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Adaptive neural network (NN)-based controllers have become increasingly popular

in recent years due to their real-time function approximation capabilities. While most

adaptive control results only consider single-hidden layer NNs, recent developments

focus on deep learning with feedback control and establish that DNNs are exponentially

more efficient than shallow NNs regarding the total number of neurons required to

achieve the same accuracy in function approximation [2]. However, the developed

adaptation methods are restricted to feedforward NNs, which are static structures and

therefore only have access to current state information. Previous results establish that

the presence of a memory capable of accessing previous state information both reduces

the required data set for training and leads to faster learning. Unlike feedforward NNs,

recurrent NNs (RNNs) are a dynamic mapping. Thus, RNNs have an internal memory

that can leverage dependencies in a sequence and increase approximation capabilities,

thus improving performance [3]. Therefore, motivation exists to develop adaptive deep

RNN (DRNN) control architectures. However, the nonlinearities and internal dynamics

of these models make deriving stability-driven adaptation results mathematically

difficult. Despite these difficulties, this dissertation presents the first stability-driven

online learning methods for long short-term memory (LSTM) and deep RNN (DRNN)

architectures.
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Chapter 1 provides a literature survey of common machine learning techniques,

introduces the research section of the dissertation, and provides an outline of the

remaining chapters. Section 1.1 provides a general background and motivation for

machine learning-based control methods. Section 1.2 provides a background on super-

vised learning and analyses results in supervised learning-based control development.

Section 1.3 covers NN-based control in more depth and surveys results that develop

control schemes using shallow NNs. Section 1.4 analyses current results for deep

learning in controls. Section 1.5 outlines the remaining chapters of the dissertation.

Chapter 2 develops an adaptive Lyapunov-based (Lb-) LSTM architecture and

controller for general Euler-Lagrange systems. Specifically, a continuous-time Lb-LSTM

NN is constructed and implemented in the controller as a feedforward term to adaptively

estimate uncertain model dynamics. Despite the technical challenges posed by the

complexity of the LSTM cell structure, stability-driven adaptation laws adjust the Lb-

LSTM weights in real-time and allow the developed architecture to adapt to system

uncertainties without any offline training requirements. A Lyapunov-based stability

analysis is performed to guarantee uniform ultimate boundedness (UUB) of the tracking

errors and LSTM state and weight estimation errors.

Chapter 3 provides a Lb-LSTM architecture for system identification of a class

of nonlinear systems. RNNs contain temporal operations that allow them to retain

information from previous states, making them well-suited for identification of dynamical

systems. The developed LSTM observer adjusts in real-time to system uncertainties

through a Lyapunov-derived weight adaptation law, where a filtered estimation error

is designed and implemented in the weight adaptation law to relax full-state feedback

requirements. A Lyapunov-based stability analysis is performed to ensure asymptotic

convergence of the estimation errors and stability of the adaptive Lb-LSTM architecture.

Chapter 4 develops an output feedback (OFB) controller for uncertain nonlinear

systems using DRNN. Inspired by the dynamic nature and memory capabilities of
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RNNs, a DRNN observer is designed to adaptively estimate the unknown states of the

system and is incorporated into a control framework. Unlike the preceding chapters,

the developed OFB controller is designed to achieve a two-fold control objective:

asymptotic estimation of the unmeasurable states and asymptotic tracking control.

The developed Lyapunov-based adaptation laws adjust the weights of the Lb-DRNN

using the system output in real-time. Through a Lyapunov-based stability analysis, the

developed observer and the overall control design are proven to guarantee asymptotic

stability, ensuring reliable and robust control performance.

Chapter 5 summarizes the preceding chapters in the dissertation. Additionally,

Chapter 5 presents future research directions based on the work presented in the

previous chapters.
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CHAPTER 1
LITERATURE REVIEW AND DISSERTATION OUTLINE

1.1 Machine Learning

Machine learning methods leverage data to complete a task, making them popular

for complex problems such as image classification and voice recognition [4, 5]. Machine

learning algorithms can be split into three subcategories: reinforcement learning,

unsupervised learning, and supervised learning [5] (Figure 1-1). In reinforcement

Figure 1-1. Outline of the machine learning subsections covered in this chapter.
Subtopics of each section are represented by the branches in the diagram.

learning (RL), an agent learns to make decisions that maximize a predefined reward.
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Thus, RL focuses on rewarding desirable behavior and punishing undesirable actions.

Examples of RL algorithms include deep RL, Q-learning, and actor-critic methods.

When implemented in closed-loop controllers, RL provides a model-free method for

solving optimal control problems. Results such as [6–18] focus on the development of

RL-based controllers for nonlinear systems.

Unsupervised learning uses machine learning algorithms to cluster unlabeled

datasets. Unsupervised learning can be split into exclusive clustering and overlapping

clustering methods. Unlabeled input data makes unsupervised learning useful for

datasets in which common properties between data points are unclear. Popular uses of

unsupervised learning methods include language recognition, spam email identification,

and voice recognition [19]. Since the data points are not labeled, unsupervised learning

algorithms cannot be used to solve regression problems, e.g., time series regression,

which makes them difficult to implement in many closed-loop control applications.

Unlike unsupervised learning, supervised learning can be used for both regression and

classification problems. Supervised learning uses labeled datasets, i.e., each data point

contains both features (i.e., inputs) and an associated label (i.e., output). A training

dataset (composed of both input and output data) is used to adjust the model based

on an error loss function. Thus, supervised learning algorithms can be implemented to

solve regression problems for control design of systems with time-series input data.

1.2 Supervised Learning

Common algorithms for regression-based supervised learning include linear

regression, polynomial regression, fuzzy logic, and neural networks (NNs) [5]. Since

linear regression finds the linear relationship between the input and output variables, it

is unable to accurately model complex functions. Control designs in [20, 21] use linear

regression models to estimate uncertain system dynamics, but assume linearity-in-the-

parameters. Therefore, these methods are not well-suited for more complex or more

uncertain systems. Motivated by the need to accurately model more complex functions,
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polynomial regression fits a polynomial curve to a dataset rather than a line. Results

such as [22–24] implement polynomial regression algorithms to generate a feedforward

estimate in various control schemes. However, polynomial regression methods are

limited to modeling functions that can be expressed as a polynomial model, which is

restrictive for many closed-loop control applications.

Results in [25–48] develop fuzzy-logic-based controllers (FLC). FLC was initially

designed as a model free approach. While this approach had great success in practical

applications, the theoretical contributions faced criticism due to a lack of a stability

analysis and controller design. In response, some focus shifted towards model-based

fuzzy logic control (FLC). FLC does not need an accurate dynamics model and is more

robust to umodeled disturbances compared to many other adaptive control methods.

Unlike linear and polynomial regression algorithms, fuzzy systems are capable of

approximating any nonlinear system within an arbitrary small approximation error given

a sufficient number of rules. This makes them useful for complex problems where

accurate models may not be feasible.

Like fuzzy systems, NNs are capable of general function approximation and

are not restricted to specific models. Specifically, NNs possess a universal function

approximation property that allows them to be implemented in feedback control without

requirements for linearity in the system parameters [49]. The more complex architecture

and nested nonlinearities of NNs allow them to model more complex functions when

compared to other regression models (e.g., linear regression). The universal function

approximation property makes NNs well-suited for modeling uncertain system dynamics

in control schemes.

1.3 Neural Networks

A single hidden layer feedforward NN with fully-connected layers is shown in Fig.

1-2 [50]. The single hidden-layer NN structure is characterized by having two layers

of adjustable weights, the outer-layer and the hidden-layer. It has no internal feedback

14



Figure 1-2. Architecture of a single hidden layer neural network [50].

connections, and is subsequently termed feedforward. It has no internal dynamics, and

so is said to be static. A shallow NN is defined as [50]

y = W>φ
(
V >x

)
, (1–1)

where x : R≥0 → Rn denotes the input, y : R≥0 → Rm denotes the output, φ : RL → RL

denotes a vector of activation functions, and V > ∈ RL×n and W> ∈ Rm×L denote weight

matrices. The dimension L ∈ R>0 denotes the number of neurons in the hidden layer.

Common activation functions include ReLu, the sigmoid function, hyperbolic tangent,

and other logarithmic-curve-type functions.

Using the model defined in (1–1), results such as [33, 50–82] have investigated

NN-based control schemes to compensate for nonlinearities in the system dynamics.
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The use of NNs is motivated by the fact that NNs are universal approximators, i.e., NNs

are able to approximate any continuous function on a compact set to some prescribed

accuracy [49]. Thus, NNs can be used to estimate parametric uncertainties that do

not satisfy the linear-in-the-parameters assumption required in most adaptive control

methods. However, NNs are nonlinear in the inner-layer weights. Therfore, a challenge

for NN-based closed-loop feedback control is providing online learning algorithms for

the NN weight estimates that yield guaranteed stability. Moreover, since the universal

function approximation property is restricted to continuous functions over a compact

set, additional challenges arise for dynamical systems that do not readily meet these

requirements.

Control methods such as [54–57, 68, 69, 73–80] train the NN weights using offline

optimization techniques. These offline optimization methods adjust the NN weights by

minimizing a loss function over a collected dataset. The resulting feedforward NN term

is implemented in the controller as an open-loop function approximator. Such offline

methods pose limitations since large, sufficiently rich datasets are typically required

for accurate function approximation. Moreover, the resulting accuracy is only based

on offline training and does not adjust to real-time data. Due to the lack of continual

learning, offline trained models may not accurately model the dynamics during task

execution, whereas online methods consider real-time data, involve a closed-loop

implementation, and provide stability guarantees under appropriate weight adaptation

laws. Rather than base function approximation performance solely on offline learning,

results such as [33, 50–53, 58–67, 70–72, 81, 82] develop adaptive NN-based control

schemes for real-time learning of the NN weights. Specifically, the developed control

schemes include an adaptive closed-loop feedforward term to compensate for unknown,

nonlinear terms in the model dynamics and robustifying terms account for approximation

error. Online tuning of the weights eliminates the need for an offline learning phase and

ensures good performance even with random weight initialization.
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Many adaptive control methods use optimization techniques to adjust the NN

weights based on a loss function [55–57, 59, 60, 81]. Although such online training

methods have promising empirical results, they lack stability guarantees. In contrast

to optimization training techniques, results such as [33, 50–54, 58, 61–80, 82] focus on

the design of adaptive NN architectures based on Lyapunov stability theory. Lyapunov-

derived weight adaptation laws allow for the NN feedforward estimate to adjust based

on an analytical update law in real-time. Although NN-based adaptive control design

has been well-established, many of the developed adaptive NN architectures only apply

for single hidden layer NNs (i.e., the architecture defined in (1–1)), which is restrictive.

Moreover, while various adaptive NN architectures have proven stability guarantees,

convergence of the NN weight estimates remains an open problem.

Unlike feedforward NNs which are memoryless and static, RNNs are a type of

dynamic NN that can capture the temporal dynamic behavior of an unknown system. A

single hidden layer RNN can be defined as [83]

ḣ = −bh+W>φ
(
V >h (t) + U>x (t)

)
, (1–2)

where h : R>0 → Rm denotes the hidden state, x : R>0 → Rn denotes the input,

φ : RL → RL denotes a vector of activation functions, and U ∈ RL×n, V ∈ RL×m,

and W ∈ Rm×L denote weight matrices. From the hidden state h, RNNs contain

connections between the nodes that retain state information for later use through

temporal operations present in the RNN architecture (Fig. 1-3) [83]. As a result, RNNs

are a dynamic mapping and are better suited for dynamical system identification than

feedforward NNs [3].

Results such as [1, 3, 84–95] employ RNNs for the identification of nonlinear

systems and propose several training methods for adaptation of the RNN weights.

Specifically, these results formulate RNNs as observers to estimate hidden states

and identify the dynamics of the system. Robustifying terms account for residual error
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Figure 1-3. An RNN with no output. This RNN processes information from the input x
by incorporating it into a hidden state h that is passed forward in time. The
left and right diagrams indicate an unfolded and folded representation
respectively, where the black box indicates a single time step delay [83].

due to the RNN function approximation mismatch. Compared to traditional model-

based observers, RNN-based observers relax model knowledge requirements and

can be implemented for estimation of an unknown system. Previous methods employ

optimization techniques to train the weights based on some loss function [3, 89–92, 95].

Although these training methods have been successfully used in empirical studies, they

lack analytical results concerning stability guarantees. In contrast to offline optimization

training techniques, results such as [1, 84–88, 93, 94] focus on the design and analysis

of Lyapunov-derived adaptive RNN architectures. Specifically, these results develop

adaptive RNN architectures to estimate unknown, nonlinear dynamics. The developed

RNN observers adjust in real-time through weight adaptation laws designed using

Lyapunov-based stability analyses. Due to the complex nature and nested nonlinearity

of deep architectures, these methods are restricted to either RNNs satisfying a linear-in-

the-parameters assumption or RNNs with a single hidden layer.

1.4 Deep Learning

Although NNs with a single hidden layer are capable of approximating general

nonlinear functions, a growing amount of empirical and experimental results indicate

that DNNs provide improved performance [4]. Moreover, DNNs are exponentially more

efficient than shallow NNs regarding the total number of neurons required to achieve
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Figure 1-4. Architecture of a feedforward deep neural network [96].

the same accuracy in function approximation [2]. Thus, motivation exists to investigate

DNN-based control methods. A feedforward DNN can be modeled as (Figure (1-4) )

[96]

Φ (x,W0,W1,W2, ...,Wk) = W>
k φk ◦ ... ◦W>

1 φ1 ◦W>
0 xa, (1–3)

where xa ,
[
x> 1

]>
: R≥0 → Rn+1 denotes the augmented input, and x : R≥0 → Rn

denotes the input. The smooth activation functions and weight matrices at the jth layer

are denoted by φj : RLj → RLj and W>
j ∈ RLj+1×Lj for all j ∈ {1, ..., k} and j ∈ {0, ..., k},

respectively, where Lj ∈ R>0, ∀j ∈ {0, ..., k} denotes the number of neurons in the jth

layer. To incorporate a bias term, xa and φj are augmented with 1 for all j ∈ {1, ..., k}.

Results such as [97] and [98] develop DNN-based closed-loop controllers for uncer-

tain, nonlinear systems. Specifically, a DNN estimate is implemented as a feedforward

term to compensate for model uncertainty. Training of the DNN weights is generally

accomplished offline using optimization techniques. Hence, these results have the

same limitations as the offline training methods developed for single-hidden layer NNs
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in Section 1.3. Therefore, results such as [97] and [98] are likely not robust to factors

such as unmodeled disturbances, time-varying behavior, or sudden changes in system

dynamics. Typically, control architectures that use offline trained DNN estimates are

based on empirical studies and lack analytical results that yield stability guarantees.

Motivated to address these limitations, results such as [99–105] focus on the

development of DNN-based control schemes with stability-derived, real-time weight

adaptation. The inner-layer weights of DNNs are embedded inside nonlinear activation

functions. The inner-layer embedding presents a major challenge toward the deriva-

tion of stability results for DNN-based controllers and the development of adaptive

weight update laws based on stability analyses. Prior to the results in [99] and [100],

many DNN-based controllers showed improved performance empirically, but lacked

performance guarantees due to the probability nature of DNNs. In [99] and [100],

Lyapunov-based stability analyses ensure stability of the developed control schemes,

making them suitable for safety-critical applications. However, those results are specific

to linear systems with known A and B matrices and matched system uncertainty. While

some nonlinear systems can be linearized about an equilibrium point, this approach isn’t

applicable for many nonlinear systems. Thus, results in [101] extend the adaptive weight

update law and DNN architecture developed in [99] and [100] to general uncertain,

nonlinear systems. The control development in [99–101] includes training techniques

for updates of the DNN concurrent to real-time. DNN training algorithms can be used

to update the inner-layers of the DNN concurrent to real-time as an alternative to adap-

tive inner-layer weight update laws. Switching due to batch updates of the inner-layer

weights of the DNN necessitates a nonsmooth stability analysis. However, such designs

result in real-time adaptation of only the outer-layer weights.

In [102], an adaptive DNN-based controller is developed that establishes real-time

modular weight updates for multiple layers of a DNN of arbitrary depth. The modular

weight adaptation law in [102] allows for various update laws for the inner-layer weights
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to be selected and designed for learning of the inner-layer weights while guaranteeing

tracking performance. However, while this modular approach allows for significant

flexibility in the design of the weight adaptation law, it does not provide any guidance

regarding which designs would be most efficient or most optimal.

The work in [104] presents the first DNN-based control scheme with real-time

Lyapunov-derived weight adaptation laws for all layers of the DNN feedforward estimate.

A significant contribution is that the approach overcomes difficulties presented by the

nested nonlinearities in the DNN architecture and considers a DNN of an arbitrary

depth. This work is later extended to adaptive residual NN (ResNet) architectures

in [103] to add robustness to vanishing perturbations to the online weight adaptations.

Lyapunov-based stability analyses in [103] and [104] show asymptotic convergence of

the tracking errors and stability of the overall closed-loop error systems and adaptive

weight update laws, but as seen in shallow NN-based adaptive control schemes,

guaranteed convergence of the DNN weight estimates remains an open problem.

Feedforward NNs have a static structure that only has access to current state infor-

mation. Previous findings have demonstrated that incorporating a memory component

capable of accessing previous state information reduces the required training data and

accelerates the learning process [106–108]. Building on these insights, results in [109]

augment static NN-based controllers with an external memory, resulting in faster learn-

ing and improved function approximation. Although this approach introduces a working

memory to the NN, the NN remains static and feedforward, with the augmented memory

being external to the NN architecture. RNNs are a dynamic type of NN that are specif-

ically designed to handle sequential or temporal data. Unlike feedforward NNs which

process inputs independently and have no internal memory, RNNs have a recurrent

connection that allows them to maintain information from previous time steps. This inter-

nal memory allows RNNs to capture and model time-varying and accumulative effects

present in certain dynamic systems that feedforward NNs cannot. This ability to capture
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dynamic behavior makes RNNs better suited to construct state observers for output

feedback control of uncertain nonlinear systems compared to traditional feedforward

NNs.

Recent work in [110] and [111] focuses on the implementation of dynamic DNNs

in control schemes. Like RNNs with a single-hidden layer, dynamic DNNs can capture

time dependencies from nonlinear time-series data more effectively than a static NN.

This property, combined with the improved function approximation performance of deep

architectures motivates the development of dynamic DNN-based control architectures.

Results in [110] and [111] implement dynamic DNNs for system identification during

closed-loop control. The control design in [111] implements long short-term memory

(LSTM) units in the developed dynamic DNN architecture. The architecture in [110] is

composed of both LSTM units and gated recurrent units (GRU). In contrast to traditional

RNN units implemented in [1, 3, 84–95], LSTMs and GRUs regulate the flow of infor-

mation through operations that let them ’forget’ data from previous time steps that is

deemed less important (Figure 1-5) [112]. These operations make LSTMs and GRUs

Figure 1-5. Comparison of the RNN, LSTM, and GRU structures [112].

more computationally effective. However, this added complexity also makes real-time

adaptation of these architectures significantly more challenging.

In [110] and [111], the DNN weights are trained offline using machine learning

optimization algorithms. Thus, while the authors in [110] and [111] provide promising
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empirical results, they do not provide analytical results such as stability guarantees.

However, the empirical results in [110] and [111] corroborate previous analytical results

that establish the function approximation performance of DNNs as well as the ability of

recurrent units in NNs to capture dynamical behavior. While real-time weight adaptation

has not been investigated for dynamic DNN control architectures, advantages of

stability-derived online learning for feedforward NNs has been established. These

factors motivate investigation into adaptive dynamic DNN-based control schemes.

1.5 Dissertation Outline

Chapter 2 develops an adaptive Lb-LSTM architecture and controller for general

Euler-Lagrange systems, where the adaptation law is derived from Lyapunov-based

methods (hence, we refer to the architecture as Lb-LSTM). Specifically, the first

continuous-time representation for the LSTM cell is developed. The continuous-time

LSTM estimate is then implemented in the controller as a feedforward term to adap-

tively estimate uncertain model dynamics. Despite the technical challenges posed by

the complexity of the LSTM cell structure, stability-driven adaptation laws adjust the

Lb-LSTM weights in real-time and allow the developed architecture to adapt to system

uncertainties without any offline training requirements. Thus, this is the first stability-

driven adaptation result for deep RNN control architectures. A Lyapunov-based stability

analysis is performed to guarantee uniform ultimate boundedness (UUB) of the tracking

errors and LSTM state and weight estimation errors. To demonstrate the performance

of the adaptive Lb-LSTM controller, simulations were performed and compared to

the adaptive DNN-based controller in [104] using three different DNN architectures.

The simulation results indicate significant improvements in tracking and function ap-

proximation performance when compared to various feedforward DNN architectures.

Specifically, the developed Lb-LSTM controller yielded twofold and fourfold faster track-

ing error and function approximation error convergence, respectively, when compared to

a baseline DNN architecture of a similar size.
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In Chapter 3, an adaptive Lb-LSTM architecture is designed using the continuous-

time Lb-LSTM architecture developed in Chapter 2 and is implemented in an observer

to estimate unmeasurable states in a class of nonlinear systems. The developed

observer leverages the dynamic structure of LSTMs to produce an adaptive estimate

of the unknown system states. Since the unknown observer error is not available

for online learning, a dynamic filter is designed to construct an auxiliary error that is

implementable in the weight adaptation law. Despite the challenges posed by the

complex structure of the LSTM cell and the fact that the system error is unknown,

a Lyapunov stability-driven adaptation law is developed for all weights of the LSTM.

Thus, the developed Lb-LSTM observer is able to learn the system dynamics in real-

time and adapt to model uncertainties without any offline training requirements. A

nonsmooth Lyapunov-based stability analysis is performed that guarantees asymptotic

convergence of the estimation errors and stability of the Lb-LSTM architecture. To

validate the developed observer design, simulations were performed to estimate the

angular velocity states of a two-link robot manipulator. The Lb-LSTM observer yielded

a 41.13% improvement in the estimation error when compared to the adaptive shallow

RNN observer in [1].

Chapter 4 develops an output feedback (OFB) controller for uncertain nonlinear

systems using adaptive deep RNNs (DRNNs). Inspired by the dynamic nature and

memory capabilities of RNNs, a DRNN observer is designed to adaptively estimate the

unknown states of the system and is incorporated into a control framework. Unlike the

preceding chapters, the developed OFB controller is designed to achieve a two-fold

control objective: asymptotic estimation of the unmeasurable states and asymptotic

tracking control and is therefore the first OFB result using adaptive DRNNs. The weights

of the DRNN adjust online using Lyapunov-based stability-driven adaptation laws based

on the tracking and observer errors. The developed adaptation laws allow the Lb-

DRNN to adapt, learn, and control the system based on the system output in real-time.
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Through a Lyapunov-based stability analysis, the developed observer and the overall

control design are proven to guarantee asymptotic stability, ensuring reliable and robust

control performance. Validation simulation experiments on an unmanned underwater

vehicle system yielded a 27.98% and 89.94% improvement in normalized linear and

angular tracking error, respectively.

Chapter 5 summarizes the preceding chapters in the dissertation. Additionally,

Chapter 5 presents future research directions based on the work presented in the

previous chapters.

1.6 Notation and Preliminaries

To facilitate the subsequent presentation, common notation used in the remaining

chapters is introduced in this section. The space of essentially bounded Lebesgue

measurable functions is denoted by L∞. The right-to-left matrix product operator

is represented by
x∏

, i.e.,
x
Π
m

p=a Ap = Am . . . Aa+1Aa and
x
Π
m

p=a Ap = I if a > m,

where I denotes the identity matrix. The Kronecker product is denoted by ⊗. Function

compositions are denoted using the symbol ◦, e.g., given suitable functions g and h,

(g ◦ h) (x) = g (h (x)). The Hadamard (element-wise) product is denoted by � and

satisfies the following properties [113, Definition 9.3.1]. Given any b, c ∈ Rn, b � c = Dbc

and therefore, ∂
∂c

(b� c) = Db, where Db ∈ Rn×n denotes a diagonal matrix with the

vector b as its main diagonal. The sum of a point a ∈ R and a set B ⊂ R is defined

as a + B , {a+ b : b ∈ R}. The Filippov set-valued map defined in [114, Equation 2b]

is denoted by K [·]. Consider a Lebesgue measurable and locally essentially bounded

function h : Rn × R≥0 → Rn. Then, the function y : I → Rn is called a Filippov solution

of ẏ = h (y, t) on the interval I ⊆ R≥0 if y is absolutely continuous on I and ẏ
a.a.t
∈

K [h] (y, t), where a.a.t. denotes almost all time. The vectorization operator is denoted

by vec (·), i.e., given A , [ai,j] ∈ Rn×m, vec (A) , [a1,1, . . . , an,1, . . . , a1,m, . . . , an,m] >. The

vectorization operator satisfies the following properties [113, Proposition 7.1.9]. Given
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any A ∈ Rp×a, B ∈ Ra×r, and C ∈ Rr×s,

vec (ABC) =
(
C> ⊗ A

)
vec (B) , (1–4)

and consequently,
∂

∂vec (B)
vec (ABC) = C> ⊗ A. (1–5)
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CHAPTER 2
LYAPUNOV-BASED LONG SHORT-TERM MEMORY (LB-LSTM) NEURAL

NETWORK-BASED CONTROL

2.1 Introduction

RNNs are a dynamic mapping that can capture time-varying, accumulative effects

in a sequence that static, feedforward NNs cannot. LSTMs are a type of RNNs that

have gained recent popularity because the cell structure allows them to retain long-term

information more efficiently than traditional RNNs. Existing results develop LSTM-

based controllers to compensate for uncertainties in nonlinear systems. However, these

results use discrete-time LSTMs with offline-trained weights. In this chapter, a Lb-LSTM

controller is developed for general Euler-Lagrange systems. To make the architecture

better suited for control of continuous-time systems, a continuous-time representation of

the LSTM cell is developed for the first time. The Lb-LSTM is implemented in the control

design to adaptively estimate uncertain model dynamics, where the weight estimates

of the LSTM cell are updated using Lyapunov-based adaptation laws. The Lyapunov-

based adaptation laws are the first stability-driven online learning result for LSTMs and

allow the LSTM cell to adapt to system uncertainties without requiring offline training.

A Lyapunov-based stability analysis yields UUB of the tracking errors and LSTM state

and weight estimation errors. Simulations indicate the developed Lb-LSTM-based

controller yielded twofold and fourfold faster tracking error and function approximation

error convergence, respectively, when compared to a baseline DNN architecture of a

similar size.

2.2 System Dynamics and Control Objective

Consider a general uncertain Euler-Lagrange system modeled as

M (q) q̈ + Vm (q, q̇) q̇ + F (q̇) +G (q) = τ, (2–1)

where q, q̇, q̈ ∈ Rn denote the generalized position, velocity, and acceleration, respec-

tively, and M : Rn → Rn×n, Vm : Rn × Rn → Rn×n, G : Rn → Rn, F : Rn → Rn×n,
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and τ : R≥0 → Rn denote unknown, continuous generalized inertial effects, generalized

centripetal-Coriolis effects, generalized vector of potential forces, generalized dissipation

effects, and the control input, respectively. The model dynamics in (2–1) are assumed to

satisfy the following assumption.

Assumption 2.1. The inertial and centripetal-Coriolis effects satisfy

ξ>
(
Ṁ (q)− 2Vm (q, q̇)

)
ξ = 0

for all q, q̇, ξ ∈ Rn [115].

The control objective is to design an adaptive Lb-LSTM controller to achieve UUB

tracking of a desired trajectory qd ∈ Rn. To quantify the control objective, a tracking error

e ∈ Rn and an auxiliary tracking error r ∈ Rn are defined as

e , qd − q, (2–2)

r , ė+ αe, (2–3)

respectively, where α ∈ R>0 denotes a user-selected constant. The desired trajectory qd

is designed to be sufficiently smooth, i.e., qd, q̇d, q̈d can be bounded as ‖qd‖ ≤ qd, ‖q̇d‖ ≤

q̇d, ‖q̈d‖ ≤ q̈d, where qd, q̇d, q̈d ∈ R>0 denote known constants and q̇d ∈ Rn and q̈d ∈ Rn

denote the first and second time-derivatives of qd, respectively.

Taking the time-derivative of (2–3), multiplying by M (q), and using (2–1) and (2–2)

yields

M (q) ṙ = g (x)− τ − Vm (q, q̇) r, (2–4)

where x , [q>, q̇>, q>d , q̇
>
d , q̈

>
d ]> ∈ R5n denotes a concatenated vector and the function

g (x) ∈ Rn denotes the unknown system dynamics defined as g (x) , M (q) (q̈d + αė) +

Vm (q, q̇) (q̇d + αe) + F (q̇) +G (q).

28



2.3 Control Development

Long short-term memory (LSTM) NNs have grown in recent popularity due to their

ability to leverage both long-term and short-term dependencies in time sequences for

faster learning and improved performance. LSTMs are a type of RNN that are designed

to overcome the limitations of traditional RNNs in capturing long-term sequence de-

pendencies in time series data due to vanishing gradient. This is done by introducing

a more complex memory cell structure with gating mechanisms that regulate the flow

of information. The key components of the LSTM cell are the cell state, hidden state,

and the gate units (i.e., the forget, cell, input, and output gates). The cell state allows

information to flow relatively unchanged through the network, which helps preserve

long-term dependencies. The forget gate controls what information to discard from the

cell state, and the input and cell gates determine what new information is stored in the

cell state. The output gate determines what information in included in the hidden state,

which serves as the output of the LSTM cell. These features motivates the development

of an LSTM-based controller that can estimate and compensate for the unknown model

dynamics in (2–4).

The LSTM cell architecture developed in [116] is in discrete-time and is converted

to a continuous-time model in (2–5) to make it more appropriate for controlling a

continuous-time system. The gains bc and bh in (2–5) are a result of constructing a

continuous-time model and can be tuned accordingly to enhance the performance of the

continuous-time LSTM. Therefore, based on the design of continuous-time RNNs [85]

and using Euler’s method, an LSTM NN (Fig. 2-1) can be modeled in continuous-time

as [116]

f (z,Wf ) = σg ◦W>
f z,

i (z,Wi) = σg ◦W>
i z,

o (z,Wo) = σg ◦W>
o z,
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Figure 2-1. LSTM model in (2–5), where the green box represents the LSTM cell.

c∗ (z,Wc) = σc ◦W>
c z,

ċ = −bcc+ bcΨc (x, c, h, θ) ,

ḣ = −bhh+ bhΨh (x, c, h, θ,Wo) , (2–5)

where bc, bh ∈ R>0 denote user-selected constants, and c ∈ Rl2 and h ∈ Rl2 denote

the cell state and hidden state, respectively, where h (0) = c (0) = 0 and l2 ∈ R>0

denotes the number of neurons. The concatenated state vector z ∈ Rl1 is defined as

z , [x>, h>, 1]>, where x ∈ R5n denotes the LSTM input and l1 , 5n + l2 + 1. The

state z is augmented with a 1 to incorporate a bias term. The forget gate, input gate, cell

gate, and output gate are denoted by f (z,Wf ) ∈ Rl2, i (z,Wi) ∈ Rl2, c∗ (z,Wc) ∈ Rl2,

and o (z,Wo) ∈ Rl2 , respectively. Like the hidden state h, the cell state c is passed

from one time step to the next. The gate output c∗ (typically referred to as c̃ in literature)

is not passed to the next time step and represents the output of one of the internal

gates within the LSTM cell. The sigmoid and tanh activation functions are denoted
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by σg : Rl2 → Rl2 and σc : Rl2 → Rl2, respectively, and the weight matrices are

denoted by W>
f ,W

>
c ,W

>
i ,W

>
o ∈ Rl2×l1, where θ , [W>

c ,W
>
i ,W

>
f ]> ∈ Rl2×3l1. The

functions Ψc (x, c, h, θ) ∈ Rl2 and Ψh (x, c, h, θ,Wo) ∈ Rl2 are defined as Ψc (x, c, h, θ) ,

f (z,Wf )� c+ i (z,Wi)� c∗ (z,Wc) and Ψh (x, c, h, θ,Wo) , o (z,Wo)� (σc ◦Ψc (x, c, h, θ)),

respectively.

To ensure the output of the LSTM has the appropriate dimensions, a fully-

connected layer is added to the LSTM cell. To add generality to the LSTM model, a

feedforward component is added to the output of the LSTM. The resulting LSTM model

allows for a direct transmission of the input information through the feedforward compo-

nent while leveraging the internal memory capabilities of LSTMs. Thus, the output of the

LSTM Φ (x, c, h, θ,Wo,Wh,WFF ) ∈ Rn can be modeled as

Φ = W>
h

(
Ψh (x, c, h, θ,Wo) + σ ◦W>

FFx
)
, (2–6)

where σ : Rl2 → Rl2 denotes a vector of smooth activation functions, and W>
h ∈ Rn×l2

and W>
FF ∈ Rl2×5n denote the output weight matrix and weight matrix of the feedforward

NN component, respectively.

The universal function approximation property states that the function space of

(2–5) is dense in C (Z), where C (Z) denotes the space of continuous functions over the

set Z ⊆ Rl1, where z ∈ Z [117, Theorem 1.1]1 . Therefore, for any prescribed ε ∈ R>0,

there exist ideal weight matrices W>
c , W

>
i , W

>
f W>

o , W>
h , and W>

FF such that the system

dynamics g (x) can be modeled using the LSTM architecture in (2–5) as

g (x) = Φ (x, c, h, θ,Wo,Wh,WFF ) + ε (x) . (2–7)

1 Since the subspace of LSTMs in (2–6) involving the feedforward term W>
h σ◦W>

FFx is
dense in C (Z), the space of LSTMs is also dense.
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It is assumed that there exists a known constant W ∈ R>0 such that the ideal weights

can be bounded as ‖Wj‖F ≤ W for all j ∈ {c, i, f, o, h, FF} [104].

To compensate for the unknown LSTM model dynamics in (2–5), auxiliary cell

and hidden state estimation errors are introduced in this section. The auxiliary cell and

hidden state estimation errors c̃ ∈ Rl2 and h̃ ∈ Rl2 are defined as

c̃ , c− ĉ+ ηc, (2–8)

h̃ , h− ĥ+ ηh, (2–9)

respectively, where ĉ ∈ Rl2 and ĥ ∈ Rl2 denote the estimated cell state and hidden state,

respectively, and ηc ∈ Rl2 and ηh ∈ Rl2 are designed as

η̇c , −k1,cηc −K2,cr, (2–10)

η̇h , −k1,hηh −K2,hr, (2–11)

where k1,c, k1,h ∈ R>0 denote user-selected constants, and K2,c, K2,h ∈ Rl2×n denote

user-selected matrices.

The following lemma establishes boundedness properties of the cell state and hid-

den state of the LSTM model in (2–5), which is essential for the ensuing development.

Lemma 2.1. Consider the LSTM model in (2–5). The hidden state h and cell state c can

be bounded as

‖h‖ ≤ bh
√
l2√

2
(
bh − 1

2

) , ‖c‖ ≤
√
l2√

2
(
bc − bc

√
l2 − 1

2

) .
Proof. Consider the hidden state dynamics in (2–5), where the input Ψh can be bounded

as ‖Ψh‖ ≤
√
l2 by design of the sigmoid and tanh activation functions. Consider the

candidate Lyapunov function Vh : Rl2 → R≥0 defined as Vh (h) , 1
2
h>h. Taking

the derivative, using (2–5), bounding, and applying the Gronwall inequality yields

Vh ≤ Vh (h (t0)) exp
(
−2
(
bh − 1

2

)
(t− t0)

)
+

b2hl2

4(bh− 1
2)
. Therefore, provided bh ≥ 1

2
,

initializing h as h (t0) = 0 yields ‖h‖ ≤ bh
√
l2√

2(bh− 1
2)
. Similarly, to prove boundedness of
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the cell state c, consider the candidate Lyapunov function Vc : Rl2 → R≥0 defined as

Vc = 1
2
c>c. By design of the sigmoid and tanh activation functions, ‖f‖ ≤

√
l2 and

‖i� c∗‖ ≤
√
l2. Taking the derivative of the candidate Lyapunov function, substituting

the cell state dynamics in (2–5), bounding, and applying the Gronwall inequality yields

Vc(c(t)) ≤ Vc (c (t0)) exp
(
−2
(
bc − bc

√
l2 − 1

2

)
(t− t0)

)
+ l2

4(bc−bc
√
l2− 1

2)
. Therefore, provided

bc ≥ 1

2(1+
√
l2)

, initializing c as c (t0) = 0 yields ‖c‖ ≤
√
l2√

2(bc−bc
√
l2− 1

2)
.

2.3.1 Control Design

Let the adaptive estimates of the LSTM weights be denoted as θ̂ ,

[Ŵ>
c , Ŵ

>
i , Ŵ

>
f ]> ∈ R3l1×l2, Ŵ>

o ∈ Rl2×l1, Ŵ>
h ∈ Rn×l2, and Ŵ>

FF ∈ Rl2×5n.

Based on the adaptive weight estimates, an Lb-LSTM adaptive feedforward term

Φ̂ , Φ
(
x, ĉ, ĥ, θ̂, Ŵo, Ŵh, ŴFF

)
is constructed and the control input is designed as

τ , Φ̂ + krr −K2,cηc −K2,hηh + e, (2–12)

where kr, ks ∈ R>0 denote user-selected constants. Substituting the LSTM model in

(2–7) and the control input in (2–12) into (2–4) yields the closed-loop error system

M (q) ṙ = Φ̃ + je + ε (x)− Vm (q, q̇) (r)− krr +K2,cηc +K2,hηh − e, (2–13)

where the function je (x, c, h, θ,Wo,Wh) ∈ Rn is defined as je ,

Φ (x, c, h, θ,Wo,Wh,WFF )− Φ
(
x, ĉ, ĥ, θ,Wo,Wh,WFF

)
.

2.3.2 Weight Adaptation Laws

Using the LSTM model in (2–5), the estimated cell state ĉ and estimated hidden

state ĥ evolve according to

˙̂c = −bcĉ+ bc

(
f
(
ẑ, Ŵf

)
� c+ i

(
ẑ, Ŵi

)
� c∗

(
ẑ, Ŵc

))
, (2–14)

˙̂
h = −bhĥ+ bh

(
o
(
ẑ, Ŵo

)
� σc ◦Ψc

(
x, ĉ, ĥ, θ̂

))
, (2–15)
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respectively, where ẑ , [x>, ĥ>, 1]> : R≥0 → Rn+l2+1 denotes the augmented input

of the LSTM estimate. To facilitate the subsequent stability analysis, let the short-

hand notations Ψ̃c ∈ Rl2 and Ψ̃h ∈ Rl2 be defined as Ψ̃c , Ψc

(
x, ĉ, ĥ, θ

)
− Ψ̂c,

and Ψ̃h , Ψh

(
x, ĉ, ĥ, θ,Wo

)
− Ψ̂h, respectively, where Ψ̂c , Ψc

(
x, ĉ, ĥ, θ̂

)
and

Ψ̂h , Ψh

(
x, ĉ, ĥ, θ̂, Ŵo

)
. Taking the derivative on both sides of (2–8) and (2–9) and

substituting in the LSTM model in (2–5) and the auxiliary error dynamics in (2–10) and

(2–11) yields

˙̃c = −bcc̃+ bcΨ̃c + ge + η̇c, (2–16)

˙̃h = −bhh̃+ bhΨ̃h + fe + η̇h, (2–17)

where the functions fe
(
x, c̃, h̃, θ,Wo

)
∈ Rl2 and ge

(
x, c̃, h̃, θ

)
∈ Rl2 are defined as

fe , bhΨh (x, c, h, θ,Wo)− bhΨh

(
x, ĉ, ĥ, θ,Wo

)
and ge , bcΨc (x, c, h, θ)− bcΨc

(
x, ĉ, ĥ, θ

)
,

respectively. Furthermore, let Φ̃ , Φ
(
x, ĉ, ĥ, θ,Wo,Wh

)
− Φ̂.

Analytic, stability-driven weight adaptation laws are developed in this section to

adjust the weights of the LSTM in real-time using the tracking error, providing a continual

learning method. While the adaptation laws ensure online learning of the LSTM, offline

training methods (e.g., Adam, Levenberg-Marquardt algorithm (LM)) could be used to

initialize the LSTM if pretraining data is available. If no data is available, the LSTM can

also be initialized with random weights or using pretraining data taken from a similar

system (i.e., transfer learning). Based on the subsequent stability analysis, the weight

adaptation laws are designed as

vec
(

˙̂
θ
)
, projθ

(
Γθ

(
bcΨ̂

′>
c ηc + bhΨ̂

′>
h,θηh + Φ̂′>θ r − γθvec

(
θ̂
)))

,

vec
(

˙̂
W o

)
, projW1

(
Γo

(
bhΨ̂

′>
h,Wo

ηh + Φ̂′>Wo
r − γovec

(
Ŵo

)))
,

vec
(

˙̂
W h

)
, projW2

(
Γh

(
Φ̂′>Wh

r − γhvec
(
Ŵh

)))
,

vec
(

˙̂
W FF

)
, projW3

(
ΓFF Φ̂′>WFF

r − γFFvec
(
ŴFF

))
, (2–18)

34



where γθ, γo, γh, γFF ∈ R>0 denote user-selected constants, Γθ ∈ R3l1l2×3l1l2 , Γo ∈

Rl1l2×l1l2 , Γh ∈ Rl2n×l2n, and ΓFF ∈ R5l2n×5l2n denote user-selected positive-definite

gain matrices, the short-hand notations Ψ̂′c, Ψ̂′h,θ, Ψ̂′h,Wo
, Φ̂′θ, Φ̂′Wo

, Φ̂′Wh
, and Φ̂′WFF

denote the Jacobians Ψ̂′c , ∂Ψ̂c
∂vec(θ̂)

, Ψ̂′h,θ , ∂Ψ̂h
∂vec(θ̂)

, Ψ̂′h,Wo
, ∂Ψ̂h

∂vec(Ŵo)
, Φ̂′θ , ∂Φ̂

∂vec(θ̂)
,

Φ̂′Wo
, ∂Φ̂

∂vec(Ŵo)
, Φ̂′Wh

, ∂Φ̂

∂vec(Ŵh)
, and Φ̂′WFF

, ∂Φ̂

∂vec(ŴFF )
, respectively, and proj(·)

denotes the projection operator defined in [118, Appendix E, Eq. E.4]. The projection

operators projθ (·), projW1
(·) , projW2

(·), and projW2
(·) in (2–18) are used to ensure

θ̂ (t) ∈ Bθ , {ς ∈ R3l1l2 : ‖ς‖ ≤
√

3W}, Ŵo (t) ∈ BW1 , {ς ∈ Rl1l2 : ‖ς‖ ≤ W },

Ŵh (t) ∈ BW2 , {ς ∈ Rl2n : ‖ς‖ ≤ W}, and ŴFF (t) ∈ BW3 , {ς ∈ R5nl2 : ‖ς‖ ≤ W},

respectively.

Remark 2.1. The terms ηc and ηh are introduced and implemented in the auxiliary cell

and hidden state estimation errors c̃ and h̃ to allow the weight adaptation laws in (18) to

adaptively compensate for the uncertainty in the internal dynamics inherent in the LSTM

cell through the terms bcΨ̂′>c ηc, bhΨ̂′>h,θηh, and bhΨ̂′>h,Wo
ηh.

The Jacobians Ψ̂′c, Ψ̂′h,θ, and Φ̂′θ can be represented as Ψ̂′c , [Ψ̂′c,Wc
, Ψ̂′c,Wi

, Ψ̂′c,Wf
],

Ψ̂′h,θ , [Ψ̂′h,Wc
, Ψ̂′h,Wi

, Ψ̂′h,Wf
], and Φ̂′θ , [Φ̂′Wc

, Φ̂′Wi
, Φ̂′Wf

], respectively, where Ψ̂′c,Wj
,

∂Ψ̂c
∂vec(Ŵj)

, Ψ̂′h,Wj
, ∂Ψ̂h

∂vec(Ŵj)
, and Φ̂′Wj

, ∂Φ̂

∂vec(Ŵj)
for all j ∈ {c, i, f}. Using (2–5), (2–14),

(2–15), the chain rule, the properties of the Hadamard product, and the properties of

vectorization, the terms Ψ̂′c,Wc
, Ψ̂′c,Wi

, and Ψ̂′c,Wf
can be expressed as

Ψ̂′c,Wc
= diag

(
σg

(
Ŵ>
i ẑ
))

σ′c

(
Ŵ>
c ẑ
) (
Il2 ⊗ ẑ>

)
,

Ψ̂′c,Wi
= diag

(
σc

(
Ŵ>
c ẑ
))

σ′g

(
Ŵ>
i ẑ
) (
Il2 ⊗ ẑ>

)
,

Ψ̂′c,Wf
= diag (ĉ)σ′g

(
Ŵ>
f ẑ
) (
Il2 ⊗ ẑ>

)
, (2–19)

respectively. Similarly, using (2–19), the terms Ψ̂′h,Wj
and Ψ̂′h,Wo

can be expressed as

Ψ̂′h,Wj
= diag

(
σg

(
Ŵ>
o ẑ
))

σ′c

(
Ψ̂c

)
Ψ̂′c,Wj

,

Ψ̂′h,Wo
= diag

(
σc

(
Ψ̂c

))(
σ′g

(
Ŵ>
o ẑ
)) (

Il2 ⊗ ẑ>
)
, (2–20)
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for all j ∈ {c, i, f}, respectively. Using (2–6) and the chain rule, the Jacobians Φ̂′Wj
, Φ̂′Wo

,

Φ̂′Wh
, and Φ̂′WFF

can be expressed as Φ̂′Wj
= Ŵ>

h Ψ̂′h,Wj
, Φ̂′Wo

= Ŵ>
h Ψ̂′h,Wo

, Φ̂′Wh
= In ⊗ Ψ̂>h ,

and Φ̂′WFF
= Ŵ>

h σ
′
(
Ŵ>
FFx

) (
Il2 ⊗ x>

)
, for all j ∈ {c, i, f}, respectively. NNs such

as the LSTM model in (2–5) are nonlinear in terms of the weights. Moreover, the

LSTM model has added complexity due to the three gate units present in the cell

architecture. To address the resulting mathematical challenges, a first-order Taylor

Series approximation-based error model of the LSTM in (2–5) and (2–6) is given by

Ψ̃c = Ψ̂′cvec
(
θ̃
)

+O2
c

(
θ̃
)
,

Ψ̃h = Ψ̂′h,Wo
vec

(
W̃o

)
+ Ψ̂′h,θvec

(
θ̃
)

+O2
h

(
θ̃, W̃o

)
,

Φ̃ = Φ̂′Wh
vec

(
W̃h

)
+ Φ̂′WFF

vec
(
W̃FF

)
+ Φ̂′Wo

vec
(
W̃o

)
+ Φ̂′θvec

(
θ̃
)

+O2
Φ

(
θ̃, W̃o, W̃h, W̃FF

)
, (2–21)

where O2
c

(
θ̃
)
∈ Rl2 , O2

h

(
θ̃, W̃o

)
∈ Rl2 , and O2

Φ

(
θ̃, W̃o, W̃h, W̃FF

)
∈ Rn denotes

the higher-order terms. Using Lemma 2.1, the higher-order terms can be bounded as∥∥∥O2
c

(
θ̃
)∥∥∥ ,∥∥∥O2

h

(
θ̃, W̃o

)∥∥∥ , ∥∥∥O2
Φ

(
θ̃, W̃o, W̃h, W̃FF

)∥∥∥ ≤ O, where O ∈ R>0 denotes a known

constant.

2.4 Stability Analysis

To facilitate the subsequent stability analysis, let the concatenated

state vector ζ : R≥0 → Rψ and constant κ ∈ R>0 be defined as ζ ,

[e>, r>, η>c , c̃
>, η>h , h̃

>, vec(θ̃)>, vec(W̃h)
>, vec(W̃o)

>, vec(W̃FF )>]> and

κ , min{ bc
2
− k1,c

2
− ‖K2,c‖F

2
, bh

2
− k1,h

2
−‖

K2,h‖
F

2
, kr

2
− ‖K2,c‖F

2
−‖

K2,h‖
F

2
, k1,c

4
,
k1,h

4
, γθ, γh, γFF , γo, α},

respectively, where ψ , 2n + 4l2 + 4l1l2 + 6nl2. Additionally, let the aux-

iliary function Ñ : Rψ → R be defined as Ñ , r>je + c̃>ge + h̃>fe +

bcΨ̂
′
cvec

(
θ̃
)
> (c− ĉ) +

(
bhΨ̂

′
h,Wo

vec
(
W̃o

)
+ bhΨ̂

′
h,θvec

(
θ̃
))
>
(
h− ĥ

)
, where Ñ

represents a group of terms that appear in the subsequent stability analysis. Ap-

plying the mean value theorem-based inequality [119, Appendix A] on the terms
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r>je, c̃>ge, and h̃>fe, and bounding ‖r‖, ‖c̃‖,
∥∥∥h̃∥∥∥, and ‖z‖ terms with ‖ζ‖, the aux-

iliary function Ñ can be bounded as
∥∥∥Ñ∥∥∥ ≤ ρ (‖ζ‖) ‖ζ‖2, where ρ (·) denotes

an invertible, strictly non-increasing function. Let the open and connected sets

D ⊂ Rψ and Υ ⊆ Z be defined as D ,
{
ς ∈ Rψ : ‖ς‖ <

√
β1
β2
ρ−1 (κ− λ)

}
and

Υ = {ς ∈ Z : ‖ς‖ < z} , respectively, where λ ∈ R>0 denotes a user-selected constant,

δ ,
(O2+ε)

2

2kr
+

(2bcO2)
2

k1,c
+

(2bhO2)
2

k1,h
+

(bcO2)
2

2bc
+

(bhO2)
2

2bh
+ 6γθW + 2 (γh + γo + γFF )W

2
, and

z , (2 + α)ω + 2qd + 2q̇d + q̈d +
√
l2√

2(bh− 1
2)

+ 1. The developed adaptive LSTM-based

architecture in (2–12) and (2–18) is shown to be uniformly ultimately bounded (UUB) in

the following theorem.

Theorem 2.1. Consider the model dynamics in (2–1) with Assumption 2.1. The Lb-

LSTM controller in (2–12) and the weight adaptation laws in (2–18) ensure the states ζ

are UUB in the sense that ‖ζ‖ ≤
√

β2
β1
‖ζ (t0)‖2 e

− λ
β1

(t−t0)
+ δ

λ

(
1− e−

λ
β1

(t−t0)
)

provided the

sufficient gain conditions κ ≥ λ + ρ
(√

β2
β1

(
‖y(t0)‖+ 2

√
l2 + 6W + 6W

2
))

, bh ≥ 1
2
, bc ≥

1

2(1+
√
l2)

are satisfied, where y ,
[
e>, r>, η>c , η

>
h

]>, β1 , λmin{1,Γ
−1

θ ,Γ
−1

o ,Γ
−1

FF ,Γ
−1

h } and

β2 , λmax{1,Γ
−1

θ ,Γ
−1

o ,Γ
−1

FF ,Γ
−1

h }.

Proof. Consider the Lyapunov candidate function VL : Rψ → R≥0

VL (ζ) ,
1

2
η>c ηc +

1

2
η>h ηh +

1

2
c̃>c̃+

1

2
h̃>h̃+

1

2
e>e+

1

2
r>Mr

+
1

2
vec

(
W̃h

)>
Γ

−1

h vec
(
W̃h

)
+

1

2
vec

(
W̃o

)>
Γ

−1

o vec
(
W̃o

)
+

1

2
vec

(
θ̃
)>

Γ
−1

θ vec
(
θ̃
)

+
1

2
vec

(
W̃FF

)>
Γ

−1

h vec
(
W̃FF

)
, (2–22)

which can be bounded as β1 ‖ζ‖2 ≤ VL (ζ) ≤ β2 ‖ζ‖2 . Substituting (2–2), (2–3), (2–13),

(2–16), and (2–17) into the time derivative of VL and canceling cross-terms yields

V̇L = −αe>e− krr>r − k1,cη
>
c ηc − k1,hη

>
h ηh + h̃> (fe + η̇h)− h̃>

(
bhh̃− bhΨ̃h

)
− c̃>

(
bcc̃− bcΨ̃c − ge − η̇c

)
+ r>

(
Φ̃ + je + ε (xd)

)
− vec

(
W̃o

)>
Γ

−1

o vec
(

˙̂
W o

)
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− vec
(
W̃h

)>
Γ

−1

h vec
(

˙̂
W h

)
− vec

(
θ̃
)>

Γ
−1

θ vec
(

˙̂
θ
)
− vec

(
W̃FF

)>
Γ

−1

FFvec
(

˙̂
W FF

)
.

(2–23)

Using [118, Lemma E.1.IV], −Ṽ >Γ−1proj (κ) ≤ −Ṽ >Γ−1κ, where the estimation error

Ṽ ∈ Rm is defined as Ṽ , V − V̂ for some V, V̂ ,∈ Rm such that ‖V ‖ ≤ V and proj (·)

ensures V̂ (t) ∈ BV , {ς ∈ Rm : ‖ς‖ ≤ V }, where V ∈ R>0 denotes a known constant.

Therefore, substituting in (2–10) and (2–11), the weight adaptation laws in (2–18), the

first order Taylor series approximation in (2–21), and the definition of Ñ , and using the

facts that Ψ̃>c c̃ = Ψ̃>c (c− ĉ+ ηc) and Ψ̃>h h̃ = Ψ̃>h

(
h− ĥ+ ηh

)
, yields

V̇L ≤ −αe>e− krr>r − bcc̃>c̃− bhh̃>h̃− k1,cη
>
c ηc − k1,hη

>
h ηh

+ r>
(
O2
(
θ̃, W̃o, W̃h, W̃FF

)
+ ε (x)

)
+ bhηhO2

(
θ̃, W̃o

)
+ bcηcO2

(
θ̃
)

− c̃> (k1,cηc +K2,cr)− h̃> (k1,hηh +K2,hr) + Ñ + bhO2
(
θ̃, W̃o

)> (
h− ĥ

)
+ bcO2

(
θ̃
)>

(c− ĉ)− vec
(
θ̃
)> (
−γθvec

(
θ̂
))
− vec

(
W̃o

)> (
−γovec

(
Ŵo

))
+ γhvec

(
W̃h

)T
vec

(
Ŵh

)
+ γFFvec

(
W̃FF

)>
vec

(
ŴFF

)
. (2–24)

Using Young’s inequality and the facts that
∥∥∥Ñ∥∥∥ ≤ ρ (‖ζ‖) ‖ζ‖2, θ̂ = θ − θ̃, Ŵo =

Wo − W̃o, ŴFF = WFF − W̃FF , and Ŵh = Wh − W̃h, (2–24) can be bounded as

V̇L ≤ − (κ− ρ (‖ζ‖)) ‖ζ‖2 + δ. From (2–22), ‖ζ‖ ≤
√
VL
β1

, and therefore V̇L can be

bounded as V̇L ≤ −
(
κ− ρ

(√
VL
β1

))
VL
β1

+ δ. Selecting κ according to Theorem 1

ensures ‖ζ(t0)‖ is bounded as ‖ζ(t0)‖ <
√

β1
β2
ρ−1 (κ− λ). Thus, when all trajectories

are initialized in D, V̇L can be further bounded as V̇L ≤ − λ
β1
VL + δ, which implies

VL(t) ≤ VL(t0)e
− λ
β1

(t−t0)
+ δβ1

λ
(1 − e

− λ
β1

(t−t0)
). Then, [120, Def. 4.6] can be invoked to

conclude that ζ is UUB such that

‖ζ‖ ≤ µ ,

√
β2

β1

‖ζ (t0)‖2 e
− λ
β1

(t−t0)
+
δ

λ

(
1− e−

λ
β1

(t−t0)
)
.

To show z ∈ Z, and therefore the universal function approximation property holds, let

ξ , [e>, r>]> and let ω = ρ−1(κ − λ). Thus, if ‖ζ (t0)‖ ≤ ω
√

β1
β2
, then ‖ξ (t)‖ ≤ ω, and
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therefore ‖e (t)‖ ≤ ω and ‖r (t)‖ ≤ ω. Hence, using (2–2), (2–3), and Lemma 2.1,

‖z‖ can be bounded as ‖z‖ ≤ (2 + α)ω + 2qd + 2q̇d + q̈d +
√
l2√

2(bh− 1
2)

+ 1 provided

the sufficient gain conditions bh ≥ 1
2
, bc ≥ 1

2(1+
√
l2)

are met for Lemma 2.1 to hold.

Therefore, if ζ (t0) ∈ D, then z ∈ Υ ⊆ Z. Since ζ ∈ L∞, q, q̇ ∈ L∞. That and the fact that

ĉ, ĥ, θ̂, Ŵo, Ŵh, ŴFF ∈ L∞ by design imply τ ∈ L∞.

2.5 Simulations

To demonstrate the performance and efficacy of the developed Lb-LSTM control

design, simulations were performed on two-link robot manipulator, which is modeled

as [119, Eqn. (80)]

ẋ1 = x2

ẋ2 = M−1 (x1) ((−V (x1, x2)− Fd)x2 + u)− Fs (x2) , (2–25)

where x1 , [x11 x12]> : R≥0 → R2 and x2 , [x21 x2]> : R≥0 → R2 denote the angular

position and velocity of the two links, respectively, and Fd ∈ R2×2, Fs : R2 → R2×2,

M : R2 → R2×2 , and V : R4 → R2×2 denote the dynamic friction, static friction, inertia

matrix and the centripetal-Coriolis matrix, respectively, as defined in [119].

To demonstrate the advantages of using the Lb-LSTM architecture instead of a

feedforward DNN architecture in the adaptive controller, the results are compared with

the DNN-based adaptive controller developed in [104] as the baseline. The baseline

adaptive DNN-based controller in [104] is τ , Φ̂DNN + krr + e, where the DNN estimate

Φ̂DNN was updated according to the weight adaptation laws defined in [104, Eqns.

(7)-(8)]. The LSTM model in (2–5) was used with tanh activation functions for the

feedforward term and l2 = 12 neurons and was compared to 3 baseline fully-connected

DNN architectures, DNN1, DNN2, and DNN3, with 1, 2, and 5 hidden layers each,

respectively, with tanh activation functions. DNN1 and DNN2 had 12 neurons in each

layer and DNN3 had 14 neurons. The weights of all NNs were randomly initialized with

a uniform distribution with values ranging between -1 and 1. The gains were selected
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as α = 15, kr = 50, k1,c = 5, k1,h = 5, K2,c = 0.1 · [I2 02×10]>, K2,h = 0.1 · [I2 02×10]>,

bc = 5, bh = 1, Γθ = 40 · I3l1l2, Γo = 40 · Il1l2, Γh = 40 · Il2n, ΓFF = 40 · I5l2n, and

γθ = γo = γh = γFF = 0.01 for the adaptive LSTM controller. For the baseline controllers,

the gains were selected as α = 15, kr = 50, and Γj = 24 · ILjLj+1
∀j ∈ {0, ..., k}. For a

fair comparison, the same robust control gains were used for each controllers. The NN

gains and parameters (e.g., the learning gains and activation functions) were empirically

adjusted to achieve the best performance for each network. For all simulations, the

desired trajectory qd (t) , [qd,1, qd,2]> ∈ R2 was selected as qd ,

 π
3

sin
(
π
4
t
)

π
2

sin
(
π
2
t
)
 ∈ R2

[rad], and the simulations were performed for 25 s with the initial conditions q (0) =

[1.0472,−0.5236]> [rad] and q̇ (0) = [0, 0]> [rad/s].

The results of DNN1 are shown in Fig. 2-2 and are compared to the proposed

Lb-LSTM controller in Table 2-1. The results of the DNN2 are shown in Fig. 2-3 and

are compared to the proposed Lb-LSTM controller in Table 2-1. When compared to the

adaptive feedforward NN architectures, the adaptive LSTM architecture resulted in a

significant improvement in both tracking and function approximation error performance,

with reduced control input. Although all four adaptive NN architectures compensated

for the uncertainty in the dynamics and achieved tracking, the LSTM provided improved

tracking performance with a significant improvement in both function approximation

performance and control effort, when compared to the feedforward NN architectures

(Table 2-1). Moreover, the LSTM provided twofold and fourfold faster tracking and

function approximation error convergence, respectively, compared to DNN3 with better

transient behavior (Fig. 2-4). When compared to the adaptive controller DNN3, the

LSTM-based controller and developed weight adaptation law resulted in 25.1% and

68.4% improvement in the tracking error and function approximation error, respectively,

while requiring 33.6% reduced control effort, as shown in Table 2-1.
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Figure 2-2. (a) Norm of tracking error over time for DNN1 compared to the LSTM
controller, (b) Norm of function approximation error over time for DNN1
compared to the LSTM controller. To better exhibit transient performance,
only the first 10 s of the simulation are shown.

Table 2-1. Performance Comparison Results
NN Architecture ‖e‖[deg]

∥∥∥g (x)− Φ̂
∥∥∥ ‖τ‖[N·m]

DNN1 0.6374 36.46 33.36
DNN2 0.6360 22.21 19.59
DNN3 0.5302 11.84 9.260
LSTM 0.3970 3.748 6.147
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Figure 2-3. (a) Norm of tracking error over time for DNN2 compared to the LSTM
controller, (b) Norm of function approximation error over time for the DNN2
compared to the LSTM controller. To better exhibit transient performance,
only the first 10 s of the simulation are shown.
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Figure 2-4. (a) Norm of the tracking error over time for the developed adaptive LSTM
controller and the baseline adaptive controller DNN3. (b) Norm of the
function approximation error over time for the developed adaptive LSTM
controller and the baseline adaptive controller DNN3.
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2.6 Conclusions

An adaptive LSTM-based controller was developed for general uncertain Euler-

Lagrange systems. Leveraging the dynamic structure and internal memory inherent

in LSTMs, the developed continuous-time Lb-LSTM architecture is able to leverage

time dependencies in the system dynamics and capture time-varying accumulative

effects in the system dynamics that static, feedforward NNs cannot. Stability-driven

weight adaptation laws are developed for the Lb-LSTM weights in real-time, eliminating

the need for offline pre-training. However, the Lb-LSTM control architecture was

developed for a tracking control problem, and therefore the system error implemented

in the adaptation laws are known. Thus, additional difficulties arise when developing

an adaptive Lb-LSTM architecture when the system error is unknown, e.g., the state

estimation error in the system identification problem investigated in Chapter 3.
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CHAPTER 3
LYAPUNOV-BASED LONG SHORT-TERM MEMORY (LB-LSTM) NEURAL

NETWORK-BASED ADAPTIVE OBSERVER

3.1 Introduction

LSTMs excel at capturing short- and long-term dependencies, making them pow-

erful tools for system identification and state estimation. However, due to mathematical

challenges involved in developing adaptation methods for LSTMs, their training is pre-

dominantly limited to offline methods. The arising difficulty is due in part to the nonlinear

structure of the LSTM cell, which makes deriving stable, online learning algorithms

difficult. Additional difficulties arise due to the fact that the state estimation error is

unknown and can therefore not be used in the adaptation law. This chapter develops a

Lyapunov-based (Lb-) LSTM observer for state estimation in nonlinear systems using

the continuous-time LSTM model developed in Chapter 2. The Lb-LSTM weights adapt

in real-time using Lyapunov-based stability-driven adaptation laws, and therefore, this

is the first online learning result for LSTM-based observers with stability guarentees. To

compensate for the fact that the estimation error is unknown, a dynamic filter is devel-

oped and implemented in the adaptation law. A nonsmooth Lyapunov-based stability

analysis ensures state estimation error convergence and stability of the overall Lb-LSTM

architecture. To validate the developed observer design, simulations were performed

to estimate the unknown angular velocity states of a two-link robot manipulator. The

developed method yielded a 41.13% improvement in the root mean square estimation

error when compared to an adaptive RNN observer.

3.2 System Dynamics

Consider a second-order nonlinear system modeled as

ẋ1 = x2,

ẋ2 = g (x, u) , (3–1)
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where x ,
[
x>1 x>2

]>
: R≥0 → R2n and u : R≥0 → Rm denote the generalized state and

control input of the system, respectively, and g : R2n × Rm → Rn denotes an unknown

function. The development in this chapter is restricted to second-order systems for

the ease of illustration, but can be extended for nth order systems using the observer

development in [121]. The following assumptions facilitate the subsequent observer

development.

Assumption 3.1. The unknown function g is continuously differentiable.

Assumption 3.2. The system is assumed to be bounded-input bounded-output stable.

Furthermore, the control input is assumed to be sufficiently smooth such that ‖u‖ ≤ u

and ‖u̇‖ ≤ u̇, where u, u̇ ∈ R>0 denote known constants. Therefore, the state can be

bounded as ‖x‖ ≤ x, and there is a known, compact set Z ⊆ R2n × Rm such that z ∈ Z,

where z ,
[
x> u>

]> and x ∈ R>0 denotes a known constant.

Assumption 3.3. The system dynamics in (3–1) are observable.

Assumption 3.4. The state x1 is assumed to be known.

3.3 Observer Development

Since only the first state x1 is available for state feedback, the objective is to

design an adaptive Lyapunov-based (Lb-) LSTM observer to estimate the unknown

system dynamics. Let x̂ ,
[
x̂>1 x̂>2

]>
: R≥0 → R2n denote the observer state estimate. To

quantify the objective of the observer, an estimation error x̃1 : R≥0 → Rn and an auxiliary

estimation error r : R≥0 → Rn are defined as

x̃1 , x1 − x̂1, (3–2)

r , ˙̃x1 + αx̃1 + η, (3–3)

respectively, where α ∈ R>0 denotes a user-selected constant and η : R≥0 → Rn denotes

the output of a dynamic filter designed to compensate for the lack of availability of r

since x2 is unknown. Based on the subsequent stability analysis, the dynamic filter is
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designed as [1]

η , p− (α + kr) x̃1,

ṗ , − (kr + 2α) p− ν +
(
(α + kr)

2 + 1
)
x̃1,

ν̇ , p− αν − (α + kr) x̃1, (3–4)

where kr ∈ R>0, p : R≥0 → Rn, and ν : R≥0 → Rn denote a user-defined constant,

an internal filter variable, and auxiliary filter output, respectively. The filter variables

p and ν are initialized such that p (0) = (α + kr) x̃1 (0) and ν (0) = 0. The developed

dynamic filter in (3–4) uses x̃1 as an input, yielding the filter outputs ν and η. The

internal variable p of the filter is utilized to generate the output η, circumventing the need

for the unmeasurable derivative of the estimation error ˙̃x1. From (3–3) and (3–4), the

dynamic filter can be related to the unmeasurable auxiliary estimation error r as

r = ė+ αe, (3–5)

where e : R≥0 → Rn is an auxiliary error defined as

e , x̃1 + ν. (3–6)

3.3.1 Adaptive Long Short-Term Memory (LSTM) Architecture

The improved memory and dynamical behavior of LSTMs make them well-suited

for estimating dynamic system states, where long-term memory and accurate repre-

sentation of accumulative effects are crucial for making informed predictions. Thus,

integrating an LSTM model into the observer design can improve predictive accuracy

and enable robust modeling. Using the LSTM cell model developed in Chapter 2 (Fig.

2-1) an LSTM can be modeled in continuous-time as

ċ = −bcc+ bcΨc (ζ, c, θ) ,

ḣ = −bhh+ bhΨh (ζ, c, θ) . (3–7)
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The concatenated state vector ζ ∈ Rl1 is augmented with a 1 to incorporate a bias

term and is defined as ζ , [z>, h>, 1]>, where z ∈ R2n+m denotes the LSTM input,

l1 , 2n + m + l2 + 1, and l2 ∈ R>0 denotes the user-selected number of neurons in

the weight matrices. The weight matrices are denoted by W>
c ,W

>
i ,W

>
f ,W

>
o ∈ Rl2×l1,

and W>
h ∈ Rn×l2, where θ , [vec (Wc)

> , vec (Wi)
> , vec (Wf )

> , vec (Wo)
> , vec (Wh)

>]>

∈ R4l2l1+l2n. The functions Ψc (ζ, c, θ) ∈ Rl2 and Ψh (ζ, c, θ) ∈ Rl2 in the cell and hidden

state dynamics are defined as

Ψc (ζ, c, θ) , f (ζ,Wf )� c+ i (ζ,Wi)� c∗ (ζ,Wc) ,

Ψh (ζ, c, θ) , o (ζ,Wo)� (σc ◦Ψc (ζ, c, θ)) ,

respectively. To ensure the output of the LSTM has the appropriate dimensions, a fully-

connected layer is added to the LSTM cell using the output weight matrix Wh. Thus, the

output of the LSTM Φ (ζ, c, θ) ∈ Rn can be modeled as

Φ (ζ, c, θ) = W>
h Ψh (ζ, c, θ) . (3–8)

Using the universal function approximation property, the system dynamics g (x, u)

can be modeled using the LSTM architecture in (3–7) as g (x, u) = Φ (ζ, c, θ) + ε (z) ,

where ε : R2n+m → Rn denotes a function reconstruction error that can be bounded

as ‖ε‖z∈Z ≤ ε, where ε ∈ R>0 denotes a bounding constant. Therefore, taking the

time-derivative of (3–3) and using (3–1) and (3–2) yields

ṙ = Φ (ζ, c, θ) + ε (z)− ˙̂x2 + α ˙̃x1 + η̇, (3–9)

where η̇ can be determined by taking the time derivative of η and using (3–3) and (3–4)

to yield

η̇ = − (α + kr) r − αη + x̃1 − ν. (3–10)
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3.3.2 Observer Design

While LSTMs have improved memory capabilities compared to other NN archi-

tectures, their application has not been explored for real-time state estimation. Offline

approaches remain static and do not allow updates of the NN weights irrespective of

system performance, resulting in a lack of robustness to uncertainty in the dynamics. In

contrast, adaptive NN-based observers dynamically update the weights online through

stability-driven methods. Motivated by the adaptability to changing conditions and

improved robustness of adaptive NN architectures, a Lb-LSTM using the shorthand

notation Φ̂ , Φ
(
ζ̂ , ĉ, θ̂

)
is constructed and an observer is designed as

˙̂x1 , x̂2,

˙̂x2 = Φ̂ + kssgn (e) + χ, (3–11)

where ks ∈ R>0 denotes a user-selected constant, ζ̂ , [ẑ>, ĥ>, 1]> : R≥0 → Rl1,

ẑ , [x̂> u>]> : R≥0 → R2n+m denotes the input of the LSTM estimate,

θ̂ , [vec(Ŵc)
>, vec(Ŵi)

>, vec(Ŵf )
>, vec(Ŵo)

>, vec(Ŵh)
>]> : R≥0 → R4l2l1+l2n de-

notes the adaptive weight estimates, and χ ∈ Rn denotes an auxiliary term defined as

χ , − (3α + kr) η + (α2 + 2) x̃1 − ν. Substituting the observer in (3–11) into (3–9) and

adding and subtracting Φ
(
ζ̂ , ĉ, θ

)
yields

˙̃x1 = ẋ1 − ˙̂x1,

ṙ = Φ̃ + ε (z)− kssgn (e)− χ+ α ˙̃x1 + η̇ +N1, (3–12)

where Φ̃ , Φ
(
ζ̂ , ĉ, θ

)
− Φ̂ and N1 , Φ (ζ, c, θ) − Φ

(
ζ̂ , ĉ, θ

)
. Using the bounds on

the tanh and sigmoid activation functions, the auxiliary function N1 can be bounded as

‖N1‖ ≤ C1, where C1 , 2W
√
l2.
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3.3.3 Weight Adaptation Laws

Based on the subsequent stability analysis, the weight adaptation law is designed

as

˙̂
θ , ΓΦ̂′>e, (3–13)

where Γ ∈ R(4l1l2+l2n)×(4l1l2+l2n) denotes a user-selected positive-definite adaptation gain

matrix and the short-hand notation Φ̂′ denotes the Jacobian Φ̂′ , ∂Φ̂

∂θ̂
.

The Jacobian Φ̂′ can be represented as Φ̂′ , [Φ̂′Wc
, Φ̂′Wi

, Φ̂′Wf
, Φ̂′Wo

, Φ̂′Wh
], where

Φ̂′Wj
, ∂Φ̂

∂vec(Ŵj)
for all j ∈ {c, i, f, o, h}. Using (3–8) and the chain rule, the Jacobians

Φ̂′Wj
and Φ̂′Wh

can be expressed as Φ̂′Wj
= Ŵ>

h Ψ̂′h,Wj
and Φ̂′Wh

= In ⊗ Ψ>h

(
ζ̂ , ĉ, θ̂

)
, for all

j ∈ {c, i, f, o}, respectively, where Ψ̂′h,Wj
,

∂Ψh(ζ̂,ĉ,θ̂)
∂vec(Ŵj)

∀j ∈ {c, i, f, o}. Using (3–7), the

properties of the Hadamard product, the properties of the vectorization operator, and the

chain rule, the terms Ψ̂′h,Wj
and Ψ̂′h,Wo

can be expressed as

Ψ̂′h,Wj
= diag

(
σg

(
Ŵ>
o ζ̂
))

σ′c

(
Ψc

(
ζ̂ , ĉ, θ̂

))
Ψ̂′c,Wj

,

Ψ̂′h,Wo
= diag

(
σc

(
Ψ̂c

))(
σ′g

(
Ŵ>
o ζ̂
))(

Il2 ⊗ ζ̂>
)
,

for all j ∈ {c, i, f}, respectively, where Ψ̂′c,Wj
,

∂Ψc(ζ̂,ĉ,θ̂)
∂vec(Ŵj)

∀j ∈ {c, i, f}. Likewise, using

(3–7), the terms Ψ̂′c,Wc
, Ψ̂′c,Wi

, and Ψ̂′c,Wf
can be expressed as

Ψ̂′c,Wc
= diag

(
σg

(
Ŵ>
i ζ̂
))

σ′c

(
Ŵ>
c ζ̂
)(

Il2 ⊗ ζ̂>
)
,

Ψ̂′c,Wi
= diag

(
σc

(
Ŵ>
c ζ̂
))

σ′g

(
Ŵ>
i ζ̂
)(

Il2 ⊗ ζ̂>
)
,

Ψ̂′c,Wf
= diag (ĉ)σ′g

(
Ŵ>
f ζ̂
)(

Il2 ⊗ ζ̂>
)
,

respectively, where σ′j(y) , ∂
∂z
σj(z)

∣∣
z=y

, ∀j ∈ {c, g} , y ∈ Rl2.

3.4 Stability Analysis

To address the mathematical issues arising due to the nonlinear parameterization,

a first-order Taylor Series approximation of the LSTM in (3–7) and (3–8) is constructed,
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given by Φ̃ = Φ̂′θ̃ + O2
(
θ̃
)
, where O2

(
θ̃
)
∈ Rn denotes the higher-order terms. Thus,

substituting this into (3–12) yields the closed-loop error system

˙̃x1 = ẋ1 − ˙̂x1,

ṙ = Φ̂′θ̃ +N2 − kssgn (e)− χ+ α ˙̃x1 + η̇, (3–14)

where N2 , N1 +O2
(
θ̃
)

+ ε (z).

To facilitate the stability analysis, let a candidate Lyapunov function VL : Rψ → R≥0

be defined as

VL (ξ) ,
1

2
η>η +

1

2
ν>ν +

1

2
x̃>1 x̃1 +

1

2
r>r + P +

α

2
θ̃>Γ

−1

θ̃, (3–15)

where the concatenated state vector ξ : R≥0 → Rψ is defined as ξ ,

[x̃>1 , r
>, η>, ν>, θ̃>,

√
P ]>, ψ , 4n + 4l1l2 + l2n + 1, and P : R≥0 → R denotes

a subsequently designed P -function. The candidate Lyapunov function in (3–15) can

be bounded as β1 ‖ξ‖2 ≤ VL (ξ) ≤ β2 ‖ξ‖2 , where β1 , min
{

1
2
, α

2
λmin {Γ}

}
and

β2 , max
{

1, α
2
λmax {Γ}

}
. Let the open and connected sets D ⊂ Rψ and S ⊂ Rψ be

defined as D ,
{
ς ∈ Rψ : ‖ς‖ <

√
β1
β2
ω
}

and S =
{
ς ∈ Rψ : ‖ς‖ < ω

}
, respectively, where

ω ∈ R>0 denotes a bounding constant. The universal function approximation property

only holds on the compact domain Z. Therefore, the following stability analysis must

guarantee z (t) ∈ Z for all t ≥ 0 which is achieved by a stability result that constrains ξ to

a compact domain, specifically that ξ (t) ∈ S for all t ≥ 0 by initializing ξ (0) ∈ D.

Taking the time-derivative of VL using the chain rule for nonsmooth systems

in [122, Theorem 2.2], substituting in the closed-loop dynamics in (3–14), and canceling

the coupling terms yields

V̇L
a.a.t.
∈ r>

(
Φ̂′θ̃ +N2 − ksK [sgn] (e)− χ+ α ˙̃x1 + η̇

)
+ x̃>1 ˙̃x1 + η>η̇ + ν>ν̇ + Ṗ − αθ̃>Γ

−1 ˙̂
θ. (3–16)
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Substituting (3–6) and the weight adaptation law in (3–13) into (3–16) yields

V̇L
a.a.t.
∈ r>

(
N2 − ksK [sgn] (e)− χ+ α ˙̃x1 + η̇ +N1

)
+ x̃>1 ˙̃x1 + η>η̇ + ν>ν̇ + Ṗ + ė>Φ̂′θ̃. (3–17)

Using the design of the dynamic filter in (3–4)-(3–6) and canceling like terms yields

V̇L
a.a.t.
∈ r> (N2 − ksK [sgn] (e)− krr)− (α + kr) x̃

>
1 x̃1

− αη>η + ν> (αx̃1 − αν) + ė>Φ̂′θ̃ + Ṗ . (3–18)

Convergence of the estimation errors using the developed adaptive LSTM architecture

and overall observer design is guaranteed in the following theorem.

To facilitate the subsequent stability analysis, let N3 , Φ̂′θ̃. Using Assumptions 3.1

and 3.2, Lemma 1 in [123], and the facts that N2 + N3 = g (x, u) − Φ
(
ζ̂ , ĉ, θ̂

)
and the

LSTM Φ is continuously differentiable by design, the bounds

‖N2‖ ≤ κ1, ‖N3‖ ≤ κ2,
∥∥∥Ṅ2 + Ṅ3

∥∥∥ ≤ κ3, (3–19)

hold when ξ ∈ S, where κ1, κ2, κ3 ∈ R>0 are known positive bounding constants.

Theorem 3.1. Consider the system in (3–1). Let Assumptions 3.1-3.4 hold. The Lb-

LSTM observer in (3–11) and the weight adaptation law in (3–13) ensure asymptotic

estimation error convergence in the sense that ‖x2 − x̂2‖ → 0 as t → ∞, provided

ξ (0) ∈ D, the following gain condition is satisfied.

ks ≥ κ1 + κ2 +
1

α− 1
(ακ2 + κ3) ,

α > 1. (3–20)

Proof. Consider the Lyapunov candidate function in (3–15). The P -function in (3–15) is

designed as

P (t) , e−t ∗
(
(α− 1)

(
ks ‖e‖1 − e

> (N2 +N3)
))

+ ks ‖e‖1
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+ e−t ∗
(
αe>N3 + e>

(
Ṅ2 + Ṅ3

))
− e> (N2 +N3) . (3–21)

Using [124, Lemma 4] and (3–19), it can be shown that P (t) ≥ 0 for all t ≥ 0, provided

the sufficient gain conditions in (3–20) are satisfied.

Therefore, substituting the time-derivative of (3–21) into (3–18) and using Young’s

inequality, (3–18) can be further bounded as

V̇L
a.a.t.

≤ −λ ‖y‖2 ,

when ξ ∈ S, where λ , min
{
kr,

α
2

+ kr, α,
α
2
, 1
}

and y ,
[
r>, x̃>1 , η

>, ν>,
√
P
]>

denotes a concatenated state vector. To show ξ ∈ S for all t ≥ 0, using the fact that

V̇L (ξ (t))
a.a.t.

≤ 0 and (3–15) implies ξ (t) can be bounded as ‖ξ (t)‖ ≤
√

β2
β1
‖ξ (0)‖

when ξ ∈ S. Thus, if ‖ξ (0)‖ ≤ ω
√

β1
β2
, then ‖ξ (t)‖ ≤ ω for all t ≥ 0. Therefore, if

the states ξ are initialized such that ξ (0) ∈ D, then ξ ∈ S for all t ≥ 0. Since ξ ∈ S

when ξ (0) ∈ D, the bounds in (3–19) hold. To show z ∈ Z and the universal function

approximation property holds, let the open and connected set Υ ⊆ Z be defined as

Υ = {ς ∈ Z : ‖ς‖ < x+ (3 + α)ω + u}. Using the fact that ‖ξ (t)‖ ≤ ω for all t ≥ 0, it

can be shown that ‖x̃1 (t)‖ ≤ ω, ‖η (t)‖ ≤ ω, and ‖r (t)‖ ≤ ω for all t ≥ 0. Hence, using

(3–2) and (3–3), ẑ can be bounded as ‖ẑ‖ ≤ x + (3 + α)ω + u. Therefore, if ξ (0) ∈ D,

then ẑ ∈ Υ ⊆ Z. Using (3–15) and the fact that V̇L
a.a.t.

≤ 0 implies x̃1, ν, η, r, P, θ̃ ∈ L∞.

Therefore, the observer x̂ ∈ L∞ and θ̂ ∈ L∞. Since x̂, θ̂ ∈ L∞ and the function Φ

is continuously differentiable, ˙̂
θ ∈ L∞. The extension of LaSalle-Yoshizawa corollary

in [125, Corollary 1] can be invoked to show ‖x̃1‖ → 0, ‖ν‖ → 0, ‖η‖ → 0, and ‖r‖ → 0

as t → ∞. Therefore, using (3–3) and (3–4), it can be further shown that ‖x2 − x̂2‖ → 0

as t→∞.

3.5 Simulation Results

Comparative simulations were performed to demonstrate the performance of

the developed Lb-LSTM observer, where the results were compared to the adaptive
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Table 3-1. Performance Comparison
Architecture ‖x2 − x̂2‖ [deg/s] ‖x̃1‖ [deg]

RNN 0.3856 0.1065
LSTM 0.2270 0.0595

Percent Improvement 41.13% 44.09%

shallow RNN observer in [1]. Simulations were performed to estimate the unknown

angular velocity states of the two-link robot manipulator system modeled in (2–25). A

proportional derivative (PD) controller was selected as u = 15 (x1 − x1d) + 5 (x̂2 − x2d) to

track the desired position trajectory xd,1 =

[
π
6
sin
(
π
2
t
)

π
6

sin
(
π
2
t
) ]>

. Each simulation

was performed for 50 seconds with a step size of 0.001 seconds, and noise was added

to the joint angle measurements from a uniform distribution U (−0.5, 0.5) [deg]. The

observer and dynamic filter gains in (3–3), (3–4), and (3–11) were selected as kr = 20,

ks = 0.05, α = 60, and bc = bh = 10. For a fair comparison, the same robust gains

and dynamic filter was used for both observers, and the comparative observer was

constructed by replacing the LSTM estimate in (3–11) with the adaptive shallow RNN

estimate developed in [1]. The LSTM and RNN estimates were composed of l2 = 12

neurons each with l1 = 19 for the LSTM. The LSTM and RNN weights were randomly

selected from a uniform distribution U (−2, 2), with learning gains of Γ = 20 · I4l1l2+l2n for

the LSTM and ΓWf
= 20 · I24 and ΓVf1 = 20 · I96 for the shallow RNN. The performance

results of the two simulations are shown in Table 3-1 and Figure 3-1. The developed

Lb-LSTM observer yielded a 41.13% improvement in the root mean square estimation

error. While the estimation errors settled for both observers after approximately 1 s, the

Lb-LSTM observer yielded a significant improvement in the steady state performance.

As evident from Figure 3-1, the adaptive shallow RNN observer produced small,

frequent spikes in the estimation error, which contributed to a higher root mean square

estimation error. Ultimately, the developed Lb-LSTM architecture and adaptive observer

design resulted in significant improvements in estimation accuracy of the the unknown

state x2 when compared to the baseline adaptive shallow RNN observer.
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Figure 3-1. Plot of the estimation error norm ‖x̂2 − x2‖ over time for the developed
Lb-LSTM observer compared to the adaptive shallow RNN observer in [1].
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3.6 Conclusions

In this chapter, an Lb-LSTM observer is designed for nonlinear system state

estimation. The developed Lb-LSTM architecture adapts in real-time through Lyapunov

stability-driven adaptation laws, making it the first LSTM observer to learn the system

dynamics online in a stability-driven manner. A nonsmooth Lyapunov-based stability

analysis is performed to guarantee convergence of the state estimation error and

stability of the overall Lb-LSTM observer design. Comparative simulations are provided

to estimate the unknown angular velocity states of a two-link robot manipulator. The

simulation results show the developed method yielded a 41.13% improvement in

the root mean square estimation error when compared to the adaptive shallow RNN

observer in [1]. However, the developed observer design and adaptation law does

consider the control design or tracking error in the stability analysis, motivating the OFB-

based controller in Chapter 4. OFB-based control would bring additional challenges due

to the fact that the adaptation law would have to integrate two error objectives: one for

the tracking control problem and one for system identification.
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CHAPTER 4
ADAPTIVE OUTPUT FEEDBACK CONTROL USING LYAPUNOV-BASED DEEP

RECURRENT NEURAL NETWORKS (LB-DNNS)

4.1 Introduction

Motivated by the dynamic behavior of RNNs, this chapter leverages the adaptive

RNN-based control development in Chapter 2 and the adaptive RNN-based observer

development in Chapter 3 to develop an adaptive Lb-DRNN OFB controller for uncertain

nonlinear systems. Specifically, an Lb-DRNN observer is designed to adaptively

estimate the unknown states of the system and is integrated into an OFB control

framework. To ensure real-time adaptation, the DRNN weights are dynamically adjusted

through Lyapunov-based adaptation laws using both tracking and estimation error

feedback, making this the first online learning result for a DRNN-based OFB controller.

A Lyapunov-based stability analysis proves asymptotic estimation and tracking error

convergence. Validation simulation experiments were performed on an unmanned

underwater vehicle (UUV) system that resulted in a 27.98% and 89.94% improvement in

linear and angular tracking error, respectively, when compared to a shallow RNN-based

OFB controller.

4.2 Problem Formulation

4.2.1 Model Dynamics

Consider a second order nonlinear system modeled as

ẋ1 = x2

ẋ2 = f (x) + g (x1)u, (4–1)

where x ,
[
x>1 x>2

]> ∈ R2n and u ∈ Rm denote the generalized state and control input

of the system, respectively, f : R2n → Rn denotes a continuously differentiable function,

and g : Rn → Rn×m denotes a continuous function. While the control effectiveness

matrix is assumed to be known, the control development in [101] can be used to

account for an uncertain, linearly parametrizable control effectiveness g. Like Chapter
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Figure 4-1. Block diagram of adaptive DRNN-based output feedback controller.

3, a second order nonlinear system was considered for ease of exposition and the

development in [121] can be used with the developed adaptive DRNN OFB controller

for control of N-th order strict nonlinear systems with an unmeasurable state xN . The

control objective is to design an adaptive DRNN controller to track a desired trajectory

xd,1 : R≥0 → Rn despite the system uncertainty and unavailability of the state x2. It is

assumed that the desired trajectory xd,1 is designed to be sufficiently smooth such that

|xd,1 (t)| ≤ xd, |ẋd,1 (t)| ≤ ẋd, and |ẍd,1 (t)| ≤ ẍd for all t ∈ R≥0, where xd, ẋd, ẍd ∈ R>0

denote known constants. The model in (4–1) is assumed to satisfy Assumptions 3.3 -3.4

and the following assumption.

Assumption 4.1. The function g is known and full row rank.

4.2.2 Deep Recurrent Neural Network Model

An adaptive DRNN architecture is developed to estimate the unknown model

dynamics in (4–1) in real-time and is implemented in a subsequently designed output

feedback-based controller, as shown in Fig. 4-1. Similar to the continuous-time LSTM

representation developed in Chapter 2, a continuous-time DRNN can be modeled using

the discrete-time DRNN representation in [126] as

ḣ = −bh+W>
k φk ◦ ... ◦W>

1 φ1 ◦W>
0 y, (4–2)
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where b ∈ R>0 denotes a user-selected time constant, y ∈ RLk+1+2n+1 denotes a

concatenated state vector defined as y ,
[
h> x>a

]>, xa ∈ R2n+1 denotes the augmented

input defined as xa ,
[
x> 1

]>, and h ∈ RLk+1 denotes the hidden state. The weight

matrices and smooth activation functions1 at the jth layer are denoted by W>
j ∈

RLj+1×Lj and φj : RLj → RLj for all j ∈ {0, ..., k} and j ∈ {1, ..., k}, respectively, where

θ ,
[
vec (W0)> ... vec (Wk)

>
]>
∈ R

∑k
j=0 LjLj+1 and Lj ∈ R>0 for all j ∈ {0, ..., k}

denotes the number of neurons in the jth layer. Since the hidden state is an input to

the first hidden layer, W>
0 ∈ RL1×(Lk+1+2n+1). To incorporate a bias term, xa and φj

are augmented with 1 for all j ∈ {1, ..., k}. For DNNs with multiple types of activation

functions at each layer, φj may be modeled as φj ,
[
ςj,1, ςj,2, ..., ςj,Lj−1

, 1
]>
, where

ςj,i : R → R for all j ∈ {1, ..., k} and i ∈ {1, ..., Lj} denotes the activation function at the

ith node of the jth layer.

To facilitate the subsequent analysis, a recursive representation of the adaptive

Lb-DRNN architecture can be modeled as

Φj =


W>
j φj (Φj−1) , j = {1, ..., k} ,

W>
j y, j = 0,

(4–3)

where Φj (x, θ) ∈ RLj+1 denotes the output of the jth layer defined as Φj , W>
j φj ◦

W>
j−1φj−1 ◦ ... ◦W>

1 φ1 ◦W>
0 y for all j ∈ {0, ..., k}. From (4–3), the Lb-DRNN in (4–2) can

be represented as ḣ = −bh+ Φ (x, θ), where Φ (x, θ) , Φk (x, θ).

The Lb-DRNN architecture in (4–2) can then be used to model the unknown system

dynamics in (4–1) using the unknown state x2 as the hidden state h. Using the universal

function approximation property, the dynamics in (4–1) can be modeled using an

1 The adaptive DRNN architecture in (4–2) does not consider nonsmooth activation
functions for notational simplicity. However, the switched analysis in [104] can be used
with the developed method to incorporate nonsmooth activation functions into the RNN
architecture.
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adaptive DRNN architecture as

ẋ2 = −bx2 + Φ (x, θ) + ε (x) + g (x1)u. (4–4)

4.3 Control Development

Since the state x2 is not available and the dynamics in (4–1) are unknown and

unstructured, an adaptive DRNN observer is constructed to facilitate the control devel-

opment. Thus, an adaptive DRNN observer is designed to estimate x2. To quantify the

control objectives, the estimation error x̃1 ∈ Rn and tracking error e1 ∈ Rn are defined as

x̃1 , x1 − x̂1,

e1 , x1 − xd,1, (4–5)

respectively, for state estimates x̂ ,
[
x̂>1 x̂>2

]>. Using the estimation and tracking errors,

auxiliary estimation and tracking errors ξ, r ∈ Rn are defined as

ξ , ˙̃x1 + αx̃1 + η,

r , ė1 + αe1 + η, (4–6)

respectively, where α ∈ R>0 denotes a user-selected constant and η ∈ Rn denotes the

output of a dynamic filter introduced to compensate for the lack of direct measurements

of the state x2. Based on the subsequent stability analysis, the dynamic filter is designed

as [127]

η , p− (α + kr) x̃1,

ν̇ , p− αν − (α + kr) x̃1,

ṗ , − (kr + 2α) p− ν +
(
(α + kr)

2 + 1
)
x̃1 + e1, (4–7)
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where kr ∈ R>0 denotes a user-selected constant, p ∈ Rn denotes an internal filter

variable, and ν ∈ Rn denotes the auxiliary output of the filter. The filter variables p and ν

are initialized such that p (0) = (α + kr) x̃1 (0) and ν (0) = 0, respectively.

The filter in (4–7) uses the estimation error x̃1 and tracking error e1 as inputs and

produces the two filter outputs ν and η. The internal filter variable p is used to generate

the signal η without involving the unavailable derivative of the estimation error ˙̃x1. From

(4–6) and (4–7), the dynamic filter can be related to the unknown auxiliary estimation

error ξ and unknown auxiliary tracking error r as

ξ = ėes + αees,

r = ėtr + αetr, (4–8)

where ees ∈ Rn and etr ∈ Rn are auxiliary errors defined as ees , x̃1 + ν and etr , e1 + ν,

respectively. To facilitate the subsequent stability analysis, taking the time derivative of η

and using (4–6) and (4–7) yields

η̇ = − (α + kr) ξ − αη + x̃1 + e1 − ν. (4–9)

4.3.1 Observer Design

Based on the subsequent stability analysis, the adaptive Lb-DRNN observer for the

uncertain nonlinear system in (4–1) is designed as

˙̂x1 = x̂2

˙̂x2 = −bx̂2 + Φ
(
x̂, θ̂
)

+ g (x1)u+ β1sgn (ees) + χ, (4–10)

where sgn [·] denotes the element-wise sign function, θ̂ ,
[
vec

(
Ŵ0

)>
, ..., vec

(
Ŵk

)>]>
,

β1 ∈ R0 denotes a user-defined constant, and Ŵ>
j ∈ RLj+1×Lj denotes the weight

estimates for all j ∈ {0, ..., k}. The auxiliary term χ ∈ Rn is designed based on the
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stability analysis as

χ , − (γ (kr + α) + 2α) η + (γ − α) ν + x̃1 − ν, (4–11)

where γ ∈ R>0 denotes a user-selected constant. As is typical in observer design ap-

proaches (see [128]), the state x1 is also approximated, even though it is measurable, as

a means to provide feedback for the construction of the estimate for the unmeasurable

state x2.

Taking the derivative of ξ and substituting (4–4)-(4–6), (4–10), and (4–11) and

adding and subtracting Φ (x̂, θ) yields

ξ̇ = −b ˙̃x1 + Φ (x̂, θ)− Φ(x̂, θ̂) + Φ (x, θ)− Φ (x̂, θ) + ε (x)

− β1sgn (ees)− χ+ α (ξ − αx̃1 − η) + η̇. (4–12)

To facilitate the subsequent development and to address the mathematical challenges

posed by the nested nonlinearity of the DRNN architecture, a first-order Taylor series

approximation-based error model is evaluated as [129]

Φ (x̂, θ)− Φ
(
x̂, θ̂
)

= Φ̂′θ̃ +O2
(
x̂, θ̃
)
, (4–13)

where O2
(
x̂, θ̃
)

denotes higher-order terms. Substituting (4–13) into (4–12) yields the

closed-loop error system

ξ̇ = N1 + Φ̂′θ̃ − β1sgn (ees)− χ+ α (ξ − αx̃1 − η) + η̇, (4–14)

where the auxiliary term N1 ∈ Rn is defined as N1 , −b ˙̃x1 + Φ (x, θ) − Φ (x̂, θ) +

O2
(
x̂, θ̃
)

+ ε (x).

4.3.2 Control Design

An OFB controller is designed using the developed adaptive Lb-DRNN architecture

and observed state estimates x̂. The Lb-DRNN weights are adjusted online using

subsequently designed stability-driven weight adaptation laws that allow the developed
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OFB control design to estimate the unknown states and system dynamics in real-time.

Based on the subsequent stability analysis, the control input is designed as

u , g (x1)+ [−
(
−bx̂2 + Φ

(
x̂, θ̂
))
− β2sgn (etr) + ẍd,1 − (kr + α)

(
˙̂e1 + αê1

)
− α2e1 − ν],

(4–15)

where ê1 , x̂1 − xd,1 and β2 ∈ R0 denotes a user-defined control gain. Taking the

time-derivative of r, substituting (4–4)-(4–6) and (4–15), adding and subtracting Φ (x̂, θ),

and using the Taylor series-based approximation in (4–13) yields the closed-loop error

system

ṙ = N1 + Φ̂′θ̃ − (kr + α)
(

˙̂e1 + αê1

)
+ η̇ − β2sgn (etr) + α (r − η) + ν. (4–16)

4.3.3 Adaptive Weight Update Laws

In this section, a Lyapunov stability-driven weight adaptation law is developed

for the DRNN architecture. The weight adaptation law allows the developed output

feedback controller to adaptively compensate for the uncertain model dynamics of the

system while ensuring stability guarantees. Based on the subsequent stability analysis,

the DRNN weight adaptation law is designed as

˙̂
θ , ΓΦ̂′> (ees + etr) , (4–17)

where Γ ∈ R
∑k
j=0 LjLj+1×

∑k
j=0 LjLj+1 and Φ̂′ ∈ R2n×

∑k
j=0 LjLj+1 denote a user-selected

positive-definite gain matrix and a shorthand notation denoting the Jacobian Φ̂′ ,[
Φ̂′0, ..., Φ̂

′
k

]
, where the shorthand notation Φ̂′j is defined as Φ̂′j ,

∂Φj(x̂,θ̂)
∂θ̂

, for all

j ∈ {0, ..., k}. Using the chain rule, the DRNN model in (4–3), and the properties of the

vectorization operator, the terms Φ̂′0 and Φ̂′j can be expressed as

Φ̂′0 ,


x
k∏
l=1

Ŵ>
l φ̂
′
l

(IL1 ⊗ x̂>a
)
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Φ̂′j ,


x
k∏

l=j+1

Ŵ>
l φ̂
′
l

(ILj+1
⊗ φ̂>j

)
, ∀j ∈ {1, ..., k} ,

respectively, where x̂a ∈ R2n+1 denotes the augmented RNN input x̂a ,
[
x̂>1

]>,

and the shorthand notations φ̂j and φ̂′j are defined as φ̂j , φj

(
Φj−1

(
x̂, θ̂
))

and

φ̂′j , φ′j

(
Φj−1

(
x̂, θ̂
))

for all j ∈ {1, ..., k}, respectively.

4.4 Stability Analysis

To facilitate the subsequent development, let the function VL : Rψ → R≥0 be defined

as

VL (ζ) ,
γ

2
x̃>1 x̃1 +

1

2
ξ>ξ +

γ

2
e>1 e1 +

1

2
r>r +

γ

2
η>η +

γ

2
ν>ν + P +

α

2
θ̃>Γ−1θ̃, (4–18)

where the concatenated state vector ζ ∈ Rψ is defined as ζ ,
[
z>
√
P θ̃>

]>
, z ,[

x̃>1 ξ> e>1 r> η> ν>
]>, and ψ , 6n+ 1 +

∑k
j=0 LjLj+1. The term P : R≥0 → R≥0 denotes a

subsequently designed positive P-function used to account for mismatches that appear

in the function VL due to the weight adaptation law in (4–17) being expressed in terms

of the known errors ees and etr rather than the unknown auxiliary estimation and tracking

errors ξ and r. The function VL in (4–18) satisfies

λ1 ‖ζ‖2 ≤ VL ≤ λ2 ‖ζ‖2 , (4–19)

where the auxiliary constants λ1 and λ2 are defined as λ1 , 1
2
min {1, γ, αλmin {Γ−1}}

and λ2 , 1
2
max {1, γ, αλmax {Γ−1}}, respectively. Since the closed-loop error system

has a discontinuous right hand side, a Filippov regularization is applied on the system

to facilitate the subsequent analysis [130]. Let ∂VL denote the Clarke gradient of VL

defined in [131, p. 39]. Since ζ 7→ VL (ζ) is continuously differentiable, ∂VL (ζ) =

{∇VL (ζ)}, where ∇ denotes the standard gradient operator. Based on the chain rule

in [122, Thm 2.2], it can be verified that t → VL (ζ (t)) satisfies the differential inclusion

V̇L
a.a.t.
∈

⋂
ξ∈∂VL(ς)

ξ>(ψ, t)K [h] (ς, t) for ς ,
[
z> P θ̃>

]>
. Taking the derivative of VL (ζ),
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substituting in (4–7), (4–9), and (4–14), and canceling cross-terms yields

V̇L
a.a.t
∈ −αγx̃>1 x̃1 + γe>1 ė1 + r>ṙ − αγν>ν − krξ>ξ

+ ξ>
(

Φ̂′θ̃ − β1K [sgn] (ees) + e1 +N1

)
− γη> (αη + e1) + Ṗ − αθ̃>Γ−1 ˙̂

θ.

Substituting in (4–6) and (4–9), the closed-loop tracking error system in (4–16), and the

weight adaptation law in (4–17) yields

V̇L
a.a.t
∈ −αγx̃>1 x̃1 − αγν>ν − αγe>1 e1 − krr>r + Ṗ + ξ>

(
Φ̂′θ̃ − β1K [sgn] (ees) + e1 +N1

)
− krξ>ξ − γη>αη − αθ̃>Φ̂′> (ees + etr) + r>

(
N1 + Φ̂′θ̃ − β2K [sgn] (etr) + x̃1

)
.

(4–20)

To facilitate the subsequent analysis, let the sets S ⊂ Rψ and D ⊂ Rψ be defined

as S ,
{
σ ∈ D : ‖σ‖ ≤

√
λ1
λ2
ω
}

and D ,
{
σ ∈ Rψ : ‖σ‖ < ω

}
, respectively, for some

bounding constant ω ∈ R>0. The following theorem establishes asymptotic tracking and

estimation error convergence for the developed adaptive DRNN observer and overall

output feedback control design.

Theorem 4.1. Consider the system in (4–1) and let Assumptions 3.3 -3.4 and 4.1 hold.

The adaptive Lb-DRNN observer in (4–10), controller in (4–15), and Lb-DRNN weight

adaptation law in (4–17) ensure asymptotic estimation and tracking error convergence

in the sense that ‖etr‖ → 0, ‖ees‖ → 0, ‖x2 − x̂2‖ → 0, and ‖x2 − ẋd,1‖ → 0 as t → ∞,

provided ζ (0) ∈ S and the following sufficient gain conditions are satisfied

β1, β2 > ξ1 + ξ2 +
1

α− λP
(αξ2 + ξ3) ,

α ≥ 1

2γkr
. (4–21)

Proof. Consider the candidate Lyapunov function in (4–18). Based on the stability

development, the P-function is designed as

P (t) , e−λP t ∗
(
α (ees + etr)

>N2 + (α− λP ) (β1 ‖ees‖1 + β2 ‖etr‖1)
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− (α− λP ) (ees + etr)
> (N1 +N2) + (ees + etr)

>
(
Ṅ1 + Ṅ2

))
+ β1 ‖ees‖1 + β2 ‖etr‖1 − (ees + etr)

> (N1 +N2) , (4–22)

where λP ∈ R>0 denotes a constant and N2 ∈ Rn denotes an auxiliary term defined

as N2 , Φ̂′θ̃. Using the fact that the ideal weights are assumed to be bounded and the

continuous differentiability of the auxiliary terms N1 and N2, N1 and N2 and the time-

derivative of N1 + N2 can be bounded as ‖N1‖ ≤ ξ1, ‖N2‖ ≤ ξ2, and
∥∥∥Ṅ1 + Ṅ2

∥∥∥ ≤ ξ3,

respectively, when ζ ∈ D, for known constants ξ1, ξ2, ξ3 ∈ R>0. Therefore, using similar

arguments as in [124, Lemma 4] and Chapter 3, it can be shown that P remains positive

for all time t ∈ R≥0 provided the sufficient gain conditions in (4–21) are satisfied. The

P -function in (4–22) is a Filippov solution to

Ṗ ∈ −λPP − ξ> (N1 − β1K [sgn] (ees))− r> (N1 − β2K [sgn] (etr))− (ėes + ėtr)
>N2.

(4–23)

The terms t → ξ>K [sgn] (ees) and t → r>K [sgn] (etr) are set-valued only for the

set of time instants T1 = {t ∈ [0,∞)|∃i ∈ {1, 2, ..., n} s.t. ees,i (t) = 0 ∧ ξi (t) 6= 0} and

T2 = {t ∈ [0,∞)|∃i ∈ {1, 2, ..., n} s.t. etr,i (t) = 0 ∧ ri (t) 6= 0}, respectively. According

to [124, Lemma 1], the sets T1 and T2 have Lebesgue measure zero. Using this, (4–8),

(4–20), (4–23), the definition of N2, and canceling like terms yields

V̇L
a.a.t
∈ −αγx̃>1 x̃1 − αγν>ν − αγe>1 e1 − αγη>η − krr>r − krξ>ξ − λPP + ξ>e1 + r>x̃1,

(4–24)

when ζ ∈ D. Using Young’s inequality, (4–24) can be further bounded as

V̇L ≤ −λ3 ‖z‖2 − λPP, ∀ζ ∈ D, (4–25)

where λ3 , min
{
αγ − 1

2kr
, αγ, kr

2

}
. Therefore, provided the sufficient gain condition in

(4–21) is satisfied, V̇L ≤ 0, ∀ζ ∈ D.
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To show ζ (t) ∈ D for all t ≥ 0, the fact that VL is nonincreasing, can be used

to show ‖ζ (t)‖ ≤
√
VL(t)
λ1
≤
√
VL(0)
λ1
≤
√

λ2
λ1
‖ζ (0)‖. Therefore, if ‖ζ (0)‖ ≤

√
λ1
λ2
ω,

then ‖ζ‖ < ω for all t ≥ 0. Thus, the states ζ should be initialized such that ζ (0) ∈ S

in order to guarantee that ζ (t) ∈ D for all t ∈ [0,∞). To show x ∈ X so that the

universal function approximation property holds, let the set Υ ⊆ X be defined as

Υ ,
{
ς ∈ X : ‖ς‖ < xd + ẋd + (3 + 2α + α2)ω

}
. Thus, if ‖ζ (0)‖ ∈ S, then ‖ζ (t)‖ ≤ ω,

and therefore ‖e1 (t)‖ ≤ ω, ‖η (t)‖ ≤ ω, and ‖r (t)‖ ≤ ω. Hence, using (4–5) and (4–6),

‖x‖ can be bounded as ‖x‖ ≤ xd + ẋd + (3 + 2α + α2)ω. Therefore, if ζ (0) ∈ S, then

x ∈ Υ ⊆ X and thus the universal function approximation property holds.

Since ζ ∈ L∞, x1, x̂1, etr, ees ∈ L∞. Since etr, ees, Φ̂
′ ∈ L∞ and Φ is a smooth

function, ˙̂
θ ∈ L∞. Using (4–18), (4–19), and (4–25), the LaSalle-Yoshizawa corollary

in [125, Corollary 1] can be invoked to show ‖x̃1‖ → 0, ‖e1‖ → 0, ‖ν‖ → 0, ‖η‖ → 0,

‖ξ‖ → 0, and ‖r‖ → 0 as t → ∞. From (4–5) and (4–6), it can be further shown that

‖etr‖ → 0, ‖ees‖ → 0, ‖x2 − x̂2‖ → 0, and ‖x2 − ẋd,1‖ → 0 as t→∞.

4.5 Simulations

To demonstrate the performance and efficacy of the developed adaptive DRNN-

based OFB controller, comparative simulations were performed with a shallow RNN

(henceforth referred to as “SRNN”) [84] and a central difference observer (henceforth

referred to as “CD”) as baselines for comparison. The simulations were performed on an

unmanned underwater vehicle (UUV) system modeled as [132]

ẋ1 = η̇

ẋ2 = −M−1
(η)
(
C (η, η̇, ν) η̇ +D (η, ν) η̇

)
+M

−1
(η) τn, (4–26)

where x1 = η ∈ R6 denotes a vector of position and orientation with coordinates in the

earth-fixed frame, x2 = η̇ ∈ R6 denotes a vector of linear and angular velocities with

coordinates in the earth-fixed frame, and ν ∈ R6 denotes a vector of linear and angular
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velocities with coordinates in the body-fixed frame. The inertial effects, centripetal-

Coriolis effects, hydrodynamic damping effects, and control input in the earth-fixed frame

can be represented by M : R6 → R6×6, C : R6 × R6 × R6 → R6×6, D : R6 × R6 → R6×6,

and τn : R≥0 → R6, respectively. The velocities in the body-fixed frame can be related to

the velocities in the earth-fixed frame using the relation

η̇ = J (η) ν, (4–27)

where J : R6 → R6×6 is a Jacobian transformation matrix relating the two frames

[132, Equation (2)]. Using the kinematic transformation in (4–27), the earth–fixed

dynamics in (4–26) can be expressed using body-fixed dynamics as M = J−>MJ−1,

C = J−>
[
C (ν)−MJ−1J̇

]
J−1, D = J−>D (ν) J−1, and τn = J−>τb, where M ∈ R6×6,

C : R6 → R6×6, D : R6 → R6×6, and τb : R≥0 → R6 denote the inertial effects, centripetal-

Coriolis effects, hydrodynamic damping effects, and control input in the body-fixed

frame, respectively. The inertial effects, centripetal-Coriolis effects, and hydrodynamic

damping effects in the body-fixed effects can be expressed as [133, Equation (2.246)]

M = diag {m1,m2,m3,m4,m5,m6}

D = diag {d11 + d12 |ν (1)| , d21 + d22 |ν (2)| , d31 + d32 |ν (3)| ,

d41 + d42 |ν (4)| , d51 + d52 |ν (5)| , d61 + d62 |ν (6)|}

Vm =



0 0 0 0 m3ν3 −m2ν2

0 0 0 −m3ν3 0 m1ν1

0 0 0 m2ν2 −m1ν1 0

0 m3ν3 −m2ν2 0 m6ν6 −m5ν5

−m3ν3 0 m1ν1 −m6ν6 0 m4ν4

m2ν2 −m1ν1 0 m5ν5 −m4ν4 0


,

where the following numerical values of mass, inertia, and damping parameters were

used (Table 4-1).
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Table 4-1. UUV System Parameters [133, Equation (2.247)]
m1 = 215 kg d11 = 70 Nm·sec d41 = 30 Nm·sec
m2 = 265 kg d12 = 100 N·sec2 d42 = 50 N·sec2

m3 = 265 kg d21 = 100 Nm·sec d51 = 50 Nm·sec
m4 = 40 kg·m2 d22 = 200 N·sec2 d52 = 100 N·sec2

m5 = 80 kg·m2 d31 = 200 Nm·sec d61 = 50 Nm·sec
m6 = 80 kg·m2 d32 = 50 N·sec2 d62 = 100 N·sec2.

The desired trajectory was selected as a helical trajectory defined as x1 =

[5cos (0.1t) m, 5sin(0.1t) m,0.1tm, 0 rad, 0 rad,−0.05t rad]>. The control gains were

selected as b = 1, kr = 2, α = 5, β1 = 0.001, β2 = 0.001, and Γ = 0.5 · I592. The sim-

ulation was run for 150 seconds with a step size of 0.001 seconds and initial conditions

x1 = [4 m, 0.5 m, 0 m, 0 rad, 0.2 rad, 0 rad]> and x2 = [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]>.

The DRNN was composed of k = 8 layers with 8 neurons in each layer and

hyperbolic tangent activation functions. The SRNN baseline used the same controller

and observer design, but with k = 2 layers and L = 17 neurons to ensure that

approximately the same number of individual weights was used for both RNNs. The

second comparison simulation used a central difference observer with the controller in

(4–15) without the feedforward DNN, i.e., u = g (x1)+
[
ẍd,1 − (kr + α)

(
˙̂e1 + αê1

)
− α2e1

]
.

For a fair comparison, the same robust control gains were used for all three simulations.

To better emulate real-world systems, noise was added to the position measurements

from a uniform distribution of U (−0.001, 0.001), and the control input was saturated at

200 N or 200 N/m. The RNN weight estimates were randomly initialized from a uniform

distribution of U (−0.5, 0.5).

The performance results of the three simulations are shown in Table 4-2 and

Figures 4-2-4-4. As shown in Figure 4-2, the RNN-based OFB controllers yield sig-

nificant improvements in the estimation error performance when compared to the

central difference observer. Specifically, the DRNN-based OFB controller yielded a

99.72% and 99.84% improvement in linear and angular estimation errors, respectively,

when compared to the CD observer. The CD observer was significantly less robust to
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Table 4-2. Simulation Performance Results
Architecture ‖e1‖ ‖x̃2‖ ‖τb‖

SRNN linear 0.1215 [m] 0.0103 [m/s] 92.19 [N]
angular 0.0815 [rad] 0.0081 [rad/s] 12.72 [N/m]

CD linear 0.1115 [m] 1.7339 [m/s] 301.37 [N]
angular 0.0252 [rad] 1.7387 [rad/s] 336.43 [N/m]

DRNN linear 0.0875 [m] 0.0049 [m/s] 91.84 [N]
angular 0.0082 [rad] 0.0027 [rad/s] 12.68 [N/m]

measurement noise and therefore yielded chattering, oscillatory behavior in the esti-

mation error which degraded steady state performance. This oscillatory behavior in

the estimation errors led to similar behavior in the control inputs in Figure 4-4, which

saturate frequently throughout the simulation, and also created chattering behavior in

the tracking error (as shown in Figure 4-3). Thus, the DRNN-based observer design was

significantly more robust to measurement noise.

While the SRNN-based OFB controller yielded noticeably better estimation error

performance when compared to the CD observer, the DRNN-based OFB controller

improved the normalized estimation error by 52.43% and 66.67% for the linear and

angular estimation errors, respectively. Moreover, the DRNN-based OFB controller

yielded significant improvements in the tracking error performance. As shown in Figure

4-3, both OFB controllers yielded similar transient tracking error performance and settled

after approximately 5 seconds. However, the DRNN architecture significantly improved

steady state behavior and the tracking error for the DRNN converged to a considerably

smaller value than that of the SRNN. Specifically, the DRNN architecture improved the

linear and angular tracking error by 27.98% and 89.94%, respectively, when compared

to the shallow architecture with a comparable control effort.
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Figure 4-2. Plots of the norm of the linear (top) and angular (bottom) estimation errors
over time of the DRNN OFB controller compared to the SRNN OFB
controller and CD observer.
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Figure 4-3. Plots of the norm of the linear (top) and angular (bottom) tracking errors over
time of the DRNN OFB controller compared to the SRNN OFB controller and
CD observer.
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Figure 4-4. Plots of the norm of the linear (top) and angular (bottom) control input over
time of the DRNN OFB controller compared to the SRNN OFB controller and
CD observer.

4.6 Conclusions

An adaptive Lb-DRNN-based output feedback controller is developed for a class

of uncertain nonlinear systems. Motivated by the dynamic nature and internal memory

structure of RNNs, an Lb-DRNN observer is developed to adaptively estimate the un-

known states of the system, which are implemented in the developed control design.

However, the developed OFB controller is designed using the traditional DRNN archi-

tecture. Future work could integrate the adaptive LSTM-based control development in

Chapter 2 and the adaptive LSTM-based observer development in Chapter 3 together

into as Lb-LSTM OFB control architecture.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

DNN-based control methods are becoming more popular due to the improved

performance of DNNs over traditional shallow NNs. However, previous analytic, stability-

driven, adaptive DNN-based control methods are restricted to feedforward NNs. Thus,

Chapter 2 develops an adaptive Lb-LSTM architecture and controller for general Euler-

Lagrange systems, where the adaptation law is derived from Lyapunov-based methods.

The novelty of Chapter 2 is the development of not only the first adaptive LSTM archi-

tecture, but also the first continuous-time representation of the LSTM cell. Specifically,

a continuous-time Lb-LSTM NN is constructed and implemented in the controller as a

feedforward term to adaptively estimate uncertain model dynamics. Despite the tech-

nical challenges posed by the complexity of the LSTM cell structure, stability-driven

adaptation laws adjust the Lb-LSTM weights in real-time and allow the developed ar-

chitecture to adapt to system uncertainties without any offline training requirements. To

do so, Jacobians are computed of the LSTM cell dynamics with respect to the weights.

Compared to typical offline LSTM methods (which can be used to provide an initial con-

dition for the controller), the developed method provides online, continued learning using

an analytical adaptation law, thereby providing significantly more robustness against

changes in parameters or reference signal. Thus, the developed Lb-LSTM controller is

able to learn the system dynamics in real-time and adapt to model uncertainties without

any offline training requirements. A Lyapunov-based stability analysis is performed to

guarantee UUB of the tracking errors and LSTM state and weight estimation errors.

To demonstrate the performance of the adaptive Lb-LSTM controller, simulations were

performed and compared to the adaptive DNN-based controller in [104] using three

different DNN architectures. The simulation results indicate significant improvements

in tracking and function approximation performance when compared to various feedfor-

ward DNN architectures.
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Since RNNs involve a hidden state, they implicitly involve state estimation, making

them amenable for constructing state observers for uncertain nonlinear systems. Thus,

in Chapter 3, the adaptive Lb-LSTM architecture developed in Chapter 2 is used to

develop a novel LSTM-based observer to estimate unmeasurable states in a class of

nonlinear systems. Since the unknown observer error is not available for online learning,

a dynamic filter is designed to construct an auxiliary error that is implementable in the

weight adaptation law. A nonsmooth Lyapunov-based stability analysis is performed

that guarantees asymptotic convergence of the estimation errors and stability of the Lb-

LSTM architecture and simulation results showed improved performance over existing

methods. To validate the developed observer design, simulations were performed to

estimate the angular velocity states of a two-link robot manipulator. The Lb-LSTM

observer yielded a 41.13% improvement in the estimation error when compared to the

adaptive shallow RNN observer in [1].

Chapter 4 leverages the adaptive control design in Chapter 2 and adaptive observer

design in Chapter 3 to develop an OFB controller for uncertain nonlinear systems using

adaptive DRNNs. Inspired by the dynamic nature and memory capabilities of RNNs,

the first adaptive DRNN observer is designed to estimate the unknown states of the

system and is incorporated into a control framework. Unlike the preceding chapters,

the developed OFB controller is designed to achieve a two-fold control objective:

asymptotic estimation of the unmeasurable states and asymptotic tracking control. The

weights of the DRNN adjust online using Lyapunov-based stability-driven adaptation

laws based on the tracking and observer errors. Through a Lyapunov-based stability

analysis, the developed observer and the overall control design are proven to guarantee

asymptotic stability, ensuring reliable and robust control performance. Validation

simulation experiments on an unmanned underwater vehicle system yielded a 27.98%

and 89.94% improvement in normalized linear and angular tracking error, respectively.
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Potential future research could include extending the developed LSTM controller

and observer design in Chapters 2 and 3 to develop an OFB controller, similar to the

one developed in Chapter 4. Extending the OFB control design in Chapter 4 to adaptive

LSTMs would bring additional challenges because the developed adaptation laws for

the LSTM are more complex due to the more nonlinear structure of LSTMs compared to

traditional DRNNs. Developing an adaptive LSTM-based OFB controller would involve

incorporating the two-fold control objective of the OFB control design into the online

training of the LSTM by integrating both the tracking and state estimation error into

the weight adaptation laws. Since the estimation error is unknown, a dynamic filter

could be used to construct an auxiliary error that would be implementable in the weight

adaptation law.

Additional potential efforts include extending the developed Lyapunov-based

network architecture design to adaptive physics-informed NN architectures or to other

RNN architectures, such as GRUs. Like LSTMs, GRUs are a subarchitecture of RNNs

that are designed with additional gate units to provide a more sophisticated memory

than traditional RNNs. GRUs have one less gate unit than LSTMs and are therefore a

simpler architecture. Therefore, extending the LSTM control and observer developments

in Chapters 2 and 3 to develop an adaptive GRU architecture would result in a simpler

NN architecture that is still capable of comparable function approximation performance.

To do so, the developed weight adaptation laws would need to be rederived to consider

the Jacobian of the GRU unit with respect to the weights and account for the lack of a

cell state in the GRU architecture.

Transformers are a current state-of-the-art NN model that have outperformed

traditional RNNs, LSTMs, and other NN models without requiring the computationally

expensive recurrent loop present in RNNs. However, they have not been extensively

investigated for controls applications, and there is no present adaptive control result for

such an architecture. As shown in Figure 5-1, transformers rely on the self-attention
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mechanism, which allows them to capture dependencies between inputs regardless of

their positions in the time sequence. This mechanism enables transformers to model

long-range dependencies effectively, making them well-suited for tasks involving se-

quential data. Transformers integrate past information without the use of a recurrent

loop by using past input and output data as inputs to the transformer architecture. In

real-time control applications, integrating past outputs as inputs to the transformer

necessitates obtaining an implementable form of past outputs into the control design,

which has not yet been done for transformers. Moreover, transformers are significantly

more complex than LSTMs or other DRNN architectures. The more complex archi-

tecture complicates the development of stability-driven weight adaptation laws and

motivates the incorporation of computer derived gradients into the adaptation laws to

simplify the control architecture.

This dissertation provided the first adaptive LSTM architecture for both trajectory

tracking and system identification. Moreover, this dissertation presents the first adaptive

DRNN for OFB-based control. Simulation results empirically show that the advance-

ments provided significant improvements when compared to state-of-the-art adaptive

NN architectures. However, as described, there remains additional work to do.
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Figure 5-1. Transformer model [134].
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