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Optimal control theory involves the design of controllers that can satisfy some

tracking or regulation control objective while simultaneously minimizing some performance

metric. A sufficient condition to solve an optimal control problem is to solve the

Hamilton-Jacobi-Bellman (HJB) equation. For the special case of linear time-invariant

systems, the solution to the HJB equation reduces to solving the algebraic Riccati

equation. However, for general systems, the challenge is to find a value function that

satisfies the HJB equation. Finding this value function has remained problematic because

it requires the solution of a partial differential equation that can not be solved explicitly.

Chapter 2 illustrates the amalgamation of optimal control techniques with a recently

developed continuous robust integral of the sign of the error (RISE) feedback term.

Specifically, a system in which all terms are assumed known (temporarily) is feedback

linearized and a control law is developed based on the HJB optimization method

for a given quadratic performance index. Under the assumption that parametric

uncertainty and unknown bounded disturbances are present in the dynamics, the

control law is modified to contain the RISE feedback term which is used to identify

the uncertainty. A Lyapunov stability analysis is included to show that the RISE feedback

term asymptotically identifies the unknown dynamics (yielding semi-global asymptotic

tracking) provided upper bounds on the disturbances are known and the control gains

are selected appropriately. A feedforward neural network is then added to the previous
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controller. The utility of combining these feedforward and feedback methods are twofold.

Previous efforts indicate that modifying the RISE feedback with a feedforward term can

reduce the control effort and improve the transient and steady state response of the RISE

controller. Moreover, combining NN feedforward controllers with RISE feedback yields

asymptotic results. Simulation as well as experimental results are provided to illustrate

the developed controllers.

Inverse optimal control is an alternative method to solve the nonlinear optimal

control problem by circumventing the need to solve the HJB equation. Adaptive inverse

optimal control techniques have been developed that can handle structured (i.e., linear

in the parameters (LP)) uncertainty for a particular class of nonlinear systems. In

Chapter 3, an adaptive inverse optimal controller is developed to minimize a meaningful

performance index while the generalized coordinates of a nonlinear Euler-Lagrange

system asymptotically track a desired time-varying trajectory despite LP uncertainty. A

Lyapunov analysis is provided to examine the stability of the developed optimal controller,

and simulation and experimental results illustrate the performance of the controller.

Output feedback based controllers are more desirable than full-state feedback

controllers because the necessary sensors for full-state feedback may not always be

available and using numerical differentiation to obtain velocities can be problematic if

position measurements are noisy. In Chapter 4, an adaptive output feedback IOC is

developed which minimizes a meaningful cost, while the generalized coordinates of a

nonlinear Euler-Lagrange system asymptotically tracks a desired time-varying trajectory.

The new controller contains a desired compensation adaptation law (DCAL) based

feedforward term and a feedback term that is shown to be implementable using only

position measurements. A Lyapunov analysis is provided to prove the stability of the

developed controller and to determine a meaningful cost functional. Experimental results

are included to illustrate the performance of the controller. The dissertation is concluded

in Chapter 5.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Literature Review

Optimal controllers are controllers that minimize some cost while stabilizing a system.

The design of an optimal controller generally involves solving the Hamilton-Jacobi-Bellman

(HJB) equation, which reduces to an algebraic Riccati equation (ARE) for linear

time-invariant systems. Due to the fact that the HJB equation is a partial differential

equation, finding a value function that explicitly satisfies the HJB equation remains

problematic.

One common technique in developing an optimal controller for a nonlinear system is

to assume the nonlinear dynamics are exactly known, feedback linearize the system, and

then apply optimal control techniques to the resulting system as in (1–3), and others. For

example, dynamic feedback linearization was used in (1) to develop a control Lyapunov

function to obtain a class of optimal controllers. A review of the optimality of nonlinear

design techniques and general results involving feedback linearization as well as Jacobian

linearization and other nonlinear design techniques are provided in (4; 5).

Motivated by the desire to eliminate the requirement for exact knowledge of

the dynamics, (6) developed one of the first results to illustrate the interaction of

adaptive control with an optimal controller. Specifically, (6) first used exact feedback

linearization to cancel the nonlinear dynamics and produce an optimal controller. Then,

a self-optimizing adaptive controller was developed to yield global asymptotic tracking

despite linear-in-the parameters uncertainty. The analysis in (6) indicated that if the

parameter estimation error could somehow converge to zero, then the controller would

converge to the optimal solution.

Another method to compensate for system uncertainties is to employ neural networks

(NN) to approximate the unknown dynamics. The universal approximation property states

that a NN can identify a function up to some function reconstruction error. The use of
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NN versus feedback linearization allows for general uncertain systems to be examined.

However this added robustness comes at the expense of reduced steady-state error (i.e.,

generally resulting in a uniformly ultimately bounded (UUB) result). NN controllers were

developed in results such as (7–12) to accommodate for the uncertainty in the system and

to solve the HJB equation. Specifically the tracking errors are proven to be uniformly

ultimately bounded (UUB) and the resulting state space system, for which the HJB

optimal controller is developed, is only approximated.

The development in Chapter 2 is motivated by the desire to improve upon the UUB

result previously found in literature. Specifically, this chapter illustrates how the inclusion

of the Robust Integral of the Sign of the Error (RISE) method in (13; 14) can be used

to identify the system and reject disturbances, while achieving asymptotic tracking and

the convergence of a control term to the optimal controller. Chapter 2 also includes a NN

extension to the previously designed controller as a modification to the results in (7–12)

that allows for asymptotic stability and convergence to the optimal controller rather than

to approximate the optimal controller.

Inverse optimal control (IOC) (15–21) is an alternative method to solve the nonlinear

optimal control problem by circumventing the need to solve the HJB equation. Previous

IOCs focus on finding a control Lyapunov function (CLF), which can be shown to also be

a value function, and then developing a controller that optimizes a meaningful cost (i.e., a

cost that puts a positive penalty on the states and actuation). The advantage of the IOC

is that the controller does not have to converge to an optimal solution (like direct optimal

controllers); however, the cost functional can not be chosen a priori. The cost functional is

determined based on the value function.

Some adaptive IOC methods (22–26) have been developed to compensate for linear

in the parameters (LP) uncertainty. Results such as (22) and (23), develop adaptive IOCs

for a general class of nonlinear systems with unknown parameters. An inverse optimal

adaptive attitude tracking controller is developed in (25) for rigid spacecraft with external
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disturbances and a constant uncertain inertia matrix. In (26), an inverse optimal adaptive

backstepping technique is applied to the design of a pitch control law for a surface-to-air

nonlinear missile model with a constant inertia matrix. The results in Chapter 3 seek to

apply adaptive inverse optimal control methods to an unknown Euler-Lagrange system

with a state dependent inertia matrix.

Output feedback based controllers are more desirable than full-state feedback

controllers, because the necessary sensors for full-state feedback may not always be

available and using numerical differentiation to obtain velocities can be problematic if

position measurements are noisy. Several researchers have developed output feedback

optimal controllers. The researchers in (27), develop a finite dimensional dynamic

output-feedback controller that achieves local near-optimality and semiglobal inverse

optimality for a output-feedback system with input disturbances. However, the nonlinearities

only depend on the measured output, and the system parameters are assumed to be

known. An optimal trajectory tracking control is proposed in (28) for nonholonomic

systems in chained form by using only output feedback information. The nonholonomic

system in (28) is written in such a way that the state and control matrices are known.

In (29), an output feedback optimal controller is designed using the certainty equivalence

principle, where the states are estimated, but used in the control law as if they were

the true states, resulting in a near optimal controller. The authors in Chapter 8 of (30),

design an output feedback linear quadratic regulator, but for a linear system with known

parameters.

Inspired by output feedback design methods developed in (31–34), an adaptive output

feedback IOC is developed in Chapter 4. The new controller contains a DCAL based

feedforward term and a feedback term that is shown to be implementable using only

position measurements. Unlike the previous results in literature, the system contains

an unknown state dependent inertia matrix. A Lyapunov analysis is provided to prove

the stability of the developed controller and to determine a meaningful cost functional.
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Experimental results are included to illustrate the performance of the controller. The

dissertation is concluded in Chapter 5.

1.2 Problem Statement

In this dissertation, optimal control techniques are applied to uncertain nonlinear

systems. The control objective is for the generalized coordinates of a system to track a

desired trajectory while minimizing a cost functional. Depending on the problem, the

cost may or may not be known a priori. For a direct optimal control problem the cost is

determined in advance; while for an inverse optimal control problem, the cost functional is

determined after the fact and is based on the value function.

The dissertation will address the following problems of interest: 1) RISE based

optimal control of uncertain nonlinear systems; 2) RISE and NN based optimal control of

uncertain nonlinear systems; 3) Adaptive inverse optimal control of uncertain nonlinear

systems; and 4) Adaptive inverse optimal control of uncertain nonlinear systems using

output feedback. The control development in the dissertation is proven by using nonlinear

Lyapunov based methods and is demonstrated by Matlab simulation and/or experimental

results.

1) RISE based optimal control of uncertain nonlinear systems.

Previous results rely on feedback linearization or NNs to cancel out nonlinearities

or to identify them. Feedback linearization results are inherently not robust to plant

uncertainty, and NNs result in an UUB stability result. Motivated by the desire to

determine if it was possible to develop a controller which improved upon the UUB result

previously found in literature, the controller developed in Chapter 2 incorporates optimal

control elements with an implicit learning feedback control strategy developed in (35),

that was later coined the Robust Integral of the Sign of the Error (RISE) method in

(13; 14). The RISE method is used to identify the system and reject disturbances, while

achieving asymptotic tracking and the convergence of a control term to the optimal

controller. Inspired by the previous work in (6–12; 36; 37), a system in which all terms are
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assumed known (temporarily) is feedback linearized and a control law is developed based

on the HJB optimization method for a given quadratic performance index. Under the

assumption that parametric uncertainty and unknown bounded disturbances are present

in the dynamics, the control law is modified to contain the RISE feedback which is used

to identify the uncertainty. Specifically, a Lyapunov stability analysis is included to show

that the RISE feedback term asymptotically identifies the unknown dynamics (yielding

semi-global asymptotic tracking) provided upper bounds on the disturbances are known

and the control gains are selected appropriately. As in previous literature the control law

converges to the optimal law, however because this result is asymptotic rather than UUB

the control law converges exactly to the optimal law. Simulation as well as experimental

results are provided to illustrate the developed controller.

2) RISE and NN based optimal control of uncertain nonlinear systems.

Motivated by the desire to improve the previous result, the amalgam of the

robust RISE feedback method with NN methods to yield a direct optimal controller

is investigated. The utility of combining these feedforward and feedback methods are

twofold. Previous efforts in (13) indicate that modifying the RISE feedback with a

feedforward term can reduce the control effort and improve the transient and steady

state response of the RISE controller. Hence, the combined results should converge to

the optimal controller faster. Moreover, combining NN feedforward controllers with RISE

feedback yields asymptotic results (38). Hence, the efforts here provide a modification to

the results in (7–12) that allows for asymptotic stability and convergence to the optimal

controller rather than to approximate the optimal controller. Simulation and experimental

results illustrate the performance of the controller.

3) Adaptive inverse optimal control of uncertain nonlinear systems

The result in Chapter 3 focuses on applying adaptive inverse optimal control

techniques to uncertain nonlinear systems. Previous inverse optimal controllers are

developed for classes of systems where the dynamics can be expressed in a specific form
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to facilitate the development of a control Lyapunov function. Specifically, previous IOCs

focus on the class problems modeled as

ẋ = f(x) + F (x)θ + g(x)u, (1–1)

for some state x(t) ∈ Rn, where f(x) ∈ Rn is a smooth vector valued function, F (x) ∈
Rn×p, g(x) ∈ Rn×m are smooth matrix valued functions, θ ∈ Rp is a vector of unknown

constants, and u (t) ∈ Rm is the control. In general, the input gain matrix g(x) must

be known. Systems with a constant inertia matrix, such as the applications in (25) and

(26), can easily be transformed into Equation 1–1, unlike systems with an uncertain

state-dependent inertia matrix or uncertainty in the input matrix. In order to determine

if an IOC could be developed for a more practical engineering system (39), an adaptive

IOC is developed in Chapter 3 based on the theoretical foundation presented in (22;

25; 40). The developed controller minimizes a meaningful performance index as the

generalized coordinates of a nonlinear Euler-Lagrange system globally asymptotically

track a desired time-varying trajectory despite LP uncertainty in the dynamics. The

considered class of systems does not adhere to the model given in Equation 1–1. The

unique ability to consider the IOC problem for uncertain Euler-Lagrange dynamics is due

to a novel optimization analysis. A meaningful cost function (i.e., a positive function of

the states and control input) is developed and an analysis is provided to prove the cost

is minimized without having to prove the Lyapunov function is a CLF. To develop the

optimal controller for the uncertain system, the open loop error system is segregated

to include two adaptive terms. One adaptive term is based on the tracking error which

contributes to the cost function, and the other adaptive term does not explicitly depend

on the tracking error (and therefore does not explicitly contribute to the cost function).

A Lyapunov analysis is provided to examine the stability of the developed controller and

to determine a respective meaningful cost functional. Simulation as well as experimental

results are provided to illustrate the developed controller.
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4) Adaptive inverse optimal control of uncertain nonlinear systems using output

feedback

Output feedback based controllers are more desirable than full-state feedback

controllers, because the necessary sensors for full-state feedback may not always be

available, and using numerical differentiation to obtain velocities can be problematic

if position measurements are noisy. The controller in Chapter 4 is based on the desire

to develop an adaptive controller for an uncertain Euler-Lagrange system that could

minimize a meaningful cost, while the generalized coordinates of the system track a

desired time-varying trajectory without using velocity measurements. Using the error

system developed in (31–34) an adaptive IOC is developed that contains a DCAL based

feedforward term and a feedback term that is shown to be implementable without velocity

measurements. A Lyapunov analysis is provided to determine a meaningful cost functional

and to prove the stability of the developed controller. Experimental results are included to

illustrate the performance of the controller.

1.3 Contributions

The main contribution in this dissertation is the development of new optimal control

techniques for uncertain nonlinear systems. Specifically, direct and adaptive inverse

optimal control techniques are applied to an uncertain nonlinear system to develop

continuous controllers that tracks a desired trajectory while minimizing a meaningful cost.

In the process of achieving the main contribution, the following contributions were made:

1. For the first time ever, a direct optimal controller is developed that yields asymptotic
tracking and convergence to an optimal controller.

2. Results exist in literature that use a NN with direct optimal control methods that
result in UUB stability. The contribution in Chapter 2 is to illustrate how the
previous methods could be augmented with RISE feedback to obtain asymptotic
tracking.

3. An adaptive IOC is developed for a nonlinear Euler-Lagrange system. The use of
an Euler-Lagrange system is motivated by the fact that the dynamics model a large
class of contemporary engineering problems (39). The controller achieves asymptotic
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tracking while minimizes a meaningful cost. The design is unique in that the model
does not conform to the standard model used in literature.

4. An adaptive IOC is designed for a nonlinear Euler-Lagrange system that only
requires position measurements. The controller achieves asymptotic tracking and
minimizes a meaningful cost, while using a model that does not conform to the
standard model used in literature. The controller consists of a DCAL feedforward
term and a feedback term that can be implemented without velocity measurements.
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CHAPTER 2
OPTIMAL CONTROL OF UNCERTAIN NONLINEAR SYSTEMS USING A NEURAL

NETWORK AND RISE FEEDBACK

The development in this chapter is motivated by the desire to use optimal control

techniques for uncertain nonlinear systems. Inspired by the previous work in (6–12;

36; 37), a system in which all terms are assumed known (temporarily) is feedback

linearized and a control law is developed based on the HJB optimization method for a

given quadratic performance index. The control law is then augmented to contain the

RISE feedback term which is used to identify the parametric uncertainty and the unknown

bounded disturbances that are present in the dynamics. The RISE feedback term is then

shown, through a Lyapunov stability analysis, to asymptotically identify the unknown

dynamics (yielding semi-global asymptotic tracking) provided upper bounds on the

disturbances are known and the control gains are selected appropriately. Due to the fact

that this result is asymptotic the control law converges to the optimal control law, rather

than the UUB results in literature which only approximate the optimal control law.

The remainder of this chapter is organized as follows. In Section 2.1, the model is

given along with several of its properties. In Section 2.2, the control objective is stated

and an error system is formulated. In Section 2.3, an optimal controller is developed

for a feedback linearized system. In Section 2.4, the RISE feedback term is developed.

In Section 2.5, the stability of the controller is proven. In Section 2.6, the motivation

behind including a NN is discussed. In Section 2.7, the properties of NN’s are presented.

In Section 2.8, the stability of the controller is proven. In Section 2.9, simulation and

experimental results are presented.

2.1 Dynamic Model and Properties

The class of nonlinear dynamic systems considered in this chapter is assumed to be

modeled by the following Euler-Lagrange (39) formulation:

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F (q̇) + τd (t) = u(t). (2–1)
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In Equation 2–1, M(q) ∈ Rn×n denotes the inertia matrix, Vm(q, q̇) ∈ Rn×n denotes the

centripetal-Coriolis matrix, G(q) ∈ Rn denotes the gravity vector, F (q̇) ∈ Rn denotes

friction, τd (t) ∈ Rn denotes a general nonlinear disturbance (e.g., unmodeled effects),

u(t) ∈ Rn represents the input control vector, and q(t), q̇(t), q̈(t) ∈ Rn denote the position,

velocity, and acceleration vectors, respectively. The subsequent development is based on

the assumption that q(t) and q̇(t) are measurable and that M(q), Vm(q, q̇), G(q), F (q̇) and

τd (t) are unknown. Moreover, the following properties will be exploited in the subsequent

development.

Property 2.1 The Euler-Lagrange dynamics in Equation 2–1 along with the subsequent

error system development is based on the assumption that the generalized coordinates,

q(t), are only defined for translations and rotations about a single axis.

Property 2.2: The inertia matrix M(q) is symmetric, positive definite, and satisfies the

following inequality ∀ξ(t) ∈ Rn:

m1 ‖ξ‖2 ≤ ξT M(q)ξ ≤ m̄(q) ‖ξ‖2 , (2–2)

where m1 ∈ R is a known positive constant, m̄(q) ∈ R is a known positive function, and

‖·‖ denotes the standard Euclidean norm.

Property 2.3: The following skew-symmetric relationship is satisfied:

ξT
(
Ṁ (q)− 2Vm(q, q̇)

)
ξ = 0 ∀ξ ∈ Rn. (2–3)

Property 2.4: If q(t), q̇(t) ∈ L∞, then Vm(q, q̇), F (q̇) and G(q) are bounded. Moreover,

if q(t), q̇(t) ∈ L∞, then the first and second partial derivatives of the elements of M(q),

Vm(q, q̇), G(q) with respect to q (t) exist and are bounded, and the first and second partial

derivatives of the elements of Vm(q, q̇), F (q̇) with respect to q̇(t) exist and are bounded.

Property 2.5: The desired trajectory is assumed to be designed such that qd(t), q̇d(t),

q̈d(t),
...
q d(t),

....
q d(t) ∈ Rn exist, and are bounded.
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Property 2.6: The nonlinear disturbance term and its first two time derivatives (i.e.,

τd (t) , τ̇d (t) , τ̈d (t)) are bounded by known constants.

2.2 Control Objective

The control objective is to ensure that the generalized coordinates of a system track

a desired time-varying trajectory, denoted by qd(t) ∈ Rn, despite uncertainties in the

dynamic model, while minimizing a given performance index. To quantify the tracking

objective, a position tracking error, denoted by e1(t) ∈ Rn, is defined as

e1 , qd − q. (2–4)

To facilitate the subsequent analysis, filtered tracking errors, denoted by e2(t), r(t) ∈ Rn,

are also defined as

e2 , ė1 + α1e1 (2–5)

r , ė2 + α2e2, (2–6)

where α1 ∈ Rn×n, denotes a subsequently defined positive definite, constant, gain matrix,

and α2 ∈ R is a positive constant. The filtered tracking error r(t) is not measurable since

the expression in Equation 2–6 depends on q̈(t).

2.3 Optimal Control Design

In this section, a state-space model is developed based on the tracking errors in

Equation 2–4 and Equation 2–5. Based on this model, a controller is developed that

minimizes a quadratic performance index under the (temporary) assumption that

the dynamics in Equation 2–1, including the additive disturbance, are known. The

development in this section motivates the control design in Section 2.4, where a robust

controller is developed to identify the unknown dynamics and additive disturbance.

To develop a state-space model for the tracking errors in Equation 2–4 and Equation

2–5, the time derivative of Equation 2–5 is premultiplied by the inertia matrix, and
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substitutions are made from Equation 2–1 and Equation 2–4 to obtain

Mė2 = −Vme2 − u + h + τd, (2–7)

where the nonlinear function h (q,q̇,qd,q̇d,q̈d) ∈ Rn is defined as

h , M (q̈d + α1ė1) + Vm(q̇d + α1e1) + G + F. (2–8)

Under the (temporary) assumption that the dynamics in Equation 2–1 are known, the

control input can be designed as

u , h + τd − uo, (2–9)

where uo (t) ∈ Rn is an auxiliary control input that will be designed to minimize a

subsequent performance index. By substituting Equation 2–9 into Equation 2–7 the

closed-loop error system for e2(t) can be obtained as

Mė2 = −Vme2 + uo. (2–10)

A state-space model for Equation 2–5 and Equation 2–10 can now be developed as

ż = A (q, q̇) z + B (q) uo, (2–11)

where A (q, q̇) ∈ R2n×2n, B (q) ∈ R2n×n, and z (t) ∈ R2n are defined as

A (q, q̇) ,



−α1 In×n

0n×n −M−1Vm


 ,

B (q) ,
[

0n×n M−1

]T

,

z(t) ,
[

eT
1 eT

2

]T

,

where In×n and 0n×n denote a n× n identity matrix and matrix of zeros, respectively. The

quadratic performance index J (uo) ∈ R to be minimized subject to the constraints in
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Equation 2–11 is

J (uo) ,
∫ ∞

0

L (z, uo) dt =

∫ ∞

0

(
1

2
zT Qz +

1

2
uT

o Ruo

)
dt, (2–12)

where L (z, uo) is the Lagrangian. In Equation 2–12, Q ∈ R2n×2n and R ∈ Rn×n are

positive definite symmetric matrices to weight the influence of the states and (partial)

control effort, respectively. Furthermore, the matrix Q can be broken into blocks as

follows:

Q =




Q11 Q12

QT
12 Q22


 .

As stated in (7; 8), the fact that the performance index is only penalized for the auxiliary

control uo(t) is practical since the gravity, Coriolis, and friction compensation terms in

Equation 2–8 can not be modified by the optimal design phase.

To facilitate the subsequent development, let P (q) ∈ R2n×2n be defined as

P (q) =




K 0n×n

0n×n M


 , (2–13)

where K ∈ Rn×n denotes a gain matrix. If α1, R, and K, introduced in Equation 2–5,

Equation 2–12, and Equation 2–13, satisfy the following algebraic relationships

K = KT = −1

2

(
Q12 + QT

12

)
> 0 (2–14)

Q11 = αT
1 K + Kα1, (2–15)

R−1 = Q22, (2–16)
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where Qij ∈ Rn×n denotes a block of Q, then P (q) satisfies the Riccati differential

equation1 , and the value function V (z, t) ∈ R

V =
1

2
zT Pz (2–17)

satisfies the HJB equation. It can then be concluded that the optimal control uo (t) that

minimizes Equation 2–12 subject to Equation 2–11 is2

uo (t) = −R−1BT

(
∂V (z, t)

∂z

)T

= −R−1e2. (2–18)

2.4 RISE Feedback Control Development

In general, the bounded disturbance τd(t) and the nonlinear dynamics given

in Equation 2–8 are unknown, so the controller given in Equation 2–9 can not be

implemented. However, if the control input contains some method to identify and cancel

these effects, then z(t) will converge to the state space model in Equation 2–11 so that

uo(t) minimizes the respective performance index. As stated in the introduction, several

results have explored this strategy using function approximation methods such as neural

networks, where the tracking control errors converge to a neighborhood near the state

space model yielding a type of approximate optimal controller. In this section, a control

input is developed that exploits RISE feedback to identify the nonlinear effects and

bounded disturbances to enable z(t) to asymptotically converge to the state space model.

To develop the control input, the error system in Equation 2–6 is premultiplied by

M (q) and the expressions in Equation 2–1, Equation 2–4, and Equation 2–5 are utilized to

obtain

Mr = −Vme2 + h + τd + α2Me2 − u. (2–19)

1 See Appendix A for details on these relationships and the Riccati differential equation

2 See Appendix B for proof of optimality
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Based on the open-loop error system in Equation 2–19, the control input is composed of

the optimal control developed in Equation 2–18, plus a subsequently designed auxiliary

control term µ(t) ∈ Rn as

u = µ− uo. (2–20)

The closed-loop tracking error system can be developed by substituting Equation 2–20

into Equation 2–19 as

Mr = −Vme2 + h + τd + α2Me2 + uo − µ. (2–21)

To facilitate the subsequent stability analysis the auxiliary function fd (qd, q̇d, q̈d) ∈ Rn,

which is defined as

fd , M(qd)q̈d + Vm(qd, q̇d)q̇d + G(qd) + F (q̇d) , (2–22)

is added and subtracted to Equation 2–21 to yield

Mr = −Vme2 + h̄ + fd + τd + uo − µ + α2Me2, (2–23)

where h̄ (q,q̇,qd,q̇d,q̈d) ∈ Rn is defined as

h̄ , h− fd. (2–24)

The time derivative of Equation 2–23 can be written as

Mṙ = −1

2
Ṁr + Ñ + ND − e2 −R−1r − µ̇ (2–25)

after strategically grouping specific terms. In Equation 2–25, the unmeasurable auxiliary

terms Ñ(e1, e2, r, t), ND (t) ∈ Rn are defined as

Ñ , −V̇me2 − Vmė2 − 1

2
Ṁr +

·
h̄ + α2Ṁe2 + α2Mė2 + e2 + α2R

−1e2

ND , ḟd + τ̇d.
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Motivation for grouping terms into Ñ(e1, e2, r, t) and ND (t) comes from the subsequent

stability analysis and the fact that the Mean Value Theorem, Property 2.4, Property 2.5,

and Property 2.6 can be used to upper bound the auxiliary terms as3

∥∥∥Ñ(t)
∥∥∥ ≤ ρ (‖y‖) ‖y‖ , (2–26)

‖ND‖ ≤ ζ1,
∥∥∥ṄD

∥∥∥ ≤ ζ2, (2–27)

where y(t) ∈ R3n is defined as

y(t) , [eT
1 eT

2 rT ]T , (2–28)

the bounding function ρ(‖y‖) ∈ R is a positive globally invertible nondecreasing function,

and ζi ∈ R (i = 1, 2) denote known positive constants. Based on Equation 2–25, the

control term µ(t) is designed based on the RISE framework (see (13; 35; 41)) as

µ(t) , (ks + 1)e2(t)− (ks + 1)e2(0) +

∫ t

0

[(ks + 1)α2e2(σ) + β1sgn(e2(σ))]dσ (2–29)

where ks, β1 ∈ R are positive constant control gains. The closed loop error systems for r(t)

can now be obtained by substituting the time derivative of Equation 2–29 into Equation

2–25 as

Mṙ = −1

2
Ṁr + Ñ + ND − e2 −R−1r − (ks + 1)r − β1sgn(e2). (2–30)

2.5 Stability Analysis

The stability of the RISE and optimal controller given in Equation 2–20 can be

examined through the following theorem.

Theorem 2.1: The controller given in Equation 2–20 ensures that all system signals

are bounded under closed-loop operation, and the tracking errors are regulated in the

sense that

‖e1(t)‖ , ‖e2(t)‖ , ‖r(t)‖ → 0 as t →∞. (2–31)

3 See Appendix C for details on this inequality
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The boundedness of the closed loop signals and the result in Equation 2–31 can be

obtained provided the control gain ks introduced in Equation 2–29 is selected sufficiently

large (see the subsequent stability analysis), and α1, α2 are selected according to the

sufficient conditions

λmin (α1) >
1

2
α2 > 1, (2–32)

where λmin (α1) is the minimum eigenvalue of α1, and β1 is selected according to the

following sufficient condition:

β1 > ζ1 +
1

α2

ζ2, (2–33)

where β1 was introduced in Equation 2–29. Furthermore, u (t) converges to an optimal

controller that minimizes Equation 2–12 subject to Equation 2–11 provided the gain

conditions given in Equation 2–14-Equation 2–16 are satisfied.

Remark: The control gain α1 can not be arbitrarily selected, rather it is calculated

using a Lyapunov equation solver. Its value is determined based on the value of Q and R.

Therefore Q and R must be chosen such that Equation 2–32 is satisfied.

Proof: Let D ⊂ R3n+1 be a domain containing Φ(t) = 0, where Φ(t) ∈ R3n+1 is

defined as

Φ(t) , [yT (t)
√

O(t)]T . (2–34)

In Equation 2–34, the auxiliary function O(t) ∈ R is defined as

O(t) , β ‖e2(0)‖ − e2(0)T ND(0)−
∫ t

0

L(τ)dτ, (2–35)

where the auxiliary function L(t) ∈ R is defined as

L(t) , rT (ND(t)− β1sgn(e2)), (2–36)

where β1 ∈ R is a positive constant chosen according to the sufficient conditions in

Equation 2–33. As illustrated in Appendix D, provided the sufficient conditions introduced
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in Equation 2–33 are satisfied, the following inequality can be obtained:

∫ t

0

L(τ)dτ ≤ β1 ‖e2(0)‖ − e2(0)T ND(0). (2–37)

Hence, Equation 2–37 can be used to conclude that O(t) ≥ 0.

Let VL(Φ, t) : D × [0,∞) → R be a continuously differentiable positive definite

function defined as

VL(Φ, t) , eT
1 e1 +

1

2
eT
2 e2 +

1

2
rT M(q)r + O, (2–38)

which satisfies the following inequalities:

U1(Φ) ≤ VL(Φ, t) ≤ U2(Φ), (2–39)

provided the sufficient conditions introduced in Equation 2–33 are satisfied. In Equation

2–39, the continuous positive definite functions U1(Φ), and U2(Φ) ∈ R are defined as

U1(Φ) , λ1 ‖Φ‖2, and U2(Φ) , λ2(q) ‖Φ‖2 , where λ1, λ2(q) ∈ R are defined as

λ1 , 1

2
min {1,m1} λ2(q) , max

{
1

2
m̄(q), 1

}
,

where m1, m̄(q) are introduced in Equation 2–2. After taking the time derivative of

Equation 2–38, V̇L(Φ, t) can be expressed as

V̇L(Φ, t) = 2eT
1 ė1 + eT

2 ė2 +
1

2
rT Ṁ(q)r + rT M (q) ṙ + Ȯ.

After utilizing Equation 2–5, Equation 2–6, Equation 2–30, and substituting in for the

time derivative of O(t), V̇ (Φ, t) can be simplified as follows:

V̇L(Φ, t) ≤ −2eT
1 α1e1 + 2eT

2 e1 + rT Ñ(t) (2–40)

− (ks + 1 + λmin

(
R−1

)
) ‖r‖2 − α2 ‖e2‖2 .

Based on the fact that

eT
2 e1 ≤ 1

2
‖e1‖2 +

1

2
‖e2‖2 ,
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the expression in Equation 2–40 can be simplified as

V̇L(Φ, t) ≤ rT Ñ(t)− (ks + 1 + λmin

(
R−1

)
) ‖r‖2 (2–41)

− (2λmin (α1)− 1) ‖e1‖2 − (α2 − 1) ‖e2‖2 .

By using Equation 2–26, the expression in Equation 2–41 can be rewritten as

V̇L(Φ, t) ≤ −λ3 ‖y‖2 − [
ks ‖r‖2 − ρ(‖y‖) ‖r‖ ‖y‖] , (2–42)

where λ3 , min{2λmin (α1)− 1, α2 − 1, 1 + λmin (R−1)} and α1 and α2 are chosen according

to the sufficient condition in Equation 2–32. After completing the squares for the terms

inside the brackets in Equation 2–42, the following expression can be obtained

V̇L(Φ, t) ≤ −λ3 ‖y‖2 +
ρ2(‖y‖) ‖y‖2

4ks

≤ −U(Φ), (2–43)

where U(Φ) = c ‖y‖2, for some positive constant c, is a continuous, positive semi-definite

function that is defined on the following domain:

D ,
{

Φ ∈ R3n+1 | ‖Φ‖ ≤ ρ−1
(
2
√

λ3ks

)}
.

The inequalities in Equation 2–39 and Equation 2–43 can be used to show that VL(Φ, t) ∈
L∞ in D; hence, e1(t), e2(t), and r(t) ∈ L∞ in D. Given that e1(t), e2(t), and r(t) ∈ L∞
in D, standard linear analysis methods can be used to prove that ė1(t), ė2(t) ∈ L∞ in D
from Equation 2–5 and Equation 2–6. Since e1(t), e2(t), r(t) ∈ L∞ in D, the property that

qd(t), q̇d(t), q̈d(t) exist and are bounded can be used along with Equation 2–4 - Equation

2–6 to conclude that q(t), q̇(t), q̈(t) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞ in D, Property

2.4 can be used to conclude that M(q), Vm(q, q̇), G(q), and F (q̇) ∈ L∞ in D. Thus from

Equation 2–1 and Property 2.5, we can show that u(t) ∈ L∞ in D. Given that r(t) ∈ L∞
in D, it can be shown that µ̇(t) ∈ L∞ in D. Since q̇(t), q̈(t) ∈ L∞ in D, Property 2.4 can

be used to show that V̇m(q, q̇), Ġ(q), Ḟ (q) and Ṁ(q) ∈ L∞ in D; hence, Equation 2–30 can
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be used to show that ṙ(t) ∈ L∞ in D. Since ė1(t), ė2(t), ṙ(t) ∈ L∞ in D, the definitions for

U(y) and z(t) can be used to prove that U(y) is uniformly continuous in D.

Let S ⊂ D denote a set defined as follows:

S ,
{

Φ(t)⊂ D | U2(Φ(t)) < λ1

(
ρ−1

(
2
√

λ3ks

))2
}

. (2–44)

The region of attraction in Equation 2–44 can be made arbitrarily large to include any

initial conditions by increasing the control gain ks (i.e., a semi-global type of stability

result) (41). Theorem 8.4 of (42) can now be invoked to state that

c ‖y(t)‖2 → 0 as t →∞ ∀y(0) ∈ S. (2–45)

Based on the definition of y(t), Equation 2–45 can be used to conclude the results in

Equation 2–31 ∀y(0) ∈ S.

Since u (t) → 0 as e2 (t) → 0 (see Equation 2–18), then Equation 2–23 can be used to

conclude that

µ → h̄ + fd + τd as r (t) , e2(t) → 0. (2–46)

The result in Equation 2–46 indicates that the dynamics in Equation 2–1 converge to the

state-space system in Equation 2–11. Hence, u (t) converges to an optimal controller that

minimizes Equation 2–12 subject to Equation 2–11 provided the gain conditions given in

Equation 2–14 - Equation 2–16 are satisfied.

2.6 Neural Network Extension

The efforts in this section investigate the amalgam of the robust RISE feedback

method with NN methods to yield a direct optimal controller. The utility of combining

these feedforward and feedback methods are twofold. Previous efforts in (13) indicate

that modifying the RISE feedback with a feedforward term can reduce the control effort

and improve the transient and steady state response of the RISE controller. Hence, the

combined results should converge to the optimal controller faster. Moreover, combining

NN feedforward controllers with RISE feedback yields asymptotic results (38). Hence, the
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efforts in this dissertation provide a modification to the results in (7–12) that allows for

asymptotic stability and convergence to the optimal controller rather than to approximate

the optimal controller.

Based on the previous work done in the chapter the unknown LP and non-LP

dynamics are temporarily assumed to be known so that a controller can be developed for a

residual system based on the HJB optimization method for a given quadratic performance

index. The original uncertain nonlinear system is then examined, where the optimal

controller is augmented to include the RISE feedback and NN feedforward terms to

asymptotically cancel the uncertainties. A Lyapunov-based stability analysis is included to

show that the RISE and NN components asymptotically identify the unknown dynamics

(yielding semi-global asymptotic tracking) provided upper bounds on the disturbances are

known and the control gains are selected appropriately. Moreover, the controller converges

to the optimal controller for the a priori given quadratic performance index.

2.7 Neural Networks

The universal approximation property indicates that weights and thresholds exist such

that some continuous function f(x) ∈ RN1+1 can be represented by a three-layer NN as

(43), (44)

f (x) = W T σ
(
V T x

)
+ ε (x) . (2–47)

In Equation 2–47, V ∈ R(N1+1)×N2 and W ∈ R(N2+1)×n are bounded constant ideal weight

matrices for the first-to-second and second-to-third layers respectively, where N1 is the

number of neurons in the input layer, N2 is the number of neurons in the hidden layer,

and n is the number of neurons in the third layer. The activation function4 in Equation

2–47 is denoted by σ (·) : RN1+1 → RN2+1, and ε (x) : RN1+1 → Rn is the functional

reconstruction error. Based on Equation 2–47, the typical three-layer NN approximation

4 A variety of activation functions (e.g., sigmoid, hyperbolic tangent or radial basis)
could be used for the control development.
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for f(x) is given as (43), (44)

f̂ (x) , Ŵ T σ
(
V̂ T x

)
, (2–48)

where V̂ (t) ∈ R(N1+1)×N2 and Ŵ (t) ∈ R(N2+1)×n are subsequently designed estimates of the

ideal weight matrices. The estimate mismatches for the ideal weight matrices, denoted by

Ṽ (t) ∈ R(N1+1)×N2 and W̃ (t) ∈ R(N2+1)×n, are defined as

Ṽ , V − V̂ , W̃ , W − Ŵ ,

and the mismatch for the hidden-layer output error for a given x(t), denoted by σ̃(x) ∈
RN2+1, is defined as

σ̃ , σ − σ̂ = σ
(
V T x

)− σ
(
V̂ T x

)
. (2–49)

One of the NN estimate properties that facilitate the subsequent development is

described as follows.

Property 2.7: (Boundedness of the Ideal Weights) The ideal weights are assumed to exist

and be bounded by known positive values so that

‖V ‖2
F = tr(V T V ) ≤ V̄B (2–50)

‖W‖2
F = tr(W T W ) ≤ W̄B (2–51)

where ‖·‖F is the Frobenius norm of a matrix, tr (·) is the trace of a matrix.

To develop the control input, the error system in Equation 2–6 is premultiplied by

M (q) and the expressions in Equation 2–1, Equation 2–4, and Equation 2–5 are utilized to

obtain

Mr = −Vme2 + h + τd + α2Me2 − u. (2–52)

To facilitate the subsequent stability analysis the auxiliary function fd (qd, q̇d, q̈d) ∈ Rn,

which is defined as

fd , M(qd)q̈d + Vm(qd, q̇d)q̇d + G(qd) + F (q̇d) , (2–53)
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is added and subtracted to Equation 2–52 to yield

Mr = −Vme2 + h̄ + fd + τd + α2Me2 − u, (2–54)

where h̄ (q,q̇,qd,q̇d,q̈d) ∈ Rn is defined as

h̄ , h− fd. (2–55)

The expression in Equation 2–53 can be represented by a three-layer NN as

fd = W T σ
(
V T xd

)
+ ε (xd) . (2–56)

In Equation 2–56, the input xd(t) ∈ R3n+1 is defined as xd(t) , [1 qT
d (t) q̇T

d (t) q̈T
d (t)]T so

that N1 = 3n where N1 was introduced in Equation 2–47. Based on the Property 2.5 that

the desired trajectory is bounded, the following inequalities hold

‖ε (xd)‖ ≤ εb1 ‖ε̇ (xd, ẋd)‖ ≤ εb2 (2–57)

‖ε̈ (xd, ẋd, ẍd)‖ ≤ εb3 ,

where εb1 , εb2 , εb3 ∈ R are known positive constants.

Based on the open-loop error system in Equation 2–52, the control input is composed

of the optimal control developed in Equation 2–18, a three-layer NN feedforward term,

plus the RISE feedback term as

u = f̂d + µ− uo. (2–58)

Specifically, µ(t) ∈ Rn denotes the RISE feedback control term defined in Equation 2–29.

The feedforward NN component in Equation 2–58, denoted by f̂d(t) ∈ Rn, is generated as

f̂d , Ŵ T σ
(
V̂ T xd

)
. (2–59)
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The estimates for the NN weights in Equation 2–59 are generated on-line (there is no

off-line learning phase) as

·
Ŵ = proj(Γ1σ̂

′
V̂ T ẋde

T
2 ) (2–60)

·
V̂ = proj(Γ2ẋd(σ̂

′T Ŵe2)
T )

where σ
′
(V̂ T x) ≡ dσ

(
V T x

)
/d

(
V T x

) |V T x=V̂ T x, and Γ1 ∈ R(N2+1)×(N2+1), Γ2 ∈
R(3n+1)×(3n+1) are constant, positive definite, symmetric matrices. In Equation 2–60,

proj(·) denotes a smooth convex projection algorithm that ensures Ŵ (t) and V̂ (t) remain

bounded inside known bounded convex regions. See Section 4.3 in (45) for further details.

The closed-loop tracking error system is obtained by substituting Equation 2–58 into

Equation 2–52 as

Mr = −Vme2 + α2Me2 + fd − f̂d + h̄ + τd + uo − µ. (2–61)

To facilitate the subsequent stability analysis, the time derivative of Equation 2–61 is

determined as

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 + α2Mė2 + ḟd −
·
f̂d +

·
h̄ + τ̇d + u̇o − µ̇. (2–62)

Using Equation 2–47 and Equation 2–59, the closed-loop error system in Equation 2–62

can be expressed as

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 + α2Mė2 + W T σ
′
V T ẋd −

·
Ŵ T σ̂ (2–63)

− Ŵ T σ̂
′
·

V̂ T xd − Ŵ T σ̂
′
V̂ T ẋd + ε̇ +

·
h̄ + τ̇d + u̇o − µ̇,
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where the notations σ̂ and σ̃ are introduced in Equation 2–49. Adding and subtracting the

terms W T σ̂
′
V̂ T ẋd + Ŵ T σ̂

′
Ṽ T ẋd to Equation 2–63, yields

Mṙ = −Ṁr − V̇me2 − Vmė2 + α2Ṁe2 + α2Mė2 + Ŵ T σ̂
′
Ṽ T ẋd (2–64)

+ W̃ T σ̂
′
V̂ T ẋd −

·
Ŵ T σ̂ − Ŵ T σ̂

′
·

V̂ T xd + W T σ
′
V T ẋd

−W T σ̂
′
V̂ T ẋd − Ŵ T σ̂

′
Ṽ T ẋd + ε̇ +

·
h̄ + τ̇d + u̇o − µ̇.

Using Equation 2–18 and the NN weight tuning laws in Equation 2–60, the expression in

Equation 2–64 can be rewritten as

Mṙ = −1

2
Ṁ(q)r + Ñ + N − e2 −R−1r − (ks + 1)r − β1sgn(e2), (2–65)

where the fact that the time derivative of Equation 2–29 is given as

µ̇ = (ks + 1)r + β1sgn(e2) (2–66)

was utilized, and where the unmeasurable auxiliary terms Ñ(e1, e2, r, t), N
(
Ŵ , V̂ , xd, t

)
∈

Rn are defined as

Ñ , −1

2
Ṁr +

·
h̄ + e2 + α2R

−1e2 − V̇me2 − Vmė2 + α2Ṁe2 + α2Mė2 (2–67)

− proj(Γ1σ̂
′
V̂ T ẋde

T
2 )T σ̂ − Ŵ T σ̂

′
proj(Γ2ẋd(σ̂

′T Ŵe2)
T )T xd

N , ND + NB. (2–68)

In Equation 2–68, ND(t) ∈ Rn is defined as

ND = W T σ
′
V T ẋd + ε̇ + τ̇d, (2–69)

while NB

(
Ŵ , V̂ , xd

)
∈ Rn is further segregated as

NB = NB1 + NB2 , (2–70)
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where NB1

(
Ŵ , V̂ , xd

)
∈ Rn is defined as

NB1 = −W T σ̂
′
V̂ T ẋd − Ŵ T σ̂

′
Ṽ T ẋd, (2–71)

and the term NB2

(
Ŵ , V̂ , xd

)
∈ Rn is defined as

NB2 = Ŵ T σ̂
′
Ṽ T ẋd + W̃ T σ̂

′
V̂ T ẋd. (2–72)

Segregating the terms as in Equation 2–69 - Equation 2–72 facilitates the development of

the NN weight update laws and the subsequent stability analysis. For example, the terms

in Equation 2–69 are grouped together because the terms and their time derivatives

can be upper bounded by a constant and rejected by the RISE feedback, whereas

the terms grouped in Equation 2–70 can be upper bounded by a constant but their

derivatives are state dependent. The terms in Equation 2–70 are further segregated

because NB1

(
Ŵ , V̂ , xd

)
will be rejected by the RISE feedback, whereas NB2

(
Ŵ , V̂ , xd

)

will be partially rejected by the RISE feedback and partially canceled by the adaptive

update law for the NN weight estimates.

In a similar manner as in (41), the Mean Value Theorem can be used to develop the

following upper bound5

∥∥∥Ñ(t)
∥∥∥ ≤ ρ (‖y‖) ‖y‖ , (2–73)

where y(t) ∈ R3n is defined as

y(t) , [eT
1 eT

2 rT ]T , (2–74)

and the bounding function ρ(‖y‖) ∈ R is a positive globally invertible nondecreasing

function. The following inequalities can be developed based on Property 2.6, Equation

5 See Appendix C for details on this inequality
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2–50, Equation 2–51, Equation 2–57, Equation 2–60 and Equation 2–70 - Equation 2–72:

‖ND‖ ≤ ζ1 ‖NB‖ ≤ ζ2

∥∥∥ṄD

∥∥∥ ≤ ζ3 (2–75)

∥∥∥ṄB

∥∥∥ ≤ ζ4 + ζ5 ‖e2‖ . (2–76)

In Equation 2–75 and Equation 2–76, ζi ∈ R (i = 1, 2, ..., 5) are known positive constants.

2.8 Stability Analysis

The stability of the RISE, NN, and optimal controller given in Equation 2–58 and

Equation 2–60 can be examined through the following theorem.

Theorem 2.2: The nonlinear optimal controller given in Equation 2–58 and

Equation 2–60 ensures that all system signals are bounded under closed-loop operation

and that the position tracking error is regulated in the sense that

‖e1(t)‖ → 0 as t →∞. (2–77)

The result in Equation 2–77 can be achieved provided the control gain ks introduced

in Equation 2–29 is selected sufficiently large, and α1, α2 are selected according to the

following sufficient conditions:

λmin (α1) >
1

2
α2 > β2 + 1, (2–78)

where λmin (·) ∈ R denotes the minimum eigenvalue, and βi (i = 1, 2) are selected

according to the following sufficient conditions:

β1 > ζ1 + ζ2 +
1

α2

ζ3 +
1

α2

ζ4 β2 > ζ5, (2–79)

where ζi ∈ R, i = 1, 2,..., 5 are introduced in Equation 2–75 - Equation 2–76, β1 was

introduced in Equation 2–29, and β2 is introduced in Equation 2–82. Furthermore, u (t)

converges to an optimal controller that minimizes Equation 2–12 subject to Equation 2–11

provided the gain conditions given in Equation 2–14 - Equation 2–16 are satisfied.
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Remark: The control gain α1 can not be arbitrarily selected, rather it is calculated

using a Lyapunov equation solver. Its value is determined based on the value of Q and R.

Therefore Q and R must be chosen such that Equation 2–32 is satisfied.

Proof: Let D ⊂ R3n+2 be a domain containing Φ(t) = 0, where Φ(t) ∈ R3n+2 is

defined as

Φ(t) , [yT (t)
√

O(t)
√

G(t)]T . (2–80)

In Equation 2–80, the auxiliary function O(t) ∈ R is defined as

O(t) , β1

n∑
i=1

|e2i
(0)| − e2(0)T N(0)−

∫ t

0

L(τ)dτ, (2–81)

where e2i
(0) is equal to the ith element of e2(0) and the auxiliary function L(t) ∈ R is

defined as

L(t) , rT (NB1(t) + ND(t)− β1sgn(e2)) (2–82)

+ ėT
2 (t) NB2 (t)− β2 ‖e2(t)‖2 ,

where βi ∈ R (i = 1, 2) are positive constants chosen according to the sufficient conditions

in Equation 2–79. Provided the sufficient conditions introduced in Equation 2–79 are

satisfied6

∫ t

0

L(τ)dτ ≤ β1

n∑
i=1

|e2i
(0)| − e2(0)T NB(0). (2–83)

Hence, Equation 2–83 can be used to conclude that O(t) ≥ 0. The auxiliary function

G(t) ∈ R in Equation 2–80 is defined as

G(t) =
α2

2
tr

(
W̃ T Γ−1

1 W̃
)

+
α2

2
tr

(
Ṽ T Γ−1

2 Ṽ
)

. (2–84)

Since Γ1 and Γ2 are constant, symmetric, and positive definite matrices and α2 > 0, it is

straightforward that G(t) ≥ 0.

6 See Appendix E for details on this inequality
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Let VL(Φ, t) : D × [0,∞) → R be a continuously differentiable positive definite

function defined as

VL(Φ, t) , eT
1 e1 +

1

2
eT
2 e2 +

1

2
rT M(q)r + O + G, (2–85)

which satisfies the following inequalities:

U1(Φ) ≤ VL(Φ, t) ≤ U2(Φ) (2–86)

provided the sufficient conditions introduced in Equation 2–79 are satisfied. In Equation

2–86, the continuous positive definite functions U1(Φ), and U2(Φ) ∈ R are defined as

U1(Φ) , λ1 ‖Φ‖2, and U2(Φ) , λ2(q) ‖Φ‖2 , where λ1, λ2(q) ∈ R are defined as

λ1 , 1

2
min {1,m1} λ2(q) , max

{
1

2
m̄(q), 1

}
,

where m1, m̄(q) are introduced in Equation 2–2. After taking the time derivative of

Equation 2–85, V̇L(Φ, t) can be expressed as

V̇L(Φ, t) = 2eT
1 ė1 + eT

2 ė2 +
1

2
rT Ṁ(q)r + rT M (q) ṙ + Ȯ + Ġ.

By utilizing Equation 2–5, Equation 2–6, Equation 2–65, and substituting in for the time

derivative of P (t) and G (t), V̇ (Φ, t) can be simplified as

V̇L(Φ, t) = −2eT
1 α1e1 − (ks + 1) ‖r‖2 − rT R−1r2eT

2 e1 + β2 ‖e2(t)‖2 (2–87)

+ rT Ñ(t)− α2 ‖e2‖2 + α2e
T
2

[
Ŵ T σ̂

′
Ṽ T ẋd + W̃ T σ̂

′
V̂ T ẋd

]

+ tr

(
α2W̃

T Γ−1
1

·
W̃

)
+ tr

(
α2Ṽ

T Γ−1
2

·
Ṽ

)
.

Based on the fact that

eT
2 e1 ≤ 1

2
‖e1‖2 +

1

2
‖e2‖2 ,
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and using Equation 2–60, the expression in Equation 2–87 can be simplified as

V̇L(Φ, t) ≤ rT Ñ(t)− (ks + 1 + λmin

(
R−1

)
) ‖r‖2 (2–88)

− (2λmin (α1)− 1) ‖e1‖2 − (α2 − 1− β2) ‖e2‖2 .

By using Equation 2–73, the expression in Equation 2–88 can be rewritten as

V̇L(Φ, t) ≤ −λ3 ‖y‖2 − [
ks ‖r‖2 − ρ(‖y‖) ‖r‖ ‖y‖] , (2–89)

where λ3 , min{2λmin (α1) − 1, α2 − 1 − β2, 1 + λmin (R−1)}; hence, α1, and α2 must

be chosen according to the sufficient condition in Equation 2–78. After completing the

squares for the terms inside the brackets in Equation 2–89, the following expression can be

obtained:

V̇L(Φ, t) ≤ −λ3 ‖y‖2 +
ρ2(‖y‖) ‖y‖2

4ks

≤ −U(Φ), (2–90)

where U(Φ) = c ‖y‖2, for some positive constant c, is a continuous, positive semi-definite

function that is defined on the following domain:

D ,
{

Φ ∈ R3n+2 | ‖Φ‖ ≤ ρ−1
(
2
√

λ3ks

)}
.

The inequalities in Equation 2–86 and Equation 2–90 can be used to show that VL(Φ, t) ∈
L∞ in D; hence, e1(t), e2(t), and r(t) ∈ L∞ in D. Given that e1(t), e2(t), and r(t) ∈ L∞
in D, standard linear analysis methods can be used to prove that ė1(t), ė2(t) ∈ L∞ in D
from Equation 2–5 and Equation 2–6. Since e1(t), e2(t), r(t) ∈ L∞ in D, the property that

qd(t), q̇d(t), q̈d(t) exist and are bounded can be used along with Equation 2–4 - Equation

2–6 to conclude that q(t), q̇(t), q̈(t) ∈ L∞ in D. Since q(t), q̇(t) ∈ L∞ in D, Property

2.4 can be used to conclude that M(q), Vm(q, q̇), G(q), and F (q̇) ∈ L∞ in D. Thus from

Equation 2–1 and Property 2,5, we can show that u(t) ∈ L∞ in D. Given that r(t) ∈ L∞
in D, Equation 2–66 can be used to show that µ̇(t) ∈ L∞ in D. Since q̇(t), q̈(t) ∈ L∞
in D, Property 2.4 can be used to show that V̇m(q, q̇), Ġ(q), Ḟ (q) and Ṁ(q) ∈ L∞ in

D; hence, Equation 2–65 can be used to show that ṙ(t) ∈ L∞ in D. Since ė1(t), ė2(t),
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ṙ(t) ∈ L∞ in D, the definitions for U(y) and z(t) can be used to prove that U(y) is

uniformly continuous in D.

Let S ⊂ D denote a set defined as follows:

S ,
{

Φ(t)⊂ D | U2(Φ(t)) < λ1

(
ρ−1

(
2
√

λ3ks

))2
}

. (2–91)

The region of attraction in Equation 2–91 can be made arbitrarily large to include any

initial conditions by increasing the control gain ks (i.e., a semi-global type of stability

result) (41). Theorem 8.4 of (42) can now be invoked to state that

c ‖y(t)‖2 → 0 as t →∞ ∀y(0) ∈ S. (2–92)

Based on the definition of y(t), Equation 2–92 can be used to show that

‖e1(t)‖ → 0 as t →∞ ∀y(0) ∈ S. (2–93)

The result in Equation 2–92 indicates that as t →∞, Equation 2–61 reduces to

f̂d + µ = h + τd. (2–94)

Therefore, dynamics in Equation 2–7 converge to the state-space system in Equation 2–11.

Hence, u (t) converges to an optimal controller that minimizes Equation 2–12 subject

to Equation 2–11 provided the gain conditions given in Equation 2–14 - Equation 2–16,

Equation 2–78, and Equation 2–79 are satisfied.

2.9 Simulation and Experimental Results

2.9.1 Simulation

To examine the performance of the controllers proposed in Equation 2–20 and

Equation 2–58 a numerical simulation was performed. The simulation is based on the
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dynamics for a two-link robot given as




u1

u2


 =




p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2







q̈1

q̈2


 (2–95)

+



−p3s2q̇2 −p3s2 (q̇1 + q̇2)

p3s2q̇1 0







q̇1

q̇2




+




fd1 0

0 fd2







q̇1

q̇2


 +




τd1

τd2


 ,

where p1 = 3.473 kg · m2, p2 = 0.196 kg · m2, p3 = 0.242 kg · m2, fd1 = 5.3 Nm · sec,
fd2 = 1.1 Nm · sec, c2 denotes cos(q2), s2 denotes sin(q2) and τd1 , τd2 denote bounded

disturbances defined as

τd1 = 0.1 sin(t) + 0.15 cos(3t)

τd2 = 0.15 sin(2t) + 0.1 cos(t).
(2–96)

The desired trajectory is given as

qd1 = qd2 =
1

2
sin(2t), (2–97)

and the initial conditions of the robot were selected as

q1 (0) = q2 (0) = 14.3 deg

q̇1 (0) = q̇2 (0) = 28.6 deg/ sec .

The weighting matrixes for both controllers were chosen as

Q11 =




20 2

2 20


 Q12 =



−4 5

3 −6




Q22 = diag

{
35, 35

}
.
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which using Equation 2–14, Equation 2–15, and Equation 2–16 yielded the following values

for K, α1, and R

K =




4 −4

−4 6


 α1 =




8.1 5.6

5.6 5.4




R = diag

{
1

35
,

1

35

}
.

The control gains for both controllers were selected as

α2 = 20 β1 = 20 ks = 75.

The neural network update law weights were selected as

Γ1 = 5I11 Γ2 = 500I7.

The tracking errors and the control inputs for the RISE and optimal controller are shown

in Figure 2-1 and Figure 2-2, respectively. To show that the RISE feedback identifies the

nonlinear effects and bounded disturbances, a plot of the difference is shown in Figure 2-3.

As this difference goes to zero, the dynamics in Equation 2–1 converge to the state-space

system in Equation 2–11, and the controller becomes optimal.

The tracking errors and the control inputs for the RISE, NN, and optimal controller

are shown in Figure 2-4 and Figure 2-5, respectively. To show that the RISE feedback and

feedforward NN identifies the nonlinear effects and bounded disturbances, a plot of the

difference is shown in Figure 2-6. As this difference goes to zero, the dynamics in Equation

2–1 converge to the state-space system in Equation 2–11, and the controller becomes

optimal.

2.9.2 Experiment

To test the validity of the controllers developed in Equation 2–20 and Equation 2–58

an experiment was performed on a two-link robot testbed as depicted in Figure 2-7. The

testbed is composed of a two-link direct drive revolute robot consisting of two aluminum

links, mounted on a 240.0 [Nm] (base joint) and 20.0 [Nm] (second joint) switched
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Figure 2-1. The simulated tracking errors for the RISE and optimal controller.
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Figure 2-2. The simulated torques for the RISE and optimal controller.
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Figure 2-3. The difference between the RISE feedback and the nonlinear effects and
bounded disturbances.
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Figure 2-4. The simulated tracking errors for the RISE, NN, and optimal controller.
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Figure 2-5. The simulated torques for the RISE, NN, and optimal controller.
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Figure 2-6. The difference between the RISE feedback and feedforward NN and the

nonlinear effects and bounded disturbances (i.e., .
(
f̂d + µ

)
− (h + τd)).
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Figure 2-7. The experimental testbed consists of a two-link robot. The links are mounted
on two NSK direct-drive switched reluctance motors.

reluctance motors. The motors are controlled through power electronics operating in

torque control mode. The motor resolvers provide rotor position measurements with a

resolution of 614400 pulses/revolution, and a standard backwards difference algorithm is

used to numerically determine velocity from the encoder readings. A Pentium 2.8 GHz PC

operating under QNX hosts the control algorithm, which was implemented via a custom

graphical user-interface (46), to facilitate real-time graphing, data logging, and the ability

to adjust control gains without recompiling the program. Data acquisition and control

implementation were performed at a frequency of 1.0 kHz using the ServoToGo I/O board.

The control objective is to track the desired time-varying trajectory by using the

proposed control laws. To achieve this control objective, the control gains α2, ks, and

β1 defined as scalars in Equation 2–6 and Equation 2–29, were implemented (with

non-consequential implications to the stability result) as diagonal gain matrices. The

weighting matrixes for both controllers were chosen as

Q11 =




40 2

2 40


 Q12 =



−4 5

3 −6




Q22 = diag

{
4, 4

}
,
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which using Equation 2–14, Equation 2–15, and Equation 2–16 yielded the following values

for K, α1, and R

K =




4 −4

−4 6


 α1 =




15.6 10.6

10.6 10.4




R = diag

{
0.25, 0.25

}
.

The control gains for both controllers were selected as

α2 = diag

{
60, 35

}
β1 = diag

{
5, 0.1

}

ks = diag

{
140, 20

}
.

The neural network update law weights were selected as

Γ1 = 25I11 Γ2 = 25I7.

The desired trajectories for both controllers was chosen as follows:

qd1 = qd2 = 60 sin(2t)
(
1− exp

(−0.01t3
))

. (2–98)

To compare the developed controllers to the controllers in literature, the controller in (7)

given by

u (t) = Ŵ T σ (x)− uo − η, (2–99)

was implemented. In Equation 2–99, η (t) ∈ Rn is robustifying term defined as

η = −kz1
r

‖r‖ ,

where kz1 ∈ R and Ŵ (t)T σ (x) is a functional link neural network estimate for Equation

2–8. The neural network update law is given by

·
Ŵ = Γ1σ (x) eT

2 − kz2 ‖z‖ Ŵ ,
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Table 2-1. Tabulated values for the 10 runs for the developed controllers.

RISE RISE + NN
Average Max Steady State Error (deg)- Link 1 0.0416 0.0416
Average Max Steady State Error (deg)- Link 2 0.0573 0.0550
Average RMS Error (deg) - Link 1 0.0128 0.0139
Average RMS Error (deg) - Link 2 0.0139 0.0143
Average RMS Torque (Nm) - Link 1 9.4217 9.4000
Average RMS Torque (Nm) - Link 2 1.7375 1.6825
Error Standard Deviation (deg) - Link 1 0.0016 0.0011
Error Standard Deviation (deg) - Link 2 0.0019 0.0015
Torque Standard Deviation (Nm) - Link 1 0.2775 0.3092
Torque Standard Deviation (Nm) - Link 2 0.0734 0.1746

where kz1 ∈ R. The control gains relating to the optimal term were kept constant,

however, the neural network update law weight and addition gains were selected as follows:

Γ1 = 15I15 kz2 = 0.1

kz1 = diag

{
5, 1

}
.

For all experiments, the rotor velocity signal is obtained by applying a standard

backwards difference algorithm to the position signal. The integral structure for the RISE

term in Equation 2–29 was computed on-line via a standard trapezoidal algorithm. In

addition, all the states were initialized to zero. Each experiment (excluding the controller

in Equation 2–99) using was performed ten times, and data from the experiments is

displayed in Table 2-1.

Figure 2-8 and Figure 2-9 depict the tracking errors and control torques for one

experimental trial for the RISE and optimal controller. Figure 2-10 and Figure 2-11

depict the tracking errors and control torques for one experimental trial for the RISE and

optimal controller. Figure 2-12 and Figure 2-13 depict the tracking errors and control

torques for controller in Equation 2–99. The experiment for the controller given in

Equation 2–99 was run for a longer than the developed controllers, because more time was

needed to gauge the control performance.
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Figure 2-8. Tracking errors resulting from implementing the RISE and optimal controller.
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Figure 2-9. Torques resulting from implementing the RISE and optimal controller.
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Figure 2-10. Tracking errors resulting from implementing the RISE, NN, and optimal
controller.
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Figure 2-11. Torques resulting from implementing the RISE, NN, and optimal controller.
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Figure 2-12. Tracking errors resulting from implementing the controller developed in
literature.
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Figure 2-13. Torques resulting from implementing the controller developed in literature.
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2.9.3 Discussion

The mismatch between the identifier and the disturbance can not be calculated in

a physical system because the disturbance is not exactly known. Therefore, simulation

results are use to show that the RISE feedback and RISE feedback plus a feedforward NN

identifies the nonlinear effects and bounded disturbances. The simulation is also beneficial

because it allows a comparison of how the optimal controllers perform in the presence

of parametric uncertainty compared to the feedback linearized system in Equation 2–11,

where as it is impossible to perfectly feedback linearize a real system. For the comparison,

the contribution of the feedforward NN and RISE feedback term in Equation 2–20 and

Equation 2–58 as well as contribution of h (q,q̇,qd,q̇d,q̈d) and τd (t) in Equation 2–9 are not

considered, since only the input uo (t) was included in the cost functional Equation 2–12.

For the the feedback linearized system, assuming no uncertainty, J (uo) was calculated to

be 40.41. For the RISE only controller, J (uo) was calculated to be 43.32. For the RISE

and NN controller, J (uo) was calculated to be 42.43.

The experiments show that both controllers stabilize the system. Both controllers

keep the average maximum steady state (defined as the last 5 seconds of the experiment)

error under 0.05 degrees for the first link and under 0.06 degrees for the second link. The

data in Table 2.1 indicates that the RISE and NN controller resulted in slightly more

RMS error for each link, although a reduced or equal maximum steady state error, with a

slightly reduced torque. The reduced standard deviation of the RISE and NN controller

show that the results from each run were more alike than the RISE controller alone, but

there was greater variance in the torque. Both controllers performed much better than the

controller developed in (7) for the same cost. The controller in (7) may be able to achieve

similar results for a different cost, however, changing the cost limits the comparisons that

can be made between the controllers. Keeping the cost the same results in the optimal

part of the controller being the same; the only part of the controller design to change is
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the identifier. If the cost was changed, the optimal control portion would change and the

controllers would be completely different.
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CHAPTER 3
INVERSE OPTIMAL CONTROL OF A NONLINEAR EULER-LAGRANGE SYSTEM

Inverse optimal control (IOC) (15–21) was developed as a way to design optimal

controllers for nonlinear systems without having to solve an HJB equation. In IOC

design, a control Lyapunov function (CLF), which can be shown to also be a value

function, is used to design a controller which stabilizes a system. It is then shown that the

developed controller minimizes a meaningful cost (i.e., a cost that puts a positive penalty

on the states and actuation). Due to the fact that the controller is designed before the

cost, the cost can not be chosen a priori. However, an advantage of the IOC is that the

controller does not have to converge to an optimal solution (like the previously developed

controllers). Adaptive IOC methods (22–26) have been developed for systems that contain

linear in the parameters (LP) uncertainty.

Previous IOCs focus on the class problems modeled as

ẋ = f(x) + F (x)θ + g(x)u, (3–1)

for some state x(t) ∈ Rn, where f(x) ∈ Rn is a known smooth vector valued function,

F (x) ∈ Rn×p, g(x) ∈ Rn×m are smooth matrix valued functions, θ ∈ Rp is a vector of

unknown constants, and u (t) ∈ Rm is the control. In general, the input gain matrix g(x)

must be known. Classes of systems where the dynamics can be expressed as Equation

3–1 were used to develop inverse optimal controllers because that form facilitated the

development of a control Lyapunov function. Systems with a constant inertia matrix, such

as the applications in (25) and (26), can easily be transformed into Equation 3–1, unlike

systems with an uncertain state-dependent inertia matrix or uncertainty in the input

matrix.

Based on the theoretical foundation presented in (22; 25; 40), an adaptive IOC is

developed in this Chapter. The class of systems considered in this Chapter are uncertain

Euler-Lagrange systems, which do not adhere to the model given in Equation 3–1.
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The developed controller achieves globally asymptotically tracking for the generalized

coordinates of the system as it minimizes a meaningful (i.e., a positive function of the

states and control input) performance index. To develop the optimal controller for the

uncertain system, the open loop error system is segregated to include two adaptive terms:

one based explicitly on the tracking error and one not. This is done because only terms

that depend explicitly on the tracking error contribute to the cost functional. A Lyapunov

analysis is provided to examine the stability of the developed controller and to determine

a respective meaningful cost functional . It is then shown that the cost is minimized

without having to prove the Lyapunov function is a CLF. Preliminary simulation results

are included to illustrate the performance of the controller.

The remainder of this chapter is organized as follows. In Section 3.1, the model is

given along with several of its properties. In Section 3.2, the control objective is stated

and an error system is formulated. In Section 3.3, the stability of the controller is proven.

In Section 3.4, a meaningful cost is developed and shown to be minimized by the control.

In Section 3.5, simulation and experimental results are presented.

3.1 Dynamic Model and Properties

The class of nonlinear dynamic systems considered in this chapter is assumed to be

modeled by the following Euler-Lagrange (39) formulation:

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + Fdq̇ = u(t), (3–2)

where, M(q), Vm(q, q̇), G(q), q(t), q̇(t), q̈(t), and u(t) are defined in Section 2.1, and

Fd ∈ Rn×n denotes the constant, diagonal, positive-definite, viscous friction coefficient

matrix. The subsequent development is based on the assumption that q(t) and q̇(t) are

measurable and that M(q), Vm(q, q̇), G(q), and Fd are unknown. In addition to Properties

2.1, 2.2, and 2.3 the following properties will be exploited in the subsequent development.

Property 3.1: If q(t), q̇(t) ∈ L∞, then M(q), Vm(q, q̇), and G(q) are bounded.
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Property 3.2: There exists a positive scalar constant ζf ∈ R such that

‖Fd‖ ≤ ζf .

Property 3.3: The desired trajectory is assumed to be designed such that qd(t), q̇d(t),

and q̈d(t) ∈ Rn exist, and are bounded.

Property 3.4: The dynamics in Equation 3–2 can be linear parameterized as

Y (q, q̇, q̈) θ = M(q)q̈ + Vm(q, q̇)q̇ + G(q) + Fdq̇, (3–3)

where θ ∈ Rp contains the unknown constant system parameters, and the nonlinear

regression matrix Y (q, q̇, q̈) ∈ Rn×p contains known functions of the link position, velocity,

and acceleration, q (t) , q̇ (t) , q̈ (t) ∈ Rn, respectively.

3.2 Control Development

As in Chapter 2, the control objective is to ensure that the generalized coordinates

of a system track a desired time-varying trajectory despite uncertainties in the dynamic

model, while minimizing a performance index. To quantify the tracking objective, a

position tracking error denoted by e(t) ∈ Rn, is defined as

e , qd − q. (3–4)

To facilitate the subsequent control design and stability analysis, a filtered tracking error

denoted by r(t) ∈ Rn, is defined as

r = ė + αe, (3–5)

where α ∈ R is a positive, constant gain. By taking the time derivative of r(t) and

premultipling by M (q) the following open-loop error system can be obtained:

M (q) ṙ = M (q) q̈d + Vm (q, q̇) q̇ + G (q) + Fdq̇ + αM (q) ė− u, (3–6)
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where Equation 3–2, Equation 3–4, and Equation 3–5 were used. The expression in

Equation 3–6 can then be rewritten as

M (q) ṙ = −Vm (q, q̇) r + Y1θ + Y2θ − u, (3–7)

where

Y1θ = αVm (q, q̇) e + αM (q) ė− Fdė (3–8)

Y2θ = M (q) q̈d + Vm (q, q̇) q̇d + G (q) + Fdq̇d. (3–9)

In Equation 3–8 and Equation 3–9 Y1 (q, q̇) , and Y2 (q, q̇, q̇d, q̈d) ∈ Rn×p, are nonlinear

regression matrices that contain known functions of the position, velocity, desired velocity,

and desired acceleration. Segregating the terms in Equation 3–8 and Equation 3–9 is

not required to achieve the tracking control objective, rather the terms are segregated

to facilitate the development of the optimal control law. Although both terms contain

the same unknown parameters, Equation 3–8 explicitly depends on the tracking error,

while Equation 3–9 does not (it is dependent the position and desired position but not

dependent on their difference). Therefore, the total control u (t) is made up of two parts:

uf (t) based on Equation 3–9 which is independent of the tracking error and therefore the

optimization, and the feedback law uo (t) based on Equation 3–8 which is later shown to

minimize a meaningful cost (i.e., a cost that puts a positive penalty on the states and

actuation). The control is defined as

uf = Y2θ̂ (3–10)

u = uf − u0 = Y2θ̂ − u0, (3–11)

where uf , uo ∈ Rn and θ̂(t) ∈ Rp is an estimate for θ. The parameter estimate θ̂(t) in

Equation 3–10 and Equation 3–11 is generated by the adaptive update law

·
θ̂ = Γ (Y1 + Y2)

T r, (3–12)
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where Γ ∈ Rp×p is a constant, positive definite, symmetric, gain matrix. Substituting

Equation 3–11 into Equation 3–7 yields

M (q) ṙ = −Vm (q, q̇) r + Y1θ + Y2θ̃ + u0, (3–13)

where the parameter estimation error θ̃(t) ∈ Rp is defined as

θ̃ = θ − θ̂. (3–14)

Based on Equation 3–13 and the subsequent stability analysis, the control input is

designed as

uo = −R−1r = −
(

K1 +
ΨT

1 Ψ1

2
+

ΨT
2 K−1

1 Ψ2

2

)
r, (3–15)

where R−1
(
x, θ̂

)
, K1 ∈ Rn×n are positive definite and symmetric, and Ψ1 (t) , Ψ2 (t) ∈

Rn×n are defined as

Ψ1 =

[
1√
α

In +
√

αV̂m (q, q̇)−
√

α3M̂ (q) +
√

αF̂d

]T

(3–16)

Ψ2 =
[
αM̂ (q)− F̂d

]
, (3–17)

where In ∈ Rn×n is an identity matrix.

3.3 Stability Analysis

The stability of the controller given in Equation 3–10 - Equation 3–12, and Equation

3–15 can be examined through the following theorem.

Theorem 3.1: The adaptive update law given by Equation 3–12 and the feedback

law given by Equation 3–15 ensures global asymptotic tracking of the system in Equation

3–13 in the sense that

‖e(t)‖ → 0 ‖r(t)‖ → 0 as t →∞.
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Proof: Let Va(e, r, θ̃, t) ∈ R denote a positive definite, radially unbounded function

defined as

Va = V +
1

2
θ̃T Γ−1θ̃, (3–18)

where V (e, r, t) ∈ R is defined as

V =
1

2
eT e +

1

2
rT M (q) r. (3–19)

After using Equation 3–13 and Property 2.3, the time derivative of Equation 3–18 is

V̇a = eT ė + rT
(
Y1θ + Y2θ̃

)
+ rT u0 − θ̃T Γ−1

·
θ̂. (3–20)

After adding and subtracting rT (t) Y1 (q, q̇) θ̂ (t) the expression in Equation 3–20 can be

expressed as

V̇a = eT ė + rT Y1θ̂ + rT uo + θ̃T

(
(Y1 + Y2)

T r − Γ−1
·
θ̂

)
. (3–21)

After substituting the adaptive update law in Equation 3–12 the expression in Equation

3–21 reduces to

V̇a = eT ė + rT Y1θ̂ + rT uo. (3–22)

The term Y1 (q, q̇) θ̂ (t) in Equation 3–22 can be expressed as

Y1θ̂ = αV̂m (q, q̇) e + αM̂ (q) (r − αe)− F̂d (r − αe) , (3–23)

where V̂m (q, q̇) , M̂ (q) , F̂d ∈ Rn×n denote the estimates for the centripetal-Coriolis matrix,

inertia matrix, and the viscous friction coefficient matrix respectively. By substituting

ė (t) from Equation 3–5 and using Equation 3–23, the expression in Equation 3–21 can be

written as

V̇a = rT
(
In + αV̂m (q, q̇)− α2M̂ (q) + αF̂d

)
e (3–24)

− αeT e + rT
(
αM̂ (q)− F̂d

)
r + rT uo

= −αeT e +
√

αrT Ψ1e + rT Ψ2r + rT uo,
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where Ψ1 (t) and Ψ2 (t) are introduced in Equation 3–16 and Equation 3–17, respectively.

Substituting the expression in Equation 3–15 for uo (t) yields

V̇a = −αeT e +
√

αrT ΨT
1 e + rT Ψ2r − rT

(
K1 +

ΨT
1 Ψ1

2
+

ΨT
2 K−1

1 Ψ2

2

)
r. (3–25)

Applying nonlinear damping to Equation 3–25 yields

V̇a = −α

2
eT e− 1

2
rT K1r − 1

2

∥∥√αe−Ψ1r
∥∥2

(3–26)

− 1

2
rT (K1 −Ψ2)

T K−1
1 (K1 −Ψ2) r.

The expression in Equation 3–26 can be reduced to

V̇a ≤ −α

2
eT e− 1

2
rT K1r. (3–27)

The expressions in Equation 3–18, Equation 3–19, and Equation 3–27 can be used to show

that Va(e, r, θ̃, t) ∈ L∞; hence, e(t), r(t), and θ̃(t) ∈ L∞. Given that e(t) and r(t) ∈ L∞,

standard linear analysis methods can be used to prove that ė(t) ∈ L∞ (and hence, e(t) is

uniformly continuous) from Equation 3–5. Since e(t) and ė(t), ∈ L∞, the property that

qd(t) and q̇d(t) exist and are bounded can be used along with Equation 3–4 and Equation

3–5 to conclude that q(t) and q̇(t) ∈ L∞. Since θ̃(t) ∈ L∞, the expression in Equation

3–14 can be used to conclude that θ̂(t) ∈ L∞. Since θ̂(t), q(t), and q̇(t) ∈ L∞, Property

3.1 can be used to conclude that M̂(q), V̂m(q, q̇), and Ĝ(q) ∈ L∞. Since M̂(q), V̂m(q, q̇),

and F̂d ∈ L∞, Equation 3–16 and Equation 3–17 can be used to concluded Ψ1 (t) and

Ψ2 (t) ∈ L∞. Since Ψ1 (t), Ψ2 (t) , and r (t) ∈ L∞, Equation 3–15 can be used to conclude

that uo (t) ∈ L∞. Since q(t), q̇(t), e(t), and ė(t) ∈ L∞, Property 3.1, Property 3.2,

Property 3.3, Equation 3–8, and Equation 3–9, can be used to conclude that Y1 (t) and

Y2 (t) ∈ L∞. Since Y2 (t) and θ̂(t) ∈ L∞, the expression in Equation 3–10 can be used

to concluded that uf (t) ∈ L∞. Since uf (t) and uo (t) ∈ L∞, the expression Equation

3–11 can be used to concluded that u (t) ∈ L∞. Since q (t) , q̇ (t) , r (t) , Y1 (t), Y2 (t) , and

u (t) ∈ L∞, Property 3.1 and Equation 3–7, can be used to conclude that ṙ (t) ∈ L∞ (and
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hence r(t) is uniformly continuous). Due to the fact that e (t) and r (t) ∈ L2 and uniformly

continuous, Barbalat’s Lemma can be used to conclude that ‖e(t)‖ and ‖r(t)‖ → 0 as

t →∞.

3.4 Cost Functional Minimization

The ability of the controller to minimize a meaningful cost can be examined through

the following theorem.

Theorem 3.2: The feedback law given by

u∗o = −βR−1r, (3–28)

with the scalar gain constant selected as β ≥ 2, and the adaptive update law given in

Equation 3–12, minimizes the meaningful cost functional

J = lim
t→∞

{
βθ̃T (t) Γ−1θ̃ (t) +

∫ t

0

(
l + uT

o Ruo

)
dσ

}
, (3–29)

where l
(
x, θ̂

)
∈ R is determined to be

l = −2β
[
eT ė + rT Y1θ̂

]
+ β2rT R−1r, (3–30)

for the system given in Equation 3–13.

Proof: The cost function in Equation 3–29 is considered to be meaningful if it is

a positive function of the control and the states. From Equation 3–29, the cost function

is a positive function if l
(
x, θ̂

)
in Equation 3–30 is positive. To examine the sign of

l
(
x, θ̂

)
, the expressions in Equation 3–15, Equation 3–22, and Equation 3–27 are used to

determine that

eT ė + rT Y1θ̂ − rT R−1r ≤ −α

2
eT e− 1

2
rT K1r. (3–31)

Multiplying both sides by −2β yields

− 2β
[
eT ė + rT Y1θ̂ − rT R−1r

]
≥ 2β

[
α

2
eT e +

1

2
rT K1r

]
. (3–32)
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The expression in Equation 3–32 can be rewritten as

−2β
[
eT ė + rT Y1θ̂ − rT R−1r

]
+ β (β − 2) rT R−1r (3–33)

≥ 2β

[
α

2
eT e +

1

2
rT βr

]
+ β (β − 2) rT R−1r.

Based on Equation 3–30, the expression in Equation 3–33 can be simplified as

l ≥ 2β

[
α

2
eT e +

1

2
rT r

]
+ β (β − 2) rT R−1r. (3–34)

The inequality in Equation 3–34 indicates that l
(
x, θ̂

)
is positive since R (t) is positive

definite and β ≥ 2. Therefore J (t) is a meaningful cost; penalizing e (t) , r (t) , and the

actuation.

To show that u∗o (t) minimizes J (t), the auxiliary signal v (t) ∈ Rn is defined as

v = uo + βR−1r. (3–35)

Substituting Equation 3–30 and Equation 3–35 into Equation 3–29 yields

J = lim
t→∞

{
βθ̃T (t) Γ−1θ̃ (t) +

∫ t

0

β2rT R−1r − 2β
[
eT ė + rT Y1θ̂

]
dσ (3–36)

+

∫ t

0

(
v − βR−1r

)T
R

(
v − βR−1r

)
dσ

}
.

After adding and subtracting the integral of 2βrT Y2θ̃ and 2βrT uo and using Equation 3–14

and Equation 3–35, the expression in Equation 3–36 can be written as

J = lim
t→∞

{
βθ̃T (t) Γ−1θ̃ (t) +

∫ t

0

vT Rv dσ + 2β

∫ t

0

βrT R−1r − vT r dσ (3–37)

+ 2β

∫ t

0

rT
(
v − βR−1r

)
dσ − 2β

∫ t

0

eT ė + rT
[
Y1θ + Y2θ̃ + uo

]
dσ

+ 2β

∫ t

0

rT (Y1 + Y2) θ̃ dσ

}
.
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Canceling common terms, and using Equation 3–20, the expression in Equation 3–37 can

be simplified as

J = lim
t→∞

{
βθ̃T (t) Γ−1θ̃ (t) +

∫ t

0

vT Rv dσ − 2β

∫ t

0

V̇a + θ̃T Γ−1
·
θ̂ dσ (3–38)

+ 2β

∫ t

0

rT (Y1 + Y2) θ̃ dσ

}
.

Substituting Equation 3–12 into Equation 3–38 yields

J = lim
t→∞

{
βθ̃T (t) Γ−1θ̃ (t) +

∫ t

0

vT Rv dσ (3–39)

−2β

∫ t

0

V̇ +
d

dt

(
1

2
θ̃T Γ−1θ̃

)
dσ

}
.

After integrating Equation 3–39, J (t) can be expressed as

J = βθ̃T (0) Γ−1θ̃ (0) + 2βV (0) + lim
t→∞

{
−2βV (T ) +

∫ t

0

vT Rv dσ

}
.

By substituting Equation 3–28 into Equation 3–24 it is trivial to show that u∗o (t) stabilizes

the system. Based on the analysis in Section 3.3, ‖e(t)‖ and ‖r(t)‖ → 0 as t → ∞.

Therefore, V (t) → 0 as t → ∞ and J (t) is minimized if v (t) = 0. Therefore, the control

law uo (t) = u∗o (t) is optimal and minimizes the cost functional Equation 3–29.

3.5 Simulation and Experimental Results

3.5.1 Simulation

To examine the performance of the controller in Equation 3–11 a numerical simulation

was performed. The simulation is based on the dynamics for a two-link robot given in

Equation 2–95 with no disturbance τd (t) . The desired trajectory is given as

qd1 = qd2 =
1

2
sin(2t), (3–40)
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Figure 3-1. The simulated tracking errors for the adaptive inverse optimal controller.

and the initial conditions of the robot were selected as

q1 (0) = q2 (0) = 5.72 deg

q̇1 (0) = q̇2 (0) = 51.56 deg/ sec .

The control gains were selected as

α = 1 K1 = 5I2 Γ = 5000I5

β = 2.

The tracking errors and control torques are shown in Figure 3-1 and Figure 3-2,

respectively. Figure 3-1 shows that the errors asymptotically converge to zero, while

Figure 3-2 shows the bounded input torque. The estimates for θ are shown in Figure 3-3.

Figure 3-4 indicates that l
(
x, θ̂

)
is positive, and Figure 3-5 indicates that the cost is

meaningful.
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Figure 3-2. The simulated torques for the adaptive inverse optimal controller.
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Figure 3-3. Unknown system parameter estimates for the adaptive inverse optimal
controller.
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Figure 3-5. The integral part of the cost functional in Equation 3–29.
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3.5.2 Experiment

To test the validity of the controller proposed in Equation 3–11 an experiment was

performed on the two-link robot testbed as described Section 2.9. The control objective

is to track the desired time-varying trajectory by using the developed adaptive inverse

optimal control law. To achieve this control objective, the control gains α, defined as

a scalar in Equation 3–5 was implemented (with non-consequential implications to the

stability result) as diagonal gain matrices. Specifically, the control gains were selected as

α = diag {1.6, .9} K1 = diag {55, 10}
β = 4,

(3–41)

and the adaptation gains were selected as

Γ = diag ([5, 5, 5, 5, 5]) .

The desired trajectories for this experiment were chosen as follows:

qd1 = qd2 = 60 sin(2t)
(
1− exp

(−0.01t3
))

. (3–42)

The experiment was run a second time with a slower desired trajectory, chosen as follows:

qd1 = qd2 = 60 sin(0.5t)
(
1− exp

(−0.01t3
))

. (3–43)

For this trajectory β was set equal to 5.5. Data from the experiments is displayed in Table

3-1.

Figure 3-6 and Figure 3-7 depict the tracking errors and control torques for one

experimental trial for the adaptive inverse optimal controller for the trajectory given in

Equation 3–42. Figure 3-8 and Figure 3-9 depict the tracking errors and control torques

for one experimental trial for the adaptive inverse optimal controller for the trajectory

given in Equation 3–43.
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Figure 3-6. Tracking errors resulting from implementing the adaptive inverse optimal
controller.
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Figure 3-7. Torques resulting from implementing the adaptive inverse optimal controller.
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Figure 3-8. Tracking errors resulting from implementing the adaptive inverse optimal
controller for a slower trajectory.
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Table 3-1. Tabulated values for the adaptive inverse optimal controller

Trajectory in Equation 3–42 Trajectory in Equation 3–43
Max Steady State Error (deg)- Link 1 1.5213 0.5337
Max Steady State Error (deg)- Link 2 2.0865 0.7342
RMS Error (deg) - Link 1 0.5553 0.3605
RMS Error (deg) - Link 2 0.8176 0.3954
RMS Torque (Nm) - Link 1 11.4267 6.0446
RMS Torque (Nm) - Link 2 1.5702 0.9610

3.5.3 Discussion

This controller had maximum steady state errors (defined as the last 10 seconds of

the experiment) on the order 1.5 degrees for the first link and 2 degrees for the second

link, well above the errors in Section 2.9. In an effort to reduce the errors the frequency

of the trajectory was reduced, and β was increased. These modifications resulted in

sub-degree tracking, still approximately 10 times greater than the controllers discussed in

Section 2.9. The reason was due to the α gain. The α gain in Equation 3–5, tends to be

one of the most important tuning gains. It behaves like the proportional gain in a PID

controller. Increasing α tends to result in faster convergence and reduced steady state

error. In this case, α appears in other terms besides Equation 3–5. In Equation 3–15, α

appears to the third power. The α terms in Equation 3–15 are then multiplied by r (t)

in Equation 3–15 which results in α to the third power multiplied by ė (t) and α to the

forth power multiplied by e (t) . So an α of 10, which generally would not be unreasonable,

would result in a gain of 1, 000 multiplied by a velocity error and 10, 000 multiplied by

a position error. This makes the controller very sensitive to noise and fast trajectories,

as well as difficult to implement due to large torques. To do so, the value of α had to be

decreased, which resulted in poor tracking performance. Some solutions to this would be

to alter the controller design to reduce the power of α, as well as to eliminate the need

for velocity measurements which would mitigate the effect noisy measurements has on the
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controller. This experiment was only run once because there was no need to demonstrate

repeatability.
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CHAPTER 4
INVERSE OPTIMAL CONTROL OF A NONLINEAR EULER-LAGRANGE SYSTEM

USING OUTPUT FEEDBACK

In this chapter, an adaptive output feedback inverse optimal controller is designed.

Output feedback based controllers are more desirable than full-state feedback controllers,

because the necessary sensors for full-state feedback may not always be available,

and using numerical differentiation to obtain velocities can be problematic if position

measurements are noisy. Using the error system developed in (31–34), an adaptive output

feedback IOC is developed based on the theoretical foundation presented in (22; 25; 40).

The developed controller minimizes a meaningful performance index (i.e., a positive

function of the states and control input) as the generalized coordinates of a nonlinear

Euler-Lagrange system globally asymptotically track a desired time-varying trajectory

despite LP uncertainty in the dynamics. Like the previously developed controller, the

considered class of systems does not adhere to the model given in Equation 3–1. A

Lyapunov analysis is provided to prove the stability of the developed controller and to

determine a meaningful cost functional. Experimental results are included to illustrate the

performance of the controller.

The remainder of this chapter is organized as follows. In Section 4.1, the model is

given along with several of its properties. In Section 4.2, the control objective is stated

and an error system is formulated. In Section 4.3, the stability of the controller is proven.

In Section 4.4, a meaningful cost is developed and shown to be minimized by the control.

In Section 4.5, it is shown how the controller can be implemented using only position

measurements. In Section 4.6, experimental results are presented.

4.1 Dynamic Model and Properties

The class of nonlinear dynamic systems considered in this chapter is assumed to

follow the model given in Equation 3–2. In addition to Properties 2.1, 2.2, 2.3, 3.1, 3.2,

and 3.4, the following property will be exploited in the subsequent development.
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Property 4.1: The desired trajectory is assumed to be designed such that qd(t), q̇d(t),

q̈d(t), and
...
q d(t) ∈ Rn exist, and are bounded.

Property 4.2: The centripetal-Coriolis matrix satisfies the following relationship:

Vm (q, ξ) v = Vm (q, v) ξ ∀ξ, v ∈ Rn.

Property 4.3: There exists a positive scalar constant ζv ∈ R such that:

‖Vm (q, q̇)‖ ≤ ζv ‖q̇‖ .

To aid the subsequent control design and analysis, the vector function Tanh(·) ∈ Rn

and the matrix function Cosh(·) ∈ Rn×n are defined as follows:

Tanh(ξ) =

[
tanh (ξ1) , · · · , tanh (ξn)

]T

,

and

Cosh(ξ) = diag

{
cosh (ξ1) , · · · , cosh (ξn)

}
,

where ξ= [ξ1, ..., ξn]T∈ Rn; and diag {·} denotes the operation of forming a matrix with

zeros everywhere except for the main diagonal.

Assumption 4.1:The positive constants ζm, ζg, and ζc2 are assumed to exist for all

ξ, v ∈ Rn such that (31)

‖M (ξ)−M (v)‖ ≤ ζm ‖Tanh (ξ − v)‖ , (4–1)

‖G (ξ)−G (v)‖ ≤ ζg ‖Tanh (ξ − v)‖ ,

‖Vm (ξ, q̇)− Vm (v, q̇)‖ ≤ ζc2 ‖q̇‖ ‖Tanh (ξ − v)‖ .

4.2 Control Development

As in the previous chapters, the control objective is to ensure that the generalized

coordinates of a system track a desired time-varying trajectory despite uncertainties in the

dynamic model, while minimizing a performance index. To quantify the tracking objective,
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a position tracking error denoted by e(t) ∈ Rn, is defined as

e , qd − q. (4–2)

To facilitate the subsequent control design and stability analysis, a filtered tracking error,

denoted by η(t) ∈ Rn, is defined as (31; 47)

η = ė + α1Tanh(e) + α2Tanh(ef ), (4–3)

where α1, α2 ∈ R are positive, constant gains, and ef (t) ∈ Rn is an auxiliary filter variable

designed as (31; 47)

ėf = −α3Tanh(ef ) + α2Tanh(e)− k1Cosh2(ef )η (4–4)

ef (0) = 0,

where k1 ∈ R is a positive constant control gain, and α3 ∈ R is a positive constant filter

gain. The subsequent development exploits the hyperbolic filter structure developed in

(47) and (31) to overcome the problem of injecting higher order terms in the controller

and to facilitate the development of sufficient gain conditions used in the subsequent

stability analysis. By taking the time derivative of η(t) and premultipling by M (q) the

following open-loop error system can be obtained:

M (q) η̇ = M (q) ë + α1M (q) Cosh−2 (e) ė + α2M (q) Cosh−2 (ef ) ėf . (4–5)

After utilizing Equation 4–2 - Equation 4–4, the expression in Equation 4–5, can be

rewritten as

M (q) η̇ = M (q) (q̈d − q̈)− α2k1M (q) Cosh−2 (ef ) Cosh2 (ef ) η

+ α1M (q) Cosh−2 (e) (η − α1Tanh (e)− α2Tanh (ef ))

+ α2M (q) Cosh−2 (ef ) (−α3Tanh (ef ) + α2Tanh (e)) .
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Substituting the dynamics in Equation 3–2 for M (q) q̈ (t) yields

M (q) η̇ = M (q) q̈d − Vm (q, q̇) η − α2k1M (q) η + Fdq̇ + G (q) (4–6)

+ α1M (q) Cosh−2 (e) (η − α1Tanh (e)− α2Tanh (ef ))

+ α2M (q) Cosh−2 (ef ) (−α3Tanh (ef ) + α2Tanh (e))

+ Vm (q, q̇) (q̇d + α1Tanh (e) + α2Tanh (ef ))− u.

After utilizing Property 4.2 the expression in Equation 4–6 can be expressed as

M (q) η̇ = −Vm (q, q̇) η − α2k1M (q) η + χ + Ydθ + Ỹ − u, (4–7)

where χ (e, ef , η, t) ∈ Rn and Ỹ (e, ef , η, t) ∈ Rn are defined as

χ = α1M (q) Cosh−2 (e) (η − α1Tanh (e)− α2Tanh (ef )) (4–8)

+ α2M (q) Cosh−2 (ef ) (−α3Tanh (ef ) + α2Tanh (e))

+ Vm (q, q̇d + α1Tanh (e) + α2Tanh (ef )) (α1Tanh (e) + α2Tanh (ef ))

+ Vm (q, q̇d) (α1Tanh (e) + α2Tanh (ef ))

− Vm (q, η) (q̇d + α1Tanh (e) + α2Tanh (ef )) ,

and

Ỹ = M (q) q̈d + Vm (q, q̇d) q̇d + G (q) + Fdq̇ − Ydθ (4–9)

Ydθ = M (qd) q̈d + Vm (qd, q̇d) q̇d + G (qd) + Fdq̇d. (4–10)

By exploiting the fact that the desired trajectory is bounded, and using Properties

2.1, 3.1, 4.3, and the properties of hyperbolic functions, χ (e, ef , η, t) of Equation 4–8 can

be upper bounded as

‖χ‖ ≤ ζ1 ‖x‖ , (4–11)
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where ζ1 ∈ R is some positive bounding constant that depends on the mechanical

parameters and the desired trajectory, and x ∈ R3n is defined as

x =

[
Tanh (e)T Tanh (ef )

T η

]T

.

Furthermore, by utilizing the fact that the desired trajectory is bounded and Assumption

4.1, it can be shown that Ỹ (e, ef , η, t) of Equation 4–9 can be upper bounded as

∥∥∥Ỹ
∥∥∥ ≤ ζ2 ‖x‖ , (4–12)

where ζ2 ∈ R is also some positive bounding constant that depends on the mechanical

parameters and the desired trajectory. The terms in Equation 4–9 and Equation 4–10 are

developed to facilitate the development of the optimal control law. Although both terms

contain the same unknown parameters, Equation 4–10 depends purely on the desired

trajectory, while Equation 4–9 depends on the actual current trajectory. Based on the

segregation of these two terms, the total control u(t) is made up of two parts: uf (t) and

uo(t). The feedforward control term uf (t) is based on Equation 4–10 and is independent of

the state of the system and therefore the optimization.. The feedback law uo(t) is based on

Equation 4–9 and the open-loop error system and is later shown to minimize a meaningful

cost (i.e., a cost that puts a positive penalty on the states and actuation). The total

control is defined as

uf = Ydθ̂ (4–13)

u = uf − uo = Ydθ̂ − uo, (4–14)

where uo, uf ∈ Rn, and θ̂ (t) ∈ Rp is an estimate for θ. The parameter estimate θ̂ (t) in

Equation 4–13 and Equation 4–14 is generated by the adaptive update law

·
θ̂ = ΓY T

d η, (4–15)
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where Γ ∈ Rp×p is a constant, positive definite, symmetric, gain matrix. Substituting

Equation 4–14 into Equation 4–7 yields

M (q) η̇ = −Vm (q, q̇) η − α2k1M (q) η + χ + Ydθ̃ + Ỹ + uo, (4–16)

where the parameter estimate error θ̃ (t) ∈ Rp is defined as

θ̃ = θ̂ − θ. (4–17)

Based on Equation 4–16 and the subsequent stability analysis, the control input uo (t) is

designed as

uo = R−1Tanh (ef ) = k1Cosh (ef )
2 Tanh (ef ) . (4–18)

4.3 Stability Analysis

The stability of the controller given in Equation 4–13 - Equation 4–15, and Equation

4–18 can be examined through the following theorem.

Theorem 4.1: The adaptive update law given by Equation 4–15 and the feedback

law given by Equation 4–18 ensures global asymptotic tracking of the system in Equation

4–16 in the sense that

‖e(t)‖ → 0 ‖η(t)‖ → 0 as t →∞,

provided the control gain k is selected as

k1 =
1

α2m1

(
1 + k2 (ζ1 + ζ2 + 1)2) , (4–19)

where m1, ζ1, and ζ1 are constants defined in Equation 2–2, Equation 4–11, and Equation

4–12, respectively, and k2 ∈ R is a control gain that must satisfy the following sufficient

condition:

k2 >
1

4λ1

, (4–20)
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where λ1 ∈ R is defined as follows:

λ1 = min

{
1 α1 α3

}
.

Proof: Let Va(e, r, θ̃, t) ∈ R denote a positive definite, radially unbounded function

defined as

Va = V +
1

2
θ̃T Γ−1θ̃, (4–21)

where V (e, r, t) ∈ R is defined as

V =
n∑

i=1

ln (cosh (ei)) +
n∑

i=1

ln (cosh (efi
)) +

1

2
ηT M (q) η, (4–22)

where ei (t) ∈ R and efi
(t) ∈ R are the ith elements of the e (t) and ef (t) vectors

respectively. After using Equation 4–16 and Property 2.3, the time derivative of Equation

4–21 is

V̇a = Tanh (e)T ė + Tanh (ef )
T ėf − θ̃T Γ−1

·
θ̂ (4–23)

+ ηT
[
−α2k1M (q) η + χ + Ydθ̃ + Ỹ

]
+ ηT u0.

After substituting the adaptive update law in Equation 4–15 the expression in Equation

4–23 reduces to

V̇a = Tanh (e)T ė + Tanh (ef )
T ėf + ηT u0 + ηT

[
−α2k1M (q) η + χ + Ỹ

]
. (4–24)

After substituting Equation 4–3 and Equation 4–4, Equation 4–24 can be expressed as

V̇a = −α1Tanh (e)T Tanh (e)− α3Tanh (ef )
T Tanh (ef ) (4–25)

+ ηT Tanh (e)− ηT α2k1M (q) η + ηT
[
χ + Ỹ

]

− k1Tanh (ef )
T Cosh2(ef )η + ηT uo.
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After using Equation 4–11, Equation 4–12, Equation 4–18, and Equation 4–19 the

expression in Equation 4–25 can be written as

V̇a ≤ −α1Tanh (e)T Tanh (e)− α3Tanh (ef )
T Tanh (ef )− ηT η (4–26)

− [
k2 (ζ1 + ζ2 + 1)2 ‖η‖2 − (ζ1 + ζ2 + 1) ‖η‖ ‖x‖] .

After completing the squares on the bracketed term, the expression in Equation 4–26 can

be written as

V̇a ≤ −α1Tanh (e)T Tanh (e)− ηT η − α3Tanh (ef )
T Tanh (ef ) +

‖x‖
4k2

2

. (4–27)

The expression in Equation 4–27 can be reduced to

V̇a ≤ −
[
λ1 − 1

4k2

]
‖x‖2 . (4–28)

If k2 is selected according to Equation 4–20, the inequality in Equation 4–28 can be

reduced to

V̇a ≤ −λ2 ‖x‖2 , (4–29)

where λ2 ∈ R is a positive constant.

The expressions in Equation 4–21, Equation 4–22, and Equation 4–29 can be used

to show that Va(e, r, θ̃, t) ∈ L∞; hence, e(t), ef (t) , η(t), and θ̃(t) ∈ L∞. Given that

η(t) ∈ L∞, Equation 4–3 can be used to prove that ė(t) ∈ L∞ (and hence, e(t) is uniformly

continuous). Since e(t) and ė(t), ∈ L∞, the property that qd(t) and q̇d(t) exist and are

bounded can be used along with Equation 4–2 and Equation 4–3 to conclude that q(t) and

q̇(t) ∈ L∞. Since θ̃(t) ∈ L∞, the expression in Equation 4–17 can be used to conclude that

θ̂(t) ∈ L∞. Since, by the property that, qd(t), q̇d(t), and q̈d(t) ∈ L∞, Property 3.1 can be

used to conclude that Yd (qd, q̇d, q̈d) ∈ L∞. Since Yd (qd, q̇d, q̈d) and θ̂(t) ∈ L∞, Equation

4–13 can be used to concluded that uf (t) ∈ L∞. Since ef (t) , and η(t), ∈ L∞, Equation

4–18 can be used to conclude that uo (t) ∈ L∞. Since uf (t) and uo (t) ∈ L∞, the expression
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Equation 4–14 can be used to concluded that u (t) ∈ L∞. Since q (t) , q̇ (t) , e (t) , ef (t) ,

η(t), Yd (qd, q̇d, q̈d) , θ̃(t), uo (t) ∈ L∞, Property 3.1 and Equation 4–16 can be used to

conclude that η̇ (t) ∈ L∞ (and hence η(t) is uniformly continuous). Since e (t) , ef (t) , and

η(t) ∈ L∞, Equation 4–4 can be used to conclude that ėf (t) ∈ L∞ (and hence ef (t) is

uniformly continuous). From this it can be concluded that x (t) , ẋ (t) ∈ L∞ (and hence

x (t) is uniformly continuous). The expression in Equation 4–29 can be used to concluded

that x (t) ∈ L2. Barbalat’s Lemma can be used to conclude that ‖x(t)‖ → 0 as t → ∞.

Therefore ‖e(t)‖ and ‖η(t)‖ → 0 as t →∞.

4.4 Cost Functional Minimization

The ability of the controller to minimize a meaningful cost can be examined through

the following theorem.

Theorem 4.2: The feedback law given by

uo = R−1Tanh(ef ), (4–30)

and the adaptive update law given in Equation 4–15, minimizes the meaningful cost

functional

J = lim
t→∞

{
θ̃ (t)T Γ−1θ̃ (t) +

∫ t

0

l dσ

}
, (4–31)

where l
(
x, θ̂

)
∈ R is determined to be

l = −2
[
Tanh (e)T ė + Tanh (ef )

T ėf

]
− 2ηT

[
−α2k1M (q) η + χ + Ỹ

]
(4–32)

− 2 [ė + α1Tanh(e)]T R−1Tanh(ef )− 2α2Tanh(ef )
T R−1Tanh(ef ),

for the system given in Equation 4–16.

Proof: The cost function in Equation 4–31 is considered to be meaningful if it is

a positive function of the control and the states. From Equation 4–31, the cost function

is a positive function if l
(
x, θ̂

)
in Equation 4–32 is positive. To examine the sign of

l
(
x, θ̂

)
, the expressions in Equation 4–18, Equation 4–24, and Equation 4–29 are used to
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determine that

−λ2 ‖x‖2 ≥ Tanh (e)T ė + Tanh (ef )
T ėf + ηT

[
−α2k1M (q) η + χ + Ỹ

]

+ ηT R−1Tanh(ef ).

Substituting Equation 4–3 for η (t)T yields

−λ2 ‖x‖2 ≥ Tanh (e)T ė + Tanh (ef )
T ėf + ηT

[
−α2k1M (q) η + χ + Ỹ

]

+ [ė + α1Tanh(e)]T R−1Tanh(ef ) + α2Tanh(ef )
T R−1Tanh(ef ).

Multiplying both sides by −2 yields

2λ2 ‖x‖2 ≤ −2
[
Tanh (e)T ė + Tanh (ef )

T ėf

]
− 2ηT

[
−α2k1M (q) η + χ + Ỹ

]
(4–33)

− 2 [ė + α1Tanh(e)]T R−1Tanh(ef )− 2α2Tanh(ef )
T R−1Tanh(ef ).

Based on Equation 4–32, the expression in Equation 4–33 can be simplified as

2λ2 ‖x‖2 ≤ l. (4–34)

The inequality in Equation 4–34 indicates that l
(
x, θ̂

)
is positive. Therefore J (t) is a

meaningful cost; penalizing e (t) , η (t) , ef (t) , and hence, the control.

To show that uo (t) minimizes J (t), Equation 4–32 is substituted into Equation 4–31

yielding

J = lim
t→∞

{
θ̃T (t) Γ−1θ̃ (t) (4–35)

− 2

∫ t

0

Tanh (e)T ė + Tanh (ef )
T ėf + ηT

[
−α2k1M (q) η + χ + Ỹ

]
dσ

− 2

∫ t

0

[ė + α1Tanh(e)]T R−1Tanh(ef ) + α2Tanh(ef )
T R−1Tanh(ef ) dσ

}
.
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After adding and subtracting the integral of 2ηT Ydθ̃, and substituting for uo (t), the

expression in Equation 4–35 can be written as

J = lim
t→∞

{
θ̃T (t) Γ−1θ̃ (t) + 2

∫ t

0

ηT Ydθ̃ dσ (4–36)

− 2

∫ t

0

Tanh (e)T ė + Tanh (ef )
T ėf + ηT

[
−α2k1M (q) η + χ + Ỹ + Ydθ̃

]
dσ

− 2

∫ t

0

[ė + α1Tanh(e)]T R−1Tanh(ef ) + α2Tanh(ef )
T uo dσ

}
.

Using Equation 4–3 and Equation 4–18, the expression in Equation 4–36 can be simplified

as

J = lim
t→∞

{
θ̃T (t) Γ−1θ̃ (t) + 2

∫ t

0

ηT Ydθ̃ dσ (4–37)

− 2

∫ t

0

Tanh (e)T ė + Tanh (ef )
T ėf + ηT

[
−α2k1M (q) η + χ + Ỹ + Ydθ̃ + uo

]
dσ

}
.

After using Equation 4–23, the expression in Equation 4–37 can be simplified to

J = lim
t→∞

{
θ̃T (t) Γ−1θ̃ (t)− 2

∫ t

0

V̇a + θ̃T Γ−1
·
θ̂ − ηT Ydθ̃ dσ

}
. (4–38)

After using Equation 4–15, the expression in Equation 4–38 can be written as

J = lim
t→∞

{
θ̃T (t) Γ−1θ̃ (t)− 2

∫ t

0

V̇ +
d

dt

(
1

2
θ̃T Γ−1θ̃

)
dσ

}
. (4–39)

After integrating Equation 4–39, the cost functional can be expressed as

J = θ̃T (0) Γ−1θ̃ (0) + 2V (0) + lim
t→∞

{−2V (t)} .

From the analysis in Section 4.3, ‖e(t)‖ and ‖η(t)‖ → 0 as t →∞. Therefore, V (t) → 0 as

t → ∞, and J (t) is minimized. Therefore, the control law uo (t) is optimal and minimizes

the cost functional Equation 4–31.

4.5 Output Feedback Form of the Controller

To show that the control law proposed Equation 4–18 only requires position

measurements, it is noted that the control input does not actually require the computation
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of ef (t); rather, only Tanh(ef ) and Cosh2(ef ). Let yi ∈ R be defined as

yi = tanh (efi
) . (4–40)

From standard hyperbolic identities:

cosh2 (efi
) =

1

1− tanh2 (efi
)

=
1

1− y2
i

. (4–41)

If yi can be calculated only from position measurements, then tanh (efi
) and cosh2 (efi

)

can be calculated only from position measurements. Rewriting Equation 4–4 in terms of

individual elements yields

ėfi
= −α3 tanh(efi

) + α2 tanh(ei)− k1 cosh2(efi
)ηi (4–42)

efi
(0) = 0.

Taking the time derivative of Equation 4–40, and substituting Equation 4–41 and

Equation 4–42 yields

ẏi = cosh−2 (efi
) ėfi

=
(
1− y2

i

)
(−α3yi + α2 tanh(ei))− k1 [ėi + α1 tanh(ei) + α2yi]

yi (0) = 0.

The auxiliary variable yi (t) can be generated from the following expression:

yi = pi − k1ei, (4–43)

where pi ∈ R is an auxiliary variable generated from the following differential equation:

ṗi =
(
1− (pi − k1ei)

2) [−α3 (pi − k1ei) + α2 tanh(ei)] (4–44)

− k1 [α1 tanh(ei) + α2 (pi − k1ei)]

pi (0) = k1ei (0) .
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From Equation 4–44, it is obvious that pi (t) can be calculated using only position

measurements. Due to the fact that pi (t) can be calculated using only position measurements,

Equation 4–43 can be used to show that yi (t), and therefore tanh (efi
) and cosh2 (efi

) ,

can be calculated using only position measurements. Due to the fact that tanh (efi
) and

cosh2 (efi
) can be calculated using only position measurements, the expression in Equation

4–18 can be calculated using only position measurements.

To show that the adaptive update law given by Equation 4–15 only requires position

measurements, Equation 4–3 is substituted into Equation 4–15, which is integrated by

parts to form the following expression:

θ̂ = ΓY T
d e + Γσ (4–45)

σ̇ = Y T
d (α1Tanh (e) + α2y)− Ẏ T

d e.

From Equation 4–45, it is obvious that θ̂ (t) can be calculated using only position

measurements. Due to the fact that θ̂ (t) can be calculated using only position measurements,

the expression in Equation 4–13 can be calculated using only position measurements. Due

to the fact that the expressions in Equation 4–13 and Equation 4–18 can be calculated

using only position measurements, the total control given in Equation 4–14 can be

calculated using only position measurements.

4.6 Experimental Results

4.6.1 Experiment

To test the validity of the controller proposed in Equation 4–14 an experiment was

performed on the two-link robot testbed as described Section 2.9. The modeled dynamics

for the testbed are linear in the following parameters:

θ = [p1 p2 p3 Fd1 Fd2]
T .

The control objective is to track the desired time-varying trajectory by using the

developed adaptive inverse optimal output feedback control law. To achieve this control
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Table 4-1. Tabulated values for the 10 runs of the output feedback adaptive inverse
optimal controller

Average Max Steady State Error (deg)- Link 1 0.0678
Average Max Steady State Error (deg)- Link 2 0.0973
Average RMS Error (deg) - Link 1 0.0261
Average RMS Error (deg) - Link 2 0.0323
Average RMS Torque (Nm) - Link 1 9.7256
Average RMS Torque (Nm) - Link 2 1.3959
Error Standard Deviation (deg) - Link 1 0.0001
Error Standard Deviation (deg) - Link 2 0.0030
Torque Standard Deviation (Nm) - Link 1 0.2184
Torque Standard Deviation (Nm) - Link 2 0.0446

objective, the control gains α1, α2, α3, and k1, defined as scalars in Equation 4–3 and

Equation 4–4, were implemented (with non-consequential implications to the stability

result) as diagonal gain matrices. Specifically, the control gains were selected as

α1 = diag {50, 40} α2 = diag {0.5, 4}

α3 = diag {65, 40} k1 = diag {200, 150} ,

(4–46)

and the adaptation gains were selected as

Γ = diag ([5, 5, 5, 5, 5]) .

The desired trajectories for this experiment were chosen as follows:

qd1 = qd2 = 60 sin(2t)
(
1− exp

(−0.01t3
))

. (4–47)

Each experiment was performed ten times, and data from the experiments is displayed in

Table 4-1.

Figure 4-1 depicts the tracking errors for one experimental trial. The control torques

and adaptive estimates for the same experimental trial are shown in Figures. 4-2 and 4-3,

respectively.
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Figure 4-1. Tracking errors resulting from implementing the output feedback adaptive
inverse optimal controller.
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Figure 4-2. Torques resulting from implementing the output feedback adaptive inverse
optimal controller.
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Figure 4-3. Unknown system parameter estimates for the output feedback adaptive inverse
optimal controller.

4.6.2 Discussion

Compared to the results in Section 3.5 the results are improved. The controller

was able keep the average maximum steady state (defined as the last 10 seconds of the

experiment) errors below 0.07 degrees for the first link and 0.1 degrees for the second link.

The average RMS error was 0.0261 degrees for the first link and 0.0323 degrees for the

second link. The average RMS torque was 9.7256 Nm for the first link and 1.3959 Nm for

the second link.
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CHAPTER 5
CONCLUSION

In this dissertation, optimal controllers are designed for uncertain nonlinear

Euler-Lagrange systems. The optimal control problems in this dissertation are separated

into two main parts: 1) direct optimal control, where the cost functional was chosen a

priori; and 2) inverse optimal control, where a meaningful cost functional was determined

after the control design. These two design methods were approached using different control

techniques.

In Chapter 2, a control scheme is developed for a class of nonlinear Euler-Lagrange

systems that enables the generalized coordinates to asymptotically track a desired

time-varying trajectory despite general uncertainty in the dynamics such as additive

bounded disturbances and parametric uncertainty that do not have to satisfy a LP

assumption. The main contribution of this work is that the RISE feedback method

augmented with an auxiliary control term is shown to minimize a quadratic performance

index based on a HJB optimization scheme. Like the influential work in (6–12; 36; 37) the

result in this effort initially develops an optimal controller based on a partially feedback

linearized state-space model assuming exact knowledge of the dynamics. The optimal

controller is then combined with a feedforward NN and RISE feedback. A Lyapunov

stability analysis is included to show that the NN and RISE identify the uncertainties,

therefore the dynamics asymptotically converge to the state-space system that the HJB

optimization scheme is based on. Numerical simulations and an experiment are included to

support these results.

To circumvent having to solve an HJB equation, an adaptive inverse optimal

controller is developed in Chapter 3 to achieve asymptotic tracking while minimizing

a meaningful cost. In contrast to typical optimal controllers, inverse optimal controllers

do not have an a priori chosen cost; rather the cost is calculated based on the Lyapunov

function. This controller consists of an adaptive feedforward term and an feedback
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term that is shown to minimize a meaningful cost. A Lyapunov stability analysis is

used to show that the controller achieves asymptotic tracking and that the resulting

cost functional is meaningful. A separate analysis is then used to show that the cost

is minimized. Simulation and experimental results are provided to demonstrate the

developed controller.

An output feedback adaptive IOC controller is designed in Chapter 4 due to the fact

that output feedback controllers are more desirable than full-state feedback controllers.

The controller is designed using a new error system and a DCAL feedforward adaptive

term. A Lyapunov stability analysis is used to show that the developed controller not

only stabilizes a system where the unknown matrices are functions of the states, and the

input gain matrix is unknown, but minimizes a meaningful cost. Through an innovative

filter design, the IOC is developed as an output feedback controller; requiring only position

measurements for implementation. Experimental results are included to illustrate the

improved performance of the controller over the full state feedback controller.

There are many possible avenues for future work. One possible direction is to include

disturbances in the control design and to attempt to solve a Hamilton-Jacobi-Issacs

(HJI) equation, rather than an HJB equation. The solution of HJI equations results

in the solution of a differential game problem, that accounts for disturbances in the

optimization. Another possible direction is the use of the RISE in inverse optimal design.

In the controllers in Chapter 3 and Chapter 4, an adaptive feedforward term is used

to compensate for LP uncertainty. The use of the RISE may result in inverse optimal

controllers that can handle a broader class of systems.
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APPENDIX A
SOLUTION OF RICCATI DIFFERENTIAL EQUATION

Lemma: If α1, R, and K, introduced in Equation 2–5, Equation 2–12, and Equation

2–13, satisfy the following algebraic relationships

K = KT = −1

2

(
Q12 + QT

12

)
> 0

Q11 = αT
1 K + Kα1,

R−1 = Q22,

then P (q), satisfies the following differential equation:

zT
(
PA + AT P − PBR−1BT P + Ṗ + Q

)
z = 0, (A–1)

where A (q, q̇), B (q) and z (t) are introduced in Equation 2–11.

Proof: Substituting A (q, q̇), B (q) and P (q) into Equation A–1 yields

0 = zT






−Kα1 K

0 −Vm


 +



−αT

1 K 0

K −V T
m


 (A–2)

−




0 0

0 R−1


 +




0 0

0 Ṁ (q)


 +




Q11 Q12

QT
12 Q22





 z.

After applying Equation 2–3 in Property 2, Equation A–2 is satisfied if the following

conditions are true:


−Kα1 − αT

1 K K

K −R−1


 = −




Q11 Q12

QT
12 Q22


 .

Therefore, if α1, R, and K are chosen as in Equation 2–14 - Equation 2–16, then P (q)

satisfies Equation A–1.
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APPENDIX B
SOLUTION OF HAMILTON-JACOBI-BELLMAN EQUATION

Lemma: The value function V (z, t) ∈ R

V =
1

2
zT Pz (B–1)

satisfies the HJB equation. Then the optimal control u (t) that minimizes Equation 2–12

subject to Equation 2–11 is

u (t) = −R−1BT

(
∂V (z, t)

∂z

)T

= −R−1e2. (B–2)

Proof: The HJB equation is given by

− ∂V (z, t)

∂t
= min

u

[
H

(
z, u,

∂V (z, t)

∂z
, t

)]
, (B–3)

where the Hamiltonian is defined as

H

(
z, u,

∂V (z, t)

∂z
, t

)
= min

u

[
L (z, u) +

∂V (z, t)

∂z
ż

]
. (B–4)

To derive the optimal control law, the partial derivatives of the function V (z, t) need

to be evaluated. The time derivative of V (z, t) can be expressed as

dV

dt
=

∂V

∂t
+

∂V

∂z
ż. (B–5)

The gradient of V (z, t) with respect to the error state z (t) is

∂V

∂z
= zT P +

1

2
zT D, (B–6)

where

D =

[
∂P

∂e11

z · · · ∂P

∂e1n

z 0 · · · 0

]
=

[
D1 0

]
. (B–7)

In Equation B–7, D ∈ R2n×2n and 0 ∈ R2n×1 is a zero vector and the notation
∂P

∂e1i

is used

to represent the 2n × 2n matrix whose elements are partial derivatives of the elements of

P (q) with respect to e1i.
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In order to determine a control that optimizes the Hamiltonian, its partial derivative

with respect to u (t) must be determined. Since u (t) is unconstrained, Equation B–4

requires that

∂H

∂u

(
z, u,

∂V (z, t)

∂z
, t

)
= uT R +

∂V

∂z
B = 0,

which gives an optimal control candidate

u (t) = −R−1BT ∂V T

∂z
. (B–8)

Since

∂2H

∂u2
= R > 0,

we know that Equation B–4 is minimized by u (t). Substituting Equation B–6 and

Equation B–7 into Equation B–8 gives

u (t) = −R−1BT

(
Pz +

1

2
DT z

)
= −R−1BT P T z = −R−1e2, (B–9)

where the relation

BT DT = 0D1 + M0 = 0,

is used.

A necessary and sufficient condition for optimality is that the chosen value function

V (z, t) satisfies Equation B–3. Substituting Equation B–4 into Equation B–3 yields

∂V (z, t)

∂t
+

∂V (z, t)

∂z
ż + L (z, u∗) = 0. (B–10)

Substituting Equation B–5 into Equation B–10 yields

zT P ż +
1

2
zT Ṗ z + L (z, u) = 0. (B–11)

Inserting Equation 2–11, Equation B–9, and L (z, u) into Equation B–11 yields

zT PAz +
1

2
zT

(
Ṗ + Q− PBR−1BT P T

)
z = 0. (B–12)
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Since zT PAz =
1

2
zT

(
AT P + PA

)
z, Equation B–12 can be written as

1

2
zT

(
Ṗ + AT P + PA + Q− PBR−1BT P T

)
z = 0. (B–13)

As shown in Appendix A, P (q) satisfies Equation B–13, therefore V (z, t) satisfies the

HJB equation Equation B–3 and the optimal is given by Equation B–9.
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APPENDIX C
BOUND ON Ñ(T )

Lemma: The auxiliary error Ñ(t) defined in Equation 2–26 as

Ñ , −V̇me2 − Vmė2 − 1

2
Ṁr +

·
h̄ + α2Ṁe2 + α2Mė2 + e2 + α2R

−1e2, (C–1)

−‖e2‖ σ̂ − Ŵ T σ̂ ‖e2‖xd

can be upper bounded as follows:

∥∥∥Ñ(t)
∥∥∥ ≤ ρ (‖y‖) ‖y‖ ,

where y(t) ∈ R3n is defined as

y(t) , [eT
1 eT

2 rT ]T , (C–2)

and the bounding function ρ(‖y‖) ∈ R is a positive globally invertible nondecreasing

function.

Proof: Ñ(q, q̇, q̈d,
...
q d, e1, e2, r) ∈ Rn in Equation C–1 can be expressed as follows:

Ñ = −1

2
Ṁ(q)r + Ṁ(q) [α1 (e2 − α1e1) + α2e2] + Ṁ(q)q̈d + M(q)

...
q d

+ M(q) [α1 (r − α2e2 − α1 (e2 − α1e1)) + α2 (r − α2e2)]− Ṁ(qd)q̈d

+ Vm(q, q̇)
[
q̈d − r + α2e2 + α1e2 − α2

1e1

]− V̇m(qd, q̇d)q̇d − Vm(qd, q̇d)q̈d

−M(qd)
...
q d + V̇m(q, q̇)q̇ + Ġ (q)− Ġ (qd) + Ḟ (q̇)− Ḟ (q̇d) + e2 + α2R

−1e2

where the following were used:

ė1 = e2 − α1e1,

ë1 = r − α2e2 − α1 (e2 − α1e1) ,

ė2 = r − α2e2,

q̈ = q̈d − r + α2e2 + α1e2 − α2
1e1.

96



Let N (q, q̇, q̈d,
...
q d, e1, e2, r) ∈ Rn be defined as

N , −1

2
Ṁ(q)r + Ṁ(q) [α1 (e2 − α1e1) + α2e2] + Ġ (q)

+ M(q) [α1 (r − α2e2 − α1 (e2 − α1e1)) + α2 (r − α2e2)]

+ Ṁ(q)q̈d + M(q)
...
q d + V̇m(q, q̇)q̇ + Ḟ (q̇) + e2 + α2R

−1e2

+ Vm(q, q̇)
[
q̈d − r + α2e2 + α1e2 − α2

1e1

]
.

The auxiliary error Ñ(t) can be written as the sum of errors pertaining to each of its

arguments as follows:

Ñ(t) = N (q, q̇, q̈d,
...
q d, e1, e2, r)−N (qd, q̇d, q̈d,

...
q d, 0, 0, 0)

= N (q, q̇d, q̈d,
...
q d, 0, 0, 0)−N (qd, q̇d, q̈d,

...
q d, 0, 0, 0)

+ N (q, q̇, q̈d,
...
q d, 0, 0, 0)−N (q, q̇d, q̈d,

...
q d, 0, 0, 0)

+ N (q, q̇, q̈d,
...
q d, 0, 0, 0)−N (q, q̇, q̈d,

...
q d, 0, 0, 0)

+ N (q, q̇, q̈d,
...
q d, 0, 0, 0)−N (q, q̇, q̈d,

...
q d, 0, 0, 0)

+ N (q, q̇, q̈d,
...
q d, e1, 0, 0)−N (q, q̇, q̈d,

...
q d, 0, 0, 0)

+ N (q, q̇, q̈d,
...
q d, e1, e2, 0)−N (q, q̇, q̈d,

...
q d, e1, 0, 0)

+ N (q, q̇, q̈d,
...
q d, e1, e2, r)−N (q, q̇, q̈d,

...
q d, e1, e2, 0) .
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Applying the Mean Value Theorem to Ñ(t) results in the following expression:

Ñ(t) =
∂N(σ1, q̇d, q̈d,

...
q d, 0, 0, 0)

∂σ1

|σ1=v1 (q − qd) (C–3)

+
∂N(q, σ2, q̈d,

...
q d, 0, 0, 0)

∂σ2

|σ2=v2 (q̇ − q̇d)

+
∂N(q, q̇, σ3,

...
q d, 0, 0, 0)

∂σ3

|σ3=v3 (q̈d − q̈d)

+
∂N(q, q̇, q̈d, σ4, 0, 0, 0)

∂σ4

|σ4=v4 (
...
q d −

...
q d)

+
∂N(q, q̇, q̈d,

...
q d, σ5, 0, 0)

∂σ5

|σ5=v5 (e1 − 0)

+
∂N(q, q̇, q̈d,

...
q d, e1, σ6, 0)

∂σ6

|σ6=v6 (e2 − 0)

+
∂N(q, q̇, q̈d,

...
q d, e1, e2, σ7)

∂σ7

|σ7=v7 (r − 0) ,

where

v1 ∈ (qd, q)

v2 ∈ (q̇d, q̇)

v3 ∈ (q̈d, q̈d)

v4 ∈ (
...
q d,

...
q d)

v5 ∈ (0, e1)

v6 ∈ (0, e2)

v7 ∈ (0, r) .
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From equation Equation C–3, Ñ(t) can be upper bounded as follows:

∥∥∥Ñ(t)
∥∥∥ ≤

∥∥∥∥
∂N(σ1, q̇d, q̈d,

...
q d, 0, 0, 0)

∂σ1

|σ1=v1

∥∥∥∥ ‖e1‖ (C–4)

+

∥∥∥∥
∂N(q, σ2, q̈d,

...
q d, 0, 0, 0)

∂σ2

|σ2=v2

∥∥∥∥ ‖e2 − a1e1‖

+

∥∥∥∥
∂N(q, q̇, q̈d,

...
q d, σ5, 0, 0)

∂σ5

|σ5=v5

∥∥∥∥ ‖e1‖

+

∥∥∥∥
∂N(q, q̇, q̈d,

...
q d, e1, σ6, 0)

∂σ6

|σ6=v6

∥∥∥∥ ‖e2‖

+

∥∥∥∥
∂N(q, q̇, q̈d,

...
q d, e1, e2, σ7)

∂σ7

|σ7=v7

∥∥∥∥ ‖r‖ .

By noting that

v1 = q − c1 (q − qd)

v2 = q̇ − c2 (q̇ − q̇d)

v5 = e1 (1− c5)

v6 = e2 (1− c6)

v7 = r (1− c7) .

where ci ∈ (0, 1) ∈ R, i = 1, 2, 5, 6, 7 are unknown constants, the following upper bounded

can be developed:

∥∥∥∥
∂N(σ1, q̇d, q̈d,

...
q d, 0, 0, 0)

∂σ1

|σ1=v1

∥∥∥∥ ≤ ρ1(e1)

∥∥∥∥
∂N(q, σ2, q̈d,

...
q d, 0, 0, 0)

∂σ2

|σ2=v2

∥∥∥∥ ≤ ρ2(e1, e2)

∥∥∥∥
∂N(q, q̇, q̈d,

...
q d, σ5, 0, 0)

∂σ5

|σ5=v5

∥∥∥∥ ≤ ρ5(e1, e2)

∥∥∥∥
∂N(q, q̇, q̈d,

...
q d, e1, σ6, 0)

∂σ6

|σ6=v6

∥∥∥∥ ≤ ρ6(e1, e2)

∥∥∥∥
∂N(q, q̇, q̈d,

...
q d, e1, e2, σ7)

∂σ7

|σ7=v7

∥∥∥∥ ≤ ρ7(e1, e2, r).
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The bound on Ñ(t) can be further reduced to:

∥∥∥Ñ(t)
∥∥∥ ≤ ρ1(e1) ‖e1‖+ ρ2(e1, e2) ‖e2 − α1e1‖ (C–5)

+ ρ5(e1, e2) ‖e1‖+ ρ6(e1, e2) ‖e2‖

+ ρ7(e1, e2, r) ‖r‖ .

Using the inequality

| |e2 − α1e1| | ≤ ‖e2‖+ α1 ‖e1‖ ,

the expression in Equation C–5 can be further upper bounded as follows:

∥∥∥Ñ(t)
∥∥∥ ≤ [ρ1(e1) + α1ρ2(e1, e2) + ρ5(e1, e2)] ‖e1‖

+ [ρ2(e1, e2) + ρ6(e1, e2)] ‖e2‖+ ρ7(e1, e2, r) ‖r‖ .

Using the definition of y(t) ∈ R3n in Equation C–2, Ñ(t) can be expressed in terms of y(t)

as follows:

∥∥∥Ñ(t)
∥∥∥ ≤ [ρ1(e1) + α1ρ2(e1, e2) + ρ5(e1, e2)] ‖y(t)‖

+ [ρ2(e1, e2) + ρ6(e1, e2)] ‖y(t)‖

+ ρ7(e1, e2, r) ‖y(t)‖ .

Therefore, ∥∥∥Ñ(t)
∥∥∥ ≤ ρ (‖y‖) ‖y‖ ,

where ρ (‖y‖) is some positive globally invertible nondecreasing function. The inclusion of

the additional terms in Equation 2–67 is trivial due to the fact that proj (·) ≤ ‖e2‖, and

all other terms are bounded by assumption or design.
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APPENDIX D
BOUND ON L (T ) - PART 1

Lemma: Define the auxiliary function L (t) as Equation 2–36. If the following

sufficient conditions in Equation 2–33 then

∫ t

0

L(τ)dτ ≤ β1 ‖e2(0)‖ − e2(0)T ND(0). (D–1)

Proof: Integrating both sides of Equation 2–36 yields

∫ t

0

L(τ)dτ =

∫ t

0

r(τ)T (ND(τ)− β1sgn(e2)) dτ. (D–2)

Substituting Equation 2–6 into Equation D–2,

∫ t

0

L(τ)dτ =

∫ t

0

de2(τ)

dτ

T

ND(τ)dτ −
∫ t

0

β
de2(τ)

dτ

T

sgn(e2)dτ (D–3)

+

∫ t

0

α2e2(τ)T (ND(τ)− β1sgn(e2)) dτ.

After integrating the first integral in Equation D–3 by parts, the expression in Equation

D–3 can be written as

∫ t

0

L(τ)dτ =

∫ t

0

α2e2(τ)T (ND(τ)− β1sgn(e2)) dτ −
∫ t

0

e2(τ)T dND(τ)

dτ
dτ (D–4)

−β1 ‖e2(t)‖+ β1 ‖e2(0)‖+ e2(t)
T ND(t)− e2(0)T ND(0).

After rearranging the terms in Equation D–4 as

∫ t

0

L(τ)dτ ≤ β1 ‖e2(0)‖ − e2(0)T ND(0) + ‖e2(t)‖ (ζ1 − β1) (D–5)

+

∫ t

0

α2 ‖e2(τ)‖
(

ζ1 +
1

α2

ζ2 − β1

)
dτ,

the inequality in Equation D–5 can be obtained if β1 satisfies Equation 2–33.
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APPENDIX E
BOUND ON L (T ) - PART 2

Lemma: Let the function L (t) as Equation 2–82. If the following sufficient

conditions in Equation 2–79 then

∫ t

0

L(τ)dτ ≤ β1 ‖e2(0)‖ − e2(0)T NB(0). (E–1)

Proof: Integrating both sides of Equation 2–82 yields

∫ t

0

L(τ)dτ =

∫ t

0

(−β2 ‖e2(τ)‖2 +
de2(τ)

dτ

T

NB2 (τ) (E–2)

+ r(τ)T (NB1(τ) + ND(τ)− β1sgn(e2)))dτ.

Substituting Equation 2–6 into Equation E–2,

∫ t

0

L(τ)dτ =

∫ t

0

de2(τ)

dτ

T

N(τ)dτ −
∫ t

0

β1
de2(τ)

dτ

T

sgn(e2)dτ (E–3)

+

∫ t

0

α2e2(τ)T (NB1(t) + ND(t)− β1sgn(e2)) dτ

−
∫ t

0

β2 ‖e2(t)‖2 dτ.

Integrating the first integral in Equation E–3 by parts, and by using the fact that

dN(τ)

dτ
=

dND(τ)

dτ
+

dNB(τ)

dτ

=
dND(τ)

dτ
+

∂NB(τ)

∂xd

dẋd

dt
+

∂NB(τ)

∂vec
(
Ŵ

)
dvec

(
Ŵ

)

dt
+

∂NB(τ)

∂vec
(
V̂

)
dvec

(
V̂

)

dt
.
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The expression in Equation E–3 can be written as

∫ t

0

L(τ)dτ =

∫ t

0

α2e2(τ)T (NB1(t) + ND(t)− β1sgn(e2)) dt (E–4)

−
∫ t

0

β2 ‖e2(t)‖2 dτ − 1

α2

∫ t

0

α2e2(τ)T

(
∂NB(τ)

∂xd

dxd

dt
+

dND(τ)

dτ

)
dτ

−
∫ t

0

e2(τ)T


 ∂NB(τ)

∂vec
(
Ŵ

)
dvec

(
Ŵ

)

dt
+

∂NB(τ)

∂vec
(
V̂

)
dvec

(
V̂

)

dt


 dτ

−β1 ‖e2(t)‖+ β1 ‖e2(0)‖+ e2(t)N(t)− e2(0)N(0).

After rearranging the terms in Equation E–4 as

∫ t

0

L(τ)dτ ≤ β1 ‖e2(0)‖ − e2(0)N(0) (E–5)

+

∫ t

0

α2 ‖e2(τ)‖
(

ζ1 + ζ2 +
1

α2

ζ3 +
1

α2

ζ4 − β1

)
dτ

+

∫ t

0

‖e2(τ)‖2 (ζ5 − β2) + ‖e2(t)‖ (ζ1 + ζ2 − β1) dτ,

the inequality in Equation E–5 can be obtained if β1 and β2 satisfy Equation 2–79.
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APPENDIX F
REVIEW OF ADAPTIVE INVERSE OPTIMAL CONTROL:

Given a system of the form

ẋ = f (x) + g (x) u, (F–1)

where x (t) ∈ Rn denotes the state vector, u (t) ∈ Rm, denotes the control vector,

f (x) ∈ Rn is a smooth vector valued function and g (x) ∈ Rn×m is a smooth matrix

valued function, the optimal control problem is to determine the control u∗ (t) ∈ Rm which

minimizes a cost

J (u) ,
∫ ∞

0

L (x, u) dt, (F–2)

subject to the dynamic constraints in Equation F–1, where L (z, u) ∈ R is the Lagrangian.

A necessary and sufficient condition for an optimal solution to exist, is the existence of a

function V (x, t) ∈ R, called the value function, which satisfies the Hamilton-Jacobi-Bellman

(HJB) equation

0 =
∂V (x, t)

∂t
+ min

u

[
L (x, u) +

∂V (x, t)

∂x

]
ẋ.

In general the HJB equation, a nonlinear partial differential equation, can not be solved

analytically. In an effort to circumvent the need to solve the HJB equation, inverse

optimal control was developed. Furthermore, adaptive inverse optimal control was

developed to allow the design of inverse optimal controllers for systems with unknown

parameters. Consider a system of the form

ẋ = f (x) + F (x) θ + g (x) u, (F–3)

where f (x) ∈ Rn denotes a known smooth vector function and F (x) ∈ Rn×p, g (x) ∈ Rn×m

are known, smooth matrix valued functions, θ ∈ Rp is a vector of unknown constants, and

u (t) ∈ Rm denotes the control vector. A positive definite, radially unbounded function

Va (x, θ) ∈ R is called an adaptive control Lyapunov function for Equation F–3 if it is a
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control Lyapunov function for the modified system

ẋ = f (x) + F (x)

(
θ + Γ

(
∂Va

∂θ

)T
)

+ g (x) u, (F–4)

where Γ ∈ Rp×p is positive definite. The function Va (x, θ) is a control Lyapunov function

for Equation F–4 if there exists a smooth control law u (θ, x) , with u (θ, 0) = 0, which

satisfies

∂V

∂x

[
f (x) + F (x)

(
θ + Γ

(
∂Va

∂θ

)T
)

+ g (x) u

]
≤ 0. (F–5)

If there exists a control Lyapunov function for Equation F–4 (which means an adaptive

control Lyapunov function for Equation F–3), and a feedback control law of the form

u = −R (x, θ)−1

(
∂Va

∂x
g

)T

, (F–6)

where R (x, θ) ∈ Rm×m is a positive definite and symmetric matrix that stabilizes Equation

F–4, then the feedback control law

u∗ = −βR
(
x, θ̂

)−1
(

∂Va

∂x
g

)T

β ∈ R ≥ 2,

where θ̂ ∈ Rp is an estimate for θ, with the parameter update law

·
θ̂ = Γ

(
∂Va

∂x
F

)T

, (F–7)

minimizes the cost functional

J = β lim
t→∞

∥∥∥θ − θ̂
∥∥∥

2

Γ−1
+

∫ ∞

0

(
l
(
x, θ̂

)
+ uT R (x, θ) u

)
dt, (F–8)

where l
(
x, θ̂

)
∈ R is defined as

l = −2β

[
∂Va

∂x

(
f + F

(
θ̂ + Γ

∂Va

∂θ̂

T )
+ gu

)]
+ β (β − 2)

∂Va

∂x
gR−1

(
∂Va

∂x
g

)T

.

The cost functional J (t) is considered meaningful in the sense that it imposes a positive

penalty on the state and actuation. The adaptive inverse optimal control problem can be
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summarized as follows: if an adaptive control Lyapunov function and a stabilizing control

law of the form in Equation F–6 can be found for the system in Equation F–3, then that

control law minimizes the cost functional in Equation F–8.
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