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Given the advancements in computer vision and estimation and control

theory, monocular camera systems have received growing interest as a local

alternative/collaborative sensor to GPS systems. One issue that has inhibited

the use of a vision system as a navigational aid is the difficulty in reconstructing

inertial measurements from the projected image. Current approaches to estimating

the aircraft state through a camera system utilize the motion of feature points

in an image. One geometric approach that is in this dissertation uses a series of

homography relationships to estimate position and orientation with respect to an

inertial pose. This approach creates a series of “daisy-chained” pose estimates in

which the current feature points can be related to previously viewed feature points

to determine the current coordinates between each successive image. Because this

technique relies on the accuracy of a depth estimation, a Lyapunov-based range

identification method is developed that is intended to enhance and compliment the

homography based method.

The nature of the noise associated with using a camera as a position and

orientation sensor is distinctly different from that of legacy type sensors used for air

x



vehicles such as accelerometers, rate gyros, attitude resolvers, etc. In order to fly an

aircraft in a closed-loop sense, using a camera as a primary sensor, the controller

will need to be robust to not only parametric uncertainties, but to system noise

that is of the kind uniquely characteristic of camera systems. A novel nonlinear

controller, capable of achieving asymptotic stability while rejecting a broad class of

uncertainties, is developed as a plausible answer to such anticipated issues.

A commercially available vehicle platform is selected to act as a testbed for

evaluating a host of image-based methodologies as well as evaluating advanced

control concepts. To enhance the vision-based analysis as well as control system

design analysis, a simulation of this particular aircraft is also constructed. The

simulation is intended to be used as a tool to provide insight into algorithm

feasibility as well as to support algorithm development, prior to physical integration

and flight testing.

The dissertation will focus on three problems of interest: 1) vehicle state

estimation and control using a homography-based daisy-chaining approach;

2) Lyapunov-based nonlinear state estimation and range identification using a

pinhole camera; 3) robust aerial vehicle control in the presence of structured and

unstructured uncertainties.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Feedback linearization is a general control method where the nonlinear

dynamics of a system are canceled by state feedback yielding a residual linear

system. Dynamic inversion is a similar concept as feedback linearization that is

commonly used within the aerospace community to replace linear aircraft dynamics

with a reference model [1—11]. For example, a general dynamic inversion approach

is presented in [4] for a reference tracking problem for a minimum-phase and

left-invertible linear system. A dynamic inversion controller is designed for a

nonminimum-phase hypersonic aircraft system in [2], which utilizes an additional

controller to stabilize the zero dynamics. A finite-time stabilization design is

proposed in [3], which utilizes dynamic inversion given a full rank input matrix.

Typically, dynamic inversion methods (e.g., [1, 2]) assume the corresponding plant

models are exactly known. However, parametric uncertainty, additive disturbances,

and unmodeled plant dynamics are always present in practical systems.

Motivated by the desire to improve the robustness to uncertainty over tradi-

tional methods, adaptive dynamic inversion (ADI) was developed as a method to

compensate for parametric uncertainty (cf. [4, 6, 7, 10]). Typically, ADI methods

exploit model reference adaptive control (MRAC) techniques where the desired

input-output behavior of the closed-loop system is given via the corresponding

dynamics of a reference model [5, 7, 12]. Therefore, the basic task is to design a

controller which will ensure the minimal error between the reference model and the

plant outputs despite uncertainties in the plant parameters and working conditions.

1
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Several efforts (e.g., [8—10, 13—16]) have been developed for the more general prob-

lem where the uncertain parameters or the inversion mismatch terms do not satisfy

the linear-in-the-parameters assumption (i.e., non-LP). One method to compen-

sate for non-LP uncertainty is to exploit a neural network as an on-line function

approximation method as in [13—15]; however, all of these results yield uniformly

ultimately bounded stability due to the inherent function reconstruction error.

In contrast to neural network-based methods to compensate for the non-LP

uncertainty, a robust control approach was recently developed in [17] (coined RISE

control in [18]) to yield an asymptotic stability result. The RISE-based control

structure has been used for a variety of fully actuated systems in [17—25]. The

contribution in this result is the use of the RISE control structure to achieve

asymptotic output tracking control of a model reference system, where the plant

dynamics contain a bounded additive disturbance (e.g., potential disturbances

include: gravity, inertial coupling, nonlinear gust modeling, etc.). This result

represents the first ever application of the RISE method where the controller

is multiplied by a non-square matrix containing parametric uncertainty. To

achieve the result, the typical RISE control structure and closed-loop error system

development is modified by adding a robust control term, which is designed to

compensate for the uncertainty in the input matrix. The result is proven via

Lyapunov-based stability analysis and demonstrated through numerical simulation.

GPS (Global Positioning System) is the primary navigational sensor modality

used for vehicle guidance, navigation, and control. However, a comprehensive

study referred to as the Volpe Report [26] indicates several vulnerabilities of GPS

associated with signal disruptions. The Volpe Report delineates the sources of

interference with the GPS signal into two categories, unintentional and deliberate

disruptions. Some of the unintentional disruptions include ionosphere interfer-

ence (also known as ionospheric scintillation) and radio frequency interference
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(broadcast television, VHF, cell phones, two-way pagers); whereas, some of the

intentional disruptions involve jamming, spoofing, and meaconing. Some of the

ultimate recommendations of this report were to, “create awareness among mem-

bers of the domestic and global transportation community of the need for GPS

backup systems. . . ” and to “conduct a comprehensive analysis of GPS backup

navigation. . . ” which included ILS (Instrument Landing Systems), LORAN (LOng

RAnge Navigation), and INS (Inertial Navigation Systems) [26].

The Volpe report acted as an impetus to investigate mitigation strategies for

the vulnerabilities associated with the current GPS navigation protocol, nearly

all following the suggested GPS backup methods that revert to archaic/legacy

methods. Unfortunately, these navigational modalities are limited by the range

of their land-based transmitters, which are expensive and may not be feasible for

remote or hazardous environments. Based on these restrictions, researchers have

investigated local methods of estimating position when GPS is denied.

Given the advancements in computer vision and estimation and control

theory, monocular camera systems have received growing interest as a local

alternative/collaborative sensor to GPS systems. One issue that has inhibited

the use of a vision system as a navigational aid is the difficulty in reconstructing

inertial measurements from the projected image. Current approaches to estimating

the aircraft state through a camera system utilize the motion of feature points

in an image. A geometric approach is proposed in this dissertation that uses

a series of homography relationships to estimate position and orientation with

respect to an inertial pose. This approach creates a series of “daisy-chained” pose

estimates [27, 28] in which the current feature points can be related to previously

viewed feature points to determine the current coordinates between each successive

image. Through these relationships, previously recorded GPS data can be linked

with the image data to provide measurements of position and attitude (i.e. pose)
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in navigational regions where GPS is denied. The method also delivers an accurate

estimation of vehicle attitude, which is an open problem in aerial vehicle control.

The estimation method can be executed in real time, making it amenable for use in

closed loop guidance control of an aircraft.

The concept of vision-based control for a flight vehicle has been an active

area of research over the last decade. Recent research literature on the subject of

vision-based state estimation for use in control of a flight vehicle can be categorized

by several distinctions. One distinction is that some methods rely heavily on

simultaneous sensor fusion [29] while other methods rely solely on camera feedback

[30]. Research can further be categorized into methods that require a priori

knowledge of landmarks (such as pattern or shape [31—36], light intensity variations

[37], runway edges or lights [38—40]) versus techniques that do not require any

prior knowledge of landmarks [41—47]. Another category of research includes

methods that require the image features to remain in the field-of-view [41] versus

methods that are capable of acquiring new features [42]. Finally, methods can be

categorized according to the vision-based technique for information extraction such

as: Optic Flow [48], Simultaneous Localization And Mapping (SLAM) [43], Stereo

Vision [49], Epipolar Geometry [34, 41, 45, 46]. This last category might also be

delineated between methods that are more computationally intensive and therefore

indicative of the level of real-time on-board computational feasibility.

Methods using homography relationships between images to estimate the

pose of an aircraft are presented by Caballero et al. [46] and Shakernia et al. [41]

(where it is referred to as the “planar essential matrix”). The method presented

by Caballero et al. is limited to flying above a planar environment and creates an

image mosaic, which can be costly in terms of memory. Shakernia’s approach, does

not account for feature points entering and exiting the camera field of view. The

method introduced in this dissertation proposes a solution which allows points to
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continuously move into and out of the camera field of view. The requirement of

flying over a constant planar surface is also relaxed to allow flight over piecewise

planar patches, more characteristic of real world scenarios.

Reconstructing the Euclidean coordinates of observed feature points is a

challenging problem of significant interest , because range information (i.e.,

the distance from the imaging system to the feature point) is lost in the image

projection. Different tools (e.g., extended Kalman filter, nonlinear observers) have

been used to address the structure and/or motion recovery problem from different

points of view. Some researchers (e.g., see [50—53]) have applied the extended

Kalman filter (EKF) to address the structure/motion recovery problem. In order

to use the EKF method, a priori knowledge of the noise distribution is required,

and the motion recovery algorithm is developed based on the linearization of the

nonlinear vision-based motion estimation problem.

Due to restrictions with linear methods, researchers have developed various

nonlinear observers (e.g., see [54—58]). For example, several researchers have

investigated the range identification problem for conventional imaging systems

when the motion parameters are known. In [57], Jankovic and Ghosh developed

a discontinuous observer, known as the Identifier Based Observer (IBO), to

exponentially identify range information of features from successive images of a

camera where the object model is based on known skew-symmetric affine motion

parameters. In [55], Chen and Kano generalized the object motion beyond the

skew-symmetric form of [57] and developed a new discontinuous observer that

exponentially forced the state observation error to be uniformly ultimately bounded

(UUB). In comparison to the UUB result of [55], a continuous observer was

constructed in [56] to asymptotically identify the range information for a general

affine system with known motion parameters. That is, the result in [56] eliminated

the skew-symmetric assumption and yielded an asymptotic result with a continuous
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observer. More recently, a state estimation strategy was developed in [59, 60] for

affine systems with known motion parameters where only a single homogeneous

observation point is provided (i.e., a single image coordinate). In [58], a reduced

order observer was developed to yield a semi-global asymptotic stability result for a

fixed camera viewing a moving object with known motion parameters for a pinhole

camera.

1.2 Dissertation Overview

In this dissertation, vision-based estimation, localization, and control method-

ologies are proposed for an autonomous air vehicle flying over what are nominally

considered as planar patches of feature points. The dissertation will focus on four

problems of interest: 1) develop a robust control system resulting in a semi-global

asymptotic stable system for an air vehicle with structured and unstructured

uncertainties; 2) provide a means of state estimation where feature points can

continuously enter and exit the field-of-view, as would nominally be the case for a

fixed-wing vehicle, via a novel daisy-chaining approach;. 3) introduce a vision-based

altimeter which seeks to resolve the depth ambiguity, which is a current issue with

the homography based daisy-chaining method that uses an altimeter to provide a

depth measurement.

1.3 Research Plan

This chapter serves as an introduction. The motivation, problem statement

and the proposed research plan of the dissertation is provided in this chapter.

Chapter 2 describes a from-the-ground-up simulation development of a

research air vehicle specifically selected for its performance capabilities for flight

testing of vision-based, estimation, localization, and control methodologies. An

outcome from this chapter is a fully nonlinear simulation of a commercially

available mini-aircraft that can be used for a wide range of analysis and design

purposes.
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Chapter 3 presents an inner-loop robust control method, providing mathe-

matical theory and simulation results. The contribution of the development in

this chapter is a controller that is asymptotically stable for a broad class of model

uncertainties as well as bounded additive disturbances.

Chapter 4 involves the development of the daisy-chaining method as a viable

GPS backup technology as well as a state estimation procedure. Results are

demonstrated via simulation as well as flight testing. The contribution from this

chapter is in developing a means for an aircraft to perform position and orientation

estimation from planar feature point patches that enter and leave the field of view,

indefinitely.

Chapter 5 investigates a nonlinear estimator that can provide an alternate

means to altitude estimation as well as to provide alternate state estimation. The

results of this chapter is that it develops a Lyapunov-based nonlinear state esti-

mator using a pinhole camera that could work in symbiosis with the homography-

based daisy chaining technique and it also suggests how, at least notionally, the

camera can therefore be used as a sole sensor onboard an aircraft.



CHAPTER 2
AIRCRAFT MODELING AND SIMULATION

2.1 Introduction

A vehicle simulation has been developed to investigate the feasibility of the

proposed vision-based state estimation and guidance method. The Osprey fixed

wing aerial vehicle, by Air and Sea Composites, Inc. (see Figure 4—3) was selected

for evaluating a host of image-based methodologies as well as for potentially

evaluating advanced control concepts. This particular aircraft was chosen for

several reasons; chiefly being: low cost, pusher prop being amenable to forward

looking camera placement, and payload capability. A fully nonlinear model of the

equations of motion and aerodynamics of the Osprey are constructed within the

Simulink framework. A nonlinear model, as opposed to linear model, is preferred in

this analysis as it better represents the coupled dynamics and camera kinematics,

which could potentially stress the performance and hence, feasibility of the pose

estimation algorithm.

The first undertaking of the dissertation is to develop a fully nonlinear, six

degrees-of-freedom model of the Osprey aircraft. The simulation will provide a

means to test proof-of-concept methodologies prior to testing on the actual Osprey

testbed. For example, a specific maneuver can be created within the simulation

environment to perform a simultaneous rolling, pitching, and yawing motion of

the aircraft combined with a fixed mounted camera to test the robustness of the

vision-based algorithm.

A commercially available vehicle platform is selected to act as a testbed for

evaluating a host of image-based methodologies as well as evaluating advanced

control concepts.

8
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Figure 2—1: LinAir wireframe representation of the Osprey airframe.

2.2 Aerodynamic Characterization

The development of the vehicle simulation entailed two primary tasks, esti-

mating the aerodynamic characteristics and evaluating the mass properties. The

aerodynamic characterization of the Osprey aircraft was computed using LinAir, by

Desktop Aeronautics, Inc., which employs the discrete vortex Weissenger method

(i.e. extended lifting line theory), to solve the subsonic, inviscid, irrotational

Prandtl-Glauert equation [61]. Lifting surfaces are modeled by discrete horseshoe

vortices where each makes up one panel, panels make up an element, and elements

are grouped to make up the aircraft geometry as shown in Figure 2—1. The re-

sulting nondimensional, aerodynamic coefficients are implemented via Simulink’s

multi-dimensional lookup tables as illustrated in Figure 2—2.

2.3 Mass Property Estimation

The inertia and mass properties of the aircraft were measured using a precision

mass, center of gravity, and moment of inertia (MOI) instrument. The instru-

ment is comprised of a table levitated on a gas bearing pivot and a torsional rod

connected to the center of the table, resulting in a torsion pendulum for MOI

measurement. Because the vehicle could not be mounted on its nose or tail, an
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Figure 2—2: Simulink modeling of aerodynamic coefficients.

alternate method was devised to estimate the vehicle’s roll inertia, Ixx. Given that

the angular momentum in one frame, A is related to angular momentum in a sec-

ond frame, B via a simple coordinate transformation, TA
B (read as transformation

from frame B to frame A), the following series of relationships can be written

HA = TA
BH

B = TA
B

£
IBωB

¤
= TA

B

£
IB
¡
TB
A T

A
B

¢
ωB
¤

where
¡
TB
A T

A
B

¢
= I

= TA
B

£
IBTB

A

¡
TA
Bω

B
¢¤

where
¡
TA
Bω

B
¢
= ωA

= TA
B I

BTB
A ω

A.

The inertia relationship between two frames is given by, IB = TA
B I

BTB
A , which for

this particular case of estimating the roll inertia is expressed as

⎡⎢⎢⎢⎢⎣
Ixx 0 Ixz

0 Iyy 0

Ixz 0 Izz

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

cθ 0 −sθ

0 1 0

sθ 0 cθ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

I 0xx 0 I 0xz

0 I 0yy 0

I 0xz 0 I 0zz

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

cθ 0 sθ

0 1 0

−sθ 0 cθ

⎤⎥⎥⎥⎥⎦ (2—1)
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Expanding this equation

⎡⎢⎢⎢⎢⎣
Ixx 0 Ixz

0 Iyy 0

Ixz 0 Izz

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0xx cos
2 (θ)− I 0xz sin (2θ) . . .

+I 0zz sin
2 (θ)

0
I 0xx
sin (2θ)

2
+ I 0xz cos (2θ) . . .

−I 0zz
sin (2θ)

2

0 I 0yy 0

I 0xx
sin (2θ)

2
+ I 0xz cos (2θ) . . .

−I 0zz
sin (2θ)

2

0
I 0xx sin

2 (θ) + I 0xz sin (2θ) . . .

+I 0zz cos
2 (θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2—2)

From this, it is noted that Iyy = I 0yy, as expected. Furthermore, because the

airframe is mostly symmetrical about its x-y plane, see Figure 2—3, it is reasonable

to assume that Ixz ≈ 0. Notice also that since the matrix in (2—2) is symmetric, it

is only necessary to look at the upper or lower triangular elements. Separating the

known terms on the right-hand-side and unknown terms on the left-hand-side gives

the following equalities

Ixx − I 0xx cos
2 (θ) + I 0xz sin (2θ) = I 0zz sin

2 (θ)

−I 0xx sin2 (θ)− I 0xz sin (2θ) = −Izz + I 0zz cos
2 (θ)

I 0xx
sin (2θ)

2
+ I 0xz cos (2θ) = I 0zz

sin (2θ)

2
(2—3)

Rewriting in matrix form, the unknown terms are solved for accordingly

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ixx

I 0xx

I 0xz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
1 − cos2 (θ) sin (2θ)

0 − sin2 (θ) − sin (2θ)

0
sin (2θ)

2
cos (2θ)

⎤⎥⎥⎥⎥⎦
−1⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I 0zz sin
2 (θ)

−Izz + I 0zz cos
2 (θ)

I 0zz
sin (2θ)

2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2—4)

The known terms in (2—4) are I 0zz, Izz, and θ, where θ is as depicted in Figure

2—3. Therefore, the complete inertia properties can be calculated from the only 3

measurements possible, as illustrated in Figure 2—3.
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Figure 2—3: Measurable inertia values of the Osprey airframe.
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2.4 Simulink Effort

The core of the simulation uses the aforementioned aerodynamics and mass

properties along with the following nonlinear translational and rotational rigid

body equations of motion derived in the vehicle body-axis system

u̇ =
1

m
Fx (V, ρ, α, q, δelev, δthrot)− qw + rv − g sin (θ) (2—5)

v̇ =
1

m
Fy (V, ρ, α, β, p, r)− ru+ pw + g cos (θ) sin (φ) (2—6)

ẇ =
1

m
Fz (V, ρ, α, q)− pv + qu+ g cos (θ) cos (φ) (2—7)

and

ṗ =
Izz

IxxIzz − I2xz
Mx (V, ρ, α, β, p, r, δrud, δail) +

Izz
IxxIzz − I2xz

{−qr (Izz − Iyy) + Ixzpq} . . .

+
Ixz

IxxIzz − I2xz
Mz (V, ρ, α, β, p, r, δrud, δail) +

Ixz
IxxIzz − I2xz

{−pq (Iyy − Ixx)− Ixzqr}

(2—8)

q̇ =
1

Iy
My (V, ρ, α, q, δelev)− rp (Ixx − Izz)− Ixz

¡
p2 − r2

¢
(2—9)

ṙ =
Ixz

IxxIzz − I2xz
Mx (V, ρ, α, β, p, r, δrud, δail) +

Ixz
IxxIzz − I2xz

{−qr (Izz − Iyy) + Ixzpq} . . .

+
Ixx

IxxIzz − I2xz
Mz (V, ρ, α, β, p, r, δrud, δail) +

Ixx
IxxIzz − I2xz

{−pq (Iyy − Ixx)− Ixzqr}

(2—10)

where M and F represent the aerodynamic and propulsive moments and forces in

body axis, given in x, y, & z components; I and m represent the vehicle’s inertia

tensor values and mass; V and ρ are relative velocity and air density; α and β are

angle of attack and sideslip angle; p, q, and r are angular body rates; u, v, and

w are translational velocities in the body frame; and δ represents the individual
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control deflections. The corresponding kinematic relationships are given by⎡⎢⎢⎢⎢⎣
Ẋ

Ẏ

Ż

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

cθcψ sφsθcψ − cφsψ

cθsψ sφsθsψ + cφcψ

−sθ sφcθ

cφsθcψ + sφsψ

cφsθsψ − sφcψ

cφcθ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u

v

w

⎤⎥⎥⎥⎥⎦ (2—11)

and ⎡⎢⎢⎢⎢⎣
φ̇

θ̇

ψ̇

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

p

q

r

⎤⎥⎥⎥⎥⎦ (2—12)

where cψ and sψ denote cos(ψ) and sin(ψ), respectively (similarly for φ and θ).

The equations of motion and all simulation subsystems are constructed using

standard Simulink library blocks, where no script files are incorporated, as shown

in Figure 2—4.

The sub-blocks of interest depicted in the equations of motion model given

in Figure 2—4 are: “Rotational EOM”, “Body Rates to Euler Angle Rates”, and

“Translational EOM”, and are illustrated in Figures 2—5, 2—6, and 2—7, respectively.

Besides using the model given in Figure 2—4 for cases where a fully nonlinear

simulation is required, it can also be used to generate linearized representations of

the Osprey by utilizing Matlab’s linearizing capability. For example, the trimmed

vehicle at a 60 meter altitude at 25 meters/sec. would have the corresponding state

space representation

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V̇

α̇

q̇

θ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.15 11.08 0.08 −9.81

−0.03 −7.17 0.83 0

0 −37.35 −9.96 0

0 0 1.00 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V

α

q

θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3E−3 0.06

1E−5 1E−4

−0.98 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ δelevator

δthrust

⎤⎥⎦
(2—13)
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Figure 2—4: Simulink representation of the aircraft equations of motion.

H cross Omega

inv(I)*H_dot = omega_dot

1
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Transf orm_Matrix
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Matrix Multiplication2
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XYZ

Matrix Multiplication
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H_dot 

A

B
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3
Inertia Matrix

2

pqr 1

Total_Torques

Figure 2—5: Simulink aircraft equations of motion sub-block: Rotational EOM.
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1

Phi_Theta_Psi dot

u[2]*u[7] - u[3]*u[6]

Theta_Dot

sin(u[1])

Sin_Theta

sin(u[1])

Sin_Phi

(u[2]*u[6] + u[3]*u[7])/u[5]

Psi_Dot

u[1] + u[2]*u[6]*u[4]/u[5] + u[3]*u[7]*u[4]/u[5]

Phi_Dot

Mux Mux

Euler_Rates

em cos(u[1])

Cos_Theta

cos(u[1])

Cos_Phi

2

Phi_Theta_Psi

1

pqr

Figure 2—6: Simulink aircraft equations of motion sub-block: Body Rates to Euler
Angle Rates.

1
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u[1]/u[10] - u[9]*u[5] + u[8]*u[6]
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4
mass

3

uvw

2

Forces

1

pqr

Figure 2—7: Simulink aircraft equations of motion sub-block: Translational EOM.
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And the corresponding lateral state-space representation is computed to be⎡⎢⎢⎢⎢⎢⎢⎢⎣

β̇

ṗ

ṙ

φ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.69 −0.03 −0.99 0.39

−3.13 −12.92 1.10 0

17.03 −0.10 −0.97 0

0 1.00 −0.03 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β

p

r

φ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1.50 −0.02

−0.09 0.17

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ δaileron

δrudder

⎤⎥⎦
(2—14)

where ⎡⎢⎢⎢⎢⎢⎢⎢⎣

V = m/sec

α = rad

q = rad/sec

θ = rad

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β = rad

p = rad/sec

r = rad/sec

φ = rad

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δelevator = deg

δthrust = N

δaileron = deg

δrudder = deg

⎤⎥⎥⎥⎥⎥⎥⎥⎦
This model would provide useful information in regards to intermediate

feasibility of the vision-based method, such as providing insight into motion and

frequency issues which can severely affect the performance of the vision-based

methods. It can also serve as a basis for rudimentary control design, in the case

where the flight regime is benign and hence, does not require emphasize the effect

of vision-based state estimation in regards to vehicle control.

2.5 Conclusions

The efforts in this chapter illustrated the ground up development of a fully

nonlinear simulation representing an aircraft testbed to host flight testing of

image-based estimation and control algorithms. A method was devised to estimate

the vehicle’s roll inertia properties based upon the fact that the vehicle, unlike

most airframes, is relatively symmetrical about its x-y plane. Finally, while the

aerodynamic parameter estimates are derived from commercially available vortex

lattice software, this type of code is very beneficial in time and cost savings, but it

comes at the cost of model uncertainty; which yet again calls for control algorithms

that are inherently robust.



CHAPTER 3
AUTONOMOUS CONTROL DESIGN

3.1 Introduction

A robust control approach was recently developed in [17] that exploits a

unique property of the integral of the sign of the error (coined RISE control in [18])

to yield an asymptotic stability result. The RISE based control structure has been

used for a variety of fully actuated systems in [17], [18], [62]. The contribution of

this result is the ability to achieve asymptotic tracking control of a model reference

system for not only a broad class of model uncertainties, but also for where the

plant dynamics contain a bounded additive disturbance (e.g., potential disturbances

include: dynamic inversion mismatch, wind gusts, nonlinear dynamics, etc.). In

addition, this result represents the first ever application of the RISE method

where the controller is multiplied by a non-square matrix containing parametric

uncertainty and nonlinear, non-LP disturbances. The feasibility of this technique

is proven through a Lyapunov-based stability analysis and through numerical

simulation results.

Figure 3—1: Photograph of the Osprey aircraft testbed.

18
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3.2 Baseline Controller

As mentioned, the vision-based estimation method the will be discussed

further in chapter 4 was be experimentally demonstrated by flight testing with an

Osprey Aircraft. Prior to performing the experiment, the aircraft was modelled

and the estimation method was tested in simulation. A Simulink modeling effort

has been undertaken to develop a fully nonlinear, six degrees-of-freedom model

of an Osprey aircraft. A simplified autopilot design is constructed, with inputs

complimentary with the outputs from the estimation method, and a specific

maneuver is created to perform a simultaneous rolling, pitching, and yawing motion

of the aircraft combined with a fixed mounted camera. The aircraft/autopilot

modeling effort and maneuver is intended to test the robustness of the vision-based

algorithm as well as to provide proof-of-concept in using the camera as the primary

sensor for achieving closed-loop autonomous flight.

With the vehicle model as described, a baseline autopilot is incorporated to

allow for the vehicle to perform simple commanded maneuvers that an autonomous

aircraft would typically be expected to receive from an on-board guidance sys-

tem. The autopilot architecture, given in Figure 3—2, is specifically designed to

accept inputs compatible with the state estimates coming from the vision-based

algorithms. Preliminary modal analysis of the Osprey vehicle flying at a 60 meter

altitude at 25 meters/sec indicated a short-period frequency, ωsp = 10.1 rad/sec and

damping, ζsp = 0.85; a phugoid mode frequency, ωph = 0.34 rad/sec and damping,

ζph = 0.24; a dutch-roll frequency, ωdr = 4.20 rad/sec and damping, ζdr = 0.19; a

roll subsidence time constant of τ = 0.08 sec.; and a spiral mode time-to-double,

ttd = 44.01 sec. These values, which correspond to (2—13) and (2—14), are crucial

for the auto-pilot design as well as in determining what, if any, of the state esti-

mation values coming from the camera and proposed technique are favorable to
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Figure 3—2: Rudimentary control system used for proof of concept for vision-based
extimation algorithms.

be used in a closed-loop sense, as video frame rate and quantization noise become

integral to the controller design from a frequency standpoint.

As the aircraft, with an integrated vision-based system, is required to fly in

lesser benign regimes, such as maneuvering in and around structures, it becomes

evident that simplistic classical control methods will be limited in performance

capabilities. The aircraft system under consideration can be modeled via the

following state space representation [2,6,11,63,64]:

ẋ = Ax+Bu+ f (x, t) (3—1)

y = Cx, (3—2)
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where A ∈ Rn×n denotes the state matrix, B ∈ Rn×m for m < n represents the

input matrix, C ∈ Rm×n is the known output matrix, u ∈ Rm is a vector of control

inputs, and f (x, t) ∈ Rn represents an unknown, nonlinear disturbance.

Assumption 1: The A and B matrices given in (3—1) contain parametric

uncertainty.

Assumption 2: The nonlinear disturbance f (x, t) and its first two time

derivatives are assumed to exist and be bounded by a known constant.

3.3 Robust Control Development

In this section, it is described how a specific aircraft can be related to (3—1).

Based on the standard assumption that the longitudinal and lateral modes of the

aircraft are decoupled, the state space model for the Osprey aircraft testbed can

be represented using (3—1) and (3—2), where the state matrix A ∈ R8×8 and input

matrix B ∈ R8×4 given in chapter 2 are expressed as

A =

⎡⎢⎣ Alon 04×4

04×4 Alat

⎤⎥⎦ B =

⎡⎢⎣ Blon 04×2

04×2 Blat

⎤⎥⎦ , (3—3)

and the output matrix C ∈ R4×8 is designed as

C =

⎡⎢⎣ Clon 02×4

02×4 Clat

⎤⎥⎦ , (3—4)

where Alon, Alat ∈ R4×4, Blon, Blat ∈ R4×2, and Clon, Clat ∈ R2×4 denote the state

matrices, input matrices, and output matrices, respectively, for the longitudinal

and lateral subsystems, and the notation 0i×j denotes an i× j matrix of zeros. The

state vector x(t) ∈ R8 is given as

x =

∙
xTlon xTlat

¸T
, (3—5)
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where xlon (t) , xlat (t) ∈ R4 denote the longitudinal and lateral state vectors defined

as

xlon ,
∙
V α q θ

¸T
(3—6)

xlat ,
∙
β p r φ

¸T
, (3—7)

where the state variables are defined as

V = velocity α = angle of attack

q = pitch rate θ = pitch angle

β = sideslip angle p = roll rate

r = yaw rate φ = bank angle

and the control input vector is defined as

u ,
∙
uTlon uTlat

¸T
(3—8)

=

∙
δelev δthrust δail δrud

¸T
.

In (3—8), δelev (t) ∈ R denotes the elevator deflection angle, δthrust (t) ∈ R is the

control thrust, δail (t) ∈ R is the aileron deflection angle, and δrud (t) ∈ R is the

rudder deflection angle.

The disturbance f (x, t) introduced in (3—1) can represent several bounded

nonlinearities. The more promising example of disturbances that can be repre-

sented by f (x, t) is the nonlinear form of a selectively extracted portion of the

state space matrix Alon ∈ R4×4 that would normally be linearized. This nonlinearity

would then be added to the new state space plant by superposition, resulting in the

following quasi-linear plant model:

ẋlon = A
0
lonxlon +Blonulon + f (xlon, t) , (3—9)
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where A
0
lon ∈ R4×4 is the state space matrix Alon with the linearized portion

removed, and f (xlon, t) ∈ R4 denotes the nonlinear disturbances present in the

longitudinal dynamics. Some physical examples of f (xlon, t) would be the selective

nonlinearities that cannot be ignored, such as when dealing with supermaneuvering

vehicles, where post-stall angles of attack and inertia coupling, for example,

are encountered. Given that the Osprey is a very benign maneuvering vehicle,

f(x, t) in this chapter will represent less rigorous nonlinearities for illustrative

purposes. A similar technique can be followed with the lateral direction state space

representation, where the nonlinear component of Alat is extracted, and a new

quasi-linear model for the lateral dynamics is developed as

ẋlat = A
0
latxlat +Blatulat + f (xlat, t) , (3—10)

where A
0
lat ∈ R4×4 is the new lateral state matrix with the linearized components

removed, and f (xlat, t) ∈ R4 denotes the nonlinear disturbances present in the

lateral dynamics. Another example of bounded nonlinear disturbances, which can

be represented by f (x, t) in (3—1), is a discrete vertical gust. The formula given

in [65], for example, defines such a bounded nonlinearity in the longitudinal axis as

fg (xlon, t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−11.1

7.2

37.4

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
1

V0

½
Uds

2

h
1− cos

³πs
H

´i¾
, (3—11)

where H denotes the distance (between 10.67 and 106.68 meters) along the

airplane’s flight path for the gust to reach its peak velocity, V0 is the forward

velocity of the aircraft when it enters the gust, s ∈ [0, 2H] represents the distance

penetrated into the gust (e.g., s =
R t2
t1
V (t) dt), and Uds is the design gust velocity

as specified in [65]. This regulation is intended to be used to evaluate both vertical

and lateral gust loads, so a similar representation can be developed for the lateral
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dynamics. Another source of bounded nonlinear disturbances that could be

represented by f (x, t) is network delay from communication with a ground station.

3.4 Control Development

To facilitate the subsequent control design, a reference model can be developed

as:

ẋm = Amxm +Bmδ (3—12)

ym = Cxm, (3—13)

with Am ∈ Rn×n and Bm ∈ Rn×m designed as

Am =

⎡⎢⎣ Alonm 04×4

04×4 Alatm

⎤⎥⎦ Bm =

⎡⎢⎣ Blonm 04×2

04×2 Blatm

⎤⎥⎦ , (3—14)

where Am is Hurwitz, δ (t) ∈ Rm is the reference input, xm ,
∙
xTlonm xTlatm

¸T
∈

Rn represents the reference states, ym ∈ Rm are the reference outputs, and

C was defined in (3—2). The lateral and longitudinal reference models were

chosen with the specific purpose of decoupling the longitudinal mode velocity

and pitch rate as well as decoupling the lateral mode roll rate and yaw rate. In

addition to this criterion, the design is intended to exhibit favorable transient

response characteristics and to achieve zero steady-state error. Simultaneous

and uncorrelated commands are input into each of the longitudinal and lateral

model simulations to illustrate that each model indeed behaves as two completely

decoupled second order systems.

The contribution in this control design is a robust technique to yield as-

ymptotic tracking for an aircraft in the presence of parametric uncertainty in a

non-square input authority matrix and an unknown nonlinear disturbance. To this

end, the control law is developed based on the output dynamics, which enables

us to transform the uncertain input matrix into a square matrix. By utilizing a
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feedforward (best guess) estimate of the input uncertainty in the control law in

conjunction with a robust control term, one is able to compensate for the input

uncertainty. Specifically, based on the assumption that an estimate of the uncertain

input matrix can be selected such that a diagonal dominance property is satisfied

in the closed-loop error system, asymptotic tracking is proven.1

3.4.1 Error System

The control objective is to ensure that the system outputs track desired time-

varying reference outputs despite unknown, nonlinear, non-LP disturbances in the

dynamic model. To quantify this objective, a tracking error, denoted by e (t) ∈ Rm,

is defined as

e = y − ym = C (x− xm) . (3—15)

To facilitate the subsequent analysis, a filtered tracking error [66], denoted by

r (t) ∈ Rm, is defined as:

r , ė+ αe, (3—16)

where α ∈ Rm×m denotes a matrix of positive, constant control gains.

Remark 3.1: It can be shown that the system in (3—1) and (3—2) is bounded

input bounded output (BIBO) stable in the sense that the unmeasurable states

xu (t) ∈ Rn−m and the corresponding time derivatives are bounded as

kxuk ≤ c1 kzk+ ζxu (3—17)

kẋuk ≤ c2 kzk+ ζẋu, (3—18)

where z (t) ∈ R2m is defined as

z ,
∙
eT rT

¸T
, (3—19)

1 Preliminary simulation results show that this assumption is mild in the sense
that a wide range of estimates satisfy this requirement.
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and c1, c2, ζxu, ζẋu ∈ R are known positive bounding constants, provided the control

input u (t) remains bounded during close-loop operation.

The open-loop tracking error dynamics can be developed by taking the time

derivative of (3—16) and utilizing the expressions in (3—1), (3—2), (3—12), and (3—13)

to obtain the following expression:

ṙ = Ñ +Nd + Ω (u̇+ αu)− e, (3—20)

where the auxiliary function Ñ (x, ẋ, e, ė) ∈ Rm is defined as

Ñ , CA (ẋ− ẋm) + αCA (x− xm) + CA (ẋρu + αxρu) + e (3—21)

the auxiliary function Nd

³
xm, ẋm, δ, δ̇

´
is defined as

Nd = CA (ẋm + αxm) + C
³
ḟ (x, t) + αf (x, t)

´
− CAm (ẋm + αxm) (3—22)

− CBm

³
δ̇ + αδ

´
+ CA (ẋζu + αxζu) ,

and the constant, unknown matrix Ω ∈ Rm×m is defined as

Ω , CB. (3—23)

In (3—21) and (3—22), xρu (t) , ẋρu (t) ∈ Rn contain the portions of xu (t) and ẋu (t),

respectively, that can be upper bounded by functions of the states, xζu (t) , ẋζu (t) ∈

Rn contain the portions of xu (t) and ẋu (t) that can be upper bounded by known

constants (i.e., see (3—17) and (3—18)), x (t) ∈ Rn contains the measurable states

(i.e., x (t) = x (t) + xρu (t) + xζu (t)), and xm (t) ∈ Rn contains the reference

states corresponding to the measurable states x (t). The quantities Ñ (x, ẋ, e, ė) and

Nd

³
xm, ẋm, δ, δ̇

´
and the derivative Ṅd

³
xm, ẋm, ẍm, δ, δ̇, δ̈

´
can be upper bounded
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as follows: °°°Ñ°°° ≤ ρ (kzk) kzk (3—24)

kNdk ≤ ζNd

°°°Ṅd

°°° ≤ ζṄd
, (3—25)

where ζNd
, ζṄd

∈ R are known positive bounding constants, and the function ρ (kzk)

is a positive, globally invertible, nondecreasing function. Based on the expression in

(3—20) and the subsequent stability analysis, the control input is designed as

u = −α
Z t

0

u (τ) dτ − (ks + 1) Ω̂−1e (t) + (ks + 1) Ω̂−1e (0)−
Z t

0

kγΩ̂
−1sgn (r (τ)) dτ

(3—26)

− Ω̂−1
Z t

0

[(ks + 1)αe (τ) + βsgn (e (τ))] dτ,

where β, ks, kγ ∈ Rm×m are diagonal matrices of positive, constant control gains, α

was defined in (3—16), and the constant feedforward estimate Ω̂ ∈ Rm×m is defined

as

Ω̂ , CB̂. (3—27)

To simplify the notation in the subsequent stability analysis, the constant auxiliary

matrix Ω̃ ∈ Rm×m is defined as

Ω̃ , ΩΩ̂−1, (3—28)

where Ω̃ can be separated into diagonal and off-diagonal components as

Ω̃ = Λ+∆, (3—29)

where Λ ∈ Rm×m contains only the diagonal elements of Ω̃, and ∆ ∈ Rm×m contains

the off-diagonal elements.
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After substituting the time derivative of (3—26) into (3—20), the following

closed-loop error system is obtained:

ṙ = Ñ +Nd − (ks + 1) Ω̃r − kγΩ̃sgn (r)

− Ω̃βsgn (e (t))− e. (3—30)

Assumption 3: The constant estimate Ω̂ given in (3—27) is selected such that

the following condition is satisfied:

λmin (Λ)− k∆k > ε, (3—31)

where ε ∈ R is a known positive constant, and λmin (·) denotes the minimum

eignenvalue of the argument. Preliminary testing results show this assumption is

mild in the sense that (3—31) is satisfied for a wide range of Ω̂ 6= Ω.

Remark 3.2: A possible deficit of this control design is that the acceleration-

dependent term r (t) appears in the control input given in (3—26). This is undesir-

able from a controls standpoint; however, many aircraft controllers are designed

based on the assumption that acceleration measurements are available [67—71].

Further, from (3—26), the sign of the acceleration is all that is required for measure-

ment in this control design.

3.4.2 Stability Analysis

Theorem 3.1: The controller given in (3—26) ensures that the output tracking

error is regulated in the sense that

ke(t)k→ 0 as t→∞, (3—32)

provided the control gain ks introduced in (3—26) is selected sufficiently large

(see the subsequent stability proof), and β and kγ are selected according to the
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following sufficient conditions:

β >

¡
ζNd

+ 1
α
ζṄd

¢
λmin (Λ)

(3—33)

kγ >

√
mβ k∆k

ε
, (3—34)

where ζNd
and ζṄd

were introduced in (3—25), ε was defined in (3—31), and Λ and ∆

were introduced in (3—29).

The following lemma is utilized in the proof of Theorem 3.1.

Lemma 3.1: Let D ⊂ R2m+1 be a domain containing w(t) = 0, where

w(t) ∈ R2m+1 is defined as

w(t) ,
∙
zT

p
P (t)

¸T
, (3—35)

and the auxiliary function P (t) ∈ R is defined as

P (t) , β ke (0)k kΛk− e (0)T Nd (0) (3—36)

+
√
m

Z t

0

β k∆k kr (τ)k dτ −
Z t

0

L (τ) dτ.

The auxiliary function L (t) ∈ R in (3—36) is defined as

L (t) , rT
³
Nd (t)− βΩ̃sgn (e)

´
. (3—37)

Provided the sufficient conditions in (3—33) is satisfied, the following inequality can

be obtained: Z t

0

L (τ) dτ ≤ β ke (0)k kΛk− e (0)T Nd (0) (3—38)

+
√
m

Z t

0

β k∆k kr (τ)k dτ.

Hence, (3—38) can be used to conclude that P (t) ≥ 0.
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Proof: (See Theorem 1) Let V (w, t) : D × [0,∞) → R be a continuously

differentiable, positive definite function defined as

V , 1

2
eTe+

1

2
rT r + P, (3—39)

where e (t) and r (t) are defined in (5—11) and (3—16), respectively, and the positive

definite function P (t) is defined in (3—36). The positive definite function V (w, t)

satisfies the inequality

U1 (w) ≤ V (w, t) ≤ U2 (w) , (3—40)

provided the sufficient condition introduced in (3—33) is satisfied. In (3—40), the

continuous, positive definite functions U1 (w) , U2 (w) ∈ R are defined as

U1 ,
1

2
kwk2 U2 , kwk2 . (3—41)

After taking the derivative of (3—39) and utilizing (3—16), (3—29), (3—30), (3—36),

and (3—37), V̇ (w, t) can be expressed as

V̇ (w, t) = −αeTe+ rT Ñ − (ks + 1) rTΛr (3—42)

− (ks + 1) rT∆r +
√
mβ krk k∆k

− kγr
T∆sgn (r)− kγr

TΛsgn (r) .

By utilizing (3—24), V̇ (w, t) can be upper bounded as

V̇ (w, t) ≤ −αeTe− ε krk2 − ksε krk2 (3—43)

+ ρ (kzk) krk kzk+
£
−kγε+

√
mβ k∆k

¤
krk .

Clearly, if (3—34) is satisfied, the bracketed term in (3—43) is negative, and V̇ (w, t)

can be upper bounded using the squares of the components of z (t) as follows:

V̇ (w, t) ≤ −α kek2 − ε krk2

+
£
ρ (kzk) krk kzk− ksε krk2

¤
. (3—44)
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Completing the squares for the bracketed terms in (3—44) yields

V̇ (w, t) ≤ −η3 kzk2 +
ρ2 (kzk) kzk2

4ksε
, (3—45)

where η3 , min {α, ε}, and ρ (kzk) is introduced in (3—24). The following expres-

sion can be obtained from (3—45):

V̇ (w, t) ≤ −U (w) , (3—46)

where U (w) = c kzk2, for some positive constant c ∈ R, is a continuous, positive

semi-definite function that is defined on the following domain:

D ,
n
w ∈ R2m+1 | kwk < ρ−1

³
2
p
η3ksε

´o
. (3—47)

The inequalities in (3—40) and (3—46) can be used to show that V (t) ∈ L∞

in D; hence e (t) , r (t) ∈ L∞ in D. Given that e (t) , r (t) ∈ L∞ in D, standard

linear analysis methods can be used to prove that ė (t) ∈ L∞ in D from (3—16).

Since e (t) , ė (t) ∈ L∞ in D, the assumption that ym, ẏm ∈ L∞ in D can be used

along with (5—11) to prove that y, ẏ ∈ L∞ in D. Given that r (t) ∈ L∞ in D, the

assumption that Ω̂−1 ∈ L∞ in D can be used along with the time derivative of

(3—26) to show that u̇ (t) ∈ L∞ in D. Further, Equation 2.78 of [72] can be used

to show that u̇ (t) can be upper bounded as u̇ (t) ≤ −αu (τ) +M , ∀t ≥ 0, where

M ∈ R+ is a bounding constant. Theorem 1.1 of [73] can then be utilized to show

that u (t) ∈ L∞ in D. Hence, (3—30) can be used to show that ṙ (t) ∈ L∞ in D.

Since ė (t) , ṙ (t) ∈ L∞ in D, the definitions for U (w) and z (t) can be used to prove

that U (w) is uniformly continuous in D. Let S ⊂ D denote a set defined as follows:

S ,
½
w (t) ⊂ D | U2 (w (t)) <

1

2

³
ρ−1

³
2
p
εη3ks

´´2¾
. (3—48)

Theorem 8.4 of [74] can now be invoked to state that

c kzk2 → 0 as t→∞ ∀w (0) ∈ S. (3—49)
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Based on the definition of z, (3—49) can be used to show that

ke (t)k→ 0 as t→∞ ∀w (0) ∈ S. (3—50)

3.5 Simulation Results

A numerical simulation was created to test the efficacy of the proposed

controller. The simulation is based on the aircraft state space system given in (3—1)

and (3—2), where the state matrix A, input authority matrix B, and nonlinear

disturbance function f (x) are given by the state space model for the Osprey

aircraft given in (3—3)-(3—8). The reference model for the simulation is represented

by the state space system given in (3—12)-(3—14), with state matrices Alonm and

Alatm, input matrices Blonm and Blatm, and output matrices Clon and Clat selected

as

Alonm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.6 −1.1 0 0

2.0 −2.2 0 0

0 0 −4.0 −600.0

0 0 0.1 −10

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3—51)

Alatm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−4.0 −600.0 0 0

0.1 −10.00 0 0

0 0 0.6 −1.1

0 0 2.0 −2.2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3—52)

Blonm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5

0 0

10 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Blatm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

10 0

0 0

0 0.5

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3—53)
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and

Clon =

⎡⎢⎣ 0 0 1 0

1 0 0 0

⎤⎥⎦ Clat =

⎡⎢⎣ 0 1 0 0

0 0 1 0

⎤⎥⎦ . (3—54)

The longitudinal and lateral dynamic models for the Osprey aircraft flying at

25 m/s at an altitude of 60 meters are represented using (3—9) and (3—10), where

A
0
lon, A

0
lat, Blon, and Blat are given as

A
0
lon =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.15 11.08 0.08 0

−0.03 −7.17 0.83 0

0 −37.35 −9.96 0

0 0 1.00 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3—55)

A
0
lat =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.69 −0.03 −0.99 0

−3.13 −12.92 1.10 0

17.03 −0.10 −0.97 0

0 1.00 −0.03 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3—56)

Blon =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3E−3 0.06

1E−5 1E−4

0.98 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Blat =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1.50 −0.02

−0.09 0.17

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3—57)

respectively. The nonlinear disturbance terms f (xlon, t) and f (xlat, t) introduced in

(3—9) and (3—10), respectively, are defined as

f (xlon, t) =

∙
−9.81 sin θ 0 0 0

¸T
+ fg (xlon, t) (3—58)

f (xlat, t) =

∙
0.39 sinφ 0 0 0

¸T
, (3—59)

where fg (xlon, t) represents a disturbance due to a discrete vertical wind gust

as defined in (3—11), where Uds = 10.12 m/s, H = 15.24 m, and V0 = 25
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Figure 3—3: Plot of the discrete vertical (upward) wind gust used in the controller
simulation.

m/s (cruise velocity). Figure 3—3 shows a plot of the wind gust used in the

simulation. The remainder of the additive disturbances in (3—58) and (3—59)

represent nonlinearities not captured in the linearized state space model (e.g., due

to small angle assumptions). All states and control inputs were initialized to zero

for the simulation.

The feedforward estimates B̂lon and B̂lat were selected as

B̂lon =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.01 0.1

0 0

1.4 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B̂lat =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0

1.7 −0.05

−0.1 0.25

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3—60)

Remark 3.3: For the choices for B̂lon and B̂lat given in (3—60), the inequality in

(3—31) is satisfied. Specifically, the choice for B̂lon yields the following:

λmin (Λ) = 0.6450 > 0.0046 = k∆k , (3—61)
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Table 3—1: Parameters used in the controller simulation.

Sampling Time 0.01 sec
Pitch Rate Sensor Noise ±1.7◦/ sec
Velocity Sensor Noise ±0.4 m/ sec
Roll Rate Sensor Noise ±1.7◦/ sec
Yaw Rate Sensor Noise ±1.7◦/ sec
Control Thrust Saturation Limit ±200 N
Control Thrust Rate Limit ±200 N/ sec
Elevator Saturation Limit ±30◦
Elevator Rate Limit ±300◦/ sec
Aileron Saturation Limit ±30◦
Aileron Rate Limit ±300◦/ sec
Rudder Saturation Limit ±30◦
Rudder Rate Limit ±300◦/ sec

and the choice for B̂lat yields

λmin (Λ) = 0.6828 > 0.0842 = k∆k . (3—62)

In order to develop a realistic stepping stone to an actual experimental

demonstration of the proposed aircraft controller, the simulation parameters were

selected based on detailed data analyses and specifications. The sensor noise values

are based upon Cloud Cap Technology’s Piccolo Autopilot and analysis of data

logged during straight and level flight. These values are also corroborated with the

specifications given for Cloud Cap Technology’s Crista Inertial Measurement Unit

(IMU). The thrust limit and estimated rate limit was measured via a static test

using a fish scale. The control surface rate and position limits were determined

via the geometry of the control surface linkages in conjunction with the detailed

specifications sheet given with the Futaba S3010 standard ball bearing servo. The

simulation parameters are summarized in Table 1.

The objectives for the longitudinal controller simulation are to track pitch

rate and forward velocity commands. Figure 3—4 shows the simulation results of
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Tracking a zero pitch rate command
through a large gust results in a large
residual angle of attack.

Figure 3—4: Illustration of uncoupled velocity and pitch rate response during
closed-loop longitudinal controller operation.

the closed-loop longitudinal system with control gains selected as follows (e.g., see

(3—23) and (3—26))2 :

β = diag

½
0.1 130

¾
ks = diag

½
0.2 160

¾
α = diag

½
0.7 0.1

¾
kγ = 0.1I2×2,

where the notation Ij×j denotes the j × j identity matrix. Figure 3—4 shows the

actual responses versus the reference commands for velocity and pitch rate. Note

that the uncontrolled states remain bounded. For the lateral controller simulation,

the objectives are to track roll rate and yaw rate commands. Figure 3—5 shows the

simulation results of the closed-loop lateral system with control gains selected as

2 The kγ used in the longitudinal controller simulation does not satisfy the suffi-
cient condition given in (3—34); however, this condition is not necessary for stabil-
ity, it is sufficient for the Lyapunov stability proof.
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Figure 3—5: Illustration of uncoupled roll rate and yaw rate response during closed-
loop lateral controller operation.

follows:

β = diag

½
0.2 0.6

¾
ks = diag

½
0.2 3

¾
α = diag

½
1.0 0.2

¾
kγ = I2×2.

Figure 3—5 shows the actual responses versus the reference commands for roll rate

and yaw rate. Note that the uncontrolled states remain bounded.

3.6 Conclusion

An aircraft controller is presented, which achieves asymptotic tracking control

of a model reference system where the plant dynamics contain input uncertainty

and a bounded non-LP disturbance. The developed controller exhibits the desirable

characteristic of tracking the specified decoupled reference model. An example of

such a decoupling is demonstrated by examining the aircraft response to tracking

a roll rate command while simultaneously tracking a completely unrelated yaw

rate command. This result represents the first ever application of a continuous
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control strategy in a DI and MRAC framework to a nonlinear system with additive,

non-LP disturbances, where the control input is multiplied by a non-square matrix

containing parametric uncertainty. To achieve the result, a novel robust control

technique is combined with a RISE control structure. A Lyapunov-based stability

analysis is provided to verify the theoretical result, and simulation results demon-

strate the robustness of the controller to sensor noise, exogenous perturbations,

parametric uncertainty, and plant nonlinearities, while simultaneously exhibiting

the capability to emulate a reference model designed offline. Future efforts will

focus on eliminating the acceleration-dependent term from the control input and

designing adaptive feedforward estimates of the uncertainties.



CHAPTER 4
DAISY-CHAINING FOR STATE ESTIMATION

4.1 Introduction

While a Global Positioning System (GPS) is the most widely used sensor

modality for aircraft navigation, researchers have been motivated to investigate

other navigational sensor modalities because of the desire to operate in GPS denied

environments. Due to advances in computer vision and control theory, monocular

camera systems have received growing interest as an alternative/collaborative

sensor to GPS systems. Cameras can act as navigational sensors by detecting and

tracking feature points in an image. Current methods have a limited ability to

relate feature points as they enter and leave the camera field of view.

This chapter details a vision-based position and orientation estimation method

for aircraft navigation and control. This estimation method accounts for a limited

camera field of view by releasing tracked features that are about to leave the field

of view and tracking new features. At each time instant that new features are

selected for tracking, the previous pose estimate is updated. The vision-based

estimation scheme can provide input directly to the vehicle guidance system and

autopilot. Simulations are performed wherein the vision-based pose estimation

is integrated with a new, nonlinear flight model of an aircraft. Experimental

verification of the pose estimation is performed using the modelled aircraft.

The efforts in this chapter (and our preliminary results [76,77]) explore the use

of a single camera as a sole sensor to estimate the position and orientation of an

aircraft through use of the Euclidean Homography. The method is designed for use

with a fixed wing aircraft, thus the method explicitly acquires new feature points

when the current features risk leaving the image, and no target model is needed,

39
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as compared to other methods [31]- [40]. The contribution of this chapter is the

use of homographic relationships that are linked in a unique way through a novel

“daisy-chaining” method.

4.2 Pose Reconstruction From Two Views

4.2.1 Euclidean Relationships

Consider a body-fixed coordinate frame Fc that defines the position and

attitude of a camera with respect to a constant world frame Fw. The world frame

could represent a departure point, destination, or some other point of interest.

The rotation and translation of Fc with respect to Fw is defined as R(t) ∈ R3×3

and x(t) ∈ R3, respectively. The camera rotation and translation from Fc(t0)

to Fc(t1) between two sequential time instances, t0 and t1, is denoted by R01(t1)

and x01(t1). During the camera motion, a collection of I (where I ≥ 4) coplanar

and non-colinear static feature points are assumed to be visible in a plane π. The

assumption of four coplanar and non-colinear feature points is only required to

simplify the subsequent analysis and is made without loss of generality. Image

processing techniques can be used to select coplanar and non-colinear feature points

within an image. However, if four coplanar target points are not available then

the subsequent development can also exploit a variety of linear solutions for eight

or more non-coplanar points (e.g., the classic eight points algorithm [78, 79]), or

nonlinear solutions for five or more points [80].

A feature point pi(t) has coordinates m̄i(t) = [xi(t), yi(t), zi(t)]
T ∈ R3 ∀i ∈

{1...I} in Fc. Standard geometric relationships can be applied to the coordinate

systems depicted in Figure 4—1 to develop the following relationships:

m̄i(t1) = R01(t1)m̄i(t0) + x01(t1)

m̄i(t1) =

µ
R01(t1) +

x01(t1)

d(t0)
n(t0)

T

¶
| {z }

H(t1)

m̄i(t0) (4—1)
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Figure 4—1: Euclidean relationships between two camera poses.

where H(t) is the Euclidean Homography matrix, and n(t0) is the constant unit

vector normal to the plane π from Fc(t0), and d(t0) is the constant distance

between the plane π and Fc(t0) along n(t0). After normalizing the Euclidean

coordinates as

mi(t) =
m̄i(t)

zi(t)
(4—2)

the relationship in (4—1) can be rewritten as

mi(t1) =
zi(t0)

zi(t1)| {z }
αi

Hmi(t0) (4—3)

where αi ∈ R∀i ∈ {1...I} is a scaling factor.

4.2.2 Projective Relationships

Using standard projective geometry, the Euclidean coordinate m̄i(t) can

be expressed in image-space pixel coordinates as pi(t) = [ui(t), vi(t), 1]
T . The

projected pixel coordinates are related to the normalized Euclidean coordinates,

mi(t) by the pin-hole camera model as [81]

pi = Ami, (4—4)
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where A is an invertible, upper triangular camera calibration matrix defined as

A ,

⎡⎢⎢⎢⎢⎣
a −a cosφ u0

0 b
sinφ

v0

0 0 1

⎤⎥⎥⎥⎥⎦ . (4—5)

In (4—5), u0 and v0 ∈ R denote the pixel coordinates of the principal point (the

image center as defined by the intersection of the optical axis with the image

plane), a, b ∈ R represent scaling factors of the pixel dimensions, and φ ∈ R is the

skew angle between camera axes.

By using (4—4), the Euclidean relationship in (4—3) can be expressed as

pi(t1) = αiAHA−1pi(t0) = αiGpi(t0). (4—6)

Sets of linear equations can be developed from (4—6) to determine the projective

and Euclidean Homography matrices G(t) and H(t) up to a scalar multiple.

Given images of four or more feature points taken at Fc(t0) and Fc(t1), various

techniques [82,83] can be used to decompose the Euclidean Homography to obtain

αi(t1), n(t0),
x01(t1)
d(t0)

and R01(t1). The distance d(t0) must be separately measured

(e.g., through an altimeter or radar range finder) or estimated using a priori

knowledge of the relative feature point locations, stereoscopic cameras, or as an

estimator signal in a feedback control.

4.2.3 Chained Pose Reconstruction for Aerial Vehicles

Consider an aerial vehicle equipped with a GPS and a camera capable of

viewing a landscape. A technique is developed in this section to estimate the

position and attitude using camera data when the GPS signal is denied. A camera

has a limited field of view, and motion of a vehicle can cause observed feature

points to leave the image. The method presented here chains together pose

estimations from sequential sets of tracked of points. This approach allows the

system to halt tracking a set of image features if it is likely to leave the image and
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begin tracking a new set of features while maintaining the pose estimate. Thus, the

estimation can continue indefinitely and is not limited by the camera’s field of view.

The subsequent development assumes that the aerial vehicle begins operating

in a GPS denied environment at time t0, where the translation and rotation (i.e.,

Ro(t0) and x0(t0) in Figure 4—2) between Fc(t0) and Fw(t0) is known. The rotation

between Fc(t0) and Fw(t0) can be determined through the bearing information of

the GPS along with other sensors such as a gyroscope and/or compass. Without

loss of generality, the GPS unit is assumed to be fixed to the origin of the aerial

vehicle’s coordinate frame, and the constant position and attitude of the camera

frame is known with respect to the position and attitude of the aerial vehicle

coordinate frame. The subsequent development further assumes that the GPS is

capable of delivering altitude, perhaps in conjunction with an altimeter, so that the

altitude a(t0) is known.

As illustrated in Figure 4—2, the initial set of tracked coplanar and non-

colinear feature points are contained in the plane πa. These feature points have

Euclidean coordinates m̄ai(t0) ∈ R3 ∀i ∈ {1...I} in Fc. The plane πa is perpen-

dicular to the unit vector na(t0) in the camera frame, and lies at a distance da(t0)

from the camera frame origin. At time t1, the vehicle has some rotation R01(t1) and

translation x01(t1) that can be determined from the images by decomposing the

relationships given in (4—6). For notational simplicity, the subscript i is omitted in

subsequent development.

As described earlier, R01(t1) and
x01(t1)
da(t0)

can be solved from two corresponding

images of the feature points pa(t0) and pa(t1). A measurement or estimate for

da(t0) is required to recover x01(t1). This estimation is possible with distance

sensors or with a priori knowledge of the geometric distances between the points

in πa. However, with an additional assumption, it is possible to estimate da(t0)

geometrically using altitude information from the last GPS reading and/or an
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Figure 4—2: Illustration of pose estimation chaining.

altimeter. From the illustration in Figure 4—3, if a(t0) is the height above πa (e.g.,

the slope of the ground is constant between the feature points and projection of the

plane’s location to the ground), then the distance da(t0) can be determined as

da(t0) = na(t0) · a(t0). (4—7)

where na(t0) is known from the homography decomposition.

Once R01(t1), da(t0), and x01(t1) have been determined, the rotation R1(t1)

and translation x1(t1) can be determined with respect to Fw as

R1 = R0R01

x1 = R01x01 + x0.

As illustrated in Figure 4—2, a new collection of feature points pb(t) can be obtained

that correspond to a collection of points on a planar patch denoted by πb. At time

t2, the sets of points pb(t1) and pb(t2) can be used to determine R12(t2) and
x12(t2)
db(t1)

,

which provides the rotation and scaled translation of Fc with respect to Fw. If πb
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Figure 4—3: Depth estimation from altitude.

and πa are the same plane, then db(t1) can be determined as

db(t1) = da(t1) = da(t0) + x01(t1) · n(t0). (4—8)

When πb and πa are the same plane x12(t2) can be correctly scaled, and R2(t2) and

x2(t2) can be computed in a similar manner as described for R1(t1) and x1(t1).

Estimations can be propagated by chaining them together at each time instance

without further use of GPS.

In the general case, pb and pa are not coplanar and (4—8) cannot be used to

determine db(t1). If pb and pa are both visible for two or more frames, it is still

possible to calculate db(t) through geometric means. Let t1− denote as some time

before the daisy chain operation is performed, when both pb and pa are visible in

the image. At time t1− , an additional set of homography equations for the points pb

and pa at times t1 and t1−can be solved for
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mai(t1) = αa

µ
R+

xna(t1−)
T

da(t1−)

¶
mai(t1−) (4—9)

mbi(t1) = αb

µ
R+

xnb(t1−)
T

db(t1−)

¶
mbi(t1−) (4—10)

where αa =
zai(t1− )
zai(t)

and αb =
zai(t1− )
zai(t)

.

Note that R(t1) and x(t1) have the same values in equations (4—9) and (4—

10), but the distance and normal to the plane are different for the two sets of

points. The distance da(t1−) is known from using (4—8). Define xb(t1) =
x(t1)

db(t1−)
and

xa(t1) =
x(t1)

da(t1− )
. The translation x(t1) is solved as

x = da(t1−)xa,

and then determining db(t1−)

db(t1−) =
xTb x

kxbk
.

db(t1) can then be found by using (4—8) with db(t1−) in place of da(t0). Additional

sensors, such as an altimeter, can provide an additional estimate in the change in

altitude. These estimates can be used in conjunction with (4—8) to update depth

estimates.

Image-Based Rate Gyro.

Additional uses are found from the homography decomposition that can be

used for feedback control. As an example, Poisson’s kinematic differential equation

for the direction cosine matrix, R states

Ṙ = −

⎡⎢⎢⎢⎢⎣
0 −r q

r 0 −p

−q p 0

⎤⎥⎥⎥⎥⎦R,
which can also be expressed as
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⎡⎢⎢⎢⎢⎣
0 −r q

r 0 −p

−q p 0

⎤⎥⎥⎥⎥⎦ = −ṘRT .

Hence, aircraft body rates, p (t) , q (t) ,and r (t) can be estimated via R (t) from the

homography decomposition along with the time derivative of R (t) .

4.2.4 Simulation Results

In the simulations, five patches of 4 feature points are manually placed

along a 500 meter ground track, which the vehicle flies over. For simplicity, all

planar patches lie in the same plane. The task is to perform the state estimation

during a maneuver. The commanded maneuver is to simultaneously perform a 10

meter lateral shift to the right and a 10 meter longitudinal increase in altitude.

This particular maneuver results in the vehicle simultaneously pitching, rolling,

and yawing, while translating. For simulation purposes, the camera is mounted

underneath the fuselage looking downwards. The camera model for this exercise

is intended to be representative of a typical 640×480 lines of resolution CCD

camera equipped with a 10 mm lens. To more accurately capture true system

performance, pixel coordinates were rounded to the nearest integer to model errors

due to camera pixilation effects (i.e. quantization noise), furthermore a 5% error

was added to the estimated vehicle altitude to test robustness.

The first simulation was designed to test the accuracy of the vision-based esti-

mation. Vision was not used in the feedback in this maneuver, and the estimated

pose is compared to the true pose. The results of this preliminary analysis are

given in Figures 4—4 and 4—5. The effects of noise are visible but the estimated pose

is accurate.

The second simulation was intended to examine the effects of using the

vision based estimate as a sensor in closed-loop control. This simulation involved
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Figure 4—4: Actual translation versus estimated translation where the estimation is
not part of the closed-loop control.
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Figure 4—5: Actual attitude versus estimated attitude where the estimation is not
part of the closed-loop control.
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replacing the perfect position and attitude measurements, used in the guidance

system and autopilot, with position and attitude estimations determined from the

vision-based method. The resulting control architecture and sensor suite for this

autonomous air vehicle is given in Figure 4—6. The noise content of the estimated

position and attitude required filtering prior to being used by the autopilot, to

prevent the high frequency noise from being passed to the aircraft actuators. As

expected, the noise occurs at 30 Hz and corresponds to the frame rate of the

camera. First-order, low pass-filters (cutoff frequency as low as 4 rad/sec) were

used to filter the noise. The noise also prevented effective differentiation of the

position and attitude and necessitated the use of rate gyros for yaw and roll

damping, as depicted in Figure 4—6. The air data system is also included, as shown

in Figure 4—6, for the initial altitude measurement, since it is more accurate for

altitude than current GPS solutions. The results of the camera-in-the-loop system

performing the same guidance commanded autonomous maneuver are given in

Figures 4—7 and 4—8.

The simulation results indicate that a camera supplemented with minimal

sensors such as rate gyros and barometric altitude can be used for completely

autonomous flight of a fixed wing vehicle; however, some residual oscillation effects

due to noise is present in the vehicle attitude response. A majority of the noise

source can directly be attributed to camera pixilation effects and the corresponding

phase lag introduced by the first order filtering.

4.2.5 Experimental Results

Based on the results of the simulation, a flight test experiment was conducted

to establish the feasibility of the proposed vision-based state estimation method.

Artificial features were placed along a stretch of the runway. A radio controlled

aircraft with an onboard camera was flown over the runway. The video was overlaid

with GPS data from a Garmin GPS 35 receiver. An example of a single frame of
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Figure 4—6: Autononmous control architecture.
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Figure 4—7: Actual translation versus estimated translation where the estimated
value is used within the closed-loop control.
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Figure 4—8: Actual attitude versus estimated attitude where the estimated value is
used within the closed-loop control.

this video is given in Figure 4—10. A second GPS unit (manufactured by Eagle

Tree Systems, LLC) was also onboard to test inter-GPS accuracy. The use of two

GPS units provides comparison for the vision-based method, which is intended to

compute GPS-like information. Video data was captured using a DV tape recorder

and analyzed offline. A basic descriptive pictorial of what equipment was used

(minus the eagle tree system) and the corresponding signal flow is given in Figure

4—9. See the Appendix for a more detailed description of the ground and airborne

equipment. Due to poor image quality, including focus, motion blur and interlacing

of the DV video, it became necessary to extract features by hand from individual

frames. Features were extracted every sixth frame, resulting in a 5 Hz input signal.

Results of the experiment are given in Figure 4—11. In the legend for Figure

4—11, GPS2 represents the overlaid GPS data, and GPS1 represents the onboard

data logger GPS values. A ‘*’ in the plot indicates a time when daisy-chaining was

performed and pose reconstruction is performed using a new set of feature points.
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Figure 4—9: Overview of the flight test system and component interconnections.

Figure 4—10: Single video frame with GPS overlay illustrating landmarks placed
along inside edge of the runway.
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Figure 4—11: Experimental flight test results. Estimated position compared to two
GPS signals.

The results from this test appear to be very promising. Significant mismatch exists

between the two GPS measurements, and the vision-based estimation remains

proportionate to the two GPS measurements. Furthermore, the estimates agree

closely with GPS2 for downrange and crossrange translation, and with GPS1 for

altitude translation. There is no discernible discontinuity or increased error at the

daisy-chain handoff times. Note that the resolution of the vision-based estimation

(5Hz) is also higher than that of both GPS units (1Hz). The pose estimation code

can be executed in real time (>30Hz) on a typical laptop.

The accuracy of the GPS data, as recorded, is arguably dubious, therefore

an alternate flight test was designed that was intended to enable the vehicle

position to be determined with greater accuracy than what could be achieved with

the inexpensive GPS units used in the first round of testing. In addition to the

issues with the GPS output being used as "truth data", it was also of interest

to investigate whether using a wider angle field of view lens on a more forward
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Figure 4—12: Technique for achieving accurate landmark relative placement dis-
tances.

pointing camera could improve the results. The fundamental assumption of this

additional testing was that if the locations of the ground targets were known

precisely, then the position of the vehicle could be ascertained more accurately

through geometric reconstruction than what could be achieved with low cost GPS

units.

Similar to before, plates/landmarks were placed along 274.32 meters (900 feet)

of the runway. Unlike before, they were placed at 15.24 meter (50 foot) intervals

where the accuracy of each plate location was known to within a few inches along

the entirety of the 274.32 meters (900 feet) span. The two rows of plates, left and

right of the runway centerline, were 18.59 meters (61 feet) apart. The plates were

painted red so that a simplistic feature tracking algorithm could be used to locate

and track their location in the image plane. The equipment that was used for

surveying the landmarks is shown in Figure 4—12.

By using a wider field of view lens, the resulting video image exhibited severe

lens distortion effects that required correcting in order for the homography to
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Figure 4—13: Single video frame from second flight test experiment illustrating the
effect of the more forward looking, wider field of view camera.

operate correctly. The distortion can be seen in Figure 4—13, where the four red

landmarks in the lower portion of the frame appear to be located on a spherical

surface as opposed to a plane; again, a fundamental requirement in the develop-

ment of the homography method. This same image with the distortion removed

is given in Figure 4—14. The interlacing effect, prevalent in Figure 4—10 has also

been removed. As mentioned, the features were tracked and their trajectories in the

image plane recorded using a simplistic ad-hoc scheme in Matlab. The pseudocode

for tracking the four features of a single patch is given as:

Manually determine the location to initialize a 40x40 pixel window over each of the

four landmarks in the first image

FOR all images containing the same patch of four landmarks

Read the next image in the sequence and assign it to an RGB color space array
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Figure 4—14: Single video frame from second flight test experiment with the lens
distortion removed.

Create a matrix equal to an element-by-element multiplication of the red space

matrix with itself minus one tenth the element-by-element multiplication of

the green space matrix with itself

FOR each of the four windows

Within the current window, threshold all values of the above defined

matrix that are above 96% of the maximum value within the current window

The center of mass of this threshold value is chosen to be the pixel

location representing the center of the landmark as it projects onto the image

plane

Update the 40x40 pixel window to be centered over this pixel location

END FOR

Record the four pixel locations

END FOR

A 3-Dimensional plot of the matrix defined in the above pseudocode is given in

Figure 4—15. Note that the large spikes correspond to the location of the red plates.
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Figure 4—15: Example of a 3D color contour plot generated from the matrix de-
signed as a nonlinear combination of the red and green color space matrices.

Values that are above 96% of the maximum value of each spike are thresholded and

the centers-of-mass of these thresholded values are used to determine the predicted

centers of the landmarks in the image frame. By following this procedure, it was

predicted that sub-pixel accuracy could be achieved over simply selecting the pixel

location of the maximum value or tip of the spike.

An example of the output of the above tracking algorithm is also given in

Figure 4—16. The four trajectories in this particular case represent the trace of the

landmarks from the first patch as it enters and exits the field of view (from top to

bottom). As a point of interest, note that the center of the image plane does not

correspond to location of the optical axis. This apparent oddity is in keeping with

the camera calibration results and is most likely congruous with a low end imager

and lens.

With the trajectories of the four landmarks of each patch recorded, vehicle lo-

calization can then be performed offline for analysis purposes. It should be pointed
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Figure 4—16: Image plane trajectories made by the landmarks from patch 1 enter-
ring and exiting the field of view.

out that the 40 × 40 pixel window is designed such that it is large enough to con-

tain the landmark in the current frame and the subsequent frame. Smaller windows

tended to not encapsulate both the current and subsequent frame landmarks due to

vehicle motions between frames.

For a given set of three feature points, and knowledge of where those land-

marks are in the earth frame, geometric reconstruction can be used to back out the

location of the aircraft. This is illustrated in Figure 4—17, where in this particular

illustration, a tetrahedron is used to determine the x0, y0, and z0 location of the

camera in the earth frame. e1, e2, and e3 are known a priori relative distances

between the 3 landmarks. Vertex angles η1, η2, and η3 of the apex of the tetrahe-

dron are determined by the focal length of the camera lens in pixel coordinates in

conjunction with the pixel locations of where the landmarks corresponding to line

segments e1, e2, and e12 occur in the image plane. The value for the skew, χ is used

to account for the fact that the four landmarks most likely form a parallelogram,
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since it was somewhat difficult to create a perfect rectangle in the field. In fact, e12

depends upon the skew, χ and is calculated according to

e12 =
q
e21 sec

2 (χ) + e22 + 2e1e2 sec (χ) sin (χ)

Presuming a, b, and c can be computed, then x0, y0, and z0 of the camera can

be determined via the following series of calculations:

ϕ1 = cos
−1
µ
e212 + c2 − a2

2e12c

¶

ϕ2 = cos
−1
µ
e212 + e22 − e21
2e12e2

¶
and a0, shown in Figure 4—17, is calculated from the following

a0 =
q
e22 sec

2 (ϕ2) + c2 − 2ce2 cos (ϕ1) |sec (ϕ2)|

If b is considered as a vector, the x and y direction cosines are given by, respec-

tively

cosσ1 =
e22 + b2 − c2

2e2b

cosσ2 =
e22 tan

2 (ϕ2) + b2 − a02

2e2 tan (ϕ2) b

Finally, the components of the position vector from the origin of the earth frame to

the origin of the camera frame, in earth frame coordinates, is simply

x0 = b cos (σ1)

y0 = b cos (σ2)

z0 = b
q
sin2 (σ1)− cos2 (σ2)

The difficulty of this method for pose estimation is in determining a, b, and c,

more specifically, the edge lengths of the tetrahedron in Figure 4—17. The reason

is that for given values of η1, η2, and η3 and e1, e2, and e12, there can be as little

as zero physically possible solutions and as many as three distinctly different
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Figure 4—17: Basic concept of geometric position reconstruction from known land-
mark locations.

physically possible tetrahedrons. The possible values of a, b, and c are determined

by simultaneously solving the three law-of-cosine rules for the three triangular

facets making up the upright sides of the tetrahedron. A forth landmark is needed

to resolve the correct a, b, and c, via constructing multiple tetrahedrons, clocking

around the four landmarks as shown in Figure 4—18, and selecting the a, b, c, and

d that are common to all four tetrahedrons. Using this technique, each edge length

is calculated three times. A merit of how reliable or accurate our position estimate

is, and hence, how well the proper pixels representing the landmark centers were

selected, is in how close each of the three edge length calculations a, b, c, and d

are to each other. A quick convincing argument would be in the event that a, b,

c, and d are the exact same in all 3 calculations, one could be very certain that

they would consistently project and reproject back and forth between the camera

and a surface containing 4 points with the same edge lengths e1, e2, e3, and e4.
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Figure 4—18: Illustration of how four tetrahedrons are used to estimate the length
of each edge, a, b, c, & d three times.

If this surface can be shown to be a plane, then intuitively, this plane and four

points would, with high confidence, be the earth plane and the points would be the

centers of the landmarks. Results of this flight experiment are given in Figure 4—19.

Because time was not recorded for this experiment, the ground track trajectory is

given as opposed to downrange and crossrange time responses as given in Figure

4—11. The color variation in the geometric reconstruction represent the individual

patches used along the length of the runway. The origin of the earth frame is

placed at the first plate on the lower right that appears when the vision estimation

begins. Also noteworthy, because this experiment used a somewhat forward looking

camera, the camera position starts in the negative x-direction because the first

plate is ahead of the camera; conversely, the camera is behind the first plate.

4.3 Conclusions

The efforts in this chapter integrated new vision-based pose estimation

methods with the flight controls of an aerial vehicle in a guidance task. This

method is based on Epipolar geometry, with a novel “daisy-chaining” approach
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Figure 4—19: Second experimental flight test results. Estimated position compared
to more accurate position from geometric reconstruction technique.

allowing image features to enter and leave the field of view while maintaining pose

estimation. Furthermore, no known target is required.

The vision-based pose estimation method was verified experimentally with

a radio controlled Osprey aircraft. Because the accuracy of the onboard GPS

measurements was considered questionable, an alternate effort involving geometric

reconstruction for position determination was undertaken to better represent truth

data for validating the daisy-chaining pose estimation technique. To facilitate the

experiments, a nonlinear aircraft flight model for the Osprey was developed to

allow extensive simulation testing. Simulations include testing the pose estimation

method in closed-loop control of the aircraft through an intentionally rigorous

maneuver to evaluate the robustness of the technique.

The ultimate goal of this research is closed-loop control using camera data

in place of GPS. To this end, future research will target online feature extraction,

tracking, and pose estimation. Furthermore, a future task would be to investigate

the use of nonlinear control techniques, such as discussed in the next chapter, to

eliminate or reduce the amount of required a priori known information required

in the estimation strategy. Additional sensor data such as IMU’s and intermit-

tent GPS could also be fused with the vision-based pose estimation to enhance

performance.



CHAPTER 5
LYAPUNOV-BASED STATE ESTIMATION

5.1 Introduction

Many applications require the interpretation of the Euclidean coordinates of

features of a 3-dimensional (3D) object through 2D images. In this chapter, the

relative range and the Euclidean coordinates of a camera undergoing general affine

motion are determined for pinhole camera systems via a nonlinear observer. The

nonlinear observer asymptotically determines the range information provided that

the motion parameters are known. The observer is developed through a Lyapunov-

based design and stability analysis, and simulation results are provided that

illustrate the performance of the state estimator. The contributions of this chapter

are that the developed observer: can be applied to both affine and nonaffine

systems; is continuous; and yields an asymptotic result.

5.2 Affine Euclidean Motion

For the development in this dissertation, the scenario of a moving camera

viewing a static scene to recover the structure of the scene and/or the motion of

the camera (cf., [53, 84, 85], and therein) is considered. The affine motion of the

camera dynamics can be expressed as⎡⎢⎢⎢⎢⎣
ẋ1

ẋ2

ẋ3

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1

x2

x3

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣

b1

b2

b3

⎤⎥⎥⎥⎥⎦ (5—1)

where x(t) = [x1(t), x2(t), x3(t)]T ∈ R3 denotes the unmeasurable Euclidean

coordinates of the moving camera along the X, Y , and Z axes of a camera fixed

reference frame, respectively, where the Z axis is colinear with the optical axis
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of the camera. In (5—1), the parameters ai,j(t) ∈ R ∀i, j = 1, 2, 3 of the matrix

A(t) ∈ R3×3 and b(t) = [b1, b2, b3]T ∈ R3 denote the motion parameters. The affine

motion dynamics introduced in (5—1) are expressed in a general form that describes

an object motion consisting of a rotation, translation, and linear deformation [86].

Assumption 5.1: The motion parameters in A(t) and b(t) introduced in

(5—1) are assumed to be known, bounded functions of time that are second order

differentiable.(cf. [51,55—60,87—89]).

To illustrate how the affine dynamics in (5—1) represent a moving camera

viewing a stationary object (see Figure 5—1), consider a feature point attached

to a stationary object as in Figure 5—1. In Figure 5—1, Fc denotes a body-fixed

coordinate frame attached to the camera, I denotes an inertial coordinate frame

and x(t) (expressed in Fc) denotes the coordinates of the target feature point Oi.

The linear and angular velocities of the target (i.e., vt(t) and ωt(t)) with respect to

the camera (expressed in Fc) can be written as

vt = −Rvc ωt = −Rωc (5—2)

where R(t) ∈ R3×3 denotes the corresponding rotation between Fc and I, and vc(t)

and ωc(t) denote the linear and angular velocity of the camera, respectively. Based

on (5—2), The time derivative of x(t) can be expressed as

ẋ = [Rωc]
× x+Rvc = Ax+ b. (5—3)

Potential applications for this scenario under the restriction of Assumption 1

include examples where the camera is moving with a known/measurable linear

and angular velocity where the goal is to estimate the Euclidean position of the

moving camera in time, such as: inertial navigation in GPS denied environments

and simultaneous localization and mapping (SLAM).
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Figure 5—1: Moving camera stationary object scenario.

Figure 5—2: Euclidean point projected onto image plane of a pinhole camera
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5.3 Object Projection

The projection of the coordinates x(t) onto an image plane with its focus at

the origin (see Figure 5—2) can be expressed as

p (t) ,
∙
u v

¸T
=

f

z

∙
x y

¸T
(5—4)

where f ∈ R denotes the constant known distance between the focal point and the

image plane.

Deriving the expression for the time rate of change of pixel location by taking

the time derivative of (5—4) and utilizing (5—1) as

ṗ (t) = Ω1 + g, (5—5)

where Ω1(u, v, t) ∈ R2 denotes a vector of measurable and known signals defined by

Ω1(t) ,

⎡⎢⎣ a11 a12 a13

a21 a22 a23

⎤⎥⎦
⎡⎢⎢⎢⎢⎣

u

v

f

⎤⎥⎥⎥⎥⎦− 1f
⎡⎢⎣ u

v

⎤⎥⎦∙ a31 a32 a33

¸⎡⎢⎢⎢⎢⎣
u

v

f

⎤⎥⎥⎥⎥⎦ (5—6)

and the unmeasurable signal g(t) , [g1(t), g2(t)] ∈ R2 is defined as

g(t) ,

⎧⎪⎨⎪⎩f

⎡⎢⎣ b1

b2

⎤⎥⎦−
⎡⎢⎣ u

v

⎤⎥⎦ b3
⎫⎪⎬⎪⎭ 1

z
. (5—7)

From the above definition for g(t), the following expression can be written:

g21 + g22 =

½
(fb1 − ub3)

1

z

¾2
+

½
(fb2 − vb3)

1

z

¾2
(5—8)

=
£
(fb1 − ub3)

2 + (fb2 − vb3)
2¤½1

z

¾2
.

Based upon (5—8) the time varying depth estimation can be expressed as,
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z =

s
(fb1 − ub3)

2 + (fb2 − vb3)
2

g21 + g22
(5—9)

Assumption 5.2: The image-space feature coordinates u(t), v(t) are bounded

functions of time.

Assumption 5.3: If g(t) can be identified, then z(t) can be determined

from (5—7), provided b1, b2, b3 6= 0 simultaneously. This observability assumption

physically means that the object must translate in at least one direction.

Remark 5.1: Based on Assumptions 5.1-5.3, the expressions given in (5—5)-

(5—9) can be used to determine that ṗ(t), Ω1(t), and g(t) ∈ L∞. Given that these

signals are bounded, Assumptions 5.1-5.3 can be used to prove that

kg(·)k ≤ ζ1 kġ(·)k ≤ ζ2 kg̈(·)k ≤ ζ3 (5—10)

where ζ1, ζ2 and ζ3 ∈ R denote known positive constants.

5.4 Range Identification For Affine Systems

5.4.1 Objective

The objective of this section is to extract the Euclidean coordinate information

of the object feature from its image-based projection. From (5—4) and the fact

that u(t), and v(t) are measurable, if z(t) could be identified, then the complete

Euclidean coordinates of the feature can be determined. To achieve this objective,

an estimator is constructed based on the unmeasurable image-space dynamics

for p(t). To quantify the objective, a measurable estimation error, denoted by

e(t) , [e1(t), e2(t)]T ∈ R2, is defined as follows:

e = p− p̂ (5—11)
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where p̂(t) , [p̂1(t), p̂2(t)]T ∈ R2 denotes a subsequently designed estimate. An

unmeasurable1 filtered estimation error, denoted by r(t) , [e1(t), e2(t)]T ∈ R2, is

also defined as

r = ė+ αe (5—12)

where α ∈ R2×2 denotes a diagonal matrix of positive constant gains α1, α2 ∈ R.

Motivation for the development of the filtered estimation error in (5—12), is that

the subsequent observer is based on the equation (5—5). If g(t) in (5—5) can be

identified, the fact that the feature point coordinates pi(t) ∀i = 1, 2 are measurable

can be used along with (5—9) to compute z(t) provided the observability condition

in Assumption 5.3 is satisfied.

5.4.2 Estimator Design and Error System

Based on (5—5) and the subsequent analysis, the following estimation signals

are defined:

˙̂p (t) = Ω1 + ĝ (5—13)

where ĝ(t) , [ĝ1(t), ĝ2(t)]T ∈ R2 denotes a subsequently designed estimate for g(t).

The following error dynamics are obtained after taking the time derivative of e(t)

and utilizing (5—5) and (5—13):

ė = g − ĝ. (5—14)

Based on the structure of (5—12) and (5—14),
·
ĝ(t) is designed as follows [56]:

·
ĝ = −(ks + α)ĝ + γsgn(e) + αkse (5—15)

where ks, γ ∈ R3×3 denote diagonal matrices of positive constant estimation gains,

and the notation sgn(·) is used to indicate a vector with the standard signum

1 The filtered estimation signal is unmeasurable due to a dependence on the un-
measurable terms g1(t), g2(t).
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function applied to each element of the argument. The structure of the estimator

in (5—15) contains discontinuous terms; however, as discussed in [56], the overall

structure of the estimator is continuous (i.e., ĝ(t) is continuous). After using

(5—12), (5—14), and (5—15), the following expression can be obtained:

ṙ = η − ksr − γsgn(e) (5—16)

where η(t) ,
∙
η1 η2

¸T
∈ R2 is defined as

η = ġ + (ks + α) g. (5—17)

Based on (5—10) and (5—17), the following inequalities can be developed:

|η(·)| ≤ ζ4 |η̇(·)| ≤ ζ5. (5—18)

where ζ4 and ζ5 ∈ R denote known positive constants.

Remark 5.1: Considering (5—9), the unmeasurable signal z(t) can be identi-

fied if ĝ(t) approaches g(t) as t → ∞ (i.e., û(t) and v̂(t) approach u(t) and v(t) as

t→∞) since the parameters bi(t) ∀i = 1, 2 are assumed to be known, and u(t) and

v(t) are measurable. After z(t) is identified, (5—4) can be used to extract the 3D

Euclidean coordinates of the object feature (i.e. determine the range information).

To prove that ĝ(t) approaches g(t) as t → ∞, the subsequent development will

focus on proving that kė(t)k → 0 and ke(t)k → 0 as t → ∞ based on (5—11) and

(5—14).

5.5 Analysis

The following theorem and associated proof can be used to conclude that the

observer design of (5—13) and (5—15) can be used to identify the unmeasurable

signal z(t).

Theorem 5.1: For the system in (5—5)-(5—7), the unmeasurable signal z(t)

(and hence, the Euclidean coordinates of the object feature) can be asymptotically
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determined from the estimator in (5—13) and (5—15) provided the elements of the

constant diagonal matrix γ introduced in (5—15) are selected according to the

sufficient condition

γi ≥ ζ4 +
1

αi
ζ5 (5—19)

∀i = 1, 2, where ζ4, ζ5 are defined in (5—18).

Proof: Consider a non-negative function V (t) ∈ R as follows (i.e., a Lyapunov

function candidate):

V =
1

2
rT r . (5—20)

After taking the time derivative of (5—20) and substituting for the error system

dynamics given in (5—16), the following expression can be obtained:

V̇ = −rTksr + (ė+ αe)T (η − γsgn(e)) . (5—21)

After integrating (5—21) and exploiting the fact that

ξi · sgn(ξi) = |ξi| ∀ξi ∈ R,

the following inequality can be obtained:

V (t) ≤ V (t0)−
Z t

t0

¡
rT (σ) ksr (σ)

¢
dσ+

2X
i=1

αi

Z t

t0

|ei (σ)| (|ηi (σ)|− γi) dσ+χi, (5—22)

where the auxiliary terms χi(t) ∈ R are defined as

χi =

Z t

t0

ėi (σ) ηi (σ) dσ − γi

Z t

t0

ėi (σ) sgn(ei (σ))dσ (5—23)

∀i = 1, 2. The integral expression in (5—23) can be evaluated as

χi = ei (σ) ηi (σ)|tt0 −
Z t

t0

ei (σ) η̇i (σ) dσ − γi |ei (σ)| |tt0 (5—24)

= ei (t) ηi (t)−
Z t

t0

ei (σ) η̇i (σ) dσ − γi |ei (t)|− ei (t0) ηi (t0) + γi |ei (t0)|
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∀i = 1, 2. Substituting (5—24) into (5—22) and performing some algebraic manipula-

tion yields

V (t) ≤ V (t0)−
Z t

t0

¡
rT (σ) ksr (σ)

¢
dσ + χ3 + ζ0

where the auxiliary terms χ3(t), ζ0 ∈ R are defined as

χ3 =
2X

i=1

αi

Z t

t0

|ei (σ)|
µ
|ηi (σ)|+

1

αi
|η̇i (σ)|− γi

¶
dσ +

2X
i=1

|ei (t)| (|ηi (t)|− γi)

ζ0 =
2X

i=1

− ei (t0) ηi (t0) + γi |ei (t0)| .

Provided γi ∀i = 1, 2 are selected according to the inequality introduced in (5—19),

χ4(t) will always be negative or zero; hence, V (t) can be upper bounded as

V (t) ≤ V (t0)−
Z t

t0

¡
rT (σ) ksr (σ)

¢
dσ + ζ0 . (5—25)

From (5—20) and (5—25), the following inequalities can be determined:

V (t0) + ζ0 ≥ V (t) ≥ 0;

hence, r(t) ∈ L∞. The expression in (5—25) can be used to determine thatZ t

t0

¡
rT (σ) ksr (σ)

¢
dσ ≤ V (t0) + ζ0 <∞ . (5—26)

By definition, (5—26) can now be used to prove that r(t) ∈ L2. From the fact

that r(t) ∈ L∞, (5—11) and (5—12) can be used to prove that e(t), ė(t), p̂(t), and
·
p̂(t) ∈ L∞. The expressions in (5—13) and (5—15) can be used to determine that

ĝ(t) and
·
ĝ(t) ∈ L∞. Based on (5—10), the expressions in (5—16) and (5—17) can be

used to prove that η(t), η̇(t), ṙ(t) ∈ L∞. Based on the fact that r(t), ṙ(t) ∈ L∞

and that r(t) ∈ L2, Barbalat’s Lemma [90] can be used to prove that kr(t)k → 0

as t → ∞; hence, standard linear analysis can be used to prove that ke(t)k → 0

and kė(t)k → 0 as t → ∞. Based on the fact that ke(t)k → 0 and kė(t)k → 0

as t → ∞, the expression given in (5—11) can be used to determine that p̂1(t) and
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p̂3(t) approach p1(t) and p3(t) as t → ∞, respectively. Therefore, the expression in

(5—14) can be used to determine that ĝ(t) approaches g(x) as t → ∞. The result

that ĝ(t) approaches g(t) as t → ∞, the fact that the parameters bi(t) ∀i = 1, 2, 3

are assumed to be known, and the fact that the image-space signals p1(t) and p3(t)

are measurable can be used to identify the unknown signal z(t) from (5—9). Once

z(t) is identified, the complete Euclidean coordinates of the object feature can be

determined using (5—4).

With the Euclidean coordinates of the object known, a simplistic method

for determining aircraft altitude above the ground could employ the following

relationship:

h = x sinφ cos θ + y {cosφ cos θ cos ρ+ sin θ sin ρ}+ z {cosφ cos θ sin ρ− sin θ cos ρ}

where ρ is the downward look angle of the camera with respect to the aircraft and

φ and θ represent the aircraft roll and pitch angle respectively.

5.6 Conclusion

The results in this chapter focus on the use of a nonlinear estimator to deter-

mine the range and the Euclidean coordinates of an object feature with respect the

camera coordinate system undergoing general affine motion. The nonlinear esti-

mator is proven, via a Lyapunov-based analysis, to asymptotically determine the

range information for a camera system with known motion parameters. If specific

observability conditions are satisfied, the identified range can be used to reconstruct

the Euclidean coordinates of the moving aircraft with respect to a fixed object on

the ground .



CHAPTER 6
CONTRIBUTIONS AND FUTURE WORK

A novel vision-based estimation, localization, and control methodology is

presented for enabling autonomous flight of a fixed-wing air vehicle; providing

it with the capability of flying indefinitely over a region composed of planar

patches of feature points. The proposed daisy-chaining approach is distinct from

the majority of the current vision-based methods of state estimation in that

current methods usually require some degree of a priori knowledge of landmarks

or are specifically designed for hovering vehicles and therefore are not devised to

handle feature points entering and leaving the field-of-view of the camera. One

contribution of this dissertation is that it is the first occasion that a homography-

based state estimation method is presented to handle feature points entering and

leaving the camera field-of-view. As a result, this is also the first time in which

a camera has been demonstrated to act as the sole sensor, with the exception of

an altimeter for approximating height above a given planar patch, for estimating

aircraft position during flight into a GPS denied environment. As a compliment to

these results and to address the requirement for an estimation of the height above

a given planar patch, a Lyapunov-based state estimator, used in combination with

the daisy-chaining method, is the first instance of illustrating the plausibility of

autonomous air vehicle flight over an indefinite distance with the camera “truly”

acting as the sole vehicle sensor.

Using a video camera as the primary sensor in aircraft control requires special

consideration from a controls standpoint. In addition to such presented concerns,

as the air vehicle is required to fly in lesser benign regimes, such as with agile

maneuvering, it becomes evident that simplistic classical control methods will be
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limited in capability and performance. Therefore, in order to fly an aircraft in a

closed-loop sense using a camera as a primary sensor, the controller needs to be

robust to not only parametric uncertainties, but to system noise that is of the

kind uniquely characteristic of camera systems. A novel nonlinear controller is

presented as a credible answer to such anticipated issues, resulting in the first case

of developing an aircraft controller for an uncertain system that provides a semi-

global asymptotically stable result, where there exists input uncertainty as well as

generalized additive nonlinear disturbances that are state and time varying. Future

work on this control approach should attempt to eliminate the requirement that

the filtered tracking error needs to be measured, as opposed to the more desirable

situation of simply measuring the tracking error.

Other possible future work that builds upon what is presented in this dis-

sertation would be to investigate methods that would allow the relaxation of the

coplanar requirement, i.e. navigation over a non-flat earth, to fuse the homography-

based daisy-chain estimates with additional sensors for improved accuracy, and

to perform a comparison analysis by applying estimation methods (i.e. Kalman

filtering) to both feature point tracking in the image plane as well as vehicle state

estimation. Potential future work might also be to investigate multiple vehicles

for use in the homography-based daisy-chaining method as an analogue to what is

currently being researched within the field of cooperative-SLAM.

Because error from the homography-based daisy-chain estimate accumulates

with each handoff, it would also be of interest to perform flight experiments that

combine the Lyapunov-based state estimator with the daisy-chaining method.

In doing so, one could investigate using an updated height above planar patch

measurement between each hand-off to reduce the effect of accumulating position

error. This improvement would be expected since position error scales with the

error in the estimated magnitude of the vector that is defined by being both normal
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to the planar patch and extending from the planar patch to the vehicle. The

current method uses height above ground derived from an altimeter to approximate

this magnitude, which ultimately results in an error in estimated position. Finally,

the ultimate goal of such a blending of methodologies would be in demonstrating

autonomous flight via the camera as the sole sensor.

Future efforts should also attempt to mitigate the estimation errors that

can directly be attributed to the fidelity of the equipment used. To address this

issue and to support future work, recent purchases of the following higher quality

equipment have been made:

• SolidLogic C156 Mini-ITX System, EPIA MII 12000G Mainboard, for direct-

to-hard-disk video recording and possible real-time onboard processing.

• Pixelink PL-B958F 2.0 megapixel (1600 x 1200) color CCD camera based

upon the Sony ICX274 progressive scan sensor with a 1
2
” optical format,

global shutter, variable shutter speed and frame rate, and standard FireWire

(1394A).

• Hauppage WinTV-PVR-USB2, direct-to-hard-disk video recorder for record-

ing the air-vehicle-to-ground telemetered video signal.



APPENDIX A
(CHAPTER 3) INTEGRATION OF THE AUXILIARY FUNCTION, L (t)

(See Lemma 1) Integrating both sides of (3—37) yieldsZ t

0

L (τ) dτ =

Z t

0

r (τ)T
³
Nd (τ)− βΩ̃sgn (e (τ))

´
dτ. (A—1)

Substituting (3—16) into (A—1), utilizing (3—29), and rearranging yieldsZ t

0

L (τ) dτ =

Z t

0

µ
∂e (τ)

∂τ

¶T

Nd (τ) dτ −
Z t

0

µ
∂e (τ)

∂τ

¶T

βΛsgn (e (τ)) dτ

+

Z t

0

αe (τ)T (Nd (τ)− βΛsgn (e (τ))) dτ −
Z t

0

r (τ)T β∆sgn (e (τ)) .

(A—2)

Integrating the first integral in (A—2) using integration by parts,Z t

0

L (τ) dτ = e (τ)T Nd (τ)
¯̄̄t
0
−
Z t

0

e (τ)T
∂Nd (τ)

∂τ
dτ −

Z t

0

µ
∂e (τ)

∂τ

¶T

βΛsgn (e (τ)) dτ

+

Z t

0

αe (τ)T (Nd (τ)− βΛsgn (e (τ))) dτ −
Z t

0

r (τ)T β∆sgn (e (τ)) dτ.

(A—3)

From (A—3), the following bound can be obtained:Z t

0

L (τ) dτ ≤
Z t

0

α ke (τ)k
µ
kNd (τ)k+

1

α

°°°°∂Nd (τ)

∂τ

°°°°− βλmin (Λ)

¶
dτ

+ ke (t)k (kNd (t)k− βλmin (Λ)) + β kΛk ke (0)k− e (0)T Nd (0)

+
√
m

Z t

0

β k∆k kr (τ)k dτ, (A—4)

where m was defined in (3—1). Thus, it is clear from (A—4) that if β satisfies (3—33),

then (3—38) holds.
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APPENDIX B
(CHAPTER 4) VIDEO EQUIPMENT USED ONBOARD THE AIRCRAFT

The items listed in this appendix represent the equipment that was flown on

the aircraft as part of the flight experiment:

Figure B—1 is of the 640 x 480 pixel CCD bullet camera that was used for the

video collection. The output signal from this camera was split with a Y-cable and

sent to two different devices.

Figure B—2 shows the mini DV recorder that was used. It was determined

through several unsuccessful attampts to gather video data that it was necessary to

have the ability to record onboard in order capture video data that was noise free.

The video from the camera in Figure B—1 was split with a Y-cable, as previously

stated, with one of the video signals going directly into this recorder.

Figure B—3 is of the self contained GPS antennae/receiver. This was used to

determine the location of the aircraft, which in turn was used initially as truth

data. The daisy-chain results were compared with the GPS data for validation

Figure B—1: Sony Color Exview SuperHAD (480 Lines of  Resolution)
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Figure B—2: Panasonic AG-DV1 Digital Video Recorder

Figure B—3: Garmin GPS 35 OEM GPS Receiver

purposes. The output from this device went to the GPS overlay board shown in

Figure B—4.

Figure B—4 is of the GPS overlay board. The other video signal from the

Y-cable coming from the camera in Figure B—1 went into this board that overlaid

the video with the GPS data from the receiver shown in Figure B—3. From here,

the overlaid video was sent to the transmitter shown in Figure B—5.

Figure B—5 is of the transmitter that was used to send the GPS overlaid video

signal to the ground receiver.



79

Figure B—4: Intuitive Circuits, LLC - OSD-GPS Overlay Board

Figure B—5: 12V, 2.4Ghz, 100mW, Video Transmitter and Antennae
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Figure B—6: Eagle Tree, Seagull, Wireless Dashboard Flight System - Pro Version:
(1) Wireless Telemetry Transmitter, (2) Eagle Tree Systems G-Force Expander, and
(3) Eagle Tree Systems GPS Expander

Figure B—6 is of the secondary GPS receiver that was also used for comparison

purposes. This device telemetered the data down on a separate frequency, where it

was recorded on a ground station.



APPENDIX C
(CHAPTER 4) GROUND SUPPORT EQUIPMENT

The items listed in this appendix correspond to the ground equipment used in

the flight experiment:

Figure C—1 is of the video receiver that received the GPS overlaid video.

Figure C—2 is of the second video recorder that was used in the testing. In

this case, it was used to record the transmitted GPS overlaid video. The reason

for requiring a second video was that it was necessary to have a clean video

for performing the analysis with (see Figure B—2), yet a method was needed to

correlate each frame of the clean video with a GPS location. Having two recorders

operating at once was the simplest solution. The video that was captured on this

device could not be used for analysis due to the RF noise and the overlay text

that took up much of the image. By doing a frame by frame comparison with the

clean video recorded by the recorder in Figure B—2, it was possible to ascertain the

position of the vehicle to within 1 second (GPS frequency) of every frame of the

clean video.

Figure C—3 is the groundstation interface for the secondary GPS receiver that

was used, shown in Figure B—6.

Figure C—1: RX-2410 2.4 GHz Wireless 4-channel Audio/Video Selectable Receiver
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Figure C—2: Sony GV-D1000 Portable MiniDV Video Walkman

Figure C—3: Eagle Tree, Seagull, Real-time Data Dashboard, Wireless Telemetry
Data, Receiver Model STR-01
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Figure C—4: Leica DISTOTM A5 (Measuring Range up to 650 ft, Accuracy +/-
0.06 inches)

Figure C—4 is the laser rangefinder, shown in Figure 4—12, that was used in the

accurate placement of the landmarks.
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