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Multi-agent networks, such as teams of robotic systems, benefit from the ability

to interact and sense the environment in a collaborative manner. Networks containing

agents operating under decentralized control policies, wherein only information from

neighboring agents is used to internally make decisions, benefit from autonomy:

each agent is encoded with a local objective and has no need to maintain contact

with a network coordinator. Such an interaction structure reduces the communication

bandwidth and the associated computational requirements in comparison to centralized

control schemes, wherein a single network coordinator computes a control policy

for each agent based on communicated information. However, the development of

decentralized control policies should address the deleterious effects accompanied by

the decentralized network structure, such as cascading effects caused by exogenous

disturbances, model uncertainty, communication delays, and reduced situational

awareness.

Chapter 1 motivates the current challenges in the field of decentralized control,

provides a comprehensive review of relevant literature, and discusses the contributions

of this dissertation. Chapter 2 details the development of a novel, decentralized control

policy which provides asymptotic convergence of the states of a leader-follower network

of autonomous agents despite the effects of uncertain nonlinear dynamics and unknown

12



exogenous disturbances. This robust control structure is extended in Chapter 3 for con-

tainment control, a strategy which uses multiple leaders to guide a group of autonomous

agents. Chapter 4 investigates the effects of communication delay in the decentralized

leader-follower framework and develops a novel decentralized controller which uses

estimates of the heterogeneous, time-varying communication delays to mitigate the

effects of the delay and provide more robust stability criteria. Chapter 5 investigates the

issue of reduced situational awareness by considering a scenario in which communica-

tion is unreliable. A novel, reputation-based decentralized controller is developed which

prioritizes feedback from network neighbors based on past communication integrity.

Sufficient conditions for the successful completion of the control objective are given in

each chapter to facilitate the implementation of the developed control strategies.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Decentralized control refers to the cooperation of multiple agents in a network

to accomplish a collective task. Instead of a single control system performing a task,

multiple potentially lower cost systems can be coordinated to achieve a network-wide

goal. The networked agents generally represent autonomous robotic systems, such

as mobile ground robots, unmanned aerial vehicles (UAVs), autonomous underwater

vehicles (AUVs), and spacecraft, and interact via communication and/or sensing.

Some applications of decentralized control are cooperative target tracking, cooperative

surveillance, search-and-rescue missions, collective satellite interferometry, coordinated

control of infrastructure systems, industrial process control, highway automation, and

flying in formation to reduce drag (cf. [3–6]).

Compared to centralized control, in which a central agent communicates with all

other systems to compute control policies, decentralized control is characterized by

local interactions, in which agents autonomously coordinate with only a subset of the

network to accomplish a network-wide task. The distribution of control policy generation

yields the benefits of mitigated computational and bandwidth demand, robustness

to communication link failure, greater flexibility, and robustness to unexpected agent

failure. However, decentralized control suffers from a greater vulnerability to deleterious

phenomena, such as disturbances in agent dynamics, communication delay, and

imperfect communication, the effects of which can cascade through a network and

cause mission performance degradation or failure. In addition, as opposed to centralized

control, in which a central agent can vet any agent in comparison with the rest of the

network, decentralized control exhibits less situational awareness in the sense that an

agent is only exposed to the actions of its neighbors. Thus, there are fewer ways to

vet communicated information in a decentralized control framework, which motivates
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the development of decentralized methods which evaluate a level of trust for network

neighbors. The focus of this work is the development of controllers which demonstrate

robustness to phenomena such as disturbances, communication delay, and imperfect

communication.

A common framework for decentralized control is synchronization, wherein agents

cooperate to drive their states towards that of a network leader which has a time-varying

trajectory (cf. [1–3, 7–17]). The network leader can be a preset time-varying trajectory,

called a virtual leader, or a physical system which the “follower” systems interact with

via sensing or communication. For example, a task which requires an expensive sensor

in a search and rescue mission can be accomplished by endowing just one system

with the expensive sensor and instructing the other systems to cooperatively interact

with the autonomous “leader.” Alternatively, a team of autonomous vehicles performing

reconnaissance can be directed by a “leader” vehicle piloted by a human and thereby

assist the pilot in mission completion. This control objective is made more practical by

limiting interaction with the leader to only a subset of the follower systems; e.g., it may

be the case that only a few follower UAVs in the front of a flying formation may see the

leader vehicle.

Synchronization is typically achieved using a composite error system that penalizes

both state dissimilarity between neighbors and the dissimilarity between a follower agent

and the leader, if that connection exists, so that neighbors are cooperatively driven

towards the state of the leader. However, the ability to achieve synchronization may be

affected by exogenous disturbances in the agents’ dynamics. For example, a gust of

wind may throw a UAV off course, which may consequently cause a wave of disruption

to percolate through the network. Additionally, synchronization of physical systems leads

to additional challenges in the sense that the trajectories of neighboring agents are

less predictable due to heterogeneity and parametric uncertainty. Thus, decentralized

control designers should consider the possibility of unmodeled disturbances and model
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uncertainty during the design of robust controllers so that mission completion can

still be achieved. Chapter 2 uses this leader-follower framework to develop a novel

decentralized controller which achieves network synchronization despite the presence of

unmodeled, exogenous input disturbances in the follower agents’ dynamics and model

uncertainty. An extension to the synchronization framework is also provided in Chapter

2 for the similar task of formation control, which is a convenient control approach when

spatial distribution of the follower agents is necessary. Specifically, formation control

entails the convergence of follower agents’ states to a geometric configuration specified

with respect to the leader state while only communicating in a decentralized manner.

Containment control (cf. [18–27]) is another common framework for decentralized

control and represents a generalization of the synchronization problem that allows

for a collection of leaders. For example, containment control is useful in applications

where a team of autonomous vehicles is directed by multiple pilots or for networks of

autonomous systems where only a subset of the systems is equipped with expensive

sensing hardware. The typical objective in the containment control framework is to

regulate the states of the networked systems to the convex hull spanned by the leaders’

states, where the convex hull is used because it facilitates a convenient description of

the demarcation of where the follower systems should be with respect to the leaders.

By using an error signal which augments the one typically used for synchronization to

include the contributions from other leaders, it can be shown that regulation of that error

signal implies convergence to a trajectory which is a linear combination of the leaders’

trajectories that depends on follower connections, leader connections, and the relative

weighting of network connections. The developments in Chapter 2 are extended for

the containment control framework in Chapter 3 to develop a controller which provides

disturbance rejection for the setting of decentralized control with multiple leaders.

Communication delay, also known as broadcast, coupling or transmission delay, is

a phenomenon in which inter-agent interaction is delayed during information exchange.
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Even a small communication delay, such as that caused by information processing or a

communication protocol, can cause networked autonomous systems to become unsta-

ble (cf. [4]): analysis is motivated to ensure stability. Furthermore, synchronization with

a time-varying leader trajectory and limited leader connectivity presents a challenging

issue: if an agent is not aware of the leader’s state, it must depend on the delayed state

of neighboring follower agent(s) between itself and the leader, i.e., the effect of a change

in the leader’s state may not affect a follower agent until the time duration of multiple

communication delays has passed.

Chapter 4 presents the development of a novel controller which mitigates the effects

of communication delay by combining two types of delay-affected feedback. The delayed

version of the typical neighborhood error signal is augmented with feedback terms which

compare a neighbor’s delayed state with the agent’s own state manually delayed by an

estimate of the delay duration. This approach is demonstrated in simulation to provide

improved tracking performance and less sensitive stability criteria compared to other

contemporary decentralized control types.

There are multiple methods for an autonomous vehicle to determine its position,

orientation, and velocity, including using GPS, an inertial measurement unit (IMU),

and simultaneous localization and mapping (SLAM). However, self-localization may

produce inaccurate results. For example, a UAV might poorly estimate its own state as

a result of corruption of an IMU, GPS spoofing, GPS jamming (and subsequent use of

a less accurate IMU), inaccurate onboard SLAM due to a lack of landscape features, or

IMU/GPS/SLAM measurement noise. In addition, heterogeneity in the hardware of the

robotic platforms can naturally lead to disparity in the accuracy of agents’ estimates of

their own states. Thus, if communication is used in a team of autonomous systems to

share state information, care should be taken when using a neighbor’s communicated

state in a control policy, especially in the context of decentralized interactions.
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Another method to obtain information about agents in the network is neighbor

sensing, e.g., use of a camera or radar. Neighbor sensing can provide the relative po-

sition of neighboring vehicles; however, it is very reliant on a direct line-of-sight (LOS)

between the vehicles. For example, ground vehicles may temporarily lose LOS when

navigating around buildings or other obstructions. In addition, agents may need to

distribute neighbor sensing time between multiple neighbors. For example, if a ground

vehicle can observe two neighboring vehicles in dissimilar locations with a camera but

cannot observe both neighbors at the same time due to a narrow camera field of view,

the camera may need to rotate continuously to share observation time between the

two neighbors. Chapter 5 considers a decentralized network control scenario in which

agents use both communication and neighbor sensing to interact. Communication is

assumed to be continuously available, but have possible inaccuracies due to poor self

localization. The sensor measurements are assumed to provide accurate relative posi-

tion information, but only occur intermittently. Because the sensor measurements are

modeled as intermittent, and therefore may not be frequent enough to be implemented

in closed-loop control, they are used to vet communicated information so that an agent

can rely more on information from more reliable neighbors. A trust algorithm is devel-

oped in which each agent quantitatively evaluates the trust of each neighbor based on

the discrepancy between communicated and sensed information. The trust values are

used in a reputation algorithm, in which agents communicate about a mutually shared

neighbor to collaboratively obtain a reputation. Each agent’s contribution to the reputa-

tion algorithm is weighted by that neighbor’s own reputation. The result of the reputation

algorithm is used to update consensus weights which affect the relative weighting in use

of a neighbor’s communicated information compared to other neighbors’, if an agent has

multiple neighbors.

1.2 Literature Review

A review of relevant literature is provided in the following.
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Chapter 2: Asymptotic Synchronization of a Leader-Follower Network Subject

to Uncertain Disturbances: Results such as [3, 8, 10–12, 16] achieve decentralized

synchronization; however, all the agents are able to communicate with the network

leader so that the developed controllers for each agent exploit explicit knowledge of

the desired goal. This communication framework lacks the flexibility associated with

general leader-follower networks. Synchronization results which model the leader

connectivity as limited to a subset of follower agents have typically focused on networks

of linear dynamical systems (cf. [7, 15]); however, these results are limited by the strict

assumption of linear dynamics. Recent results such as [9] and [14] investigate the

more general problem where agents’ trajectories are described by nonlinear dynamics;

specifically, the results in [9] and [14] focus on Euler-Lagrange systems, where Euler-

Lagrange dynamics are used for the broad applicability to many engineering systems.

However, both [9] and [14] develop controllers which assume exact knowledge of the

agent dynamics so that a feedback linearization approach can be used to compensate

for the nonlinear dynamics. Motivated to improve robustness, results such as [1, 2, 28]

consider uncertainty in the nonlinear agent dynamics. In [28], a continuous controller is

proposed to yield asymptotic synchronization in the presence of parametric uncertainty.

In addition to parametric uncertainty, the results in [1, 2] also consider exogenous

disturbances. The result in [1] uses a neural network-based adaptive synchronization

method and the result in [2] exploits a sliding mode-based approach. The continuous

controller in [1] yields a uniformly ultimately bounded (UUB) result, whereas [2] achieves

exponential synchronization through the use of a discontinuous controller.

Chapter 3: Robust Containment Control in a Leader-Follower Network of

Uncertain Euler-Lagrange Systems: Containment control is investigated in [18]

and [20] for static leaders and in [19] for a combination of static and dynamic leaders.

Containment controllers for dynamic leaders and followers with linear dynamics are

developed in [21–24]. A controller designed for the containment of social networks
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with linear opinion dynamics represented with fractional order calculus is developed

in [25]. Results in [26] and [27] develop a model knowledge-dependent and model-free

containment controller, respectively, for the case of dynamic leaders and Euler-Lagrange

dynamics. However, none of the previous results analyze the case where follower

systems are affected by an exogenous, unknown disturbance, which has the capability

of cascading and disrupting the performance of the entire network from a single source.

Chapter 4: Synchronization of Uncertain Euler-Lagrange Systems with

Uncertain Time-Varying Communication Delays: Controllers developed in [29–

38] are designed to provide convergence for a network of communication-delayed

autonomous synchronizing agents without the presence of a network leader. As

demonstrated in [29], asymptotic convergence towards a fixed consensus point is

achievable, despite the effects of the communication delay, for synchronization without a

leader. The communication-delayed synchronization problem is generalized in [3,39–41]

to include a network leader, wherein every follower agent interacts with the leader

agent. As illustrated in [3], asymptotic convergence towards the leader trajectory is

achievable for synchronizing agents with full leader connectivity, despite the effects of

communication delay. The controllers in [42–44] are developed to address the more

challenging problem of communication-delayed synchronization with limited leader

connectivity. The work in [42] is developed for follower agents with single integrator

dynamics, undelayed state communication and uniformly delayed communication of

control effort. The controller in [43] is designed for follower agents with single integrator

dynamics and uniformly delayed state communication. However, an analysis which

considers single integrator dynamics does not account for the potentially destabilizing

state drift that can be caused by drift dynamics, which are present in many engineering

systems, during the period of communication delay. Synchronization with uniformly

delayed state communication is investigated in [44] for follower agents with nonlinear

dynamics; however, the development assumes that the follower agents’ dynamics are
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globally Lipschitz, which is restrictive and excludes many physical systems. Because

globally Lipschitz nonlinear dynamics can be uniformly upper-bounded by a linear

expression, the result in [44] develops a convergence analysis which does not account

for general nonlinearities. Hence, the developments in [42–44] do not directly apply

to networks with agents which have general nonlinear dynamics. A new strategy is

required for demonstrating convergence in synchronization of a network of agents

with general nonlinear dynamics, delayed communication, and limited connectivity to a

time-varying leader trajectory.

Chapter 5: Decentralized Synchronization of Uncertain Nonlinear Systems

with a Reputation Algorithm: The recent results in [45–47] propose reputation algo-

rithms for networked agents performing decentralized control; however, no convergence

analysis is given to guarantee achievement of the control objective with regard to the

physical states of the networked systems. One of the difficulties in performing a con-

vergence analysis for a reputation algorithm combined with a decentralized controller is

that consensus weight updates can cause discontinuities in the control policy, making

the network a switched system, and requiring a dwell-time between updates to the con-

sensus weights (cf. [48]). Furthermore, because consensus weights generally take any

value between 0 and 1, there are an infinite number of possible consensus weight com-

binations in the network, which makes a switched system-based approach difficult: a

common Lyapunov function or bounds on a candidate switched Lyapunov function may

be difficult to obtain. The insightful work in [48] develops conditions for convergence for

a network of agents with single integrator dynamics performing decentralized control

with a reputation algorithm. However, the reputation algorithm in [48] inherently requires

the control objective to be convergence of all agents’ states to a fixed point, which is

more restrictive than the general leader-synchronization problem. Additionally, the work

in [48] relies on the existence of a dwell-time between consensus weight updates, but an

approach to compute a sufficient dwell-time is not discussed. The development in [49]
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avoids the effects of discontinuities by updating consensus weights smoothly in time

based on continuously updated trust values in a network of agents with single integrator

dynamics. However, the effects on the performance of the dynamical systems due to

varying the consensus weights in time is not addressed. Additionally, the controller

in [49] only provides network convergence of the agents’ states to a single point, which

is a function of the trust values, initial conditions of the agents’ states, and the network

configuration.

1.3 Contributions

The contributions of the developments in this work are described below.

Chapter 2: Asymptotic Synchronization of a Leader-Follower Network Subject

to Uncertain Disturbances: This chapter investigates the synchronization of networked

systems consisting of a single leader and an arbitrary number of followers, where at

least one follower is connected to the leader. The networked systems are modeled

by nonlinear, heterogeneous, and uncertain Euler-Lagrange dynamics which are

affected by additive unmodeled disturbances. Notions from the Robust Integral of the

Sign of the Error (RISE) controller are used to develop a novel, robust decentralized

controller based on state feedback from neighbors. The most comparable results to the

current result are [1] and [2]. In contrast to the discontinuous result in [2], the developed

decentralized controller is continuous and still obtains asymptotic synchronization

despite the effects of uncertain dynamics and exogenous disturbances. In contrast

to the result in [1], the developed approach yields asymptotic synchronization with

neighboring states and the time-varying state of the leader, despite the effects of

uncertain dynamics and exogenous disturbances. A Lyapunov-based analysis is

provided that proves asymptotic synchronization of each agent’s state. A simulation of

a network of second order Euler-Lagrange systems is provided that demonstrates the

practical implications of achieving an asymptotic result using a continuous controller in

comparison with the results in [1] and [2, Section IV].
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Chapter 3: Robust Containment Control in a Leader-Follower Network of

Uncertain Euler-Lagrange Systems: Compared to the most similar work in [27], the

development in this chapter does not require communication of an acceleration signal

from leader agents and demonstrates compensation of unknown input disturbances.

Furthermore, whereas the convergence analysis in [27] is temporally divided into an es-

timation segment and a subsequent Lyapunov-based convergence analysis for showing

network containment, which relies on the assumption of boundedness of the dynam-

ics until estimate equivalence is reached, the present work yields asymptotic network

containment throughout the entire state trajectory. The contribution of this chapter is

the development of a continuous, decentralized controller which provides asymptotic

containment control in a network of dynamic leaders and followers with uncertain non-

linear Euler-Lagrange dynamics, despite the effects of exogenous disturbances, where

at least one of the followers interacts with at least one leader and the follower network is

connected.

Chapter 4: Synchronization of Uncertain Euler-Lagrange Systems with

Uncertain Time-Varying Communication Delays: This chapter considers the problem

of synchronization of a leader-follower network of agents with heterogeneous dynamics

described by nonlinear Euler-Lagrange equations of motion affected by an unknown,

time-varying, exogenous input disturbance. The leader agent has a time-varying

trajectory and is assumed to interact with at least one follower agent. The agents are

delayed in communicating state information and do not communicate control effort

information. The communication delay is assumed to be uncertain, heterogeneous,

time-varying and bounded. Motivated by recent results (cf. [35, 50]) which demonstrate

that approximate knowledge of delay can be incorporated into a controller for improved

performance, an estimate of the communication delay is used to provide feedback of

an estimated recent tracking error in a novel controller. A detailed Lyapunov-based

convergence analysis using Lyapunov-Krasovskii (LK) functionals is provided to develop
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sufficient conditions for uniformly ultimately bounded convergence to the leader state for

each follower agent. Simulation results are provided to demonstrate the performance

of the developed controller compared to other delay-affected decentralized control

techniques.

Chapter 5: Decentralized Synchronization of Uncertain Nonlinear Systems

with a Reputation Algorithm: This chapter develops novel decentralized trust, reputa-

tion and control algorithms for synchronization to a time-varying leader trajectory for a

network of autonomous agents with nonlinear second-order dynamics. The networked

agents are modeled to interact via communication and sensing in a directed topology,

where communication of state information is continuously available, but possibly inac-

curate, and sensing is intermittent, but provides accurate relative state information. The

collaborative reputation algorithm is updated using trust measurements and is used to

update consensus weights which provide relative importance in the use of a neighbor’s

communicated information compared to other neighbors’, if an agent has multiple neigh-

bors. An associated convergence analysis and sufficient gain conditions are provided

for the developed trust, reputation and control algorithms. Based on the convergence

analysis, this work discusses a novel method to compute a sufficient minimum dwell-

time for the switched network system. The sufficient minimum dwell-time is developed

by bounding eigenvalues of the solution to the continuous algebraic Lyapunov Equation

(CALE) over a bounded, but uncountably infinite set of Hurwitz matrices. To the author’s

knowledge, the development of a dwell-time for a network of autonomous agents with

an infinite possible number of feedback structures (i.e., consensus weight combina-

tions) has not been addressed. Simulation results are provided to demonstrate the

performance of the developed trust, reputation, and control algorithms and network

topology-dependent dwell-time.
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1.4 Preliminaries

Graph theory is used to describe the information exchange between agents in

a network. Consider a network consisting of a single leader and F ∈ Z>0 follower

agents. The communication topology of the followers is characterized by a fixed graph,

GF = {VF , EF}, which has a non-empty finite set of nodes VF = {1, . . . ,F} and a set of

edges EF ⊆ VF × VF . An edge (j, i) ∈ EF exists if agent i ∈ VF receives information from

agent j ∈ VF . The set of neighboring follower agents which provide information to agent

i ∈ VF is defined as NFi , {j ∈ VF | (j, i) ∈ EF}. An adjacency matrix A = [aij] ∈ RF×F

weights the network connections and is defined such that aij > 0 if (j, i) ∈ EF and aij = 0

otherwise. It is assumed that the graph is simple, i.e., (i, i) /∈ EF , and thus aii = 0 for

all i ∈ VF . The Laplacian matrix LF ∈ RF×F of graph GF is defined as LF , D − A,

where D , diag {D1, . . . , DF} ∈ RF×F is the degree matrix with Di ,
∑

j∈NFi aij. The

graph which includes a single leader agent is constructed as G = {VF ∪ {L} , EF ∪ EL},

where L denotes the leader agent and the edge (L, i) belongs to EL if the follower agent

i ∈ VF receives information from the leader. The leader-included neighbor set is defined

as N̄Fi , {j ∈ VF ∪ {L} | (j, i) ∈ EF ∪ EL}. The leader-connectivity (i.e., pinning) matrix

B ∈ RF×F is defined as the diagonal matrix B , diag {b1, . . . , bF}, where bi > 0 if

(L, i) ∈ EL and bi = 0 otherwise.

Throughout the following developments, the notations |·|, ‖·‖, ‖·‖∞ and ‖·‖F are

used to denote set cardinality for a set argument, the Euclidean norm, the infinity norm,

and the Frobenius norm, respectively. Additionally, Π is used to denote the Cartesian

product; for example, Π3
k=1R denotes R × R × R. The operators λ (·) and λ̄ (·) are used

to denote the minimum and maximum eigenvalues, respectively. The operator ⊗ is used

to denote the Kronecker product. Finally, the symbols 0 and 1 are used to respectively

denote a vector of zeros or ones of the indicated dimension, and I denotes the identity

matrix of the indicated dimension.
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CHAPTER 2
ASYMPTOTIC SYNCHRONIZATION OF A LEADER-FOLLOWER NETWORK

SUBJECT TO UNCERTAIN DISTURBANCES

This chapter investigates the synchronization of a network of Euler-Lagrange

systems with leader tracking. The Euler-Lagrange systems are heterogeneous and

uncertain and contain bounded, exogenous disturbances. The network leader has a

time-varying trajectory which is known to only a subset of the follower agents. Concepts

from the Robust Integral Sign of the Error (RISE) control method are used to develop a

novel, decentralized control policy which guarantees semi-global asymptotic synchro-

nization. The contribution to the current literature is the development of a continuous,

decentralized controller which achieves asymptotic synchronization of a leader-follower

network of agents with uncertain dynamics affected by exogenous disturbances. To

the author’s knowledge, prior to this development, this had only been accomplished

with a discontinuous decentralized controller. Notions from nonsmooth analysis and a

Lyapunov-based convergence analysis are used to demonstrate the theoretical result.

An extension to the developed control algorithm is given for the problem of decentral-

ized formation control, wherein follower agents converge to a geometric configuration

specified with respect to the leader.

2.1 Problem Formulation

2.1.1 Dynamic Models and Properties

Consider a network of one leader and F follower agents which have dynamics

described by the heterogeneous Euler-Lagrange equations of motion

ML (qL) q̈L + CL (qL, q̇L) q̇L + FL (q̇L) +GL (qL) = uL (2–1)

Mi (qi) q̈i + Ci (qi, q̇i) q̇i + Fi (q̇i) +Gi (qi) + di (t) = ui, i ∈ VF . (2–2)

The terms in (2–1) and (2–2) are defined such that qj ∈ Rm (j ∈ VF ∪ {L}) is the

generalized configuration coordinate, Mj : Rm → Rm×m is the inertia matrix, Cj :
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Rm × Rm → Rm×m is the Coriolis/centrifugal matrix, Fj : Rm → Rm is the friction term,

Gj : Rm → Rm is the vector of gravitational torques, uj ∈ Rm is the vector of control

inputs, di : R≥0 → Rm (i ∈ VF) is a time-varying nonlinear exogenous disturbance, and

t ∈ R≥0 is the elapsed time.

The following assumptions are used in the subsequent analysis.

Assumption 2.1. The inertia matrix Mj is symmetric, positive definite, and satisfies

mj ‖ξ‖2 ≤ ξTMj (ψ) ξ ≤ m̄j ‖ξ‖2 for all ξ, ψ ∈ Rm and j ∈ VF ∪ {L}, where mj, m̄j ∈ R are

positive known constants [51].

Assumption 2.2. The functions Mj, Cj, Fj, Gj are second-order differentiable for all

j ∈ VF ∪ {L} such that their second derivatives are bounded if q(k)
j ∈ L∞, k = 0, 1, 2, 3

[52].

Assumption 2.3. [51] For each follower agent i ∈ VF , the time-varing disturbance term

is sufficiently smooth such that it and its first two time derivatives, di, ḋi, d̈i, are bounded

by known1 constants.

Assumption 2.4. The leader configuration coordinate, qL, is sufficiently smooth such

that qL ∈ C2; additionally, the leader configuration coordinate and its first two time

derivatives are bounded such that qL, q̇L, q̈L ∈ L∞.

Assumption 2.5. The follower graph GF is undirected and connected and at least one

follower agent is connected to the leader.

The equation of motion for the follower agents may be written as

MQ̈F + CQ̇F + F +G+ d = u, (2–3)

1 Following the developments in [53] and [54], Assumption 2.3 can be relaxed such
that the bounding constants can be unknown.
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where

QF ,
[
qT1 , . . . , q

T
F
]T ∈ RFm

M , diag {M1, . . . ,MF} ∈ RFm×Fm

C , diag {C1, . . . , CF} ∈ RFm×Fm

F ,
[
F T

1 , . . . , F
T
F
]T ∈ RFm

G ,
[
GT

1 , . . . , G
T
F
]T ∈ RFm

d ,
[
dT1 , . . . , d

T
F
]T ∈ RFm

u ,
[
uT1 , . . . , u

T
F
]T ∈ RFm.

For convenience in the subsequent analysis, the leader dynamics are represented as

MØQ̈L + CØQ̇L + FØ +GØ = uØ, (2–4)

where QL , 1F ⊗ qL ∈ RFm, MØ , IF ⊗ML ∈ RFm×Fm, CØ , IF ⊗ CL ∈ RFm×Fm,

FØ , 1F ⊗ FL ∈ RFm, GØ , 1F ⊗GL ∈ RFm, and uØ , 1F ⊗ uL ∈ RFm.

Note that because the graph GF is undirected and connected and at least one

follower agent is connected to the leader by Assumption 2.5, the matrix LF + B is

positive definite and symmetric [55]. The customarily used Laplacian matrix is positive

semi-definite for a connected undirected graph; however, the matrix LF , also known as

the “Dirichlet” or “Grounded” Laplacian matrix, is designed such that LF + B is positive

definite given Assumption 2.5 [55].

2.1.2 Control Objective

The objective is to design a continuous controller which ensures that all follower

agents asymptotically track the state of the leader agent with only neighbor feedback

such that lim supt→∞ ‖qL − qi‖ = 0 for all i ∈ VF , despite model uncertainties and

bounded exogenous system disturbances. Moreover, the subsequent control design is
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based on the constraint that only the generalized configuration coordinate and its first

derivative are measurable.

To quantify the control objective, a local neighborhood position tracking error,

e1,i ∈ Rm, is defined as [9]

e1,i ,
∑
j∈NFi

aij (qj − qi) + bi (qL − qi) . (2–5)

The error signal in (2–5) includes the summation
∑

j∈NFi aij (qj − qi) to penalize state

dissimilarity between neighbors and the proportional term bi (qL − qi) to penalize state

dissimilarity between a follower agent and the leader, if that connection exists. The

ability to emphasize either follower agent synchronization or leader tracking is rendered

by assigning aij = ka if (j, i) ∈ EF and bi = kb if (L, i) ∈ EF , where ka, kb ∈ R are constant

positive gains. Thus, if a control application dictates the need for close similarity in

follower agents’ states while approaching the leader trajectory, the gain ka may be

selected such that ka � kb. Alternatively, the gain kb may be selected such that kb � ka

if quick convergence to the leader state is desired and similarity in follower agents’

states is not as important.

An auxiliary tracking error, denoted by e2,i ∈ Rm, is defined as

e2,i , ė1,i + α1,ie1,i, (2–6)

where α1,i ∈ R denotes a constant positive gain. The error systems in (2–5) and (2–6)

may be represented as

E1 = ((LF +B)⊗ Im) (QL −QF) , (2–7)

E2 = Ė1 + Λ1E1, (2–8)

where E1 ,
[
eT1,1, . . . , e

T
1,F
]T ∈ RFm, E2 ,

[
eT2,1, . . . , e

T
2,F
]T ∈ RFm, and Λ1 ,

diag (α1,1, . . . , α1,F) ⊗ Im ∈ RFm×Fm. Another auxiliary error signal, R ∈ RFm, is
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defined as

R ,
(
(LF +B)−1 ⊗ Im

) (
Ė2 + Λ2E2

)
, (2–9)

where Λ2 , diag (α2,1, . . . , α2,F)⊗ Im ∈ RFm×Fm and α2,i ∈ R is a constant positive gain.

The introduction of R facilitates the subsequent convergence analysis; however, it is not

measurable because it depends on the second derivative of the generalized configura-

tion coordinate, and hence, is not used in the subsequently developed controller.

2.2 Controller Development

The open-loop tracking error system is developed by multiplying (2–9) by M and

utilizing (2–3), (2–4) and (2–7)-(2–9) to obtain

MR = −u+ d+ S1 + S2, (2–10)

where the auxiliary functions S1 : Π6
k=1RFm → RFm and S2 : RFm × RFm → RFm are

defined as

S1 , M (QF)M−1
Ø
uØ −M (QL)M−1

Ø
uØ −M (QF) fL

(
QL, Q̇L

)
+M (QL) fL

(
QL, Q̇L

)
+f
(
QF , Q̇F

)
− f

(
QL, Q̇L

)
+M (QF)

(
(LF +B)−1 ⊗ Im

) (
−Λ2

1E1 + (Λ1 + Λ2)E2

)
,

S2 ,M (QL)M−1
Ø
uØ −M (QL) fL

(
QL, Q̇L

)
+ f

(
QL, Q̇L

)
,

where the functional dependency of M is given for clarity, and the auxiliary functions

fL : RFm × RFm → RFm and f : RFm × RFm → RFm are defined as

fL ,M−1
Ø

(
CØQ̇L + FØ +GØ

)
, (2–11)

f , CQ̇F + F +G. (2–12)

The RISE-based (cf. [56], [57]) control input is designed for agent i ∈ VF as

ui , (ki + 1) (e2,i − e2,i (0)) + νi, (2–13)
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where νi ∈ Rm is the generalized solution to the differential equation

ν̇i = (ki + 1)α2,ie2,i + biχi sgn (e2,i)

+
∑
j∈NFi

aij (χi sgn (e2,i)− χj sgn (e2,j)) ,

νi (0) = νiO, (2–14)

where νiO ∈ Rm is an initial condition, ki, χi ∈ R are constant positive gains, and sgn (·) is

defined ∀ξ =

[
ξ1 ξ2 . . . ξl

]T
∈ Rl as sgn (ξ) ,

[
sgn (ξ1) sgn (ξ2) . . . sgn (ξl)

]T
.

Note that the continuous controller in (2–13) is decentralized: only local communication

is required to compute the controller. The following development exploits the fact that

the time derivative of (2–13) is

u̇i = (ki + 1) (ė2,i + α2,ie2,i) + biχi sgn (e2,i)

+
∑
j∈NFi

aij (χi sgn (e2,i)− χj sgn (e2,j)) , (2–15)

which allows the sgn (·) terms to cancel disturbance terms in the Lyapunov-based

convergence analysis that have a linear state bound, similar to sliding mode-based

results.

After substituting (2–15) into (2–10), the closed-loop error system can be expressed

as

MṘ =− 1

2
ṀR + Ñ +

(
(LF +B)T ⊗ Im

)
Nd −

(
(LF +B)T ⊗ Im

)
E2

− ((LF +B)⊗ Im) β sgn (E2)− (Ks + IFm)
(
Ė2 + Λ2E2

)
, (2–16)

where (2–15) is expressed in block form as

u̇ = (Ks + IFm)
(
Ė2 + Λ2E2

)
+ ((LF +B)⊗ Im) β sgn (E2) ,
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with Ks , diag (k1, . . . , kF) ⊗ Im and β , diag (χ1, . . . , χF) ⊗ Im. In (2–16), the

unmeasurable/uncertain auxiliary functions Ñ and Nd are defined as

Ñ , −1

2
ṀR + Ṡ1 +

(
(LF +B)T ⊗ Im

)
E2, (2–17)

Nd ,
(

(LF +B)−T ⊗ Im
)(

ḋ+ Ṡ2

)
. (2–18)

The auxiliary terms in (2–17) and (2–18) are segregated such that after utilizing

(2–7)-(2–9), Properties 2.1-2.2, Assumptions 2.3-2.4, the Mean Value Theorem,

and the relations QL − QF =
(
(LF +B)−1 ⊗ Im

)
E1, Ė1 = E2 − Λ1E1, and

Ė2 = ((LF +B)⊗ Im)R− Λ2E2, the following upper bounds are satisfied∥∥∥Ñ∥∥∥ ≤ ρ (‖Z‖) ‖Z‖ , (2–19)

sup
t∈[0,∞)

|Ndl | ≤ ζal , l = 1, 2, . . . ,Fm, (2–20)

sup
t∈[0,∞)

∣∣∣Ṅdl

∣∣∣ ≤ ζbl , l = 1, 2, . . . ,Fm, (2–21)

where ρ : R≥0 → R is a strictly increasing, radially unbounded function (cf. [58, Lemma

3]); Ndl and Ṅdl denote the lth element of Nd and Ṅd, respectively, the elements of

ζa ∈ RFm and ζb ∈ RFm denote some known upper bounds on the corresponding

elements in Nd and Ṅd, respectively, and Z ∈ R3Fm is the composite error vector

Z ,

[
ET

1 ET
2 RT

]T
. (2–22)

Thus, the terms which arise from the exogenous disturbance and dynamics are seg-

regated by those which can be upper-bounded by a function of the state (after use of

the Mean Value Theorem) and those which can be upper-bounded by a constant. This

separation clarifies how these different terms are handled robustly by the different feed-

back terms in the controller. Specifically, compensation for the terms in Ñ is achieved

by using the proportional and derivative feedback terms and compensation for the terms

in Nd is achieved by using the RISE-based feedback terms. The terms Nd and Ṅd do
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not need to be known exactly to determine the corresponding sufficient upper bounds

in ζa and ζb; however, obtaining numerical values for ζa and ζb involves a priori upper

bounds related to the leader trajectory, the leader and followers’ dynamics, and the

exogenous disturbances. For example, a leader’s future trajectory may be unknown, but

practical limitations on leader behavior can guide in selecting appropriate upper bounds.

Additionally, developing upper bounds for the parametrically uncertain dynamics is

straightforward since the uncertain coefficients (e.g. mass and friction coefficients) can

easily be upper-bounded. See results such as [53] and [54] for an extension to the con-

troller for systems where the sufficient bounding constants in (2–20) and (2–21) cannot

be determined.

For clarity in the definitions of the sufficient gain conditions in the following con-

vergence analysis, let the constant vectors ςai, ςbi ∈ Rm, i ∈ VF , be defined such that

ζa =

[
ςTa1 ςTa2 . . . ςTaF

]T
and ζb =

[
ςTb1 ςTb2 . . . ςTbF

]T
. Furthermore, let the auxiliary

bounding constant ψ ∈ R be defined as

ψ , min

{
λ (Λ1)− 1

2
, λ (Λ2)− 1

2
, λ (LF +B)

}
.

2.3 Convergence Analysis

To simplify the development of the subsequent theorem statement and associated

proof, various expressions and upper bounds are presented.

An auxiliary function P ∈ R is used in the following convergence analysis as a

means to develop sufficient gain conditions that enable the controller to compensate

for the disturbance terms given in Nd; P is defined as the generalized solution to the

differential equation

Ṗ = −
(
Ė2 + Λ2E2

)T
(Nd − β sgn (E2)) , (2–23)

P (0) =
Fm∑
l=1

βl,l |E2l (0)| − ET
2 (0)Nd (0) ,
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where βl,l denotes the lth diagonal element of β and E2l denotes the lth element of

the vector E2. Provided the sufficient conditions in (2–29) are satisfied, then P ≥ 0

(see Appendix A), and can be included in the subsequently defined positive definite

function VL. The inclusion of P enables the development of sufficient gain conditions

that ensure asymptotic tracking by the continuous controller, despite the effects of

additive exogenous disturbances.

Remark 2.1. Because the derivative of the closed-loop tracking error system in

(2–16) is discontinuous, the existence of Filippov solutions to the developed differ-

ential equations is established. Let the composite vector w ∈ R4Fm+1 be defined as

w ,

[
ZT νT

√
P

]T
, where ν ,

[
νT1 νT2 . . . νTF

]T
. The existence of Filippov

solutions can be established for the closed-loop dynamical system ẇ = K [h1] (w, t),

where h1 : R4Fm+1 × R≥0 → R4Fm+1 is defined as the right-hand side (RHS) of ẇ and

K [h1] (σ, t) , ∩δ>0 ∩µ(Sm)=0 coh1 (Bδ (σ) \ Sm, t), where δ ∈ R, ∩µ(Sm)=0 denotes an

intersection over sets Sm of Lebesgue measure zero, co denotes convex closure, and

Bδ (σ) ,
{
% ∈ R4Fm+1 | ‖σ − %‖ < δ

}
[59–61].

Let VL : D → R be a continuously differentiable, positive definite function defined as

VL (y, t) ,
1

2
ET

1 E1 +
1

2
ET

2 E2 +
1

2
RTMR + P, (2–24)

where y ∈ R3Fm+1 is defined as

y ,

[
ZT

√
P

]T
, (2–25)

and the domain D is the open and connected set D ,
{
% ∈ R3Fm+1| ‖%‖ <

inf
(
ρ−1

([
2
√
ψ λ (Ks ((LF +B)⊗ Im)),∞

)))}
. The expression in (2–24) satisfies

the inequalities

λ1 ‖y‖2 ≤ VL (y, t) ≤ λ2 ‖y‖2 , (2–26)
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where λ1 , 1
2

min

{
1,min

i∈VF
(mi)

}
, and λ2 , max

{
1, 1

2

∑
i∈VF m̄i

}
. Let the set of stabilizing

initial conditions SD ⊂ D be defined as

SD ,

{
% ∈ D| ‖%‖ <

√
λ1

λ2

inf
(
ρ−1

([
2
√
ψ λ (Ks ((LF +B)⊗ Im)),∞

)))}
. (2–27)

Theorem 2.1. For each follower agent i ∈ VF , the controller given in (2–13) and (2–14)

ensures that all system signals are bounded under closed-loop operation and that the

position tracking error is semi-globally regulated in the sense that

‖qL − qi‖ → 0 as t→∞ ∀i ∈ VF

(and thus ‖qi − qj‖ → 0 ∀i, j ∈ VF , i 6= j), provided that ki introduced in (2–13) is

selected sufficiently large such that y (0) ∈ SD, Assumptions 2.1-2.5 are satisfied, and

the parameters α1,i, α2,i, χi are selected according to the sufficient conditions

α1,i >
1

2
, α2,i >

1

2
, (2–28)

χi > ‖ςai‖∞ +
1

α2,i

‖ςbi‖∞ , (2–29)

where χi was introduced in (2–14).

Proof. Under Filippov’s framework, a Filippov solution y can be established for the

closed-loop system ẏ = h2 (y, t) if y (0) ∈ SD, where h2 : R3Fm+1 × R≥0 → R3Fm+1

denotes the RHS of the closed-loop error signals. The time derivative of (2–24) exists

almost everywhere (a.e.), i.e., for almost all t ∈ [0,∞), and V̇L
a.e.∈ ˙̃VL where

˙̃VL =
⋂

ξ∈∂VL(y,t)

ξTK

[
ĖT

1 ĖT
2 ṘT 1

2
P−

1
2 Ṗ 1

]T
,

where ∂VL is the generalized gradient of VL [62]. Because VL is continuously differen-

tiable,
˙̃VL ⊆ ∇VLK

[
ĖT

1 ĖT
2 ṘT 1

2
P−

1
2 Ṗ 1

]T
, (2–30)
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where

∇VL ,

[
ET

1 ET
2 RTM 2P

1
2

1
2
RTṀR

]
.

Using the calculus for K [·] from [60], substituting (2–8), (2–9), (2–16), and (2–23)

into (2–30), using the fact that the matrix LF + B is symmetric, and canceling common

terms yields

˙̃VL ⊆ ET
1 (E2 − Λ1E1) + ET

2 (((LF +B)⊗ Im)R− Λ2E2)

+RT
(
Ñ +

(
(LF +B)T ⊗ Im

)
Nd −

(
(LF +B)T ⊗ Im

)
E2

)
+RT (− (Ks + IFm) ((LF +B)⊗ Im)R− ((LF +B)⊗ Im) βK [sgn (E2)])

−
(
Ė2 + Λ2E2

)T
(Nd − βK [sgn (E2)]) , (2–31)

where K [sgn(E2)] = SGN (E2) such that SGN (E2i) = 1 if E2i > 0, SGN (E2i) = −1 if

E2i < 0, and SGN (E2i) = [−1, 1] if E2i = 0 [60]. Using the upper bound in (2–19) and

applying the Raleigh-Ritz theorem, (2–31) can be upper-bounded as

V̇L
a.e.

≤ ‖E1‖ ‖E2‖ − λ (Λ1) ‖E1‖2 − λ (Λ2) ‖E2‖2 + ‖R‖ ρ (‖Z‖) ‖Z‖

−λ (LF +B) ‖R‖2 − λ (Ks ((LF +B)⊗ Im)) ‖R‖2 , (2–32)

where the set in (2–31) reduces to the scalar inequality in (2–32) since the RHS is

continuous a.e.; i.e., the RHS is continuous except for the Lebesgue negligible set of

times when RT ((LF +B)⊗ Im) βK [sgn (E2)]−RT ((LF +B)⊗ Im) βK [sgn (E2)] 6= {0}.2

2 The set of times Γ ,
{
t ∈ R≥0 | RT ((LF +B)⊗ Im) βK [sgn (E2)] −

RT ((LF +B)⊗ Im) βK [sgn (E2)] 6= {0}
}

is equal to the set of times Φ = ∪l=1,2,...FmΦl,

where Φl , {t ∈ R≥0 | E2l = 0 ∧Rl 6= 0}. Due to the structure of R in (2–9), Φl may be
reexpressed as Φl =

{
t ∈ R≥0 | E2l = 0 ∧ Ė2l 6= 0

}
. Since E2 : R≥0 → RFm is contin-

uously differentiable, it can be shown that Φl is Lebesgue measure zero [58]. Because
a finite union of sets of Lebesgue measure zero is itself Lebesgue measure zero, Φ has
Lebesgue measure zero. Hence, Γ is Lebesgue negligible.
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Young’s inequality gives ‖E1‖ ‖E2‖ ≤ 1
2
‖E1‖2 + 1

2
‖E2‖2, which allows for (2–32) to be

upper-bounded as

V̇L
a.e.

≤ 1

2
‖E1‖2 +

1

2
‖E2‖2 − λ (Λ1) ‖E1‖2 − λ (Λ2) ‖E2‖2 + ‖R‖ ρ (‖Z‖) ‖Z‖

−λ (LF +B) ‖R‖2 − λ (Ks ((LF +B)⊗ Im)) ‖R‖2 . (2–33)

Using the gain condition in (2–28), (2–33) is upper-bounded by

V̇L
a.e.

≤ −ψ ‖Z‖2 − λ (Ks ((LF +B)⊗ Im)) ‖R‖2 + ρ (‖Z‖) ‖R‖ ‖Z‖ . (2–34)

Completing the squares for terms in (2–34) yields

V̇L
a.e.

≤ −
(
ψ − ρ2 (‖Z‖)

4λ (Ks ((LF +B)⊗ Im))

)
‖Z‖2 . (2–35)

Provided the control gains ki are selected sufficiently large such that y (0) ∈ SD, the

expression in (2–35) can be further upper-bounded by

V̇L
a.e.

≤ −c ‖Z‖2 (2–36)

for all y ∈ D, for some positive constant c ∈ R.

The inequalities in (2–26) and (2–36) can be used to show that VL ∈ L∞. Thus,

E1, E2, R ∈ L∞. The closed-loop error system can be used to conclude that the

remaining signals are bounded. From (2–36), [61, Corollary 1] can be invoked to

show that c ‖Z‖2 → 0 as t → ∞ ∀y (0) ∈ SD. Based on the definition of Z in (2–22),

‖E1‖ → 0 as t → ∞ ∀y (0) ∈ SD. Noting the definition of E1 in (2–7) and the fact

that ((L+B)⊗ Im) is full rank, it is clear that ‖QL −QF‖ → 0 as t → ∞ if and only if

‖E1‖ → 0 as t → ∞. Thus, ‖qL − qi‖ → 0 as t → ∞ ∀i ∈ VF , ∀y (0) ∈ SD. It logically

follows that ‖qi − qj‖ → 0 as t→∞ ∀i, j ∈ VF , i 6= j, ∀y (0) ∈ SD.

Note that the region of attraction in (2–27) can be made arbitrarily large to include

any initial conditions by adjusting the control gains ki (i.e., a semi-global result). The

decentralized controller shown in (2–13) and (2–14) is decentralized in the sense that
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only local feedback is necessary to compute the controller. However, because the

constant gain ki must be selected based on sufficient conditions involving the matrix

LF +B, which contains information regarding the configuration of the entire network, this

gain is selected in a centralized manner before the control law is implemented.

2.4 Simulation

Simulations were performed with multiple decentralized control methods for a

network of robotic manipulators to compare the performance of the developed method

with other related decentralized control methods. The developed control policy is

compared with the adaptive control policy in [1] and the sliding mode-based control

policy in [2, Section IV]. Simulation results are presented for the synchronization of four

follower agents to a leader’s state trajectory in the network shown in Fig. 2-1. Similar

to [1] and [2, Section IV], each follower is modeled as a two-link robotic manipulator (a

typical example of an Euler-Lagrange system) with the two-dimensional dynamics

ui =

 p1,i + 2p3,ic2,i p2,i + p3,ic2,i

p2,i + p3,ic2,i p2,i

 q̈i
+

 −p3,is2,iq̇2,i −p3,is2,i(q̇1,i + q̇2,i)

p3,is2,iq̇1,i 0

 q̇ +

 fd1,i 0

0 fd2,i


 q̇1

q̇2

+ di,

where q =

 q1

q2

 ∈ R2 denotes the joint angles, c2,i , cos(q2,i), and s2,i , sin(q2,i). The

constant unknown parameters p1,i, p2,i, p3,i, fd1,i, fd2,i ∈ R differ for each manipulator. The

virtual leader is defined by the trajectory qL =

 2 sin (2t)

cos (3t)

, where the first and second

entries are the desired trajectories for the first and second joint angles, respectively. The

time-varying disturbance term has the form di =

 ai sin (bit)

ci sin (dit)

, where the constants

ai, bi, ci, di ∈ R differ for each manipulator. The model parameters for each manipulator

are shown in Table 2-1.
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The control gains for each method were selected based on convergence rate,

residual error, and magnitude of control authority. The gains were obtained for each

controller by qualitatively determining an appropriate range for each gain and then

running 10,000 simulations with random gain sampling within those ranges in attempt to

minimize

J =
4∑
i=1

2∑
j=1

rms[2,10] (qL,j − qi,j) (2–37)

(with aij = 1 if (j, i) ∈ EF and bi = 4 if (L, i) ∈ EL) while satisfying bounds on the control

input such that the entry-wise inequality uk (t) ≤

 500

150

 , k = 1, 2, 3, 4, ∀t ∈ [0.2, 10]

is satisfied, where rms[2,10] (·) denotes the root-mean-square (RMS) of the argument’s

sampled trajectory over the time interval [2, 10]. Beginning the RMS error at two seconds

encourages high convergence rate and low residual error, while monitoring the control

input only after 0.2 seconds accommodates for a possibly high initial control input. The

cost function in (2–37) was chosen based on the synchronization goal that ‖qL − qi‖

goes to zero.

Fig. 2-2 and 2-3 demonstrate that asymptotic synchronization of the follower

agents and tracking of the leader trajectory are qualitatively achieved for the developed

controller, despite the exogenous disturbances. Fig. 2-4 and 2-5 illustrate the effects

of the control methods used to obtain synchronization: the controller in [2, Section IV]

utilizes a high frequency, discontinuous, sliding-mode based control signal, whereas the

developed controller is continuous and exhibits lower frequency content.

As shown in Fig. 2-2 and 2-3, asymptotic synchronization is qualitatively achieved

more slowly for the control method in [2, Section IV], despite the fact that it is based on

sliding-mode control concepts. This is due to the magnitude of the control signal being

produced and the way the simulation trials are vetted. Observe from Fig. 2-4 that the

control effort for [2, Section IV] is near to violating the entry-wise inequality uk (t) ≤
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 500

150

; larger gains lead the control signal to violating this condition. In conclusion, it

qualitatively appears that the control method in [2, Section IV] needs a higher control

magnitude in addition to its high frequency content to achieve synchronization at a

similar rate compared to the developed control method.

As shown in Fig. 2-2 - 2-5, the neural network-based adaptive controller given in [1]

stabilizes the system using a continuous controller which produces a control signal

of moderate magnitude, but maintains a residual error. This behavior agrees with the

theoretical result in [1]: the controller achieves bounded convergence.

Table 2-2 provides a quantitative comparison of the controllers, where J is intro-

duced in (2–37). Compared to the methods in [1] and [2, Section IV], the proposed

controller provides significantly improved tracking performance with a continuous control

signal of a relatively low magnitude.

Figure 2-1. Network communication topology.
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Table 2-1. Simulation parameters.

Robot 1 Robot 2 Robot 3 Robot 4

p1,i 3.7 3.5 3.2 3.0

p2,i 0.22 0.20 0.18 0.17

p3,i 0.19 0.25 0.23 0.21

fd1,i 5.3 5.1 5.2 5.4

fd2,i 1.1 1.3 1.0 1.2

ai 2.0 4.0 3.0 5.0

bi 1.0 2.0 3.0 5.0

ci 1.0 3.0 4.0 2.0

di 4.0 3.0 1.0 2.0
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Figure 2-2. Joint 1 leader-tracking error using (a) [1], (b) [2, Section IV], and (c) the
proposed controller.
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Figure 2-3. Joint 2 leader-tracking error using (a) [1], (b) [2, Section IV], and (c) the
proposed controller.
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Figure 2-4. Joint 1 control effort using (a) [1], (b) [2, Section IV], and (c) the proposed
controller.
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Figure 2-5. Joint 2 control effort using (a) [1], (b) [2, Section IV], and (c) the proposed
controller.

Table 2-2. Controller performance comparison.

Method maxt∈[0.2,10] maxi∈VF ‖ui‖ (Nm) J

[1] 352 0.638

[2, Section IV] 500 0.569

Proposed 73.4 0.0863

2.5 Extension to Formation Control

2.5.1 Modified Error Signal

Driving the neighborhood-based error signal in (2–5) to zero for each follower

agent provides network synchronization such that the state of every agent converges

to the state of the leader; for example, power networks supported by generators need

to maintain synchronization of the generator phase angles to avoid damage of the

electrical infrastructure system. However, for some applications, it may be desirable to

drive the states of the follower agents to a configuration that is spatially oriented with
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respect to the leader, such as the spatial arrangement shown in Fig. 2-6. This goal,

often called “flocking” or “formation control”, can be accomplished by a simple extension

of the synchronization framework. The control objective for formation control can be

cast as limt→∞ ‖qL − qi + qdiL‖ = 0, where the vector qdiL ∈ Rm is a desired relative

position of agent i ∈ VF with respect to the leader. A new neighborhood-based error

signal, denoted as eF1,i ∈ Rm, can be designed to accomplish formation control by a

modification of (2–5) as

eF1,i ,
∑
j∈NFi

aij ((qj − qdjL)− (qi − qdiL)) + bi (qL − (qi − qdiL)) , (2–38)

which is implementable provided that each agent is encoded with the relative position

information qdiL, qdiL − qdjL for each neighbor j ∈ NFi prior to control implementation.

Similar to the definition of E1, the network stack of the error signal eF1,i can be written as

EF1 ,
[
eTF1,1, . . . , e

T
F1,F

]T
= ((LF +B)⊗ Im) (QL −QF +Qd) ,

where Qd ,
[
qTd1L, . . . , q

T
dFL
]T is the stack of desired relative positions. Provided that

each desired relative position qdiL is constant, the controller in (2–13) can be shown

to achieve the control objective limt→∞ ‖qL − qi + qdiL‖ = 0 with the error signal

modification e2,i = ėF1,i + α1,ieF1,i despite the effects of modeling uncertainties and

unknown disturbances using the convergence analysis given for the synchronization

problem in this chapter. A similar approach can be used to demonstrate achievement

of the formation control objective if the desired relative positions are time-varying using

sufficient conditions on boundedness and smoothness of the relative position vectors’

trajectories and their first, second and third derivatives.

2.5.2 Simulation

To demonstrate the utility of the error signal in (2–38) in achieving formation

control, a numerical simulation is performed using ship dynamics detailed in [63].
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Following [63], the experimentally verified model of the equations of motion of the

surface ship “CyberShip II” can be written as

Miϑ̇i + Ci (ϑi)ϑi +Di (ϑi) ϑ̇i + di (t) = uϑi, (2–39)

where Mi ∈ R3×3 denotes the ship’s inertia matrix, Ci : R3 → R3×3 denotes the

Coriolis and centrifugal matrix, Di : R3 → R3×3 denotes the nonlinear damping matrix,

di : R → R3 denotes a time-varying exogenous disturbance, uϑi ∈ R3 is the control

effort, and the vector ϑi ,
[
ui, vi, ψ̇i

]T
contains the body-fixed linear velocities in surge

(ui ∈ R) and sway (vi ∈ R) and the yaw (heading) angle rate ψ̇i ∈ R. CyberShip II is

a scaled replica of a supply ship and is fully actuated with two main propellers, two aft

rudders, and one bow thruster; more information, including the units of all coordinates

and parameters, can be seen in [63]. The matrices Mi, Ci, Di are identified in [63] and

written compactly in [64] as

Mi =


25.8 0 0

0 33.8 1.01

0 1.01 2.76

 ,

Ci =


0 0 −33.8vi − 1.01ψ̇i

0 0 25.8ui

33.8vi + 1.01ψ̇i −25.8ui 0

 ,

Di =


1.33 |ui|+ 5.87u2

i + 0.72 0 0

0 36.5 |vi|+ 0.805
∣∣∣ψ̇i∣∣∣+ 0.890 0.845 |vi|+ 3.45

∣∣∣ψ̇i∣∣∣+ 7.25

0 3.96 |vi| − 0.130
∣∣∣ψ̇i∣∣∣+ 0.0313 0.080 |vi|+ 0.75

∣∣∣ψ̇i∣∣∣+ 1.90

 .
Using a local earth-fixed coordinate frame, the model in (2–39) can be transformed to

the coordinates qi = [xi, yi, ψi]
T containing surge position (xi ∈ R), sway position (yi ∈ R),
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and yaw angle ψi as

M ′ (qi) q̈ + C ′i (qi, q̇i) q̇i +D′i (qi, q̇i) q̇i + d′i = u′i (2–40)

with the kinematic transformations

M ′
i =J−Ti MiJ

−T
i

C ′i =J−Ti

[
Ci −MiJ

−1
i J̇i

]
J−1
i

D′i =J−Ti DiJ
−1
i

d′i =J−Ti di

where u′i ∈ R3 and the rotation matrix J provides the kinematic relationship q̇i = Ji (qi)ϑi

as

Ji =


cos (ψi) − sin (ψi) 0

sin (ψi) cos (ψi) 0

0 0 1

 .
Thus, the ship’s dynamics can be transformed to a model with the same structure

as (2–2), where u′i is used to command the formation control in terms of surge, sway

and yaw. The simulation is performed with four follower agents in the communication

topology shown in Fig. 2-6, where each follower agent is modeled with the dynamics

for the ship CyberShip II given in (2–40). Each surface ship is affected by disturbances

(e.g., waves) as d′i = [a1,i sin (t) , a2,i sin (t) , 0]T , where the constants a1, a2 ∈ R are

shown in Table 2-3. The desired formation of the surface ships with respect to the

leader is encoded with the constant vectors qdiL, which are given in Table 2-3. The initial

positions of the follower agents are not coincident with the initial desired positions and

are described in Table 2-3. The initial velocities for each follower agent i ∈ VF are

set as q̇i (0) = [0, 0, 0]T . The leader trajectory traces an ellipse with the trajectories

uL = 10 cos
(

1
40

(2πt)
)
, vL = 5 sin

(
1
40

(2πt)
)
, ψL = tan−1

(
vL
uL

)
. The control gains for each
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follower agent are selected as ki =


400 0 0

0 300 0

0 0 150

, χi = 100, α1,i = 3, and α2,i = 3

for all i ∈ VF .

Fig. 2-7 depicts the trajectories of the leader and follower agents in surge and sway

as the follower agents converge to the desired formation positions relative to the network

leader. The agent positions and desired positions at 0, 15, and 30 seconds are denoted

by markers, where the leader position is represented by an asterisk, the follower agent

positions are represented by squares, and the desired formation positions of the follower

agents are represented by circles. Fig. 2-8 depicts the error in convergence of the

follower agent states to the state of the leader offset by the constant desired relative

position in terms of surge, sway and yaw. As shown in Fig. 2-7 and 2-8, the follower

surface ships quickly converge to the formation positions specified by the leader position

and the desired relative positions of the agents, despite limited connectivity to the

leader, model uncertainty and exogenous disturbances.

Figure 2-6. Network communication topology.
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Table 2-3. Disturbance and formation position parameters.

Robot 1 Robot 2 Robot 3 Robot 4

a1,i 0.5 1.1 0.7 0.2

a2,i 0.9 −0.5 −0.8 0.4

qdiL


−2

−2

0




2

−2

0
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Figure 2-7. Agent trajectories in surge and sway.
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Figure 2-8. Error in convergence to the formation positions in the dimensions surge,
sway and yaw.

2.6 Concluding Remarks

A decentralized RISE-based controller was developed which ensures semi-global

asymptotic synchronization of networked followers’ states towards a leader’s time-

varying state using a continuous control input, despite model uncertainty and exogenous

disturbances, where the leader and follower agents have uncertain and heterogeneous

Euler-Lagrange dynamics. The graph of the networked follower agents is assumed

to be connected and at least one follower agent receives information from the leader.

Simulation results are provided for the proposed decentralized controller to demonstrate

its performance compared to other prominent related decentralized controllers. An

extension to the developed error signal is provided for the application of formation

control, wherein follower agents converge to a geometric formation specified with

respect to the leader. Numerical simulation results are provided for the problem of

formation control of a decentralized network of surface ships to demonstrate the

performance of the developed controller when applied to formation control.
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CHAPTER 3
ROBUST CONTAINMENT CONTROL IN A LEADER-FOLLOWER NETWORK OF

UNCERTAIN EULER-LAGRANGE SYSTEMS

The previous chapter presented a controller development for the asymptotic

synchronization of a network of follower agents to the trajectory of a single leader.

This chapter extends the decentralized controller for single-leader synchronization to

the problem of tracking multiple leaders by a network of follower agents. Tracking of

multiple leaders is generally referred to as containment control, wherein follower agents

can communicate with multiple leaders; for example, containment control is useful in

applications where a team of autonomous vehicles is directed by multiple pilots or for

networks of autonomous systems where only a subset of the systems is equipped with

expensive sensing hardware. The typical objective of containment control is to drive

the states of the follower agents to the convex hull of the leaders’ states, where each

follower agents’ trajectory converges to a linear combination of the leaders’ trajectories

which depends on the structure of the follower network, leader connections, and the

weights in the decentralized error signals. This result is facilitated by a lemma which

relates a neighborhood-based error signal to containment of the follower agents within

the dynamic convex hull spanned by the leaders’ states.

3.1 Problem Formulation

3.1.1 Notation for a Multi-Leader Network

Some additional notation is introduced to facilitate the description of multiple

leaders’ interaction within a network. Consider a network of L ∈ Z>0 leader agents

and F ∈ Z>0 follower agents. Communication of the follower agents is described with

a fixed undirected graph, GF = {VF , EF}, where VF , {L+ 1, . . . , L+ F} is the set of

follower nodes and EF ⊆ VF × VF is the corresponding edge set. An undirected edge

(j, i) (and also (i, j)) is an element of EF if agents i, j ∈ VF communicate information

with each other; without loss of generality, the graph is considered to be simple, i.e.,

(i, i) /∈ EF ∀i ∈ VF . The follower agent neighbor set NFi , {j ∈ VF | (j, i) ∈ EF} is the
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set of follower agents that transmit information to agent i. The connections in GF are

succinctly described with the adjacency matrix AF = [aij] ∈ RF×F , where aij > 0 if

(j, i) ∈ EF and aij = 0 otherwise. The Laplacian matrix LF = [pij] ∈ RF×F associated

with graph GF is constructed such that pii =
∑

j∈NFi aij and pij = −aij if i 6= j. The

directed graph G = {VF ∪ VL, EF ∪ EL} containing both the leader and follower agents is

a supergraph of GF constructed by appending an edge (l, i) ∈ EL to GF if leader agent

l ∈ VL communicates information to follower agent i ∈ VF , where VL , {1, . . . , L} is the

leader node set and EL ⊆ VL × VF is the set of leader-follower edges. The adjacency

matrix A = [aij] ∈ R(L+F)×(L+F) for graph G is similarly defined such that aij > 0 if

(j, i) ∈ EF ∪ EL and aij = 0 otherwise. Let the diagonal leader-connectivity matrix

B = [bij] ∈ RF×F be defined such that bii =
∑

l∈VL ail. The Laplacian matrix for graph G

can be constructed similarly to LF and can be represented as L =

 0L×L 0L×F

LL LF +B

,

where LL ∈ RF×L.

3.1.2 Dynamic Models and Properties

The dynamics of each follower agent i ∈ VF are described by the nonidentical

Euler-Lagrange equations of motion

Mi (qi) q̈i + Ci (qi, q̇i) q̇i + Fi (q̇i) +Gi (qi) + di = ui, (3–1)

where qi ∈ Rm is the generalized configuration coordinate, Mi : Rm → Rm×m is the

inertia matrix, Ci : Rm × Rm → Rm×m is the Coriolis/centrifugal matrix, Fi : Rm → Rm

represents friction, Gi : Rm → Rm represents gravitational effects, ui ∈ Rm represents

the vector of control inputs, and di : R≥0 → Rm is a time-varying nonlinear exogenous

disturbance. Functional dependency will be omitted in the remainder of the chapter

where the meaning is clear from context. The following assumption is characteristic of

physical systems with dynamics described by Euler-Lagrange equations of motion.
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Assumption 3.1. For each follower agent i ∈ VF , the inertia matrix is positive definite

and symmetric, and there exist positive constants m, m̄ ∈ R such that the inertia matrix

satisfies the inequalities m ‖ξ‖2 ≤ ξTMi (ψ) ξ ≤ m̄ ‖ξ‖2 for all ξ, ψ ∈ Rm and i ∈ VF .

The following assumptions concerning the smoothness of dynamics and network

connectivity are used in the subsequent controller performance analysis.

Assumption 3.2. [52] For each follower agent i ∈ VF , the functions Mi, Ci, Fi, Gi are

second order differentiable such that the second time derivative is bounded provided

q
(k)
i ∈ L∞, k = 0, . . . , 3.

Assumption 3.3. [51] For each follower agent i ∈ VF , the time-varing disturbance term

is sufficiently smooth such that it and its first two time derivatives, di, ḋi, d̈i, are bounded

by known1 constants.

Assumption 3.4. Each time-varying leader configuration coordinate, ql : R≥0 → Rm

(l ∈ VL), is sufficiently smooth such that ql ∈ C2; additionally, each leader configuration

coordinate and its first two time derivatives are bounded such that ql, q̇l, q̈l ∈ L∞.

Assumption 3.5. For each follower agent i ∈ VF , there exists a directed path from a

leader l ∈ VL to i.

Note that, similar to Chapter 2, the matrix LF + B is positive definite by Assumption

3.5 and [18, Lemma 4.1]. For convenience, the follower agents’ dynamics are stacked

as

MQ̈F + CQ̇F + F +G+ d = u, (3–2)

where M , diag (ML+1, . . . ,ML+F) ∈ RFm×Fm, QF ,

[
qTL+1, . . . , qTL+F

]T
∈

RFm, C , diag (CL+1, . . . , CL+F) ∈ RFm×Fm, F ,

[
F T
L+1, . . . , F T

L+F

]T
∈ RFm,

1 Following the developments in [53] and [54], Assumption 3.3 can be relaxed such
that the bounding constants can be unknown.
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G ,

[
GT
L+1, . . . , GT

L+F

]T
∈ RFm, d ,

[
dTL+1, . . . , dTL+F

]T
∈ RFm, and

u ,

[
uTL+1, . . . , uTL+F

]T
∈ RFm.

3.1.3 Control Objective

The objective is to design a continuous controller for the follower agent dynamics in

(3–1) which drives the states of all follower agents to the (possibly time-varying) convex

hull spanned by the leader agents’ states despite exogenous input disturbances and

modeling uncertainties. Furthermore, only the configuration coordinate and its first time

derivative are assumed to be measurable for the leader and follower agents. An error

signal, e1,i ∈ Rm (i ∈ VF), is developed to quantify the neighborhood tracking error as

e1,i ,
∑

j∈VF∪VL

aij (qi − qj) , (3–3)

which includes the state difference between neighboring follower agents and neighbor-

ing leader agents, if those connections exist. Note that there is no restriction on an edge

weight aij for an existing connection (j, i) ∈ E other than that the weight is positive and

aij = aji ∀i, j ∈ VF . Therefore, the control can emphasize a connection (j, i) by increas-

ing aij if it is desired for agent i ∈ VF to maintain close similarity to agent j ∈ VF ∪ VL .

An auxiliary tracking error, e2,i ∈ Rm, is designed as

e2,i , ė1,i + α1,ie1,i,

where α1,i ∈ R>0 is a constant gain. By stacking the follower agents’ error signals e1,i

and e2,i as E1 ,
[
eT1,L+1, . . . , e

T
1,L+F

]T ∈ RFm and E2 ,
[
eT2,L+1, . . . , e

T
2,L+F

]T ∈ RFm, the

network error dynamics can be written as

E1 = ((LF +B)⊗ Im)QF + (LL ⊗ Im)QL, (3–4)

E2 = Ė1 + Λ1E1, (3–5)
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where QL ,

[
qT1 , . . . , qTL

]T
∈ RLm is the stack of leader agent states, and

Λ1 , diag (α1,L+1, . . . , α1,L+F) ⊗ Im ∈ RFm×Fm is a diagonal matrix of gains. An auxiliary

error signal, R ∈ RFm, is designed as

R ,
(
(LF +B)−1 ⊗ Im

) (
Ė2 + Λ2E2

)
, (3–6)

where Λ2 , diag (α2,L+1, . . . , α2,L+F) ⊗ Im ∈ RFm×Fm is a diagonal matrix containing the

gains α2,i ∈ R>0. The auxiliary error signal R is not used in the subsequently designed

controller since it depends on the second derivative of the configuration coordinate and

is only introduced to facilitate an expression for the closed-loop error system.

Similar to [24], the error system in (3–3) is designed such that ‖E1‖ → 0 implies

that the Euclidean distance from qi to the convex hull formed by the leader agents also

asymptotically converges to zero for all i ∈ VF . This implication is stated in the following

lemma, which is used in the subsequent development.

Lemma 3.1. If Assumption 3.5 is satisfied, then ‖E1‖ → 0 implies that

d (qi,Conv {ql | l ∈ VL})→ 0 ∀i ∈ VF ,

where Conv {·} denotes the convex hull of the set of points in its argument and the

distance d (p, S) between a point p and a set S is defined as infs∈S ‖p− s‖ for all p ∈ Rn

and S ⊂ Rn.

Proof. See Appendix B.

3.2 Controller Development

An open-loop error system is designed by pre-multiplying the auxiliary tracking error

R in (3–6) by M and using (3–2), (3–4) and (3–5) as

MR = u− d+ S1 + S2, (3–7)

54



where the functions S1 : Π7
k=1RFm → RFm and S2Π3

k=1RFm → RFm are defined as

S1 ,M (QF)
(
(LF +B)−1 ⊗ Im

) (
(Λ1 + Λ2)E2 − Λ2

1E1

)
− C

(
QF , Q̇F

)
Q̇F

− F
(
Q̇F

)
−G (QF) +M (QF)

(
(LF +B)−1 LL ⊗ Im

)
Q̈L

+ F
(((

(LF +B)−1 LL
)
⊗ Im

)
Q̇L

)
+G

(((
(LF +B)−1 LL

)
⊗ Im

)
QL

)
+ C

(((
(LF +B)−1 LL

)
⊗ Im

)
QL,

((
(LF +B)−1 LL

)
⊗ Im

)
Q̇L

)
·
((

(LF +B)−1 LL
)
⊗ Im

)
Q̇L

−M
(((

(LF +B)−1 LL
)
⊗ Im

)
QL

) (
(LF +B)−1 LL ⊗ Im

)
Q̈L,

S2 ,− C
(((

(LF +B)−1 LL
)
⊗ Im

)
QL,

((
(LF +B)−1 LL

)
⊗ Im

)
Q̇L

)
×
((

(LF +B)−1 LL
)
⊗ Im

)
Q̇L − F

(((
(LF +B)−1 LL

)
⊗ Im

)
Q̇L

)
−G

(((
(LF +B)−1 LL

)
⊗ Im

)
QL

)
+M

(((
(LF +B)−1 LL

)
⊗ Im

)
QL

) (
(LF +B)−1 LL ⊗ Im

)
Q̈L.

Terms in (3–7) are organized so that, after a Mean Value Theorem-based approach

(cf. [58, Lemma 5]), ‖S1‖ can be upper-bounded by a function of the errors sig-

nals E1, E2, R and ‖S2‖ can be upper-bounded by a constant. Note that the term

M (QF)
(
(LF +B)−1 ⊗ Im

)
((Λ1 + Λ2)E2 − Λ2

1E1) can be upper-bounded by a function

of the error signals using a Mean Value Theorem-based approach after adding and

subtracting the term

M
(((

(LF +B)−1 LL
)
⊗ Im

)
QL

) (
(LF +B)−1 ⊗ Im

) (
(Λ1 + Λ2)E2 − Λ2

1E1

)
within S1.

The developed robust decentralized controller for follower agent i ∈ VF is designed

as

ui =
∑
j∈NFi

aij ((ks,j + Im) e2,j − (ks,i + Im) e2,i)− bii (ks,i + Im) e2,i + νi, (3–8)
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where the function νi : Π
|NFi|+1
j=1 Rm → Rm is the generalized solution to the differential

equation

ν̇i ,
∑
j∈NFi

aij ((ks,j + Im)α2,je2,j − (ks,i + Im)α2,ie2,i)

+
∑
j∈NFi

aij (χj sgn (e2,j)− χi sgn (e2,i))− (ks,i + Im) biiα2,ie2,i − biiχi sgn (e2,i) (3–9)

with νi (0) = νi0 ∈ Rm as a user-specified initial condition, where ks,i ∈ Rm×m is a

constant positive definite gain matrix, χi ∈ Rm×m is a constant diagonal positive definite

gain matrix, and the function sgn (·) is defined for all ξ =

[
ξ1, . . . , ξv

]T
∈ Rv as

sgn (ξ) ,

[
sgn (ξ1) , . . . , sgn (ξv)

]T
. Note that the controller in (3–8) is continuous,

only relies on the configuration coordinate and its first derivative, and is decentralized in

communication: agent i requires its own error signal and the error signals of neighbors

j ∈ NFi. The use of neighbors’ error signals in the control law provides cooperation

among the follower agents. Assuming that a neighbor’s state can be sensed, then

only one-hop communication is necessary to compute the control authority in (3–8). In

(3–8) and (3–9), the terms multiplied by the gain ks,i provide proportional and derivative

feedback and the terms multiplied by the gain χi provide robust feedback which is used

to reject the unknown time-varying disturbances, as shown in the following convergence

analysis. Note that a strategy involving additive gradient-based control terms, such as

that in [65], can be used if collision avoidance is necessary for the control objective.

After taking the time-derivative of (3–7), the closed-loop error system can be

represented as

MṘ =− ((LF +B)⊗ Im) (Ks + IFm)
(
Ė2 + Λ2E2

)
− ((LF +B)⊗ Im) β sgn (E2)

+ Ñ + ((LF +B)⊗ Im)Nd − ((LF +B)⊗ Im)E2 −
1

2
ṀR, (3–10)
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where the first two terms are contributions from the derivative of the stack of follower

agents’ control inputs

u̇ = ((LF +B)⊗ Im) (Ks + IFm)
(
Ė2 + Λ2E2

)
− ((LF +B)⊗ Im) β sgn (E2) ,

Ks , diag (ks,L+1, . . . , ks,L+F) ∈ RFm×Fm is a block diagonal gain matrix, β ,

diag (χL+1, . . . , χL+F) ∈ RFm×Fm is a diagonal gain matrix, and the unknown auxil-

iary functions Ñ and Nd are defined as

Ñ , Ṡ1 + ((LF +B)⊗ Im)E2 −
1

2
ṀR, (3–11)

Nd ,
(
(LF +B)−1 ⊗ Im

) (
ḋ+ Ṡ2

)
. (3–12)

Terms in Ñ are segregated such that after taking advantage of the expressions QF =(
(LF +B)−1 ⊗ Im

)
E1 −

(
(LF +B)−1 ⊗ Im

)
(LL ⊗ Im)QL, Ė1 = E2 − Λ1E1, and

Ė2 = ((LF +B)⊗ Im)R − Λ2E2, Assumptions 3.2 and 3.4, and a Mean Value Theorem-

based approach (cf. [58, Lemma 5]), (3–11) can be upper-bounded by∥∥∥Ñ∥∥∥ ≤ ρ (‖Z‖) ‖Z‖ , (3–13)

where Z ∈ R3Fm is the composite error vector defined as Z ,

[
ET

1 ET
2 RT

]T
, and

ρ : R≥0 → R≥0 is a strictly increasing, radially unbounded function. Moreover, other

terms in (3–10) are segregated in the function Nd such that it and its first derivative can

be upper-bounded such that, for all k ∈ {1, . . . ,Fm},

sup
t∈[0,∞)

|Nd|k ≤ δa,k,

sup
t∈[0,∞)

∣∣∣Ṅd

∣∣∣
k
≤ δb,k,

after using Assumptions 3.3 and 3.4, where |·|k denotes the absolute value of the

kth component of the vector argument, and δa,k, δb,k ∈ R>0 are constant bounds. In

the subsequent convergence analysis, the terms in Nd and Ṅd are compensated by
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using the signum feedback terms in (3–9). For clarity in the following section, let the

vectors ∆a,i,∆b,i ∈ Rm be defined such that ∆a,i ,

[
δa,m(i−1)+1 . . . , δa,m(i−1)+m

]T
and ∆b,i ,

[
δb,m(i−1)+1 . . . , δb,m(i−1)+m

]T
, which represent the contribution of the

disturbance terms for each agent.

3.3 Convergence Analysis

An auxiliary function P : RFm × RFm × R≥0 → R is included in the subsequently

defined candidate Lyapunov function so that sufficient gain conditions may be obtained

for the compensation of the bounded disturbance terms in Nd. Let P be defined as the

generalized solution to the differential equation

Ṗ = −
(
Ė2 + Λ2E2

)T
(Nd − β sgn (E2)) ,

P (0) =
Fm∑
k=1

βk,k |E2 (0)|k − ET
2 (0)Nd (0) , (3–14)

where βk,k denotes the kth diagonal entry of the diagonal gain matrix β. Provided the

sufficient gain condition in (3–18) is satisfied, then P ≥ 0 for all t ∈ [0,∞) (see Appendix

A).

Remark 3.1. Because the closed-loop error system in (3–10) and the derivative of the

signal P in (3–14) are discontinuous, the existence of Filippov solutions in the given

differential equations is addressed before the Lyapunov-based convergence analysis

is presented. Consider the composite vector η ,

[
ZT , νTL+1, . . . , νTL+F ,

√
P

]T
∈

R4Fm+1, composed of the stacked error signals, the signal contributing discontinuities

to the derivative of the developed controller, and the aforementioned auxiliary signal P .

Existence of Filippov solutions for the closed-loop dynamical system η̇ = K [h1] (η, t) can

be established, where h1 : R4Fm+1 × R≥0 → R4Fm+1 is a function defined as the RHS of

η̇ and K [h1] (%, t) , ∩δ>0 ∩µ(Sm)=0 coh1 (Bδ (%) \ Sm, t), where δ ∈ R, ∩µ(Sm)=0 denotes

the intersection over the sets Sm of Lebesgue measure zero, co denotes convex closure,

58



and Bδ (%) ,
{
σ ∈ R4Fm+1 | ‖%− σ‖ < δ

}
, where σ, % ∈ R4Fm+1 are used as dummy

variables [59–61].

Let the auxiliary gain constant Φ ∈ R be defined as

Φ , min

{
min
i∈VF

α1,i −
1

2
,min
i∈VF

α2,i −
1

2
, λ
(
(LF +B)2)} .

A continuously differentiable, positive definite candidate Lyapunov function VL : D → R is

defined as

VL (y, t) ,
1

2
ET

1 E1 +
1

2
ET

2 E2 +
1

2
RTM (t)R + P, (3–15)

where the composite vector y ∈ R3Fm+1 is defined as y ,

[
ZT

√
P

]T
, D is defined as

the open and connected set

D ,
{
σ ∈ R3Fm+1 | ‖σ‖

< inf
(
ρ−1

([
2
√

Φλ (((LF +B)⊗ Im)Ks ((LF +B)⊗ Im))
)
,∞
))}

,

and ρ−1 (·) denotes the inverse mapping of a set argument. To facilitate the description

of the semi-global property of the following Lyapunov-based convergence analysis, the

set of stabilizing initial conditions SD ⊂ D is defined as

SD ,

{
σ ∈ D | ‖σ‖

<

√
λ1

λ2

inf
(
ρ−1
([

2
√

Φλ (((LF +B)⊗ Im)Ks ((LF +B)⊗ Im))
)
,∞
))}

.

Due to the construction of VL in (3–15), VL satisfies the inequalities

λ1 ‖y‖2 ≤ VL (y, t) ≤ λ2 ‖y‖2 ∀t ∈ [0,∞) (3–16)

via Assumption 3.1, where λ1, λ2 ∈ R>0 are constants defined as λ1 , 1
2

min
{

1,minj∈VF mj

}
and λ2 , max

{
1, 1

2
maxj∈VF m̄j

}
. The following theorem describes the performance of

the networked dynamical systems through the use of the Lyapunov function candidate in

(3–15).
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Theorem 3.1. For every follower agent i ∈ VF , the decentralized controller in (3–8)

guarantees that all signals are bounded under closed-loop control and that containment

control is semi-globally achieved in the sense that d (qi,Conv {ql | l ∈ VL}) → 0 as

t → ∞, provided that the gains ks,i are selected sufficiently large such that the initial

condition y (0) lies within the set of stabilizing initial conditions SD, Assumptions 3.1-

3.5 are satisfied, and the gains α1,i, α2,i, χi are selected according to the sufficient

conditions

α1,i >
1

2
, α2,i >

1

2
, (3–17)

λ (χi) > ‖∆a,i‖∞ +
1

α2,i

‖∆b,i‖∞ (3–18)

for all i ∈ VF .

Proof. Using Filippov’s framework, a Filippov solution can be established for the closed-

loop system ẏ = h2 (y, t), where h2 : R3Fm+1 × R≥0 → R3Fm+1 denotes the RHS of

the derivative of the closed-loop error signals and Ṗ . Accordingly, the time derivative of

(3–15) exists a.e. on the time domain [0,∞) and V̇L
a.e.∈ ˙̃VL, where

˙̃VL = ∩ξ∈∂VL(y,t)ξ
TK
[
ĖT

1 ĖT
2 ṘT 1

2
P−

1
2 Ṗ 1

]T
, (3–19)

where ∂VL is the generalized gradient of VL and the entry 1 in (3–19) accommodates

for the expression of M as time-dependent in (3–15). Because VL (y, t) is continuously

differentiable,
˙̃VL ⊆ ∇VLK

[
ĖT

1 ĖT
2 ṘT 1

2
P−

1
2 Ṗ 1

]T
, (3–20)

where ∇VL ,

[
ET

1 ET
2 RTM 2P

1
2

1
2
RTṀ (t)R

]
. After using the calculus for K [·]

from [60] and substituting expressions from (3–5), (3–6), (3–10) and (3–14), (3–20) may
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be written as

˙̃VL ⊆ET
1 (E2 − Λ1E1) + ET

2 (((LF +B)⊗ Im)R− Λ2E2)

+RT

(
− ((LF +B)⊗ Im) (Ks + IFm)

(
Ė2 + Λ2E2

)
− ((LF +B)⊗ Im) βK [sgn (E2)] + Ñ + (LF +B)Nd

− ((LF +B)⊗ Im)E2 −
1

2
ṀR

)
+

1

2
RTṀR−

(
Ė2 + Λ2E2

)T
(Nd − βK [sgn (E2)]) ,

(3–21)

where K [sgn (E2)]k = 1 if E2k > 0, K [sgn (E2)]k = −1 if E2k < 0, K [sgn (E2)]k ∈ [−1, 1]

if E2k = 0, and here the subscript k denotes the kth vector entry [60]. The set in (3–21)

reduces to a scalar since the RHS is continuous a.e. due to the structure of the error

signals; i.e., the RHS is continuous except for the Lebesgue negligible set of time

instances in which2

RT ((LF +B)⊗ Im) βK [sgn (E2)]−RT ((LF +B)⊗ Im) βK [sgn (E2)] 6= {0} .

After canceling common terms, using the Raleigh-Ritz theorem and triangle inequality,

recalling that LF + B is positive definite and symmetric, and using the bounding strategy

in (3–13), the scalar value V̇L can be upper-bounded a.e. as

V̇L
a.e.

≤ 1

2
‖E1‖2 +

1

2
‖E2‖2 − λ (Λ1) ‖E1‖2 − λ (Λ2) ‖E2‖2 + ‖R‖ ρ (‖Z‖) ‖Z‖

−RT ((LF +B)⊗ Im)Ks ((LF +B)⊗ Im)R−RT ((LF +B)⊗ Im)2R. (3–22)

2 Due to the construction of R in (3–6), the set of time instances Θ ,
{
t ∈ R≥0 |

RT ((LF +B)⊗ Im) βK [sgn (E2)] −RT ((LF +B)⊗ Im) βK [sgn (E2)] 6= {0}
}

can be
represented by the union Θ = ∪k=1,...,FmΘk, where Θk , {t ∈ R≥0 | E2k = 0 ∧Rk 6= 0}.
Because the signal E2 : R≥0 → RFm is continuously differentiable, it can be shown that
Θk is Lebesgue measure zero [58]. Because a finite union of Lebesgue measure zero
sets is Lebesgue measure zero, Θ is Lebesgue measure zero. Hence, Θ is Lebesgue
negligible.
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Using the definition of the auxiliary gain constant Φ, which is positive given the sufficient

gain conditions in (3–17) and the positive definite property of LF + B (note that the

product ((LF +B)⊗ Im)2 is positive definite since LF + B is positive definite and

symmetric), (3–22) is rewritten as

V̇L
a.e.

≤ −Φ ‖Z‖2 − λ (((LF +B)⊗ Im)Ks ((LF +B)⊗ Im)) ‖R‖2 + ‖R‖ ρ (‖Z‖) ‖Z‖ ,

where the product ((LF +B)⊗ Im)Ks ((LF +B)⊗ Im) is positive definite since Ks is

positive definite and LF + B is positive definite and symmetric. After completing the

squares, V̇L is again upper-bounded a.e. by

V̇L
a.e.

≤ −
(

Φ− ρ2 (‖Z‖)
4λ (((LF +B)⊗ Im)Ks ((LF +B)⊗ Im))

)
‖Z‖2 .

Provided the gains ks,i are selected such that the respective minimum eigenvalues are

sufficiently large such that y (0) ∈ SD, there exists a constant c ∈ R>0 such that

V̇L
a.e.

≤ −c ‖Z‖2 (3–23)

for all y ∈ D. Thus, the inequalities in (3–16) and (3–23) show that VL ∈ L∞ and

therefore E1, E2, R ∈ L∞. A simple analysis of the closed-loop error system shows that

the remaining signals are also bounded. Furthermore, from (3–23), [61, Corollary 1] can

be used to show c ‖Z‖2 → 0 as t → ∞ for all y (0) ∈ SD. Because the vector Z contains

the vector E1, ‖E1‖ → 0 as t → 0. By Lemma 3.1, d (qi,Conv {ql | l ∈ VL}) → 0 ∀i ∈ VF ,

i.e., each follower agent’s state converges to the convex hull spanned by the leaders’

states.

Note that the controller in (3–8) is decentralized in communication; however,

because the stabilizing set of initial conditions SD depends on the graph dependent

matrix LF + B, the gains ks,i must be selected in a centralized manner before execution

of the control. However, the set SD can be made arbitrarily large to include any initial
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condition y (0) by increasing the minimum eigenvalues of the gains ks,i to increase the

minimum eigenvalue of the matrix ((LF +B)⊗ Im)Ks ((LF +B)⊗ Im).

3.4 Simulation

To demonstrate the robustness of the developed approach in performing con-

tainment control of follower agents with respect to a set of leader agents, numerical

simulations are performed for a group of AUVs conducting surveillance. Each follower

agent is modeled as a conventional, slender-bodied, fully actuated AUV with nonlinear

dynamics as described in [66] (see [67] for more information on AUV dynamics). The

state of each AUV is composed of surge (x), sway (y), heave (z), roll (φ), pitch (θ), and

yaw (ψ). Actuation of the AUV is modeled by three independent forces acting at the

center of mass of the vehicle and three independent moments which can be produced

with a given thruster configuration and an appropriate thruster mapping algorithm, such

as that described in [68].

Four leader agents are used to direct five follower agents such that the fol-

lower agents’ states converge to the convex hull formed by the leaders’ time-varying

states, which have initial positions shown in Table 3-1, identical initial velocities of

[0.2 m/s, 0 m/s, 0.05 m/s, 0 rad/s, 0 rad/s,−0.1 rad/s]T , and identical accelerations of

[−0.02 sin (0.1t) ,−0.02 cos (0.1t) , 0]T m/s2 in surge, sway and heave, respectively,

such that the leaders form an inclined rectangle which translates in a helical trajec-

tory. The follower AUVs have initial positions shown in Table 3-2 and identical initial

velocities of [2 m/s, 0 m/s, 0 m/s, 0 rad/s, 0 rad/s, 0 rad/s]T . All leader and follower

agents have initial roll, pitch and yaw of 0 rad. The network topology is shown in

Fig. 3-1. As in [69], the external disturbances for the follower AUVs are modeled as

[ui sin (0.5t) , 0.5vi sin (2.5t) , 0.2wi rand]T N in surge, sway and heave, respectively, and

0 Nm in roll, pitch and yaw, where ui, vi, wi ∈ R represent the linear velocities in surge,

sway and heave, respectively, of the ith follower agent, and rand ∈ [−1, 1] is a uniformly
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sampled random number generator. Identical gains for each follower agent i are se-

lected as ks,i = diag (150, 150, 150, 1, 1, 1), χi = diag (50, 50, 50, 0.05, 0.2, 0.05), α1,i = 0.2,

and α2,i = 0.1.

The agents’ trajectories are shown in Fig. 3-2 and 3-3. At the labeled time in-

stances, the black outline represents the projection of the leaders’ convex hull onto the

labeled dimensions, the black squares represent the follower agent positions, and the

circles within the leader outline represent the equilibrium trajectories of the follower

agents (which is a function of the network topology and leader trajectories, i.e., when

‖E1‖ ≡ 0). In agreement with the analysis of the developed controller, the follower

agents cooperatively become contained within the leader convex hull and converge to

the containment equilibrium trajectories, despite the effects of model uncertainty and un-

known time-varying exogenous disturbances. The Euclidean norms of the overall AUV

force and moment actuation, shown in Fig. 3-4, demonstrate that reasonable actuation

levels are used.

Figure 3-1. Network communication topology of leader (“L”) and follower (“F”) AUVs.

Table 3-1. Leader initial positions in surge (x), sway (y), and heave (z).

Leader x (m) y (m) z (m)

1 −0.5 0.5 0

2 −0.5 −0.5 0

3 0.5 −0.5 0

4 0.5 0.5 0
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Table 3-2. Follower initial positions in surge (x), sway (y), and heave (z).

Follower x (m) y (m) z (m)

1 0 0.6 0.1

2 0.1 0.2 0.05

3 0.8 −0.2 0

4 −0.8 0.1 0.1

5 0.2 0.7 0.05
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Figure 3-2. [Top view] Follower AUV trajectories in the surge (x) and sway (y)
dimensions.
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Figure 3-3. [Front view] Follower AUV trajectories in the surge (x) and heave (z)
dimensions.
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Figure 3-4. Euclidean norms of the follower AUV control efforts.
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3.5 Concluding Remarks

A decentralized controller was developed for cooperative containment control

of autonomous networked follower agents with a set of network leaders, which is a

generalization of the popular single leader-follower network. The developed continuous

controller provides robustness to input disturbances and uncertain, nonlinear Euler-

Lagrange dynamics such that the state of each follower agent asymptotically converges

to the convex hull spanned by the leaders’ time-varying states for an arbitrary number

of leaders. Some notable assumptions are that the agents’ dynamics and disturbances

are smooth, the graph containing the follower agents is connected and at least one

follower agent is connected to at least one leader. Simulation results are provided to

demonstrate the disturbance rejection capability of the developed controller.
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CHAPTER 4
SYNCHRONIZATION OF UNCERTAIN EULER-LAGRANGE SYSTEMS WITH

UNCERTAIN TIME-VARYING COMMUNICATION DELAYS

The work in the previous chapters is developed using a model which assumes that

network neighbors communicate instantaneously. Efforts in this chapter investigate the

effects of communication delay within a network of autonomous agents in addition to a

method for mitigating the effects of communication delay. Dissimilar from effects such

as state delay or input delay (cf. [70, 71]), communication delay makes the design of

a reliable controller more difficult by imposing a lack of knowledge of recent informa-

tion: a neighbor’s current state is unknown until a period of delay has elapsed. This

phenomenon can be present in a communication network due to lengthy information

processing or a specific communication protocol, and can cause devastating effects,

such as instability, on the performance of the network. Effects of communication delay

on a general leader-follower network are exacerbated by the fact that, depending on the

structure of the leader-follower network, a change in the leader’s state may not affect a

follower agent until multiple periods of delay have passed.

In this chapter, a novel decentralized controller is presented along with suffi-

cient conditions for approximate convergence in leader-based synchronization of

communication-delayed networked agents. The agents have heterogeneous dynam-

ics modeled by uncertain, nonlinear Euler-Lagrange equations of motion affected by

heterogeneous, unknown, exogenous disturbances. The developed controller requires

only one-hop (delayed) communication from network neighbors and the communication

delays are assumed to be heterogeneous, uncertain and time-varying. Each agent

uses an estimate of the communication delay to provide feedback of estimated recent

tracking error. The presented approach uses a Lyapunov-based convergence analysis

in conjunction with Lyapunov-Krasovskii (LK) functionals to provide sufficient conditions

which depend on the upper bound of the heterogeneous delays, feedback gains, and
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network connectivity, among other factors. The novelty of the developed controller orig-

inates from the notion that the delayed version of a typical neighborhood error signal

can be combined with an error signal which compares a neighbor’s state with an agent’s

own state manually delayed by an estimate of the delay duration to achieve improved

tracking performance and less sensitive stability criteria.

4.1 Problem Formulation

4.1.1 Dynamic Models and Properties

Let the dynamics of follower agent i ∈ VF be represented by Euler-Lagrange

equations of motion of the form

Mi (qi) q̈i + Ci (qi, q̇i) q̇i + Fi (q̇i) +Gi (qi) = ui + di (t) , (4–1)

where qi ∈ Rm is the generalized configuration coordinate, Mi : Rm → Rm×m is the

inertia matrix, Ci : Rm × Rm → Rm×m is the Coriolis/centrifugal matrix, Fi : Rm → Rm

represents the effects of friction, Gi : Rm → Rm represents gravitational torques, ui ∈ Rm

is the vector of control inputs, and di : R→ Rm is the time-varying, unknown, exogenous

input disturbance. The time-varying state of the leader is denoted by qL : R → Rm. To

facilitate subsequent analysis, the following assumptions are used concerning the Euler-

Lagrange dynamics, external disturbance, leader trajectory, and network connectivity.

Assumption 4.1. For each follower agent i ∈ VF , the inertia matrix is positive definite

and symmetric, and there exist positive constants m, m̄ ∈ R such that the inertia matrix

satisfies the inequalities m ‖ξ‖2 ≤ ξTMi (ψ) ξ ≤ m̄ ‖ξ‖2 for all ξ, ψ ∈ Rm and i ∈ VF .

Assumption 4.2. For each follower agent i ∈ VF , the dynamics are sufficiently smooth

such that the functions Mi, Ci, Fi, Gi are first-order differentiable, i.e., the first-order

derivative is bounded if qi, q̇i, q̈i ∈ L∞.

Assumption 4.3. For each follower agent i ∈ VF , the vector of time-varying input

disturbances is continuous and bounded such that supt∈R ‖di (t)‖ ≤ d̄ for some known

positive constant d̄ ∈ R.
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Assumption 4.4. The leader state is bounded and sufficiently smooth such that

qL, q̇L, q̈L ∈ L∞.

Assumption 4.5. The follower graph GF is undirected and connected and at least one

follower agent is connected to the leader.

The communication delay between agents is modeled such that, at time t, agent i ∈

VF is unaware of the set of recent states {qj (σ) | t− τji (t) < σ ≤ t} of a neighbor j ∈

N̄Fi (i 6= j), where τji : R → R≥0 is the positive, time-varying, uncertain communication

delay. The communication delays in the network need not be homogenous, i.e., the

communication delays may be different for each interaction link. The communication

delay may even differ between an interacting pair of agents, i.e., it may be that τij (t) 6=

τji (t) for i, j ∈ VF . The following assumption specifies the class of delays considered in

this chapter.

Assumption 4.6. The uncertain, time-varying delay τji is bounded above by a known

constant τ̄ ∈ R>0 such that supt∈R τji (t) < τ̄ , τji is differentiable, and τji changes

sufficiently slowly such that supt∈R |τ̇ji (t)| < 1, for each (j, i) ∈ EF ∪ EL. There is no delay

in agent i ∈ VF knowing its own state, qi.

Each agent maintains an estimate of the duration of the communication delay for all

incoming communication, i.e., agent i ∈ VF estimates τji with τ̂ji : R → R>0 for every

neighbor j ∈ N̄Fi, where τ̂ji is upper-bounded by the known constant ¯̂τ ∈ R>0 for each

communication channel (j, i) ∈ EF ∪ EL.

Assumption 4.7. The difference between the communication delay τji and delay esti-

mate τ̂ji is upper-bounded by a known constant ¯̃τ ∈ R>0 such that supt∈R |τji (t)− τ̂ji (t)| <
¯̃τ , τ̂ji is differentiable, and τ̂ji changes sufficiently slowly such that supt∈R

∣∣∣ ˙̂τji (t)∣∣∣ < 1, for

each (j, i) ∈ EF ∪ EL.

There are multiple ways to obtain an estimate of communication delay, and the

specific application may dictate the methodology used (cf. [35, 41, 72–75]). In this work,

a specific method of estimating communication delay is not considered.
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For implementation purposes, it is also assumed that for every agent i ∈ VF , the

delayed state qj (t− τji (t)) has been communicated to agent i from every neighbor

j ∈ N̄Fi for at least τ̄ + ¯̃τ seconds before control implementation. Note that this approach

does not omit the case in which some communication channels may have no delay.

4.1.2 Control Objective

The network-wide objective is to cooperatively drive the states of the networked

agents towards the state of the network leader such that ‖qi (t)− qL (t)‖ → 0 as t → ∞

for all i ∈ VF using one-hop communication, despite the effects of modeling uncertain-

ties; exogenous disturbances; uncertain, heterogeneous, time-varying communication

delays between neighbors; and only a subset of the follower agents interacting with the

leader.

4.2 Controller Development

Throughout the rest of the chapter, functional dependency is omitted where the

meaning is clear.

4.2.1 Communication-Delayed Control

Error signals used for feedback controllers in network synchronization typically

take the form ei ,
∑

j∈NFi aij (qj (t)− qi (t)) + bi (qL (t)− qi (t)) (cf. [3, 7, 8, 17]).

However, because communication is delayed in the network, the error signal ei is

not implementable in this scenario. Alternatively, a new feedback signal eτi ∈ Rm is

developed to implement the delay estimates τ̂ji as

eτi ,
κ1

|NFi|
∑
j∈NFi

aij (qj (t− τji (t))− qi (t)) + κ1bi (qL (t− τLi (t))− qi (t))

+
κ2

|NFi|
∑
j∈NFi

aij (qj (t− τji (t))− qi (t− τ̂ji (t))) + κ2bi (qL (t− τLi (t))− qi (t− τ̂Li (t))) ,

(4–2)
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and an auxiliary delayed error signal rτi ∈ Rm is analogously defined as

rτi ,
κ1

|NFi|
∑
j∈NFi

aij (q̇j (t− τji (t))− q̇i (t)) + κ1bi (q̇L (t− τLi (t))− q̇i (t))

+
κ2

|NFi|
∑
j∈NFi

aij (q̇j (t− τji (t))− q̇i (t− τ̂ji (t))) + κ2bi (q̇L (t− τLi (t))− q̇i (t− τ̂Li (t)))

+ λeτi, (4–3)

where λ ∈ R>0 is a constant control gain and κ1 ∈ R≥0, κ2 ∈ R≥0 are constant

weighting parameters selected such that κ1 + κ2 = 1. Thus, neighbors’ delayed state

and state derivative are to be used for control purposes with the implementable error

signals eτi and rτi.1 There are two unique types of feedback in eτi. The first line of

(4–2) provides the difference between a neighbor’s delayed state and an agent’s own

current state and is normalized by the number of neighbors. This term helps provide

overall stability of the networked systems and will be referred to as feedback without

self-delay, as in [33]. The second line of (4–2) provides the normalized difference

between a neighbor’s delayed state and an agent’s own state manually delayed by an

estimate of the delay corresponding to that communication channel. As motivated in the

following example, this term can improve performance in synchronization by correcting

for estimated tracking errors in the recent history of the agents’ trajectories. This type

of feedback will be referred to as feedback with inexact self-delay if τji 6= τ̂ji for some

t ∈ R and feedback with exact self-delay if τji ≡ τ̂ji. The tuning parameters aij and bi

may be adjusted to emphasize either leader tracking or (follower) neighbor tracking in

closed-loop performance.

1 It is assumed that a neighbor’s delayed state derivative is communicated, not com-
puted; i.e., agent j obtains and then communicates qj (t) and q̇j (t) to a neighbor i
with a communication delay τji (t). In other words, this approach does not solve the
communication-delayed output feedback problem: numerical computation of the delayed
state derivative may be skewed by effects of the time-varying delay.
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A communication-delayed proportional-derivative (PD) controller, based on one-hop

neighbor feedback, is designed for agent i ∈ VF as

ui = krτi, (4–4)

where k ∈ R>0 is a constant control gain. Note that, as opposed to the controller in [43],

it is not assumed that the communication delay duration is exactly known.

4.2.2 Motivating Example

Consider a simple network with the topology depicted in Fig. 4-1 and double

integrator agent dynamics modeled as

m1q̈1 = u1,

m2q̈2 = u2,

with initial conditions q1 (0) = 1, q̇1 (0) = 0, q2 (0) = 2, q̇2 (0) = −3. Let the control

gains be selected as k = 10, λ = 1, the network weight parameters be selected as

a12 = a21 = b1 = 1, the leader trajectory be designed as qL = t, and the network be

affected by communication delay such that τL1 = 0 and τ21 = τ12 = 0.2.

Fig. 4-2 depicts the network performance under the control policy in (4–4) using

(a) only feedback without self-delay (κ1 = 1, κ2 = 0), (b) only feedback with exact

self-delay (κ1 = 0, κ2 = 1, τ̂21 = τ̂12 = τ21 = τ12), and (c) only feedback with inexact

self-delay (κ1 = 0, κ2 = 1, τ̂21 = τ̂12 = 0.25). As shown in Fig. 4-2a, bounded

convergence is obtained toward the leader state using only feedback without self-delay.

Considerably better, asymptotic performance is obtained when only feedback with

exact self-delay is used, as depicted in Fig. 4-2b. Even though the policy in (c) uses a

communication delay estimate that is 25% away from the actual delay for feedback with

inexact self-delay only, considerably better network performance is obtained compared

to (a), as depicted in Fig. 4-2c. The policies in (b) and (c) obtain superior performance

by regulating an error signal that better compares neighbors’ state trajectories in
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time; however, the policies in (b) and (c) are less robust to larger communication

delays. For policies (b) and (c), the system is unstable for communication delays

of τ12 = τ21 = τ̂21 = τ̂12 = 0.5. This issue can also be seen with faster follower

agent dynamics and more volatile leader trajectories. In comparison, even though the

performance is worsened for policy (a) with a delay of τ12 = τ21 = 0.5, the system is still

stable. Thus, the approach in this chapter is to use a mixture of policies (a) and (c), as

in the developed controller in (4–4), to promote overall stability and better tracking when

faced with uncertain communication delays.

Figure 4-1. Network communication topology.
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Figure 4-2. Leader-tracking error under communication-delayed control using (a) only
feedback without self-delay, (b) only feedback with exact self-delay, and (c)
only feedback with inexact self-delay.

4.3 Closed-loop Error System

For notational brevity, the networked systems’ dynamics are grouped into block

matrices and composite vectors as

M , diag (M1, . . . ,MF) ∈ RFm×Fm,

C , diag (C1, . . . , CF) ∈ RFm×Fm,

F ,
[
F T

1 , . . . , F
T
F
]T ∈ RFm,

G ,
[
GT

1 , . . . , G
T
F
]T ∈ RFm,

U ,
[
uT1 , . . . , u

T
F
]T ∈ RFm,

d ,
[
dT1 , . . . , d

T
F
]T ∈ RFm,

QF ,
[
qT1 , . . . , q

T
F
]T ∈ RFm,
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such that

M (QF) Q̈F + C
(
QF , Q̇F

)
Q̇F + F

(
Q̇F

)
+G (QF) = U + d (t) . (4–5)

Non-implemented error signals E , QL − QF ∈ RFm and R , Ė + λE ∈ RFm are

introduced to develop a network-wide closed-loop error system, where QL , 1F ⊗ qL.

Clearly, if ‖E‖ → 0, then the control objective is achieved.

To facilitate the description of the normalized neighbor feedback, let the matrix

A ∈ RF×F be defined as A , [aij], where aij , aij
|NFi|

. Additionally, let the matrix

D ∈ RF×F be defined as D , diag {d1, . . . , dF}, where di ,
∑

j∈NFi aij. For convenience

in describing the effects of the heterogeneous communication delays individually in

the closed-loop system, let the constant matrix Aij ∈ RFm×Fm be defined as Aij ,

(A ◦ 1ij) ⊗ Im, where ◦ denotes the Hadamard product and 1ij ∈ RF×F denotes

an indicator matrix, which has all zero entries except for the ith row and jth column,

which has a value of 1. Similarly, let the constant matrix Dij ∈ RFm×Fm be defined

as Dij , aij 1ii⊗Im. Note that
∑

(j,i)∈EF Aij = A ⊗ Im and
∑

(j,i)∈EF Dij = D ⊗ Im.

Also, let Bi ∈ RF×F be defined as Bi , B ◦ 1ii; note that
∑

(L,i)∈EL Bi = B. Finally,

let the vectors Qτji , Qτ̂ji , QLτLi : R → RFm be defined as Qτji (t) , QF (t− τji (t)),

Qτ̂ji (t) , QF (t− τ̂ji (t)), QLτLi (t) , QL (t− τLi (t)).

By taking the time-derivative of R and premultiplying by the block inertia matrix M ,

the closed-loop error system is represented using (4–4) and (4–5) as

MṘ = CQ̇F + F +G− d+MQ̈L + λMĖ − kRτ , (4–6)

76



where

Rτ ,
[
rTτ1, . . . , r

T
τm

]T
= (κ1 + κ2)

∑
(j,i)∈EF

Aij
(
Q̇τji + λQτji

)
− κ1 (D ⊗ Im)

(
Q̇F + λQF

)
− κ2

∑
(j,i)∈EF

Dij
(
Q̇τ̂ji + λQτ̂ji

)
+ (κ1 + κ2)

∑
(L,i)∈EL

(Bi ⊗ Im)
(
Q̇LτLi + λQLτLi

)
− κ1 (B ⊗ Im)

(
Q̇F + λQF

)
− κ2

∑
(L,i)∈EL

(Bi ⊗ Im)
(
Q̇τ̂Li + λQτ̂Li

)
.

After using the Fundamental Theorem of Calculus, the fact that
(
Q̇L + λQL

)
∈

Null (LF ⊗ Im) due to the structure of the Laplacian matrix, and adding and subtracting

the terms

k
∑

(j,i)∈EF

(κ1Aij − κ2Lij)
ˆ t

t−τji

(
Q̈L (s) + λQ̇L (s)

)
ds,

kκ2

∑
(j,i)∈EF

Dij
ˆ t−τji

t−τ̂ji

(
Q̈L (s) + λQ̇L (s)

)
ds,

kκ2

∑
(L,i)∈EL

(Bi ⊗ Im)

ˆ t−τLi

t−τ̂Li

(
Q̈L (s) + λQ̇L (s)

)
ds,

(4–6) may be re-expressed as

77



MṘ =CQ̇F + F +G− d+MQ̈L + λMĖ − kLBR

+ k
∑

(j,i)∈EF

[
(κ1Aij − κ2Lij)

ˆ t

t−τji
Ṙ (σ) dσ − κ2Dij

ˆ t−τji

t−τ̂ji
Ṙ (σ) dσ

]

− k
∑

(j,i)∈EF

(κ1Aij − κ2Lij)
ˆ t

t−τji

(
Q̈L (σ) + λQ̇L (σ)

)
dσ

+ kκ2

∑
(j,i)∈EF

Dij
ˆ t−τji

t−τ̂ji

(
Q̈L (σ) + λQ̇L (σ)

)
dσ

− kκ2

∑
(L,i)∈EL

(Bi ⊗ Im)

ˆ t

t−τ̂Li
Ṙ (σ) dσ

− kκ1

∑
(L,i)∈EL

(Bi ⊗ Im)

ˆ t

t−τLi

(
Q̈L (σ) + λQ̇L (σ)

)
dσ

+ kκ2

∑
(L,i)∈EL

(Bi ⊗ Im)

ˆ t−τLi

t−τ̂Li

(
Q̈L (σ) + λQ̇L (σ)

)
dσ, (4–7)

where Lij , Dij − Aij ∈ RFm×Fm, and LB , (B + D −A ) ⊗ Im ∈ RFm×Fm,

which is symmetric and positive definite by Assumption 4.5 and [55]. The terms

CQ̇F , F,G, d,MQ̈L, λMĖ in (4–7) can be compensated using traditional robust con-

trol methods; however, compensating for the terms which contain
´ t
t−τji Ṙ (σ) dσ,

´ t−τji
t−τ̂ji Ṙ (σ) dσ, and

´ t
t−τ̂Li

Ṙ (σ) dσ is difficult due to the delayed state feedback and

amplification by the gain k. The following sections demonstrate that the decentralized

controller in (4–4) yields convergence to a neighborhood around the leader state for

each follower agent despite these delay-contributing terms for small enough time-

varying heterogeneous network delays and accurate enough delay estimates.

4.4 Convergence Analysis

Some constants, functions, and sets are introduced to facilitate the convergence

analysis. Let c, φ ∈ R>0 denote tunable constant parameters and let the constant c ∈ R

be defined as c , c
(
λ− 1

2

)
. Let the auxiliary constants k, η, θ ∈ R be defined as

k , k

(
λ (LB)− (τ̄+¯̃τ)k3

2φ
− ι1k

)
− c

2
, η , min

{
c
2
, k

6

}
, and θ , 1

2
min

{
2η, 1

τ̄+¯̃τ
, ω, ω

τ̄
, ω̂, ω̂¯̂τ

}
,
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where the unknown constants ω, ω̂ ∈ R are defined as ω , 1 − supt∈R,(j,i)∈EF τ̇ji and

ω̂ , 1 − supt∈R,(j,i)∈EF∪EL
˙̂τji, which are positive by Assumptions 4.6 and 4.7, and the

auxiliary constant ι1 ∈ R≥0 is defined as

ι1 ,
(

¯̈QL + λ ¯̇QL

)τ̄ ∑
(j,i)∈EF

‖κ1Aij − κ2Lij‖+ κ2
¯̃τ
∑

(j,i)∈EF

‖Dij‖+ (κ1τ̄ + κ2
¯̃τ)

∑
(L,i)∈EL

‖Bi‖

 ,

where the constant upper bounds ¯̇QL,
¯̈QL ∈ R≥0 are defined such that supt∈R

∥∥∥Q̇L (t)
∥∥∥ ≤

¯̇QL and supt∈R

∥∥∥Q̈L (t)
∥∥∥ ≤ ¯̈QL.

The convergence analysis is constructed with the state y ∈ R2Fm+6 defined as

the composite vector2 y ,
[
ZT ,Ψ

1
2
1a,Ψ

1
2
1b,Ψ

1
2
2a,Ψ

1
2
2b,Ψ

1
2
3a,Ψ

1
2
3b

]T
, where Z ∈ R2Fm is the

composite error vector Z ,

[
ET RT

]T
, and Ψ1a,Ψ1b,Ψ2a,Ψ2b,Ψ3a,Ψ3b denote LK

functionals defined as

Ψ1a ,
φι2 |EF |
k2

ˆ t

t−τ̄

ˆ t

s

∥∥∥Ṙ (σ)
∥∥∥2

dσds, (4–8)

Ψ1b ,
φ (ι3 |EF |+ ι4 |EL|)

k2

ˆ t

t−τ̄−¯̃τ

ˆ t

s

∥∥∥Ṙ (σ)
∥∥∥2

dσds, (4–9)

Ψ2a ,
2φ |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

ωm2

·
∑

(j,i)∈EF

ˆ t

t−τji

(
‖(κ1Aij − κ2Lij)R (σ)‖2 + κ2

2 ‖DijR (σ)‖2
)
dσ, (4–10)

Ψ2b ,
2φκ2

2 |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
ω̂m2

·
ˆ t

t−τ̂ji

|EF | ∑
(j,i)∈EF

‖DijR (σ)‖2 + |EL|
∑

(L,i)∈EL

‖(Bi ⊗ Im)R (σ)‖2

 dσ, (4–11)

2 The LK functionals are interpreted as time-varying signals and are incorporated into
the overall system state to facilitate the convergence analysis.
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Ψ3a ,
2φ |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

ωm2

∑
(j,i)∈EF

ˆ t

t−τji

ˆ t

s

(
‖(κ1Aij − κ2Lij)R (σ)‖2

+ κ2
2 ‖DijR (σ)‖2

)
dσds, (4–12)

Ψ3b ,
2φκ2

2 |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
ω̂m2

·
ˆ t

t−τ̂ji

ˆ t

s

|EF | ∑
(j,i)∈EF

‖DijR (σ)‖2 + |EL|
∑

(L,i)∈EL

‖(Bi ⊗ Im)R (σ)‖2

 dσds, (4–13)

where the constants ι2, ι3, ι4 ∈ R>0 are defined as

ι2 , λ̄

 ∑
(j,i)∈EF

(κ1Aij − κ2Lij) (κ1Aij − κ2Lij)T
 ,

ι3 , κ2
2 λ̄

 ∑
(j,i)∈EF

D2
ij

 , ι4 , κ2
2 λ̄

 ∑
(L,i)∈EL

B2
i

 .

To facilitate the description of the stability result in the following convergence analysis,

the constant parameters Nd0, Nd1, Nd2 ∈ R≥0 are defined as

Nd0 , d̄+ m̄ ¯̈QL + sup
t∈R

S0

(
QL, Q̇L

)
, (4–14)

Nd1 ,
2

m
‖LB‖

(
d̄

km
+

¯̈QL

k
+
ι1
m

)
+ sup

t∈R
S1

(
QL, Q̇L

)
, (4–15)

Nd2 ,
4d̄2

k2m2
+

2d̄

m

(
¯̈QL

k2
+

ι1
km

)
+ 4

(
¯̈QL

k
+
ι1
m

)2

+ sup
t∈R

S2

(
QL, Q̇L

)
, (4–16)

and the functions Ñ0, Ñ1, Ñ2 : Π6
p=1RFm → R are defined as

Ñ0 , S0

(
QF , Q̇F

)
− S0

(
QL, Q̇L

)
+ f0

(
E,R,QF , Q̇F

)
, (4–17)

Ñ1 , S1

(
QF , Q̇F

)
− S1

(
QL, Q̇L

)
+ f1 (E,R) , (4–18)

Ñ2 , S2

(
QF , Q̇F

)
− S2

(
QL, Q̇L

)
+ f2

(
E,R,QF , Q̇F

)
, (4–19)
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where the auxiliary functions S0, S1, S2 : RFm × RFm → R, f0 : Π4
p=1RFm → R,

f1 : RFm × RFm → R, f2 : Π4
p=1RFm → R, are defined as

S0 ,
∥∥∥CQ̇F + F +G

∥∥∥, S1 ,
2

km2
‖LB‖S0,

S2 ,
4

k2m2
S2

0 +
2

m

(
d̄

k2m
+

¯̈QL

k2
+

ι1
km

)
S0,

f0 , λm̄ ‖R− λE‖+
1

2

∥∥∥ṀR
∥∥∥ ,

f1 ,
4

m2
‖LB‖2 ‖R‖+

2λ

km
‖LB‖ ‖R− λE‖+

2

m2

∥∥∥∥∥∥
∑

(j,i)∈EF

(κ1Aij − κ2Lij)

∥∥∥∥∥∥
2

‖R‖

+
2κ2

2 |EL|
m2

∑
(L,i)∈EL

‖Bi‖2 ‖R‖

+
2 |EF | (1 + τ̄)

ωm2

∑
(j,i)∈EF

(
‖κ1Aij − κ2Lij‖2 + κ2

2 ‖Dij‖2) ‖R‖
+

2κ2
2 |EF |2

(
1 + ¯̂τ

)
ω̂m2

∑
(j,i)∈EF

‖Dij‖2 ‖R‖+
2κ2

2 |EF | |EL|
(
1 + ¯̂τ

)
ω̂m2

∑
(L,i)∈EL

‖Bi‖2 ‖R‖ ,

f2 ,
2λ

k2m
S0 ‖R− λE‖+ 2λ

(
d̄

k2m
+

¯̈QL

k2
+

ι1
km

)
‖R− λE‖+

4λ2

k2
‖R− λE‖2 .

The functions Ñ0, Ñ1, Ñ2 contain terms which can be upper-bounded by a function of

the error signals E and R. By [58, Lemma 5], there exist strictly increasing, radially

unbounded functions ρ0, ρ1, ρ2 : R≥0 → R≥0 which upper-bound Ñ0, Ñ1, Ñ2 as3

∣∣∣Ñ0

∣∣∣ ≤ ρ0 (‖Z‖) ‖Z‖ ,
∣∣∣Ñ1

∣∣∣ ≤ ρ1 (‖Z‖) ‖Z‖ ,
∣∣∣Ñ2

∣∣∣ ≤ ρ2 (‖Z‖) ‖Z‖ , (4–20)

3 While the smallest upper-bounding functions of the dynamics in Ñ0, Ñ1, Ñ2 may not
be known, the bounding functions ρ0, ρ1, ρ2 may feasibly be constructed; for example, a
friction coefficient may be unknown, but a sufficient upper bound can easily be deter-
mined.

81



where the bounds for
∣∣∣Ñ0

∣∣∣ and
∣∣∣Ñ2

∣∣∣ are facilitated by adding and subtracting the expres-

sion f0

(
E,R,QL, Q̇L

)
in Ñ0 and the expression f2

(
E,R,QL, Q̇L

)
in Ñ2.

The set D ⊂ R2Fm+6 is defined as

D ,

{
ξ ∈ R2Fm+6 | ‖ξ‖ < inf

{
ρ−1

([√
η,∞

))}}
,

where ρ : R≥0 → R≥0 is a strictly increasing, radially unbounded function defined as

ρ (‖Z‖) ,
(

3ρ2
0 (‖Z‖)
2k

+
3φ2ρ2

1 (‖Z‖)
2k

(τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))2

+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|)) ρ2
2 (‖Z‖)

) 1
2

, (4–21)

where the inverse image ρ−1 (Θ) ⊂ R for a set Θ ⊂ R is defined as ρ−1 (Θ) ,

{ξ ∈ R | ρ (ξ) ∈ Θ}. The stabilizing set of initial conditions, SD, is defined as

SD ,

{
ξ ∈ D | ‖ξ‖ <

√
min

{
c
2
, m̄

2
, 1
}

max
{
c
2
, m

2
, 1
} inf

{
ρ−1

([√
η,∞

))}}
. (4–22)

The following assumption provides a sufficient condition for the subsequent conver-

gence analysis by describing how small the network communication delays and delay

estimate errors should be to ensure convergence for a given network configuration.

Assumption 4.8. For a given network graph G and leader trajectory qL, the communica-

tion delay upper bound τ̄ > 0 and delay estimate error upper bound ¯̃τ > 0 are sufficiently

small such that there exists a selection for the gain k and tuning parameter φ such that

λ (LB)− (τ̄ + ¯̃τ) k3

2φ
− ι1k > 0, (4–23)
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inf

{
ρ−1

([√
η,∞

))}
>

√
2 max

{
c
2
, m̄

2
, 1
}

θmin
{
c
2
, m

2
, 1
}

·
(

3
(
N2
d0 + φ2N2

d1 (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))2
)

2k

+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
(

1

4
+Nd2

)
+
ι1
4

) 1
2

. (4–24)

Remark 4.1. Assumption 4.8 ensures that there exists a selection for c such that k > 0.

Accordingly, let the value for c be assigned such that

0 < c < 2k

(
λ (LB)− (τ̄ + ˜̄τ)

2φ
k3 − ι1k

)
.

Assumption 4.8 also ensures that there exist stabilizing initial conditions and that the

ultimate bound on the convergence of each agent toward the leader state is within the

considered domain D.

Remark 4.2. Due to the presence of k, τ̄ , and ¯̃τ in (4–21), there exist sufficiently small

values for τ̄ and ¯̃τ such that there exists a value for the gain k such that (4–23) is

satisfied and inf

{
ρ−1

([
√
η,∞

))}
> δ for any δ ∈ R>0, i.e., the set SD can contain any

initial condition for a small enough τ̄ and ¯̃τ . The tuning parameter φ is included to more

easily see the effect of communication delay on system convergence: the inequality

in (4–23) may be satisfied for large delay and delay estimate error upper bounds by

increasing φ, but doing so may result in a smaller set of stabilizing initial conditions SD
and cause the sufficient condition in (4–24) to be unsatisfied. Thus, if the leader has

a trajectory with low acceleration and the follower agents have less volatile dynamics

and small disturbances, the conditions in Assumption 4.8 can be more easily satisfied

for larger delay and delay estimate error upper bounds by increasing φ, as seen in the

effects of (4–15), (4–16), (4–18), and (4–19) on (4–22) and (4–24).

The following theorem describes the convergence provided by the controller in

(4–4) for the synchronization of a network of agents with uncertain nonlinear dynamics
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given by (4–1) which are affected by heterogeneous uncertain time-varying delays and

input disturbances.

Theorem 4.1. The communication-delayed controller in (4–4) provides UUB syn-

chronization for a network of agents with dynamics given by (4–1) in the sense that

lim supt→∞ ‖qi (t)− qL (t)‖ < ε for some ε ∈ R>0 and every follower agent i ∈ VF for all

initial conditions y (0) ∈ SD, provided that Assumptions 4.1-4.8 are satisfied and the gain

λ satisfies

λ >
1

2
. (4–25)

Proof. Consider the candidate Lyapunov function VL : D× R→ R≥0 defined as

VL ,
c

2
ETE +

1

2
RTMR + Ψ1a + Ψ1b + Ψ2a + Ψ2b + Ψ3a + Ψ3b, (4–26)

which satisfies the inequalities

min
{ c

2
,
m

2
, 1
}
‖y‖2 ≤ VL (y, t) ≤ max

{ c
2
,
m̄

2
, 1
}
‖y‖2

for all y ∈ R2Fm+6 and t ∈ R, where the block inertia matrix M is interpreted as

a function of time, and the LK functionals Ψ1a, Ψ1b, Ψ2a, Ψ2b, Ψ3a, Ψ3b are defined in

(4–8)-(4–13).

By using the Leibniz rule and the definitions of τ̄ , ¯̃τ, ω, ω̂, the time derivatives of

LK functionals Ψ1a,Ψ1b and upper bounds of the time derivatives of LK functionals

Ψ2a,Ψ2b,Ψ3a,Ψ3b are determined as

Ψ̇1a =
φι2 |EF |
k2

(
τ̄
∥∥∥Ṙ∥∥∥2

−
ˆ t

t−τ̄

∥∥∥Ṙ (σ)
∥∥∥2

dσ

)
, (4–27)

Ψ̇1b =
φ (ι3 |EF |+ ι4 |EL|)

k2

(
(τ̄ + ¯̃τ)

∥∥∥Ṙ∥∥∥2

−
ˆ t

t−τ̄−¯̃τ

∥∥∥Ṙ (σ)
∥∥∥2

dσ

)
, (4–28)
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Ψ̇2a ≤
2φ |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

m2

·
∑

(j,i)∈EF

(
1

ω

(
‖(κ1Aij − κ2Lij)R‖2 + κ2

2 ‖DijR‖2)
−
(
‖(κ1Aij − κ2Lij)R (t− τji)‖2 + κ2

2 ‖DijR (t− τji)‖2

))
, (4–29)

Ψ̇2b ≤
2φκ2

2 |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
m2

·
(
|EF |
ω̂

∑
(j,i)∈EF

‖DijR‖2 +
|EL|
ω̂

∑
(L,i)∈EL

‖(Bi ⊗ Im)R‖2

− |EF |
∑

(j,i)∈EF

‖DijR (t− τ̂ji)‖2 − |EL|
∑

(L,i)∈EL

‖(Bi ⊗ Im)R (t− τ̂ji)‖2

)
, (4–30)

Ψ̇3a ≤
2φ |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

m2

·
∑

(j,i)∈EF

(
−
ˆ t

t−τji

(
‖(κ1Aij − κ2Lij)R (σ)‖2 + κ2

2 ‖DijR (σ)‖2) dσ
+
τ̄

ω

(
‖(κ1Aij − κ2Lij)R‖2 + κ2

2 ‖DijR‖2)), (4–31)

Ψ̇3b ≤
2φκ2

2 |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
m2

·
(
−
ˆ t

t−τ̂ji

|EF | ∑
(j,i)∈EF

‖DijR (σ)‖2 + |EL|
∑

(L,i)∈EL

‖(Bi ⊗ Im)R (σ)‖2

 dσ

+
¯̂τ |EF |
ω̂

∑
(j,i)∈EF

‖DijR‖2 +
¯̂τ |EL|
ω̂

∑
(L,i)∈EL

‖(Bi ⊗ Im)R‖2

)
(4–32)

Based on (4–8)-(4–13), feedback of the LK functionals in the state y of the Lyapunov

function VL is facilitated by developing the inequalities

Ψ1a

τ̄
≤ φι2 |EF |

k2

ˆ t

t−τ̄

∥∥∥Ṙ (σ)
∥∥∥2

dσ, (4–33)

Ψ1b

(τ̄ + ¯̃τ)
≤ φ (ι3 |EF |+ ι4 |EL|)

k2

ˆ t

t−τ̄−¯̃τ

∥∥∥Ṙ (σ)
∥∥∥2

dσ, (4–34)
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ω

2
Ψ2a +

ω

2τ̄
Ψ3a ≤

2φ |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
m2

·
∑

(j,i)∈EF

ˆ t

t−τji

(
‖(κ1Aij − κ2Lij)R (σ)‖2 + κ2

2 ‖DijR (σ)‖2

)
dσ, (4–35)

ω̂

2
Ψ2b +

ω̂

2¯̂τ
Ψ3b ≤

2φκ2
2 |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

m2

·
ˆ t

t−τ̂ji

(
|EF |

∑
(j,i)∈EF

‖DijR (σ)‖2 + |EL|
∑

(L,i)∈EL

‖(Bi ⊗ Im)R (σ)‖2

)
dσ. (4–36)

The inequality in (4–33) can be demonstrated using the bounds

Ψ1a ≤
φι2 |EF |
k2

ˆ t

t−τ̄
sup

ς∈[t−τ̄ ,t]

ˆ t

ς

∥∥∥Ṙ (σ)
∥∥∥2

dσds

≤φτ̄ ι2 |EF |
k2

sup
ς∈[t−τ̄ ,t]

ˆ t

ς

∥∥∥Ṙ (σ)
∥∥∥2

dσ

≤φτ̄ ι2 |EF |
k2

ˆ t

t−τ̄

∥∥∥Ṙ (σ)
∥∥∥2

dσ,

and a similar procedure is used to obtain the inequalities in (4–34)-(4–36). Two final

inequalities are developed to facilitate the convergence analysis as

kRT
∑

(j,i)∈EF

[
(κ1Aij − κ2Lij)

ˆ t

t−τji
Ṙ (σ) dσ − κ2Dij

ˆ t−τji

t−τ̂ji
Ṙ (σ) dσ

]
≤

(τ̄ + ¯̃τ) k4

2φ
RTR +

φι2 |EF |
2k2

ˆ t

t−τ̄

∥∥∥Ṙ (σ)
∥∥∥2

dσ +
φι3 |EF |

2k2

ˆ t

t−τ̄−¯̃τ

∥∥∥Ṙ (σ)
∥∥∥2

dσ, (4–37)

kκ2R
T
∑

(L,i)∈EL

(Bi ⊗ Im)

ˆ t

t−τ̂Li
Ṙ (σ) dσ ≤(τ̄ + ¯̃τ) k4

2φ
RTR +

φι4 |EL|
2k2

ˆ t

t−τ̄−¯̃τ

∥∥∥Ṙ (σ)
∥∥∥2

dσ,

(4–38)

which serve to separate the error signal R from a delay contributing expression that can

be compensated using the aforementioned LK functionals. The process to obtain the

inequalities in (4–37)-(4–38) is described in Appendix C.
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By using the closed-loop error system in (4–7), the time derivative of (4–26) can be

expressed as

V̇L =cET (R− λE) +RT
(
CQ̇F + F +G− d+MQ̈L + λMĖ − kLBR

)
+

1

2
RTṀR

+ kRT
∑

(j,i)∈EF

[
(κ1Aij − κ2Lij)

ˆ t

t−τji
Ṙ (σ) dσ − κ2Dij

ˆ t−τji

t−τ̂ji
Ṙ (σ) dσ

]

− kRT
∑

(j,i)∈EF

(κ1Aij − κ2Lij)
ˆ t

t−τji

(
Q̈L (σ) + λQ̇L (σ)

)
dσ

+ kκ2R
T
∑

(j,i)∈EF

Dij
ˆ t−τji

t−τ̂ji

(
Q̈L (σ) + λQ̇L (σ)

)
dσ

− kκ2R
T
∑

(L,i)∈EL

(Bi ⊗ Im)

ˆ t

t−τ̂Li
Ṙ (σ) dσ

+ kRT

(
−κ1

∑
(L,i)∈EL

(Bi ⊗ Im)

ˆ t

t−τLi

(
Q̈L (σ) + λQ̇L (σ)

)
dσ

+ κ2

∑
(L,i)∈EL

(Bi ⊗ Im)

ˆ t−τLi

t−τ̂Li

(
Q̈L (σ) + λQ̇L (σ)

)
dσ

)
+ Ψ̇1a + Ψ̇1b + Ψ̇2a + Ψ̇2b + Ψ̇3a + Ψ̇3b. (4–39)

After using the expressions in (4–27)-(4–32), the inequalities in (4–33)-(4–38), and

canceling terms, (4–39) can be upper-bounded as
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V̇L =cET (R− λE) +
1

2
RTṀR +

(τ̄ + ¯̃τ) k4

φ
RTR

− Ψ1a

2τ̄
− Ψ1b

2 (τ̄ + ¯̃τ)
− ω

2
Ψ2a −

ω̂

2
Ψ2b −

ω

2τ̄
Ψ3a −

ω̂

2¯̂τ
Ψ3b

+RT
(
CQ̇F + F +G− d+MQ̈L + λMĖ − kLBR

)
+ kι1 ‖R‖

+
φτ̄ ι2 |EF |+ φ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|)

k2

∥∥∥Ṙ∥∥∥2

+
2φ |EF | (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

m2

(
(1 + τ̄)

ω

∑
(j,i)∈EF

(
‖(κ1Aij − κ2Lij)R‖2 + κ2

2 ‖DijR‖2)
+
κ2

2 |EF |
(
1 + ¯̂τ

)
ω̂

∑
(j,i)∈EF

‖DijR‖2 +
κ2

2 |EL|
(
1 + ¯̂τ

)
ω̂

∑
(L,i)∈EL

‖(Bi ⊗ Im)R‖2

−
∑

(j,i)∈EF

(
‖(κ1Aij − κ2Lij)R (t− τji)‖2 + κ2

2 ‖DijR (t− τji)‖2

)

− κ2
2 |EF |

∑
(j,i)∈EF

‖DijR (t− τ̂ji)‖2 − κ2
2 |EL|

∑
(L,i)∈EL

‖(Bi ⊗ Im)R (t− τ̂ji)‖2

)
.

After expanding the term
∥∥∥Ṙ∥∥∥2

using the closed-loop error system in (4–7), evaluat-

ing the resulting integrals, using Young’s inequality and the inequality ‖∑n
i=1 ξ‖

2 ≤

n
∑n

i=1 ‖ξ‖
2 for ξ ∈ RFm, canceling terms, and using the bounding expressions in

(4–14)-(4–19), V̇L can be further upper-bounded as

V̇L ≤− c
(
λ− 1

2

)
‖E‖2 − k

(
λ (LB)− (τ̄ + ¯̃τ) k3

φ
− c

2k

)
‖R‖2

− Ψ1a

2τ̄
− Ψ1b

2 (τ̄ + ¯̃τ)
− ω

2
Ψ2a −

ω̂

2
Ψ2b −

ω

2τ̄
Ψ3a −

ω̂

2¯̂τ
Ψ3b

+
(
Nd0 + Ñ0

)
‖R‖+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

·
((
Nd1 + Ñ1

)
‖R‖+Nd2 + Ñ2

)
+ kι1 ‖R‖ , (4–40)
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where λ− 1
2

is positive by (4–25). After using the inequality kι1 ‖R‖ ≤ k2ι1 ‖R‖2 + ι1
4

, the

definitions for c and k, and the expressions in (4–20), (4–40) can be upper-bounded as

V̇L ≤− c ‖E‖2 − k ‖R‖2 − Ψ1a

2τ̄
− Ψ1b

2 (τ̄ + ¯̃τ)
− ω

2
Ψ2a −

ω̂

2
Ψ2b −

ω

2τ̄
Ψ3a −

ω̂

2¯̂τ
Ψ3b

+
(
Nd0 + ρ0 (‖Z‖) ‖Z‖+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))

· (Nd1 + ρ1 (‖Z‖) ‖Z‖)
)
‖R‖

+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|)) (Nd2 + ρ2 (‖Z‖) ‖Z‖) +
ι1
4
. (4–41)

By using a fraction of the feedback −k ‖R‖2 to perform nonlinear damping on the other

terms multiplied by ‖R‖, and using the inequality ρ2 (‖Z‖) ‖Z‖ ≤ ρ2
2 (‖Z‖) ‖Z‖2 + 1

4
,

(4–41) can be upper-bounded as

V̇L ≤− η ‖Z‖2 − Ψ1a

2τ̄
− Ψ1b

2 (τ̄ + ¯̃τ)
− ω

2
Ψ2a −

ω̂

2
Ψ2b −

ω

2τ̄
Ψ3a −

ω̂

2¯̂τ
Ψ3b

−
(
η − 3ρ2

0 (‖Z‖)
2k

− 3φ2ρ2
1 (‖Z‖)
2k

(τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))2

− φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|)) ρ2
2 (‖Z‖)

)
‖Z‖2

+
3N2

d0

2k
+

3φ2N2
d1

2k
(τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))2

+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
(

1

4
+Nd2

)
+
ι1
4
. (4–42)

Provided Assumption 4.8 is satisfied, (4–42) can be upper-bounded as

V̇L ≤− θ ‖y‖2 +
3N2

d0

2k
+

3φ2N2
d1

2k
(τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))2

+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
(

1

4
+Nd2

)
+
ι1
4

for all y ∈ D, and thus,

V̇L ≤ −
θ

2
‖y‖2 ∀ ‖y‖ ≥

√
2

θ

(
3N2

d0

2k
+

3φ2N2
d1

2k
(τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))2

+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
(

1

4
+Nd2

)
+
ι1
4

) 1
2

. (4–43)
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By (4–43), [76, Theorem 4.18] and Assumption 4.8,

lim sup
t→∞

‖qi (t)− qL (t)‖ ≤ lim sup
t→∞

‖y (t)‖ ≤
√

2 max
{
c
2
, m̄

2
, 1
}

θmin
{
c
2
, m

2
, 1
}

·
(3
(
N2
d0 + φ2N2

d1 (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))2
)

2k

+ φ (τ̄ ι2 |EF |+ (τ̄ + ¯̃τ) (ι3 |EF |+ ι4 |EL|))
(

1

4
+Nd2

)
+
ι1
4

) 1
2

(4–44)

uniformly in time for all i ∈ VF and y (0) ∈ SD, since ‖qi − qL‖ ≤ ‖QF −QL‖ = ‖E‖ ≤ ‖y‖

for all i ∈ VF . Hence, since y, qL, q̇L ∈ L∞, it is clear that qi, q̇i ∈ L∞ for all i ∈ VF , and

each agent’s control effort is bounded during the entire state trajectory.

Although this convergence analysis only provides sufficient conditions, the restric-

tion in Assumption 4.8 and the UUB nature of the result in Theorem 4.1 correspond with

several intuitive notions about communication-delayed networked systems:

1. Communication-delayed systems may not be stable for arbitrarily large gains in

proportional and derivative feedback control (as seen in (4–23)).

2. A larger communication delay may reduce the set of stabilizing initial conditions

and increase the ultimate upper bound of the norm of the tracking error trajectory

(as seen in (4–22) and (4–44)).

3. Quickly varying communication delays may reduce the set of stabilizing initial

conditions and increase the ultimate upper bound of the norm of the tracking error

trajectory (as seen in the effect of ω on f1).

4. The effects of volatile dynamics (i.e., larger values for ρ0, ρ1, ρ2 in D) and a higher

leader trajectory acceleration are exacerbated by the presence of communication

delay and may reduce the set of stabilizing initial conditions (as seen in the effect

of ρ on (4–22)).

5. The topology of the network may affect the overall leader-tracking performance (as

seen in the definition of k). The selection of which follower agents are connected
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to the leader, the topology of the follower agent network, and the inter-agent

edge weights affect λ (LB), for which a larger value facilitates satisfaction of the

inequality in (4–23).

Furthermore, as the communication delay and delay estimate tend toward zero (ignoring

the singularity of τ̄ ≡ 0, which obviates the need for the LK functional-based approach

taken in this chapter), the effects of the delay vanish and the convergence analysis

resembles that of a high-gain robust control analysis, similar to that in Chapter 2.

4.5 Simulation

Simulation results are provided to demonstrate the capability of the proposed

controller in (4–4) to obtain approximate convergence in leader-follower synchronization,

despite the effects of uncertain, time-varying, heterogeneous communication delays and

uncertain, nonlinear, heterogeneous dynamics affected by uncertain input disturbances.

The leader-follower network is modeled with four follower agents, where only one agent

interacts with the leader, as depicted in Fig. 4-3. Each follower agent has nonlinear

dynamics modeled as

ui =

 p1,i + 2p3,ic2,i p2,i + p3,ic2,i

p2,i + p3,ic2,i p2,i

 q̈i +

 −p3,is2,iq̇i,2 −p3,is2,i(q̇i,1 + q̇i,2)

p3,is2,iq̇i,1 0

 q̇i
+

 fd1,i 0

0 fd2,i

 q̇i + di,

where p1,i, p2,i, p3,i, fd1,i, fd2,i ∈ R>0 are constant parameters described in Table 2-1,

qi ∈ R2 describes the generalized position coordinate in radians, qi,1, qi,2 respectively

denote the first and second entries of the vector qi, c2,i , cos (qi,2), s2,i , sin (qi,2), and

the disturbance di ∈ R2 is modeled as di =

 ∆1,i sin (Θ1,it)

∆2,i sin (Θ2,it)

 N ·m, where the constant

parameters ∆i,Θi ∈ R>0 are described in Table 4-1. The generalized coordinates
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are initialized as q1 (0) =

 −0.5

5.0

 rad, q2 (0) =

 0.0

1.0

 rad, q3 (0) =

 0.5

0.0

 rad,

q4 (0) =

 −1.0

0.75

 rad, and q̇i (0) =

 0.0

0.0

 rad/s for i = 1, . . . , 4. The nonzero adjacency

gains are selected as aij = 1 ∀ (j, i) ∈ EF and the nonzero pinning gains are selected as

bi = 1 ∀i : (L, i) ∈ EL. The leader state is assigned the trajectory qL =

 sin (t)

0.5 cos (t)


rad. The uncertain communication delay for each inter-agent interaction lies between 5

and 50 milliseconds and is modeled as τji = αji + βji rand (−1, 1), where the constant

parameters αji, βji ∈ R>0 are given in Table 4-2 and rand (−1, 1) samples randomly in

(−1, 1) with a uniform distribution. To maintain consistency between simulation trials, the

random number generator is started with the same seed for each simulation.

Figure 4-3. Network communication topology.

Table 4-1. Disturbance parameters.

Robot 1 Robot 2 Robot 3 Robot 4

Λ1,i (N ·m) 1.0 2.0 1.5 0.5

Θ1,i (rad/s) 1.0 2.0 3.0 5.0

Λ2,i (N ·m) 0.5 0.2 0.7 0.9

Θ2,i (rad/s) 4.0 3.0 1.0 2.0
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Table 4-2. Communication delay and delay estimate parameters for each
communication link.

Channel αji (s) βji (s) τ̂ji (s)

(L, 1) 0.01 0.002 0.011

(1, 2) 0.04 0.01 0.041

(1, 3) 0.025 0.009 0.028

(2, 1) 0.02 0.005 0.018

(2, 3) 0.035 0.006 0.032

(3, 1) 0.03 0.002 0.032

(3, 2) 0.01 0.005 0.012

(3, 4) 0.045 0.003 0.048

(4, 3) 0.03 0.008 0.034

The contributions of self-delayed feedback and feedback without self-delay, both

alone and mixed, are compared by simulating the closed-loop system with various

values for κ1 and κ2. Specifically, gain tuning was performed for three different imple-

mentations of the control policy in (4–4): (a) feedback without self-delay (κ1 = 1, κ2 = 0),

(b) only feedback with self-delay (κ1 = 0, κ2 = 1), and (c) a mixture of feedback with

self-delay and without self-delay (κ1 > 0, κ2 > 0, κ1 + κ2 = 1). The gains k and λ

were tuned by selecting values such that every combination of k ∈ {0.1, 0.2, . . . , 30} and

λ ∈ {0.1, 0.2, . . . , 15} is used in simulation. For implementation (c), every combination

of the aforementioned values for k and λ was used in conjunction with each value of κ1

and κ2 such that κ1 ∈ {0.01, 0.02, . . . , 0.99}, κ2 = 1 − κ1. To better simulate a real-world

scenario, inexact estimates for the communication delays are used for feedback with

self-delay. The estimates of the communication delays are constant and are shown in

Table 4-2. The simulation results using these different gain combinations were vetted
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using the leader tracking-based cost function

J ,
4∑
i=1

2∑
j=1

rms (qL,j − qi,j) ,

where rms (·) denotes the RMS of the argument’s sampled trajectory between 0 and

20 seconds, qL,j denotes the jth entry of the vector qL, and qi,j denotes the jth entry

of the vector qi. The gain combinations which produced the lowest cost for the three

different control implementations and the associated costs are shown in Table 4-3, and

the according simulation results are shown in Fig. 4-4 - 4-6.

As seen in Table 4-3, for the given simulation setting, control implementation (c)

(mixture of feedback without self-delay and feedback with self-delay) gives a 12.5%

performance increase over implementation (a) (no self-delayed feedback) and a 58.8%

performance increase over implementation (b) (only self-delayed feedback). Whereas

implementation (a) remains stable for a selection of the gain k up to 30, implementation

(b) produces an unstable closed-loop system if k ≥ 3.6 and λ = 15, which demonstrates

the sensitivity of only using feedback with self-delay. Implementation (c) produces the

best leader-tracking performance by combining feedback without self-delay, which is

helpful in stabilization, and feedback with self-delay, which can provide better tracking

performance by comparing signals closer in time.

Table 4-3. Tuned gains and associated costs for (a) feedback without self-delay, (b) only
feedback with self-delay, and (c) a mixture of feedback with self-delay and
without self-delay.

k λ κ1 κ2 J

(a) 30 15 1 0 52.2

(b) 3.5 15 0 1 111

(c) 30 15 0.71 0.29 45.7
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Figure 4-4. Leader-tracking error under communication-delayed closed-loop control
using only feedback without self-delay (κ1 = 1, κ2 = 0).
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Figure 4-5. Leader-tracking error under communication-delayed closed-loop control
using only feedback with self-delay (κ1 = 0, κ2 = 1).
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Figure 4-6. Leader-tracking error under communication-delayed closed-loop control
using a mixture of feedback without self-delay and feedback with inexact
self-delay (κ1 = 0.69, κ2 = 0.31).

4.6 Concluding Remarks

A convergence analysis is presented which provides sufficient conditions for UUB

leader-synchronization of a network of communication-delayed agents using a novel,

decentralized, neighborhood-based PD controller. The agents are modeled with dy-

namics described by heterogeneous, uncertain Euler-Lagrange equations of motion

affected by time-varying, unknown exogenous disturbances. The communication delay

is considered to be heterogeneous, time-varying, and uncertain. An estimate of the

communication delay is used in the controller to estimate recent tracking errors. The

benefit of using a mixture of feedback without self-delay and feedback with inexact self-

delay is demonstrated in simulation. Salient dependencies for the sufficient conditions

for approximate convergence in synchronization are the upper bounds of the heteroge-

neous communication delays and delay estimate errors, feedback gains, and network
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connectivity. Some prominent assumptions are that the follower communication network

is undirected and at least one follower agent receives information from the leader.

The approach in this chapter provides a framework for exploring other methods to

improve the performance of decentralized control in networks affected by communica-

tion delay. For example, the controller in (4–4) may be improved by the development of

a decentralized algorithm which changes edge weights or the neighbor set based on

local network structure and estimates of neighbors’ communication delays; customiza-

tion of κ1 and κ2 for each neighbor based on the delay estimates; and decentralized

communication-based algorithms which allow each agent to predict the leader trajectory,

similar to that in [43], thereby reducing the impact of the propagation of communication

delays through agents’ dynamics.
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CHAPTER 5
DECENTRALIZED SYNCHRONIZATION OF UNCERTAIN NONLINEAR SYSTEMS

WITH A REPUTATION ALGORITHM

This chapter considers a decentralized network control scenario in which agents

use both communication and sensing to interact. The communication is assumed to

be continuously available, but have possible inaccuracies due to poor self localization.

The neighbor sensor measurements are assumed to provide accurate relative position

information, but only occur intermittently. Because the sensor measurements are

modeled as intermittent, and therefore may not be frequent enough to be implemented

in closed-loop control, they are used to vet communicated information so that an agent

can rely more on information from more reliable neighbors. A reputation algorithm

is developed in which each agent quantitatively evaluates the trust of each neighbor

based on the discrepancy between communicated and sensed information. The

trust values are then used in the reputation algorithm so that agents communicate

about a mutually shared neighbor to collaboratively obtain a reputation. Each agent’s

contribution to the reputation algorithm is weighted by that neighbor’s own reputation.

The result of the reputation algorithm is used to update consensus weights which

affect the relative weighting in the decentralized control policy’s use of a neighbor’s

communicated information compared to other neighbors’, if an agent has multiple

neighbors. However, the consensus weight updates alter the feedback structure of and

introduce discontinuities into the network-wide closed-loop system. Concepts from

switching theory and the sensitivity of the solution to the Lyapunov Equation are used to

address the effects of asymmetric consensus weight updates and develop a dwell-time

that must elapse between successive updates in the network.

5.1 Problem Formulation

5.1.1 Network Properties

Similar to the previous chapters, the follower graph is modeled such that the

network topology is static, i.e., VF and EF do not vary in time. However, dissimilar
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to the previous chapters, the edge weights are modeled as time-varying such that

aij : R → R>0 if (j, i) ∈ EF and aij = 0 otherwise for every follower-to-follower edge

(j, i) ∈ EF . Furthermore, this chapter considers the more general directed graph to

describe the network topology, i.e., interaction links may not necessarily be bidirectional.

The following assumption specifies the class of networks considered in the following

analysis, where the term “strongly-connected” indicates that there exists a sequence of

directed edges between any two nodes.

Assumption 5.1. The graph GF is strongly-connected and at least one agent is con-

nected to the leader.

5.1.2 Dynamic Models and Properties

Let the dynamics of each follower agent i ∈ VF be modeled with uncertain second-

order nonlinear dynamics as

ẍi = fi (xi, ẋi) + ui, (5–1)

where xi ∈ Rm is the state, fi : Rm × Rm → Rm denotes the uncertain nonlinear drift

dynamics, and ui ∈ Rm is the control input to be designed. The time-varying trajectory

of the leader state is denoted by xL : R → Rm, which is known by at least one of the

follower agents. The following assumptions concerning the follower agents’ dynamics

and the leader trajectory are made to simplify the analysis.

Assumption 5.2. The drift dynamics, fi, are first-order differentiable, i.e., the first-order

derivative exists and is bounded if xi, ẋi, ẍi are bounded, for every follower agent i ∈ VF .

Assumption 5.3. The leader state trajectory is sufficiently smooth such that xL, ẋL, ẍL

are bounded.

Note that the dynamics in (5–1) can be represented in Euler-Lagrange form if the

inertia matrix is known and used in the controller. The inertia matrix is omitted from the

dynamics to simplify the subsequent analysis.

99



5.1.3 Neighbor Communication and Sensing

Neighboring follower agents use both communication and sensing to interact with

each other. Communication of continuous estimates of the state information (xj, ẋj) of

agent j ∈ VF is available to its neighbor i ∈ NFj at all times; however, the communicated

information may be inaccurate due to imperfect knowledge of the agent’s own state

in the global coordinate system. For example, a UAV in a network may transmit an

inaccurate estimate of its own position. However, intermittent neighbor sensing of an

agent j ∈ VF by a neighbor i ∈ NFj provides accurate relative position information

(xj − xi) at isolated points in time. For example, an agent may be able to observe

neighbors using a camera, but may only determine the relative position intermittently

due to occlusions, low hardware refresh rates, etc. As a consequence, neighbor sensing

may not be frequent enough for stability in a control algorithm which uses neighbor

sensing alone. Thus, each agent must use both continuous, possibly inaccurate

neighbor communication and accurate, intermittent neighbor sensing to accomplish

a control objective. Because the intermittent neighbor sensing is accurate, it may be

used to vet and intelligently use the communicated state information. Let x̂i, ˙̂xi denote

the estimates of xi, ẋi computed by agent i ∈ VF . The following assumptions concerning

the communicated state information are made to facilitate the following analysis.

Assumption 5.4. The difference between the estimated state information x̂i, ˙̂xi and the

actual state information xi, ẋi is bounded for each follower agent i ∈ VF , i.e., there exist

known positive constants x̄, ¯̇x ∈ R such that ‖x̂i − xi‖ ≤ x̄ and
∥∥∥ ˙̂xi − ẋi

∥∥∥ ≤ ¯̇x for each

i ∈ VF and all time.

Assumption 5.5. Information communicated from the leader agent is accurate.

As seen in the following section, Assumption 5.5 is critical to achieving close

synchronization with the leader. Whereas it may be difficult to guarantee perfect

state communication for each agent, it is plausible to guarantee Assumption 5.5 by
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outfitting only the leader agent with more robust localization equipment or monitoring by

personnel.

5.1.4 Control Objective

Similar to traditional synchronization approaches (cf. [3, 7, 8, 77]), the objective is to

drive the states of the networked agents towards the state of the network leader such

that lim supt→∞ ‖xi (t)− xL (t)‖ ≤ ε with a small ε through advantageous use of the

communicated and sensed information.

5.2 Controller Development

5.2.1 Error System

The error signal in decentralized control traditionally has the form
∑

j∈NFi aij (xj − xi)+

bi (xL − xi). However, since accurate state information is not always available to each

agent, a decentralized neighbor-based error signal is developed based on communi-

cated information as

êi ,
∑
j∈NFi

aij (x̂j − x̂i) + bi (xL − x̂i) . (5–2)

In (5–2), the first term provides communication-based feedback for comparison to

neighboring follower agents and the second term provides communication-based

feedback for comparison to the leader agent, if that connection exists. Hence, instead of

imposing discontinuities on the error signal by using the accurate sensed relative state

whenever a sensor measurement is available, the strategy is to use the communicated

information for feedback and update the edge weights aij based on the discrepancy

between the communicated and sensed information, as demonstrated in Section 5.2.3.

These edge weights will be updated so that neighbors which seem to provide more

accurate information have a greater impact on the synchronization performance.

An auxiliary error signal is analogously defined as

r̂i ,
∑
j∈NFi

aij

(
˙̂xj − ˙̂xi

)
+ bi

(
ẋL − ˙̂xi

)
+ λêi, (5–3)

where λ ∈ R is a positive constant tuning parameter.
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5.2.2 Decentralized Controller

The auxiliary error signal in (5–3) is used to design a decentralized controller as

ui = kr̂i, (5–4)

where k ∈ R is a constant positive control gain. The following section demonstrates how

the discrepancies between communicated and sensed information are advantageously

used in the control method in (5–4).

5.2.3 Reputation Algorithm

Each agent i ∈ VF assigns a trust value, σij ∈ [0, 1], to each neighbor j ∈ NFi,

where 0 corresponds to no trust and 1 corresponds to highest trust. The trust value

is computed using communicated information x̂j, internal information x̂i, and sensed

relative position information xj − xi from time instances when sensor measurements

are available. Let t1ij, t2ij, . . . ∈ R denote the time instances in which agent i obtains a

sensor measurement of xj − xi, let t̄ ∈ R denote a positive number, and let Sij (t) ,{
tlij | (l ∈ Z>0) ∧

(
t− t̄ ≤ tlij ≤ t

)}
denote the set of neighbor sensing time instances

which have occurred after t − t̄ up until the current time.1 The use of t̄ is motivated by

expiring relevancy of old neighbor sensing data and mitigation of computation burden

in determining a trust value (cf. [78]). There are numerous options in selecting a trust

metric (see the survey in [79]), and any trust metric which maps into (0, 1] and has a

positive lower bound for a bounded input is appropriate for the analysis developed in this

chapter. In this work, a trust metric is designed as

σij ,


1 |Sij| = 0

1
|Sij |

∑
tlij∈Sij

e−s‖x̃ij(tlij)−ˆ̃xij(tlij)‖ otherwise,

(5–5)

1 Recall that sensor measurements occur at isolated points in time, i.e., Sij (t) is a
finite set for all t ∈ R.
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where s ∈ R is a positive tuning parameter, x̃ij , xj − xi is the relative position

obtained via neighbor sensing, and ˆ̃xij , x̂j − x̂i is the relative position obtained via

communication of the state estimate x̂j and the internal position estimate x̂i maintained

by agent i.2 In (5–5), a trust value of 1 is computed if there are no recent sensor

measurements (i.e., Sij (t) is an empty set). If there are recent sensor measurements,

the term e−s‖x̃ij(tlij)−ˆ̃xij(tlij)‖ maps the discrepancy between the estimated relative

position and the actual relative position to (0, 1]. The result is then averaged with the

corresponding values for the other sensor measurements to obtain the overall trust

value. Note that x̃ij and ˆ̃xij may differ due to an inaccurate estimate of x̂i, i.e., an agent’s

trust of a neighbor may be affected by an inaccurate estimate of its own state. However,

because x̂i is necessary to provide a continuous comparison to neighbors’ states,

there is no utility in determining a trust value for an agent’s own state. Future work

may investigate methods to better estimate an agent’s own state based on neighbor

feedback.

Each follower agent i ∈ VF maintains a reputation value ζij : Π
2|NFi∩NFj|+2

l=1 R→ R for

every neighbor j ∈ NFi based on recommendations from mutual neighbors, where the

reputation is updated using trust values as

ζ̇ij =
∑

n∈NFi∩NFj

ηζiζin (ζnj − ζij) + ησi (σij − ζij) (5–6)

with the initial condition ζij (0) = 1, where a higher reputation corresponds to higher

reliability and ηζi, ησi ∈ R>0 are tunable gains that weigh how much recommended

information is relied upon compared to directly observed information. Similar to [49],

the first term in (5–6) contributes towards the reputation update by agent i of agent j

based on the reputation of j held by mutual neighbors n ∈ NFi∩NFj via communication.

2 Similar to [78], the summation in (5–5) can be weighted by how much time has
elapsed since the measurements took place, if relevant for the intended application.
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Dissimilar to [49], the contribution of a mutual neighbor to the reputation update is

weighted by the reputation of that agent, as seen in the multiplication by ζin. Thus, an

agent which has a low reputation has less significant impact in recommendation of a

reputation value. The second term in (5–6) directly uses the observation-based trust

value to update reputation. As shown in Appendix D, for each connection (j, i) ∈ EF ,

the reputation value ζij is bounded such that ζij ∈ [σ∗, 1] for all t ∈ R, where σ∗ ∈ R is a

bounding constant such that σij ≥ σ∗ for all t ∈ R, and σ∗ > 0 by Assumption 5.4.

5.2.4 Edge Weight Updates

The reputation values, ζij, are used to update the edge weight values, aij, which

quantify how much influence a neighbor has in the decentralized control policy in

(5–4). However, changes to the edge weight values affect the feedback in (5–4), which

affects the response of the closed-loop system. To control the effects of the edge

weight updates on the systems’ feedback structure, and based on the subsequent

convergence analysis, the edge weights are updated at discrete times in predefined

time intervals. Thus, the adjacency matrix A and the Laplacian matrix LF are functions

of time, i.e., A : R → RF×F and LF : R → RF×F , where the adjacency matrix is

initialized such that aij (0) = 1
|NFi|

if (j, i) ∈ EF , i.e., all follower-to-follower connections

are equally weighted at t = 0. However, if the edge weights are updated too rapidly,

then the resulting frequent discontinuities in the switched closed-loop system may cause

instability (cf. [80, Chapter 2]). Thus, a dwell-time (cf. [80, Chapter 3]), τd ∈ R>0, is

developed to describe the minimum amount of time that must elapse before an agent

i ∈ VF can update its edge weight values, {aij | j ∈ NFi}, since its last update (or the

initial time), and is computed before the control implementation. Implementation of the

dwell-time is decentralized in the sense that an agent may update its edge weights at

different times from other neighbors as long as the elapsed time between successive

updates is not shorter than the dwell-time. The network topology-dependent minimum

dwell-time is given in Section 5.5 and is based on the subsequent convergence analysis.
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Let t1di, t
2
di, . . . ∈ R denote the times at which agent i ∈ VF updates its edge weight

values {aij | j ∈ NFi}, where tl+1
di − tldi ≥ τd for all l ∈ Z>0. The edge weights stay

constant between updates and the reputation values are mapped to the edge weight

values at each update time as

aij
(
tldi
)

=
ζij
(
tldi
)∑

n∈NFi ζin
(
tldi
) , l ∈ Z>0, (5–7)

which results in a piecewise continuous control policy in (5–4), where the reputation

values are normalized in (5–7) so that
∑

j∈NFi aij = 1. Note that since ζij ≥ σ∗ for all

(j, i) ∈ EF and t ∈ R, there exists a constant a∗ ∈ R such that 0 < a∗ < 1 and aij ∈ [a∗, 1]

for all (j, i) ∈ EF and t ∈ R.

5.3 Closed-loop Error System

To facilitate analysis of the closed-loop system, the operator P : RF×F → RF×F

is defined as the (positive definite and symmetric) solution to the continuous algebraic

Lyapunov Equation (CALE) such that MTP (M) + P (M)M = −IF for a Hurwitz matrix

M ∈ RF×F .

Lemma 5.1. If Assumption 5.1 is satisfied, then the matrix −LF −B is Hurwitz.

Proof. See Appendix E.

For convenience, the vectors xi, x̂i, and xL are stacked such that X ,
[
xT1 , . . . , x

T
F
]T ∈

RFm, X̂ ,
[
x̂T1 , . . . , x̂

T
F
]T ∈ RFm, XL ,

[
xTL, . . . , x

T
L

]T ∈ RFm. To facilitate the description

of the agents’ progress towards synchronization, the error signals E , XL − X ∈ RFm

and R , Ė + λE ∈ RFm are introduced. Using the dynamics in (5–1), the controller in

(5–4), and the definitions of E and R, the closed-loop dynamics can be represented as

Ṙ =ẌL − F
(
X, Ẋ

)
+ λĖ − k ((LF +B)⊗ Im)R

+ k ((LF +B)⊗ Im)
(

˙̂
X − Ẋ + λ

(
X̂ −X

))
, (5–8)
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where F ,
[
fT1 , . . . , f

T
F
]T ∈ RFm and the second line in (5–8) isolates the effects of inac-

curate state estimation on the closed-loop system. After some algebraic manipulation,

(5–8) can be expressed as

Ṙ =Nd + Ñ − k ((LF +B)⊗ Im)R− (P (−LF −B)⊗ Im)−1E

+ k ((LF +B)⊗ Im)
(

˙̂
X − Ẋ + λ

(
X̂ −X

))
, (5–9)

where the functions Nd : Π3
l=1RFm → RFm and Ñ : Π6

l=1RFm → RFm are defined as

Nd , ẌL − F
(
XL, ẊL

)
,

Ñ , F
(
XL, ẊL

)
− F

(
X, Ẋ

)
+ λĖ + (P (−LF −B)⊗ Im)−1E.

Terms are segregated into Nd and Ñ such that ‖Nd‖ can be upper-bounded through

Assumption 5.3 by a constant and
∥∥∥Ñ∥∥∥ can be upper-bounded by a function of the error

signals E and R through a Mean Value Theorem-based approach, where the matrix

(P (−LF −B))−1 is upper bounded by a constant, as shown in the following section.

Accordingly, let the known constant N̄d ∈ R be defined such that

sup
t∈R
‖Nd‖ ≤ N̄d. (5–10)

Additionally, by Assumption 5.2 and [58, Lemma 5], there exists a strictly increasing,

radially unbounded function ρ : R→ R which facilitates an upper-bound for
∥∥∥Ñ∥∥∥ as∥∥∥Ñ∥∥∥ ≤ ρ (‖Z‖) ‖Z‖ , (5–11)

where the composite vector Z ∈ R2Fm is defined as Z ,
[
ET , RT

]T .
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5.4 Convergence Analysis

Some additional expressions are introduced to facilitate the convergence analysis.

Let the set P be defined as

P ,

{
P (−LF −B) | aij ∈ [a∗, 1] ,

∑
j∈NFi

aij = 1, ∀ (j, i) ∈ EF
}
,

which is the set of solutions for the CALE for every possible value of the matrix −LF − B

under the edge weight update law in (5–7). Because P is a bounded set, there exist

positive constants p∗, p̄∗ ∈ R defined as p∗ , infP∈P λ (P ) and p̄∗ , supP∈P λ̄ (P ). These

constants are used to define a minimum sufficient dwell-time, τ ∗d ∈ R, which is designed

for use in the convergence theorem as

τ ∗d ,
ln (µ∗)
ψ

max{p̄∗,1} − β∗
,

where the positive constants ψ, µ∗ ∈ R are defined as ψ , 1
2

min
{
λ, k

4

}
and µ∗ ,

max{p̄∗,1}
min{p∗,1} , and β∗ ∈ R is a selectable positive constant which satisfies 0 < β∗ < ψ

max{p̄∗,1} .

As shown in the following convergence analysis, there is a trade-off in the selection of β∗

between convergence rate and how rapidly the agents may update their edge weights.

To further facilitate the subsequent analysis, let the open and connected set D be

defined as

D ,
{
Z ∈ R2Fm | ‖Z‖ < χ∗

}
,

where χ∗ , inf

(
ρ−1

([
1
p̄∗

√
kψ
3
,∞
)))

∈ R and the inverse image ρ−1 (Θ) ⊂ R for a set

Θ ⊂ R is defined as ρ−1 (Θ) , {ξ ∈ R | ρ (ξ) ∈ Θ}. The set of stabilizing initial conditions

is a subset of D and is defined as

S ,

{
Z ∈ R2Fm | ‖Z‖ < χ∗

µ∗

}
. (5–12)
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Finally, the constant parameter L̄B ∈ R is defined as L̄B ,
√
|EF |+ F +

∑
i∈VF b

2
i , which

upper-bounds supt∈R ‖LF (t) +B‖ since ‖LF (t) +B‖ ≤ ‖LF (t) +B‖F ≤ L̄B for all t ∈ R

by the triangle inequality and the fact that 0 < aij ≤ 1, aii = 0 for all i, j ∈ VF .

The following theorem describes sufficient conditions for the approximate conver-

gence of the follower agents’ states towards the leader’s state under the decentralized

control policy in (5–4).

Theorem 5.1. The decentralized controller in (5–4) along with the edge weight update

policy in (5–7) provide UUB leader synchronization for a network of agents with nonlin-

ear dynamics described in (5–1) and neighbor communication and sensing feedback

described in Section 5.1.3 in the sense that lim supt→∞ ‖xi (t)− xL (t)‖ ≤ ε for some

ε ∈ R>0 and every follower agent i ∈ VF for all initial conditions Z (0) ∈ S, provided

that Assumptions 5.1-5.5 are satisfied, the dwell-time τd satisfies τd ≥ τ ∗d , and the state

estimate errors are sufficiently small such that there exists a selection for the gain k

which satisfies the inequality

3
(
p̄∗N̄d

)2

k
+ 3k

(
p̄∗FL̄B (¯̇x+ λx̄)

)2
<

ψχ∗

µ∗max {p̄∗, 1} . (5–13)

Remark 5.1. The inequality in (5–13) can be satisfied for sufficiently small estimate

error upper bounds x̄, ¯̇x; however, as intuition would indicate, stability is not guaranteed

for arbitrarily large estimate error upper bounds. Future research may overcome this

restriction by developing an algorithm which severs neighbor connections if the apparent

error in the communicated state estimates exceeds a threshold, i.e., aij 6= 0 if and only if

(j, i) ∈ EF and σij > σT , where σT ∈ (0, 1) is a threshold parameter.

Proof. Let the set {t0d, t1d, . . .} be defined as the union of the switching instances by each

agent, including the initial time, such that tl+1
d > tld for all l ∈ Z≥0. Additionally, let the

mapping Λ : [0,∞)→ Z≥0 be defined such that Λ (t) is the number of switches that have

occurred until time t, i.e., Λ (t) , arg minl∈Z≥0

{
t− tld | t− tld ≥ 0

}
. A candidate multiple
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Lyapunov function, VL : D × R→ R, is defined as

VL (Z, t) , WΛ(t) (Z) ,

where the function Wl : D → R belongs to a family of Lyapunov-like functions

{Wl | l ∈ Z≥0} defined as

Wl (Z) ,
1

2
ETE +

1

2
RT
(
P
(
−LF

(
tld
)
−B

)
⊗ Im

)
R,

which satisfies the inequalities

1

2
min

{
p∗, 1

}
‖Z‖2 ≤ Wl (Z) ≤ 1

2
max {p̄∗, 1} ‖Z‖2 (5–14)

for all Z ∈ R2Fm and l ∈ Z≥0. Using the closed-loop error system in (5–9), the derivative

of VL can be expressed as

V̇L =ET (R− λE) +RT
(
P
(
−LF

(
t
Λ(t)
d

)
−B

)
⊗ Im

)
·
(
Nd + Ñ −

(
P
(
−LF

(
t
Λ(t)
d

)
−B

)
⊗ Im

)−1

E + k
((
−LF

(
t
Λ(t)
d

)
−B

)
⊗ Im

)
R

+ k
((
LF
(
t
Λ(t)
d

)
+B

)
⊗ Im

)(
˙̂
X − Ẋ + λ

(
X̂ −X

)))
for all t ∈

[
tld, t

l+1
d

)
. After using the definitions of p∗, p̄∗, and L̄B, the relation

kRT ((P (−LF −B) (−LF −B))⊗ Im)R =
k

2
RT
[
(P (−LF −B) (−LF −B))⊗ Im

+
(

(−LF −B)T P (−LF −B)
)
⊗ Im

]
R = −k

2
‖R‖2 ,

the bounding expressions in (5–10) and (5–11), and canceling terms, V̇L can be upper-

bounded as

V̇L ≤− λ ‖E‖2 − k

2
‖R‖2 + p̄∗N̄d ‖R‖+ p̄∗ρ (‖Z‖) ‖Z‖ ‖R‖

+ kp̄∗L̄B
∥∥∥ ˙̂
X − Ẋ + λ

(
X̂ −X

)∥∥∥ ‖R‖
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for all t ∈
[
tld, t

l+1
d

)
. After some algebraic manipulation, V̇L can be upper-bounded as

V̇L ≤− λ ‖E‖2 − k

4
‖R‖2 +

3
(
p̄∗N̄d

)2

k
+

3 (p̄∗ρ (‖Z‖) ‖Z‖)2

k

+ 3k
(
p̄∗L̄B

∥∥∥ ˙̂
X − Ẋ + λ

(
X̂ −X

)∥∥∥)2

for all t ∈
[
tld, t

l+1
d

)
. By using the definition of the auxiliary constant ψ, Assumption 5.4,

and the triangle inequality, V̇L is then upper-bounded as

V̇L ≤ −ψ ‖Z‖2 −
(
ψ − 3 (p̄∗ρ (‖Z‖))2

k

)
‖Z‖2 + ε1

for all t ∈
[
tld, t

l+1
d

)
, where the constant ε1 ∈ R is defined as ε1 ,

3(p̄∗N̄d)
2

k
+

3k
(
p̄∗FL̄B (¯̇x+ λx̄)

)2. Provided the initial condition satisfies Z (0) ∈ S, then

V̇L ≤ −ψ ‖Z‖2 + ε1

for all t ∈
[
tld, t

l+1
d

)
. By using the right-side inequality in (5–14), the upper bound of V̇L

can be expressed as

V̇L ≤−
ψ

max {p̄∗, 1}VL −
(

ψ

max {p̄∗, 1}VL − ε1

)
≤− ψ

max {p̄∗, 1}VL ∀VL ≥
max {p̄∗, 1}

ψ
ε1 (5–15)

for all t ∈
[
tld, t

l+1
d

)
. Using the comparison lemma (cf. [76, Lemma 3.4]) with the

inequality in (5–15), VL can be shown to be upper-bounded as

VL (Z, t) ≤ max

{
e−

ψ
max{p̄∗,1}(t−tld)VL

(
Z
(
tld
)
, tld
)
,
max {p̄∗, 1}

ψ
ε1

}
(5–16)

for all t ∈
[
tld, t

l+1
d

)
. By using (5–16), the ultimate bound of the trajectory of VL can be

determined by considering the following three cases, where the constant ε2 ∈ R is

defined as ε2 , max{p̄∗,1}
ψ

ε1 and Br ⊂ R2Fm denotes a closed ball of radius r ∈ R>0

centered about the origin.

Case 1: The trajectory of VL has not entered Bε2.
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Consider that at time t′ ∈
[
tld, t

l+1
d

)
, {VL (Z, t) | t ≤ t′} ∩ Bε2 = ∅. The inequality in

(5–16) can be conservatively upper-bounded to account for the effects of switches as

VL (Z (t′) , t′) ≤e−
ψ(t′−tld)
max{p̄∗,1}µ∗Wl−1

(
Z
(
tld
))

≤e−
ψ(t′−tld)
max{p̄∗,1}µ∗e−

ψ(tld−tl−1
d )

max{p̄∗,1} Wl−1

(
Z
(
tl−1
d

))
≤ · · ·

≤e−
ψt′

max{p̄∗,1} (µ∗)lW0 (Z (0)) . (5–17)

By use of a minimum dwell-time, (5–17) may be upper-bounded as

VL (Z (t′) , t′) ≤ e−β
∗t′W0 (Z (0)) (5–18)

if the dwell-time between switching events is greater than or equal to τ ∗d . Given (5–16)

and (5–18), it is clear that use of a dwell-time τd ≥ τ ∗d guarantees that VL is upper-

bounded by an exponential decay from the initial condition VL (Z (0) , 0) towards Bε2 for

any t′ ∈
[
tld, t

l+1
d

)
such that {VL (Z, t) | t ≤ t′} ∩Bε2 = ∅.

Case 2: The trajectory of VL has reached, or started in, the ball Bε2, and no switch has

occurred since entering Bε2.

Consider that VL (Z (t′) , t′) ∈ Bε2 at a time t′ ∈
[
tld, t

l+1
d

)
. Then by (5–16), VL (Z, t) ∈

Bε2 for all t ∈
[
tld, t

l+1
d

)
.

Case 3: The trajectory of VL was in the ball Bε2, and then a switch occurred.

Consider that the trajectory of VL was inside the ball Bε2 the instant before a

switch occurred at time tld. The Lyapunov function VL can only increase so much such

that VL
(
Z
(
tld
)
, tld
)
∈ Bµ∗ε2 by the definition of µ∗, i.e.,

Wl(Z(tld),tld)
Wl−1(Z(tld),tld)

≤ µ∗. Using the

definition of the dwell-time τ ∗d , it can be shown that Wl

(
Z
(
tld + τ ∗d

)
, tld + τ ∗d

)
≤ ε2, i.e., the

trajectory of VL re-enters the ball Bε2 before the next switching instance.

Thus, Cases 1-3 together imply that lim supt→∞ VL (Z, t) ≤ µ∗ε2, where the in-

equality in (5–13) guarantees that Bµ∗ε2 is contained within the set D. Therefore,
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lim supt→∞ ‖Z (t)‖ ≤
√

2µ∗ε2
min{p∗,1} by the inequalities in (5–14). Since ‖xi − xL‖ ≤ ‖E‖ ≤

‖Z‖ for every i ∈ VF , we have that lim supt→∞ ‖xi (t)− xL (t)‖ ≤
√

2µ∗ε2
min{p∗,1} . An analysis

of the closed-loop system shows that the decentralized controller is bounded for all

time.

Remark 5.2. The minimum dwell-time used to ensure stability refers to the time that

must elapse between any agents’ updates. To accomplish this without requiring central-

ized communication during control implementation, the agents can be pre-programmed

with a set of times in which they are allowed to update their consensus weights using a

previously computed minimum dwell-time. The following section demonstrates how to

compute the minimum dwell-time.

5.5 Satisfaction of Sufficient Conditions

In this section, bounds are computed for p∗ and p̄∗ so that the size of S can be

lower-bounded with known information, (5–13) can be verified, and a value for τd can be

computed which satisfies τd ≥ τ ∗d (a sufficient condition for convergence in Theorem 5.1)

before the decentralized controller is implemented.

5.5.1 A Lower Bound on the Solution of the CALE

Using [81, Theorem 3], p∗ can be lower-bounded as p∗ ≥ infM∈LB

1

2
√
λ̄(MTM)

, where

the set LB is defined as the set of all possible values for the matrix −LF −B as

LB ,

{
−LF −B | aij ∈ [a∗, 1] ,

∑
j∈NFi

aij = 1,∀ (j, i) ∈ EF
}
.

Because
√
λ̄ (MTM) = ‖M‖ ≤ ‖M‖F for all M ∈ RF×F , we have that p∗ ≥

infM∈LB

1
2‖M‖F

≥ 1
2L̄B

. Thus, a parameter p ∈ R can be used to lower bound p∗ us-

ing known information as

p∗ ≥ p ,
1

2
√
|EF |+ F +

∑
i∈VF b

2
i

.
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5.5.2 An Upper Bound on the Solution of the CALE

Due to the sensitivity of the CALE (cf. [82, Theorem 8.3.3]), it is difficult to find an

analytical upper bound for the norm of the solution of the CALE for an arbitrarily large

space of Hurwitz matrices (cf. [83]). An upper bound can easily be computed if the

Hurwitz matrix argument is also negative definite (cf. [84]), but the matrix −LF − B

may not be negative definite. However, a bound on the perturbation of the solution to

the CALE due to a perturbation of the matrix argument can be developed using [82,

Theorem 8.3.3] as
‖∆P (M)‖

‖P (M) + ∆P (M)‖ ≤ 2 ‖∆M‖ ‖P (M)‖ , (5–19)

where ∆P (M) denotes the perturbation of the solution of the CALE for a perturbation of

the argument, ∆M , such that

(M + ∆M)T (P (M) + ∆P (M)) + (P (M) + ∆P (M)) (M + ∆M) = −IF ,

where M,M + ∆M are Hurwitz matrices. Using (5–19) and the triangle inequality, a

local bound for the perturbation of the solution of the CALE for a given Hurwitz matrix M

can be developed as

‖∆P (M)‖ ≤ 2 ‖∆M‖ ‖P (M)‖2

1− 2 ‖∆M‖ ‖P (M)‖ (5–20)

for all ∆M such that M + ∆M is Hurwitz and ‖∆M‖ < 1
2‖P(M)‖ . Thus, a natural approach

to develop an upper bound for p̄∗ is to iteratively sample in the set P, compute an upper

bound for the variation of the solution of the CALE in a neighborhood about each sam-

pled point in P, continue until the union of the considered neighborhoods covers the

space P, and use the largest upper bound for the solution of the CALE to upper bound

p̄∗. To see that this is possible, consider the following lemma. Let a ∈ R be a positive

known lower bound of a∗, which can be computed with (5–5), (5–7), and x̄ from Assump-

tion 5.4. Let the set L̄B be defined as L̄B , {−LF −B | aij ∈ [a, 1]∀ (j, i) ∈ EF}, which

is a superset of LB and contains only Hurwitz matrices by Lemma 5.1. Note that the set

P is contained within the set
{
P (M) |M ∈ L̄B

}
. Additionally, let the set operator ∆ be
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defined as ∆ (M) ,
{
M + ∆M |

(
M ∈ L̄B

)
∧
(

∆M ∈ RF×F : ‖∆M‖ ≤ ϕ
2‖P(M)‖

)}
, where

ϕ ∈ R satisfies 0 < ϕ < 1.

Lemma 5.2. For any finite selection of matrices {M1, . . . ,Mw} ∈ L̄B, w ∈ Z>0, which

satisfies ∪n∈{1,...,w}∆ (Mn) ⊇ L̄B, p̄∗ is bounded above as p̄∗ ≤ maxn∈{1,...,w}
1

1−ϕ ‖P (Mn)‖.

Proof. See Appendix F.

Thus, an algorithm to upper bound p̄∗ can be developed which populates the space

L̄B with finitely many {M1, . . . ,Mw} until ∪n∈{1,...,w}∆ (Mn) covers L̄B. The following

simple, finite-duration algorithm accomplishes this by creating a uniform mesh of points

in (and on the border of) the set L̄B which is refined until the smallest radius of the

closed balls {∆ (M1) , . . . , ∆ (Mw)} is greater than or equal to the maximum distance

between adjacent points in the uniform mesh, thereby covering the set L̄B. Let the set

Cv be defined as a uniform spacing of v ∈ Z>0 (v ≥ 2) points between a and 1 inclusively

such that Cv ,
{
α1, . . . , αv | αi = a + (i−1)(1−a)

v−1

}
, let Lv be defined as the finite set

Lv , {−LF −B | aij ∈ Cv ∀ (j, i) ∈ EF}, and let p̄ ∈ R denote an upper bound of p̄∗.

Algorithm 5.1 Upper bound of p̄∗.
v ← 2

p̄← maxM∈Lv

1
1−ϕ ‖P (M)‖

while minM∈Lv

ϕ
2‖P(M)‖ <

√
2
(

1−a
v−1

)
v ← v + 1

p̄← maxM∈Lv

1
1−ϕ ‖P (M)‖

end while

The while statement condition in Algorithm 5.1 is developed using an upper bound

on the distance (in the sense of the Euclidean norm) between adjacent points in Lv.

Adjacent points in the set Lv differ by a matrix L̃v ∈ RF×F which has ±1−a
v−1

in an off-

diagonal entry and ±1−a
v−1

on the diagonal entry of the same row. The distance between

adjacent points in Lv can then be upper-bounded as
∥∥∥L̃v

∥∥∥ ≤ ∥∥∥L̃v

∥∥∥
F
≤
√

2
(

1−a
v−1

)2
. Also,
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note that a larger selection of the parameter ϕ can decrease the number of iterations in

Algorithm 5.1, but this may result in a more conservative upper bound for p̄∗. While this

algorithm theoretically terminates in finite operations, it may require too many operations

to be feasibly run for a large-sized network. Algorithm 5.1 is only shown for proof of

concept; for actual implementation, a more sophisticated optimization routine may be

developed from Algorithm 5.1, or a more traditional optimization technique can be used

to approximate p̄∗ or max
{
P (M) |M ∈ L̄B

}
.

5.5.3 Computation of Sufficient Conditions

With the bounding constants p and p̄ that satisfy p ≤ p∗ and p̄ ≥ p̄∗, the size of the

set of stabilizing initial conditions S can be lower bounded and satisfaction of (5–13)

and τd ≥ τ ∗d can be guaranteed. Specifically, a conservative estimate S ⊆ S can be

computed as

S ,

{
Z ∈ R2Fm | ‖Z‖ < χ

µ

}
,

where the constants χ, µ ∈ R are defined as χ , inf

(
ρ−1

([
1
p̄

√
kψ
3
,∞
)))

∈ R and

µ , max{p̄,1}
min{p,1} . Additionally, (5–13) is satisfied if the following computable condition is

satisfied

3
(
p̄N̄d

)2

k
+ 3k

(
p̄FL̄B (¯̇x+ λx̄)

)2
<

ψχ

µmax {p̄, 1} .

Finally, τd can be selected such that

τd =
ln (µ)
ψ

max{p̄,1} − β
,

where the tuning parameter β ∈ R is selected such that 0 < β < ψ
max{p̄,1} . The inequality

τd ≥ τ ∗d is clearly satisfied if β∗ is assigned as β∗ = β. As with β∗, the selection of β

involves a trade-off between convergence rate and the frequency of an agent’s edge

weight updates.
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Note that the methods used to compute the bounds p and p̄ in Sections 5.5.1 and

5.5.2 produce conservative estimates. More sophisticated optimization approaches may

yield less conservative bounds and take less computational resources.

5.6 Simulation

The performance of the consensus weight update law given in (5–5)-(5–7) with the

controller in (5–4) is demonstrated using the four-agent network depicted if Fig. 5-1 and

the heterogeneous nonlinear dynamics

ẍi =

 κi sin (xi,2) ẋi,2 κi sin (xi,2) (ẋi,1 + ẋi,2)

−κi sin (xi,2) ẋi,1 0

 ẋi −
 υ1,i 0

0 υ2,i

 ẋi + ui,

where the constant parameters κi, υ1,i, υ2,i ∈ R are described in Table 5-1 and x1,i, x2,i

respectively denote the first and second entries of the vector xi. The only nonzero

pinning gain is selected as b1 = 3 and the control gains are selected as k = 60, λ = 20.

The tuning parameter s and constant t̄, used in the trust metric in (5–5), are selected as

s = 1 and t̄ = 10 s. The gains used in the reputation algorithm in (5–6) are selected as

ηζi = 10, ησi = 0.1 for all i ∈ VF . The simulation is meant to model a real-world scenario

in that it is anticipated that the trust values will be lower-bounded as σij ≥ 0.2 for all

i ∈ VF , j ∈ NFi, which, as previously mentioned, implies that ζij ≥ 0.2 for all i ∈ VF ,

j ∈ NFi. The MATLAB optimization routine fmincon is executed to obtain estimates of

p∗ and p̄∗ using the gains k and λ, the network topology depicted in Fig. 5-1, the pinning

gain b1, and the bounds 0.2 ≤ ζij ≤ 1, resulting in the estimates p = 0.119 and p̄ = 8.28.

The dwell-time for the consensus weight updates is then computed as τd = 2.4 s using

the assignment β = 0.001 2ψ
max{p̄,1} . The agents’ onboard sensor equipment is modeled

to have a frequency of 20 Hz, where at each sensor measurement an agent has a 50%

chance of sensing a neighbor. Only one neighbor can be observed in a single sensor

measurement, and the neighbor seen is a random selection, where each neighbor is

equally likely to be seen. The onboard position estimates are modeled to be affected by
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an offset such that x̂i = xi+ ∆xi, where ∆x1 =

 1

1

, ∆x2 =

 −1

−1

, ∆x3 =

 0.5

sin (t)

,

and

∆x4 =



 −0.5

−0.5

 if t < 60

(90 + 30 sin (7t))

 1

1

 if t ≥ 60.

Thus, agents 1-4 have very accurate (but not perfect) estimates of their position from

0− 60 s. After 60 s, the position estimate maintained by agent 4 becomes very inaccurate,

which may be due to onboard localization sensor failure, for example. The onboard

velocity estimates are similarly affected as ˙̂xi = ẋi +
d
dt

(∆xi). The network-wide objective

is to track the leader state trajectory, which evolves as xL =

 sin (t)

0.5 cos (t)

.

To demonstrate the benefit of updating the consensus weights based on reputation,

consensus weights are updated after the closed-loop system has come to steady-

state. The first update occurs at 120 s and the agents’ updates are staggered in time in

intervals of τd. The benefit of the consensus weight updates is shown in the plot of the

leader-tracking error in Fig. 5-2, where the leader-tracking error of agent 4 is high due to

its very inaccurate state estimate, and is therefore omitted. The tracking error of agent 1

is less affected by the inaccurate position and velocity estimates of agent 4 since agent

1 is directly connected to the leader; however, the effects of agent 4 percolate through

the network and severely worsen the tracking performance of agents 2 and 3, as shown

in Fig. 5-2. The deleterious effects of agent 4 are mitigated by the trust measurements,

neighbor reputations, and consensus weight updates, shown in Fig. 5-3 - 5-5. Upon

achieving steady-state using consensus weight updates, the leader-tracking errors

return to values similar to those obtained when agent 4 had very accurate position

estimates. The RMS leader-tracking performance for agents 1 − 3 is quantified in
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Table 5-2 for the steady-state periods of 40 − 60 s, 100 − 120 s, and 160 − 180 s, where

J (t1, t2) ,
∑

i∈{1,2,3} rms[t1,t2] ‖xL − xi‖ denotes the sum of the RMS leader-tracking error

norms over agents 1− 3 between the times t1 and t2.

Note that the trust values went below the anticipated lower bound of 0.2, where

the lower bound 0.2 was used to compute the update dwell-time. However, the closed-

loop system is still stable, which emphasizes the fact that the given conditions are only

sufficient, and lower dwell-times than τd may also provide stability.

The benefit of weighting the contributions of neighbor recommendations based on

their own recommendations, seen by the multiplication by ζin in (5–6), is demonstrated

by performing the simulation again without the multiplicative term ζin in (5–6). The

resulting reputation algorithm that omits ζin, shown in (5–21), resembles the reputation

algorithm proposed in [49], where ζ ′ij denotes the alternative reputation measure

obtained with the algorithm in (5–21).

ζ̇ ′ij =
∑

n∈NFi∩NFj

ηζi
(
ζ ′nj − ζ ′ij

)
+ ησi

(
σij − ζ ′ij

)
(5–21)

Simulation results show that, compared to the results obtained using the reputation

algorithm in (5–6), use of the reputation algorithm in (5–21) produces 10.7% worse

leader-tracking performance, in terms of the metric J (160, 180) (i.e., steady state,

after updates to the consensus weights began). The neighbor reputations for this

second simulation are shown in Fig. 5-6, where the reputations of well-localized agents,

ζ21, ζ32, ζ13, are lower compared to the results produced by the reputation algorithm in

(5–6). The reputations are diminished because the recommendation by agent 4 to the

reputations of the other agents is not weighted by the reputation of agent 4, unlike in the

reputation algorithm in (5–6).
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Figure 5-1. Network communication topology.

Agent 1 2 3 4

κi 0.3 0.7 0.5 0.9

υ1,i 5.0 5.5 4.5 4.0

υ2,i 1.0 0.5 0.7 1.2

Table 5-1. Parameters in dynamics.

J (40, 60) 4.64

J (100, 120) 8.68

J (160, 180) 4.30

Table 5-2. Steady-state RMS leader-tracking performance.
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Figure 5-2. Leader-tracking error.
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Figure 5-3. Trust measurements.
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Figure 5-4. Neighbor reputations.
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Figure 5-5. Dynamically updated consensus (adjacency) weights.
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Figure 5-6. Neighbor reputations produced by the alternative reputation algorithm in
(5–21).

5.7 Concluding Remarks

A decentralized controller and reputation algorithm which updates consensus

weights were developed for approximate synchronization to the leader agent’s state,

where the reputation algorithm uses the discrepancy between unreliable communicated

information and intermittent sensing data of a neighbor agent in collaboration with

mutual neighbors. The leader-follower network topology is modeled as strongly-

connected and static, but the updates of consensus weights produce a switched system.

Approximate synchronization is ensured through a Lyapunov-based convergence

analysis and techniques from switching control theory, which help develop a dwell-time

for the follower agents’ consensus weight updates. Whereas most switched control

approaches develop a dwell-time based on a finite number of possible structures for the

closed-loop dynamics, the dwell-time discussed in this work is based on bounds of the

minimum and maximum eigenvalues of the solution to the CALE over a space of Hurwitz
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matrices due to the infinite number of possible combinations of the network consensus

weights.
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Decentralized control is a powerful control technique which provides a means

for accomplishing an objective using a disaggregated, cooperating collection of au-

tonomous agents, such as teams of UAVs or AUVs performing reconnaissance, satel-

lites performing collective interferometry, and platoons of ground robots. Delegating a

collective task to multiple systems provides benefits in terms of lower communication

bandwidth, robustness to hardware failure, increased strategic flexibility, and spatial dis-

tribution. However, the benefits of the distribution of mission planning and execution to

individual autonomous systems are accompanied by the disadvantage of less situational

awareness: the networked systems are only aware of the status of network neighbors

in a decentralized communication architecture. Among other consequences, this phe-

nomena makes decentralized multi-agent networks more susceptible to cascading,

destabilizing effects caused by exogenous disturbances on an agent’s plant or control

system, communication delay between network neighbors, and reduced ability to vet the

accuracy of communicated information. This dissertation addresses these challenges

through the development of novel decentralized control techniques that restrict the

propagation of these deleterious effects through the network of autonomous systems.

Chapter 2 details the development of a novel decentralized controller which ad-

dresses the challenge of mitigating the effects of exogenous disturbances in a network

of autonomous systems while performing synchronization, wherein agents share in-

formation with network neighbors in an attempt to collectively drive all agents’ states

towards that of a network leader. The exogenous disturbances are assumed to be

unknown and represent the effects of unmodeled dynamics and external force effects on

an agent’s dynamics (e.g., a gust of wind causes undesired movement of a UAV). The

agents’ dynamics are modeled with heterogeneous Euler-Lagrange equations of motion
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due to broad applicability to physical systems. Concepts from the RISE control tech-

nique and graph theory are leveraged in the development of the decentralized controller

and the proof of asymptotic convergence of the agent’s states to that of the network

leader’s. In the proof of convergence, it is demonstrated that the developed controller

compensates for the effects of the disturbances of all agents using only relative state

information. Simulation results are given which demonstrate the enhanced performance

of the developed controller compared to other prominent decentralized controllers.

The developed controller is then extended from the synchronization framework to the

formation control framework, wherein the agents converge to a geometric configuration

specified by desired relative positions between the agents.

The decentralized control technique in Chapter 2 is generalized in Chapter 3 for

the objective of containment control. As opposed to synchronization, in which a single

leader interacts with the follower agents, the objective of containment control is to

have the autonomous follower agents cooperatively interact with multiple leaders and

converge to a reasonable linear combination of the leaders’ states. For example, a flock

of autonomous UAVs may be guided by multiple remotely piloted UAVs in performing

a search mission. Specifically, containment control specifies that the follower agents’

states converge to the convex hull demarcated by the states of the leaders. Again,

concepts from the RISE control technique and graph theory are used to demonstrate

convergence of the follower agents’ states to the convex hull of the leaders’ dynamic

states despite the effects of modeling uncertainty and exogenous disturbances.

The developments in Chapter 4 address compensation for the effects of commu-

nication delay in a decentralized network in which the agents have heterogeneous, un-

certain Euler-Lagrange dynamics and heterogeneous, uncertain communication delays.

Communication delay drastically affects performance in accomplishing a network-wide

objective, such as synchronization, since the effect of a change in a network leader’s

state may not impact a follower agent until multiple periods of delay have passed as
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the change percolates through the network. In Chapter 4, the notions of self-delayed

feedback and feedback without self-delay are introduced: self-delayed feedback signifies

the comparison of a neighbor’s delayed state with an agent’s own manually delayed

state, and feedback without self delay signifies the comparison of a neighbor’s delayed

state with an agent’s own current state. The advantages and disadvantages of both

feedback types are exemplified in a simulation and a novel decentralized controller is

developed which uses both of these types of feedback and estimates of what neighbors’

communication delay durations are. A numerical simulation demonstrates that a mixture

of these two types of feedback can provide enhanced stability criteria and improved

leader-tracking for the synchronization framework.

Chapter 5 addresses the issue of diminished situational awareness in a decen-

tralized interaction environment by developing a control architecture to enhance the

robustness of decentralized control to the communication of inaccurate state informa-

tion. Assuming that communicated information is continuously available, but possibly

inaccurate, and that neighbor sensing is intermittent, yet accurate, a trust metric is

developed that quantifies the accuracy and reliability of a neighbor’s communication.

Trust values are shared via a neighborhood-based reputation algorithm, wherein agents

collaborate to develop a reputation of a mutual neighbor and reputation recommen-

dations are weighted by the reputation of the recommender. Neighbor reputations are

used to weigh the communicated feedback from neighbors in a decentralized control

policy by adjusting consensus weights as a function of neighbors’ reputations. Although

the network connections are modeled as static, updates to the consensus weights

introduce discontinuities into the closed-loop system. Notions from switching control

theory and the sensitivity of the CALE are used to develop a dwell-time for the follower

agents’ consensus weight updates through a Lyapunov-based convergence analy-

sis. Simulation results demonstrate that intermittent neighbor sensing can be used
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to augment a communication-based control policy by vetting network neighbors in a

recommendation-based approach.

6.2 Future Work

The developments given in this dissertation have been shown to theoretically satisfy

control objectives and provide comparatively improved performance via Lyapunov-based

convergence analyses and numerical simulations. Justifications of these claims could

be further established if physical experiments were performed to demonstrate the real-

world applicability of the developed techniques. Ground vehicles or quadcopters may be

used in the future to demonstrate the efficacy of the control techniques detailed in this

dissertation.

Chapters 2-4 assume that the communication topology of the follower agents is

undirected. One avenue for extending this work would be to consider a communication

topology which is directed, i.e., not all communication links may be bidirectional. An

approach similar to that used in Chapter 5 may be used to approach this problem,

wherein the sum of the Laplacian matrix corresponding to the follower agent topology

and the leader-pinning matrix is used as an input to the Lyapunov equation, the solution

of which is a matrix that can be used to generate a candidate Lyapunov function.

However, this approach is complicated if considering Euler-Lagrange dynamics, which

cause an inertia matrix to be multiplied by the matrix solution of the Lyapunov equation

in the feedback expressions of the derivative of the candidate Lyapunov function.

Even though the matrix solution of the Lyapunov equation and the inertia matrix are

positive definite, it is not necessarily the case that the matrix product is positive definite,

which causes the feedback in the derivative of the candidate Lyapunov function to

be sign indefinite, and causes analysis with the candidate Lyapunov function to be

fruitless. This technical challenge could possibly be addressed by using the inertia

matrix in a controller to cancel the respective effects, but such a controller requires exact
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model knowledge of the inertia matrix. Further research may provide insight in how to

guarantee compensation of dynamics’ inertia in general directed networks.

The decentralized controller developed in Chapter 4 addresses compensation

of the effects of communication delay by weighting the contributions of self-delayed

feedback and feedback without self-delay. This control technique may be enhanced by

additions such as developing time-varying feedback weights based on estimates of the

current communication delay, weighting feedback more for neighbors which have less

communication delay, a protocol which severs a neighbor connection if that neighbor’s

large communication delay makes its feedback only deleterious, and developing a

decentralized estimator of the network leader’s state so that the cascading effect of

communication delay has less impact.

Some exciting results may be extended from the developments in Chapter 5. In

particular, these developments can be extended to devise more sophisticated context-

dependent reputation algorithms, an augmentation to the decentralized controller which

decides when to sever neighbor connections, and an observer which determines a more

accurate estimate of neighbors’ states given unreliable communication and intermittent

sensing.
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APPENDIX A
PROOF THAT P IS NONNEGATIVE (CH 2)

Lemma A.1. Given the differential equation in (2–23), P ≥ 0 if, for all i ∈ VF , χi satisfies

χi > ‖ςai‖∞ +
1

α2,i

‖ςbi‖∞ . (A–1)

Proof. For notational brevity, let an auxiliary signal σ ∈ R be the negative of the integral

of Ṗ in (2–23) as

σ =

tˆ

0

ET
2 (ε) Λ2 (Nd (ε)− β sgn (E2 (ε))) dε+

tˆ

0

∂ET
2 (ε)

∂ε
Nd (ε) dε

−
tˆ

0

∂ET
2 (ε)

∂ε
β sgn (E2 (ε)) dε. (A–2)

Integrating the last two terms in (A–2) yields [58, Lemma 1]

σ =

tˆ

0

ET
2 (ε) Λ2 (Nd (ε)− β sgn (E2 (ε))) dε+

Fm∑
l=1

E2l (t)Ndl (t)− ET
2 (0)Nd (0)

−
tˆ

0

ET
2 (ε)

∂Nd (ε)

∂ε
dε−

Fm∑
l=1

|E2l (t)| βl,l +
Fm∑
l=1

|E2l (0)| βl,l. (A–3)

The expression in (A–3) may then be expressed as

σ =

tˆ

0

(
Fm∑
l=1

E2l (ε) Λ2l,lNdl (ε)

)
dε−

tˆ

0

(
Fm∑
l=1

|E2l (ε)|Λ2l,lβl,l

)
dε

−
tˆ

0

(
Fm∑
l=1

E2l (ε) Ṅdl (ε)

)
dε+

Fm∑
l=1

E2l (t)Ndl (t)− ET
2 (0)Nd (0)

−
Fm∑
l=1

|E2l (t)| βl,l +
Fm∑
l=1

|E2l (0)| βl,l. (A–4)
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The upper bounds in (2–20) and (2–21) are then used to upper-bound (A–4) as

σ ≤
tˆ

0

(
Fm∑
l=1

|E2l (ε)|Λ2l,lζal

)
dε−

tˆ

0

(
Fm∑
l=1

|E2l (ε)|Λ2l,lβl,l

)
dε

+

tˆ

0

(
Fm∑
l=1

|E2l (ε)| ζbl

)
dε+

Fm∑
l=1

|E2l (t)| (ζal − βl,l)

− ET
2 (0)Nd (0) +

Fm∑
l=1

βl,l |E2l (0)| ,

where ζal and ζbl represent the lth element of ζa and ζb, respectively. Provided the gain

condition for χi in (A–1) is satisfied for each i ∈ VF (recall that β , diag (χ1, χ2, . . . , χF)⊗

Im and Λ2 , diag (α2,1, α2,2, . . . , α2,F) ⊗ Im), then σ ≤ ∑Fml=1 βl,l |E2l (0)| − ET
2 (0)Nd (0) .

Thus, σ may be upper-bounded as

σ ≤ P (0) . (A–5)

Integrating both sides of (2–23) yields P (t) = P (0)− σ, which indicates that P ≥ 0 from

(A–5).
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APPENDIX B
PROOF OF SUPPORTING LEMMA (CH 3)

Proof of Lemma 3.1. Because the eigenvalues of LF + B are positive by

Assumption 3.5 and [18, Lemma 4.1], the diagonal entries are positive, and the

off-diagonal entries are nonpositive, all entries of the matrix (LF +B)−1 are non-

negative [85, Theorem 2.3]. Due to the structure of the Laplacian matrix L, we

have that L1F+L = 0F+L, which implies (LF +B)1F + LL1L = 0L. Because

LF + B is invertible, 1F = − (LF +B)−1 LL1L, which implies that row sums of

− (LF +B)−1 LL add to one, where each entry of the matrix − (LF +B)−1 LL is

nonnegative since (LF +B)−1 has only nonnegative entries and LL has only non-

positive entries. Thus, the product −
((

(LF +B)−1 LL
)
⊗ Im

)
QL can be represented

as
[
qTd1, . . . , qTdF

]T
= −

((
(LF +B)−1 LL

)
⊗ Im

)
QL ∈ RFm, where qdi ∈ Rm

such that qdi =
∑

l∈{1,...,L}
[
− (LF +B)−1 LL

]
il
ql ∀i ∈ {1, . . . ,F}, where [·]ij denotes

the matrix entry of the ith row and jth column,
∑

l∈{1,...,L}
[
− (LF +B)−1 LL

]
il

= 1

∀i ∈ {1, . . . ,F}, and
[
− (LF +B)−1 LL

]
il
≥ 0 ∀i ∈ {1, . . . ,F} ,∀l ∈ {1, . . . , L} by

the above conclusions. Because the convex hull for the set S , {ql | l ∈ VL} is de-

fined as Conv {S} ,
{∑

l∈VL αlql | (∀l : R 3 αl ≥ 0) ∧∑l∈VL αl = 1
}

[86], we have

that qdi ∈ Conv {ql | l ∈ VL} ∀i ∈ {1, . . . ,F}; in other words, the vectors stacked in

the product −
((

(LF +B)−1 LL
)
⊗ Im

)
QL are within the convex hull formed with the

leader agents’ states. Suppose that ‖E1‖ → 0. Then
∥∥((LF +B)⊗ Im)−1E1

∥∥ → 0,

which implies that
∥∥QF +

((
(LF +B)−1 LL

)
⊗ Im

)
QL

∥∥ → 0 by (3–4), and thus

QF =

[
qTL+1, . . . , qTL+F

]T
→ −

((
(LF +B)−1 LL

)
⊗ Im

)
QL =

[
qTd1, . . . , qTdF

]T
.

Hence, d (qi,Conv {ql | l ∈ VL})→ 0 ∀i ∈ VF .
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APPENDIX C
DEMONSTRATION OF SUPPORTING INEQUALITY (CH 4)

Consider the inequality aT b ≤ 1
2Φ
aTa + Φ

2
bT b for any vectors a, b ∈ RFm and any

positive scalar Φ ∈ R>0. After setting aT = kRT (κ1Aij − κ2Lij), b =
´ t
t−τji Ṙ (σ) dσ, and

Φ = φ ι2
τ̄k2 , the scalar RTk

∑
(j,i)∈EF (κ1Aij − κ2Lij)

´ t
t−τji Ṙ (σ) dσ can be upper-bounded

as1

∑
(j,i)∈EF

kRT (κ1Aij − κ2Lij)
ˆ t

t−τji
Ṙ (σ) dσ ≤

∑
(j,i)∈EF

(
τ̄ k2

2φι2
k2RT (κ1Aij − κ2Lij) (κ1Aij − κ2Lij)T R

+
φι2

2τ̄ k2

(ˆ t

t−τji
ṘT (σ) dσ

)ˆ t

t−τji
Ṙ (σ) dσ

)
. (C–1)

By using the Raleigh-Ritz Theorem, (C–1) can be upper-bounded as

∑
(j,i)∈EF

kRT (κ1Aij − κ2Lij)
ˆ t

t−τji
Ṙ (σ) dσ ≤ τ̄ k4

2φ
RTR

+
φι2

2τ̄ k2

∑
(j,i)∈EF

(ˆ t

t−τji
ṘT (σ) dσ

)ˆ t

t−τji
Ṙ (σ) dσ. (C–2)

After using Assumption 4.6 and the inequality
(´ b

0
a (s) ds

)T (´ b
0
a (s) ds

)
≤ b
´ b

0
aT (s) a (s) ds

for a ∈ RFm and b ∈ R>0, (C–2) can be upper-bounded as

∑
(j,i)∈EF

kRT (κ1Aij − κ2Lij)
ˆ t

t−τji
Ṙ (σ) dσ ≤ τ̄ k4

2φ
RTR +

φι2 |EF |
2k2

ˆ t

t−τ̄

∥∥∥Ṙ (σ)
∥∥∥2

dσ.

1 Because any matrix product of the form ΞΞT is positive semi-definite for a square
real matrix Ξ, the symmetric matrix

∑
(j,i)∈EF (κ1Aij − κ2Lij) (κ1Aij − κ2Lij)T is positive

semi-definite. Additionally, since κ1Aij − κ2Lij has at least one nonzero entry for every
(j, i) ∈ EF ,

∑
(j,i)∈EF (κ1Aij − κ2Lij) (κ1Aij − κ2Lij)T does not have all zero entries. Since∑

(j,i)∈EF (κ1Aij − κ2Lij) (κ1Aij − κ2Lij)T is symmetric, positive semi-definite and not the
zero matrix, we have that ι2 > 0.
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The procedure for developing the remaining upper bounds given in (4–37) and (4–38) is

similar, and therefore omitted.
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APPENDIX D
DEMONSTRATION OF REPUTATION BOUND (CH 5)

Let the function ζ : R→ R be defined as

ζ (t) , min {ζij (t) | (j, i) ∈ EF} .

Suppose that (−∞, σ∗] ∩ {ζij (t) | t ≥ 0} 6= ∅ for some (j, i) ∈ EF , i.e., a repu-

tation value becomes less than or equal to σ∗ at some time. By continuity of ζij,

there exists some time T ∈ R>0 such that ζ (T ) = σ∗ > 0. Let Tσ be defined as

Tσ , min
{
t ∈ R | ζ (t) = σ∗

}
. For any (h, g) ∈ EF such that ζgh (Tσ) = σ∗, we have that

ζ̇gh (Tσ) =
∑

n∈NFg∩NFh

ηζgζgn
(
ζnh − ζ

)
+ ησg (σgh − σ∗) .

By the definition of ζ, we know that
∑

n∈NFg∩NFh ηζgζgn
(
ζnh − ζ

)
≥ 0. Additionally, by

the definition of σ∗, we know that ησg (σgh − σ∗) ≥ 0. Therefore, ζ̇gh (Tσ) ≥ 0 and thus

ζgh (T+
σ ) ≥ σ∗. By induction, ζij (t) ≥ σ∗ for all (j, i) ∈ EF and t ∈ R.

A similar argument shows that ζij (t) ≤ 1 for all (j, i) ∈ EF and t ∈ R based on the

facts that ζij (0) = 1 for all (j, i) ∈ EF and σij ≤ 1 for all (j, i) ∈ EF and t ∈ R.
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APPENDIX E
PROOF OF SUPPORTING LEMMA (CH 5)

Proof of Lemma 5.1. By Assumption 5.1 and [87, Lemma 4.6], the left eigenvector

p = [p1, . . . , pF ]T ∈ RF of LF associated with the (simple) zero eigenvalue has all

positive entries. Let ξ = [ξ1, . . . , ξF ]T ∈ RF \ {0F}. Because pTLF = 0F , we have that

pidi =
∑F

j=1 pjaji, and hence
∑F

j=1 piaij =
∑F

j=1 pjaji for all i ∈ VF , which gives the

relation

F∑
i=1

F∑
j=1

piaijξi (ξi − ξj) =
F∑
i=1

F∑
j=1

piaijξ
2
i −

F∑
i=1

F∑
j=1

piaijξiξj

=
F∑
i=1

F∑
j=1

pjajiξ
2
i −

F∑
i=1

F∑
j=1

piaijξiξj

=
F∑
i=1

F∑
j=1

piaijξ
2
j −

F∑
i=1

F∑
j=1

piaijξiξj

=
F∑
i=1

F∑
j=1

piaijξj (ξj − ξi) . (E–1)

Let Q ∈ RF×F be defined as Q , P (LF +B)+(LF +B)T P , where P , diag {p1, . . . , pF} ∈

RF×F . The relation in (E–1) facilitates the expression of the product ξTQξ as

ξTQξ =ξTPLFξ + ξTLTFPξ + ξTPBξ + ξTBPξ

=2ξTPLFξ + 2ξTPBξ

=2
F∑
i=1

F∑
j=1

piξiaij (ξi − ξj) + 2
F∑
i=1

pibiξ
2
i

=
F∑
i=1

F∑
j=1

piaijξi (ξi − ξj) +
F∑
i=1

F∑
j=1

piaijξj (ξj − ξi) + 2
F∑
i=1

pibiξ
2
i

=
F∑
i=1

F∑
j=1

piaij (ξj − ξi)2 + 2
F∑
i=1

pibiξ
2
i .

Clearly, ξTQξ ≥ 0. Suppose that ξTQξ = 0 for some ξ ∈ RF \ {0F}, which requires

that
∑F

i=1

∑F
j=1 piaij (ξj − ξi)2 = 0 and

∑F
i=1 pibiξ

2
i = 0. Because GF is connected

and ξ ∈ RF \ {0F},
∑F

i=1

∑F
j=1 piaij (ξj − ξi)2 = 0 if and only if ξ = α1F , where
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α ∈ R \ {0}. However, if at least one follower agent is connected to the leader, then∑F
i=1 pibiξ

2
i > 0 for all ξ ∈ span {1F} \ {0F}, which is a contradiction. Hence, ξTQξ > 0

for all ξ ∈ RF \ {0F}, i.e., Q is positive definite. Therefore, because P is positive definite

and symmetric and the matrix P (−LF −B) + (−LF −B)T P is negative definite by the

definition of Q, we have by [88, Theorem 8.2] that −LF −B is Hurwitz.
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APPENDIX F
PROOF OF SUPPORTING LEMMA (CH 5)

Proof of Lemma 5.2. Because sup
{
‖P (M)‖ |M ∈ L̄B

}
is bounded, the ball ∆ (M)

is non-vanishing for any M ∈ L̄B. Additionally, because sup
{
‖P (M)‖ |M ∈ L̄B

}
is

bounded, P is continuous in the non-vanishing neighborhood ∆ (M) ∩ L̄B for every

M ∈ L̄B by (5–20), which implies that P is continuous over L̄B. Hence, because P is

continuous over L̄B and L̄B is compact, the set
{
P (M) |M ∈ L̄B

}
is compact, and

therefore there exists a matrix M0 ∈ L̄B such that ‖P (M)‖ ≤ ‖P (M0)‖ for every

M ∈ L̄B. Thus, for any finite selection of matrices {M1, . . . ,Mw} ∈ L̄B which satisfy

∪n∈{1,...,w}∆ (Mn) ⊇ L̄B, we have that

p̄∗ ≤‖P (M0)‖

≤ max
n∈{1,...,w}

max
∆M∈∆(Mn)

(‖P (Mn + ∆M)‖)

= max
n∈{1,...,w}

max
∆M∈∆(Mn)

(‖P (Mn) + ∆P (Mn)‖)

≤ max
n∈{1,...,w}

1

1− ϕ ‖P (Mn)‖

by the fact that P ⊂
{
P (M) |M ∈ L̄B

}
, the definition of ∆ (·), the upper bound in

(5–20), and the triangle inequality. Note that ‖∆P (Mn)‖ is kept bounded by introducing

ϕ in the definition of ∆ to keep the denominator in (5–20) from being arbitrarily close to

zero.
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