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A Variable Speed Control Moment Gyroscope (VSCMG) is a momentum exchange

device used for attitude control in various objects such as satellite, aircraft, and underwa-

ter vehicles. The main body accomplishes the desired attitude maneuver by changing the

direction of the angular momentum vector of the momentum exchange device. Momentum

exchange devices such as VSCMG, Control Moment Gyroscope (CMG), and Reaction

Wheel (RW) achieve precise attitude control since they operate in a continuous manner

contrary to the on/o� operation of gas jets. The VSCMG is regarded as a hybrid between

a CMG and RW since the spinning rotor can be rotated or gimbaled for momentum

transfer with an extra degree of freedom (DOF) resulting from the variable speed �ywheel.

Hence, the VSCMG can take advantage of torque ampli�cation like a conventional CMG

and can additionally acquire several bene�ts like singularity escape, power tracking, in-

ternal momentum management, start-up, and so on by its extra DOF resulting from the

�ywheels with variable speed.

The focus of this dissertation is to develop various control laws and further a new

singularity detection method for a VSCMG-actuated satellite in the presence of uncertain

satellite inertia, uncertain actuator inertia, and uncertain dynamic and static friction.

Using novel control laws, this research achieves attitude stabilization as well as energy

storage, initial start-up, and power reduction in the presence of friction.
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A kinematic model quanti�ed by quaternion and a nonlinear VSCMG-actuated

satellite dynamic model are developed in Chapter 2. To actively and e�ectively utilize

CMG mode of VSCMG, analysis for CMG singularities is also included in this chapter.

In Chapter 3, an adaptive robust integrated power and attitude control system

(IPACS) is presented for a VSCMG-actuated satellite. The key concept is that the

VSCMG cluster stores kinetic energy by spinning up the �ywheels during sunlight

periods so that during eclipse periods supporting power for the satellite subsystems by

spinning down its �ywheels. Such energy storage capability can be used as a mechanical

battery. The developed IPACS method is capable of achieving precision attitude control

while simultaneously achieving asymptotic power tracking for a rigid-body satellite in

the presence of uncertain friction in the VSCMG gimbals and wheels. In addition, the

developed controller compensates for the e�ects of uncertain, time-varying satellite inertia

properties. Some challenges encountered in the control design are that the control input is

premultiplied by a non-square, time-varying, nonlinear, uncertain matrix and is embedded

in a discontinuous nonlinearity.

In the presence of uncertain actuator friction, Chapter 4 provides an adaptive

attitude controller developed for a satellite that is actuated by a pyramidal arrangement

of four single gimbal VSCMGs. From a cascade connection of satellite, gimbal, and

wheel dynamics equations, a backstepping method is exploited to develop the controller.

Internal friction is included in each torque expressions of the gimbal and the wheel

assemblies since friction e�ects are signi�cant when scaling the size of the VSCMGs.

A system utilizing internal friction can reduce the consumption of battery power when

decelerating on the developed dynamic structure. A null motion strategy lets the wheels

operate in deceleration mode while simultaneously performing the gimbal recon�guration

for singularity avoidance. The applied torques of the wheels containing friction losses

contribute to power reduction when in deceleration mode.
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Chapter 5 develops a new initial start-up method for a satellite actuated by a

pyramidal arrangement of VSCMGs despite the e�ects of uncertain, time-varying satellite

inertia properties and uncertain actuator inertia properties. The method provides closed-

loop internal momentum tracking control to enable the �ywheels to start from rest

and reach desired wheel speeds in the transition from safe hold mode (SHM) to initial

attitude acquisition mode. The proposed controller functioning as a VSCMG steering

law is developed in terms of the gimbal rates and the f1ywheel accelerations which are

weighted by a singularity measure. Speci�cally, using null motion, a strategy is developed

to simultaneously perform gimbal recon�guration for singularity avoidance and internal

momentum management for �ywheel start-up.

Using obvious bene�ts of arti�cial intelligence (AI) techniques which can e�ectively

approximate nonlinearity and complexity, a recurrent neural network (RNN)-based adap-

tive attitude controller developed in Chapter 6 achieves attitude tracking in the presence

of parametric uncertainty, actuator uncertainty, and nonlinear external disturbance

torques, which do not satisfy the linear-in-the-parameters assumption (i.e., non-LP). The

adaptive attitude controller results from a RNN structure while simultaneously acting as

a composite VSCMG steering law. In addition to accurate attitude control, a null motion

strategy is developed to simultaneously perform gimbal recon�guration for singularity

avoidance and wheel speed regularization for internal momentum management.

Chapter 7 develops a new singularity detection method using fuzzy logic system

(FLS). If a speci�c type of singularity is detected, a VSCMG steering law can e�ciently

select operation modes such as CMG mode and RW mode corresponding to the singularity

type. The FLS-based singularity detection method is based on the passibility condition by

null motion near singularity to classify a singularity identity into elliptic and hyperbolic

singularity, and then using additional information denoted as a conventional singularity

measure index degenerate hyperbolic singularity can also be escaped. The FLS e�ectively

extracts signi�cant information from singularity with nonlinear and complex patterns.
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By using the FLS-based singularity detection method, all internal singularities can be

classi�ed and escaped online.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Problem Statement

A control moment gyroscope (CMG) is an attitude actuator that generates torque

by exchanging momentum with a main body. Compared to momentum exchange devices

such as a reaction wheel (RW), CMGs yield advantages such as torque ampli�cation and

rapid response. CMGs can provide a precise attitude control and rapid retargeting in a

continuous manner, whereas a thruster for attitude control operates on/o� discontinuous

gas jets with propellants a�ecting mass, power, and volume.

CMGs can be con�gured in di�erent ways. The extra gimbal in a double gimbal

control moment gyroscope (DGCMG) provides an additional degree of freedom (DOF).

Additional DOF can be used for singularity avoidance strategies, but DGCMGs are me-

chanically complex and massive [30, 42, 82, 110]. Single gimbal control moment gyroscopes

(SGCMGs) have a mechanically simpler structure which consists of single controllable

gimbal and constant �ywheel and can generate more torque ampli�cation than DGCMGs.

However, since a CMG system only changes the direction but not the magnitude of the

angular momentum vector, SGCMGs inherently su�er from singularity problems. In a

three-dimensional workspace, SGCMGs are unable to produce torque along an arbitrary

singular direction since all admissible torque directions lie on a two-dimensional surface

perpendicular to the singular direction. SGCMGs singularities are classi�ed as an exter-

nal/saturation singularity and an internal singularity. The speci�c arrangement of the

gimbals a�ects the type and number of singularities.

A variable speed control moment gyroscope (VSCMG) combines the properties of

a CMG and a RW in that the �ywheel speed is variable, providing an extra DOF. This

extended capability enables a VSCMG cluster to avoid internal elliptic and hyperbolic

singularities. Therefore, VSCMGs can be considered a geometrically singularity-free

device. If all the CMG torque axes lie in a plane, torque generated by the variable
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�ywheel of the VSCMG cluster will enable the CMG con�guration to be out of the plane

(i.e., RW mode). The extra DOF present in VSCMGs provides more robust options

against singularity encounter than CMGs. For instance, the gimbal null solutions of

CMGs allow the gimbal angles to recon�gure without any request of torque generation.

The singularity avoidance method using gimbal null motions reduces/eliminates the

amount of time that the VSCMG has to operate in RW mode when the CMG Jacobian

becomes singular. Based on the quaternion-based kinematic model and the VSCMG-

actuated satellite dynamic model developed in Chapter 2, the wheel null motions enable

dual use objectives including: power storage as a mechanical battery (Chapter 3), wheel

deceleration for power reduction (Chapter 4), and internal momentum tracking for initial

start-up (Chapter 5) while maintaining precise attitude control.

In Chapters 3 - 6 of this dissertation, various intelligent control methods are devel-

oped for VSCMG-actuated satellite in the presence of uncertain satellite inertia, uncertain

actuator inertia, and uncertain dynamic and static friction. In Chapter 7, a new singu-

larity detection and classi�cation method is developed using a fuzzy logic system (FLS)

under analysis for CMG singularities in Chapter 2. Following the existence of the null

motion, a type of singularity can be primarily detected into elliptic singularity and hyper-

bolic singularity, and then using additional information which is a conventional singularity

measure index, the method can further discriminate degenerate hyperbolic singularities

which do not a�ect the rank of CMG Jacobian.

By combining the attitude control capability of CMG with the energy storage

capability of variable-speed �ywheels, VSCMGs o�er the potential to combine energy

storage and attitude control functions in a single device. This integration of attitude

control and energy storage functions can reduce the satellite bus mass, volume, and cost.

In light of launch costs as a function of mass, the advantage of integrated functionality is

apparent. The variable wheel spin rates of VSCMGs endow them with additional DOF,

which can be used to achieve multiple objectives such as simultaneous attitude control
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and energy storage. For this reason, VSCMGs are often utilized in the design of integrated

power and attitude control system (IPACS) [1, 2, 21, 22, 25, 41, 43, 79, 84�86, 89, 92, 99, 100].

However, the energy storage and attitude control capabilities of VSCMGs can deteriorate

over time due to changes in the dynamics such as bearing degradation and increased

friction in the gimbals or wheels [68]. For example, the rami�cations of friction buildup

include degraded power transfer capabilities and potential destabilizing disturbances.

Friction buildup in the constant speed CMGs on the Skylab space station and the

Magellan satellite [32] resulted in catastrophic failures of those systems. The potential

for a failure due to friction uncertainties/changes in the gimbal and �ywheel dynamics

necessitates special consideration in designing IPACS for VSCMG-actuated satellites.

Motivated by the virtues of using VSCMGs, the problem of designing IPACS in the

presence of uncertainties has been investigated by several researchers. In [89], a feedback

control law is designed for a VSCMG-actuated satellite, which achieves asymptotic

attitude regulation for a satellite with known inertia properties. Model-based and adaptive

control strategies are presented in [15], which achieve asymptotic tracking for a spacecraft

in the presence of constant uncertainty in the spacecraft inertia, while simultaneously

tracking a desired energy/power pro�le. In [100], model-based and indirect adaptive

controllers are developed for a spacecraft with uncertain inertia properties. An adaptive

control algorithm is developed in [102], which achieves attitude control for a VSCMG-

actuated satellite in the presence of unknown misalignments of the axis directions of the

VSCMG actuators. The control developments in [15, 89, 100, 102] assume that the satellite

inertia properties are constant. While this assumption may be valid for larger satellites,

signi�cant �uctuations in the overall satellite inertia can occur in smaller satellites (small-

sats) due to the motion of the VSCMGs. Further, the controllers in [15, 89, 100] assume

no dynamic uncertainty in the VSCMG actuators. While the aforementioned controllers

perform well for applications involving large satellites, they may not be well suited for

IPACS for VSCMG-actuated small-sats. The control development in [47, 48] and in
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Chapter 3 is motivated by the desire to include the uncertain dynamics of the gimbals and

�ywheels in the control design for improved robustness to these disturbances.

The majority of research focused on VSCMGs has assumed ideal conditions such

as frictionless �ywheel and gimbal bearings and a system of VSCMGs as a rigid body.

When scaling the size of CMGs/VSCMGs, the e�ects of friction present in the system

are signi�cant (i.e., due to less e�cient bearings and motors and the lack of available

hardware components) [63, 65, 68]. IPACS and/or �ywheel attitude control and energy

transmission system (FACETS) use VSCMGs for a mechanical battery by de-spinning the

�ywheels of the VSCMG and utilizing their kinetic energy [21, 40, 47, 76, 84, 100]. This

approach may seem feasible for VSCMG systems with more e�cient motors and bearings

(i.e., large spacecraft); however, for smaller systems the e�ects of friction are more

signi�cant and cannot be neglected. Hence, Chapter 4 explores the utilization of bearing

and/or motor friction to decelerate the VSCMG �ywheels. Utilizing system friction in

deceleration mode provides an avenue to reduce the consumption of battery power. Even

if the friction coe�cient is modeled, the friction model may not be able to re�ect variable

friction since it is di�cult for the friction coe�cient to be constantly predicted. Hence

using an adaptation mechanism to estimate the uncertain friction coe�cients can be an

alternative. To develop a controller that acounts for uncertain friction, coupled dynamics

of the satellite, gimbals, and wheels is developed in Chapter 4. Based on the coupled

dynamics, a backstepping method is used to design adaptive control torques. The wheel

deceleration mode resulting from the wheel null solution contributes to input power

reduction.

Various spacecrafts use momentum devices such as momentum wheels (MWs), RWs or

CMGs to maintain and/or perform precise attitude maneuvers. For these spacecrafts, the

operational spin rate of the wheel must be obtained, and several wheel initialization meth-

ods have been investigated for initial acceleration [11, 31, 58]. A pitch MW method can be

used during an initial attitude acquisition mode, where the wheel requires magnetorquers
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to maintain its spin rate while providing attitude stabilization [11]. A pitch MW method

can also be used to acquire the gyroscopic sti�ness along the roll and yaw axes [31].

During the initial wheel acceleration and holding the nominal speed, the attitude determi-

nation and control system (ADCS) uses a sequential mode change of the MW controller

and the magnetorquer while maintaining a nadir-pointing attitude with gravity-gradient

stabilization. For initial start-up of RWs, wheel start-up and attitude stabilization can be

achieved when transitioning from safe hold mode (SHM) and initial attitude acquisition

mode by using four RWs with magnetoquers [58]. CMGs have also been employed in

various large space missions such as Skylab, MIR, and internal space station (ISS) to

take advantage of the torque ampli�cation and power saving properties of CMGs. De-

spite their bene�ts, singularities are an inherent problem for CMGs [26, 55, 59, 70, 77, 98].

Various solutions address the CMG singularity issue, and with the development of mini-

CMGs [6, 9, 35, 49, 51, 60, 63, 65, 66, 68, 77], several recent space missions using CMGs

have been launched or scheduled [8, 73, 75]. To achieve wheel start-up and stabilization

with a CMG system, magnetorquers can be used to maintain cooperation with the ground

station for desired con�guration modi�cation to accelerate the CMG wheels [73]. In gen-

eral, previous space missions using CMGs use a separate feedback control loop to spin up

the rotor to the required spin rate and maintain it while securing attitude stabilization

using additional devices such as magnetorquers [88]. The extra degree of freedom present

in VSCMGs provides an avenue to condense the initial start-up and initial attitude ac-

quisition mode into one step. Hence, Chapter 5 is motivated by the question: Can an

additional DOF of VSCMG be used to start a system from rest? The results in Chapter

5 focus on the development of a �ywheel momentum management strategy to bring the

actual �ywheel momentum from zero momentum (i.e. initial start-up from rest).

To compensate for uncertain system parameters in Chapters 3 - 5, typical adaptive

control methods are used. However, for complex and practical problems where accurate

mathematical models may not be available, arti�cial intelligent method can be bene�cial,
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which can be used to approximate any nonlinear system within an arbitrarily small

residual error [3, 36]. In particular, neural network (NN) is widely utilized to approximate

uncertainties in dynamic systems [33], and NN-based control has proven to be an e�ective

means of achieving accurate attitude control of satellites in the presence of dynamic

uncertainty [10, 13, 29, 38, 61, 62, 69, 90, 93]. In [90], a NN-based controller is used to

compensate for uncertainties resulting from atmospheric e�ects and non-rigidity which

are often neglected in typical attitude control designs. Radial basis function (RBF) NNs

are utilized in [93] for direct adaptive control in the presence of unmodeled e�ects and

parametric uncertainty. In [50], Krish et al. investigate the use of back-propagation NNs

to provide robust adaptive nonlinear satellite attitude control. The result in [50] illustrates

the design and implementation of a neuro-controller for a nonlinear space station model.

Attitude tracking and vibration stabilization of a �exible spacecraft are achieved in [38]

using a RBFNN-based adaptive control design. Utilization of an additional gain technique

(i.e., the Nussbaum gain technique) in [38] enabled Hu et al. to relax the sign assumption

for high-frequency gain for a neural adaptive control. Although feedforward neural

networks (FNNs) using multilayer perceptrons or radial basis function networks are

e�ective to compensate for uncertainties and unmodeled disturbances, emerging research

shows that recurrent neural networks (RNNs), where connections between units form a

directed cycle, are superior to FNNs in both modeling of nonlinear systems and prediction

of time-series states [12, 19, 39, 67]. The research in [19] illustrates the increased capability

of RNNs over FNNs to contain time-varying and dynamic behavior in the presence of

noise. In [67], Li et al. illustrate how a dynamical time-variant system can be e�ectively

approximated using the internal state of a continuous-time RNN. The utilization of

dynamically driven RNNs can be more e�cient for identi�cation and modeling of dynamic

plants in a control-theoretic framework. The capability of RNN modeling for nonlinear

dynamic systems enables a dynamical system to evolve the states corresponding to

nonlinear state equations [33, 72]. Chapter 6 is motivated by the following question:
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Can RNN modeling proper to a dynamical time-variant system e�ectively compensate for

uncertain system parameters in VSCMG system? To address this motivating question,

an adaptive RNN-based attitude controller is developed in Chapter 6 in the presence of

uncertain, time-varying satellite inertia properties, actuator uncertainties, and nonlinear

external disturbances.

The singularity avoidance methods used in Chapters 4 and 6 maintain torque

ampli�cation while avoiding singularities. However, to more properly react to singularity

corresponding to characteristics of each singularity, it is essential to understand singularity

and detect a speci�c type of singularity. To overcome long-standing singularity issues

which have remained problematic since Margulies and Aubrun [70] established a theory

to investigate CMG singularity, various CMG con�gurations and steering laws have

been proposed [4, 14, 17, 20, 34, 53, 54, 78, 94, 103, 104]. CMG con�gurations can be

mainly classi�ed into roof type arrangement and pyramidal arrangement. The roof type

con�guration is able to avoid all internal singularity using 6 CMG units but ine�cient

since the radius of workspace (i.e., total angular momentum envelope) is small in spite of

the redundancy of CMG units [54, 56, 57]. On the other hand, the pyramidal con�guration

has larger workspace than the roof type but elliptic singularity which can be escaped

only by changing the magnitude of angular momentum makes it di�cult to actively

utilize this con�guration. Hence, if a steering method for the pyramidal con�guration

can escape internal singularities, various missions will be able to e�ectively utilize CMG

actuators. To resolve singularity problems has introduced a variety of steering methods.

Global avoidance methods including path planning [78], preferred gimbal angle [94],

and workspace restriction [53, 54] can steer a set of gimbal angles based on a priori

knowledge of the singular states but such o�-line calculation limits the workspace of

CMG arrays [53, 54, 78, 94]. Gradient methods for which a null motion is determined to

increase or decrease distance to singular states are not e�ective due to elliptic internal

singularities [14, 34, 103]. Steering laws that allow torque errors (i.e., a singularity robust
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methods) avoid singularities but sacri�ces precise attitude control [6, 27, 70, 74, 97]. A

hybrid steering logic for SGCMG recently developed by [64] simultaneously utilizes null

motion and torque errors to cope with a speci�c type of singularity.

For a VSCMG system, a combination of a SGCMG system and a RW system can be

geometrically considered as a singularity-free device. To utilize the torque ampli�cation

property of CMG, the singularity avoidance of the CMG system is still essential for the

VSCMG system [87, 101]. Further, when the speci�c type of singularity is distinguished

online, the CMG system can achieve precise attitude tracking performance [64]. If the

speci�c type of singularity can be determined, the VSCMG can acquire more e�ective

performance since the VSCMG can make the best use of the torque ampli�cation in CMG

mode and also utilize the wheel null motions (e.g., start-up, power reduction, etc.) while

properly responding to each type of singularity while maintaining holding precise attitude

control. Using singularity metric and the FLS classi�er in Chapter 7, all of the singular

surfaces inside the angular momentum envelope can be classi�ed and escaped/avoided

online.

1.2 Contributions

This dissertation focuses on developing a variety of multi-functional intelligent control

laws for VSCMG-actuated satellites in the presence of uncertain satellite inertia, uncertain

actuator inertia, and uncertain dynamic and static friction, and further a new singularity

detection method for a VSCMG-actuated satellite. Using novel control laws, this research

achieves attitude stabilization as well as energy storage, initial start-up, and power

reduction in the presence of friction. The contributions of Chapters 3-7 are as follows.

Chapter 3, Precision IPACS in the Presence of Dynamic Uncertainty: The contribu-

tion of this work is the development of an IPACS for VSCMG-actuated satellites in the

presence of uncertain dynamic and static friction in the VSCMG gimbals and wheels so

that the controller is capable of achieving attitude tracking while simultaneously tracking

a desired power pro�le asymptotically. In addition, the controller compensates for the
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e�ects of uncertain, time-varying satellite inertia properties. The wheel null motions

resulting from the extended DOF of VSCMGs allow the VSCMG system to accomplish a

novel combined objective as precision attitude tracking and power storage (i.e., mechanical

battery). The developed controller includes the uncertain dynamics of the gimbals and

�ywheels in the control design for improved robustness to these disturbances. The di�-

culties arising from dynamic friction and uncertain satellite inertia are mitigated through

strategic manipulation of the closed-loop derived from a Lyapunov-based analysis. In the

presence of static friction, the control design is complicated due to the control input being

embedded in a discontinuous nonlinearity. This di�culty is overcome with the use of a

robust control element.

Chapter 4, Integrated Power Reduction and Adaptive Attitude Control System of

a Satellite: The contribution of this work is the development of coupled dynamics of

the satellite, gimbals, and wheels including static and dynamic friction on gimbal and

wheel bearings. When scaling the size of CMGs/VSCMGs, the e�ects of friction present

in the system are signi�cant (i.e., due to less e�cient bearings and motors and the lack

of available hardware components). In the presence of uncertain dynamic and static

frictions in both the gimbals and the �ywheels, the controller is developed by using

a Lyapunov-based backstepping technique. The system is capable of achieving global

asymptotic attitude tracking while simultaneously performing singularity avoidance and

wheel deceleration by the null motion. In the wheel despinning mode, the wheel friction

torque is bene�cial for the total applied torques of the wheels. Since the wheel friction

provides additional torques for the wheel dynamics, the despinning wheels contribute to

power reduction without an additional torque request. Power reduction results from the

wheel deceleration mode and yields both torque and power reduction. Also, the applied

control torque can responsively compensate for uncertain parameters allowing the system

to maintain consistent performance in the presence of dynamic uncertainty.
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Chapter 5, A New Initial Start-up Method Using Momentum Management of

VSCMGs: The contribution of this work is the development of an adaptive attitude

controller for a VSCMG-actuated satellite which achieves initial start-up and initial atti-

tude stabilization in the normal transition from SHM to initial attitude acquisition mode.

Previous space missions using CMGs have used a separate feedback control loop to spin

up the rotor to the required spin rate and maintain it while securing attitude stabilization

using additional devices such as magnetorquers. In this chapter, the VSCMG steering law

including the internal momentum management allows the �ywheel to start from rest and

to reach the desired speed. In the presence of satellite inertia uncertainty and actuator

uncertainty, the proposed attitude controller is capable of achieving global asymptotic

attitude tracking while simultaneously performing singularity avoidance and internal

momentum management. The signi�cant bene�t of the developed steering law is to con-

dense several discontinuous, separate feedback control steps such as the initial start-up

and initial attitude acquisition mode into one continuous and simultaneous control step.

The controller also compensates for the e�ects of uncertain, time-varying satellite inertia

properties. The di�culties arising from uncertain satellite inertia are mitigated through a

Lyapunov-based stability analysis derived controller.

Chapter 6, A RNN-based Attitude Control Method for a VSCMG-actuated Satellite:

The contribution of this work is the development of a RNN structure while simultane-

ously acting as a composite VSCMG steering law which achieves attitude tracking for

a VSCMG-actuated satellite in the presence of uncertainty in the satellite and actuator

dynamics and unmodeled external disturbances. The internal state of a continuous-time

RNN can e�ectively approximate a dynamical time-variant system. Since the utilization of

dynamically driven RNNs can be more e�cient for identi�cation and modeling of dynamic

plants than one of FNNs, the capability of RNN modeling to evolve the states correspond-

ing to nonlinear state equations is exploited to compensate for actuator uncertainties of
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VSCMGs. Simulation results indicate the RNN system properly approximate a nonlin-

ear system within a small residual error. A Lyapunov-based stability analysis is used to

prove the controller achieves attitude stabilization while compensating for the e�ects of

uncertain time-varying satellite inertia properties, parametric uncertainty, and nonlinear

external disturbance torques.

Chapter 7, A Singularity Detection method for VSCMGs Using FLS: Although

various endeavor to resolve the long-standing problem caused by CMG singularity has

been studied, there have been no CMG steering laws to escape all internal singularities

(i.e., elliptic, hyperbolic, and degenerate hyperbolic) while achieving precision attitude

control. In this chapter, a FLS-based singularity detection method provides an avenue to

answer the troublesome issues. Since FLS copes with complex and nonlinear patterns of

singularity, the FLS provides an e�ective singularity detection strategy. The developed

singularity detection and classi�cation method can escape/avoid internal singularities,

including the degenerate hyperbolic singularity. This method is the �rst result that can

escape all internal singularities for the pyramidal arrangement. By detecting a speci�c

type of singularity, the VSCMG can acquire more e�ective performance since the VSCMG

can make the best use of the torque ampli�cation in CMG mode and the wheel null

motions (e.g., start-up, power reduction, etc.) while properly responding to each type of

singularity while maintaining precise attitude control.
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CHAPTER 2
SYSTEM MODEL

2.1 Kinematic Model

The rotational kinematics of a satellite modelled as a rigid-body can be expressed as

q̇v =
1

2

(
q×v ω

S + q0ω
S
)

(2�1)

q̇0 = −1

2
qTv ω

S, (2�2)

where ωS (t) ∈ R3 denotes the satellite angular velocity, and q(t) , {q0(t), qv(t)} ∈ R× R3

represents the unit quaternion describing the orientation of the satellite body-�xed frame

FS with respect to the inertial reference frame I, subject to the constraint

qTv qv + q2
0 = 1. (2�3)

In (2�1), q×v ∀qv = [qv1 , qv2 , qv3 ]
T denotes the following skew-symmetric matrix:

q×v =




0 −qv3 qv2

qv3 0 −qv1

−qv2 qv1 0



.

Rotation matrices that bring I onto FS and I onto the desired body-�xed orientation FSd

are denoted by R(q0, qv) ∈ SO(3) and Rd(q0d, qvd) ∈ SO(3), respectively, are de�ned as

R ,
(
q2

0 − qTv qv
)
I3 + 2qvq

T
v − 2q0q

×
v (2�4)

Rd ,
(
q2

0d − qTvdqvd
)
I3 + 2qvdq

T
vd − 2q0dq

×
vd, (2�5)

where I3 denotes the 3× 3 identity matrix, and qd(t) , {q0d(t), qvd(t)} ∈ R× R3 represents

the desired unit quaternion that describes the orientation of FSd
with respect to I.

2.2 VSCMG-actuated Satellite Model

The total angular momentum hSCs

(
ωB, ωS, δ̇,Ω

)
∈ R3 for a VSCMG-actuated satellite

consisting of a bus (i.e., an infrasturcture of a satellite, usually providing locations for the
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Figure 2-1. Geometry of satellite with ith VSCMG.

payroad) and four VSCMGs can be expressed as

hSCs
= JBCS

ωB +
4∑

i=1

ICMGi
CS

ωS +
4∑

i=1

h
CMGi/S
CCMGi

, (2�6)

where sub- and superscript of each notation indicate a point of interest and a body,

respectively, ωB (t), ωS (t) ∈ R3 denote the angular velocities of the bus and the satellite,

δ (t) , δ̇ (t) ,Ω (t) ∈ R4 are the gimbal angle, gimbal rate, and �ywheel speed, respectively.

The geometry of the dynamic model is shown in Figures 2-1 and 2-2. In (2�6), JBCS
(δ) ∈

R3×3 is the moment of inertia matrix of the bus relative to the center of mass (C.M.) of

the satellite (CS) and I
CMGi
CS

(δ) ∈ R3×3 is the ith CMG unit's inertia matrix relative to CS

given by

JBCS
= JBCB

+mB

[(
rTCB

rCB

)
I3 − rCB

rTCB

]
, (2�7)

ICMGi
CS

= DCMGi

CMGICMGi
CCMGi

DT
CMGi

+mCMGi

[(
rTCCMGi

rCCMGi

)
I3 − rCCMGi

rTCCMGi

]
,

where JBCB
∈ R3×3 is the moment of inertia matrix of the bus relative to the C.M. of the

bus (CB), mB ∈ R is the mass of the bus, rCB
∈ R3 is the position of CB relative to

CS,
CMGICMGi

CCMGi
∈ R3×3 is expressed in the CMG-�xed frame FCMGi

and the moment of
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Figure 2-2. Pyramidal arrangement of 4 VSCMGs system.

inertia matrix of the ith CMG relative to the C.M. of the ith CMG (CCMGi
), mCMGi

∈ R

is the mass of the ith CMG, rCCMGi
∈ R3 is the position of CCMGi

relative to CS, and

DCMGi
(δ) ∈ R3×3 is the direction cosine matrix (DCM) which transforms FCMGi

to FS.

Speci�cally, the moment of inertia matrix of ith CMG expressed in FCMGi
is de�ned as

CMGiICMGi
CCMGi

, IGi
CCMG

+mGi

[(
rTCGi

rCGi

)
I3 − rCGi

rTCGi

]

+IWi
CCMG

+mWi

[(
rTCWi

rCWi

)
I3 − rCWi

rTCWi

]
,

where IGi
CCMG

, IWi
CCMG

∈ R3×3 are the moments of inertia matrix of each gimbal and wheel

relative to CCMGi
; mGi

, mWi
∈ R are the masses of ith gimbal and wheel; rCGi

, rCWi
∈ R3

are the positions to the respective C.M. of the ith gimbal and of the ith wheel from CCMGi
.

Also in (2�6), h
CMGi/S
CCMGi

(
δ̇,Ω

)
∈ R3 represents the angular momentum contributions from

the �ywheel and the gimbal and is given by

h
CMGi/S
CCMGi

=CMGi ICMGi
CCMGi

δ̇iâGi
+CMGi ICMGi

CCMGi
ΩiâWi

,

where the angular momentum of the CMG is expressed in terms of a CMG-�xed basis

B =

{
âGi

, âWi
, âTi ,

}
; âGi

is a gimbal axis, âWi
is a spinning wheel axis, and âTi

is a transverse axis. Assuming that CMGiICMGi
CCMGi

is a principal inertia matrix, the CMG

30



inertia matrix can be de�ned as CMGiICMGi
CCMGi

= diag

([
ICMGi
Gi

IWi
ICMGi
Ti

])
since

CMGiICMGi
CCMGi

âWi
= IWi

âWi
. In addition, ω (t) = ωS (t) ≡ ωB (t) in (2�6) under the

assumption of a rigid body satellite, where ω (t) is expressed in FS. Using the principal

inertia of the CMG system and the rigid body assumption, the total angular momentum

of the satellite can be rewritten as

hSCs
=

4∑

i=1

[(
JBCS

+ ICMGi
CS

)
ω + h

CMGi/S
CCMGi

]

= JSCS
ω +

4∑

i=1

(
ICMGi
Gi

δ̇iâGi
+ IWi

ΩiâWi

)
, (2�8)

where JSCS
(δ)ω (t) =

(
JBCS

+
∑4

i=1 I
CMGi
CS

(δ)
)
ω (t). The inertial derivative of the total

angular momentum hSCs

(
ω, δ̇,Ω

)
is expressed as

ḣSCs
=

d

dt

(
JSCS

)
ω + JSCS

ω̇ + ω×JSCS
ω (2�9)

+
4∑

i=1

[
ICMGi
Gi

δ̈iâGi
+ IWi

Ω̇iâWi
+ ICMGi

Gi
δ̇i
·
âGi

+ IWi
Ωi

·
âWi

]
.

Expressing ω (t) in FCMGi
which is given by the ith CMG-�xed basis B, the satellite

angular velocity ω (t) can be written as

CMGiω = DT
CMGi

ω =

[
âTGi

âTWi
âTTi

]
ω, (2�10)

= ωGi
âGi

+ ωWi
âWi

+ ωTi âTi ,

where ωGi
(t) = âTGi

ω (t), ωWi
(t) = âTWi

ω (t), and ωTi (t) = âTTiω (t). The inertial derivatives

of B in (2�9) are

·
âGi

= ωTi âWi
− ωWi

âTi
·
âWi

= −ωTi âGi
+
(
δ̇ + ωGi

)
âTi (2�11)

·
âTi = ωWi

âGi
−
(
δ̇ + ωGi

)
âWi

.
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Substituting (2�11) into (2�9) and performing some algebraic manipulations, the inertial

derivative of the total angular momentum can be represented as

ḣSCs
=

d

dt

(
JSCS

)
ω + JSCS

ω̇ + ω×JSCS
ω (2�12)

+
4∑

i=1

(
ICMGi
Gi

δ̈i − IWi
ΩiωTi

)
âGi

+
4∑

i=1

(
IWi

Ω̇i + ICMGi
Gi

δ̇iωTi

)
âWi

+
4∑

i=1

{
IWi

Ωi

(
δ̇i + ωGi

)
− ICMGi

Gi
δ̇iωWi

}
âTi ,

where d
dt

(
JSCS

(δ)
)

=
∑4

i=1
∂
∂δi

(
JSCS

(δ)
)
δ̇i (t) since the direction cosine matrix DCMGi

(δ)

constructing the total satellite inertia JSCS
(δ) depends on δi (t). Hence, the kinetic

equation governing the motion of a rigid satellite following Euler's equation yields

ḣSCs
= gECS

, (2�13)

where gECS

(
ω, ω̇, δ, δ̇, δ̈,Ω, Ω̇

)
∈ R3 is the external torque applied to the satellite. Using

(2�12) and (2�13), the equation of motion for a rigid VSCMG-actuated satellite can be

written as

gECS
= J̇ω + Jω̇ + ω×Jω (2�14)

+CG

([
ICMG
G

]d
δ̈ − [IW ]d [ωT ]d Ω

)

+CW

(
[IW ]d Ω̇ +

[
ICMG
G

]d
[ωT ]d δ̇

)

+CT

(
[IW ]d [Ω]d δ̇ + [IW ]d [ωG]d Ω−

[
ICMG
G

]d
[ωW ]d δ̇

)
,

where the uncertain total satellite inertia matrix JSCS
(δ), henceforth denoted by J (δ) for

simplicity, is positive de�nite and symmetric such that

1

2
λmin {J} ‖ξ‖2 ≤ ξTJξ ≤ 1

2
λmax {J} ‖ξ‖2 ∀ξ ∈ Rn (2�15)
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where λmin {J} , λmax {J} ∈ R are the minimum and maximum principal inertias of J(δ),

respectively. In (2�14), CG, CW (δ), CT (δ) ∈ R3×4 for the CMG-�xed axes (âGi
, âWi

, âTi)

are de�ned as

CG ,

[
âG1 âG2 âG3 âG4

]
=




sinβ 0 −sinβ 0

0 sinβ 0 −sinβ

cosβ cosβ cosβ cosβ



,

CW ,

[
âW1 âW2 âW3 âW4

]
=




−cosβsinδ1 −cosδ2 cosβsinδ3 cosδ4

cosδ1 −sinδ2cosβ −cosδ3 cosβsinδ4

sinβsinδ1 sinβsinδ2 sinβsinδ3 sinβsinδ4



,

CT ,

[
âT1 âT2 âT3 âT4

]
=




−cosβcosδ1 sinδ2 cosβcosδ3 −sinδ4

−sinδ1 −cosδ2cosβ sinδ3 cosβcosδ4

sinβcosδ1 sinβcosδ2 sinβcosδ3 sinβcosδ4



,

where β is a skew angle for the pyramidal arrangement of four VSCMGs, and the inertia

matrices
[
ICMG
G

]d
, [IW ]d ∈ R4×4 are

[
ICMG
G

]d
, diag

([
ICMG1
G ICMG2

G ICMG3
G ICMG4

G

])
,

[IW ]d , diag

([
IW1 IW2 IW3 IW4

])
,

where
[
ICMG
G

]d
is the unknown constant positive-de�nite, symmetric about its gimbal axis,

gimbal inertia matrix but [IW ]d is the known constant positive-de�nite, symmetric about

its spin axis, �ywheel inertia matrix, and the angular velocity projected to B is denoted as

[ω◦ (t)]d , diag

([
ω◦1 (t) ω◦2 (t) ω◦3 (t) ω◦4 (t)

])
(◦ : G, W , T ) ∈ R4×4, and [Ω (t)]d

and
[
δ̇ (t)

]d
denote diagonal matrices composed of the vector elements of measurable Ω (t),

δ̇ (t) ∈ R4, respectively.

2.3 Singularities

A VSCMGs system is a geometrically singularity free device since it can generate

control torques along an arbitrary direction. The extra DOF resulting from a variable
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wheel speed (i.e., RW mode) does not allow the VSCMG to encounter a singularity.

However, to make the best use of torque ampli�cation which is a signi�cant advantage

of operating in a CMG mode, it is important to investigate singularities of the CMGs

since the existence of singular states is an obstacle to generate a torque along arbitrary

directions.

2.3.1 What is a singularity?

The term Singularity has various de�nitions. In the dictionary, a singularity is

generally de�ned as the state of being singular, distinct, peculiar, uncommon or unusual.

In physics, a singularity is de�ned as a point or region in which the quantities (e.g.,

gravitational force) that are used to measure the gravitational �eld become in�nite (i.e.,

the point is associated with black holes). In mathematics, a singularity is the value or

range of values of a function for which a derivative does not exist, and the term Singular

matrix is de�ned as a square matrix that does not have a matrix inverse (i.e., A matrix is

singular i� its determinant is 0). Of partiular interest in this dissertation, however, is the

de�nition of Singularity in a workspace or angular momentum envelope of CMGs.

2.3.2 Singularity of CMGs

Singularity of CMGs is de�ned as the case where the mapping from an input to an

output space (a nonlinear, vector-valued mapping H (δ) : Rn → R3 ) is not locally onto,

or equivalently a matrix does not have a full rank (i.e., rank(CT ) < 3), where δ (t) ∈ R4 is

the gimbal angle vector and CT (δ) is a CMG Jacobian matrix. At singular states, in the

three-dimensional workspace the CMGs are unable to produce a torque along an arbitrary

singular direction since all admissible torque directions lie on a two-dimensional surface

perpendicular to the singular direction. The speci�c arrangement of the gimbals a�ects

the type and number of singularities. The CMG singularities can be classi�ed according to

the location of the total momentum vector relative to the workspace: external/saturation

singularity and internal singularity.
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For analyzing the singular momentum surfaces [70, 96], an arbitrary vector u is

represented in terms of a satellite-�xed basis S , {ŝx, ŝy, ŝz} as

u = uxŝx + uyŝy + uz ŝz,

and de�ned as

U = {u : |u| = 1, u 6= ±âGi
, i = 1, ..., n} ,

where u = ±âGi
only happens in a special con�guration such as DGCMGs system or a

roof-type con�guration. A condition for which the CMG arrangement cannot generate any

torques along the singular direction u is de�ned as

âTi · u = 0, (2�16)

where all âTi become coplanar (i.e., rank(CT ) = 2), and an arbitrary vector u is perpen-

dicular to that plane. In the CMG-�xed frame FCMGi
as shown in Figure 2-1, âGi

and

u spans a plane normal to âTi , and âWi
has a maximal or minimal projection onto the

singularity vector u (i.e., âWi
· u > 0 or âWi

· u < 0). The singularity condition of (2�16)

can be rewritten as

âTi = εi
âGi
× u

|âGi
× u|

,

âWi
= âTi × âGi

= εi
(âGi
× u)× âGi

|âGi
× u|

, i = 1, ..., n,

where εi , sign (âWi
· u). Hence, the singular momentum vector is expressed as [54,70,96]

H (u) =
n∑

i=1

âWi
=

n∑

i=1

εi
(âGi
× u)× âGi

|âGi
× u|

. (2�17)

Figure 2-3 shows the total angular momentum envelope considering the singular

momentum vector of (2�17) for a pyramidal arrangement with 4 CMG units. The angular

momentum envelope in Figure 2-3 includes two types of singularities denoted as external

and internal singularities which are smoothly connected.
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Figure 2-3. Total angular momentum envelope of CMGs

2.3.2.1 External singularity

The gimbal angles for which the total angular momentum reaches the envelope of

Figure 2-3 become singular since the CMGs are unable to produce a torque outward

the envelope. This is because a CMG system changes only the direction but not the

magnitude of the angular momentum vector and therefore in external singularity the

CMG system experiences a maximum workspace and does not have additional angular

momentum for the singular direction. In other words, external/saturation singularities are

associated with the maximum projection of the total angular momentum along a certain

direction. The criteria for this type of singularity can be expressed as

rank (CT ) < 3, âWi
· u > 0 ∀i = 1, 2, 3, 4.

External singularities can be addressed in the design process since they can be easily

predicted from sizing of the CMG actuators and mission pro�le.

2.3.2.2 Internal singularity

Internal singularity is de�ned as a case where the total angular momentum vector

for any singular state is inside the angular momentum envelope as shown by Figure 2-3.
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The internal singularity occurs at a speci�c combination of gimbal angles which makes

the CMG Jacobian singular and at this singularity the torque vectors lie on the same

plane perpendicular to the singular direction vector. Internal singularities can be classi�ed

according to the possibility of the null motion into two types: elliptic singularity and

hyperbolic singularity. The null motion is de�ned as a motion that changes gimbal angles

without producing any torque. Using null motion, the CMG system can be recon�gured

in a continuous manner so that the CMG Jacobian becomes nonsingular. The singularity

that can be escaped by null motion is termed hyperbolic singularity. However, the case

where a set of gimbal angles for the angular momentum envelope has an isolated point is

termed elliptic singularity. Elliptic singularities cannot be escaped by null motion. A test

for possibility of null motion is speci�cally discussed in Chapter 7. Although null motion

is possible at hyperbolic singularity, the mere existence of null motion does not guarantee

escape from the hyperbolic singularity. There are degenerate solutions which do not a�ect

the rank of the CMG Jacobian. This means that the degenerate hyperbolic singularities

cannot be escaped through null motion [5, 6, 55, 64, 96]. A singularity detection strategy

which can handle all internal singularities is introduced in Chapter 7.
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CHAPTER 3
PRECISION IPACS IN THE PRESENCE OF DYNAMIC UNCERTAINTY

In this chapter, an adaptive robust attitude controller is developed, which compen-

sates for uncertain, time-varying inertia and unknown friction in the VSCMG gimbals

and wheels while simultaneously providing asymptotic power tracking. The inclusion of

friction e�ects in the VSCMG gimbals and wheels creates signi�cant complications in the

control development. The dynamic friction e�ects manifest themselves as non-square,

time-varying, input-multiplicative uncertainty in the tracking error dynamics. The static

friction e�ects in the dynamic model result in the gimbal angular rate control input being

embedded inside of a discontinuous nonlinearity (i.e., the standard signum function). A ro-

bust control method is used to mitigate the disturbance resulting from the static friction,

and an adaptive control law is used to compensate for the dynamic friction and inertia un-

certainties. Lyapunov-based stability analyses are provided, which prove attitude tracking

and power tracking in the presence of the aforementioned VSCMG anomalies and satellite

inertia uncertainty. Numerical simulations are provided to illustrate the performance of

the controllers for simultaneous attitude control and energy storage.

3.1 Dynamic Model for IPACS in the Presence of Dynamic Uncertainty

The dynamic model in (2�14) can be expressed for IPACS considering friction as

T = J̇ω + Jω̇ + ω × Jω (3�1)

+CG

([
ICMG
G

]d
δ̈ − [IW ]d [ωT ]d Ω

)

+CW

(
[IW ]d Ω̇ +

[
ICMG
G

]d
[ωT ]d δ̇

)

+CT

(
[IW ]d [Ω]d δ̇ + [IW ]d [ωG]d Ω−

[
ICMG
G

]d
[ωW ]d δ̇

)
.

In (3�1), τf (t) ∈ R4 denotes the torque generated by the �ywheels and the torque vector

T (δ, δ̇,Ω) ∈ R3 in (3�1) is de�ned as

T = −CT
(
Fdg δ̇ + Fsgsgn

(
δ̇
))
− CW (FdwΩ + Fswsgn (Ω)) . (3�2)
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In (3�2), Fdg, Fsg ∈ R4×4 and Fdw, Fsw ∈ R4×4 are diagonal matrices containing the

uncertain dynamic and static friction coe�cients for the gimbals and wheels, respectively,

and sgn
(
δ̇(t)

)
∈ R4 denotes a vector form of the standard sgn (·) function where the

sgn (·) is applied to each element of δ̇(t).

3.2 Control Objectives

3.2.1 Attitude Control Objective

The attitude control objective is to develop a �ywheel acceleration and gimbal rate

control law to enable the attitude of F to track the attitude of Fd. To quantify the

objective, an attitude tracking error denoted by R̃(ev, e0) ∈ R3×3 is de�ned that brings Fd

onto F as

R̃ , RRT
d =

(
e2

0 − eTv ev
)
I3 + 2eve

T
v − 2e0e

×
v , (3�3)

where R(qv, q0) and Rd(qvd, q0d) were de�ned in (2�4) and (2�5), respectively, and the

quaternion tracking error e(t) , {e0(t), ev(t)} ∈ R× R3 is de�ned as

e0 , q0q0d + qTv qvd (3�4)

ev , q0dqv − q0qvd + q×v qvd. (3�5)

Based on (3�3), the attitude control objective can be stated as

R̃ (ev(t), e0(t))→ I3 as t→∞. (3�6)

Based on the tracking error formulation, the angular velocity of F with respect to Fd

expressed in F , denoted by ω̃(t) ∈ R3, is de�ned as

ω̃ , ω − R̃ωd. (3�7)

From the de�nitions of the quaternion tracking error variables, the following constraint

can be developed [16]:

eTv ev + e2
0 = 1, (3�8)
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where

0 ≤ ‖ev(t)‖ ≤ 1 0 ≤ |e0(t)| ≤ 1, (3�9)

where ‖·‖ represents the standard Euclidean norm. From (6�7),

‖ev(t)‖ → 0⇒ |e0(t)| → 1 (3�10)

and hence, (3�3) can be used to conclude that if (3�10) is satis�ed, then the control

objective in (3�6) will be achieved.

3.2.2 Power Tracking Objective

The kinetic energy E (t) ∈ R stored in the �ywheels of a VSCMG can be expressed

as [24]

E (t) =
1

2
ΩT (t) IWΩ (t) . (3�11)

The power tracking control objective is to develop a �ywheel acceleration control law

to enable the actual VSCMG power to track a desired power pro�le Pd (t) ∈ R while

simultaneously tracking a desired time-varying attitude. The desired power pro�le can be

related to a desired kinetic energy pro�le Ed(t) ∈ R as

Ed(t) =

ˆ t

0

Pd(σ)dσ, (3�12)

where the desired kinetic energy and power pro�les are assumed to be bounded. To

quantify the energy tracking objective, a kinetic energy tracking error ηE(t) ∈ R is de�ned

as

ηE = Ed − E. (3�13)

Based on (3�13), the power tracking control objective can be stated as

ηE → 0 as t→∞. (3�14)
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3.3 Adaptive IPACS

In this section, an adaptive IPACS is developed that forces a satellite to track a

desired attitude trajectory while simultaneously providing asymptotic energy/power

tracking. In Section 3.3.1, an adaptive attitude controller is developed for a VSCMG-

actuated satellite in the presence of gimbal and wheel friction. In Section 3.3.2, a power

management system is developed which operates in tandem with the attitude controller.

3.3.1 Adaptive Attitude Control Development

To facilitate the controller design, an auxiliary signal r(t) ∈ R3 is de�ned as [24]

r , ω − R̃ωd + αev, (3�15)

where α ∈ R3×3 is a constant, positive de�nite, diagonal control gain matrix. After

substituting (3�15) into (3�7), the angular velocity tracking error can be expressed as

ω̃ = r − αev. (3�16)

Motivation for the design of r(t) is obtained from the subsequent Lyapunov-based stability

analysis and the fact that (3�3) - (3�5) can be used to determine the open-loop quaternion

tracking error as

ėv =
1

2

(
e×v + e0I3

)
ω̃ ė0 = −1

2
eTv ω̃. (3�17)

After taking the time derivative of (3�15) and multiplying both sides of the resulting

expression by J (δ), the following expression can be obtained:

Jṙ = Jω̇ + Jω×R̃ωd − JR̃ω̇d +
1

2
Jα
(
e×v + e0I3

)
ω̃, (3�18)

where the fact that
·
R̃ = −ω×R̃
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was utilized. Under the standard assumption that the gimbal acceleration term CG
[
ICMG
G

]d ¨δ (t)

is negligible [26,83,89], (3�1), (3�2), (3�15), and (3�17) can be used to express (3�18) as

Jṙ = Υ1δ̇ + Υ2Ω̇ + Y1θ1 −
1

2
J̇r (3�19)

−CTFsgsgn
(
δ̇
)
− CWFswsgn (Ω) ,

where the uncertain matrix Υ1 (ev, e0, r, δ,Ω) ∈ R3×4 is de�ned via the parameterization

Υ1δ̇ , −∂J
∂δ
δ̇

(
1

2
r + R̃ωd − αev

)
− CTFdg δ̇ (3�20)

−CW
[
ICMG
G

]d
[ωT ]d δ̇ − CT

(
[IW ]d [Ω]d −

[
ICMG
G

]d
[ωW ]d

)
δ̇,

and the uncertain matrix Υ2 (δ) ∈ R3×4 is de�ned as

Υ2 , −CW [IW ]d . (3�21)

Also in (3�19), Y1 (ev, e0, r, ω, ωd, ω̇d, δ,Ω) θ1 is de�ned via the parameterization

Y1θ1 , −CWFdwΩ− CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω (3�22)

−ω×Jω + Jω×R̃ωd − JR̃ω̇d +
1

2
Jα
(
e×v + e0I

)
ω̃.

In (3�22), Y1 (·) ∈ R3×p1 is a measurable regression matrix, and θ1 ∈ Rp1 is a vector

of unknown constants. In (3�19), the auxiliary matrices Υ1 (·) and Υ2 (·) contain only

linearly parameterizable uncertainty, so the terms are grouped as

Υ1δ̇ + Υ2Ω̇ , Y2θ2, (3�23)

where Y2

(
ev, e0, r, ω, ωd, δ, δ̇,Ω, Ω̇

)
∈ R3×p2 is a measurable regression matrix, and θ2 ∈ Rp2

is a vector of unknown constants. Some of the control design challenges for the open-loop

system in (3�19) are that the control input δ̇(t) is premultiplied by a non-square, unknown

time-varying matrix Υ1 (·), and the gimbal rate control input δ̇(t) is embedded inside of

a discontinuous nonlinearity (i.e., CTFsgsgn
(
δ̇
)
). To address the fact that the control

input is premultiplied by a non-square, unknown time-varying matrix, estimates of the
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uncertainty in (3�23), denoted by Υ̂1 (t) ∈ R3×4 and Υ̂2(t) ∈ R3×4, are de�ned as

Υ̂1δ̇ + Υ̂2Ω̇ , Y2θ̂2, (3�24)

where θ̂2(t) ∈ Rp2 is a subsequently designed estimate for the parametric uncertainty in

Υ1 (·) and Υ2 (·). Based on (3�23) and (3�24), (3�19) can be rewritten as

Jṙ = Υ̂1δ̇ + Υ̂2Ω̇ + Y1θ1 + Y2θ̃2 −
1

2
J̇r (3�25)

−CTFsgsgn
(
δ̇
)
− CWFswsgn (Ω) ,

where the notation θ̃2(t) ∈ Rp2 is de�ned as

θ̃2 = θ2 − θ̂2. (3�26)

Based on the expression in (3�25) and the subsequent stability analysis, the �ywheel

acceleration control input is designed as

Ω̇ = −Υ̂+
2 uc −

(
I4 − Υ̂+

2 Υ̂2

)
g, (3�27)

where g (t) is an auxiliary control signal designed to achieve the subsequent power tracking

objective [24]. In (3�27), the auxiliary control input uc (t) is designed as

uc = Y1θ̂1 + ev, (3�28)

and the gimbal rate control input is designed as

δ̇ = −Υ̂+
1 (k + kn) r, (3�29)

where k, kn ∈ R denote positive control gains. Since the matrices Υ̂1(t) and Υ̂2(t) are

non-square, the pseudo-inverses Υ̂+
i ∈ Rn×3 ∀i = 1, 2 are de�ned so that Υ̂iΥ̂

+
i = I3,

and the matrix In − Υ̂+
i Υ̂i, which projects vectors onto the null space of Υ̂i, satis�es the
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following properties:

(
In − Υ̂+

i Υ̂i

)(
In − Υ̂+

i Υ̂i

)
= In − Υ̂+

i Υ̂i

Υ̂i

(
In − Υ̂+

i Υ̂i

)
= 0

(
In − Υ̂+

i Υ̂i

)T
=

(
In − Υ̂+

i Υ̂i

)

(
In − Υ̂+

i Υ̂i

)
Υ̂+
i = 0. (3�30)

After substituting (3�27)-(3�29) into (3�25), the following closed-loop dynamics for r (t)

can be obtained:

Jṙ = −1

2
J̇r + Y1θ̃1 + Y2θ̃2 − kr − knr (3�31)

−CTFsgsgn
(
δ̇
)
− CWFswsgn (Ω)− ev,

where the notation θ̃1(t) ∈ Rp1 is de�ned as

θ̃1 = θ1 − θ̂1. (3�32)

Based on (3�25) and the subsequent stability analysis, the parameter estimates θ̂1 (t) and

θ̂2 (t) are designed as

·

θ̂1 = proj
(
Γ1Y

T
1 r
) ·

θ̂2 = proj
(
Γ2Y

T
2 r
)
, (3�33)

where Γ1 ∈ Rp1×p1 and Γ2 ∈ Rp2×p2 denote constant, positive-de�nite, diagonal adaptation

gain matrices, and proj(·) denotes a projection algorithm utilized to guarantee that the ith

element of θ̂1(t) and θ̂2(t) can be bounded as

θ1i ≤ θ̂1i ≤ θ̄1i θ2i ≤ θ̂2i ≤ θ̄2i, (3�34)

where θ1i, θ̄1i ∈ R and θ2i, θ̄2i ∈ R denote known, constant lower and upper bounds for

each element of θ̂1(t) and θ̂2(t), respectively.
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3.3.2 Adaptive Power Tracking Control Development

Based on (3�12) and (3�13), the power tracking error can be quanti�ed as

η̇E = Pd − Ė. (3�35)

To develop the closed-loop dynamics for the power tracking error, the time derivative of

(3�11) is substituted into (3�35) for Ė (t) as

η̇E = Pd −Υ3Ω̇, (3�36)

where the uncertain vector Υ3 (Ω) ∈ R1×4 is de�ned as

Υ3 , ΩT IW . (3�37)

Since the uncertainty in (3�36) is linearly parameterizable, the following parameterization

can be developed:

Υ3Ω̇ , Y3θ3, (3�38)

where Y3

(
Ω, Ω̇

)
∈ R1×p3 is a measurable regression matrix, and θ3 ∈ Rp3 is a vector of

unknown constants. To address the fact that the control input Ω̇ (t) is premultiplied by

an unknown time-varying matrix, an estimate of the uncertainty in (3�38), denoted by

Υ̂3 (t) ∈ R1×4 is de�ned as

Υ̂3Ω̇ , Y3θ̂3, (3�39)

where θ̂3(t) ∈ Rp3 is a subsequently designed estimate for the parametric uncertainty in

Υ3 (Ω). Based on (3�38) and (3�39), (3�36) can be rewritten as

η̇E = Pd − Y3θ̃3 − Υ̂3Ω̇, (3�40)

where the notation θ̃3(t) is de�ned as

θ̃3 , θ3 − θ̂3. (3�41)
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From (3�40) and the subsequent stability analysis, the parameter estimate θ̂3 (t) is

designed as
·

θ̂3 = proj
(
−Γ3Y

T
3 ηE

)
, (3�42)

where Γ3 ∈ Rp3×p3 denotes a constant, positive-de�nite, diagonal adaptation gain matrix,

and proj(·) denotes a projection algorithm utilized to guarantee that the ith element of

θ̂3(t) can be bounded as

θ3i ≤ θ̂3i ≤ θ̄3i, (3�43)

where θ3i, θ̄3i ∈ R denote known, constant lower and upper bounds for each element of

θ̂3(t), respectively. After substituting (3�27) into (3�40), the following expression can be

obtained

η̇E = Pd − Y3θ̃3 + Υ̂3Υ̂+
2 uc + Υ̂3

(
I4 − Υ̂+

2 Υ̂2

)
g. (3�44)

Given (3�44), g (t) is designed to satisfy the following relationship

Υ̂3

(
I4 − Υ̂+

2 Υ̂2

)
g = −Pd − Υ̂3Υ̂+

2 uc − kEηE, (3�45)

where kE ∈ R is a positive constant control gain. Based on the Moore-Penrose pseudo-

inverse properties introduced in (3�30), the minimum norm solution of (3�45) is given

as

g =
(
I4 − Υ̂+

2 Υ̂2

)
Υ̂T

3

[
Υ̂3

(
I4 − Υ̂+

2 Υ̂2

)
Υ̂T

3

]−1

(3�46)

·
(
−Pd − Υ̂3Υ̂+

2 uc − kEηE
)
.

The result in (3�46) indicates that simultaneous attitude and power tracking is possible

anytime
(
I4 − Υ̂+

2 Υ̂2

)
Υ̂T

3 6= 0. Since
(
I4 − Υ̂+

2 Υ̂2

)
6= 0 ∀ Υ̂2 (t), the simultaneous attitude

and power tracking objective can be achieved as long as the following two conditions are
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satis�ed simultaneously:

Υ̂T
3 (t) 6= 0

Υ̂T
3 (t) /∈ N

(
I4 − Υ̂+

2 Υ̂2

)
,

where N
(
I4 − Υ̂+

2 Υ̂2

)
denotes the null space of the matrix I4 − Υ̂+

2 Υ̂2. Since Υ̂3 (t) con-

tains the adaptive elements of θ̂3 (t), the projection function in (3�42) can be selected to

expand the domain within which the simultaneous objective is possible. After substituting

(3�46) into (3�44) for g (t), the following closed-loop error system can be obtained:

η̇E = −kEηE − Y3θ̃3. (3�47)

3.3.3 Stability Analysis

Theorem 2-1: The �ywheel control input of (3�27), (3�28) and (3�46) along with

the adaptive update laws given in (4�27) and the gimbal rate control input of (3�29)

ensure globally uniformly ultimately bounded (GUUB) attitude tracking in the sense that

‖ev(t)‖ ≤ ε0 exp (−ε1t) + ε2, (3�48)

where ε0, ε1, ε2 ∈ R denote positive bounding constants and asymptotic energy/power

tracking in the sense that

ηE (t)→ 0 as t→∞. (3�49)

Proof: To prove the asymptotic power tracking result, let VE(ηE, θ̃3, t) ∈ R be a

nonnegative function de�ned as

VE ,
1

2
η2
E +

1

2
θ̃T3 Γ−1

3 θ̃3. (3�50)

After using (3�42) and (3�47), the time derivative of VE (t) can be expressed as

V̇E = −kEη2
E. (3�51)
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Based on (3�50) and (3�51), ηE (t) ∈ L∞ ∩ L2. The assumption that θ3 ∈ L∞ can

be used along with (3�43), to show that θ̃3 (t) ∈ L∞. Given that ηE (t) ∈ L∞, (6�

8), (3�27), (3�28), (3�34), and (3�46) can be used to show that Ω̇ (t) ∈ L∞. Since

Ω̇ (t) ∈ L∞, (3�39) can be used along with (3�43) to conclude that Y3 (t) ∈ L∞. Given

that ηE (t) , θ̃3 (t) , Y3 (t) ∈ L∞, (3�47) can be used to conclude that η̇E (t) ∈ L∞ (i.e., ηE (t)

is uniformly continuous). Barbalat's Lemma can now be used to show that ηE (t) → 0 as

t→∞.

To prove the GUUB attitude tracking result, consider the nonnegative function V (ev,

e0, r, θ̃1, θ̃2, t) ∈ R de�ned as

V , eTv ev + (1− e0)2 +
1

2
rTJr +

1

2
θ̃T1 Γ−1

1 θ̃1 +
1

2
θ̃T2 Γ−1

2 θ̃2. (3�52)

By using the bounds given in (2�15), (6�8), and (3�34), V (t) can be upper and lower

bound as

λ1 ‖z‖2 + c1 ≤ V (t) ≤ λ2 ‖z‖2 + c2, (3�53)

where λ1, λ2, c1, c2 ∈ R are known positive bounding constants, and z(t) ∈ R6 is de�ned

as

z ,

[
eTv rT

]T
. (3�54)

From (3�17), (3�26), (3�31), and (3�32), the time derivative of V (t) can be expressed as

V̇ = eTv
(
e×v + e0I3

)
ω̃ + (1− e0) eTv ω̃ + rT

(
Y1θ̃1 + Y2θ̃2 − kr − knr − ev (3�55)

−CTFsgsgn
(
δ̇
)
− CWFswsgn (Ω)

)
− θ̃T1 Γ−1

1

·

θ̂1 − θ̃T2 Γ−1
2

·

θ̂2.

By using (3�16), (4�27), and exploiting the fact that

eTv e
×
v ω̃ = 0,

the expression in (3�55) can be upper bounded as

V̇ ≤ −λ3 ‖z‖2 − kn ‖r‖2 +
(
ζ0 ‖Fsg‖i∞ + ζ1 ‖Fsw‖i∞

)
‖r‖ , (3�56)
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where λ3 = λmin {α, k} ∈ R. After completing the squares, (3�56) can be written as

V̇ (t) ≤ −λ3 ‖z‖2 +
β2

4kn
, (3�57)

where β , ζ0 ‖Fsg‖i∞ + ζ1 ‖Fsw‖i∞. Since the inequality in (3�53) can be utilized to lower

bound ‖z(t)‖2 as

‖z‖2 ≥ 1

λ2

V (t)− c2

λ2

, (3�58)

the inequality in (3�57) can be expressed as

V̇ (t) ≤ −λ3

λ2

V (t) + ε, (3�59)

where ε ∈ R is a positive constant that is de�ned as

ε =
β2

4kn
+
λ3c2

λ2

. (3�60)

The linear di�erential inequality in (3�59) can be solved as

V (t) ≤ V (0) exp

(
−λ3

λ2

)
t+ ε

λ2

λ3

[
1− exp

(
−λ3

λ2

t

)]
. (3�61)

The expressions in (3�52) and (3�61) can be used to conclude that r(t) ∈ L∞. Thus,

from (6�8), (3�16), and (3�54), ω̃(t), z(t) ∈ L∞, and (3�15) can be used to conclude that

ω(t) ∈ L∞. Equation (3�17) then shows that ėv(t), ė0(t) ∈ L∞. Hence, (3�22), (3�24),

(3�27)-(3�29), (3�34), (3�46), and (3�49) can be used along with the assumption that

Ed(t), Pd(t) ∈ L∞ to prove that the control inputs δ̇(t), Ω̇ (t) ∈ L∞. Standard signal

chasing arguments can then be utilized to prove that all remaining signals remain bounded

during closed-loop operation. The inequalities in (3�53) can now be used along with

(3�60) and (3�61) to conclude that

‖z‖2 ≤

(
λ2 ‖z(0)‖2 + c2

λ1

)
exp

{
−λ3

λ2

t

}
+

(
λ2β

2

4knλ3λ1

+
c2 − c1

λ1

)
. (3�62)

The result in (3�48) can now be directly obtained from (3�62).
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3.4 Simulation Study

To test the performance of the proposed IPACS, the dynamic parameters of the UF

CMG test bed were used to create a numerical simulation. While the UF CMG does

not have variable wheel speed capabilities, a realistic numerical simulation environment

was created as a stepping stone to actual experimental validation of the proposed con-

trol law. To that end, using the physical parameters of the UF CMG test bed to create

the VSCMG model, the controller performance was tested in a simulation environment

containing measurement noise and time delays. Moreover, to ensure that the simula-

tion demonstrates the capability of the controller to perform satisfactorily in practical

implementation, the controller parameters were tuned such that the control objective is

achieved using actuator commands that are within practical saturation and rate limits.

Using the dynamic equations of motion in terms of the VSCMG test bed in (3�1)-(3�

2) and the VSCMG test bed inertia matrix Jvscmg (δ) ∈ R3×3 is de�ned using the parallel

axis theorem as

Jvscmg , J0 +
4∑

i=1

[
BJgi +mcmgi

(
rTi riI3 − rirTi

)]
. (3�63)

In (3�63), the VSCMG parameters J0 , Jvscmg (0) = diag{6.10 × 10−2, 6.10 × 10−2,

7.64× 10−2} kg ·m2, mcmgi = 0.265 kg, ri ∈ R3 ∀i = 1, 2, 3, 4 are de�ned as

r1 ,

[
0.1591 0 0.1000

]T
m (3�64)

r2 ,

[
0 0.1591 0.1000

]T
m (3�65)

r3 ,

[
−0.1591 0 0.1000

]T
m (3�66)

r4 ,

[
0 −0.1591 0.1000

]T
m, (3�67)

BJgi (δ) ∈ R3×3 ∀i = 1, 2, 3, 4 denotes the inertia matrix of the ith gimbal as expressed in

the CMG body-�xed frame de�ned as

BJgi , [CBgi]
[
giJgi

]
[CBgi]

T , (3�68)
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and In denotes the n × n identity matrix. The actual values for the parameters J0, Iws,

Icg, Fdg, Fdw, Fsg, Fsw, mcmgi, and
giJgi ∀i = 1, 2, 3, 4 are used to generate the plant model

in the simulation, but they are not used in the control law. The adaptive control law

compensates for these uncertain parameters. In (3�68), the coordinate transformation

matrix CBgi ∈ SO (3) ∀i = 1, 2, 3, 4 relates the ith gimbal-�xed frame to the VSCMG

body-�xed frame, and giJgi = diag

{
2.80× 10−3 4.89× 10−4 2.49× 10−3

}
kg · m2

∀i = 1, 2, 3, 4 represents the inertia matrix of the ith gimbal as expressed in the ith gimbal-

�xed frame. Also in (3�1), ICMG
G = 2.80× 10−3I4 kg ·m2, and IW = 6.95× 10−4I4 kg ·m2.

The skew angle of the VSCMG pyramid is β = 54.74 deg.

The objective is to regulate a satellite's attitude to the desired quaternion de�ned by

qd =

[
1 0 0 0

]T
(3�69)

with the initial quaternion orientation of the satellite given by

q (0) =

[
0.4 −0.3 0.8 0.4

]T
.

The adaptive estimates were initialized to arbitrary values in the simulation to test a case

when limited knowledge of the parameters is available. The initial values for the adaptive
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estimates were selected as follows.

θ̂1 (0) =
[
6× 10−2, 6× 10−2, 9× 10−2, 7.5× 10−3,

1.2× 10−3, 6× 10−3, 3× 10−4, 3× 10−4,

3× 10−4, 3× 10−4, 0.3, 0.3, 0.3, 0.3,

1.04× 10−3, 1.04× 10−3, 1.04× 10−3,

1.04× 10−3
]

θ̂2 (0) =
[
1.2× 10−3, 6.0× 10−3, 1.5× 10−2,

1.5× 10−2, 1.5× 10−2, 1.5× 10−2,

1.04× 10−3, 1.04× 10−31.04× 10−3,

1.04× 10−3, 3× 10−3, 3× 10−3, 3× 10−3,

3× 10−3
]

θ̂3 (0) =
[
2.78× 10−3, 2.78× 10−3, 2.78× 10−3,

2.78× 10−3
]
,

and the gimbal angles (rad) and �ywheel speeds (rad/s) were initialized as

δ (0) =

[
1 1 1 1

]T

Ω (0) =

[
10 10 10 10

]T
,

respectively.

The friction matrices Fdg, Fdw, Fsg, and Fsw for the simulated VSCMG are (e.g.,

see [66])

Fdg = 2× 10−2I4 Fsg = 4× 10−2I4 (3�70)

Fdw = 2× 10−4I4 Fsw = 4× 10−4I4.
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To test the scenario when a sudden increase in the friction occurs, an instantaneous jump

(i.e., step function) of 10−2 in the Fdg, Fdw, Fsg, and Fsw parameters is programmed to

occur 1 second into the simulation. Additionally, a sudden increase of 10% in the friction

parameters is programmed to occur after the �rst period of power tracking at 6, 000 sec1 .

To improve the realism of the simulation environment, Gaussian distributed random

number noise of 10% was added to all sensor measurements in the simulation, and a �xed

time step of 10−2 sec was used.

Figures 3-1 - 3-16 show the simulation results of the closed-loop system. Figure 3-1

shows the quaternion tracking error during closed-loop operation for the entire duration

(15, 000 sec) of the numerical simulation. To show the initial transient response, Figure

3-2 shows a plot of the �rst 200 sec of the quaternion tracking error plot. Figure 3-3

highlights the quaternion tracking error response during the sudden friction increase at

6, 000 sec. Figures 3-4 and 3-6 show the power and energy tracking achieved during

closed-loop controller operation. Figure 3-4 shows the power and energy pro�les and

the corresponding closed-loop system response for the entire duration of the simulation,

and Figure 3-5 shows the �rst 10 sec to highlight the initial transient response. Figure

3-6 highlights the power and energy tracking error responses during the step increase in

friction occurring at 6000 sec. Figures 3-7 - 3-9 show the control input gimbal rates

δ̇ (t) and wheel accelerations Ω̇ (t) during closed loop operation. The spikes shown in

the control input responses δ̇ (t) and Ω̇ (t) occur at instants where the desired power

pro�le instantaneously changes sign from negative to positive (see Figure 3-4). Although

the spikes appear to exceed practical rate limitations of the actuators, this is due to

the resolution of Figure 3-7. The e�ect of the sudden friction increase on the control

1 In a realistic situation, the gimbal friction would most likely increase gradually over
time (e.g., due to bearing degradation, corrosion, etc.), so the instantaneous increase in
friction in the simulation tests a worst case scenario.
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Figure 3-1. Quaternion tracking error e(t) during closed-loop operation.
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Figure 3-2. Transient response of the quaternion tracking error e (t).
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Figure 3-3. Response of the quaternion tracking error e (t) during the sudden increase in
friction at 6, 000 sec.
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Figure 3-4. Desired power and energy pro�les and actual closed-loop power tracking
response.
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Figure 3-5. Transient power and energy tracking error.
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Figure 3-6. Power and energy tracking error response during sudden friction increase at
6, 000 sec.
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Figure 3-7. Control input gimbal rates δ̇ (t) and wheel accelerations Ω̇ (t).

input responses is shown in Figure 3-9. The commanded control inputs remain within

reasonable rates throughout controller operation. The wheel speeds used during

closed-loop operation are shown in Figure 3-10. The maximum wheel speed commanded

was approximately 9, 500 rpm, which is a reasonable value for practical implementation.

The time variation of the adaptive parameter estimates is shown in Figures 3-11 - 3-16.

Some of the parameter estimates did not vary much during closed-loop operation, but

the estimates remained bounded for the duration of the numerical simulation. Figure

3-11 shows the elements of the adaptive parameter vectors θ̂1 (t), θ̂2 (t), and θ̂3 (t) for

the entire duration of closed-loop controller operation. Figures 3-12, 3-14, and 3-16 show

the transient response of the adaptive parameter estimates during the �rst 10 seconds of

closed-loop operation. Figure 3-12 depicts the vector elements of θ̂1 (t), Figure 3-14 depicts

the elements of θ̂2 (t), and Figure 3-16 depicts θ̂3 (t). Figures 3-13 and 3-15 highlight the

responses of θ̂1 (t) and θ̂2 (t) during the sudden increase in friction at 6, 000 sec. Since

di�erent vector elements of θ̂1 (t) and θ̂2 (t) had di�erent initial conditions and amounts of

variation, the plots in Figures 3-12 - 3-15 were divided into multiple windows for clarity.
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Figure 3-8. Transient response of the control input gimbal rates δ̇ (t) and wheel
accelerations Ω̇ (t).
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Figure 3-9. Response of the control input gimbal rates δ̇ (t) and wheel accelerations Ω̇ (t)
during sudden increase of friction parameters at 6, 000 sec.
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Figure 3-10. Wheel speeds Ω (t) during closed-loop controller operation.

Some of the parameter estimates vary by small magnitudes on the order of 10−4. However,

after utilizing equations (3�1), (3�2), (3�22), (3�23), (3�27) - (3�29), and (3�38), it can be

shown that the equivalent control torque resulting from the feedforward terms θ̂1 (t), θ̂2 (t),

and θ̂3 (t) all have similar magnitudes, which is of the same order of magnitude as that of

the feedback control terms.

3.5 Summary

In this chapter, an IPACS design method for a VSCMG-actuated satellite is pre-

sented. In the presence of uncertain dynamic and static friction in the VSCMG gimbals

and wheels, the controller is capable of achieving GUUB attitude tracking while simul-

taneously tracking a desired power pro�le asymptotically. In addition, the controller

compensates for the e�ects of uncertain, time-varying satellite inertia properties. The

di�culties arising from dynamic friction and uncertain satellite inertia are mitigated

through innovative development of the error system along with a Lyapunov-based adaptive

law. In the presence of static friction, the control design is complicated due to the control

input being embedded in a discontinuous nonlinearity. This di�culty is overcome with the
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Figure 3-11. Adaptive parameter estimates θ̂1 (t), θ̂2 (t), and θ̂3 (t) during closed-loop
operation.
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Figure 3-12. Initial transient response of the vector elements of the adaptive estimate
θ̂1 (t).
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Figure 3-13. Response of the vector elements of the adaptive estimate θ̂1 (t) during the
sudden friction increase at 6, 000 sec.
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Figure 3-14. Initial transient response of the vector elements of the adaptive estimate
θ̂2 (t).
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Figure 3-15. Response of the vector elements of the adaptive estimate θ̂2 (t) during the
sudden friction increase at 6, 000 sec.
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Figure 3-16. Initial transient response of the adaptive estimate θ̂3 (t).
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use of a robust control element. The attitude and power tracking results are proven via

Lyapunov stability analysis and demonstrated through numerical simulations.
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CHAPTER 4
INTEGRATED POWER REDUCTION AND ADAPTIVE ATTITUDE CONTROL

SYSTEM OF A SATELLITE

In this chapter, an attitude controller is developed to adaptively estimate actuator

friction where attitude control torques are generated by means of a pyramidal arrange-

ment of four single gimbal VSCMGs. To develop the controller from coupled dynamics

composed of the satellite, gimbals, and wheels, a backstepping method is exploited. In-

put power reduction results from a wheel deceleration mode induced by null solution in

addition to internal friction of the �ywheels. Internal friction reduces the potential input

torque to be produced by the �ywheels since the friction in deceleration can play a role

as additional torque generation to the resultant torque which consists of the applied con-

trol torque and friction. The developed VSCMG steering law is a function of the gimbal

rates and the �ywheel velocities which are weighted by the singularity measure [97] to

actively exploit the additional degree of freedom a�orded by the VSCMGs [55, 89, 100]. In

a stationary state after completing an arbitrary attitude maneuver, the wheel speeds can

potentially be reduced. A bene�t of the controller is that power reduction can be achieved

when the wheels decelerate while the gimbals null motion simultaneously performs the

gimbal recon�guration for singularity avoidance. The singularity avoidance method re-

duces/eliminates the amount of time that the VSCMG has to operate in RW mode when

the CMG Jacobian becomes singular in impassable/passable singular surface through the

use of null motion [55, 64, 96, 100]. Numerical simulations demonstrate the performance

of the adaptive VSCMG steering law to indicate the input power reduction for control of

VSCMGs in the presence of friction and the e�cacy of singularity avoidance with reduced

reaction wheel modes.

4.1 Coupled Dynamics

4.1.1 Dynamics for VSCMGs

The gimbal and �ywheel of a VSCMG assembly (Figure 2-1) have a center of mass

(CM), CGi
and CWi

, respectively. By placing the CMG assembly inside a satellite, the
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angular momentum hCMGi
CCMGi

(
ω, δ̇i,Ωi

)
∈ R3 of the ith CMG with respect to its CM, CCMGi

is written as

hCMGi
CCMGi

= ICMGi
CCMGi

ω + h
CMGi/S
CCMGi

, (4�1)

where the sub- and superscript notation indicate a point of interest and a body, respec-

tively, ω (t) ∈ R3 denotes the angular velocity of the satellite, δi (t) , δ̇i (t) ,Ωi (t) ∈ R

are the gimbal angle, the gimbal rate, and the �ywheel velocity of the ith CMG, and

ICMGi
CCMGi

∈ R3×3 is the moment of inertia tensor of the ith CMG relative to CCMGi
. Speci�-

cally, the moment of inertia tensor of the ith CMG is

ICMGi
CCMGi

= IGi
CCMG

+mGi

[(
rTCGi

rCGi

)
I3 − rCGi

rTCGi

]
+IWi

CCMG
+mWi

[(
rTCWi

rCWi

)
I3 − rCWi

rTCWi

]
,

where IGi
CCMG

, IWi
CCMG

∈ R3×3 are the moments of inertia tensor of each gimbal and wheel

relative to CCMGi
, and mGi

, mWi
∈ R are masses of the ith gimbal and wheel, where rCGi

,

rCWi
∈ R3 are the positions of the CM for CGi

and CWi
with respect to CCMGi

. Also in

(4�1), h
CMGi/S
CCMGi

(
δ̇i,Ωi

)
represents the angular momentum contributions from the �ywheel

and the gimbal and is given by

h
CMGi/S
CCMGi

= ICMGi
CCMGi

δ̇iâGi
+ ICMGi

CCMGi
ΩiâWi

, (4�2)

where the angular momentum of the CMG is expressed in terms of a CMG-�xed basis

B =

{
âGi

, âWi
, âTi ,

}
; âGi

is a gimbal axis, âWi
is a spinning wheel axis, and âTi is a

transverse axis. To obtain the kinetic equation governing the motion of the ith CMG, the

time derivative of (4�1) yields

ḣCMGi
CCMGi

= ICMGi
CCMGi

ω̇ +
d

dt

(
ICMGi
CCMGi

)
ω + ḣ

CMGi/S
CCMGi

= gCMGi , (4�3)

where gCMGi (t) = τCMGi (t) − gCMGi
Friction

(
δ̇i,Ωi

)
∈ R3 represents the applied gimbal and/or

�ywheel motor torques τCMGi (t) and the associated friction torques gCMGi
Friction

(
δ̇i,Ωi

)
.
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Given a CMG-�xed frame FCMGi
, the transport theorem indicates that

ḣCMGi
CCMGi

= ICMGi
CCMGi

(
ω̇ + δ̈âGi

+ Ω̇iâWi

)
+
(
ω + δ̇âGi

)×
hGi

+
(
ω + δ̇âGi

+ ΩiâWi

)×
hWi

, (4�4)

where hGi
, ICMGi

CCMGi

(
ω + δ̇âGi

)
, and hWi

, ICMGi
CCMGi

ΩiâWi
∈ R3. Considering a coodinate

system with origin CCMGi
and basis B �xed in each CMG unit, (4�4) is expressed as

CMGiḣCMGi
CCMGi

= CMGiICMGi
CCMGi

(
DT
CMGi

ω̇ + δ̈âGi
+ Ω̇iâWi

)

+
(
DT
CMGi

ω + δ̇âGi

)×
hGi

+
(
DT
CMGi

ω + δ̇âGi
+ ΩiâWi

)×
hWi

,

where CMGiICMGi
CCMGi

∈ R3×3 is the moment of inertia matrix of the ith CMG expressed in

the CMG-�xed frame FCMGi
, and assuming that CMGiICMGi

CCMGi
is a principal inertia matrix,

the CMG inertia matrix can be de�ned as CMGiICMGi
CCMGi

= diag

([
ICMGi
Gi

IWi
ICMGi
Ti

])

since CMGiICMGi
CCMGi

âWi
= IWi

âWi
so that hWi

, IWi
ΩiâWi

, and DT
CMGi

(δi) ∈ R3×3 is the

direction cosine matrix which transforms FS to FCMGi
. The gimbal motor torque and

bearing friction contributions are obtained from

CMGiḣCMGi
CCMGi

· âGi
= âGi

·
[
CMGiICMGi

CCMGi

(
DT
CMGi

ω̇ + δ̈âGi

)]
+ âGi

·
[(
DT
CMGi

ω + δ̇âGi

)×
hWi

]

= τCMGi
Gimbalmotor

− gCMGi
GimbalFriction

, (4�5)

where τCMGi
Gimbalmotor

(t), gCMGi
GimbalFriction

(
δ̇i

)
∈ R are the applied torque and friction torque of

the ith gimbal. Similarly, the �ywheel contributions can be expressed as

CMGiḣCMGi
CCMGi

· âWi
= âWi

·
[
CMGiICMGi

CCMGi

(
DT
CMGi

ω̇ + δ̈âGi

)]

+âWi
·
[(
ω + δ̇âGi

)×
hGi

]
+ âWi

·CMGi ICMGi
CCMGi

Ω̇iâWi

= τCMGi
Wheelmotor

− gCMGi
WheelFriction

, (4�6)

where τCMGi
Wheelmotor

(t), gCMGi
WheelFriction

(Ωi) ∈ R are the applied torque and friction torque of

the ith wheel. The equations of motion of the gimbal and �ywheel in matrix form can be
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expressed as

δ̈ =
([
ICMG
G

]d)−1 [
A+ [IW ]d [Ω]d [ω∆] + τCMG

Gimbalmotor
− gCMG

GimbalFriction

]

Ω̇ =
(

[IW ]d
)−1 [

B + τCMG
Wheelmotor

− gCMG
WheelFriction

]
, (4�7)

where A (ω, ω̇, δ), B
(
ω, ω̇, δ, δ̇

)
∈ R4 are residual terms obtained by algebraic ma-

nipulations of (4�5) and (4�6), and [ω∆ (δi)] ∈ R4 is a vector resulting from âGi
·

{
DT
CMGi

(δi)ω (t)
}×

âWi
; the inertia matrices

[
ICMG
G

]d
, [IW ]d ∈ R4×4 are

[
ICMG
G

]d
,

diag
([
ICMG1
G ICMG2

G ICMG3
G ICMG4

G

])
, [IW ]d , diag

([
IW1 IW2 IW3 IW4

])
,

where
[
ICMG
G

]d
is the unknown gimbal inertia matrix, and [IW ]d is the known �y-

wheel inertia matrix; the satellite angular velocity ω (t) projected to B is denoted

as [ω◦ (t)]d , diag

([
ω◦1 (t) ω◦2 (t) ω◦3 (t) ω◦4 (t)

])
(◦ : G, W , T ) ∈ R4×4

and [·]d denotes a diagonal matrix expressed by components of each VSCMG; and

δ̇ (t) ,Ω (t) ∈ R4 are gimbal rate and �ywheel velocity vectors, respectively. In (4�7),

τCMG
Gimbalmotor

(t), τCMG
Wheelmotor

(t) ∈ R4 are the applied control torques, and the friction vectors

gCMG
GimbalFriction

(
δ̇
)
, gCMG

WheelFriction
(Ω) ∈ R4 are

gCMG
GimbalFriction

, Fdg δ̇ + Fsgsgn
(
δ̇
)

(4�8)

gCMG
WheelFriction

, FdwΩ + Fswsgn (Ω) ,

where Fdg, Fsg ∈ R4×4 and Fdw, Fsw ∈ R4×4 are diagonal matrices containing the uncertain

dynamic and static friction coe�cients for the gimbals and wheels, respectively, and

sgn (·) ∈ R4 denotes a vector form of the standard signum function where the sgn (·) is

applied to each element of δ̇(t) and Ω (t).

4.1.2 Dynamics for a satellite actuated by VSCMGs

The total angular momentum Ht

(
ω, δ̇,Ω

)
∈ R3 of a rigid VSCMG-actuated satellite

can be written as

Ht = Jω + CG
[
ICMG
G

]d
δ̇ + CW [IW ]d Ω (4�9)
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where the angular momentum of the CMG is expressed in terms of a CMG-�xed

basis B =

{
âGi

, âWi
, âTi ,

}
; and CG, CW (δ), CT (δ) ∈ R3×4 are de�ned as

CG ,

[
âG1 âG2 âG3 âG4

]
, CW ,

[
âW1 âW2 âW3 âW4

]
, CT ,

[
âT1 âT2

âT3 âT4

]
. In (4�9), the uncertain total satellite inertia matrix J (δ) ∈ R3×3 is positive

de�nite and symmetric such that

1

2
λmin {J} ‖ξ‖2 ≤ ξTJξ ≤ 1

2
λmax {J} ‖ξ‖2 ∀ξ ∈ Rn

where λmin {J} , λmax {J} ∈ R are the minimum and maximum principal inertias of J(δ)

and δ (t) ∈ R4 is the gimbal angle. The equation of motion for a rigid VSCMG-actuated

satellite can be written as

gECS
= J̇ω + Jω̇ + ω×Jω (4�10)

+CG

([
ICMG
G

]d
δ̈ − [IW ]d [ωT ]d Ω

)

+CW

(
[IW ]d Ω̇ +

[
ICMG
G

]d
[ωT ]d δ̇

)

+CT

(
[IW ]d [Ω]d δ̇ + [IW ]d [ωG]d Ω−

[
ICMG
G

]d
[ωW ]d δ̇

)
,

where gECS

(
ω, ω̇, δ, δ̇, δ̈,Ω, Ω̇

)
∈ R3 is the external torque applied to the satellite,

δ̈ (t) , Ω̇ (t) ∈ R4 are the gimbal acceleration and �ywheel acceleration, and [Ω (t)]d

and
[
δ̇ (t)

]d
denote diagonal matrices composed of the vector elements of Ω (t), δ̇ (t) ∈ R4,

respectively. Based on (4�7) and (4�10), the coupled dynamic equations for a VSCMG-

actuated satellite can be represented as

δ̈ =
([
ICMG
G

]d)−1 [
A+ [IW ]d [Ω]d [ω∆] + τCMG

Gimbalmotor
− gCMG

GimbalFriction

]

Ω̇ =
(

[IW ]d
)−1 [

B + τCMG
Wheelmotor

− gCMG
WheelFriction

]

ω̇ = −J−1

[
d

dt
(J)ω + ω×Jω + CG

([
ICMG
G

]d
δ̈ − [IW ]d [ωT ]d Ω

)
(4�11)

+CW

(
[IW ]d Ω̇ +

[
ICMG
G

]d
[ωT ]d δ̇

)

+CT

(
[IW ]d [Ω]d δ̇ + [IW ]d [ωG]d Ω−

[
ICMG
G

]d
[ωW ]d δ̇

)]
.
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4.2 Attitude Control Objective

The attitude control objective is to develop a gimbal rate and �ywheel velocity

control law to enable the attitude of FS to track the attitude of FSd
. The objective is

quanti�ed in 3.2.1 in Chapter 3.

4.3 Attitude Control Development

To facilitate the design of a composite VSCMG steering law, an auxiliary signal

r(t) ∈ R3 is de�ned as [23]

r , ω − R̃ωd + αev, (4�12)

where α ∈ R is a constant control gain. Using (3�7) and (4�12), the angular velocity

tracking error can be expressed as

ω̃ = r − αev. (4�13)

In the absence of external disturbances, the satellite dynamics of (4�10) can be used to

rewrite the open-loop error dynamics for r (t) as

Jṙ = G+Dδ̇ +HΩ− 1

2
J̇r, (4�14)

where the auxiliary terms G (e0, ev, ω, ωd, ω̇d, δ) ∈ R3, D (e0, ev, ω, ωd, r, δ,Ω) ∈ R3×4, and

H (ω, δ) ∈ R3×4 are de�ned as

G , −ω×Jω + Jω×R̃ωd − JR̃ω̇d +
1

2
Jα
(
e×v + e0I3

)
ω̃,

D , −CW
[
ICMG
G

]d
[ωT ]d + CT

[
ICMG
G

]d
[ωW ]d − ∂J

∂δ

(
1

2
r + R̃ωd − αev

)

−CT [IW ]d [Ω]d ,

H , CG [IW ]d [ωT ]d − CT [IW ]d [ωG]d ,

69



and the terms CG
[
ICMG
G

]d
δ̈ (t) and CW (δ) [IW ]d Ω̇ (t) are assumed to be negligible

[26,83,89]. After some algebraic manipulation, the error dynamics in (4�14) are

Jṙ = G+Dδ̇d +HΩd +Dδ̃ +HΩ̃− 1

2
J̇r

= G+Qηd +Dδ̃ +HΩ̃− 1

2
J̇r, (4�15)

where Q (e0, ev, r, ω, δ,Ω) ,

[
D (e0, ev, r, ω, δ,Ω) H (ω, δ)

]
∈ R3×8, ηd (t) ,

[
δ̇Td ΩT

d

]T
∈ R8, and the backstepping errors δ̃ (t), Ω̃ (t) ∈ R4 are de�ned as

δ̃ , δ̇ − δ̇d, Ω̃ , Ω− Ωd. (4�16)

Based on the error dynamics of (4�15), the auxiliary backstepping input Q (e0, ev, r, ω, δ,Ω) ηd (t)

is designed as

Qηd = −G− k1r − ev, (4�17)

where k1 ∈ R is a positive constant gain. Substituting (4�17) into (4�15), the closed-loop

error dynamics for r (t) can be determined as

Jṙ = Dδ̃ +HΩ̃− 1

2
J̇r − k1r − ev. (4�18)

In addition to attitude control, the control development also targets reduced power

consumption during �ywheel despinning. The �ywheel can achieve deceleration by

null motion control. To facilitate the development of a null motion controller, the new

composite VSCMG steering law in (4�17) is expressed as

ηd = −Q+
w (G+ k1r + ev)−

(
I8 −Q+

wQ
)
Sσ (4�19)

=



−R1 −N1s̄gkγ

∂γ
∂δ

−R2 −N2s̄wg


 ,

where Q+
w (e0, ev, r, ω, δ,Ω) , W (δ)QT (·)

{
Q (·)W (δ)QT (·)

}−1
, and W (δ) ∈ R8×8 denotes

a mode weight matrix that determines whether the VSCMGs system operates in a CMG
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mode or a RW mode, and S (δ) ∈ R8×8 is a null motion weight [45, 46] to arbitrate the null

motion σ (t) ∈ R8×1 of the gimbal and �ywheel de�ned as

σ ,



kγ

∂γ
∂δ

g


 , (4�20)

where the null motion σ (t) generates gimbal recon�guration and wheel deceleration, kγ ∈

R denotes a positive constant, and g (t) is an auxiliary control signal to track the desired

�ywheel speed trajectory. In the partitioned steering law of (4�19), Ri (e0, ev, r, ω, δ,Ω) =

[Q+
w (·) {G (e0, ev, r, ω, δ) +k1r (t) + ev (t)}]i indicates components of each R4 term,

Ni (e0, ev, r, ω, δ,Ω) ∈ R4×8 is the projector onto N (Q), and s̄g (δ), s̄w (δ) ∈ R8×4 are

composed of components sg, sw ∈ R4×4 of null motion weight S (δ), de�ned as

s̄g ,

[
sg 04×4

]T
s̄w ,

[
04×4 sw

]T
.

The mode weight matrix W (δ) ∈ R8×8 is designed as [87,89,101]

W ,



WδI4×4 04×4

04×4 WΩI4×4


 , (4�21)

where WΩ (δ) is de�ned as

WΩ , WΩ0 exp (λ1f) ,

where λ1,WΩ0,Wδ ∈ R are positive constants, and the singularity measuring objective

function f (δ) is

f = − det
(
CTC

T
T

)
. (4�22)

The control input g (t) of (4�20) is designed as

g = − [N2s̄w]−1 (R2 + Ωf ) , (4�23)

where Ωf (t) ∈ R4 is a desired, given �ywheel deceleration trajectory. In a stationary

state after completing an arbitrary attitude maneuver, the wheels do not need to maintain
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high speeds. Decelerating the wheels can reduce the potential for wheel speed saturation,

but typical strategies require battery power to decelerate the wheels while maintaining

a desired attitude. The auxiliary control input g (t) results from an internal momentum

management strategy that enables internal friction to be used along with null space

motion as a power reduction method to decelerate the �ywheels while maintaining a

desired attitude.

Remark 4.1. The bracketed term in (4�23) is invertible, and simultaneous attitude and

wheel deceleration is possible when N2 (·) s̄w (δ) = (I8 −Q+
w (·)Q (·))4×8 s̄w (δ) 6= 04×4. Since

(I8 −Q+
w (·) Q (·))4×8 is nonzero for all Q (·), N2 (·) 6= 04×8 and simultaneous attitude and

wheel deceleration can be achieved provided

s̄w 6= 0 and s̄w /∈ N (N2) ,

where N (N2 (·)) denotes the null space of the matrix N2 (·). Hence, s̄w (δ) /∈ N (N2) except

when s̄w (δ) = 08×4, which means the CMG's Jacobian itself is singular, which does not

occur unless it is initially singular. Accordingly, as long as the system does not start in a

singular con�guration, the control input g (t) exists and simultaneous attitude and wheel

deceleration can be achieved.

The composite steering law in (4�19) has an extra degree of freedom resulting from

the variable speed �ywheel, enabling the VSCMG system to escape an elliptic singularity

and a gimbal lock singularity [89, 100]. Since the steering law of (4�19) is produced by four

VSCMG units, (4�19) is also a solution to an underdetermined system containing four

gimbal rates and four �ywheel velocities as unknowns [55, 89, 100]. In (4�19), the term

(I8 −Q+
w (·)Q (·))S (δ)σ (t) generates the VSCMG null motion for singularity avoidance

and wheel deceleration. The singularity avoidance method reduces/eliminates the usage of

RW mode in continuous manner when encountering elliptic/hyperbolic singularity. Since

Q (·) is nonsquare, the pseudo-inverse Q+
w (·) ∈ R8×3 is de�ned so that Q (·)Q+

w (·) = I3,

and the matrix I8−Q+
w (·)Q (·), which projects vectors onto the null space of Q (·), satis�es
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the properties

(
I8 −Q+

wQ
) (
I8 −Q+

wQ
)

= I8 −Q+
wQ (4�24a)

Q
(
I8 −Q+

wQ
)

= 03×8. (4�24b)

The composite VSCMG steering law in (4�19) provides a desired gimbal and �ywheel

velocity. Since the actual control inputs are gimbal and �ywheel torques, a backstepping

approach is used to design τCMG
Gimbalmotor

(t) and τCMG
Wheelmotor

(t) by examining the open-loop

error system for the mismatch between the desired and actual gimbal and �ywheel

velocities, denoted by the backstepping errors δ̃ (t), Ω̃ (t). Speci�cally, after using (4�7)

and (4�17) and performing some algebraic manipulation, the open-loop error system for

δ̃ (t), Ω̃ (t) is

·
δ̃ =

([
ICMG
G

]d)−1 [
A+ [IW ]d [Ω]d [ω∆] + τCMG

Gimbalmotor
− gCMG

GimbalFriction

]
+D+

(
Ḋδ̇d + Ġ+ k1ṙ

)

·
Ω̃ =

(
[IW ]d

)−1 [
B + τCMG

Wheelmotor
− gCMG

WheelFriction

]
+H+

(
ḢΩd + ėv

)
, (4�25)

where

Ġ , −ω̇×Jω − ω×
(
J̇ω + Jω̇

)
+
(
J̇ω + Jω̇

)×
R̃ωd + Jω×

( ·
R̃ωd + R̃ω̇d

)

−J̇R̃ω̇d − J
·
R̃ω̇d − JR̃ω̈d +

1

2
α

[(
J̇ev + Jėv

)×
ω̃ + Je×v

·
ω̃

+
(
J̇e0I3 + Jė0I3

)
ω̃ + Je0I3

·
ω̃

]
,

Ḋ , −CT
[
δ̇
]d [

ICMG
G

]d
[ωT ]d − CW

[
ICMG
G

]d
[ω̇T ]d

−CW
[
δ̇
]d [

ICMG
G

]d
[ωW ]d + CT

[
ICMG
G

]d
[ω̇W ]d

−∂
2J

∂δ2
δ̇

(
1

2
r + R̃ωd − αev

)
− ∂J

∂δ

(
1

2
ṙ +

·
R̃ωd + R̃ω̇d − αėv

)

+CW

[
δ̇
]d

[IW ]d [Ω]d − CT [IW ]d
[
Ω̇
]d
,

Ḣ , CG [IW ]d [ω̇T ]d − ∂

∂δ
(CT ) δ̇ [IW ]d [ωG]d − CT [IW ]d [ω̇G]d .
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The internal frictions gCMG
GimbalFriction

(
δ̇
)
and gCMG

WheelFriction
(Ω) in (4�25) are parameterized in

terms of known regression matrices Y1

(
δ̇
)
, Y2 (Ω) ∈ R4×8 and vectors of eight unknown

constants θ1, θ2 ∈ R8 as

Y1θ1 , Fdg δ̇ + Fsgsgn
(
δ̇
)

Y2θ2 , FdwΩ + Fswsgn (Ω) .

Based on the open-loop error dynamics of (4�25), the applied control torques τCMG
Gimbalmotor

(t)

and τCMG
Wheelmotor

(t) are designed as

τCMG
Gimbalmotor

= −A− [IW ]d [Ω]d [ω∆] + Y1θ̂1 −
[
ICMG
G

]d {
D+

(
Ḋδ̇d + Ġ+ k1ṙ

)}
(4�26)

−
[
ICMG
G

]d
DT r − k2

[
ICMG
G

]d
δ̃

τCMG
Wheelmotor

= −B + Y2θ̂2 − [IW ]d
{
H+

(
ḢΩd + ėv

)}
− [IW ]dHT r − k3 [IW ]d Ω̃,

where k2, k3 ∈ R are positive constant gains, and θ̂1 (t), θ̂2 (t) ∈ R8 are estimates for the

parametric uncertainty Fdg, Fsg, Fdw, and Fsw. The parameter update laws for θ̂1 (t), θ̂2 (t)

are designed as

·

θ̂1 = −Γ1Y
T

1

([
ICMG
G

]d)−1

δ̃ (4�27)

·

θ̂2 = −Γ2Y
T

2

(
[IW ]d

)−1

Ω̃,

where Γ1, Γ2 ∈ R8×8 denote constant, positive-de�nite, diagonal adaptation gain matrices.

After substituting the control torques of (4�26) into (4�25), the closed-loop error dynamics

for δ̃ (t), Ω̃ (t) are

·
δ̃ = −DT r − k2δ̃ −

([
ICMG
G

]d)−1

Y1θ̃1

·
Ω̃ = −HT r − k3Ω̃−

(
[IW ]d

)−1

Y2θ̃2, (4�28)

where θ̃1 (t), θ̃2 (t) ∈ R8 are de�ned as

θ̃1 , θ1 − θ̂1, θ̃2 , θ2 − θ̂2. (4�29)
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4.3.1 Stability Analysis

Theorem 4.1. The weighted steering law (4�19) including the gimbal rate and the �ywheel

velocity, and the applied control torques (4�26) along with the adaptive update laws given

in (4�27) ensure global asymptotic attitude tracking in the sense that

‖ev(t)‖ → 0 as t→∞. (4�30)

Proof: To prove the attitude tracking result, let D ⊂ R31 be a domain containing

ρ
(
ev, e0, r, δ̃, Ω̃, θ̃1, θ̃2

)
= 031, where ρ

(
ev, e0, r, δ̃, Ω̃, θ̃1, θ̃2

)
∈ R31 is de�ned as

ρ ,

[
eTv e0 rT δ̃T Ω̃T θ̃1 θ̃2

]T
.

Let V (ρ) : D × [0,∞) → R denote a continuously di�erentiable, positive de�nite function

de�ned as

V = eTv ev + (1− e0)2 +
1

2
rTJr +

1

2
δ̃T δ̃ +

1

2
Ω̃T Ω̃ +

1

2
θ̃T1 Γ−1

1 θ̃1 +
1

2
θ̃T2 Γ−1

2 θ̃2, (4�31)

After di�erentiating (4�31) and using (4�11), (3�17), (4�18), and (4�28), the resulting

expression is given as

V̇ = eTv
(
e×v + e0I3

)
ω̃ + (1− e0) eTv ω̃ + rT

(
Dδ̃ +HΩ̃− 1

2
J̇r − k1r − ev

)
(4�32)

+δ̃T
(
−DT r − k2δ̃ −

([
ICMG
G

]d)−1

Y1θ̃1

)
+ Ω̃T

(
−HT r − k3Ω̃−

(
[IW ]d

)−1

Y2θ̃2

)

−θ̃T1 Γ−1
1

·

θ̂1 − θ̃T2 Γ−1
2

·

θ̂2.

After performing some algebraic manipulations, and using (4�13), (4�27) and exploiting

the fact that eTv e
×
v ω̃ = 0, the expression in (4�32) can be upper bounded as

V̇ ≤ −λ ‖z‖2 , (4�33)
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where λ = λmin {α, k1, k2, k3} ∈ R and z(ev, r, δ̃, Ω̃) ∈ R14 is de�ned as

z ,

[
eTv rT δ̃T Ω̃T

]T
. (4�34)

From (4�31) and (4�33), r(ev, e0, ω), ev (t) , δ̃ (t) , Ω̃ (t) , θ̃1 (t) , θ̃2 (t) ∈ L∞. Thus, from

(6�8), (4�13), and (4�34), ev(t), e0(t), ω̃(t), z(ev, r, δ̃, Ω̃) ∈ L∞, and (4�12) can be used to

conclude that ω(t) ∈ L∞. The open-loop quaternion tracking error in (3�17) can be used

to conclude that ėv(t), ė0(t) ∈ L∞. The fact that δ (t)-dependent functions result from

direction cosine matrices indicates that the functions contain δ (t) within bounded trigono-

metric functions. Since ev(t), e0(t), r (ev, e0, ω) , ω (t) ,Ω (t) ∈ L∞, (4�19) can be used to

show that δ̇d (t) ,Ωd ∈ L∞. Through (4�16) and δ̃ (t) , δ̇d (t) , Ω̃ (t) ,Ωd (t) ∈ L∞, then

δ̇ (t) ,Ω (t) ∈ L∞. The fact that r(ev, e0, ω), ev (t) , e0 (t) , ω (t) ,Ω (t) , δ̃ (t) , Ω̃ (t) , δ̇ (t) ∈ L∞

can be used with (4�18) to conclude that ṙ(ev, e0, r, δ̇, δ̃, Ω̃) ∈ L∞. The time derivative

of (4�12) shows that ω̇(t) ∈ L∞ with ω (t) , ev (t) , ėv (t) , e0 (t) , ωd (t) , ω̇d (t) ∈ L∞.

From (4�29), θ̂1 (t) , θ̂2 (t) ∈ L∞. In (4�26), τCMG
Wheelmotor

(t) ∈ L∞ based on the fact

that ω (t) , ω̇ (t) , δ̇ (t) ,Ωd (t) , Ω̃ (t) , r (ev, e0, ω) , ėv (t) , θ̂2 (t) ∈ L∞. From the fact that

ω (t) , ω̇ (t) , δ̇ (t) ,Ω (t) , τCMG
Wheelmotor

(t) ∈ L∞, (4�7) indicates that Ω̇ (t) ∈ L∞. In (4�

26), τCMG
Gimbalmotor

(t) ∈ L∞ based on the fact that ω (t) , ω̇ (t) , δ̇ (t) , δ̇d (t) , δ̃ (t) ,Ω (t) ,

Ω̇ (t) , r (ev, e0, ω) , ṙ
(
ev, e0, r, δ̇, δ̃, Ω̃

)
, ev (t) , ėv (t) , θ̂1 (t) ∈ L∞. Under (4�7) and the fact

that ω (t) , ω̇ (t) , δ̇ (t) ,Ω (t) , τCMG
Gimbalmotor

(t) ∈ L∞, δ̈ (t) ∈ L∞. From (4�7) and (4�28),

it is said that
·
δ̃ (t) ,

·
Ω̃ (t) ∈ L∞. Standard signal chasing arguments can then be utilized

to prove that all remaining signals are bounded during closed-loop operation. The fact

that ev (t) , r (ev, e0, ω) , ėv(t), ṙ
(
ev, e0, r, δ̇, δ̃, Ω̃

)
, δ̃ (t) , Ω̃ (t) ,

·
δ̃ (t) ,

·
Ω̃ (t) ∈ L∞ is suf-

�cient to show that ev(t), r (ev, e0, ω) , δ̃ (t), and Ω̃ (t) are uniformly continuous. Since

ev(t), r (t) , δ̃ (t), and Ω̃ (t) are uniformly continuous, ev(t), r(ev, e0, ω), δ̃ (t) , Ω̃ (t) ∈ L∞∩L2

from (4�33), Barbalat's Lemma can be used to prove ev (t) , r (ev, e0, ω) , δ̃ (t) , Ω̃ (t)→ 0 as

t→∞. �
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4.4 Simulation Study

4.4.1 Simulation Setup

Numeric simulations are presented to examine the performance of the developed

controller. Parameters used for the satellite are based on a high �delity model and

are given in Table 4-1. The desired angular velocity trajectories ωd (t) are ωd (t) =[
0.05 sin (2πt/3000) 0 0

]
(rad/ sec) and the desired decreasing �ywheel speed trajec-

tory for each wheel is designed

Ωf = (Ωin − Ωfi) exp (−ct) + Ωfi, (4�35)

where c is a coe�cient that can determine a degree of deceleration, Ωin is an initial desired

�ywheel speed and is set as 50 rad/s (≈ 500 rpm), and Ωfi is a �nal desired �ywheel

speed and is set as 10 rad/s (≈ 100 rpm). The initial conditions are given in Table 4-2.

Physical Parameter Value

J (0) (kg ·m2) diag
{

6.10× 10−2 6.10× 10−2 7.64× 10−2
}

mcmg (kg) 0.165
IG (kg ·m2) 2.80× 10−3I4

IW (kg ·m2) 6.95× 10−4I4

skewangle (◦) 54.74

Table 4-1. Physical parameters for the VSCMG simulation.

Initial Parameter Value

q (0)
[

0.1 0.3 0.8 0.4
]

ω (0) (rad/s) 0

θ̂1 (0), θ̂2 (0) 0.02, 0
δ (0) (rad)

[
−1.3352 0 −1.3352 0

]

Ω (0) (rad/s) 50

Table 4-2. Initial parameters for the VSCMG simulation.
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Figure 4-1. Quaternion tracking error e(t) during closed-loop operation.

4.4.2 Simulation Results

Figures 4-1 - 4-11 show the simulation results of the closed-loop system to achieve

the control objective denoted in (3�6) during a 200s simulation period. Figure 4-1 shows

the quaternion tracking error results during the entire 200s. Figure 4-2 shows the actual

gimbal rates δ̇ (t) and the actual wheel velocities Ω (t). Figure 4-4 depicts f , S, W ,

which indicate the singularity measure, the null motion weight, and the mode weight,

respectively. Based on the singularity measure, f , S and W generate speci�c values to

properly perform their dual tasks for the VSCMG. For a normal environment, the mode

weight W allows the VSCMG to be a conventional CMG so that it can take advantage

of a torque ampli�cation as Wδ has a bigger value than WΩ as seen by Figure 4-4. Only

when encountering a singularity above an acceptable level, WΩ becomes bigger than

Wδ. Additional solutions provided by the VSCMG as an underdetermined system brings

about additional null solutions which enable wheel deceleration. Hence, to use both null

motion bene�ts such as gimbal recon�guration and wheel deceleration, the null motion

weight S is introduced. Corresponding to the variation of f , sg generates proper gimbal

recon�guration and sw allows steady wheel deceleration depicted in Figure 4-5. For the
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Figure 4-2. Actual control input gimbal rates δ̇ (t) and �ywheel speeds Ω (t).
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Figure 4-3. Close-up of actual control input gimbal rates δ̇ (t) and wheel speeds Ω (t) when
encountering extreme singularity.
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null motions, the role of null motion weight S shown in Figure 4-4 becomes remarkable

because the S can inhibit the wheel deceleration when the CMGs Jacobian approaches

singularity so that the �ywheel can work in RW mode. Although S cannot distinguish

between di�erent singularities, the weight matrix can adjust the intervention of the

�ywheel when approaching a singularity. Hence, the composite weighted steering law in

(4�19) can cope with an elliptic singularity while maintaining precision attitude control

since the steering law generates the required torque in RW mode to pass through or

escape an internal singularity di�erently from the singularity escape methods for CMGs

that require added torque [6, 27, 64, 77, 95, 97]. This observation indicates a bene�t that

results from the extra controllable degree of freedom of the VSCMG. Speci�cally, sw

depicted in Figure 4-4 allows wheel deceleration when in normal operation and restricts

the wheel deceleration when approaching a singularity. Thus, in most regions gimbal

recon�guration is responsible for singularity avoidance by exploiting gimbal rate null

solution. The null motion weight S serves as a switch that acts as an alternative to cope

with both elliptic and hyperbolic singularities while achieving wheel deceleration. The

extreme singularity encounter during 80− 85s shown in Figure 4-4 causes the wheel torque

generation to escape the singularity as seen in Figure 4-3. Such singularity escape is

considered as an advantage resulting from an extra DOF of the VSCMGs but not possible

in the conventional CMG. The time variation of the adaptive parameter estimates is

shown in Figures 4-6 and 4-7 which shows the elements of the adaptive parameter vectors

θ̂1 (t) and θ̂2 (t). In Figures 4-8 and 4-10, the friction torque consisting of the dynamic

friction and the static friction denoted in (4�8) have a steady impact on the entire system.

The absolute value of the gimbal torque in Figure 4-9 indicates consistent performance

despite the uncertain friction e�ects. The wheel torque in Figure 4-11 induced by the

wheel deceleration shows the input power reduction e�ect in that the wheels have more

torques added by both the dynamic and static friction. Such e�ect can yield total power

reduction by attitude control system (ACS).
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Figure 4-4. Singularity measure function f (δ) , null motion switch S (δ), and weight
function W (δ).
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Figure 4-5. Null motion: gimbal recon�guration and wheel deceleration error µ (t).
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Figure 4-6. Adaptive parameter estimates θ̂1 (t) during closed-loop operation.

The notation θ̂1 (t) (x) denotes the x-element of θ̂1 (t).
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Figure 4-7. Adaptive parameter estimates θ̂2 (t) during closed-loop operation.

The notation θ̂2 (t) (x) denotes the x-element of θ̂2 (t).
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Figure 4-8. Applied gimbal torque, gimbal friction torque, and total gimbal torque during
closed-loop controller operation.
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Figure 4-9. Close-up of applied gimbal torque, gimbal friction torque, and total gimbal
torque during the entire closed-loop operation.
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Figure 4-10. Applied wheel torque, wheel friction torque, and total wheel torque during
closed-loop controller operation.
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Figure 4-11. Close-up of applied wheel torque, wheel friction torque, and total wheel
torque during closed-loop operation providing input power reduction.
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4.5 Summary

In this chapter, a backstepping method is used to develop the controller from a

cascade dynamics connection for a VSCMG-actuated satellite. In the presence of uncertain

dynamic and static frictions in both the gimbals and the �ywheels, the controller is

capable of achieving global asymptotic attitude tracking while simultaneously performing

singularity avoidance and wheel deceleration. Simulations show that the applied torques

of the wheels containing friction contribute to power reduction in that the friction enables

the wheel to obtain more torques without an additional torque request. Such bene�t

is induced by the deceleration mode resulting from the null motion and can give the

actuator both torque and power reduction e�ect. Also, the applied control torque can

responsively realize more realistic torque considering friction loss in practical use and such

consideration can allow the system to maintain consistent performance in the presence of

dynamic uncertainty.
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CHAPTER 5
A NEW INITIAL START-UP METHOD USING INTERNAL MOMENTUM

MANAGEMENT OF VSCMGS

An adaptive controller is developed in this chapter that use internal momentum

management and singularity avoidance while simultaneously yielding attitude control.

The null solution of the closed-loop �ywheel control input achieves internal momentum

management so that the �ywheel starts from rest and reaches the desired wheel speed

without a separate feedback control loop. The closed-loop VSCMGs steering law yields

simultaneous asymptotic attitude tracking, exponential internal momentum tracking, and

singularity avoidance. The singularity avoidance method reduces/eliminates the amount

of time that the VSCMG has to operate in RW mode when the CMG Jacobian becomes

singular through the use of null motion. The controller is developed for a satellite with

an uncertain, state-dependent inertia along with an uncertain inertia in the VSCMG

actuators. Numerical simulations illustrate the performance of the developed adaptive

controller as a VSCMGs steering law.

5.1 Control Objectives

5.1.1 Attitude Control Objective

The attitude control objective is to develop a �ywheel acceleration and gimbal rate

control law to enable the attitude of FS to track the attitude of FSd
. The objective is

quanti�ed in 3.2.1 in Chapter 3.

5.1.2 Flywheel Angular Momentum Management Objective

The angular momentum h (Ω) ∈ R4 generated by the �ywheels of the four VSCMGs

can be expressed as

h = [IW ]d Ω. (5�1)

The �ywheel angular momentum management objective is to develop an internal momen-

tum tracking control law resulting from the null solution of the �ywheel control input so

that the actual angular momentum tracks a desired constant angular momentum hd ∈ R4,

while simultaneously tracking a desired time-varying attitude. To quantify the momentum
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management objective, an angular momentum tracking error µ (Ω) ∈ R4 is de�ned as

µ , hd − h, (5�2)

where the desired angular momentum is de�ned as hd , [IW ]d Ωd.

5.2 Controller Development

5.2.1 Adaptive Attitude Control Development

To facilitate the control design, an auxiliary signal r(ω, e0, ev) ∈ R3 is de�ned as [23]

r , ω − R̃ωd + αev, (5�3)

where α ∈ R3×3 is a constant, positive de�nite, diagonal control gain matrix. After

substituting (5�3) into (3�7), the angular velocity tracking error can be expressed as

ω̃ = r − αev. (5�4)

Taking the time derivative of (5�3) and multiplying both sides of the resulting expression

by J (δ) yields

Jṙ = Jω̇ + Jω×R̃ωd − JR̃ω̇d +
1

2
Jα
(
e×v + e0I3

)
ω̃, (5�5)

where the fact that
·
R̃ = −ω×R̃

was utilized. After substituting (2�14) into (5�5), the open-loop error dynamics for

r (ω, e0, ev) can be written as

Jṙ = −Qη̇ + Y1θ1 −
1

2
J̇r + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω, (5�6)
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under the standard assumption that the gimbal acceleration term CG
[
ICMG
G

]d
δ̈ (t) is

negligible [26,83,89]. In (5�6), Q (e0, ev, r, ω, δ,Ω) ∈ R3×8 is de�ned as

Q ,

[
CW [IW ]d CW

[
ICMG
G

]d
[ωT ]d +CT

(
[IW ]d [Ω]d

−
[
ICMG
G

]d
[ωW ]d

)
+
∂J

∂δ

(
1

2
r + R̃ωd − αev

)]
,

η̇ =

[
Ω̇T δ̇T

]T
∈ R8×1 is a composite control input consisting of the �ywheel accel-

erations and the gimbal rates, and Y1 (e0, ev, r, ω, δ) θ1 represents linearly parametrizable

uncertainty in terms of a measurable regression matrix Y1 (e0, ev, r, ω, δ) ∈ R3×p1 and a

vector of p1 unknown constants θ1 ∈ Rp1 de�ned as

Y1θ1 , −ω × Jω + Jω×R̃ωd − JR̃ω̇d +
1

2
Jα
(
e×v + e0I3

)
ω̃. (5�7)

To compensate for the linearly parametrizable uncertainty present in Q (e0, ev, r, ω, δ,Ω),

another regression matrix denoted by Y2

(
e0, ev, r, ω, δ,Ω, δ̇, Ω̇

)
∈ R3×p2 and a vector of p2

unknown constants θ2 ∈ Rp2 are de�ned as

Y2θ2 , −Qη̇. (5�8)

To address the fact that the control input η̇ (t) is premultiplied by the nonsquare, state-

dependent uncertain matrix Q (e0, ev, r, ω, δ,Ω), an estimate of the uncertainty in (5�8),

Q̂ (t) ∈ R3×8 is de�ned as

Y2θ̂2 , −Q̂η̇, (5�9)

where θ̂2 (t) ∈ Rp2 is a subsequently designed estimate for the parametric uncertainty in

Q (e0, ev, r, ω, δ,Ω). Based on (5�8) and (5�9), the expression in (5�6) can be written as

Jṙ = Y2θ̃2 − Q̂η̇ + Y1θ1 −
1

2
J̇r + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω, (5�10)

where the notation θ̃2 (t) ∈ Rp2 is de�ned as

θ̃2 , θ2 − θ̂2. (5�11)
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Based on the open-loop error dynamics of (5�10), the composite weighted VSCMG

steering law is designed as

η̇ = Q̂+
w

(
Y1θ̂1 + kr + ev + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω

)
+
(
I8 − Q̂+

wQ̂
)
Sσ, (5�12)

where k ∈ R denotes a positive control gain, Q̂+
w (δ, t) = W (δ) Q̂T (t)

(
Q̂ (t)W (δ) Q̂T (t)

)−1

,

and W (δ) ∈ R8×8 denotes a weight matrix that determines if the VSCMGs system uses a

CMG mode or a RW mode. Speci�cally, W (δ) is designed as [87,89,101]

W ,



WΩI4×4 04×4

04×4 WδI4×4


 , (5�13)

where WΩ (δ) ∈ R is de�ned as

WΩ , WΩ0 exp (λ1f) ,

λ1,WΩ0,Wδ ∈ R are positive constants, and the objective function f (δ) measuring the

singularity is de�ned as

f , − det
(
CTC

T
T

)
. (5�14)

The control input in (5�12) has an extra degree of freedom resulting from the variable

speed �ywheel, and thus enables the VSCMG system to escape a gimbal lock singularity

[89]. Since the control input in (5�12) is produced by VSCMG units, (5�12) is also a

solution to an underdetermined system containing �ywheel accelerations and gimbal rates

as unknowns [55, 89, 100]. The term
(
I8 − Q̂+

w (δ, t) Q̂ (t)
)
S (δ)σ (t) in (5�12) generates

the VSCMG null motion for internal momentum management and singularity avoidance.

Since the matrices Q̂+
w (δ, t) and Q̂ (t) are nonsquare, the pseudo-inverse Q̂+

w (δ, t) ∈ R8×3

is de�ned so that Q̂ (t) Q̂+
w (δ, t) = I3, and the matrix I8 − Q̂+

w (δ, t) Q̂ (t), which projects
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vectors onto the null space of Q̂ (t), satis�es the properties

(
I8 − Q̂+

wQ̂
)(

I8 − Q̂+
wQ̂
)

= I8 − Q̂+
wQ̂ (5�15)

Q̂
(
I8 − Q̂+

wQ̂
)

= 0. (5�16)

To generate null motion for momentum tracking and gimbal recon�guration, the null

motion σ (t) ∈ R8 is de�ned as

σ ,

[
kwg

T kγ
∂γ
∂δ

T

]T
, (5�17)

where kw, kγ ∈ R denote positive constants, g (t) ∈ R4 is a subsequently designed auxiliary

control signal to track the desired �ywheel angular momentum, and the second row allows

the null motion to perform the gimbal recon�guration corresponding to a variation of the

singularity measure index γ, which is de�ned as [97]

γ = γ0 exp (λ2f) , (5�18)

where the objective function f is de�ned in (5�14), and λ2, γ0 ∈ R denote positive

constants. The matrix S (δ) ∈ R8×8 in (5�12) is used as a null motion weight for the

VSCMG null motion, which can weigh a proper null motion based on the singularity

measure. Speci�cally, S (δ) is designed as

S , diag ([sw, sg]) =



sech

(
1

kd det(CTC
T
T )+ε

)
I4×4 04×4

04×4 sech
(
kg det

(
CTC

T
T

))
I4×4


 , (5�19)

where kd, kg, ε ∈ R. In (5�19), sw (δ) and sg (δ) selectively arbitrate between internal

momentum tracking and gimbal recon�guration, corresponding to how approximate or

far the CMG con�guration is to a singularity. Gimbal recon�guration results from null

motion when the CMG Jacobian becomes singular (i.e., a hyperbolic singularity), allowing

simultaneous attitude and internal momentum tracking with the bene�ts of torque

ampli�cation in CMG mode. When the CMG experiences a degenerate singularity (i.e.,
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even though the null motions exist, the singularity cannot be escaped by the null motions)

or when a gimbal lock singularity (i.e., an elliptic singularity) occurs, then sw (δ) ≈ 0

which inhibits momentum tracking so that the VSCMG will operate in RW mode.

The control input η̇ (t) in (5�12) can be partitioned as

η̇ =




Ω̇

δ̇


 =



R1 +N1s̄wkwg

R2 +N2s̄gkγ
∂γ
∂δ


 , (5�20)

where Ri =
[
Q̂+
w

(
Y1θ̂1 + kr + ev + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω

)]
i
indicates

components of each R4 control input, N1 (t), N2 (t) ∈ R4×8 are de�ned as

N ,



N1

N2


 =




(
I8 − Q̂+

wQ̂
)

(
I8 − Q̂+

wQ̂
)


 (5�21)

and s̄w (δ), s̄g (δ) ∈ R8×4 are de�ned as

s̄w ,

[
sw 04×4

]T
s̄g ,

[
04×4 sg

]T
.

After substituting (5�12) into (5�10) and using (5�16), closed-loop dynamics for

r (ω, e0, ev) are given by

Jṙ = −1

2
J̇r + Y1θ̃1 + Y2θ̃2 − kr − ev, (5�22)

where the notation θ̃1(t) ∈ Rp1 is de�ned as

θ̃1 = θ1 − θ̂1. (5�23)

Based on (5�22) and the subsequent stability analysis, the parameter estimates θ̂1 (t) and

θ̂2 (t) are designed as

·

θ̂1 = proj
(
Γ1Y

T
1 r
) ·

θ̂2 = proj
(
Γ2Y

T
2 r
)
, (5�24)
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where Γ1 ∈ Rp1×p1 and Γ2 ∈ Rp2×p2 are constant, positive-de�nite, diagonal adaptation

gain matrices, and proj(·) denotes a projection algorithm utilized to guarantee that the ith

element of θ̂1(t) and θ̂2(t) can be bounded as

θ1i ≤ θ̂1i ≤ θ̄1i θ2i ≤ θ̂2i ≤ θ̄2i, (5�25)

where θ1i, θ̄1i ∈ R and θ2i, θ̄2i ∈ R are known, constant lower and upper bounds for each

element of θ̂1(t) and θ̂2(t), respectively.

5.2.2 Momentum Tracking Control Development

The open-loop dynamics for the momentum tracking error can be obtained by taking

the time derivative of (5�2) as

µ̇ = −IW Ω̇. (5�26)

Multiplying (5�26) by the known positive-de�nite symmetric matrix I−1
W , and substituting

(5�20) into the resulting expansion for Ω̇ (t) yields

I−1
W µ̇ = −R1 −N1s̄wkwg. (5�27)

Based on the structure of (5�27), the null-space control g (t) is designed to satisfy

kwN1s̄wg = −R1 + kmµ, (5�28)

where km ∈ R is a positive constant control gain. The minimum norm solution of (5�28) is

g = [kwN1s̄w]−1 (−R1 + kmµ) . (5�29)

The result in (5�29) indicates that simultaneous attitude and momentum tracking is

possible when kwN1 (δ, t) s̄w (δ) is invertible. After substituting (5�29) into (5�27), the

closed-loop error system is

I−1
W µ̇ = −kmµ. (5�30)
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Remark 5.1. The bracketed term in (5�29) is invertible, and simultaneous attitude and

momentum tracking is possible when N1 (δ, t) s̄w (δ) =
(
I8 − Q̂+

w (δ, t) Q̂ (t)
)

4×8
s̄w (δ) 6= 0.

Since
(
I8 − Q̂+

w (δ, t) Q̂ (t)
)
is nonzero for all Q̂ (t), N1 (δ, t) 6= 0 and simultaneous attitude

and momentum tracking can be achieved provided

s̄w 6= 0 and s̄w /∈ N (N1) ,

where N (N1 (δ, t)) denotes the null space of the matrix N1 (δ, t). Hence, s̄w (δ) /∈ N (N1)

except for s̄w (δ) = 0, which means the CMG's Jacobian itself is singular, but s̄w (δ) = 0

does not occur for the CMGs Jacobian unless it starts out that way initially. Accordingly,

as long as the system does not start in a singular con�guration, the minimum norm

solution of (5�28) exists and simultaneous attitude and momentum tracking can be

achieved.

5.2.3 Stability Analysis

Theorem 5-1: The weighted control input (5�12) along with the adaptive update

laws given in (5�24) ensures global asymptotic attitude tracking such that

‖ev(t)‖ → 0 as t→∞, (5�31)

along with exponential momentum tracking in the sense that

‖µ(t)‖ ≤ µ (0) exp (−IWkmt) . (5�32)

Proof: The exponential internal momentum tracking result is evident from (5�30).

To prove the attitude tracking result, let D ⊂ R8 be a domain containing ρ (ev, e0, r, P ) =

0, where ρ (ev, e0, r, P ) ∈ R8 is de�ned as

ρ (t) ,

[
eTv (t) e0 (t) rT (ev, e0, ω) P

(
θ̃1 (t) , θ̃2 (t)

) ]T
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and the auxiliary function P
(
θ̃1 (t) , θ̃2 (t)

)
∈ R is de�ned as

P ,
1

2
θ̃T1 Γ−1

1 θ̃1 +
1

2
θ̃T2 Γ−1

2 θ̃2, (5�33)

and let V (ρ, δ) : D × [0,∞)→ R be a continuously di�erentiable, positive de�nite function

de�ned as

V , eTv ev + (1− e0)2 +
1

2
rTJr + P. (5�34)

After using (3�17), (5�11), (5�22), (5�23), and (5�33), the time derivative of V (ρ, δ) can

be expressed as

V̇ = eTv
(
e×v + e0I

)
ω̃ + (1− e0) eTv ω̃ + rT

(
Y1θ̃1 + Y2θ̃2 − kr − ev

)

−θ̃T1 Γ−1
1

·

θ̂1 − θ̃T2 Γ−1
2

·

θ̂2. (5�35)

By using (5�4), (5�24), and exploiting the fact that eTv (t) e×v (t) ω̃ (t) = 0, the expression in

(5�35) can be upper bounded as

V̇ ≤ −λ ‖z‖2 , (5�36)

where λ = λmin {α, k} ∈ R, and z(ev, r) ∈ R6 is de�ned as

z ,

[
eTv (t) rT (ev, e0, ω)

]T
. (5�37)

From (5�34) and (5�36), r(ev, e0, ω), ev (t) , θ̃1 (t) , θ̃2 (t) ∈ L∞. Thus, from (6�8), (5�4),

and (5�37), ev(t), e0(t), ω̃(t), z(ev, r) ∈ L∞, and (5�3) can be used to conclude that

ω(t) ∈ L∞. The open-loop quaternion tracking error in (3�17) can be used to conclude

that ėv(t), ė0(t) ∈ L∞. From (5�32), µ(t) ∈ L∞ and then (5�1) and (5�2) can be used

to indicate that the fact that Ω (t) ∈ L∞. In (2�8), conservation of angular momentum,

ω (t), and Ω (t) ∈ L∞ shows that δ̇(t) ∈ L∞. The fact that δ (t)-dependent function result

from direction cosine matrices indicates that the functions contain δ (t) within bounded

trigonometric functions. Since ev(t), e0(t), r (ev, e0, ω) , ω (t) ,Ω (t) ∈ L∞, (5�7) and (5�25)

can be used to show that g (t) ∈ L∞. The fact that r(ev, e0, ω), ev (t) , δ̇ (t) , θ̃1 (t) , θ̃2 (t) ∈
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L∞ can be used with (5�22) to conclude that ṙ(ev, e0, r, δ̇, θ̃1, θ̃2) ∈ L∞. From (5�11) and

(5�23), θ̂1 (t) , θ̂2 (t) ∈ L∞. Hence, (5�12), (5�17), (5�25), (5�29), and z(ev, r),Ω (t) ∈

L∞ can be used to prove that the control input η̇ (t) ∈ L∞. Standard signal chasing

arguments can then be utilized to prove that all remaining signals are bounded during

closed-loop operation. Since ev (t) , r (ev, e0, ω) , ėv(t), ṙ
(
ev, e0, r, δ̇, θ̃1, θ̃2

)
∈ L∞, ev(t)

and r (ev, e0, ω) are uniformly continuous. Since ev (t) and r (ev, e0, ω) are uniformly

continuous, and ev(t), r(ev, e0, ω) ∈ L∞ ∩ L2, Barbalat's Lemma can be used to prove

r (ev, e0, ω) , ev (t)→ 0 as t→∞. �

5.3 Numerical Examples

5.3.1 Simulation Setup

Numeric simulations illustrate the performance of the developed controller. The

satellite parameters are based on a model of a prototype pico-satellite and are given in

Table 5-1. A gimbal rate limit was included in the model as

sat
(
δ̇i

)
=





δ̇i, for
∣∣∣δ̇i
∣∣∣ ≤ 25 (rad/ sec) ∀i = 1, 2, 3, 4

25sgn
(
δ̇i

)
, for

∣∣∣δ̇i
∣∣∣ > 25 (rad/ sec)

, (5�38)

where sgn (·) denotes the standard signum function. The desired angular velocity trajecto-

ries ωd (t) are ωd (t) =

[
0.004 sin (2πt/2000) 0 0

]
(rad/ sec), and the desired �ywheel

speed for each wheel is Ωd = 200 rad/s (≈ 2, 000 rpm). The initial conditions are given in

Table 5-2.

Physical Parameter Value

J (0) (kg ·m2) diag
{

6.10× 10−2 6.10× 10−2 7.64× 10−2
}

mcmg (kg) 0.165
IG (kg ·m2) 2.80× 10−3I4

IW (kg ·m2) 6.95× 10−4I4

skewangle (◦) 54.74

Table 5-1. Physical parameters for the VSCMG simulation.
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Initial Parameter Value

q (0)
[

0.1 0.3 0.8 0.4
]

ω (0) (rad/s) 0

θ̂1 (0), θ̂2 (0) 0
δ (0) (rad)

[
0.5498 0.2333 0.5498 0.2333

]

Ω (0) (rad/s) 0

Table 5-2. Initial parameters for the VSCMG simulation.
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Figure 5-1. Quaternion tracking error e(t) for Case 1.

5.3.2 Simulation Results

The simulation results are developed for two cases. Case 1 is included to illustrate

how the controller responds when the momentum tracking has a long transient. For this

case the VSCMG has to operate in RW mode during the transient, resulting in gimbal

rate saturation. The results are given in Figures 5-1 - 5-8. Case 2 is included to illustrate

a more favorable condition (which can be achieved through control gains) where the

momentum tracking error has a short transient response. Results in Figures 5-9

- 5-12 illustrate that for this case, gimbal rate saturation is avoided and the VSCMG

operates in RW mode less than for Case 1. Figure 5-1 shows the quaternion tracking

error results to achieve the control objective denoted in (3�6) during a 500s simulation
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Figure 5-2. Control input gimbal rates δ̇ (t) and wheel accelerations Ω̇ (t) for Case 1.
The left column illustrates the response for the entire duration, and the right column

illustrates the transient response, including gimbal rate saturation.
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Figure 5-3. Flywheel speed Ω (t) induced from internal momentum management for Case
1.
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Figure 5-4. Singularity measure function f (δ) and null motion weight S (δ) for Case 1.
The left column illustrates the response for the entire duration, and the right column

illustrates the transient response, including gimbal rate saturation.

period. Figure 5-2 shows the control input gimbal rates δ̇ (t) and wheel accelerations Ω̇ (t).

While the control inputs achieve attitude stabilization, the wheel acceleration control

input Ω̇ (t) contributes to the internal momentum management by regulating the wheel

speed after starting from rest. Figure 5-3 indicates the initial start-up of �ywheels from

rest. To compensate for the lack of torque generated by the �ywheel due to the slow

momentum tracking, the gimbal rates in Figure 5-2are shown to generate more torques

(including torque saturation) during the transient response. The increased transient

response of the gimbal rate yields increased singularities in the CMG Jacobian, but

these singularities are e�ectively avoided as shown in Figures 5-4 and 5-5. As a result of

approaching singularities, the �ywheels are required to operate in RW mode as shown in

Figure 5-3. The null motion weight S in (5�19), depicted in Figure 5-4, has an increased

transient in this case because S inhibits the momentum tracking when the CMG Jacobian

approaches a singularity so that the �ywheel can work in RW mode. Although S cannot

distinguish between di�erent singularities, the weight matrix can adjust the intervention
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Figure 5-5. Null motion: gimbal recon�guration and internal momentum tracking error
µ (t) for Case 1.

The left column illustrates the response for the entire duration, and the right column
illustrates the transient response, including gimbal rate saturation.
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Figure 5-6. Adaptive parameter estimates θ̂1 (t) and θ̂2 (t) for Case 1.
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Figure 5-7. Transient response of adaptive parameter estimate θ̂1 (t) for Case 1.

The notation θ̂1 (t) (x) denotes the x-element of θ̂1 (t).

of the �ywheel when approaching a singularity. Hence, the composite weighted steering

law in (5�12)can cope with an elliptic singularity while maintaining precision attitude

control since the steering law generates the required torque in RW mode to pass through

or escape an internal singularity di�erently from the singularity escape methods for CMGs

that require added torque [6, 27, 64, 77, 95, 97]. This observation indicates a bene�t that

results from the extra controllable degree of freedom of the VSCMG. Speci�cally, sw in

(5�19), depicted in Figure 5-4, allows momentum tracking when in normal operation and

restricts the momentum tracking when approaching a singularity. Thus, in most regions

gimbal recon�guration is responsible for singularity avoidance by exploiting gimbal rate

null solution. The null motion weight S serves as a switch that acts as an alternative to

cope with both elliptic and hyperbolic singularities while achieving internal momentum

management. This bene�t provides an avenue to e�ectively acquire the initial start-up

without a separate feedback loop. The time variation of the adaptive parameter estimates

is shown in Figures 5-6 - 5-8. Figure 5-6 shows the elements of the adaptive parameter

vectors θ̂1 (t) and θ̂2 (t). Figures 5-7 and 5-8, divided into multiple windows for clarity,
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Figure 5-8. Transient response of adaptive parameter estimate θ̂2 (t) for Case 1.

The notation θ̂2 (t) (x) denotes the x-element of θ̂2 (t).

highlight the adaptive parameter estimates of θ̂1 (t), θ̂2 (t), respectively. The adaptation

mechanism adjusts the uncertain parameter estimate so that attitude tracking can be

asymptotically achieved. Moreover, the initial values of the uncertain parameters are

chosen to be zero, indicating no a priori parameter knowledge. Even though some of the

parameter estimates indicate the variation by small magnitudes, the equivalent control

torques arising from the feedforward terms θ̂1 (t), θ̂2 (t), resulting from (2�14), (5�7),

(5�8), (5�12), and (5�24), have similar magnitudes to that of the feedback control terms.

Case 2 is developed for the closed-loop operations in fast momentum tracking and

the simulated results are provided in Figures 5-9 - 5-12. Figure 5-9 shows the gimbal rate

δ̇ (t) and the wheel acceleration Ω̇ (t) control inputs. Figure 5-10 shows that the �ywheel

speed tracks the desired wheel speed from rest. The momentum tracking gain km denoted

in (5�28) controls the momentum tracking speed. Since the �ywheels rapidly arrive at

the desired constant speed, fast momentum tracking allows the VSCMG steering law to

operate longer in the CMG mode which provides torque ampli�cation and power savings.
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Figure 5-9. Control input gimbal rates δ̇ (t) and wheel accelerations Ω̇ (t) for Case 2.
The left column illustrates the response for the entire duration, and the right column

illustrates the transient response, including gimbal rate saturation.
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Figure 5-10. Flywheel speed Ω (t) induced from internal momentum management for Case
2.
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Figure 5-11. Singularity measure function f (δ) and null motion weight S (δ) for Case 2.

Figure 5-11 illustrates the singularity measure function f and the null motion weight S.

Corresponding to the moderate variation of f , sw allows steady momentum tracking, and

sg generates the proper gimbal recon�guration as depicted in Figure 5-12.

5.4 Summary

In the presence of satellite inertia uncertainty and actuator uncertainty, the devel-

oped attitude controller in this chapter is capable of achieving global asymptotic attitude

tracking while simultaneously performing singularity avoidance and internal momentum

management. The bene�ts such as singularity avoidance and internal momentum man-

agement emerge from the null solution of the control inputs. In particular, the internal

momentum management allows the �ywheel to start from rest and to reach the desired

speed. To maximize operation in CMG mode, the steering law exploits the singularity

avoidance strategy resulting from the gradient method, and the null motion weight adjusts

the internal momentum tracking of the �ywheels when approaching an internal singularity.

The VSCMG-actuated satellite can accomplish asymptotic attitude tracking and expo-

nential internal momentum tracking while simultaneously achieving singularity avoidance.
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Figure 5-12. Null motion: gimbal recon�guration and internal momentum tracking error
µ (t) for Case 2.

The controller also compensates for the e�ects of uncertain, time-varying satellite iner-

tia properties. The di�culties arising from the uncertain satellite inertia are mitigated

through an innovative development of the error system along with a Lyapunov-based

adaptive law. The attitude tracking and momentum tracking results are proven via a

Lyapunov stability analysis and demonstrated through numerical simulations.
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CHAPTER 6
A RNN-BASED ATTITUDE CONTROL METHOD FOR A VSCMG-ACTUATED

SATELLITE

An adaptive RNN-based satellite attitude controller is developed to achieve precision

attitude control of a VSCMG-actuated satellite in the presence of uncertain, time-varying

satellite inertia properties and actuator uncertainties in addition to unmodeled external

disturbances. The challenge encountered in the control design is that the control input

is premultiplied by a non-square, time-varying, nonlinear, uncertain matrix. The RNN

estimator resulting from the RNN structure serves as a composite VSCMG steering law

for the satellite, which compensates for satellite and actuator uncertainties present in the

nonlinear dynamics. Using null motion, a strategy is developed to simultaneously perform

gimbal recon�guration and wheel speed regularization. Numerical simulations demonstrate

the performance of the adaptive RNN-based VSCMG steering law and the RNN training.

6.1 Dynamic Model

The equation of motion for a rigid body VSCMG-actuated satellite can be written as

Lr = J̇ω + Jω̇ + ω×Jω + τd, (6�1)

where ω (t) ∈ R3 is an angular velocity of the satellite, and J (δ) ∈ R3×3 is a total satellite

inertia matrix containing a bus and a set of CMG units. The inertia matrix J (δ) is

positive de�nite and symmetric and satis�es

1

2
λmin {J} ‖ξ‖2 ≤ ξTJξ ≤ 1

2
λmax {J} ‖ξ‖2 ∀ξ ∈ Rn, (6�2)

where λmin {J} , λmax {J} ∈ R are the minimum and maximum eigenvalues of J(δ),

respectively and δ (t) ∈ R4 is a gimbal angular position vector. In (4�10), τd (t) ∈ R3

represents unknown, smooth disturbance torques acting on the system, which are assumed

to be bounded as

‖τd‖ ≤ ρ1, (6�3)
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where ρ1 ∈ R is a known positive bounding constant, and the control torque Lr (t) ∈ R3

produced by a set of four VSCMGs can be expressed as

Lr = −Q0η̇ + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω

−CG
[
ICMG
G

]d
δ̈. (6�4)

In (6�4), Q0 (ω, δ,Ω) ∈ R3×8 is de�ned as

Q0 ,
[
CW [IW ]d CW

[
ICMG
G

]d
[ωT ]d (6�5)

+CT

(
[IW ]d [Ω]d −

[
ICMG
G

]d
[ωW ]d

)]
,

Ω (t) ∈ R4 denotes the wheel angular velocity, and η̇ (t) ∈ R8 denotes the time derivative of

η (t) =

[
ΩT (t) δT (t)

]T
. Since η (t) depends on reaction caused by the satellite tracking

corresponding to conservation of angular momentum, provided that the satellite trajectory

is bounded, η (t) can be bounded as

‖η‖ ≤ ρ2, (6�6)

where ρ2 ∈ R is a known positive bounding constant. In (6�4) and (6�5), CG ,[
âG1 âG2 âG3 âG4

]
, CW (δ) ,

[
âW1 âW2 âW3 âW4

]
, and CT (δ) ,

[
âT1 âT2

âT3 âT4

]
∈ R3×4 where âG, âW , and âT are gimbal, wheel, and transverse axes.

Also in (6�4) and (6�5), the inertia matrices
[
ICMG
G

]d
, [IW ]d ∈ R4×4 of CMG unit

are denoted as
[
ICMG
G

]d
, diag

([
ICMG1
G ICMG2

G ICMG3
G ICMG4

G

])
and [IW ]d ,

diag

([
IW1 IW2 IW3 IW4

])
, and the angular velocity projected to the gimbal-�xed

axes is denoted as [ω◦]
d , diag

([
ω◦1 ω◦2 ω◦3 ω◦4

])
(◦ : G, W , T ) ∈ R4×4, and

[Ω (t)]d and
[
δ̇ (t)

]d
denote diagonal matrices composed of the vector elements of Ω (t),

δ̇ (t) ∈ R4, respectively. The expression in (6�4) represents the actuator dynamics. The

subsequent development focuses on designing the composite VSCMG control inputs Ω̇ (t)

and δ̇ (t) to impart a desired torque on the satellite body.
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6.2 Control Objectives

6.2.1 Attitude Control Objective

The attitude control objective is to develop a �ywheel acceleration and gimbal rate

control law to enable the attitude of F to track the attitude of Fd. The tracking error

formulation is quanti�ed in 3.2.1 in Chapter 3. From the de�nitions of the quaternion

tracking error variables, the following constraint can be developed [16]:

eTv ev + e2
0 = 1, (6�7)

where

0 ≤ ‖ev(t)‖ ≤ 1 0 ≤ |e0(t)| ≤ 1, (6�8)

where ‖·‖ represents the standard Euclidean norm.

6.2.2 Flywheel Angular Momentum Management Objective

The �ywheel angular momentum management objective in this chapter is to

develop a �ywheel acceleration control law so that the actual angular momentum

h (Ω) = IWΩ (t) ∈ R4 tracks a desired constant angular momentum hd = IWΩd while

simultaneously tracking a desired time-varying attitude. The angular momentum tracking

error µ (Ω) ∈ R4 is quanti�ed in the sense that (5�2) of Chapter 5 is determined.

6.3 Adaptive RNN Controller

6.3.1 Adaptive Attitude Control Development

6.3.1.1 Open-Loop Error System

To facilitate the control design, an auxiliary signal r(t) ∈ R3 is de�ned as [23]

r , ω − R̃ωd + αev, (6�9)

where α ∈ R3×3 is a constant, positive de�nite, diagonal control gain matrix. Motivation

for the design of r(t) is based on the subsequent Lyapunov-based stability analysis. After

multiplying the time derivative of (6�9) by J (δ) and using (6�1) and (6�4), the open-loop
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error dynamics for r (t) can be written as

Jṙ = −Qη̇ + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω− τd + Y1θ1 −
1

2
J̇r, (6�10)

where the term CG
[
ICMG
G

]d
δ̈ is assumed to be negligible [26, 83, 89], and Q (ev, r, ω, δ,Ω) ∈

R3×8 is de�ned as

Q ,
[
CW [IW ]d

CW
[
ICMG
G

]d
[ωT ]d + CT

(
[IW ]d [Ω]d

−
[
ICMG
G

]d
[ωW ]d

)
+
∂J

∂δ

(
1

2
r + R̃ωd − αev

)]
.

In (6�10), Y1 (ev, e0, ω, δ) ∈ R3×p1 is a measurable regression matrix, and θ1 ∈ Rp1 is a

vector of p1 unknown constants de�ned via the parameterization

Y1θ1 , −ω × Jω + Jω×R̃ωd − JR̃ω̇d +
1

2
Jα
(
e×v + e0I3

)
ω̃. (6�11)

To compensate for the linearly parametrizable uncertainty in Q (ev, r, ω, δ,Ω), the following

parameterization will be de�ned:

Y2θ2 , −Qη̇, (6�12)

where Y2

(
ev, r, ω, δ,Ω, δ̇, Ω̇

)
∈ R3×p2 is a measurable regression matrix, and θ2 ∈ Rp2

is a vector of p2 unknown constants. To address the fact that the control input η̇ (t)

is premultiplied by the nonsquare, time-varying uncertain matrix Q (ev, r, ω, δ,Ω), an

estimate Q̂ (t) ∈ R3×8 of the uncertainty in (6�12) is de�ned via

Y2θ̂2 , −Q̂η̇, (6�13)

where θ̂2 (t) ∈ Rp2 is a subsequently designed estimate for the parametric uncertainty in

Q (ev, r, ω, δ,Ω). Based on (6�12) and (6�13), the expression in (6�10) can be written as

Jṙ = Y2θ̃2 − Q̂η̇ + Y1θ1 + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω− τd −
1

2
J̇r, (6�14)
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where the notation θ̃2 (t) ∈ Rp2 is de�ned as

θ̃2 = θ2 − θ̂2. (6�15)

Based on the open-loop error dynamics of (6�14) and the composite VSCMG steering law

of (6�4), the required control torque Lr

(
ev, r, δ̇

)
∈ R3 of (6�4) is designed as

Lr = −Y1θ̂1 − (k1 + ka) r − ev +
∂J

∂δ
δ̇

(
1

2
r + R̃ωd − αev

)
. (6�16)

After substituting (6�16) into (6�4) and performing some algebraic manipulations, the

resulting expression for the composite VSCMG steering law can be written as

Y2θ̃2 − Q̂η̇ + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω = −Y1θ̂1 − (k1 + ka) r − ev, (6�17)

where k1, ka ∈ R are positive constant gains. By exploiting the universal approximation

property of NNs, the terms CG [IW ]d [ωT ]d Ω−CT [IW ]d [ωG]d Ω in (6�16) can be represented

as

CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω = f (χ) , (6�18)

where χ ,

[
eTv rT ηT

]T
∈ R14, and f (χ) is de�ned as

f (χ) , W Tσ
(
V Tχ

)
+ ε (χ) . (6�19)

In (6�19), σ (·) ∈ RN+1 is a basis function vector with smooth, bounded, monotonically

increasing elements [3, 18, 28, 37], W ∈ R(N+1)×3 and V ∈ R14×N are constant unknown

matrices of ideal RNN weights, N is the number of hidden layers, and ε (χ) ∈ R3 denotes

the functional reconstruction error.

Remark 6.1. For any positive constant real number εN ∈ R, f (χ) is within εN of the NN

range if there exist �nite hidden neurons N and constant weights so that for all inputs in

the compact set S, the approximation holds with

‖ε (χ)‖ ≤ εN . (6�20)
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The Stone-Weierstrass theorem indicates that any su�ciently smooth function can be

approximated by a suitably large network. Therefore, the fact that the approximation error

ε (χ) is bounded follows from the universal approximation property of NNs.

Substituting (6�19) into (6�14) yields

Jṙ = Y2θ̃2 − Q̂η̇ + Y1θ1 +W Tσ
(
V Tχ

)
+ ε (χ)− τd −

1

2
J̇r. (6�21)

Based on (6�21) and the subsequent stability analysis, the desired steering law can be

designed as

η̇ = Q̂+
w

{
W Tσ

(
V Tχ

)
+ ε+ Y1θ̂1 + (k1 + ka) r + ev

}
(6�22)

− (k2 + kb) η +
(
I8 − Q̂+

wQ̂
)
Sϕ,

where Q̂+
w (δ, t) = Wc (δ) Q̂T (t)

(
Q̂ (t)Wc (δ) Q̂T (t)

)−1

, and k2, kb ∈ R are positive

constant gains, and Wc (δ) ∈ R8×8 denotes a weight matrix determining whether the

VSCMG system uses a CMG mode or a RW mode designed as [87,89,101]

Wc ,



WΩI4×4 04×4

04×4 WδI4×4


 ,

where WΩ (δ) ∈ R is de�ned as

WΩ , WΩ0 exp (λ1h) ,

where λ1,WΩ0,Wδ ∈ R are positive constants, and the objective function h (δ) ∈ R

measuring the singularity can be denoted as

h , − det
(
CTC

T
T

)
. (6�23)

In (6�22), the second term
(
I8 − Q̂+

w (t) Q̂ (t)
)
S (δ)ϕ (t) generates the VSCMG null

motion for momentum management and singularity avoidance. Since the matrices Q̂+
w (t)

and Q̂ (t) are nonsquare, the pseudo-inverse Q̂+
w (t) ∈ R8×3 is de�ned so that Q̂ (t) Q̂+

w (t) =
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I3, and the matrix I8 − Q̂+
w (t) Q̂ (t), which projects vectors onto the null space of Q̂ (t),

and satis�es the properties

(
I8 − Q̂+

wQ̂
)(

I8 − Q̂+
wQ̂
)

= I8 − Q̂+
wQ̂ (6�24)

Q̂
(
I8 − Q̂+

wQ̂
)

= 0. (6�25)

To generate null motion for momentum tracking and gimbal recon�guration, the null

motion ϕ (t) ∈ R8×1 is de�ned as

ϕ ,



kdg

kγ
∂γ
∂δ


 , (6�26)

where kd ∈ R denotes a positive constant, and g (t) ∈ R4 is an auxiliary control signal

to track the desired f1ywheel angular momentum. In (6�26), kγ ∈ R denotes a positive

constant and the second row allows the null motion to perform the gimbal recon�guration

corresponding to a variation of singularity measure index γ, which is de�ned as [97]

γ , γ0 exp (λ2h) , (6�27)

where the objective function h (δ) is de�ned in (6�23) and γ0, λ2 ∈ R denote positive

constants. Also in (6�22), S (δ) ∈ R8×8 selects a proper null motion based on the

singularity measure. Speci�cally, S (δ) , diag ([sw, sg]) is designed as



sech

(
1

kw det(CTC
T
T )+εs

)
I4×4 04×4

04×4 sech
(
kg det

(
CTC

T
T

))
I4×4


 , (6�28)

where kw, kg, εs ∈ R are positive constants. In (6�28), sw, sg weight either the momentum

tracking or the gimbal recon�guration corresponding to how approximate or far the CMG

con�guration is to a singularity.

The steering law in (6�22) cannot be implemented because it depends on the un-

known ideal weight matrices W and V and the reconstruction error ε. The implemented

steering law
·
η̂ (t) ∈ R8 is developed based on the recursive, internode feedback-based RNN
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structure as

·
η̂ = Q̂+

w

{
Ŵ Tσ

(
V̂ T χ̂

)
+ Y1θ̂1 + (k1 + ka) r + ev

}
− (k2 + kb) η̂ +

(
I8 − Q̂+

wQ̂
)
Sϕ,(6�29)

where f̂ (χ̂) , Ŵ Tσ
(
V̂ T χ̂

)
∈ R3, and χ̂ (t) is de�ned as

[
eTv rT η̂T

]T
∈ R14,

Ŵ (t) ∈ R(N+1)×3 and V̂ (t) ∈ R14×N are estimated weights. The error equation for the

RNN estimator can be obtained from (6�22) and (6�29) as

·
η̃ = Q̂+

w

{
W Tσ

(
V Tχ

)
− Ŵ Tσ

(
V̂ T χ̂

)
+ ε
}
− (k2 + kb) η̃, (6�30)

where the estimation mismatch η̃ (t) ∈ R8 is de�ned as

η̃ , η − η̂. (6�31)

To facilitate the subsquent closed-loop analysis, the open loop equation for r (t) in (6�21)

can be rewritten as

Jṙ = Y2θ̃2 − Q̂
·
η̂ − Q̂

·
η̃ + Y1θ1 +W Tσ

(
V Tχ

)
+ ε (χ)− τd −

1

2
J̇r. (6�32)

6.3.1.2 Closed-Loop Error System

The steering law
·
η̂ (t) functioning as a control input is designed as a self-tuning

adaptive controller constructed in terms of the estimate function Ŵ Tσ
(
V̂ T χ̂

)
resulting

from the RNN structure where the weights Ŵ (t), V̂ (t) are updated online via adaptation

laws. Substituting (6�29) and (6�30) into (6�32) yields

Jṙ = Y1θ̃1 + Y2θ̃2 − (k1 + ka) r + (k2 + kb) Q̂η − ev − τd −
1

2
J̇r, (6�33)

where the notation θ̃1(t) ∈ Rp1 is de�ned as

θ̃1 = θ1 − θ̂1. (6�34)
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Based on (6�33) and the subsequent stability analysis, the parameter estimates θ̂1 (t) and

θ̂2 (t) are solutions to the update laws

·

θ̂1 = proj
(
Γ1Y

T
1 r
) ·

θ̂2 = proj
(
Γ2Y

T
2 r
)
, (6�35)

where Γ1 ∈ Rp1×p1 and Γ2 ∈ Rp2×p2 denote constant, positive-de�nite, diagonal adaptation

gain matrices. In (6�35), the function proj(·) denotes a projection algorithm utilized to

guarantee that the ith element of θ̂1(t) and θ̂2(t) can be bounded as

θ1i ≤ θ̂1i ≤ θ1i, θ2i ≤ θ̂2i ≤ θ2i, (6�36)

where θ1i, θ1i, θ2i, θ2i,∈ R denote known constant lower and upper bounds for each

element of θ̂1(t) and θ̂2(t), respectively. Minimizing the estimation error η̃ (t) ensures

that the state estimate η̂ (t) in (6�29) dynamically approximates the system state η (t) in

(6�22). After adding and subtracting the terms W Tσ
(
V̂ T χ̂

)
and W Tσ

(
V T χ̂

)
inside the

bracketed expression in (6�30), the following is obtained:

·
η̃ = Q̂+

w

{
W T

[
σ
(
V T χ̂

)
− σ

(
V̂ T χ̂

)]
+W Tσ

(
V Tχ

)
−W Tσ

(
V T χ̂

)
+ W̃ Tσ

(
V̂ T χ̂

)
+ ε (χ)

}

− (k2 + kb) η̃. (6�37)

The Taylor series of the vector function σ
(
V T χ̂

)
in the neighborhood of V̂ T χ̂ is

σ
(
V T χ̂

)
= σ

(
V̂ T χ̂

)
+ σ′

(
V̂ T χ̂

)
Ṽ T χ̂+O2

(
Ṽ T χ̂

)
, (6�38)

where σ′
(
V̂ T χ̂

)
, dσ

(
V T χ̂

)
/d
(
V T χ̂

)
|V T χ̂=V̂ T χ̂, Ṽ (t) , V − V̂ (t), and O2

(
Ṽ T χ̂

)

denotes higher order terms. Using the Taylor series of σ
(
V T χ̂

)
given in (6�38), (6�37) can

be rewritten as

·
η̃ = Q̂+

w

{
Ŵ Tσ′

(
V̂ T χ̂

)
Ṽ T χ̂+ W̃ Tσ

(
V̂ T χ̂

)
+ w

}
− (k2 + kb) η̃, (6�39)
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where W̃ (t) ∈ R(N+1)×3 and Ṽ (t) ∈ R14×N denote the RNN weight estimate mismatches

de�ned as

W̃ , W − Ŵ Ṽ , V − V̂ , (6�40)

and the disturbance term w (ev, r, η̂, t) ∈ R3 is de�ned as

w , W Tσ
(
V Tχ

)
−W Tσ

(
V T χ̂

)
+ W̃ Tσ′

(
V̂ T χ̂

)
Ṽ T χ̂+W TO2

(
Ṽ T χ̂

)
+ ε. (6�41)

The disturbance w (ev, r, η̂, t) in (6�41) can be upper bounded as

‖w‖ ≤ ρ3 + ρ4 ‖z‖ , (6�42)

where ρ3, ρ4 ∈ R are positive bounding constants, and z (t) ∈ R14 is de�ned as

z ,

[
eTv rT η̃T

]T
. (6�43)

Also, based on (6�6), (6�13), and (6�36), the following inequality holds:

∥∥∥Q̂
∥∥∥
i∞
≤ γ1

∥∥∥Q̂+
w

∥∥∥
i∞
≤ γ2, (6�44)

where γ1, γ2 ∈ R are known positive bounding constants and ‖·‖i∞ is the induced in�nity

norm of a matrix. Based on the subsequent stability analysis, the weight update laws for

the RNN are designed via

·

Ŵ = Γ3proj
[
σ
(
V̂ T χ̂

)(
η̃T Q̂+

w

)]
(6�45)

·

V̂ = Γ4proj
[
χ̂
(
η̃T Q̂+

w

)
Ŵ Tσ′

(
V̂ T χ̂

)]
,

where Γ3 ∈ R(N+1)×(N+1), Γ4 ∈ R14×14 denote constant, positive de�nite, diagonal

adaptation gain matrices, and proj (·) denotes a projection algorithm utilized to guarantee

that the ith element of Ŵ (t) and V̂ (t) can be bounded as

W i ≤ Ŵi ≤ W i, V i ≤ V̂i ≤ V i, (6�46)
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where W i, W i, V i, and V i ∈ R denote known, constant lower and upper bounds for each

element of Ŵ (t) and V̂ (t).

6.3.2 Momentum Tracking Control Development

To achieve the �ywheel angular momentum management objective while maintaining

the attitude stabilization, the closed-loop error system is developed in (5�30) in Chapter 5.

6.3.3 Stability Analysis

Theorem 6-1: The adaptive control law given in (6�29) resulting from the RNN

structure ensures uniformly ultimately bounded (UUB) attitude tracking in the sense that

‖ev‖ ≤ ε0 exp {−ε1t}+ ε2 (6�47)

where ε0, ε1, ε2 ∈ R denote positive bounding constants while along with exponential

momentum tracking in the sense that

‖µ(t)‖ ≤ µ (0) exp (−IWkmt) . (6�48)

Proof: The exponential momentum tracking result is evident from (5�30) of Chapter

5.

Proof: Let V (ev, e0, r, η̃, θ̃1, θ̃2, W̃ , Ṽ , t) ∈ R be de�ned as the following nonnegative

function:

V , eTv ev + (1− e0)2 +
1

2
rTJr +

1

2
η̃T η̃ +

1

2
θ̃T1 Γ−1

1 θ̃1 +
1

2
θ̃T2 Γ−1

2 θ̃2 (6�49)

+
1

2
tr
(
W̃ TΓ−1

3 W̃
)

+
1

2
tr
(
Ṽ TΓ−1

4 Ṽ
)
.

Based on (6�2), (6�8), (6�31), (6�34) - (6�36), (6�40), (6�45), and (6�46), (6�49) can be

upper and lower bounded as

c0 ‖z‖2 + c1 ≤ V (t) ≤ c2 ‖z‖2 + c3, (6�50)
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where c0, c1, c2, c3 ∈ R are known positive bounding constants. After using (3�17), (6�33),

and (6�39), the time derivative of V (t) can be expressed as

V̇ = eTv
(
e×v + e0I3

)
ω̃ + (1− e0) eTv ω̃

+rT
{
Y1θ̃1 + Y2θ̃2 − ev − τd

− (k1 + ka) r + (k2 + kb) Q̂η
}

+η̃T
[
Q̂+
w

{
Ŵ Tσ′

(
V̂ T χ̂

)
Ṽ T χ̂

}

+ Q̂+
w

{
W̃ Tσ

(
V̂ T χ̂

)}
+ Q̂+

ww (6�51)

− (k2 + kb) η̃]− θ̃T1 Γ−1
1

·

θ̂1 − θ̃T2 Γ−1
2

·

θ̂2

−tr
(
W̃ TΓ−1

3

·

Ŵ

)
− tr

(
Ṽ TΓ−1

4

·

V̂

)
.

By using (6�35) and (6�45), and exploiting the fact that eTv e
×
v ω̃ = 0, (6�51) can be

rewritten as

V̇ = − (k1 + ka) r
T r − αeTv ev − (k2 + kb) η̃

T η̃

+η̃T Q̂+
ww + (k2 + kb) r

T Q̂η − rT τd. (6�52)

Using (6�3), (6�6), (6�42), and (6�44), the resulting expression of (6�52) can be upper

bounded as

V̇ ≤ − (k1 + ka) ‖r‖2 − α ‖ev‖2 − (k2 + kb) ‖η̃‖2 + ρ5 ‖z‖+ ρ6 ‖z‖2 , (6�53)

where ρ5 , (k2 + kb) γ1ρ2 + γ2ρ3 + ρ1 and ρ6 , γ2ρ4. Based on (6�43), V̇ (t) can be written

as

V̇ ≤ −λ1 ‖z‖2 − λ2 ‖z‖2 + ρ5 ‖z‖ , (6�54)

where λ1 , min (k1, α/2, k2) and λ2 , min (ka, α/2, kb) − ρ6. After completing the squares

in (6�54), the upper bound of V̇ (t) can be expressed as

V̇ ≤ −λ1 ‖z‖2 − λ2

(
‖z‖ − ρ5

2λ2

)2

+ γ3,
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where γ3 ,
ρ25

4λ2
. Since (6�50) can be used to lower bound ‖z‖2 as

‖z‖2 ≥ 1

c2

V (t)− c3

c2

. (6�55)

The lower bound of ‖z‖2 in (6�55) yields

V̇ ≤ −λ1

c2

V + γ4, (6�56)

where γ4 is de�ned as

γ4 ,
λ1c3

c2

+ γ3. (6�57)

The linear di�erential inequality in (6�56) can be solved as

V (t) ≤ V (0) exp

{
−λ1

c2

t

}
+ γ4

c2

λ1

(
1− exp

{
−λ1

c2

t

})
. (6�58)

The expressions in (6�49), (6�50), and (6�58) can be used to prove that r (t), η̃ (t) ∈ L∞.

Thus, (6�9) can be used to conclude that ω (t) ∈ L∞, and from (3�7) and (6�8), ω̃ (t) ∈

L∞. The attitude kinematics in (3�17) can then be used to show that ėv (t) , ė0 (t) ∈ L∞.

Since Ŵ (t) , V̂ (t) ∈ L∞ from (6�46), the assumption that W,V ∈ L∞ can be used along

with (6�40) to prove that W̃ (t) , Ṽ (t) ∈ L∞. The facts that ev (t) , ω (t) ∈ L∞ can be

used along with (6�2) to show that Y1 (t) ∈ L∞. Based on the assumption that θ1 ∈ L∞,

(6�34) and (6�36) can be used to prove that θ̃1 (t) ∈ L∞. From (6�48), µ(t) ∈ L∞ and

then (5�1) and (5�2) of Chapter 5 can be used to indicate that Ω (t) ∈ L∞. The fact

that δ (t)-dependent functions are resulting from direction cosine matrices indicates that

the functions contain δ (t) within bounded trigonometric functions. Hence, the input

set χ ,

[
eTv rT ηT

]T
∈ L∞ in RNN network of (6�19) following the Universal

approximation theorem [3, 18]. Given that η̃ (t) , W, V, θ̂1 (t) , r (t) , ev (t) ∈ L∞, (6�

20), (6�22), and (6�44) can be used to prove that η̇ (t) ∈ L∞. Since η̇ (t) ∈ L∞, δ̇ (t),

Ω̇ (t) ∈ L∞. Given that Y1 (t) , θ̂1 (t) , r (t) , ev (t) , δ̇ (t) ∈ L∞, Lr (t) ∈ L∞ from (6�

16). Given that ev (t) , r (t) , η (t) ∈ L∞, the RNN input vector χ (t) ∈ L∞. Since η (t),

η̃ (t) ∈ L∞, (6�31) can be used to conclude that η̂ (t) ∈ L∞. By utilizing the fact that
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Figure 6-1. Quaternion tracking error e(t) during closed-loop operation.

δ (t)-dependent functions only contain δ (t) within bounded trigonometric functions and

ev (t) , r (t) , ω (t) , Ω (t) , δ̇ (t) , Ω̇ (t) ∈ L∞, (6�12) can be used to show that Y2 (t) ∈ L∞.

Given that Ŵ (t) , V̂ (t) , r (t) , ev (t) , θ̂1 (t) , θ̂2 (t) , Y1 (t), v (t) ∈ L∞, (6�29) and (6�44)

can be used to prove that the control input vector
·
η̂ (t) ∈ L∞. Since r (t), ev (t), δ̇ (t),

Y1 (t), Y2 (t) , θ̃1 (t) , θ̃2 (t) ∈ L∞ and by (6�3), (6�33) can be used to show that ṙ (t) ∈ L∞.

Standard signal chasing arguments can then be used to prove that all other signals remain

bounded during closed-loop operation. The inequalities in (6�50) can be used along with

(6�57) and (6�58) to conclude that

‖z‖2 ≤

(
c2 ‖z (0)‖2 + c3

c0

)
exp

{
−λ1

c2

t

}
+
λ2

1c3 + γ3λ1c2 − c1

c0

. (6�59)

The result in (6�47) can now be directly obtained from (6�59).

6.4 Numerical Example

Numeric simulations illustrate the performance of the developed controller.

The satellite parameters are based on a model of a prototype pico-satellite which

has a pyramidal arrangement of four VSCMGs. The model has the total inertia of
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Figure 6-2. RNN estimation error η̃
(

Ω̃, δ̃
)
during closed-loop operation.
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Figure 6-3. Induced in�nity norm of RNN weight matrices Ŵ (t) , V̂ (t) .
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Figure 6-4. Singularity measure function h (δ), null motion weight S (δ), and mode weight
Wc (δ).

Jtotal = diag

{
6.10× 10−2 6.10× 10−2 7.64× 10−2

}
and the VSCMG unit mass of

mvscmg = 0.165 kg. The control objective is to stabilize a satellite's atttiude while tracking

the desired angular velocity trajectory. The simulation results are given in Figures 6-1 - 6-

4. Figure 6-1 shows the quaternion tracking error results during a 500s simulation period.

The RNN estimation error η̃
(

Ω̃, δ̃
)
shown by Figure 6-2 illustrates a steady-state response

while the RNN estimator resulting from (6�29) compensates for the actuator uncertainty.

Since the state η (Ω, δ) of the nonlinear function f (χ) is dynamically updated in the RNN

structure consisting of 10 hidden layers, the state feedback actively contributes to training

of weight estimates, Ŵ , V̂ shown in Figure 6-3. Also, the RNN estimator functions as the

composite VSCMG steering law which arbitrates between the CMG and RW mode corre-

sponding to mode weight Wc induced by the singularity measure h (δ) as shown in Figure

6-4. The null motion strategy performs gimbal recon�guration for singularity avoidance

and wheel speed regularization for internal momentum management responding to null

motion weight S in Figure 6-4. Although the VSCMG is a geometrically singularity-free

device and the singularity avoidance is not always necessary, the singularity avoidance
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method reduces/eliminates the amount of time that the VSCMG has to operate in RW

mode when the CMG Jacobian becomes singular through the use of null motion.

6.5 Summary

In this chapter, a RNN-based control technique is presented, which achieves attitude

tracking for a VSCMG-actuated satellite in the presence of uncertainty in the satellite

and actuator dynamics and unmodeled external disturbances. A Lyapunov-based stability

analysis is used to prove the controller achieves UUB attitude tracking while compensating

for the e�ects of uncertain time-varying satellite inertia properties, parametric uncertainty,

and nonlinear external disturbance torques. Innovative development of the error system

along with a Lyapunov-based adaptive law mitigates the di�culties resulting from satellite

inertia uncertainty. Numeric simulation results illustrate performance of RNN estimator

which functions as a composite VSCMG steering law as well as bene�ts provided by

gimbal and wheel null motions.
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CHAPTER 7
A NEW SINGULARITY DETECTION METHOD FOR VSCMGS USING FLS

As seen in Chapter 4-6, the null motions of VSCMG can provide bene�cial e�ects

such as gimbal recon�guration and internal momentum management for spacecraft opera-

tion while the motions generate no net torque from the VSCMGs. Even if the VSCMG is

geometrically a singularity-free device except saturation, the singularity avoidance method

using the gimbal null motion can reduce/eliminate the amount of time that the VSCMG

has to operate in RW mode when the CMG Jacobian becomes singular. According to

whether the total angular momentum vector is inside or outside the momentum envelope,

the singular state is de�ned as internal or external. The CMG system encounters external

(saturation) singularities when the individual angular momentum has maximum mag-

nitude for its direction. Internal singularities can be classi�ed into elliptic or hyperbolic

singularity by whether the null motion is possible around the singular state. The null

motions can be generated at the hyperbolic singularity but not at the elliptic singular-

ity [5,52,55,64,70,91,96]. However, the fact that the null motion exists does not guarantee

escape from the hyperbolic singularity. There are degenerate solutions which do not a�ect

the rank of the CMG Jacobian. This means that the degenerate hyperbolic singularities

cannot be escaped through null motion [5, 55, 64, 96]. If the speci�c type of singularity can

be determined, the VSCMG can acquire more e�ective performance since the VSCMG can

make the best use of the torque ampli�cation in CMG mode and also utilize the wheel

null motions (e.g., start-up, power reduction, etc) while properly responding each type of

singularity as well as holding precise attitude control.

In this chapter, a new singularity detection method is developed using a fuzzy

logic system (FLS). The FLS-based singularity detection and classi�cation method can

determine a speci�c type of singularity using the necessary condition for the null motion

and a singularity measure. Numerical simulations demonstrate the performance of the
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adaptive VSCMG steering law with FLS-based singularity detection method in the e�cacy

of singularity avoidance with reduced reaction wheel modes.

7.1 Singularity Detection Strategy

For the pyramidal arrangement of the VSCMG system, all internal singularites can

be escaped through torque generation in RW mode while maintaining precise attitude

tracking performance. The possibility of escape by null motion near singularity that has

been studied in [5, 55, 64, 96] can be a desirable criteria to distinguish singular states.

However, the singular regions inside the momentum envelope in Figure 2-3 are nonlinear

and complex. For degenerate hyperbolic singularities, the surface looks like a hyperbolic

singularity which can be escaped by the null motions, but have a feature of an elliptic

singularity (i.e., the null motions do not a�ect the rank of CMG Jacobian.). In this

singularity, the null displacements do not allow the singular con�guration to be disturbed

since the singular state is located on a point on null trajectories for a set of gimbal angle.

Hence, singularity escape by the admissible null variations is not possible. Based on the

given information such as the passability condition by the null motion near singularity

and the singularity measure index, a FLS can be an appropriate tool. A FLS can deal

with nonlinear and complex problems in the realms of search, question-answering decision

and control, and provides a foundation for the development of new tools for dealing with

linguistic information and knowledge representation [7, 71, 105�109]. The basic structure of

a FLS is composed of a fuzzi�er, fuzzy product inference engine, and defuzzi�er.

7.1.1 Passability Condition by Null Motion near Singularity

For the VSCMG case, a null motion always exists since a VSCMG Jacobian induced

by a combination of 4 gimbals and 4 wheels always spans the three-dimensional space (i.e.,

the rank de�ciency of the VSCMG Jacobian is escapable.) [101]. The passability condition

by null motions near singularity is used in CMG mode of the VSCMG system which

maintains torque ampli�cation. The test for existence of the null motion is established by

a Taylor series expansion about a singular state δs ∈ R4 [5, 55, 64, 96]. Suppose that δs is
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a singular point and H (δs) ∈ R3 is on the singular surface, a second order Taylor series

expansion of H (δ) in the neighborhood yields

δH = H (δs + dδ)−H (δs)

=
4∑

i=1

[(
∂hi
∂δi

)
∆δi +

1

2!

(
∂2hi
∂δ2

i

)
∆δ2

i + · · ·
]
,

where ∆δi is the gimbal angle displacement between a gimbal angle δi and a singular point

δsi . By using the following relations

∂hi
∂δi

= fi and
∂2hi
∂δ2

i

= −hi,

the null motion constraint can be expressed as

δH =
4∑

i=1

[
fi∆δi −

1

2!
hi∆δ

2
i + · · ·

]
= 03×1,

where δH , 0 near a singularity since the total angular momentum H is not a�ected by

null motion.

To obtain the constraint equation for null motion, the inner product of δH with an

arbitrary singular vector u ∈ R3 is

u · δH ' − 1

2!
u ·

4∑

i=1

hi∆δ
2
i = − 1

2!

4∑

i=1

(u · hi) ∆δ2
i ,

where u =null
(
CT
T (δ)

)
and u · fi = 0 (i = 1, 2, 3, 4) by the de�nition of a singular vector.

Hence, the second order necessary condition for null motion is written as

4∑

i=1

P∆δ2
i = 0,

where P = u · hi denotes the projection matrix. In matrix form, the condition can be

rewritten as

∆δTP∆δ = 0. (7�1)
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By using the null-space basis vector ni ∈ R4 of the CMG Jacobian matrix CT (δ) ∈ R3×4,

the null motion of gimbal angles can be represented as

∆δ =
4−2∑

i=1

cini = Nc, (7�2)

where c is a set of weighting coe�cients denoted as c = (c1, c2), and the null space

N ∈ R4×[4−rank(CT )] is written as

N (CT ) =
{
ni ∈ R4 | CT · ni = 03×1

}
.

Substituting (7�2) into (7�1), a necessary condition for null motion is obtained as

cTQc = 0, (7�3)

where Q = NTPN . The quadratic form of (7�3) represents a null motion constraint

equation in the vicinity of a singular state, and can be a singularity classi�cation criteria

according to properties of (7�3): 1) de�nite Q, or 2) inde�nite or singular Q [5, 96]. If Q

is a de�nite matrix, c = 0 is the only solution and the null motion is not possible. The

de�nite matrix Q indicates an elliptic singularity which has no null motions. When Q is

an inde�nite (or singular) matrix, Q indicates a hyperbolic singularity and the null motion

is possible. Although the classi�cation criteria based on Q implies the existence of null

motion, the mere possibility of null motion does not guarantee escape from a singularity.

Degenerate hyperbolic singularities which do not a�ect the rank of the CMG Jacobian

must be excluded [5, 96]. For the detection of degenerate hyperbolic one, the conventional

singularity measure index denoted as f (δ) , − det
(
CT (δ)CT

T (δ)
)
can be used to provide

additional information. Such convoluted criteria to determine a type of singularity can be

e�ectively classi�ed by IF-THEN rules of FLS.

7.1.2 Fuzzi�cation

The �rst step in fuzzy logic system is to convert the measured signals into a set of fuzzy

variables. Speci�cally, the fuzzi�cation process turns each
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sign(multiplication of eigenvalues) of Q in (7�3) for the null motion passability conditions

near singularity and a measured conventional singularity index f (δ) into a set of fuzzy

variables. Based on whether null motions are possible, the type of singularity is

determined as

sign(multiplication of eigenvalues) > 0, Elliptic singularity

sign(multiplication of eigenvalues) ≤ 0, Hyperbolic singularity. (7�4)

However, in this criteria, it's impossible to detect degenerate hyperbolic singularity.

As an additional information for degenerate hyperbolic singularity, the conventional

singularity measure index f (δ) is used. This information supplements the null motion

passability condition of (7�4). For example, let a singular state be included to a criterion

of hyperbolic singularity. However, if the singularity measure index stays around zero

(i.e., even though the null motions exist, the rank of CMG Jacobian is still de�cient) and

it occurs the variation of angular momentum by the torque generation of RW, it can be

considered to be a degenerate hyperbolic singularity. The integrated IF-THEN rules for

singularity detection are as follows:

IF sign(multiplication of eigenvalues) > 0, THEN Elliptic Singularity

IF sign(multiplication of eigenvalues) ≤ 0 AND f < 0.3,THEN Hyperbolic Singularity (7�5)

IF sign(multiplication of eigenvalues) ≤ 0 AND f < 0.1,THEN Degenerate Hyperbolic Singularity,

where for detecting elliptic singularity, it is not essential for the singularity measure index

f (δ) to be used since the IF clause of (7�5) clari�es the speci�c type of singularity. The

degenerate hyperbolic singularity which does not a�ect the rank of CMG Jacobian makes

the index f (δ) approach to zero although the null motion exists. Hence, IF-THEN rules

of FLS in (7�5) detects a type of singularity and singularity measure, and by using the

determined singularity identity the steering law can determine an e�cient operation mode.
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Figure 7-1. Membership function for singularity measure index f (δ).

Speci�cally, f (δ) < 0.3 in (7�5) is determined as a reference to start gimbal null motions;

otherwise, the steering law does not need even gimbal null motions but needs CMG mode

as a minimum norm pseudo-inverse solution. Also, in sign(multiplication of eigenvalues) ≤

0 and f (δ) < 0.1, the singularity is referred to as a degenerate hyperbolic singularity

and the steering law requires the torque generation of RW. The singularity measure and

threshold reference for re�ning hyperbolic singularity are determined and fuzzi�ed by

membership functions as shown by Figure 7-1. The dotted line fuzzi�es the singularity

measure index f (δ) to additionally detect degenerate hyperbolic singularity and the

region intersected by two triangles re�ects fuzziness between hyperbolic singularity and

degenerate hyperbolic singularity in the singularity measure index f (δ). Speci�cally, when

a singularity is determined as hyperbolic singularity (sign(multiplication of eigenvalues) ≤

0) and there exists null motions, the fact that singularity measure index f (δ) still decrease

to 0.1 under 0.3 allows RW to induce torque generation following the consecutive FLS

process.
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Figure 7-2. Block diagram of FLS-based singularity detection method.

7.1.3 Product Inference Engine

The FLS-based singularity detection method uses fuzzy equivalents of logical

AND operations to build up fuzzy logic rules. If µsign is the membership of class

sign(multiplication of eigenvalues) for indicating a type of singularity and µfi is the

membership of class fi (δ) for a conventional singularity measure, then the fuzzy AND is

obtained as the multiplication of the membership values:

µsign AND fi = µsign ∧ µfi = µsign × µfi

where the symbol ∧ is used to denote the fuzzy AND operation and µsign has a value of 0

or 1 (i.e., If a sign in (7�5) is determined, µsign has 1).

7.1.4 Defuzzi�cation

The last step in building a fuzzy logic system is turning the fuzzy variables generated

by the fuzzy logic rules into a singularity detection index. The defuzzi�er combines the

information in the fuzzy inputs so that it obtains a single crisp output variable using the

center of gravity method. To be more speci�c, if the fuzzy levels given in (7�5) have

membership values µsign and µfi , then the crisp output signal Dj is de�ned as

Dj =

∑k
i=1Wiµi∑k
i=1 µi

(7�6)
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where Dj (j = 1, 2) is a defuzzi�ed value: D1 and D2 are resulting from the rules for

elliptic singularity and hyperbolic singularity, respectively, µi is a fuzzi�ed value like µsign,

µfi , and µsign AND fi resulting from the IF-THEN rule or the product inference engine,

Wi is a weight value designed by heuristic information, and k is the number of fuzzi�ed

values. A new singularity detection index as seen in Figure 7-2 is de�ned as

∆ = sech(D1 +D2 + ν), (7�7)

where ν denotes a shift constant to adjust a function output signal.

7.2 Implementation of FLS-based singularity detection index

Based on the proposed singularity detection index ∆ (t), the composite VSCMG

steering law of Chapter 5 can be written as

η̇ = Q̂+
w

(
Y1θ̂1 + kr + ev + CG [IW ]d [ωT ]d Ω− CT [IW ]d [ωG]d Ω

)
+
(
I8 − Q̂+

wQ̂
)
Sσ, (7�8)

where a mode weight matrix W (∆) is designed as

W ,



WΩI4×4 04×4

04×4 WδI4×4


 ,

where Wδ ∈ R is de�ned as

Wδ , Wδ0∆,

Wδ0 ,WΩ ∈ R are positive constants, and the new singularity detection index ∆ (t) is

obtained as (7�7). Since the index ∆ (t) detects the singularity type and property of

the singularity, the �ywheels can generate the required torque in RW mode at elliptic

singularity and degenerate hyperbolic singularity based on the FLS-based singularity

detection. In (7�8), to generate null motion for internal momentum tracking and gimbal

recon�guration, the null motion σ (t) ∈ R8 is de�ned as

σ ,

[
kwg

T kγ
∂γ
∂δ

T

]T
, (7�9)
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where kw, kγ ∈ R denote positive constants, g (t) ∈ R4 is an auxiliary control signal to

track the desired �ywheel angular momentum, and the second row is the gradient method

for the gimbal recon�guration. The matrix S (∆) ∈ R8×8 in (7�8) is a null motion weight

for the VSCMG null motion denoted as

S , ∆I8×8, (7�10)

where I8×8 ∈ R8×8 is an identity matrix. When the singularity detection index detects

elliptic singularity or degenerate hyperbolic singularity, the index ∆ (t) inhibits both

gimbal and wheel null motions so that the VSCMG can be operated as RW. When

encountering hyperbolic singularity and in normal workspace, the steering law works for a

conventional CMG with the torque ampli�cation and internal momentum tracking.

7.3 Numerical Examples

7.3.1 Simulation Setup

Numeric simulations illustrate the performance of the developed controller. The

satellite parameters and initial conditions are based on a model of a prototype pico-

satellite in Table 5-1 and 5-2 of Chapter 5. The initial and desired �ywheel speed for

each wheel are Ω0 = Ωd = 200rad/s (≈ 2, 000 rpm). The simulation parameters for

defuzzi�cation are W1 = −1, W2 = −3, ν = 3 where W1 and W2 are weight values for each

membership function of Figure 7-1, and ν is a shift constant. Di�erently from the initial

startup of Chapter 5, the wheel null motion achieves the internal momentum tracking to

maintain the desired �ywheel speed so that the VSCMG system can steadily gain torque

ampli�cation in CMG mode.

7.3.2 Simulation Results

The simulation results are developed to show the performance of the FLS-based

singularity detection index for two cases. To illustrate the performance of the singularity

detection and escape at internal elliptic singularity, Case 1 is started at an internal elliptic

singular point denoted as δ (0) =

[
−90 0 90 0

]
(deg) and the results are given in
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Figure 7-3. Quaternion tracking error e(t) for Case 1.

Figures 7-3 - 7-9. Case 2 is started at an internal hyperbolic singular point denoted as

δ (0) =

[
0 90 180 −90

]
(deg) and the results are given in Figures 7-10 - 7-13.

Figure 7-3 shows the quaternion tracking error results during a 100s simulation

period. Figure 7-4 shows the control input gimbal rates δ̇ (t) and wheel accelerations

Ω̇ (t). The wheel acceleration control input Ω̇ (t) contributes to the internal momentum

management by equalizing the wheel speed after escaping from the internal elliptic

singularity at an initial point while the control inputs achieve attitude stabilization.

Since the simulation for Case 1 starts at an internal elliptic singular point, the det(Q)

regarded as multiplication of eigenvalues shows a positive sign in Figure 7-6 and the

singularity measure index f (δ) shows the start at 0 in Figure 7-7. Also, the FLS-based

singularity detection index ∆ (t) inhibits both gimbal and wheel null motions while it

allows a torque generation of RW as shown by Figure 7-6, 7-7, and 7-5. Once the CMG

Jacobian escapes the internal elliptic singularity, the gimbal null motions help the system

escape the singularity while the wheel null motions achieve wheel speed equalization

(internal momentum tracking error µ (t) → 0) as shown in Figure 7-8. Figure 7-9 shows

the elements of the adaptive parameter vectors θ̂1 (t) and θ̂2 (t).
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Figure 7-4. Control input gimbal rates δ̇ (t) and wheel accelerations Ω̇ (t) for Case 1.
The left column illustrates the response for the entire duration, and the right column

illustrates the transient response.
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Figure 7-5. Flywheel speed Ω (t) for Case 1.
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Figure 7-6. Singularity detection index ∆ (t) and null motion condition det (Q) for Case 1.
The left column illustrates the response for the entire duration, and the right column

illustrates the transient response.
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Figure 7-7. Singularity measure index f (δ), null motion weight S(∆), and mode weight
W (∆) for Case 1.

The left column illustrates the response for the entire duration, and the right column
illustrates the transient response.
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Figure 7-8. Null motion results for gimbal recon�guration and wheel speed tracking error
µ (t) for Case 1.
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Figure 7-9. Parameter estimates θ̂1 (t), θ̂2 (t) for Case 1.
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Figure 7-10. Singularity detection index ∆ (t) and null motion condition det (Q) for Case
2.

The left column illustrates the response for the entire duration, and the right column
illustrates the transient response.
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Figure 7-11. Singularity measure index f (δ), null motion weight S(∆), and mode weight
W (∆) for Case 2.

The left column illustrates the response for the entire duration, and the right column
illustrates the transient response.
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Figure 7-12. Null motion results for gimbal recon�guration and wheel speed tracking error
µ (t) for Case 2.
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Figure 7-13. Flywheel speed Ω (t) for Case 2.

136



The simulation results for Case 2 (started at an internal hyperbolic singular point)

are provied in Figure 7-10 - 7-13. In Figure 7-10, the det(Q) showing the null motion

condition illustrates a negative sign at the starting point which means the start from the

internal hyperbolic singularity. The singularity detection index shows two variations which

are shown in Figure 7-10. The second variation is resulting from access to another singular

point right after escaping from the internal hyperbolic singularity. Corresponding to the

second variation of ∆ (t) and f (δ) , the singularity encounter is escaped by the gimbal null

motions without the torque generation of RW shown in Figure 7-12 and 7-13.

7.4 Summary

In this chapter, a FLS-based singularity detection method is developed for the pyra-

midal arrangement of the VSCMG system. The FLS fuzzi�es the possibility by null

motion near singularity to primarily classify singularity into elliptic and hyperbolic one,

and then use additional information denoted as the existing singularity measure index to

even detect degenerate hyperbolic singularity. Based on the determined singularity iden-

tity, the steering law can determine an e�cient operation mode depending on singularity

detection input and steadily maintain torque ampli�cation. Numeric simulations have

two cases divided into elliptic and hyperbolic singularity case, and each case illustrates

both the singularity detection performance and the singularity avoidance of the FLS-based

singularity detection method.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

To make the best use of an extra DOF provided by VSCMGs, various multi-

functional steering laws are developed in Chapters 3 - 6. Since the VSCMG system

includes satellite and actuator uncertainties such as dynamic and static friction, inertia,

etc., the di�culties resulting from uncertain properties are mitigated through innovative

development of the error system along with a Lyapunov-based adaptive law. The previ-

ous chapters provide the Lyapunov-based stability analysis to prove precision attitude

tracking while simultaneously achieving additional tracking objectives denoted as power

tracking and internal momentum tracking. Chapter 7 promotes the e�ective utilization of

hybrid mode (i.e., CMG mode and RW mode) resulting from an extra DOF of VSCMGs.

Although the VSCMG is geometrically a singularity-free device, the singularity avoidance

method using the gimbal null motion can reduce/eliminate the amount of time that the

VSCMG has to operate in RW mode when the CMG Jacobian becomes singular. More-

over, detecting a speci�c type of singulairty can provide the maximum use of CMG mode

to utilize torque ampli�cation and a stable, e�cient singularity avoidancec e�ect. Hence, a

FLS-based singularity detection method developed in Chapter 7 distinguishes the speci�c

type of singulairty, which arbitrates gimbal and wheel null motions so that all internal

singularities can be escaped/avoided.

In Chapter 3, in dynamic and static friction in the VSCMG gimbals and wheels, the

controller is capable of achieving GUUB attitude tracking while simultaneously tracking a

desired power pro�le asymptotically. In addition, the controller compensates for the e�ects

of uncertain, time-varying satellite inertia properties. The wheel null motions resulting

from the extended DOF of VSCMGs allow the VSCMG system to accomplish a novel

combined objective as precision attitude tracking and power storage (i.e., mechanical
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battery). The attitude and power tracking results are proven via Lyapunov stability

analysis and demonstrated through numerical simulations.

In Chapter 4, the majority of control research focused on VSCMGs has assumed ideal

conditions such as frictionless �ywheel and gimbal bearings and a system of VSCMGs as

a rigid body. When scaling the size of CMGs/VSCMGs, the e�ects of friction present in

the system are signi�cant. To actively consider friction e�ect inside dynamics, a coupled

dynamics connection of a satellite, gimbals, and wheels is developed. A backstepping

method is used to develop the controller from a cascade dynamics connection for a

VSCMG-actuated satellite. In the presence of uncertain dynamic and static friction

in both the gimbals and the �ywheels, the controller is capable of achieving globally

asymptotical attitude tracking while simultaneously performing singularity avoidance and

wheel deceleration. Simulations show that the applied torques of the wheels containing

friction contribute to power reduction in that the friction enables the wheel to obtain more

torques without an additional torque request. Such bene�t is induced by the deceleration

mode resulting from the null motion and can give the actuator both torque and power

reduction e�ect.

Previous space missions using CMGs have used a separate feedback control loop

to spin up the rotor to the required spin rate and maintain it while securing attitude

stabilization using additional devices such as magnetorquers. In Chapter 5, the VSCMG

steering law including the internal momentum management allows the �ywheel to start

from rest and to reach the desired speed. In the presence of satellite inertia uncertainty

and actuator uncertainty, the developed attitude controller in this chapter is capable of

achieving global asymptotic attitude tracking while simultaneously performing singularity

avoidance and internal momentum management. The signi�cant bene�t of the developed

steering law is to condense several discontinuous, separate feedback control steps such

as the initial start-up and initial attitude acquisition mode into one continuous and

simultaneous control step. The attitude tracking and internal momentum tracking
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results are proven via a Lyapunov stability analysis and demonstrated through numerical

simulations.

Chapter 6 shows a RNN-based control technique which achieves attitude tracking for

a VSCMG-actuated satellite in the presence of uncertainty in the satellite and actuator

dynamics and unmodeled external disturbances. The capability of RNN modeling to

evolve the states corresponding to nonlinear state equations is exploited to compensate

for actuator uncertainties of VSCMGs. A Lyapunov-based stability analysis is used to

prove the controller achieves UUB attitude tracking while compensating for the e�ects of

uncertain time-varying satellite inertia properties, parametric uncertainty, and nonlinear

external disturbance torques. Numeric simulation results illustrate performance of the

RNN estimator which functions as a composite VSCMG steering law as well as bene�ts

provided by gimbal and wheel null motions.

In Chapter 7, a FLS-based singularity detection method is developed for the pyrami-

dal arrangement of the VSCMG system. Since the FLS copes with complex and nonlinear

patterns of singularity, the FLS provides an e�ective singularity detection strategy consid-

ering the passability condition for the null motion and the singularity measure index. The

FLS fuzzi�es the passability condition of the null motion to primarily classify singularity

into elliptic and hyperbolic one, and then use additional information denoted as the exist-

ing singularity measure index to detect a degenerate hyperbolic singulairty. Based on the

determined singularity identity, the steering law can determine an e�cient operation mode

depending on singularity detection input and steadily maintain torque ampli�cation. The

developed singularity detection methods can escape all of internal singularities including

degenerate hyperbolic singularity and this method is the �rst result that can escape all

internal singularities for the pyramidal arrangement. Numeric simulations have two cases

divided into elliptic and hyperbolic singularity case, and each case illustrates both the sin-

gularity detection performance and the singularity avoidance of the FLS-based singularity

detection method.
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8.2 Future Work

The IPACS method in Chapter 3 needs a electronic device to store mechanical energy

in practice. It is important to compare friction energy loss of wheel with kinetic energy

growth to grasp reliablity of IPACS. In the same manner of Chapter 4, IPACS methed

can also consider actuator friction in a physical torque level. For Chapter 4, the steering

law is developed by a combination between gimbal rate and wheel speed. A practical test

for this steering law can illustrate a realistic e�ect about power reduction in despinning

mode and give a comparison with a steering law developed by gimbal rate and wheel

acceleration. Considering external disturbance for the initial startup method in Chapter

5, the start-up method can provide more attractive results to use the startup steering

law in practice. The quanti�ed investigation of start-up method using just one feedback

loop can illustrate viable e�ects of the start-up method developed in Chapter 5 comparing

with other start-up methods using separate feedback loop and extra devices. Hence, the

hardware implementing and comparison study are required to ensure reliability for various

multi-functional steering laws.

One of shortcomings of the RNN-based steering law is that UUB stability is achieved.

Further investigation which includes addtion of robust feedback control term or other

intelligent method is needed to improve the stability result. Avenues to obtain a semi-

global asymptotic result are provided in [44,80,81] under a set of assumptions.

The FLS-based singularity detection method developed in Chapter 7 can be also

applied to SGCMG without loss of generality. Hence, the development of CMG steering

law utilizing the FLS-based singularity detection method is needed and future e�orts can

focus on comparing the method of Chapter 7 with a variety of established CMG steering

laws.
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