.

The two bottom plots of Figure 4-2 show the simulation repeated for a disturbance

τh chosen as τh =

[
3 sin (3t) 4 sin (2t)

]>
, where τh has an upper bound of τh = 5.

Again, the state trajectory never exits the safe set, despite the unknown disturbance

from the operator. The result is supported in Figure 4-4 which shows the value of the

CBF over time. For the simulated operator disturbance, the CBF reaches a maximum

value of −0.023 which is closer to zero than in the case when τh =

[
0 0

]>
. This

outcome is due to the use of the upper bound of the disturbance in the design of the

CBF which introduces some conservativeness in the absence of disturbance

4.7 Conclusion

In this chapter, the concepts of PBC and CBFs are combined to produce a con-

troller that renders the system passive with respect to an external disturbance and the

safe set forward invariant. Theoretical results usually reserved for multiple CBF con-

straints are used to develop an optimization-based controller that enforces both passivity

and state constraints. Unlike typical previous results, the external disturbance is consid-

ered during the design of the CBF to ensure the state does not reach an unsafe region

of the state space at any time. The developed method was demonstrated on a two-link

robotic system, yielding passivity and safety despite the unknown external disturbance

by a person making contact by the robot.
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CHAPTER 5
SUMMARY AND FUTURE WORK

Historically, much attention has been given to Lyapunov-derived control laws to

ensure the stability of nonlinear systems. Stability can be thought of as a liveness

property, where it is guaranteed that a good thing, in this case convergence, will

eventually happen. A counterpart of liveness, safety, is a property that guarantees

some bad event will not occur. Safety is of great significance in control systems,

especially for those control systems that come in close contact with people. This

dissertation investigated different ways to define safety in the context of control systems

and methods to achieve the desired safety properties. Forward invariance of some safe

set is commonly used in the literature as a metric of safety. Using CBFs, constraints on

the state can be used to find control inputs that render the safe set forward invariant. In

PBC works, safety refers to a more general notion of robust stability with respect to the

environment, where the system does not generate energy but instead only dissipates

the energy provided to it. Each of these notions of safety are considered to be weaker

results than asymptotic stability. As a result, each of these methods can provide more

flexibility in control design than Lyapunov-based methods.

Chapter 1 presented background on safety, CBFs, and PBC. It also explored some

of the shortcomings of the two methods in the current literature. The main limitations

of the approaches are that CBFs are general only useful for systems of relative degree

one, uncertainty in the model dynamics or loss of state feedback can disrupt forward

invariance guarantees or restrict the state to an operating region that is a subset of the

safe set, CBFs are not well defined for control systems with hybrid dynamics, and state

and passivity constraints cannot be incorporated into one optimization-based controller.

Chapters 2, 3, and 4 of this dissertation developed methods to overcome three of the

four limitations listed above.
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In Chapter 2 a HOCBF method was developed to for systems that can be modeled

by differential inclusions. The developed method can be applied to a more general class

of systems than previous works with an arbitrarily high relative degree. The approach

is then demonstrated on a rehabilitative cycling system to constrain the cycle crank

position to some range about the desired position, representative of a constraint of

relative degree two. Experimental results show that the developed approach is effective

in maintaining the cycle crank’s position between ±30 degrees from the desired position

while minimizing the control input. Minimizing the control input returns control authority

back to the rider which helps to facilitate more effective therapy for individuals with NDs.

aDCBFs were introduced in Chapter 3, where an adaptive DNN is used to learn the

unknown system dynamics in real time to render the safe set forward invariance while

reducing conservative behavior by expanding the state’s operating region. Updating the

DNN weights in real-time, eliminates the need for pre-training. A least squares weight

adaptation law is based on the error between the DNN estimate of the dynamics and

a secondary observer’s estimate of the dynamics. A Lyapunov-based analysis yields a

convergent upper-bound of the parameter estimation error is used in the CBF constraint

which expands the operating region as the DNN learns the system dynamics. The

DNN can then be used to generate the estimate of the dynamics during intermittent

loss of feedback. Based on the worst-case difference between the estimate of the state

and the true state, the CBF constraint was reformulated to keep the state inside the

safe set even if feedback is temporarily lost. Two simulation studies were provided with

comparisons to baseline results in [25] and [48].

Chapter 4 unites PBC and CBFs by ensuring the closed-loop system is both

passive with respect to an external disturbance and the safe set of states is forward

invariant. The developed approach provides a set of controllers that will satisfy both

the passivity and state constraints, without the design of an initially passivating nominal

controller. From there, at each time step, a single controller is chosen from the set of
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possible control inputs while minimizing some cost function. The developed approach

is especially useful in human-machine interaction, where the robot controller should be

designed to be both compliant to the person it is interacting with while satisfying some

state constraints for safe operation. A simulation is provided to demonstrate how the

developed approach works for this problem.

There are several potential avenues for future work. The results in Chapters 2 and

3 could be combined to design an adaptive DNN-based HOCBF. This would reduce

the conservative behavior seen in Chapter 2, while allowing for systems of higher

relative degree to be considered, unlike in Chapter 3. Extending the aDCBF approach

to systems of higer relative degree would introduce additional challenges in the design

of the DNN and weight adaptation law due to the potentially more complex higher-

order dynamics. A high-order aDCBF approach could be applied to a variety of control

problems, including the cycling position constraint investigated in Chapter 2, obstacle

avoidance for air or ground robots, or a modified version of the ACC problem in Chapter

3.

Another potential future effort includes the extension of [65] to hybrid control

systems such as the one in Section 1.8.2, which would be an especially impactful result.

As discussed in Chapter 1, the work in [65] provides conditions on the control input

that will result in the forward invariance and asymptotic stability of the safe set for a

continuous closed-loop system, and the work in [69] provides a method of verifying

the forward invariance and asymptotic stability of uncontrolled hybrid systems. There

is a gap in the literature for the development of safety-ensuring controllers for hybrid

dynamical systems. The hybrid control system case will require the consideration

of discrete dynamics (that were not considered in [65]) and the design of a hybrid

controller, which will broaden the application possibilities of the CBFs but complicate the

theoretical development. The forward invariance guarantees will have to hold on both

the flow and jump sets, so separate analyses will have to be done for each case. The
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hybrid controller will not only need to ensure that sup
f∈F (x,u)

〈∇B (x) , f〉 ≤ −γC (x) in the

jump set Cu, but also that sup
g∈G(x,u)

B (g) ≤ −γD (x) in the jump set Du. Furthermore, while

there will be separate control laws on the flow and jump sets, the overall controller will

need to be continuous to satisfy the hybrid basic conditions that enable the use of the

results in [68] in the analysis. Once the theoretical results for CBFs are developed for

hybrid control systems, the topics in Chapters 2, 3, and 4 for continuous control systems

can be investigated for hybrid control systems.

This dissertation provided solutions for several limiting factors in the safe control

systems literature. The dissertation provides a HOCBF method for general systems with

constraints of arbitrarily high relative degree. It also provided the first result combining

PBC and CBFs into one optimization-based controller, without the design of an initially

passivitating controller, and the first result that uses CBFs with an adaptive DNN for

system identification. Experimental and simulation results demonstrate the effectiveness

of each of the developed methods. Future work should investigate the remaining

limitations in these methods.
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