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The research presented in this dissertation monograph lies within the general scope

of guidance, navigation, and control of autonomous systems and centers around the

design and analysis of visual servo control strategies and vision-based robust position and

orientation (i.e., pose) estimation. The motivation behind the presented research is to

enable a vision system to provide robust navigation and control of autonomous agents

operating over a large area. In order to enable vision systems to provide pose estimates

over a large area, a new daisy-chaining method is developed. By developing multi-view

geometry, or photogrammetry, based concepts relationships are established between the

current pose of an agent and the desired agent pose, when the desired agent is out of

the camera field-of-view (FOV). The daisy-chaining method is limited by the need to

maintain a single reference object that is contained in both the current view and the final

view of the desired pose of the vehicle. To overcome this limitation, the daisy-chaining

method is extended to allow multiple reference objects to enter and leave the camera FOV,

allowing theoretically infinite daisy-chaining and hence an unrestricted applicative area

for an UGV. Error propagation analysis for the daisy-chaining method, which resembles

a ‘dead-reckoning’ scheme, shows the methods is susceptible to image noise and feature

point outliers. To address the local pose estimation problem, a statistical method is
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The accuracy of any vision-based control and estimation problem largely depends on

accurate feature point information. Feature point errors will result in an erroneous pose

estimation that could potentially affect the stability and performance of the control and

estimation methods. An accurate pose estimation is a non-trivial problem, especially when

real-time requirements prohibit computationally complex algorithms. Chapter 2 illustrates

a novel method, PEGUS, for estimating the relative pose between two images captured

by a calibrated camera. The method, based on the statistical theory, utilizes redundant

feature points in the captured images to develop a robust pose estimate. Experimental

results indicate markedly better performance over existing popular methods such as

RANSAC and nonlinear mean shift algorithm, and the non-iterative structure of the

algorithm makes it suitable in real-time applications.

Control of a moving object using a stationary camera and vice versa are well attended

problems in the literature of visual servo control and various solutions exist for a class of

autonomous systems. However, control of a moving object using the image feedback from

a moving camera has been a well-known problem due to the unknown relative velocity

associated with moving camera and moving object. In Chapter 3, a collaborative visual

servo controller, the daisy-chaining method, is developed with an objective to regulate

a sensor-less unmanned ground vehicle (UGV) to a desired pose utilizing the feedback

from a moving airborne monocular camera system. Multi-view photogrammetric methods

are used to develop relationships between different camera frames and UGV coordinate

systems, and Lyapunov-based methods are used to prove asymptotic regulation of an

UGV.

Another technical challenge when using a vision system for autonomous systems

is that the given feature points can leave the camera FOV. In order to address the

issue of features leaving the FOV an extension of the method developed in Chapter 3 is

provided by considering multiple reseeding feature points. The presented multi-reference

daisy-chaining scheme enables the UGV/camera pair to operate over an arbitrarily large

13



area. Simulation results are provided that illustrate the performance of the developed

cooperative control scheme.

Building on the results in Chapter 3, the complex problem of cooperative visual

servo tracking control is formulated in Chapter 4 with an objective to enable an UGV to

follow a desired trajectory encoded as a sequence of images utilizing the image feedback

from a moving airborne monocular camera system. The association as well as the relative

velocity problem is addressed by introducing a daisy-chaining structure to link a series of

projective homographies and expressing them in a constant reference frame. An adaptive

parameter update law is employed to actively compensate for the lack of object model

and depth measurements. Based on the open-loop error system, a tracking control law is

developed through the application of Extended Barbalat’s lemma in the Lyapunov-based

framework to yield an asymptotic stability. The tracking results are extended to include

reseeding stationary feature points by formulating additional projective homography

relationships to provide an unrestricted applicative area for the UGV/camera pair.

Simulation results are provided demonstrating the tracking control of an UGV in presence

of multiple stationary reference objects and visual simultaneous localization and mapping

(vSLAM) results are achieved by fusing the daisy-chaining method with the geometric

reconstruction scheme.

Since the development provided in Chapters 3 and 4 assumes a stationary object

can leave the camera FOV and a new reference object enters the FOV, it is necessary to

determine the pose of the new reference object with respect to the receding object in order

to provide the pose information of a moving agent such as an UGV or the camera itself.

Therefore, the error in pose measurement between the stationary reference objects could

propagate through the subsequent reference objects leading to large localization errors.

The error propagation is analyzed in Chapter 4 by performing a numerical simulation

and possible solutions are provided, along with simulation results, to mitigate the error

propagation in daisy-chaining.
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CHAPTER 1
INTRODUCTION AND MOTIVATION

The research presented in this dissertation monograph lies within the general scope

of guidance, navigation, and control of autonomous systems and centers around the

design and analysis of visual servo control strategies and vision-based robust position and

orientation (i.e., pose) estimation. The Euclidean pose of an agent is typically required

for autonomous navigation and control. Often the pose of an agent is determined by

a global positioning system (GPS) or an inertial measurement unit (IMU). However,

GPS may not be available in many environments, and IMUs can drift and accumulate

errors over time in a similar manner as dead reckoning. Given recent advances in image

extraction/interpretation technology, an interesting approach to overcome the pose

measurement problem is to utilize a vision system. Specifically, rather than obtain an

inertial measurement of the agent, vision systems can be used to recast some navigation

and control problems in terms of the image space where the goal pose is compared to the

relative pose via multiple images.

The aim of this chapter is to provide a reader with background in the area of

navigation and control of autonomous systems using vision (i.e., camera) as a sensor

modality. A motivation behind the presented research is established by describing the

problem scenarios and posing the open problems. The chapter is organized in three

sections; Sections 1.1 and 1.2 provide introduction to vision-based pose estimation

and control of autonomous systems, and the outline of dissertation along with the

contributions of presented research are detailed in Section 1.3.

1.1 Vision-based Pose Estimation

Motivated by practical applications such as autonomous guidance, navigation, and

control, various techniques have been developed such as visual servo control, visual

odometry, structure from motion, etc. Common to all these methods is the problem

of estimating the relative pose (rotation and translation) between two images. For a
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monocular camera, the rotation and direction of translation are estimated, whereas in case

of a stereo camera system, the rotation and the translation vector are estimated.

Existing methods for pose estimation use point correspondence between the two

views, which is provided by a feature-tracking algorithm, such as the KLT algorithm [2].

Given a minimal set of point correspondence, the relative pose can be estimated by

a number of algorithms (the eight point algorithm [3], the five point algorithm [4],

etc.). However, point correspondences as the output of the feature tracker invariably

contain gross mismatches or large errors in feature point locations, which are commonly

referred to as outliers. A central issue in accurate pose estimation is devising robust

estimators that can reject such outliers. The most popular solution to this problem has

been hypothesize-and-test methods, such as RANSAC [5] and its variants: MLESAC [6],

PROSAC [7], GOODSAC [8], pre-emptive RANSAC [9], etc. In these methods, hypotheses

are generated by randomly choosing a minimal set of corresponding feature point pairs

that are required to generate a hypothesis. A hypothesis is typically scored based on

how many of the observations are well-explained by it, and the one with the best score is

declared as the desired estimate. Most of the extensions to the basic RANSAC scheme

focus on reducing the computation time, since generating a large number of hypotheses

(which is required to obtain a good estimate with high probability) and scoring them is

computationally expensive.

RANSAC and other hypothesize-and-test methods choose only one of the many

hypotheses that are or can be generated. All other hypotheses are ignored, even those

that may be quite close to the true pose. Each hypothesis can be thought of as a noisy

“measurement” of the relative pose that is to be estimated. In principle, one should be

able to average these measurements in an appropriate sense to compute a more accurate

estimate than any of the individual measurements (i.e., hypotheses).

In Chapter 2, a novel robust pose estimation algorithm is presented based on the idea

above. There are two hurdles that impede the development of this idea. First, many of
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the pose hypotheses will be corrupted by outliers, which will have poor accuracy, so that

including them in the averaging process may lead to little improvement, if any. The second

difficulty is that since a pose is not an element of a vector space, it is not clear how to

average multiple noisy measurements of a pose.

To address these challenges, pose estimation problem is treated as estimating the

rotation and (unit) translation separately. By expressing the rotation hypotheses as unit

quaternions that lie on the unit sphere in 4-dimensions, and computing a histogram of

this data by dividing the sphere into bins, the dominant cluster, or mode, of the rotations

is identified. A subset of the rotations that are within a small geodesic distance of the

mode is then extracted. These “low-noise” rotation hypotheses are then averaged using a

method developed by Moakher [10] to produce the estimate of the rotation. Estimating

unit translations proceed in exactly the same way, except now the data lies on the surface

of the unit sphere in 3 dimensions. When translation (direction as well as magnitude) is

available, say from a stereo camera, mode estimation and averaging is simpler since the

data lies in a vector space. Because of the role played by gridding of the unit sphere in 3

or 4 dimensions, the proposed algorithm is called the Pose Estimation by Gridding of Unit

Spheres (PEGUS) algorithm.

1.2 Vision-based Control of Autonomous Systems

The Euclidean position and orientation (i.e., pose) of an unmanned ground vehicle

(UGV) is typically required for autonomous navigation and control. The vision-based

control schemes can be benefitted from the robust pose estimation method developed in

Chapter 2.

Some examples of image-based visual servo control of mobile vehicles include:

[11–25]. Previous pure image-based visual servo control results have a known problem

with potential singularities in the image-Jacobian, and since the feedback is only in

the image-space, these methods may require impossible Euclidean motions. Motivated

by the desire to eliminate these issues, some efforts have been developed that combine
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reconstructed Euclidean information and image-space information in the control design.

The Euclidean information can be reconstructed by decoupling the interaction between

translation and rotation components of a homography matrix. This homography-based

method yields an invertible triangular image-Jacobian with realizable Euclidean motion.

Homography-based visual servo control results that have been developed for UGV include:

[26–31]. In [29], a visual servo controller was developed to asymptotically regulate the pose

of an UGV to a constant pose defined by a goal image, where the camera was mounted

on-board an UGV (i.e., the camera-in-hand problem). The camera on-board result in [29]

was extended in [26] to address the more general tracking problem. In [27], a stationary

overhead camera (i.e., the camera-to-hand or fixed camera configuration) was used to

regulate a UGV to a desired pose.

The development in Chapter 3 is motivated by the desire to address the well-known

problem of controlling a moving object using a moving camera. A moving airborne

monocular camera (e.g., a camera attached to a remote controlled aircraft, a camera

mounted on a satellite) is used to provide pose measurements of a moving sensorless UGV

relative to a goal configuration. Distinguishing the relative velocity between the moving

UGV and the moving camera presents a significant challenge. Geometric constructs

developed for traditional camera-in-hand problems are fused with fixed-camera geometry

to develop a set of Euclidean homographies so that a measurable error system for the

nonholonomic UGV can be developed. The resulting open-loop error system is expressed

in a form that is amenable to a variety of UGV controllers.

In addition to vision-based control problem, image feedback can be used to localize

and map the environment (i.e., visual simultaneous localization and mapping - vSLAM)

[32–38]. vSLAM is used in the applications where the camera is the main sensor used to

estimate the location of a robot in the world, as well as estimate and maintain estimates

of surrounding terrain or features. Often a measure of estimate uncertainty is also
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maintained. vSLAM is a broad topic with varied approaches. See [32] and references

therein for a recent survey.

There are many overlapping ways to categorize vSLAM approaches. Some authors

(e.g., [33, 34, 36]) make a distinction between “local vSLAM” and “global vSLAM”. In

this categorization, local vSLAM is concerned with estimating the current state of the

robot and world map through matching visual features from frame to frame, and global

vSLAM is concerned with recognizing when features have been previously encountered

and updating estimates of the robot and map (sometimes referred to as “closing loops”).

To address both issues, many researchers use pose invariant features, such as SIFT [39],

which can be accurately matched from frame to frame or from multiple camera viewpoints.

Many vSLAM approaches use probabilistic filters (e.g., extended Kalman filter or particle

filter) [32, 33, 36–38], typically estimating a state vector composed of the camera/robot

position, orientation, and velocity, and the 3D coordinates of visual features in the world

frame. An option to a filtered based approach is the use of epipolar geometry [34, 35]. A

final possible category are methods that build a true 3D map (i.e., a map that is easily

interpreted by a human being such as walls or topography) [33, 34, 36–38], and those

that build a more abstract map that is designed to allow the camera/robot to accurately

navigate and recognize its location, but not designed for human interpretation.

Chapter 4 utilizes a new daisy-chaining method developed in Chapter 3 for vision-based

tracking control of a UGV, while also providing localization of the moving camera and

moving object in the world frame, and mapping the location of static landmarks in the

world frame. Hence, this approach can be used in vSLAM of the UGV, with applications

toward path planning, real time trajectory generation, obstacle avoidance, multi-vehicle

coordination control and task assignment, etc. By using the daisy-chaining strategy, the

coordinates of static features out of the field-of-view (FOV) can also be estimated. The

estimates of static features can be maintained as a map, or can be used as measurements

in existing vSLAM methods.
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1.3 Dissertation Outline and Contributions

Chapter 2 describes a novel robust algorithm for estimation of the relative pose

between two calibrated images, called Pose Estimation by Gridding of Unit Spheres

(PEGUS). The focus of this chapter is to develop a computationally deterministic pose

estimation method that is robust to feature outliers. Pose estimation results using PEGUS

are compared with popular methods such as RANSAC and nonlinear mean-shift algorithm

using an indoor image sequence and synthetic feature point data. The results in Chapter

2 demonstrate an improved performance of PEGUS against RANSAC+least squares

as well as non-linear mean shift method, both in terms of the estimation accuracy and

computation time. By virtue of non-iterative formulation underlying the deterministic

structure of PEGUS, the computation time is more predictable than that of RANSAC

and non-linear mean shift algorithm, thus making it amenable to a variety of real-time

applications. Vision-based control of autonomous systems typically require pose estimation

between multiple views captured by a camera system. Robust pose estimation results

developed in Chapter 2 can be used for such applications.

Control of a moving object using a stationary camera and vice versa are well attended

problems in the literature of visual servo control and numerous solutions exist for a

general class of autonomous systems. However, control of a moving object using the image

feedback from a moving camera has been a well-known problem due to the unknown

relative velocity associated with moving camera and moving object. In Chapter 3,

a collaborative visual servo controller, which is coined the daisy-chaining method, is

developed with an objective to regulate a sensor-less unmanned ground vehicle (UGV) to a

desired pose utilizing the feedback from a moving airborne monocular camera system.

The contribution of research in Chapter 3 is the development of multi-view geometry,

or photogrammetry, based concepts to relate the coordinate frames attached to moving

camera, moving UGV, and desired UGV pose specified by an a priori image. Geometric

constructs developed for traditional camera-in-hand problem are fused with fixed-camera
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geometry to develop a set of Euclidean homographies. Due to intrinsic physical constraints,

one of the resulting Euclidean homographies is not measurable through a set of spatiotemporal

images as the corresponding projective homography can not be developed. Hence, the

new geometric formulations, termed virtual homography, are conceived to solve for the

homography in order to develop a measurable error system for the nonholonomic UGV.

Asymptotic regulation results are proved using the Lyapunov-based stability analysis.

Chapter 3 also illustrates a framework to achieve asymptotic regulation of an UGV

based on the scenario that the given reference objects can leave camera FOV while

another reference object enters FOV. The controller is developed - with the underlying

geometrical constructs that daisy-chain multiple reference objects - such that the airborne

camera does not require to maintain a view of the static reference object; therefore the

airborne camera/UGV pair can navigate over an arbitrarily large area. Also, by taking

leverage of the geometric reconstruction method, the assumption of equal Euclidean

distance of the features for UGV and reference object is relaxed.

Building on the results in Chapter 3, the complex problem of cooperative visual servo

tracking control is formulated with an objective to enable an UGV to follow a desired

trajectory encoded as a sequence of images utilizing the image feedback from a moving

airborne monocular camera system. The desired trajectory of an UGV is recorded by a

moving airborne monocular camera IM traversing an unknown time-varying trajectory.

The control objective is to track an UGV along the desired trajectory using the image

feedback from a moving airborne camera I that may traverse different trajectory than

that of IM . The association as well as the relative velocity problem is addressed by

introducing a daisy-chaining structure to link a series of projective homographies and

expressing them in a constant reference frame. An adaptive parameter update law is

employed to actively compensate for the lack of object model and depth measurements.

Based on the open-loop error system, a tracking control law is developed through the
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application of Extended Barbalats lemma in the Lyapunov-based framework to yield an

asymptotic stability.

The tracking results are extended to include the reseeding reference object by

formulating an additional projective homography relationship to provide an unbounded

applicative area of operation. The theoretical development in Chapter 3 manifests the

coalescence of daisy-chaining controller and newly formed geometric reconstruction

technique towards application in visual simultaneous localization and mapping (vSLAM).

The chapter also provides simulation results demonstrating the propagation of pose

estimation error in daisy-chaining control scheme and discusses suitable methods for

limiting the error propagation.

Summary of research and future work recommendations are provided in Chapter 5.
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CHAPTER 2
PEGUS: A NOVEL ALGORITHM FOR POSE ESTIMATION

2.1 Introduction

The focus of research in this chapter is to develop a computationally deterministic

pose estimation method that is robust to feature outliers. A novel robust algorithm is

developed for estimation of the relative pose between two calibrated images, which is

coined as Pose Estimation by Gridding of Unit Spheres (PEGUS). The key idea behind

the method is, if there are M matched pairs of feature points between two views, one can

compute a maximum of
(

M

P

)
possible pose hypotheses by using a P-point algorithm. The

developed algorithm selects a subset of “low-noise” hypotheses by empirically estimating

the probability density function of the rotation and translation random variables, and

averages them, conforming manifold constraints, to compute a pose estimate.

In contrast to hypothesize-and-test methods such as RANSAC [5], the proposed

algorithm averages the information from a number of hypotheses that are likely to be

close to the true pose. As a result, it comes up with a more accurate estimate than that

returned by RANSAC-type methods. The proposed algorithm has certain similarities

with the non-linear mean shift algorithm proposed in [1]; the similarities and differences

between the two are discussed in Section 2.2. Another advantage of the PEGUS algorithm

is that it does not involve any iterative search, so that the time required for its execution

is not only quite small but also highly predictable. This aspect of the algorithm makes it

suitable for real-time applications.

In tests with real image data, the proposed algorithm significantly outperforms

RANSAC as well as the non-linear mean shift algorithm of [1]. Improvement is seen not

only in estimation accuracy but also in computational time and predictability of execution

time. Robustness of the presented algorithm is compared with RANSAC and non-linear

mean shift algorithm by varying the number of outliers from 10% to 90%.
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The rest of the chapter is organized as follows: Section 2.2 describes some of the prior

work that is relevant to the presented approach. Section 2.3 explains the approach behind

the proposed algorithm. The proposed algorithm is described in detail in Section 2.4.

Experimental results are presented in Section 2.5 and concluding remarks are presented in

Section 2.7.

2.2 Related Work

There are certain similarities between PEGUS and the non-linear mean shift

algorithm by Subbarao et. al. [1], in which a set of generated hypotheses are used to

construct a kernel-based estimate of the probability density function (pdf) of the pose

hypothesis in SE(3). A non-linear version of the mean-shift algorithm is then used to

iteratively search for the mode of this pdf starting from an arbitrary initial condition.

The identified mode is declared the pose estimate. Since all the hypotheses used to

construct the pdf contributes to the mode, and the mode may not coincide with any of

the hypotheses, the resulting estimate can be thought of as an average of the hypotheses,

though the averaging is of an implicit nature. In short, the approaches in the proposed

PEGUS algorithm as well as that in [1] treat the pose estimation problem as a clustering

problem. Both construct estimates of the probability density (or mass) function from a set

of generated hypotheses and returns an averaged hypothesis as the pose estimate rather

than a single hypotheses from those generated.

Despite these similarities between the two approaches, there are significant differences

between the proposed PEGUS algorithm and the non-linear mean shift algorithm

of [1]. First, the PEGUS algorithm is far more robust to multi-modal densities of

the generated hypotheses than mean shift. Experimental evidence suggests that the

distribution of these hypotheses are typically multi-modal. As an example, all the possible

hypotheses from 31 matched feature points between the image pair shown in Fig. 2-1

are computed using the normalized 8-point algorithm. Fig. 2-2 shows a histogram of the

Euler angles obtained from the rotation hypotheses and Fig. 2-3 shows the unit translation
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hypotheses (direction of translation), which are points on the surface of the unit sphere

in 3-dimensions. Multi-modality of the distribution is clear from the figures. In such a

situation, the iterative search involved in the mean shift algorithm will converge to a local

maximum depending on the initial condition. In contrast, a histogram-based estimate of

the pmf (probability mass function) of the hypotheses makes locating the global mode

a trivial problem even with multi-modal densities. The pmf for the rotation hypothesis

is constructed by gridding the surface of the unit sphere in 4 dimensions, on which

unit quaternion representations of the rotations lie. The same approach works for unit

translations as well, by gridding the surface of the unit sphere in 3 dimensions. If both

magnitude and direction of translation can be estimated, the histogram is constructed by

dividing a region of R
3 into a number of cells.

(a) (b)

Figure 2-1. Two views of a scene and the matched feature points between the images.

The second major difference is that the non-linear mean shift algorithm returns the

mode as the estimate, whereas the proposed method uses the mode only to identify a set

of hypotheses that are likely to be close to the true pose. These “low-noise” hypotheses

are then explicitly averaged in an appropriate manner to construct the final estimate.

In addition, the proposed method does not involve iterative computation, whereas the

mean-shift algorithm requires an iterative search for the mode. On the other hand, the

non linear mean-shift algorithm is applicable to a wide variety of estimation problems
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Figure 2-2. Histogram of the Euler angle data obtained from 5000 rotation hypotheses
between the two images shown in Figure 2-1.
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Figure 2-3. Multi-modal distribution of 5000 unit-translation hypotheses between the two
images shown in Figure 2-1.

in which data lies on Riemannian manifolds [40], whereas the proposed method is only

applicable to problems in which the data lies on spherical surfaces or real coordinate

spaces.

2.3 Problem Statement and Approach

The objective is to develop a robust pose estimation algorithm using two images

captured by a monocular camera (or four images if a pair of cameras are used) and

without the knowledge of the scene. Let R denote the true rotation between two views
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and t be the true translation. The translation can be a unit translation if scale information

is not available.

If there are M pairs of feature points between two views captured by the camera

and the minimal number of feature point pairs need to generate a hypothesis is P , then

the total number of pose hypotheses that can be computed is Nmax :=
(

M

P

)
. First n

such hypotheses are generated, where n is typically much smaller than Nmax. Each pair

of generated rotation and translation hypothesis is a “noisy measurement” of the true

rotation R and true (unit) translation t, respectively. Some of these measurements, i.e.,

hypotheses, suffer from large inaccuracy, as seen from Figs. 2-2 and 2-3. The proposed

approach is to select a subset of “low-noise” hypotheses from the set of all possible

hypotheses so that they are close to the true rotation and translation, respectively. The

low-noise hypotheses are then appropriately averaged to compute a pose estimate.

To facilitate extraction of the low-noise hypotheses, each rotation hypothesis is

expressed in terms of its unit-quaternion representation. Since the unit quaternions q and

−q represent the same rotation, it is ensured that the unit-quaternion representation of a

rotation hypothesis has the first component positive. That is, if q = qr + iq1 + jq2 + kq3,

then qr > 0. A unit quaternion representation of a rotation matrix can now be thought of

as a unit-norm vector in R
4 whose first component is positive. That is, it lies on the “top”

half of the 3-sphere S
3. The d-sphere S

d is defined as

S
d := {x = [x1, . . . , xd+1]

T ∈ R
d+1| ‖x‖ = 1} (2–1)

where ‖ · ‖ denotes the Euclidean norm. Similarly, define

S
d+ = {x ∈ R

d+1| ‖x‖ = 1, x1 ≥ 0}. (2–2)

Therefore, each rotation hypothesis is an element of S
3+. Similarly, each hypothesis of unit

translation is an element of S
2. If scale information is available, translation hypotheses are

elements of R
3 instead of S

2.
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Since each rotation hypothesis is a noisy measurement of the true rotation, the

rotation hypotheses can be thought of as realizations of a random variable whose

distribution is defined over the half-sphere S
3+. By dividing the surface of the sphere

S
3 and counting the number of rotation hypotheses (rather, their unit-quaternion

representation), the pmf of this random variable can be estimated. The mode of the pmf

is a point in the bin that has the largest number of unit-quaternions. A subset of these

quaternions that are within a predetermined geodesic distance of the mode is selected,

and then averaged in an appropriate manner to obtain the final estimate of the rotation.

Estimation of translations proceed in a similar manner. The algorithm is described in

detail in the next section.

2.4 Proposed Algorithm

2.4.1 Rotation Estimation

Step 1: Hypotheses generation engine: The total number of possible pose hypotheses,

Nmax is typically extremely large, since Nmax =
(

M

P

)
, where M is the number of point

correspondence and P is the minimal number needed to generate a hypothesis. For

example, even a small value of M , e.g., 21, with P = 8 yields Nmax = 203490. Processing

such a large number of hypotheses is computationally infeasible. In addition, processing

all of them is not necessary since most of these hypotheses are “correlated”, as they are

generated from overlapping feature point sets. A sampling with replacement strategy is

used to generate a number of hypotheses that have small correlations among one another.

The number of such hypotheses to be generated, n, is a design parameter that has to

be specified a-priori. However, even with a small value of n (≈ 100) the method yields

beneficial results. The sampling strategy consists of selecting the first feature point pair

at random from the M pairs, then selecting the second pair from the remaining M − 1

pairs, and so on until the P -th pair is selected. These P pairs of point correspondence are

used to generate a hypothesis. This sampling procedure is repeated n times to generate

n hypotheses, which are denoted by qi, ti, where qi is an unit-quaternion and ti is a
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Figure 2-4. Histogram of the average overlap in 100 hypotheses generated.

translation vector (unit-norm or otherwise), for i = 1, . . . , n. The set of these n rotation

hypotheses is denoted by Sq, and the set of translation hypotheses is denoted by St.

Figure 2-4 provides evidence of the small correlation among the hypotheses generated

by the sampling strategy mentioned above. A set of hypotheses q1, . . . , qj is said to have

an overlap of ℓ if there are exactly ℓ feature point pairs that are common to the sets of

points used to generate the hypotheses q1, . . . , qj. The metric for measuring correlations

among hypotheses is the number of overlap among them. The figure shows a histogram

of the overlap between 100 hypotheses generated in this fashion, computed based on the

average of 1000 random trials of the hypotheses generation.

Step 2: Estimating the mode: Each qi is imagined to be the realization of a random

variable q with an unknown distribution defined over S
3+. The 3-sphere S

3 is divided

into a number of regions of equal area, or bins, that are denoted by Bj , j = 1, . . . , Kq,

where Kq is the (appropriately chosen) number of regions. The algorithm described in [41]

is used for this purpose. The pmf of the random variable q over the bins Bj , which is

denoted by p(q), is an array of Kq numbers: p
(q)
j = P(q ∈ Bj), where P denotes probability.

A histogram estimate p̂(q) of the pmf p(q) is computed by counting the number of points

qi inside each bin: p̂
(q)
j = 1

n

∑n

i=1 IBj
(qi), where IA(x) is the indicator function of the set

A. That is, IA(x) = 1 if x ∈ A and 0 otherwise. A useful property of the histogram-based
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estimate is that p̂
(q)
j is an unbiased estimate of p

(q)
j even if the samples used to construct

the estimates are correlated. Let Bj∗ be the bin in which the pmf attains its maximum

value, i.e., j∗ = arg maxj(p̂
(q)
j ). If the number of bins Kq is large, then the center of Bj∗

is taken as the estimate of the mode of the pmf p(q), which is denoted by q∗ ∈ S
3+. If

a small Kq is chosen so that each bin may be large, the geodesic distances between the

center of Bj∗ and the qi’s lying in Bj∗ are computed and then averaged to identify the

dominant cluster of points inside this bin. If there is such a set of points that form a

dominant cluster, their center is chosen as the mode. The center is computed by taking

the arithmetic mean of the unit-quaternions (thinking of them as 4 dimensional vectors)

within the cluster and then normalizing the mean.

Step 3: Extracting low-noise measurements: Once the mode is identified, a subset

Qq ⊂ Sq is selected that consists of those q̂i ∈ S that satisfies

dq(q
∗, qi) < εq, (2–3)

where the distance function dq(·, ·) is the Riemannian distance. The Riemannian distance

between two rotations q1, q2 ∈ S
3+ is given by

d(R1, R2) =
1√
2
‖ log(RT

1 R2)‖F , (2–4)

where R1, R2 ∈ SO(3) are the rotation matrix representation of q1, q2, and the subscript F

refers to the Frobenius norm.

Step 4: Averaging low-noise data: Let N1 be the number of elements in the low-noise

data set Qq of rotations obtained as described above, and let Ri denote the rotation

matrix corresponding to qi ∈ Qq. The optimal average of the rotation matrices R1 . . . RN1

in the Euclidean sense is the matrix R̂ that satisfies [10]

R̂ = argmin
R∈SO(3)

N1∑

i=1

||Ri − R||2F . (2–5)
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It was shown by Moakher [10] that R̂ defined by (2–5) can be computed by the orthogonal

projection of the arithmetic average R̄ =
∑N1

i=1
Ri

N1

onto the special orthogonal group SO(3)

by

R̂ = R̄Udiag(
1√
Λ1

,
1√
Λ2

,
s√
Λ3

)UT , (2–6)

where the orthogonal matrix U is such that

R̄T R̄ = UT DU and D = diag(Λ1, Λ2, Λ3), (2–7)

and s = 1 if detR̄ > 0 and s = −1 otherwise.

The matrix R̂ computed using (2–6) is the desired estimate of the true rotation R.

2.4.2 Estimating Translation

2.4.2.1 Case A: unit translation

The estimation scheme for unit translation is very similar to that for the rotation.

The unit translation data ti ∈ St, i = 1, . . . , n represent realizations of the random variable

t with an unknown distribution defined over the 2-sphere S
2. The 2-sphere S

2 is divided

into a number of bins of equal area Bj, j = 1, . . . , Kt, where Kt is the (appropriately

chosen) integer, by using the method described in [41]. A histogram estimate p̂(t) of

the pmf p(t), where p
(t)
j := P(t ∈ Bj) is then computed by counting the number of

points ti in Bj . When Kt is large, the mode of the unit translation distribution, denoted

by t∗, is taken as the center of the bin Bj∗ in which the pmf takes its maximum value:

j∗ = arg maxj p̂
(t)
j . When the number of bins Kt is small, a method similar to the one used

for rotations is used to estimate the mode. Once the mode t∗ is identified, the low-noise

data set Qt is selected by choosing those ti ∈ St that satisfies

dt(t
∗, ti) < εt, (2–8)

where εt is a pre-specified small positive number, and dt(t1, t2) is the geodesic distance

between the unit translation vectors t1 and t2. Let N2 be the number of elements in the
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low-noise data set Qt of the unit translations obtained above. The normalized arithmetic

mean of the unit translations in the set Qt, which is given by

t̂ =

∑N2

i=1
ti
N2∣

∣
∣

∣
∣
∣
∑N2

i=1
ti
N2

∣
∣
∣

∣
∣
∣

(2–9)

is taken as the estimate of the unit translation t.

2.4.2.2 Case B: translation

When scale information is available, e.g., using a stereo camera pair, ti’s are

hypotheses of the translation between the two views and are elements of R
3, not of

S
2. In this case, histogram construction, mode estimation and low-noise hypotheses

extraction is carried out in R
3, by dividing a particular volume of R

3 into Kt bins of equal

volume, with each bin being a cube with equal sides. The volume to grid is chosen so

that all the hypotheses lie in it. The rest of the algorithm stays the same, except that the

Euclidean norm of the difference is used as the distance function dt(·, ·) in (2–8), and the

normalization step in (2–9) is omitted.

2.5 Performance Evaluation

To test the performance of the proposed algorithm, 970 images of a stationary

scene are captured by a moving monocular camera (make: Matrix Vision GmbH, model:

mvBlueFox-120aC, resolution: 640 × 480) mounted on a 2-link planar manipulator.

The 2-link manipulator is equipped with rotary encoders on each motor with 614,400

readings/revolution, which provides the ground truth of rotation and translation between

any two time instants. Fig. 2-1 shows the initial and the final images of the scenes

captured by the camera.

A multi-scale version of Kanade-Lucas-Tomasi (KLT) [2] feature point tracker is

implemented to track the features in successive images as the camera undergoes rotation

and translation. 31 feature points were detected in the first image of the sequence. Due

to the camera motion, restricted FOV, feature point tracking errors, etc., the number of

tracked feature points reduces with time (see Fig. 2-5).
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Figure 2-5. Number of feature points tracked during a sequence of 970 images taken by a

camera. The number of pairs of matched feature points between the first and
the second image pair is 31 and that between the first and the 970-th image is
9.

The performance of the PEGUS algorithm is evaluated by comparing the relative

pose estimates to the ground truth. The performance of the proposed algorithm is also

compared with that of RANSAC+least squares (outlier rejection by RANSAC followed

by re-estimation of the pose by feeding all the inlier data into the normalized 8-point

algorithm) and the non-linear mean shift algorithm [1]. For all the three methods, a

normalized 8-point algorithm is used to generate relative pose hypothesis (rotation and

unit translation) between the two frames from a minimal number of 8 pairs of matched

feature points. The same set of hypotheses are used as inputs to the PEGUS algorithm

and the non-linear mean shift.

The parameters used for the proposed method are Kq = 11, ǫq = 0.0223, Kt = 7,

ǫt = 0.017. The parameter n is nominally set to 100, except when the number of matched

feature points M between two views is so small that Nmax < n, in which case n = Nmax

is used. For the non-linear mean shift algorithm, a bandwidth of 0.7 and a Gaussian

kernel with mean 0 and variance 1 was used, with a stopping criteria that the norm of the

gradient of the mean-shift vector is less than 7 × 10−4. For RANSAC, a Sampson distance

of 0.005 as a threshold between the data points and the model is used.

The performance of each of the three pose estimation algorithms (PEGUS, RANSAC+least

squares, non-linear mean shift) is evaluated in the following manner. A total of 9000
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image pairs are selected arbitrarily from the 970 images captured. The true rotation

and translation between the frames in the i-th image pair are denoted as R(i) and t(i),

respectively, which are obtained from encoder measurements. The rotation and translation

estimation error for the i-th image pair are defined as

eR(i) = ‖I − R(i)T R̂(i)‖

et(i) = ‖t(i) − t̂(i)‖,
(2–10)

where R̂(i) and t̂(i) are the estimates of the rotation R(i) and unit translation t(i),

‖ · ‖ denotes the 2-norm, and I denotes a R
3×3 identity matrix. For each of the three

algorithms, the 9000 samples of the errors (2–10) are computed, and are used to estimate

the pmf of the rotation and translation errors that results from the particular algorithm.

The error probabilities for the three methods: PEGUS, RANSAC+least squares, and

non-linear mean shift, are shown in Fig. 2-10(a) and (b). The mean and standard

deviation of the rotation and translation errors are tabulated in Table 2-1. The figure

and the table shows that the estimation error with the proposed method is significantly

lower than that with RANSAC as well as non-linear mean shift.

A computational time comparison for the three methods is shown in Fig. 2-7, which

indicates that the proposed algorithm is also faster than both RANSAC and mean shift

algorithms. All computations were done using MATLAB in a desktop Linux machine.

In addition, the computational time of PEGUS is more predictable compared to that of

RANSAC and mean-shift. The reason is that in contrast to both RANSAC and mean

shift, PEGUS does not involve iterative search. It should be noted that these trends may

change depending on the parameters of the algorithms. For example, execution time of the

mean shift algorithm may be reduced by increasing the bandwidth, which may affect its

accuracy.
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Figure 2-6. Evaluation of the estimation accuracy achieved by the proposed PEGUS
algorithm and its comparison with that achieved by RANSAC+LS and
non-linear mean shift algorithm of [1]. RANSAC+LS means outlier rejection
by RANSAC followed by re-estimation of the pose by feeding all the inliers
to the normalized 8-point algorithm. Pmf of the rotation and unit translation
estimation errors are computed from 9000 samples of the error obtained from
the 9000 image pairs.
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Figure 2-7. Comparison of the computation time required by the 3 algorithms. The pmf is
estimated from 9000 samples of computation time.

2.6 Discussion

2.6.1 Sampling of the Hypotheses

The accuracy of the estimate obtained by PEGUS algorithm depends on the pose

hypotheses that are generated in the beginning. In this section some of the properties of
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Table 2-1. Comparison of mean and variance of estimation error: (A) PEGUS (B)
RANSAC+least squares, (C) non-linear mean shift.

Algorithm
Rot. Error Trans. Error

Mean Std. Dev. Mean Std. Dev.
A 0.0533 0.0390 0.1010 0.0438
B 0.8726 0.9383 0.6177 0.7340
C 0.1016 0.1163 0.1092 0.0371

the hypotheses generation scheme used in the algorithm are described, and discuss why

the scheme used leads to good estimates.

Note that since each distinct P pairs of point correspondence leads to a distinct

hypotheses of q and t.

Let h be the random variable representing the hypothesis that is obtained when

the Simple Random Sampling With Replacement (SRSWR) scheme is executed. The

possible values that h can take are denoted by hi, i = 1, Nmax. Each hi is a pair qi, ti. Since

there is a mapping from each set of P feature point pairs to hypotheses, (e.g., the 8-point

algorithm).

Proposition 1. The SRSWR scheme for hypotheses generation ensures that each possible

hypothesis is obtained with equal probability, i.e., P (h = hi) = 1
Nmax

.

Proof. A hypothesis h is uniquely defined by the P point correspondence used to generate

it, which are denoted by f1, f2, . . . , fP . Assume that the all feature point pairs are sorted

to have increasing index from 1 through M .

P(h = hi) = P(f1 = h1
i , f

2 = h2
i , . . . , f

P = hP
i )

=

8∏

k=2

P(fk = hk
i |fk−1 = hk−1

i , . . . , f1 = h1
i )

× P(f1 = h1
i )

=
1

M − 7

1

M − 6
. . .

1

M
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where the second equality follows from the chain rule of conditional probability, and the

third equality follows from the fact that once the first k point correspondence are picked,

the probability of picking a specific point among the remaining ones is 1/(M − k).

2.6.2 Robustness to Outliers

Robustness of the presented algorithm to feature outliers was analyzed using synthetic

feature point data. A random cloud of 100 Euclidean points was generated and these

Euclidean points were projected on the image plane using a pin-hole camera model.

The Euclidean point cloud is viewed from two distinct camera positions with the

known relative rotation and translation serving as a ground truth. In each trial, white

Gaussian noise of 0.01 standard deviation was added to the image data. In order to verify

the robustness of the three pose estimation algorithms (PEGUS, RANSAC+LS, and

non-linear mean shift), the percentage of outliers was varied from 10% to 90% with an

increment of 10% and the outliers were added randomly to the synthetic data. For each

case, the experiment was repeated 100 times and pose estimates were obtained using

PEGUS, RANSAC+LS, and non-linear mean shift algorithms. Using 2–10, the rotation

and translation estimation errors were obtained as shown in Figs. 2-8 and 2-9. Fig. 2-10

shows the mean of the rotation and translation errors obtained for different number

of feature outliers. It can be seen that the mean pose estimation error obtained using

PEGUS is minimum among these algorithms.

2.7 Conclusion

In this chapter a novel robust two-view relative pose estimation algorithm is

presented. Hypothesize-and-test methods such as RANSAC ignore all but one of the

good hypotheses, whereas the proposed algorithm identifies a set of “low-noise” pose

hypotheses among the large number of possible ones and then averages them appropriately

to compute an estimate. Identification of the “low-noise” set of hypotheses is simplified

by expressing rotations as unit-quaternions that lie on the 3-sphere S
3 and constructing a

histogram by gridding S
3. The same technique is used for unit-translations, except that
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Figure 2-8. Robustness comparison of the presented PEGUS algorithm with RANSAC+LS
and non-linear mean shift algorithm in terms of the rotation estimation
accuracy using synthetic data with (a) 10% feature outliers, (b) 20% feature
outliers, (c) 30% feature outliers, (d) 40% feature outliers, (e) 50% feature
outliers, (f) 60% feature outliers, (g) 70% feature outliers, (h) 80% feature
outliers, and (i) 90% feature outliers. Pmf of the rotation estimation error is
computed from 100 samples of the error obtained from the 100 image pairs.

the hypotheses are now points on the unit sphere in 3-dimensions. Experimental results

demonstrate improved performance of the proposed method against RANSAC+least

squares method as well as non-linear mean shift, in terms of both estimation accuracy

and computation time. Since the proposed method does not involve any iterative search,

its computation time is more predictable than that of RANSAC and non-linear mean

shift. Subsequent chapters will focus on development and analysis of visual servo control
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Figure 2-9. Robustness comparison of the presented PEGUS algorithm with RANSAC+LS
and non-linear mean shift algorithm in terms of the translation estimation
accuracy using synthetic data with (a) 10% feature outliers, (b) 20% feature
outliers, (c) 30% feature outliers, (d) 40% feature outliers, (e) 50% feature
outliers, (f) 60% feature outliers, (g) 70% feature outliers, (h) 80% feature
outliers, and (i) 90% feature outliers. Pmf of the translation estimation error is
computed from 100 samples of the error obtained from the 100 image pairs.

of autonomous systems wherein vision-based pose estimation acts as the foundation.

Therefore, the development provided in this chapter would be beneficial to such systems

requiring robust pose estimation in a deterministic fashion.
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Figure 2-10. (a) Mean rotation estimation error and (b) mean translation estimation error
for the presented PEGUS algorithm, RANSAC+LS, and non-linear mean
shift algorithm using the pose estimation results for synthetic data of varying
feature outliers (10% - 90%) presented in Figs. 2-8 and 2-9.
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CHAPTER 3
VISUAL SERVO CONTROL OF AN UNMANNED GROUND VEHICLE VIA A

MOVING AIRBORNE MONOCULAR CAMERA

3.1 Introduction

The development in this chapter is motivated by the desire to address the well-known

problem of controlling a moving target using a moving camera. A moving airborne

monocular camera (e.g., a camera attached to a remote controlled aircraft, a camera

mounted on a satellite) is used to provide pose measurements of a moving sensorless UGV

relative to a goal configuration. The relative velocity between the moving UGV and the

moving camera presents a significant challenge. The contribution of this chapter is the

development of multi-view geometry concepts (i.e., photogrammetry) to relate coordinate

frames attached to the moving camera, moving UGV, and the desired UGV pose specified

by an a priori image, the control scheme is coined as daisy-chaining method.

For the results in [42, 43], the pose measurements are taken with respect to a

stationary reference object and restrictions are imposed on the area of operation motion

for the UGV so that the stationary reference object never leaves the field-of-view of

an on-board camera. Also, the method presented in [42, 43] assumes that the known

Euclidean distance of the feature points on the UGV and the stationary reference object

are identical, which imposes practical limitations on the implementation of the visual servo

controller. The result in this chapter paper further develops the daisy-chaining method

to achieve asymptotic regulation of the UGV based on the assumption that the given

reference objects can leave the field of view while another reference object enters the field

of view.

This chapter is organized in two parts; daisy-chaining method is developed in the first

part with an objective of regulating an UGV to the desired position using image feedback

from a moving monocular camera. The second part of chapter presents the development

of a multi-reference visual servo control scheme in presence of the reseeding stationary
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reference objects. Simulation results are provided to demonstrate the performance of the

multi-reference daisy-chaining method for regulation control.

3.2 Daisy-Chaining Based Regulation Control

In this section, a collaborative visual servo controller is developed with the objective

to regulate an UGV to a desired pose utilizing the feedback from a moving airborne

monocular camera system. In contrast to typical camera configurations used for visual

servo control problems, the controller in this paper is developed using a moving on-board

camera viewing a moving target. Multi-view photogrammetric methods are used to

develop relationships between difference camera frames and UGV coordinate systems.

Geometric constructs developed for traditional camera-in-hand problems are fused with

fixed-camera geometry to develop a set of Euclidean homographies. One of the resulting

Euclidean homographies is not measurable through a set of spatiotemporal images (i.e.,

a corresponding projective homography can not be developed as in previous results).

Hence, new geometric relationships are formulated to solve for the homography so that

a measurable error system for the nonholonomic UGV can be developed. The resulting

open-loop error system is expressed in a form that is amenable to a variety of UGV

controllers. A benchmark controller originally proposed in [44] is proven to yield the

asymptotic regulation result through a Lyapunov-based stability analysis.

3.2.1 Geometric Model

Consider a single camera that is navigating (e.g., by remote controlled aircraft)

above1 the planar motion of an UGV as depicted in Fig. 3-1 and Fig. 3-2. The moving

coordinate frame I is attached to the airborne camera and the moving coordinate frame

F is attached to the UGV at the center of the rear wheel axis (for simplicity and without

1 No assumptions are made with regard to the alignment of the WMR plane of motion
and the focal axis of the camera as in [26].
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Figure 3-1. Camera coordinate frame relationships: A moving airborne monocular camera
(coordinate frame I) hovering above an UGV (coordinate frame F) while
viewing a fixed reference object (coordinate frame F∗) regulates an UGV to
the desired pose (coordinate frame Fd) captured by a priori located camera
(coordinate frame IR).

loss of generality). The UGV is represented in the camera image by four2 feature points

that are coplanar and not collinear. The Euclidean distance (i.e., s1i ∈ R
3 ∀i = 1, 2, 3, 4)

from the origin of F to one of the feature points is assumed to be known. The plane

defined by the UGV motion (i.e., the plane defined by the xy-axis of F ) and the UGV

feature points is denoted as π. The linear velocity of the UGV along the x-axis is denoted

by vc(t) ∈ R, and the angular velocity ωc(t) ∈ R is about the z-axis of F (see Figure 3-1).

While viewing the feature points of the UGV, the camera is assumed to also view four

additional coplanar and noncollinear feature points of a stationary reference object. The

2 Image analysis methods can be used to determine planar objects (e.g. through color,
texture differences). These traditional computer vision methods can be used to help
determine and isolate the four coplanar feature points. If four coplanar target points
are not available then the subsequent development can exploit the classic eight-points
algorithm [45] with no four of the eight target points being coplanar.
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four additional feature points define the plane π∗ in Fig. 3-1 and Fig. 3-2. The stationary

coordinate frame F∗ is attached to the object where distance (i.e., s2i ∈ R
3 ∀i = 1, 2, 3, 4)

from the origin of the coordinate frame to one of the feature points is assumed to be

known. The plane π∗ is assumed to be parallel to the plane π. The feature points that

define π∗ are also assumed to be visible when the camera is a priori located coincident

with the position and orientation (i.e., pose) of the stationary coordinate frame Ir. When

the camera is coincident with Ir, the desired pose of the UGV is assumed to be in the

camera’s field-of-view. When the UGV is located at the desired pose, the coordinate frame

F is coincident with the coordinate frame Fd. Table 3-1 shows the relationships between

various coordinate frames.

Table 3-1. Coordinate frames relationships for UGV regulation control.

Motion Frames
R (t), xf (t) F to I
R∗(t), x∗

f (t) F∗ to I
Rr(t), xfr(t) I to IR

R∗
r , x∗

fr F∗ to IR

Rrd, xfrd Fd to IR

R′(t), x′
fr(t) F to IR in IR

To relate the coordinate systems, let R (t), R∗(t), Rr(t), Rrd, R∗
r ∈ SO(3) denote

the rotation from F to I, F∗ to I, I to IR, Fd to IR, and F∗ to IR, respectively, xf (t),

x∗

f (t) ∈ R
3 denote the respective time-varying translation from F to I and from F∗

to I with coordinates expressed in I, and xfr(t), x′
fr(t), xfrd, x∗

fr ∈ R
3 denote the

respective translation from I to IR, F to IR, Fd to IR, and from F∗ to IR expressed in

the coordinates of IR. From the geometry between the coordinate frames depicted in Fig.

3-1 and Fig. 3-2, the following relationships can be developed

m̄i = xf + Rs1i m̄rdi = xfrd + Rrds1i (3–1)

m̄∗

i = x∗

f + R∗s2i m̄∗

ri = x∗

fr + R∗

rs2i (3–2)

m̄
′

i(t) = x′

fr + R∗

rR
∗T Rs1i (3–3)
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Figure 3-2. Urban scenario describing regulation of an UGV to the desired pose using an
airborne camera.

where m̄i(t), m̄∗
i (t) ∈ R

3 denote the Euclidean coordinates of the feature points of the

UGV and the feature points on the plane π∗ expressed in I as

m̄i(t) ,

[

xi(t) yi(t) zi(t)

]T

(3–4)

m̄∗

i (t) ,

[

x∗
i (t) y∗

i (t) z∗i (t)

]T

, (3–5)

m̄
′

i(t), m̄rdi ∈ R
3 denote the actual time varying and constant desired Euclidean

coordinates, respectively, of the feature points attached to the UGV expressed in IR

as

m̄
′

i(t) ,

[

x
′

i(t) y
′

i(t) z
′

i(t)

]T

(3–6)

m̄rdi ,

[

xrdi yrdi zrdi

]T

, (3–7)
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and m̄∗
ri ∈ R

3 denotes the constant Euclidean coordinates of the feature points on the

plane π∗ expressed in IR as

m̄∗

ri ,

[

x∗
ri y∗

ri z∗ri

]T

. (3–8)

After some algebraic manipulation, the expressions for m̄i(t), m̄rdi, m̄∗
ri(t), and m̄

′

i(t)

in (3–1)-(3–3) can be rewritten as

m̄i = x̄f + R̄m̄∗

i m̄rdi = x̄frd + R̄rdm̄
∗

ri (3–9)

m̄∗

ri = xfr + Rrm̄
∗

i m̄
′

i(t) = xfr + Rrm̄i (3–10)

where R̄ (t), R̄rd, R̄r ∈ SO (3) and x̄f (t), x̄frd, x̄′
fr(t) ∈ R

3 are new rotational and

translational variables, respectively, defined as

R̄ = RR∗T R̄rd = RrdR
∗T
r Rr = R∗

rR
∗T (3–11)

x̄f = xf − R̄
(
x∗

f + R∗ (s2i − s1i)
)

(3–12)

x̄frd = xfrd − R̄rd

(
x∗

fr + R∗

r (s2i − s1i)
)

(3–13)

xfr = x∗

fr − Rrx
∗

f = x′

fr − Rrxf . (3–14)

By using the projective relationships (see Fig. 3-3 and Fig. 3-4)

d(t) = n∗T m̄i d∗(t) = n∗T m̄∗

i d∗

r = n∗T m̄∗

ri (3–15)

the relationships in (3–9) and (3–10) can be expressed as

m̄i =
(

R̄ +
x̄f

d∗
n∗T
)

m̄∗

i (3–16)

m̄rdi =

(

R̄rd +
x̄frd

d∗
r

n∗T

)

m̄∗

ri (3–17)

m̄∗

ri =

(

Rr +
xfrn

∗T

d∗

)

m̄∗

i (3–18)

m̄
′

i =

(

Rr +
xfrn

∗T

d

)

m̄i. (3–19)
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In (3–15)-(3–19), d(t), d∗(t), d∗
r > ε for some positive constant ε ∈ R, and n∗ ∈ R

3 denotes

the constant unit normal to the planes π and π∗.

Remark 1. As in [46], the subsequent development requires that the constant rotation

matrix R∗
r be known. The constant rotation matrix R∗

r can be obtained a priori using

various methods (e.g., a second camera, Euclidean measurements).

3.2.2 Euclidean Reconstruction

The relationships given by (3–16) and (3–19) provide a means to quantify a

translation and rotation error between the different coordinate systems. Since the pose of

F , Fd, and F∗ cannot be directly measured, a Euclidean reconstruction is developed in

this section to obtain the position and rotational error information by comparing multiple

images acquired from the hovering monocular vision system. Specifically, comparisons are

made between the current UGV image and the reference image in terms of I and between

the a priori known UGV image and the reference image in terms of IR. To facilitate the

subsequent development, the normalized Euclidean coordinates of the feature points for

the current UGV image and the reference image can be expressed in terms of I as mi (t)

and m∗
i (t) ∈ R

3, respectively, as follows:

mi ,
m̄i

zi

m∗

i ,
m̄∗

i

z∗i
. (3–20)

Similarly, the normalized Euclidean coordinates of the feature points for the current, goal,

and reference image can be expressed in terms of IR as m
′

i(t), mrdi, m∗
ri ∈ R

3, respectively,

as follows:

m
′

i(t) =
m̄

′

i(t)

z
′

i(t)
mrdi ,

m̄rdi

zrdi

m∗

ri ,
m̄∗

ri

z∗ri

. (3–21)

From the expressions given in (3–16) and (3–20), the rotation and translation between the

coordinate systems F and F∗ can now be related in terms of the normalized Euclidean

coordinates as follows:

mi =
z∗i
zi
︸︷︷︸

(
R̄ + xhn

∗T
)

︸ ︷︷ ︸
m∗

i .

αi H

(3–22)
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In a similar manner, (3–17)-(3–21) can be used to relate the rotation and translation

between m∗
ri and mrdi as

mrdi =
z∗ri

zrdi
︸︷︷︸

(
R̄rd + xhrdn

∗T
)

︸ ︷︷ ︸
m∗

ri

αrdi Hrd

(3–23)

and between m∗
i (t) and m∗

ri as

m∗
ri =

z∗i
z∗ri
︸︷︷︸

(
Rr + xhrn

∗T
)

︸ ︷︷ ︸
m∗

i .

αri Hr

(3–24)

The development provided in the Remark 2 can be used to relate mi(t) to m
′

i(t) as

m
′

i =
zi

z′i

(

Rr + xhrαi

n∗T m∗
i

n∗T mi

n∗T

)

︸ ︷︷ ︸

mi.

H ′
r

(3–25)

In (3–22)-(3–25), αi (t) , αrdi, αri(t) ∈ R denote depth ratios, H (t), Hrd, Hr(t), H ′
r(t) ∈

R
3×3 denote Euclidean homographies [47], and xh (t), xhrd, xhr(t) ∈ R

3 denote scaled

translation vectors that are defined as follows

xh =
x̄f

d∗
xhrd =

x̄frd

d∗
r

xhr =
xfr

d∗
(3–26)

Remark 2. In order to find the relationship between the normalized Euclidean coordinates

mi(t) and m
′

i(t), termed as virtual homography, (3–19) is expressed as

m̄
′

i =

(

Rr +
xfrn

∗T

d∗

d∗

d

)

m̄i. (3–27)

By substituting xfr(t) from (3–26) into (3–27) the following expression can be obtained

m̄
′

i =

(

Rr + xhr

d∗

d
n∗T

)

m̄i. (3–28)
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Utilizing (3–15), (3–20), and (3–22) and rearranging the terms yields

m̄
′

i =

(

Rr + xhrαi

n∗T m∗
i

n∗T mi

n∗T

)

m̄i. (3–29)

The above expression can be written in terms of the normalized Euclidean coordinates by

using (3–20)-(3–21) as follows

m
′

i =
zi

z
′

i

(

Rr + xhrαi

n∗T m∗
i

n∗T mi

n∗T

)

mi. (3–30)

Each Euclidean feature point will have a projected pixel coordinate expressed in terms

of I as

pi ,

[

ui vi 1

]T

p∗i ,

[

u∗
i v∗

i 1

]T

(3–31)

where pi (t) and p∗i (t) ∈ R
3 represents the image-space coordinates of the time-varying

feature points of the UGV and reference object, respectively, and ui (t), vi (t) , u∗
i (t),

v∗
i (t) ∈ R. Similarly, the projected pixel coordinate of the Euclidean features in the

reference image can be expressed in terms of IR as

prdi ,

[

urdi vrdi 1

]T

p∗ri ,

[

u∗
ri v∗

ri 1

]T

(3–32)

where prdi and p∗ri ∈ R
3 represents the constant image-space coordinates of the goal

UGV and the reference object, respectively, and urdi, vrdi, u∗
ri, v∗

ri ∈ R. To calculate the

Euclidean homographies given in (3–22)-(3–25) from pixel information, the projected pixel

coordinates are related to mi (t), m∗
i (t), mrdi and m∗

ri by the pin-hole camera model as

pi = Ami p∗i = Am∗

i (3–33)

prdi = Amrdi p∗ri = Am∗

ri (3–34)
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where A ∈ R
3×3 is a known, constant, and invertible intrinsic camera calibration matrix.

By using (3–22)-(3–25), (3–33), and (3–34), the following relationships can be developed:

pi = αi

(
AHA−1

)

︸ ︷︷ ︸
p∗i prdi = αrdi

(
AHrdA

−1
)

︸ ︷︷ ︸
p∗ri

G Grd

(3–35)

p∗ri = αri

(
AHrA

−1
)

︸ ︷︷ ︸
p∗i

Gr

(3–36)

where G (t) = [gij(t)], Grd = [grdij ], Gr = [grij ] ∀i, j = 1, 2, 3 ∈ R
3×3 denote projective

homographies.

Sets of linear equations can be developed from (3–35) and (3–36) to determine the

projective homographies up to a scalar multiple. Various techniques can be used (e.g., see

[48, 49]) to decompose the Euclidean homographies, to obtain αi (t) , αrdi, αri(t), xh (t),

xhrd, xhr(t), R̄ (t), R̄rd, Rr(t). Given that the constant rotation matrix R∗
r is assumed

to be known, the expressions for R̄rd and Rr(t) in (3–11) can be used to determine Rrd

and R∗(t). Once R∗(t) is determined, the expression for R̄(t) in (3–11) can be used to

determine R(t).

3.2.3 UGV Kinematics

The kinematic model for the UGV can be determined from Fig. 3-1 as









ẋc

ẏc

θ̇d









=









cos θd 0

sin θd 0

0 1














υc

ωc




 (3–37)

where ẋc, ẏc, and θ̇d denote the time derivatives of xc(t), yc(t), and θd(t) ∈ R, respectively,

where xc(t) and yc(t) denote the planar position of F expressed in Fd, and θd(t) ∈ R

denotes the right-handed rotation angle about the z-axis of F that aligns F with Fd, and

υc(t) and ωc(t) were introduced in Section 3.2.1 and are depicted in Fig. 3-1 and Fig.

3-2. Based on the definitions for R (t), R∗(t), Rrd, R∗
r , and Rr(t) provided in the previous
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development (see also Table 3-1), the rotation from F to Fd can be developed as

RT
rdR

∗

rR
∗T R =









cos θd − sin θd 0

sin θd cos θd 0

0 0 1









. (3–38)

Based on the fact that R (t), R∗(t), R∗
r , and Rrd are known from the homography

decomposition, it is clear from (3–38) that θd(t) is a known signal that can be used in

the subsequent control development.

The geometric relationships between the coordinate frames can be used to develop the

following expression
[

xc yc 0

]T

= RT
rd(x

′

fr − xfrd) . (3–39)

After utilizing, (3–1), (3–3), (3–25), and the assumption (as in [46]) that s11 = [0, 0, 0]T ,

the following expression can be obtained3

[
xc

zrd1

yc

zrd1

0

]T

= RT
rd(

αr1αrd1

α1

H
′

rm1 − mrd1). (3–40)

After utilizing (3–33) and (3–34), the expression in (3–40) can be rewritten as follows

[
xc

zrd1

yc

zrd1

0

]T

= RT
rdA

−1(
αr1αrd1

α1
H

′

rp1 − prd1). (3–41)

Since all terms on the right-hand side of (3–41) are measurable or known, then xc(t)
zrd1

and

yc(t)
zrd1

can be used in the subsequent control development.

3.2.4 Control Objective

The objective considered in this chapter is to develop a visual servo controller that

ensures that the pose of a UGV is regulated to a desired pose. A challenging aspect of this

problem is that the UGV pose information is supplied by a moving airborne monocular

3 Any point s1i, s2i can be utilized in the subsequent development; however, to reduce
the notational complexity, we have elected to select the image point s11, s21, and hence,
the subscript 1 is utilized in lieu of i in the subsequent development.
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camera system. That is, unlike traditional camera-in-hand configurations or fixed camera

configurations, the problem considered in this chapter involves a moving airborne camera

observing a moving ground vehicle. Mathematically, the objective can be expressed as the

desire to regulate m̄i(t) to m̄di (or stated otherwise for x
′

fr(t) → xfrd and θd(t) → 0).

Based on (3–37)-(3–39) the objective can be quantified by a regulation error e(t) ∈ R
3,

defined by the following global diffeomorphism









e1

e2

e3









,









cos θd sin θd 0

− sin θd cos θd 0

0 0 1

















xc

zrd1

yc

zrd1

θd









. (3–42)

If ‖e(t)‖ → 0, then (3–39) and (3–42) can be used to conclude that x
′

fr(t) → xfrd and

θd(t) → 0. Based on (3–38) and (3–41), it is clear that e(t) is measurable.

3.2.5 Control Development

After taking the time derivative of (3–42) and using (3–37), the open-loop error

system for e(t) can be determined as









ė1

ė2

ė3









=









υc

zrd1

+ ωce2

−ωce1

ωc









. (3–43)

A variety of controllers could now be proposed to yield the regulation result based on the

manner in which the open-loop error system given by (3–43) has been developed. Several

controllers are provided in [50] including an explanation of how the UGV dynamics could

also be easily incorporated into the control design. The following benchmark controller

proposed in [44] is an example that can be used to achieve asymptotic regulation:

υc , −kve1 (3–44)

ωc , −kωe3 + e2
2 sin t (3–45)
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where kv, kω ∈ R denote positive, constant control gains. After substituting the controller

designed in (3–44) and (3–45) into (3–43), the following closed-loop error system is

obtained:

zrd1ė1 = −kve1 + zrd1ωce2 (3–46)

ė2 = −ωce1

ė3 = −kωe3 + e2
2 sin t .

Remark 3. As stated in [44] and [50], the closed-loop dynamics for e3(t) given in (3–46)

represent a stable linear system subject to an additive disturbance given by the product

e2
2(t) sin(t). If the additive disturbance is bounded (i.e., if e2(t) ∈ L∞), then it is clear

that e3(t) ∈ L∞. Furthermore, if the additive disturbance asymptotically vanishes (i.e., if

e2(t) → 0 ) then it is clear from standard linear control arguments [51] that e3(t) → 0.

3.2.6 Stability Analysis

Theorem 1. The kinematic controller given in (3–44) and (3–45) ensure asymptotic pose

regulation of the UGV in the sense that

lim
t→∞

‖e (t)‖ = 0 (3–47)

Proof. Let V (t) ∈ R denote the following non-negative function:

V ,
1

2
zrd1(e

2
1 + e2

2) . (3–48)

The following simplified expression can be obtained by taking the time derivative of

(3–48), substituting the closed-loop dynamics from (3–46) into the resulting expression,

and then cancelling common terms

V̇ = −kve
2
1. (3–49)

Based on (3–48) and (3–49), it is clear that e1(t), e2(t) ∈ L∞ and that e1(t) ∈ L2. Remark

3 can be used along with the fact that e2(t) ∈ L∞ to conclude that e3(t) ∈ L∞. Based

on the fact that e1(t), e2(t), e3(t) ∈ L∞, (3–44), (3–45) and (3–46) can be used to prove
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that υc(t), ωc(t), ė1(t), ė2(t), ė3(t) ∈ L∞. The fact that ė1(t), ė2(t), ė3(t) ∈ L∞ is a

sufficient condition for e1(t), e2(t), e3(t) to be uniformly continuous. After taking the time

derivative of (3–44) and (3–45) and utilizing the aforementioned facts, we can show that

υ̇c(t), ω̇c(t) ∈ L∞ ,and hence, υc(t) and ωc(t) are uniformly continuous. Based on the facts

that e1(t), ė1(t) ∈ L∞ and e1(t) ∈ L2, Barbalat’s Lemma can be used to prove that

lim
t→∞

e1(t) = 0. (3–50)

After taking the time derivative of the product e1(t)e2(t) and then substituting (3–46)

into the resulting expression for the time derivative of e1(t), the following expression is

obtained

d

dt
(e1e2) =

[
e2
2ωc

]
+ e1(ė2 −

kve2

zrd1
) . (3–51)

Given the facts that lim
t→∞

e1(t) = 0 and the bracketed term in (3–51) is uniformly

continuous (i.e., e2 (t) and ωc(t) are uniformly continuous), we can invoke extended

Barbalat’s lemma [50] to conclude that

lim
t→∞

d

dt
(e1(t)e2(t)) = 0 lim

t→∞
e2
2(t)ωc(t) = 0. (3–52)

After utilizing (3–44), (3–46), (3–50), and (3–52), we can conclude that

lim
t→∞

υc(t) = 0 lim
t→∞

ė1(t) = 0 lim
t→∞

ė2(t) = 0 (3–53)

To facilitate further analysis, we take the time derivative of the product e2(t)ωc(t) and

utilize (3–43), (3–44) and (3–45) to obtain the following expression

d

dt
(e2ωc) =

[
e3
2 cos(t)

]
+ ė2(ωc + 2e2

2 sin(t)) − kωe2ωc . (3–54)

Since the bracketed term in (3–54) is uniformly continuous, we can invoke extended

Barbalat’s lemma to conclude that

e3
2(t) cos(t) = 0; (3–55)
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hence,

lim
t→∞

e2(t) = 0. (3–56)

Based on (3–56), it is clear from Remark 3 that

lim
t→∞

e3(t) = 0. (3–57)

After utilizing (3–50), (3–56), and (3–57), the asymptotic regulation result given in (3–47)

is obtained.

3.3 Multi-Reference Visual Servo Control of an Unmanned Ground Vehicle

The result in this section further develops the daisy chaining method introduced in

Section 3.2 to achieve asymptotic regulation of the UGV based on the assumption that

the given reference objects can leave the field of view while another reference object enters

the field of view. The contribution of this research is that since the controller development

is based on the ability to daisy chain multiple reference objects, the restrictions on the

applicative area of operation are removed. That is, since the control development does not

require the airborne camera to maintain a view of a static reference object, the airborne

camera/UGV pair are able to navigate over an arbitrarily large area. The presented work

also relaxes the assumption of having identical Euclidean distance of the features for the

UGV and the reference object by leveraging on the geometric reconstruction method

proposed by Dupree et al.[52].

3.3.1 Geometric Model

The geometric model for multi-reference regulation control is similar to that presented

in Section 3.2. While viewing the feature points of the UGV, the camera is assumed

to also view four additional coplanar and non-collinear feature points of a stationary

reference object, such that at any instant of time along the camera motion trajectory

at least one such reference target is in the field of view. The four additional feature

points define the plane π∗
n in Fig. 3-3 and Fig. 3-4. The stationary coordinate frame F∗

n

(n = 1, 2, .., m) is attached to the object where distance from the origin of the coordinate
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Figure 3-3. Camera to reference object relationships: A monocular camera (coordinate
frame I) viewing a stationary reference object (coordinate frame Fi

∗) such
that a stationary object can leave the camera FOV as the new object enters
the FOV, while the stationary reference camera (coordinate frame IR) is
assumed to view the stationary reference object F1

∗.

frame to one of the feature points is assumed to be known, i.e., s2ni ∈ R
3 ∀i = 1, 2, 3, 4.

The plane π∗
n is assumed to be parallel to the plane π. The feature points that define

π∗
1, corresponding to a reference object F∗

1 (i.e. F∗
n corresponding to n = 1), are also

assumed to be visible when the camera is a priori located coincident with the position

and orientation (i.e., pose) of the stationary coordinate frame IR. The stationary pose

Fr corresponds to a snapshot of the UGV (e.g. at the starting location) visible from

the reference camera coordinate system IR. When the camera is coincident with IR, the

desired pose of the UGV Fd is assumed to be known. When the UGV is located at the

desired pose, the coordinate frame F is coincident with the coordinate frame Fd.

To relate the coordinate systems, consider the coordinate frame relationships as given

in Table 3-2.
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Figure 3-4. Camera to UGV relationships:A monocular camera (coordinate frame I)
hovering above an UGV (coordinate frame F) while viewing a stationary
reference object (coordinate frame Fn

∗) regulates an UGV to the desired pose
(coordinate frame Fd) known a priori in the reference camera (coordinate
frame IR). The stationary pose (coordinate frame Fr) corresponds to a
snapshot of the UGV visible from the reference camera (coordinate frame
IR).

Table 3-2. Coordinate frames relationships for multi-reference UGV regulation control.

Motion Frames
R (t), xf (t) F to I
R∗

n(t), x∗
fn(t) F∗

n to I
Rr(t), xfr(t) I to IR

Rrd, xfrd Fd to IR

R∗
rn, x∗

frn F∗
n to IR

Rrr, xfrr Fr to IR

R
′′

(t), x
′′

f (t) Fr to I
R

′

r(t), x
′

fr(t) F to IR

R
′

(t), x
′

f (t) F to Fr

R
′

rd(t), x
′

frd(t) F to Fd
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From the geometry between the coordinate frames depicted in Fig. 3-3 and Fig. 3-4,

the following relationships can be developed

m̄i = xf + Rs1i m̄rdi = xfrd + Rrds1i (3–58)

m̄∗

ni = x∗

fn + R∗

ns2ni m̄∗

rni = x∗

frn + R∗

rns2ni (3–59)

m̄
′

i = x
′′

f + R
′′

s1i m̄
′

ri = x
′

fr + R
′

rs1i (3–60)

m̄ri = xfrr + Rrrs1i. (3–61)

In (3–58)-(3–61), m̄i(t), m̄
′

i(t), m̄∗
ni(t) ∈ R

3 denote the Euclidean coordinates of the feature

points of the current UGV (i.e. F), constant reference UGV position, and stationary

reference object π∗
n (n = 1, 2, .., m), respectively, expressed in I as

m̄i(t) =

[

xi(t) yi(t) zi(t)

]T

(3–62)

m̄
′

i(t) =

[

x
′

i(t) y
′

i(t) z
′

i(t)

]T

(3–63)

m̄∗

ni(t) =

[

x∗
ni(t) y∗

ni(t) z∗ni(t)

]T

, (3–64)

m̄ri, m̄
′

ri(t), m̄rdi ∈ R
3 denote the Euclidean coordinates of the constant reference UGV,

actual time varying current UGV, and constant desired UGV, respectively, expressed in IR

as

m̄ri =

[

xri yri zri

]T

(3–65)

m̄
′

ri =

[

x
′

ri(t) y
′

ri(t) z
′

ri(t)

]T

(3–66)

m̄rdi =

[

xrdi yrdi zrdi

]T

, (3–67)

and m̄∗
rni ∈ R

3 denotes the constant Euclidean coordinates of the feature points on the

stationary reference plane π∗
n expressed in IR as

m̄∗

rni =

[

x∗
rni y∗

rni z∗rni

]T

. (3–68)
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For simplicity and without loss of generality, we consider two reference targets F∗
n (where

n = 1, 2). After some algebraic manipulation, the expressions for m̄∗
rni, m̄

′

ri(t), and m̄
′

i(t) in

(3–58)-(3–61) can be rewritten as

m̄∗

r1i = xfr + Rrm̄
∗

1i m̄∗

r2i = xfr + Rrm̄
∗

2i (3–69)

m̄
′

ri = xfr + Rrm̄i m̄ri = xfr + Rrm̄
′

i (3–70)

m̄
′

i = x
′

f + R
′

m̄i m̄rdi = x
′

frd + R
′

rdm̄
′

ri (3–71)

where Rr(t), R
′

(t), R
′

rd(t) ∈ R
3×3 and xfr(t), x

′

f (t), x
′

frd(t) ∈ R
3 denote new rotation and

translation variables given as follows:

Rr = R∗

rnR∗T
n xfr = x∗

frn − Rrx
∗

fn (3–72)

R
′

= R
′′

RT x
′

f = x
′′

f − R
′

xf (3–73)

R
′

rd = RrdR
′T

r x
′

frd = xfrd − R
′

rdx
′

fr (3–74)

By using the projective relationships

d∗

1 = n∗T
1 m̄∗

1i d∗

2 = n∗T
2 m̄∗

2i (3–75)

d = nT m̄i d
′

r = n
′T
r m̄

′

ri (3–76)

the relationships in (3–69) and (3–71) can be expressed as

m̄∗

r1i =

(

Rr +
xfrn

∗T
1

d∗
1

)

m̄∗

1i (3–77)

m̄∗

r2i =

(

Rr +
xfrn

∗T
2

d∗
2

)

m̄∗

2i (3–78)

m̄
′

i =

(

R
′

+
x

′

fn
T

d

)

m̄i (3–79)

m̄rdi =

(

R
′

rd +
x

′

frdn
′T
r

d′

r

)

m̄
′

ri. (3–80)
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In (3–77)-(3–80), d∗
1(t), d∗

2(t), d(t), d
′

r(t) > ε for some positive constant ε ∈ R, and n∗
1(t),

n∗
2(t), n(t), n

′

r(t) ∈ R
3 denote the time varying unit normal to the planes π∗

1 , π∗
2 , and π,

respectively.

3.3.2 Euclidean Reconstruction

The relationships given by (3–77)-(3–80) provide a means to quantify a translation

and rotation error between the different coordinate systems. Comparisons are made

between the current UGV image and the reference image in terms of I, between the

a priori known desired UGV pose and the current pose in terms of IR and between

the images of the stationary reference object in terms of I and IR. To facilitate the

subsequent development, the normalized Euclidean coordinates of the feature points for

the current UGV image, the reference UGV image, and the reference object images can be

expressed in terms of I as mi (t), m∗
1i(t), and m∗

2i(t) ∈ R
3, respectively, as

mi =
m̄i

zi

m
′

i =
m̄

′

i

z
′

i

(3–81)

m∗

1i =
m̄∗

1i

z∗1i

m∗

2i =
m̄∗

2i

z∗2i

. (3–82)

Similarly, the normalized Euclidean coordinates of the feature points for the current UGV,

goal UGV, and reference object image can be expressed in terms of IR as m
′

ri(t), mrdi,

m∗
r1i, and m∗

r2i ∈ R
3, respectively, as

m
′

ri =
m̄

′

ri

z
′

ri

mrdi =
m̄rdi

zrdi

(3–83)

m∗

r1i =
m̄∗

r1i

z∗r1i

m∗

r2i =
m̄∗

r2i

z∗r2i

. (3–84)

From the expressions given in (3–77), (3–82), and (3–84) the rotation and translation

between the coordinate systems I and IR can now be related in terms of the normalized

Euclidean coordinates of the reference object F∗
1 as [42]

m∗
r1i =

z∗1i

z∗r1i
︸︷︷︸

(
Rr + xhrn

∗T
1

)

︸ ︷︷ ︸
m∗

1i.

αri Hr

(3–85)
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At a future instant in time, when the static reference object F∗
2 is in the field of view

of the current camera (i.e. I) and the daisy chaining method has been used to relate

camera frames I and IR in terms of the reference object F∗
2 , then (3–78), (3–82), and

(3–84) can be used to relate the rotation and translation between I and IR in terms of the

normalized Euclidean coordinates of the reference object F∗
2 as4

m∗
r2i =

z∗2i

zr2i
︸︷︷︸

(
Rr + xhrn

∗T
2

)

︸ ︷︷ ︸
m∗

2i

αri Hr

(3–86)

where m∗
r2i ∈ R

3 represent virtual normalized Euclidean coordinates since the stationary

reference object F∗
2 is not in the field of view of the stationary reference camera IR. The

relationship between F and Fr can be expressed as [42]

m
′

i =
zi

z
′

i
︸︷︷︸

(

R
′

+ x
′

hn
T
)

︸ ︷︷ ︸

mi.

α
′

i H
′

(3–87)

Similarly, using (3–80) and (4–25) the rotation and translation between the coordinate

systems F and Fd can now be related in terms of the normalized Euclidean coordinates of

the UGV expressed in IR as

mrdi =
z
′

ri

zrdi
︸︷︷︸

(

R
′

rd + x
′

hrdn
′T
r

)

︸ ︷︷ ︸

m
′

ri.

αrdi Hrd

(3–88)

In (3–85)-(3–88), α
′

i(t), αrdi(t), αri (t) ∈ R denote depth ratios, H
′

(t), Hrd(t), Hr (t) ∈ R
3×3

denote Euclidean homographies [53], and x
′

h(t), x
′

hrd(t), xhr (t) ∈ R
3 denote scaled

4 Homography relationship in (3–86) relates camera frames I and IR utilizing the
static reference object F∗

2 however, given development can be generalized for any reference
object F∗

n (n = 2, 3, ..m).
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translation vectors that are defined as follows

x
′

h =
x

′

f

d
x

′

hrd =
x

′

frd

d′

r

xhr =
xfr

d∗
1

(3–89)

where the scaled translation xhr (t) is obtained when the relationship between I and IR is

expressed in terms of the static reference object F∗
1 ,

xhr =
xfr

d∗
2

. (3–90)

In (3–90), the scaled translation xhr (t) is obtained when the static reference object F∗
2

is in the field of view of current camera frame (i.e. I) and daisy chaining strategy has

established a connection between camera frames I and IR in terms of the reference object

F∗
2 . Each Euclidean feature point will have a projected pixel coordinate expressed in terms

of I as

pi =

[

ui vi 1

]T

p∗1i =

[

u∗
1i v∗

1i 1

]T

(3–91)

p∗2i =

[

u∗
2i v∗

2i 1

]T

(3–92)

where pi (t), p∗1i(t), and p∗2i(t) ∈ R
3 represents the image-space coordinates of the

time-varying feature points of the UGV and reference objects F∗
1 and F∗

2 , respectively,

and ui (t), vi (t) , u∗
1i(t), v∗

1i(t), u∗
2i(t), v∗

2i(t) ∈ R. Similarly, the projected pixel coordinate

of the Euclidean features in the reference image can be expressed in terms of IR as

p∗r1i =

[

u∗
r1i v∗

r1i 1

]T

(3–93)

where p∗r1i ∈ R
3 represents the constant image-space coordinates of the stationary

reference object F∗
1 and u∗

r1i, v∗
r1i ∈ R. To calculate the Euclidean homographies given in

(3–85)-(3–88) from pixel information, the projected pixel coordinates are related to mi (t),
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m∗
1i(t), m∗

2i(t), and m∗
r1i by the pin-hole camera model as

pi = Ami p∗1i = Am∗

1i (3–94)

p∗2i = Am∗

2i p∗r1i = Am∗

r1i (3–95)

Also, the pin-hole camera model relationship for the normalized Euclidean coordinates

m∗
r2i, m

′

i(t), m
′

ri(t), and mrdi can be formulated in terms of the virtual pixel coordinates

p∗r2i, p
′

i(t), p
′

ri(t), and prdi as follows:

p∗r2i = Am∗

r2i p
′

i = Am
′

i (3–96)

p
′

ri = Am
′

ri prdi = Amrdi (3–97)

where A ∈ R
3×3 is a known, constant, and invertible intrinsic camera calibration matrix.

By using (3–85)-(3–88), (3–94), and (3–95), the following relationships can be developed:

p∗r1i = αriGrp
∗
1i p∗r2i = αriGrp

∗
2i

(3–98)

p
′

i = α
′

iG
′

pi prdi = αrdiGrdp
′

ri (3–99)

where Gr (t) = [grij(t)], G
′

(t) = [g
′

ij(t)], Grd = [grdij] ∀i, j = 1, 2, 3 ∈ R
3×3 denote projective

homographies.

Sets of linear equations can be developed from (3–98) and (3–99) to determine

the projective homographies up to a scalar multiple. Various techniques can be used

(e.g., see[48, 49]) to decompose the Euclidean homographies, to obtain αri (t) , α
′

i(t),

αrdi(t), xhr (t), x
′

h(t), x
′

hrd(t), Rr (t), R
′

(t), R
′

rd(t). Using the known geometric length s21i

and a unit normal n∗
1, obtained from homography decomposition of (3–85), geometric

reconstruction method can be utilized to obtain m̄∗
1i(t) and d∗

1(t). Hence, the translation

xfr(t) between I and IR can be recovered from (3–89). Also, the Euclidean coordinates

m̄ri of the UGV corresponding to the stationary reference pose can be obtained from

geometric reconstruction. Thus, m̄
′

i(t) can be computed from (3–70). Using (3–81),

(3–87), (3–96), and (3–99), the projective homography can be defined between p
′

i(t) and

63



pi(t), which can be decomposed to obtain a unit normal n(t) and hence the time-varying

Euclidean coordinates m̄i(t). The Euclidean coordinates m̄
′

ri(t), corresponding to the

current UGV position as seen by reference camera IR, can be obtained using (3–70).

Therefore, using (3–83) and (3–97) a projective homography relationship can be obtained

between the current UGV (i.e. F(t)) and the desired UGV (i.e. Fd) in terms of a

stationary reference camera coordinate system IR given by (3–99).

Further, when the reference object F∗
2 appears in the field of view of I, the Euclidean

position m̄∗
2i(t) can be obtained. Using (3–69), (3–82), (3–84), (3–86), and (3–98), a

projective homography relationship can be defined between p∗r2i and p∗2i(t), which can

be decomposed to obtain rotation and translation Rr (t), xfr(t) between I and IR.

Once Rr (t) and xfr(t) have been determined, the future relationship can be expressed

with respect to the new reference object (i.e. F∗
2 ) and similarly, can be generalized for

n = 2, 3, .., m.

3.3.3 UGV Kinematics

The kinematic model for the UGV can be determined from Fig. 3-3 as









ẋc

ẏc

θ̇d









=









cos θd 0

sin θd 0

0 1














υc

ωc




 (3–100)

where ẋc, ẏc, and θ̇d denote the time derivatives of xc(t), yc(t), and θd(t) ∈ R, respectively,

where xc(t) and yc(t) denote the planar position of F expressed in Fd, and θd(t) ∈ R

denotes the right-handed rotation angle about the z-axis of F that aligns F with Fd, and

υc(t) and ωc(t) were introduced in Section 3.2.1 and are depicted in Figs. 3-3 and 3-4.

Based on the definition for R
′

rd(t) provided in the previous development, the rotation from

64



F to Fd can be developed as

R
′

rd =









cos θd − sin θd 0

sin θd cos θd 0

0 0 1









. (3–101)

Based on the fact that R
′

rd(t) can be obtained from (3–88) and (3–99), it is clear from

(3–101) that θd(t) is a known signal that can be used in the control development.

The geometric relationships between the coordinate frames can be used to develop the

following expression
[

xc yc 0

]T

= RT
rd(x

′

fr − xfrd) . (3–102)

After utilizing, (3–58), (3–60), (3–88), and the assumption (as in [46]) that s11 = [0, 0, 0]T ,

the following expression can be obtained5

[
xc

zrd1

yc

zrd1

0

]T

= RT
rd(

z
′

r1

zrd1
m

′

r1 − mrd1). (3–103)

Since the terms on the right-hand side of (3–103) are known or measurable (refer to

Section 3.3.2), then
xc(t)

zrd1

and
yc(t)

zrd1

can be used in the control development.

Based on the form of (3–101 and 3–103), control development and Lyapunov-based

stability analysis arguments provided in Section 3.2 can be used to prove asymptotic

regulation of the UGV.

3.3.4 Simulation Results

A numerical simulation was performed to illustrate the performance of the multi-reference

regulation control given the controller in (3–44) and (3–45). The simulation scenario is

shown in Fig. 3-5, such that the pose of current UGV F(t) is estimated with respect

5 Any point s1i, s2ni can be utilized in the subsequent development; however, to reduce
the notational complexity, we have elected to select the image point s11, s2n1, and hence,
the subscript 1 is utilized in lieu of i in the subsequent development.

65



to four stationary reference objects F∗
1 , F∗

2 , F∗
3 , F∗

4 while regulating to the desired pose

corresponding to the coordinate frame Fd. The origins of the coordinate frames F , F∗
1 ,

F∗
2 , F∗

3 , F∗
4 , and Fd, and the four coplanar feature points on the planes π, π∗

1 , π∗
2 , π∗

3, π∗
4,

and πd are chosen such that the Euclidean coordinates of the feature points in F , F∗
1 , F∗

2 ,

F∗
3 , F∗

4 , and Fd are given by si, s1i, s2i, s3i, s4i, si (where i = 1, 2, 3, 4), respectively.

The initial pose of current UGV F(0) = F(t)|t=0, stationary reference objects

F∗
j , j = 1, 2, 3, 4, and the desired pose Fd were considered as

F(0) =












cos(60) −sin(60) 0 −3.40

sin(60) cos(60) 0 −1.00

0 0 1 0

0 0 0 1












F∗

1 =












cos(40) −sin(40) 0 −3.25

sin(40) cos(40) 0 0.50

0 0 1 −1.00

0 0 0 1












F∗

2 =












cos(20) −sin(20) 0 −1.50

sin(20) cos(20) 0 −0.15

0 0 1 −0.80

0 0 0 1












F∗

3 =












cos(00) −sin(00) 0 −1.25

sin(00) cos(00) 0 1.50

0 0 1 −1.50

0 0 0 1












F∗

4 =












cos(10) −sin(10) 0 0.15

sin(10) cos(10) 0 0.15

0 0 1 −2.25

0 0 0 1












Fd =












cos(−30) −sin(−30) 0 0.40

sin(−30) cos(−30) 0 1.00

0 0 1 0

0 0 0 1












.

The control gains in (3–44) and (3–45) were selected as

kω = 2.2025 kv = 12.9275.

The Euclidean space trajectory of the moving camera I along with initial and final

position of the time-varying UGV F(t) and desired UGV Fd is shown in Fig. 3-5. The

regulation errors are plotted in Fig. 3-6, which asymptotically approach zero. The linear
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and angular velocity control inputs are shown in Fig. 3-7. Figs. 3-8 and 3-9 show the

regulation results in presence of an additive white Gaussian noise of standard deviation

σ = 0.1 pixels.

3.3.5 Concluding Remarks

In this chapter, the pose of a moving sensorless UGV is regulated to a desired

pose defined by a goal image using a collaborative visual servo control strategy. To

achieve the result, multiple views of a reference object were used to develop Euclidean

homographies. By decomposing the Euclidean homographies into separate translation and

rotation components reconstructed Euclidean information was obtained for the control

development. The impact of this research is a new framework to relate the pose of a

moving target through images acquired by a moving camera. Further, the results are

extended to include the scenario such that the stationary reference objects can leave

the camera FOV and new objects enter the FOV, thus increasing the applicative area

of the UGV/camera pair. The development in next chapter will target an extension of

daisy-chaining method to a tracking control result.
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Figure 3-5. Euclidean space trajectory of the moving camera I, initial and final position
of the time-varying UGV F(t), and desired UGV Fd. F(0) denotes the initial
position of the UGV, I(0) denotes the initial position of the moving camera,
I(t) denotes the time-varying position of the moving camera, F∗
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i = 1, 2, .., 7 denotes the stationary reference objects, and F(t) denotes the
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Figure 3-6. Linear (i.e. e1(t) and e2(t)) and angular (i.e. e3(t)) regulation error.
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Figure 3-7. Linear (i.e. vc(t)) and angular (i.e. ωc(t)) velocity control inputs.
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Figure 3-8. Linear (i.e. e1(t) and e2(t)) and angular (i.e. e3(t)) regulation error in presence
of an additive white Gaussian noise.
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Figure 3-9. Linear (i.e. vc(t)) and angular (i.e. ωc(t)) velocity control inputs in presence of
an additive white Gaussian noise.
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CHAPTER 4
A DAISY-CHAINING VISUAL SERVOING APPROACH WITH APPLICATIONS IN

TRACKING, LOCALIZATION, AND MAPPING

4.1 Introduction

A new daisy-chaining method developed in Chapter 3 is used for vision-based

tracking control of a rigid-body object, such as an UGV, while providing localization of

the moving camera and moving object in the world frame, and mapping the location of

static landmarks in the world frame. Hence, this approach can be used in vSLAM of the

UGV, with applications toward path planning, real time trajectory generation, obstacle

avoidance, multi-vehicle coordination control and task assignment, etc. By using the

daisy-chaining strategy, the coordinates of static features out of the FOV can also be

estimated. The estimates of static features can be maintained as a map, or can be used as

measurements in existing vSLAM methods.

For clarity, this chapter is presented in successive stages of increasing complexity.

Section 4.2 introduces the imaging model, geometric model used in this chapter, as well

as introduces the daisy-chaining method as applied to the case of controlling a six DOF

planar object through visual data from a moving camera and fixed reference camera.

These results are extended to the case of an UGV with nonholonomic constraints and

a moving camera and moving reference camera in Section 4.3. The efforts of previous

sections are then brought to bear on a tracking and mapping application, where the UGV

is controlled to track a trajectory that takes the vehicle outside of the initial FOV of the

camera. The daisy-chaining approach must be extended to allow for new fixed landmarks

to enter the FOV and related to previous landmarks and the UGV.

4.2 Daisy-Chaining Based Tracking Control

In this section, a visual servo tracking controller is developed for a moving six

DOF object based on daisy-chained image feedback from a moving camera. The control

objective is to have the object track a desired trajectory determined by a sequence of

prerecorded images from a stationary camera. To achieve this result, several technical
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issues were resolved including: discriminating the relative velocity between the moving

camera and the moving object, compensating for the unknown time-varying distance

measurement from the camera to the object, relating the unknown attitude of the control

object to some measurable signals, and using the unit quaternion to formulate the rotation

motion and rotation error system. The relative velocity issue is resolved by utilizing

multi-view image geometry to daisy-chain homography relationships between the moving

camera frame and the moving object coordinate frames. By using the depth ratios

obtained from the homography decomposition, the unknown depth information is related

to an unknown constant that can be compensated for by a Lyapunov-based adaptive

update law. Lyapunov-based methods are provided to prove the adaptive asymptotic

tracking result.

4.2.1 Problem Scenario

Over the past decade, a variety of visual servo controllers have been addressed for

both camera-to-hand and camera-in-hand configurations (e.g., see [54–57]). Typical

camera-to-hand and camera-in-hand visual servo controllers have required that either the

camera or the target remain stationary so that an absolute velocity can be determined

and used in the control development. For the problem of a moving camera tracking a

moving target (i.e. control of relative pose/velocity), integral control or predictive Kalman

filters have been used to overcome the unknown target velocity [58, 59]. In contrast to

these methods, the development in this section and our previous preliminary work in

[42, 43, 60] is motivated by the problem when the camera and the target are moving. A

practical example application of this scenario is an airborne camera attached to a remote

controlled aircraft that is used to determine pose measurements of an UGV and then relay

the information to the UGV for closed-loop control.

The scenario examined in this section is depicted in Fig. 4-1, where various

coordinate frames are defined as a means to develop the subsequent Euclidean reconstruction

and control methods. In Fig. 4-1, a stationary coordinate frame IR is attached to a
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Figure 4-1. Geometric model for a moving camera (coordinate frame I), moving target
(coordinate frame F) and stationary reference camera (coordinate frame IR).

camera and a time-varying coordinate frame Fd is attached to some mobile object (e.g., an

aircraft, a ground vehicle, a marine vessel). The object is identified by an image through a

collection of feature points that are assumed (without loss of generality1 ) to be coplanar

and non-collinear (i.e., a planar patch of feature points). The camera attached to IR a

priori records a series of snapshots (i.e., a video) of the motion of the coordinate frame Fd

until Fd comes to rest. A stationary coordinate frame F∗ is attached to another planar

patch of feature points that are assumed to be visible in every frame of the video recorded

by the camera. For example, the camera attached to IR is on-board a “stationary”

satellite that takes a series of snapshots of the relative motion of Fd with respect to F∗.

Therefore, the desired motion of Fd can be encoded as a series of relative translations

and rotations with respect to the stationary frame F∗ a priori. Spline functions or filter

1 Image processing techniques can often be used to select coplanar and non-collinear
feature points within an image. However, if four coplanar target points are not available
then the subsequent development can also exploit the virtual parallax method [45, 61]
where the non-coplanar points are projected onto a virtual plane.
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algorithms can then be used to generate a smooth desired feature point trajectory as

described in [46].

Fig. 4-1 also depicts a time-varying coordinate frame I that is attached to another

camera (e.g., a camera attached to a remote controlled aircraft), and a time-varying

coordinate frame F that is attached to the current pose of the planar patch. The camera

attached to I captures snapshots of the planar patches associated with F and F∗,

respectively. The a priori motion of Fd represents the desired trajectory of the coordinate

system F , where F and Fd are attached to identical objects, but at different points in

time. The camera attached to IR can be a different camera (with different calibration

parameters) as the camera attached to I. Based on these coordinate frame definitions,

the problem considered in this section is to develop a kinematic controller for the object

attached to F so that the time-varying rotation and translation of F converges to the

desired time-varying rotation and translation of Fd, where the motion of F is determined

from the time-varying overhead camera attached to I.

4.2.2 Geometric Relationships

Relationships between the various coordinate frames are summarized in Table 4-1. In

Table 4-1, R (t), R∗(t), Rr(t), R
′

(t), Rrd (t), R∗
r ∈ SO(3) denote rotation matrices, and

xfr(t), x′
fr(t), xfrd (t), x∗

fr ∈ R
3 denote translation vectors. From Fig. 4-1, the translation

x′
fr(t) and the rotation R

′

(t) can be expressed as

x′

fr = x∗

fr + R∗

rR
∗T (xf − x∗

f )

R
′

= R∗

rR
∗T R. (4–1)

As illustrated in Fig. 4-1, π, πd and π∗ denote the planes of feature points associated

with F , Fd, and F∗, respectively. The constant Euclidean coordinates of the i-th feature

point in F (and also Fd)are denoted by s1i ∈ R
3 ∀i = 1, 2, · · · , n (n ≥ 4), and s2i ∈ R

3

∀i = 1, 2, · · · , n denotes the constant Euclidean coordinates of the i-th feature point in
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Table 4-1. Coordinate frames relationships for 6-DOF planar object tracking control.

Motion Frames
R (t), xf (t) F to I in I
R∗(t), x∗

f (t) F∗ to I in I
Rr(t), xfr(t) I to IR

R
′

(t), x
′

fr (t) F to IR in IR

R∗
r , x∗

fr F∗ to IR in IR

Rrd(t), xfrd(t) Fd to IR in IR

F∗. From the geometry between the coordinate frames depicted in Fig. 4-1, the following

relationships can be developed

m̄i = xf + Rs1i m̄rdi = xfrd + Rrds1i (4–2)

m̄∗

ri = x∗

fr + R∗

rs2i m̄
′

i = x′

fr + R
′

s1i (4–3)

m̄∗

i = x∗

f + R∗s2i. (4–4)

In (4–2)-(4–4), m̄i(t), m̄∗
i (t) ∈ R

3 denote the Euclidean coordinates of the feature points on

π and π∗, respectively, expressed in I as

m̄i(t) ,

[

xi(t) yi(t) zi(t)

]T

(4–5)

m̄∗

i (t) ,

[

x∗
i (t) y∗

i (t) z∗i (t)

]T

, (4–6)

m̄
′

i(t), m̄rdi (t) ∈ R
3 denote the actual and desired time-varying Euclidean coordinates,

respectively, of the feature points on π expressed in IR as

m̄
′

i(t) ,

[

x
′

i(t) y
′

i(t) z
′

i(t)

]T

(4–7)

m̄rdi(t) ,

[

xrdi(t) yrdi(t) zrdi(t)

]T

, (4–8)

and m̄∗
ri ∈ R

3 denotes the constant Euclidean coordinates of the feature points on the

plane π∗ expressed in IR as

m̄∗

ri ,

[

x∗
ri y∗

ri z∗ri

]T

. (4–9)
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After some algebraic manipulation, the expressions in (4–2)-(4–4) can be rewritten as

m̄∗

i = x̄n + Rnm̄i (4–10)

m̄i = x̄f + R̄m̄∗

i m̄rdi = x̄frd + R̄rdm̄
∗

ri (4–11)

m̄∗

ri = xfr + Rrm̄
∗

i m̄
′

i = xfr + Rrm̄i, (4–12)

where Rn (t), R̄ (t), R̄rd(t), Rr(t) ∈ SO (3) and x̄n(t), x̄f (t), x̄frd(t), xfr(t) ∈ R
3 are new

rotation and translation variables, respectively, defined as2

Rn = R∗RT R̄ = RR∗T (4–13)

R̄rd = RrdR
∗T
r Rr = R∗

rR
∗T

x̄n = x∗

f − Rn (xf − R (s2i − s1i)) (4–14)

x̄f = xf − R̄
(
x∗

f + R∗ (s2i − s1i)
)

(4–15)

x̄frd = xfrd − R̄rd

(
x∗

fr + R∗

r (s2i − s1i)
)

(4–16)

xfr = x∗

fr − Rrx
∗

f = x′

fr − Rrxf . (4–17)

To facilitate the development of a relationship between the actual Euclidean translation

of F to the Euclidean translation that is reconstructed from the image information,

projective relationships are developed from Fig. 4-1 as

d(t) = nT m̄i d∗(t) = n∗T m̄∗

i d∗

r = n∗T
r m̄∗

ri, (4–18)

where d(t) ∈ R represents the distance from the origin of I to π along the unit normal

(expressed in I) to π denoted as n(t) ∈ R
3, d∗(t) ∈ R represents the distance from the

2 Note that Rn (t), R̄(t) and R̄rd (t) in (4–13) are the rotation matrices between F and
F∗, F∗ and F , and F∗ and Fd, respectively, but x̄n(t), x̄f (t) and x̄frd(t) in (4–14)-(4–16)
are not the translation vectors between the corresponding coordinate frames. Only the
rotation matrices will be used in the controller development.
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origin of I to π∗ along the unit normal (expressed in I) to π∗ denoted as n∗(t) ∈ R
3,

and d∗
r ∈ R represents the distance from the origin of IR to π∗ along the unit normal

(expressed in IR) to π∗ denoted as n∗
r ∈ R

3 where n∗(t) = RT
r (t)n∗

r . In (4–18), d(t),

d∗(t), d∗
r > ε for some positive constant ε ∈ R. Based on (4–18), the relationships in

(4–10)-(4–12) can be expressed as

m̄∗

i =
(

Rn +
x̄n

d
nT
)

m̄i (4–19)

m̄i =
(

R̄ +
x̄f

d∗
n∗T
)

m̄∗

i (4–20)

m̄rdi =

(

R̄rd +
x̄frd

d∗
r

n∗T
r

)

m̄∗

ri (4–21)

m̄∗

ri =

(

Rr +
xfrn

∗T

d∗

)

m̄∗

i (4–22)

m̄
′

i =

(

Rr +
xfrn

T

d

)

m̄i. (4–23)

As in [46], the subsequent development requires that the constant rotation matrix

R∗
r be known. The constant rotation matrix R∗

r can be obtained a priori using various

methods (e.g., a second camera, additional on-board sensors, off-line calibration, Euclidean

measurements). The subsequent development also assumes that the difference between

the Euclidean distances (s2i − s1i) is a constant ∀i = 1, ..., n. While there are many

practical applications that satisfy this assumption (e.g., a simple scenario is that the

objects attached to F and F∗ are the identical objects), the assumption is generally

restrictive and is the focus of future research. As described in our preliminary work in [62],

each of these assumptions can be avoided by using the geometric reconstruction approach

in [52, 63, 64] under an alternative assumption that the Euclidean distance between two

feature points is precisely known.

4.2.3 Euclidean Reconstruction

The relationships given by (4–19)-(4–23) provide a means to quantify a translation

and rotation error between the different coordinate systems. Since the pose of F , Fd, and

F∗ cannot be directly measured, a Euclidean reconstruction is developed to obtain the
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pose error by comparing multiple images acquired from the hovering monocular vision

system. To facilitate the subsequent development, the normalized Euclidean coordinates

of the feature points in π and π∗ can be expressed in terms of I as mi (t), m∗
i (t) ∈ R

3,

respectively, as

mi ,
m̄i

zi

m∗

i ,
m̄∗

i

z∗i
. (4–24)

Similarly, the normalized Euclidean coordinates of the feature points in π, πd and π∗ can

be expressed in terms of IR as m
′

i(t), mrdi (t), m∗
ri ∈ R

3, respectively, as

m
′

i(t) ,
m̄

′

i(t)

z
′

i(t)
mrdi (t) ,

m̄rdi (t)

zrdi (t)
m∗

ri ,
m̄∗

ri

z∗ri

. (4–25)

From the expressions given in (4–20) and (4–24), the rotation and translation between

the coordinate systems F and F∗, between F∗ and Fd, and between I and IR can now be

related in terms of the normalized Euclidean coordinates as

mi = αi

(
R̄ + xhn

∗T
)
m∗

i , (4–26)

m∗

i =
1

αi

(
Rn + xnhn

T
)
mi (4–27)

mrdi = αrdi

(
R̄rd + xhrdn

∗T
r

)
m∗

ri, (4–28)

m∗

ri = αri

(
Rr + xhrn

∗T
)
m∗

i , (4–29)

where αi (t), αrdi(t), αri(t) ∈ R denote depth ratios defined as

αi =
z∗i
zi

αrdi =
z∗ri

zrdi

αri =
z∗i
z∗ri

,

and xh (t), xnh (t), xhrd(t), xhr(t) ∈ R
3 denote scaled translation vectors that are defined as

xh =
x̄f

d∗
xnh =

x̄n

d
(4–30)

xhrd =
x̄frd

d∗
r

xhr =
xfr

d∗
.

Since the normalized Euclidean coordinates in (4–26)-(4–29) can not be directly

measured, the following relationships (i.e., the pin-hole camera model) are used to
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determine the normalized Euclidean coordinates from pixel information

pi = A1mi p∗i = A1m
∗

i (4–31)

prdi = A2mrdi p∗ri = A2m
∗

ri, (4–32)

where A1, A2 ∈ R
3×3 are known, constant, and invertible intrinsic camera calibration

matrices of the current camera and the reference camera, respectively. In (4–31) and

(4–32), pi (t), p∗i (t) ∈ R
3 represent the image-space coordinates of the Euclidean feature

points on π and π∗ expressed in terms of I as

pi ,

[

ui vi 1

]T

p∗i ,

[

u∗
i v∗

i 1

]T

, (4–33)

respectively, where ui (t), vi (t) , u∗
i (t), v∗

i (t) ∈ R. Similarly, prdi(t), p∗ri ∈ R
3 represent the

image-space coordinates of the Euclidean features on πd and π∗ expressed in terms of IR

as

prdi ,

[

urdi vrdi 1

]T

p∗ri ,

[

u∗
ri v∗

ri 1

]T

(4–34)

respectively, where urdi(t), vrdi(t), u∗
ri, v∗

ri ∈ R. By using (4–26)-(4–29) and (4–31)-(4–34),

the following relationships can be developed:

pi = αi

(
A1

(
R̄ + xhn

∗T
)
A−1

1

)

︸ ︷︷ ︸
p∗i

G

(4–35)

p∗i =
1

αi

(
A1

(
Rn + xnhn

T
)
A−1

1

)

︸ ︷︷ ︸
pi

Gn

(4–36)

prdi = αrdi

(
A2

(
R̄rd + xhrdn

∗T
r

)
A−1

2

)

︸ ︷︷ ︸
p∗ri

Grd

(4–37)

p∗ri = αri

(
A2

(
Rr + xhrn

∗T
)
A−1

1

)

︸ ︷︷ ︸
p∗i ,

Gr

(4–38)
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where G (t), Gn(t), Grd (t), Gr (t) ∈ R
3×3 denote projective homographies. Sets of linear

equations can be developed from (4–35)-(4–38) to determine the projective homographies

up to a scalar multiple. Various techniques can be used (e.g., see [49, 65]) to decompose

the Euclidean homographies, to obtain αi (t) , αrdi(t), αri(t), xh (t), xnh (t), xhrd(t), xhr(t),

R̄ (t), Rn(t), R̄rd(t), Rr(t), n∗(t), n∗
r , n (t). Given that the constant rotation matrix R∗

r

is assumed to be known, the expressions for R̄rd(t) and Rr(t) in (4–13) can be used to

determine Rrd(t) and R∗(t). Once R∗(t) is determined, the expression for R̄(t) in (4–13)

can be used to determine R(t). Also, once R∗
r , R∗T (t), and R (t) have been determined,

(4–1) can be used to determine R′(t). Since Rr(t), xhr(t), αi(t), n∗(t), n∗
r , n (t), m∗

i (t), and

mi(t) can be determined, the following relationship can be used to determine m
′

i(t):

m
′

i =
zi

z′i

(

Rr + xhrαi

n∗T m∗
i

nT mi

nT

)

mi, (4–39)

where the inverse of the ratio
zi(t)

z
′

i(t)
can be determined as

z
′

i

zi

=

[

0 0 1

](

Rr + xhrαi

n∗T m∗
i

nT mi

nT

)

mi. (4–40)

4.2.4 Control Objective

The control objective is for a controlled object (e.g., an UGV or an UAV) to track

a desired trajectory that is determined by a sequence of images. This objective is based

on the assumption that the control object is physically able to follow the desired image

trajectory, that the linear and angular velocities of the camera are control inputs that

can be independently controlled (i.e., unconstrained motion), and that the reference and

desired cameras are calibrated (i.e., A1 and A2 are known). The control objective can

be stated as the desire for the Euclidean feature points on π to track the corresponding

feature points on πd, which can be mathematically stated as the desire for m̄
′

i (t) →

m̄rdi (t). Equivalently, the control objective can also be stated in terms of the rotation and

translation of the object as the desire for x
′

fr(t) → xfrd(t) and R′(t) → Rrd (t).
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As stated previously, R′(t) and Rrd (t) can be computed by decomposing the

projective homographies in (4–35)-(4–38) and using (4–1). Once these rotation matrices

have been determined, a variety of parameterizations can be used to describe the rotation.

The unit quaternion parameterization is used to describe the rotation in the subsequent

problem formulation, control development, and stability analysis since the unit quaternion

provides a globally nonsingular parameterization of the corresponding rotation matrices.

The unit quaternion is a four dimensional vector, which can be defined as

q ,

[

q0 qT
v

]T

qv ,

[

qv1 qv2 qv3

]T

, (4–41)

where q0(t), qvi(t) ∈ R ∀i = 1, 2, 3 satisfy the following nonlinear constraint

qT q = 1. (4–42)

Given the rotation matrices R′ (t) and Rrd (t), the corresponding unit quaternions q (t) and

qd (t) can be calculated by using the numerically robust method presented in [31] and [66]

based on the corresponding relationships

R′ =
(
q2
0 − qT

v qv

)
I3 + 2qvq

T
v + 2q0q

×

v (4–43)

Rrd =
(
q2
0d − qT

vdqvd

)
I3 + 2qvdq

T
vd + 2q0dq

×

vd (4–44)

where I3 is the 3 × 3 identity matrix, and the notation q×v (t) denotes a skew-symmetric

form of the vector qv(t) as

q×v =









0 −qv3 qv2

qv3 0 −qv1

−qv2 qv1 0









, ∀qv =









qv1

qv2

qv3









. (4–45)

To quantify the rotation error between the feature points on π and πd, the multiplicative

error between rotation matrices R′ (t) and Rrd (t) is defined as

R̃ = R′T Rrd =
(
q̃2
0 − q̃T

v q̃v

)
I3 + 2q̃v q̃

T
v − 2q̃0q̃

×

v , (4–46)
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where the error quaternion q̃(t) = (q̃0(t), q̃
T
v (t))T is defined as

q̃ =






q̃0

q̃v




 =






q0q0d + qT
v qvd

q0dqv − q0qvd + q×v qvd




 . (4–47)

Since q̃(t) is a unit quaternion, (4–46) can be used to quantify the rotation tracking

objective as

‖q̃v(t)‖ → 0 =⇒ R̃(t) → I3 as t → ∞. (4–48)

The translation error, denoted by e(t) ∈ R
3, is defined as

e = me − med (4–49)

where me (t), med(t) ∈ R
3 are defined as3

me =

[
x

′

1

z
′

1

y
′

1

z
′

1

ln(
z
′

1

z∗r1
)

]T

(4–50)

med =

[
xrd1

zrd1

yrd1

zrd1

ln(
zrd1

z∗r1
)

]T

.

In (4–50),
z
′

1(t)

z∗r1(t)
and

zrd1(t)

z∗r1(t)
can be expressed in terms of known signals as

z
′

1

z∗r1
=

z
′

1

z1

z1

z∗1

z∗1
z∗r1

=
z
′

1

z1

1

α1

αr1

zrd1

z∗r1
=

1

αrd1
.

Based on (4–48) and (4–49), the subsequent control development targets the following

objectives:

‖q̃v(t)‖ → 0 and ‖e(t)‖ → 0 as t → ∞. (4–51)

3 Any point Oi can be utilized in the subsequent development; however, to reduce
the notational complexity, we have elected to select the image point O1, and hence, the
subscript 1 is utilized in lieu of i in the subsequent development.
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4.2.5 Control Development

4.2.5.1 Open-loop error system

Based on (4–46) and (4–47), the open-loop rotation error system can be developed as

[67]

·

q̃ =
1

2






−q̃T
v

q̃0I3 + q̃×v






(

ωc − R̃ωcd

)

, (4–52)

where ωcd (t) denotes the angular velocity of πd expressed in Fd that can be calculated as

[67]

ωcd = 2(q0dq̇vd − qvdq̇0d) − 2q×vdq̇vd, (4–53)

where
(
q0d(t), qT

vd(t)
)T

,
(
q̇0d(t), q̇T

vd(t)
)T

are assumed to be bounded; hence, ωcd(t) is also

bounded. The open-loop translation error system can be derived as

z∗r1ė =
z∗r1
z
′

1

L
′

vR
′
(
vc + ω×

c s1

)
− z∗r1ṁed, (4–54)

where vc(t), ωc(t) ∈ R
3 denote the linear and angular velocity of π expressed in F ,

respectively, and the auxiliary measurable term L
′

v(t) ∈ R
3×3 is defined as

L
′

v =










1 0 −x
′

1

z
′

1

0 1 −y
′

1

z
′

1

0 0 1










.

4.2.5.2 Closed-loop error system

Based on the open-loop rotation error system in (4–52) and the subsequent

Lyapunov-based stability analysis, the angular velocity controller is designed as

ωc = −Kω q̃v + R̃ωcd, (4–55)
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where Kω ∈ R
3×3 denotes a diagonal matrix of positive constant control gains. From

(4–52) and (4–55), the rotation closed-loop error system can be determined as

·

q̃0 =
1

2
q̃T
v Kω q̃v (4–56)

·

q̃v = −1

2

(
q̃0I3 + q̃×v

)
Kωq̃v = −1

2
Kωq̃0q̃v.

Based on (4–54), the translation control input vc(t) is designed as

vc = − z
′

1

z∗r1
R

′T L
′−1
v (Kve − ẑ∗r1ṁed) − ω×

c s1, (4–57)

where Kv ∈ R
3×3 denotes a diagonal matrix of positive constant control gains. In (4–57),

the parameter estimate ẑ∗r1(t) ∈ R for the unknown constant z∗r1 is designed as

·

ẑ∗r1 = −γeT ṁed, (4–58)

where γ ∈ R denotes a positive constant adaptation gain. By using (4–54) and (4–57), the

translation closed-loop error system is

z∗r1ė = −Kve − z̃∗r1ṁed, (4–59)

where z̃∗r1(t) ∈ R denotes the parameter estimation error

z̃∗r1 = z∗r1 − ẑ∗r1. (4–60)

4.2.6 Stability Analysis

Theorem 1. The controller given in (4–55) and (4–57), along with the adaptive update

law in (4–58) ensures asymptotic tracking in the sense that

‖q̃v (t)‖ → 0, ‖e(t)‖ → 0, as t → ∞. (4–61)
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Proof. Let V (t) ∈ R denote the following differentiable non-negative function (i.e., a

Lyapunov candidate):

V = q̃T
v q̃v + (1 − q̃0)

2 +
z∗r1
2

eT e +
1

2γ
z̃∗2r1 . (4–62)

The time-derivative of V (t) can be determined as

V̇ = −q̃T
v Kωq̃0q̃v − (1 − q̃0)q̃

T
v Kωq̃v − eT Kve

+eT (−Kve − z̃∗r1ṁed) + z̃∗r1e
T ṁed

= −q̃T
v (q̃0I3 + (1 − q̃0)I3) Kωq̃v − eT Kve

= −q̃T
v Kωq̃v − eT Kve, (4–63)

where (4–56) and (4–58)-(4–60) were utilized. Based on (4–62) and (4–63), e(t), q̃v(t), q̃0(t), z̃∗r1(t) ∈

L∞ and e(t), q̃v(t) ∈ L2. Since z̃∗r1(t) ∈ L∞, it is clear from (4–60) that ẑ∗r1(t) ∈ L∞.

Based on the fact that e(t) ∈ L∞, (4–49) and (4–50) can be used to prove that

m
′

1(t) ∈ L∞, and then L
′

v(t), L
′−1
v (t) ∈ L∞. Based on the fact that q̃v(t) ∈ L∞ and

ωcd(t) is a bounded function, (4–55) can be used to conclude that ωc(t) ∈ L∞. Since

ẑ∗r1(t), e(t), m
′

1(t), L
′

v(t), L
′−1
v (t) ∈ L∞ and ṁed (t) is bounded, (4–57) can be utilized

to prove that vc(t) ∈ L∞. From the previous results, (4–52)-(4–54) can be used to prove

that ė(t),
·

q̃v(t) ∈ L∞. Since e(t), q̃v(t) ∈ L∞ ∩ L2, and ė(t),
·

q̃v(t) ∈ L∞, we can utilize a

corollary to Barbalat’s Lemma [68] to conclude the result given in (4–61).

4.3 Cooperative Tracking Control of a Nonholonomic Unmanned Ground

Vehicle

In the previous section, a visual servo tracking controller is developed for a moving

six DOF object based on daisy-chained image feedback from a moving camera where a

stationary reference camera was used to encode a desired video. The development in this

section and our preliminary work in [43] extends the previous section by allowing the

reference camera to also move. The example of a reference camera in the previous section
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was a “stationary” satellite that was used to encode the desired trajectory. In this section,

the desired trajectory could be encoded by a moving camera (e.g., attached to a moving

satellite, a dirigible, or another UAV). In addition, instead of considering the general

six DOF control object, the control object in this section is a nonholonomic constrained

UGV. The control objective is for the UGV to track a desired trajectory determined by

a sequence of prerecorded images from some moving overhead camera. An additional

technical issue resolved in this section is the challenge of comparing the relative velocity

between a moving camera and a moving UGV to the relative desired trajectory recorded

by a moving camera.

4.3.1 Problem Scenario

Recent advances in image extraction/interpretation technology and advances in

control theory have motivated results such as [11, 15–17, 21, 24, 27, 28, 30, 69, 70] and

others, where camera-based vision systems are the sole sensor used for autonomous

navigation of an UGV. See [28] for a detailed review of these and other related results.

Typically these results are focused on the regulation result, and in all the results the

targets are static with respect to the moving camera or the camera is stationary and

recording images of the moving UGV. In contrast to these methods, the development in

this section and our previous preliminary work in [43] is motivated by the problem when a

moving camera is recording images of a moving UGV so a second UGV can track a desired

image trajectory. A practical example application of this scenario is an airborne camera

attached to a remote controlled aircraft that is used to determine a desired video of an

UGV moving in a terrain, and then another moving camera (which does not have to follow

the same trajectory as the previous camera) is used to relate and control the pose of a

moving UGV with respect to the recorded video.

The scenario examined in this section is depicted in Fig. 4-2, where various

coordinate frames are defined again as a means to develop the subsequent Euclidean

reconstruction and control methods. In Fig. 4-2, a single camera that is navigating above
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Figure 4-2. Geometric model for a moving camera, moving UGV, and stationary reference
camera: A moving camera (coordinate frame IM ) records the desired
trajectory of an UGV (coordinate frame Fd(t)) with respect to the stationary
reference object F∗ while stationary coordinate frame Fs represents a snapshot
of an UGV along the desired trajectory taken by IR = IM(t)|t=T . A moving
camera (coordinate frame I) views the current UGV (coordinate frame F(t))
and the stationary reference object F∗.

the planar motion of an UGV. The moving coordinate frame I is attached to an overhead

camera, which records an images for real-time tracking control. The moving coordinate

frame IM is attached to the overhead camera that recorded the desired image sequence,

and the fixed coordinate frame IR is some single snapshot of IM .

Geometric model for a moving camera (coordinate frame I), moving UGV (coordinate

frame F) and stationary reference camera (coordinate frame IR)

The moving coordinate frame F is attached to the UGV at the center of the rear

wheel axis (for simplicity and without loss of generality). The UGV is represented in the

camera image by four feature points that are coplanar and not collinear. The Euclidean
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distance (i.e., s1i ∈ R
3 ∀i = 1, 2, 3, 4) from the origin of F to one of the feature points is

assumed to be known. A priori information (such as a known target in the initial FOV

[32]) is sometimes used in vSLAM methods to establish scale. The plane defined by the

UGV motion (i.e., the plane defined by the xy-axis of F ) and the UGV feature points

is denoted by π. The linear velocity of the UGV along the x-axis of F is denoted by

vc(t) ∈ R, and the angular velocity ωc(t) ∈ R is about the z-axis of F .

While viewing the feature points of the UGV, the camera is assumed to also view four

additional coplanar and noncollinear feature points of a stationary reference object. The

four additional feature points define the plane π∗ in Fig. 4-2. The stationary coordinate

frame F∗ is attached to the object where a distance from the origin of the coordinate

frame to one of the feature points (i.e., s2i ∈ R
3) is assumed to be known. The plane π∗

is assumed to be parallel to the plane π. When the camera is coincident with IR, a fixed

(i.e., a single snapshot) reference pose of the UGV, denoted by Fs, is assumed to be in the

camera’s FOV. A desired trajectory is defined by a prerecorded time-varying trajectory of

Fd that is assumed to be second-order differentiable where vcd(t), ωcd(t) ∈ R denote the

desired linear and angular velocity of Fd, respectively. The feature points that define π∗

are also assumed to be visible when the camera is a priori located coincident with the pose

of the stationary coordinate frame IR and the time-varying coordinate frame IM . Based

on these coordinate frame definitions, the problem considered in this section is to develop

a kinematic controller for the object attached to F so that the time-varying rotation and

translation of F converges to the desired time-varying rotation and translation of Fd,

where the motion of F is determined from the time-varying overhead camera attached to

I.

4.3.2 Geometric Relationships

The rotation matrices and translation vectors in Table 4-1 (except the last line)

are also valid for this section. Additional relationships between the various coordinate

frames are summarized in Table 4-2. In Table 4-2, Rrs, Rmd(t), R∗
m(t), Rrm(t), R

′

md(t) ∈
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Table 4-2. Coordinate frame relationships for UGV tracking control.

Motion Frames
Rrs, xfrs Fs to IR

Rmd(t), xfmd(t) Fd to IM

R∗
m(t), x∗

fm(t) F∗ to IM

Rrm(t), xfrm(t) IM to IR

R′
md(t), x′

frm(t) F to IR in IM

Figure 4-3. Geometric model showing a snapshot of an UGV along the desired trajectory
(coordinate frame Fs) taken by IR = IM(t)|t=T . A current camera (coordinate
frame I) viewing the time-varying UGV (coordinate frame F) while observing
the set of feature points attached to F∗.

SO(3) denote rotation matrices, and xfrs, xfmd(t), x∗
fm(t), xfrm(t), x′

frm(t) ∈ R
3 denote

translation vectors.

4.3.3 Euclidean Reconstruction

The coordinate frame representation in Fig. 4-2 can be separated into Figs. 4-3 and

4-4 to relate I to IR and IR to IM , respectively. The coordinate frames in each figure
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Figure 4-4. Geometric model showing a moving camera (coordinate frame IM) recording
the desired trajectory of an UGV (coordinate frame Fd(t)) with respect to the
stationary reference object F∗ while stationary coordinate frame Fs represents
a snapshot of an UGV along the desired trajectory taken by IR = IM (t)|t=T .

have the same relationships as in Fig. 4-1. Therefore, the same Euclidean reconstruction

process as presented in Section 4.2.1-4.2.3 can be used twice to build the Euclidean

relationships for this example.

To reconstruct the Euclidean relationship for the geometric model as shown in Fig.

4-3, let m̄rsi ∈ R
3 denote the constant reference Euclidean coordinates of the feature points

on πs expressed in IR as

m̄rsi ,

[

xrsi yrsi zrsi

]T

,

and let prsi ∈ R
3 represent the constant image-space coordinates of the feature points on

πs taken by the camera attached to IM when IM is coincident with IR

prsi ,

[

ursi vrsi 1

]T

.
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Following the development in Section 4.2.2 and 4.2.3, relationships can be obtained to

determine the homographies and depth ratios as4

pi = αi

(
A
(
R̄ + xhn

∗T
)
A−1

)

︸ ︷︷ ︸
p∗i

G

(4–64)

prsi = αrsi

(
A
(
R̄rs + xhrsn

∗T
r

)
A−1

)

︸ ︷︷ ︸
p∗ri

Grs

(4–65)

p∗ri = αri

(
A
(
Rr + xhrn

∗T
)
A−1

)

︸ ︷︷ ︸
p∗i

Gr

(4–66)

where

αi =
z∗i
zi

αrsi =
z∗ri

zrsi

αri =
z∗i
z∗ri

R̄ = RR∗T R̄rs = RrsR
∗T
r Rr = R∗

rR
∗T . (4–67)

Furthermore, the normalize Euclidean coordinates mi(t) can be related to m
′

i(t) as

m
′

i =
zi

z′i

(

Rr + xhrαi

n∗T m∗
i

n∗T mi

n∗T

)

mi (4–68)

z
′

i

zi

=

[

0 0 1

]

(Rr (4–69)

+xhrαi

n∗T m∗
i

nT mi

n∗T

)

mi.

To reconstruct the Euclidean relationship for the geometric model as shown in Fig.

4-4, let m̄mdi(t), m̄∗
mi(t) ∈ R

3 denote the Euclidean coordinates of the feature points on πd

4 To simplify the notaions, the cameras are assumed to have the same calibration matrix
A in the following development. The readers can refer to Section 4.2.1 for the deductions
that the calibration matrices are different.
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and π∗ expressed in IM as

m̄mdi(t) ,

[

xmdi(t) ymdi(t) zmdi(t)

]T

m̄∗

mi(t) ,

[

x∗
mi(t) y∗

mi(t) z∗mi(t)

]T

,

let m̄
′

mdi(t) ∈ R
3 denote the desired Euclidean coordinates of the feature points on πd

expressed in IR as

m̄
′

mdi(t) ,

[

x
′

mdi(t) y
′

mdi(t) z
′

mdi(t)

]T

,

and let pmdi (t), p∗mi (t) ∈ R
3 represent the image-space coordinates of the feature points on

πd and π∗ captured by the camera attached to IM , respectively, as

pmdi ,

[

umdi vmdi 1

]T

p∗mi ,

[

u∗
mi v∗

mi 1

]T

.

The normalized coordinates of m̄
′

mdi(t) and m̄mdi(t), denoted as m
′

mdi(t), mmdi(t) ∈ R
3,

respectively, are defined as

m
′

mdi(t) ,
m̄

′

mdi(t)

z
′

mdi(t)
mmdi(t) ,

m̄mdi(t)

zmdi(t)
. (4–70)

Following the development in Section 4.2.2 and 4.2.3, relationships can be developed to

compute the homographies and depth ratios as

pmdi = αmdi

(
A
(
R̄md + xhmdn

∗T
m

)
A−1

)

︸ ︷︷ ︸
p∗mi

Gmd

(4–71)

p∗ri = αrmi

(
A
(
Rrm + xhrmn∗T

m

)
A−1

)

︸ ︷︷ ︸
p∗mi,

Grm

(4–72)

where

αmdi =
z∗mi

zmdi

αrmi =
z∗mi

z∗ri

R̄md = RmdR
∗T
m Rrm = R∗

rR
∗T
m . (4–73)
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The equations to relate mmdi(t) to m
′

mdi(t) can be developed as

m
′

mdi =
zmdi

z′mdi

(Rrm (4–74)

+xhrmαmdi

n∗T
m m∗

mi

n∗T
m mmdi

n∗T
m

)

mmdi

z′mdi

zmdi

=

[

0 0 1

]

(Rrm (4–75)

+xhrmαmdi

n∗T
m m∗

mi

n∗T
m mmdi

n∗T
m

)

mmdi.

In (4–64)-(4–72), n∗ (t), n∗
m (t), and n∗

r ∈ R
3 denote the constant unit normal to the

planes π and π∗ as expressed in I, IM , and IR respectively, xh (t), xhrs(t), xhr(t), xhmd(t),

xhrm(t) ∈ R
3 denote the corresponding scaled translation vectors, and G (t), Grs, Gr(t),

Gmd(t), Grm(t) ∈ R3×3 denote projective homographies.

Sets of linear equations in (4–64)-(4–66), (4–71) and (4–72) can be used to determine

and decompose homographies to obtain αi (t) , αrsi, αmdi(t), αri(t), αrmi(t), xh (t), xhrs,

xhr(t), xhmd(t), xhrm(t), R̄ (t), R̄rs, Rr(t), R̄md(t), and Rrm(t). Given that the rotation

matrix R∗
r(t) is assumed to be known, the expressions for R̄rs(t) and Rr(t) in (4–67) can

be used to determine Rrs(t) and R∗(t). Once R∗(t) is determined, the expression for R̄(t)

and Rrm(t) in (4–67) and (4–73) can be used to determine R(t) and R∗
m(t). The rotation

R∗
m(t) can then be used to calculate Rmd(t) from the relationship for R̄md in (4–73).

Based on the definitions for R(t), R∗(t), Rmd(t), R∗
m(t), R∗

r , and Rrs provided in the

previous development, the rotation from F to Fs and from Fd to Fs, denoted by R1(t),

Rd1(t) ∈ SO(3), respectively, are defined as

R1(t) = RT
rsR

∗

rR
∗T (t)R(t) =









cos θ sin θ 0

− sin θ cos θ 0

0 0 1









(4–76)
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Rd1(t) = RT
rsR

∗

rR
∗T
m (t)Rmd(t) (4–77)

=









cos θd sin θd 0

− sin θd cos θd 0

0 0 1









,

where θ(t) ∈ R denotes the right-handed rotation angle about the z-axis that aligns F

with Fs, and θd(t) ∈ R denotes the right-handed rotation angle about the z-axis that

aligns Fd with Fs. From the definitions of θ(t) and θd(t), it is clear that

θ̇ = ωc θ̇d = ωcd (4–78)

where ωc(t), ωcd(t) ∈ R denote the desired angular velocities of F and Fd, respectively.

Based on the fact that R(t), R∗(t), Rmd(t), R∗
m(t), R∗

r , and Rrs are known, it is clear from

(4–76)-(4–78) that θ(t) and θd(t) are known signals that can be used in the subsequent

control development. To facilitate the subsequent development, θ(t) and θd(t) are assumed

to be confined to the following regions

− π < θ(t) 6 π − π < θd(t) 6 π. (4–79)

4.3.4 Control Objective

The objective is to develop a visual servo controller that ensures that the coordinate

system F tracks the time-varying trajectory of Fd (i.e., m̄i(t) measured in I tracks

m̄mdi(t) measured in IM). To ensure that m̄i(t) tracks m̄mdi(t), the control objective can

be stated by using the Euclidean reconstruction given in (4–64)-(4–72) as the desire for

m̄
′

1(t) → m̄
′

md1(t). To quantify the control objective, translation and rotation tracking

error, denoted by e(t) , [e1 (t) , e2 (t) , e3(t)]
T ∈ R

3, are defined as [67]

e1 , η1 − ηd1

e2 , η2 − ηd2

e3 , θ − θd

(4–80)
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where θ(t) and θd(t) are introduced in (4–76) and (4–77), respectively, and the auxiliary

signals η (t) , [η1 (t) , η2 (t) , η3(t)]
T , ηd(t) , [ηd1(t), ηd2(t), ηd3(t)]

T ∈ R
3 are defined as

η (t) ,
1

z∗r1
RT (t)R∗(t)R∗T

r m̄
′

1(t) (4–81)

ηd(t) ,
1

z∗r1
RT

md(t)R
∗

m(t)R∗T
r m̄

′

md1(t).

Also, the normal unit vector n∗
r is defined as [43]

n∗

r = R∗

rR
∗T (t)R(t)

[

0 0 −1

]T

= R∗

rR
∗T
m (t)Rmd(t)

[

0 0 −1

]T

. (4–82)

The expressions in (4–82) and (4–81) can be used to determine that

η3 = ηd3 =
−dr

z∗r1
. (4–83)

The expressions in (4–64)-(4–75) can be used to rewrite η (t) and ηd(t) in terms of the

measurable signals α1(t), αr1(t), αrm1(t), αmd1(t), R(t), R∗(t), R∗
r , Rmd(t), R∗

m(t), p1(t),

and pmd1(t) as

η (t) =
αr1

α1

RT (t)R∗(t)R∗T
r H

′

rA
−1p1

ηd(t) =
αrm1

αmd1

RT
md(t)R

∗

m(t)R∗T
r H ′

rmA−1pmd1. (4–84)

Based on (4–80), (4–84), and the fact that θ(t) and θd(t) are measurable, it is clear

that e(t) is measurable. By examining (4–80)-(4–83), the control objective is achieved if

‖e(t)‖ → 0. Specifically, if e3(t) → 0, then it is clear from (4–80) that R1(t) → Rd1(t).

If e1(t) → 0 and e2(t) → 0, then from (4–80) and (4–83) it is clear that η (t) → ηd(t).

Given that R1(t) → Rd1(t) and that η (t) → ηd(t), then (4–81) can be used to conclude

that m
′

1(t) → m
′

md1(t). If m
′

1(t) → m
′

md1(t) and R1(t) → Rd1(t), then the Euclidean

relationships in the geometric model can be used to prove that m̄i(t) measured in terms of

I → m̄mdi(t) measured in terms of IM .
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4.3.5 Control Development

The open-loop error system can be obtained by taking the time derivative of (4–81) as

η̇ =
v

z∗r1
+

[

η − s11

z∗r1

]×

ω (4–85)

where v(t), ω(t) ∈ R
3 denote the respective linear and angular velocity of an UGV

expressed in F as

v ,

[

vc 0 0

]T

ω ,

[

0 0 ωc

]T

. (4–86)

Without loss of generality, the location of the feature point s1 is taken as the origin of F ,

so that s11 = [0, 0, 0]T . Then, based on (4–85) and (4–86), the error system can be further

written as

η̇1 =
vc

z∗r1
+ η2ωc

η̇2 = −η1ωc.

(4–87)

Since the desired trajectory is assumed to be generated in accordance with UGV motion

constraints, a similar expression to (4–87) can be developed as

η̇d1 =
vcd

z∗r1
+ η2dωcd

η̇d2 = −ηd1ωcd .

(4–88)

where vcd(t) ∈ R denotes the desired linear velocity of Fd. From (4–78), (4–80), (4–85) and

(4–87), the open-loop error system can be obtained as

z∗r1ė1 = vc + z∗r1(η2ωc − η̇d1)

ė2 = −η1ωc + ηd1θ̇d

ė3 = ωc − θ̇d.

(4–89)

To facilitate the subsequent development, the auxiliary variable ē2 (t) ∈ R is defined as

ē2 , e2 + ηd1e3. (4–90)
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After taking the time derivative of (4–90) and utilizing (4–89), the following expression is

obtained:
.
ē2 = −e1ωc + η̇d1e3. (4–91)

Based on (4–90), it is clear that if ē2(t), e3(t) → 0, then e2(t) → 0. Based on this

observation and the open-loop dynamics given in (4–91), the following control development

is based on the desire to show that e1 (t) , ē2 (t) , e3 (t) are asymptotically driven to zero.

Based on the open-loop error systems in (4–89) and (4–91), the linear and angular

velocity control inputs for an UGV are designed as

vc , −kve1 + ē2ωc − ẑ∗r1(η2ωc − η̇d1) (4–92)

ωc , −kωe3 + θ̇d − η̇d1ē2 (4–93)

where kv, kω ∈ R denote positive, constant control gains. In (4–92), the parameter update

law ẑ∗r1(t) ∈ R is generated by the differential equation

.

ẑ∗r1 = γ1e1(η2ωc − η̇d1) (4–94)

where γ1 ∈ R is a positive, constant adaptation gain. After substituting the kinematic

control signals designed in (4–92) and (4–93) into (4–89), the following closed-loop error

systems are obtained:

z∗r1ė1 = −kve1 + ē2ωc + z̃∗r1(η2ωc − η̇d1)
.

ē2 = −e1ωc + η̇d1e3

ė3 = −kωe3 − η̇d1ē2

(4–95)

where (4–91) was utilized, and the depth-related parameter estimation error, denoted by

z̃∗r1(t) ∈ R, is defined as

z̃∗r1 , z∗r1 − ẑ∗r1 . (4–96)
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Theorem 2. The control input designed in (4–92) and (4–93) along with the adaptive

update law defined in (4–94) ensure asymptotic tracking for UGV in the sense that

‖e (t)‖ → 0 (4–97)

provided the time derivative of the desired trajectory satisfies the following condition

η̇d1 9 0. (4–98)

Lyapunov-based analysis method and Barbalat’s lemma can be used to proved the

theorem 2 based on a Lyapunov function V (t) ∈ R defined as [43]

V ,
1

2
z∗r1e

2
1 +

1

2
ē2
2 +

1

2
e2
3 +

1

2γ1

z̃∗2r1 .. (4–99)

4.4 Simultaneous Tracking, Localization and Mapping

For vision-based autonomous systems applications (e.g., tracking, localization and

mapping), the given reference object can leave the camera’s FOV while another reference

object enters the FOV. In comparison to the single reference object problem presented in

Section 4.3, multiple reference objects are taken into consideration in this section. The

daisy-chaining method is further developed to achieve asymptotic tracking of the UGV by

mapping each reference object to a global coordinate system. Moreover, the time-varying

Euclidean position of the UGV and the stationary position of the reference objects can be

localized with respect to the global coordinate system. In addition to achieving the visual

servo tracking and localization objectives, the developed method generates data for the

SLAM problem.

4.4.1 Problem Scenario

The geometric model in this section is the same as in Section 4.3, except that multiple

reference objects are taken into consideration. While viewing the feature points of the

UGV, the camera is assumed to also view four additional coplanar and noncollinear
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Table 4-3. Coordinate frame relationships for multi-reference UGV tracking control.

Motion Frames
R∗

j (t), x∗
fj(t) F∗

j to I in I
R∗

rj(t), x∗
frj F∗

j to IR in IR

R∗
mj(t), x∗

fmj(t) F∗
j to IM in IM

feature points of a stationary reference object, such that at any instant of time along

the camera motion trajectory at least one such reference object is in the FOV. The four

additional feature points define the plane π∗
j in Fig. 4-5. The stationary coordinate

frame F∗
j (j = 1, 2, ..., k) is attached to the object where distance from the origin of the

coordinate frame to one of the feature points is assumed to be known, i.e., s2ji ∈ R
3

∀i = 1, 2, 3, 4. The plane π∗
j is assumed to be parallel to the plane π. The feature points

that define π∗
1 , corresponding to a reference object F∗

1 (i.e., F∗
j corresponding to j = 1),

are also assumed to be visible when the camera is a priori located coincident with the pose

of the stationary coordinate frame IR. The fixed coordinate frame IR is a snapshot of IM

at the time instant that the first reference object π∗
1 is visible to the reference camera. The

reference object π∗
1 is visible to IR, but the other reference objects π∗

j (j > 1) are not.

4.4.2 Geometric Relationships

In addition to the notations in Tables 4-1 and 4-2, more relationships between the

various coordinate frames are summarized in Table 4-3. In Table 4-3, R∗
j (t), R∗

rj(t),

R∗
mj(t) ∈ SO(3) denote rotation matrices and x∗

fj(t), x∗
frj , x∗

fmj(t) ∈ R
3 denote translation

vectors.

4.4.3 Euclidean Reconstruction

The Euclidean reconstruction for the geometric model in Fig. 4-5 can be separated

into three cases. Case 1: a single reference object π∗
1 is within the reference camera’s FOV

and therefore π∗
1 is used as the reference object. Case 2: two reference objects (e.g., π∗

1 and

π∗
2) are within the camera’s FOV, and the reference object in use is going to be switched

from one to the other (e.g., from π∗
1 to π∗

2). Case 3: π∗
j (j ≥ 2) is used as the reference

object.
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Figure 4-5. Geometric model for a moving camera, moving UGV, and stationary
reference camera: A moving camera (coordinate frame IM ) records the
desired trajectory of an UGV (coordinate frame Fd(t)) with respect to the
stationary reference object F1

∗ while stationary coordinate frame Fs represents
a snapshot of an UGV along the desired trajectory taken by IR = IM (t)|t=T .
A moving camera (coordinate frame I) views the current UGV (coordinate
frame F(t)) and the stationary reference object Fj

∗.

Let m̄∗
mji(t), m̄

′∗
rji ∈ R

3 denote the Euclidean coordinates of the feature points on π∗
j

expressed in IM and IR, respectively, as

m̄∗

mji(t) ,

[

x∗
mji(t) y∗

mji(t) z∗mji(t)

]T

m̄
′∗

rji ,

[

x
′∗
rji y

′∗
rji z

′∗
rji

]T

.

Since the feature point plane π∗
1 is visible to the reference camera when IM is coincident

with IR, m̄
′∗
r1i ,

[

x
′∗
r1i y

′∗
r1i z

′∗
r1i

]T

can also be written as m̄∗
r1i ,

[

x∗
r1i y∗

r1i z∗r1i

]T

.
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Let p∗mji (t) , p
′∗
rji ∈ R

3 represent the image-space coordinates of the feature points on

π∗
j captured by the reference camera attached to IM and IR, respectively, as

p∗mji (t) ,

[

u∗
mji (t) v∗

mji (t) 1

]T

p
′∗

rji ,

[

u
′∗
rji v

′∗
rji 1

]T

.

When j = 1, p
′∗
r1i ,

[

u
′∗
r1i v

′∗
r1i 1

]T

can be written as p∗r1i ,

[

u∗
r1i v∗

r1i 1

]T

,

which is measurable. When j > 1, p
′∗
rji can not be measured directly. It needs to

be computed based on the corresponding normalized coordinates obtained from the

daisy-chaining multi-view geometry. The normalized coordinates of m̄∗
mji(t) and m̄

′∗
rji,

denoted as m∗
mji(t), m

′∗
rji ∈ R

3, respectively, are defined as

m∗

mji(t) ,
m∗

mji(t)

z∗mji(t)
m

′∗

rji ,
m̄

′∗
rji

z
′∗
rji

.

For the first case, the Euclidean reconstruction is exactly the same as that in Section

4.3. For the second case, consider the feature point planes π∗
1 and π∗

2 as an example.

Similar to the Euclidean reconstruction development in Section 4.3.3, relationships can be

obtained to determine the homographies and depth ratios among the coordinate frames

F∗
1 , F∗

2 , IR, and IM as

p∗m2i = α21i

(
A
(
R21 + xh21n

∗T
m1

)
A−1

)

︸ ︷︷ ︸
p∗m1i

G21

(4–100)

p∗r1i = αrm1i

(
A
(
Rrm1 + xhrm1n

∗T
m1

)
A−1

)

︸ ︷︷ ︸
p∗m1i

Grm1

(4–101)

where

α21i =
z∗m1i

z∗m2i

αrm1i =
z∗m1i

z∗r1i

(4–102)

R21 = R∗

m2R
∗T
m1 Rrm1 = R∗

r1R
∗T
m1. (4–103)
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The equations to relate m
′∗
r2i(t) to m∗

r1i(t) can be developed as

m
′∗

r2i =
z∗r1i

z′∗r2i

(

R21 + xh21αrm1i

n∗T
m1m

∗
m1i

n∗T
r1 m∗

r1i

n∗T
r1

)

m∗

r1i (4–104)

z′∗r2i

z∗r1i

=

[

0 0 1

](

R21 + xh21αrm1i

n∗T
m1m

∗
m1i

n∗T
r1 m∗

r1i

n∗T
r1

)

m∗

r1i. (4–105)

In (4–100)-(4–105), n∗
m1 (t), and n∗

r1 ∈ R
3 denote the unit normal to the planes π∗

1

expressed in IM and IR, respectively, xh21 (t), xhrm1(t) ∈ R
3 denote the corresponding

scaled translation vectors, and G21 (t), Grm1(t) ∈ R
3×3 denote projective homographies.

Linear equations in (4–100) and (4–101) can be used to determine and decompose

homographies to obtain α21i (t), αrm1i, xh21 (t), xhrm1, R21 (t), Rrm1. From m
′∗
r2i(t) in

(4–104), the virtual pixel coordinates p
′∗
r2i (t) can be computed. Based on (4–104) and

(4–105), the Euclidean coordinates of the feature points on π∗
2 can be related to fixed

coordinate frame IR.. Following the same idea as used to relate π∗
2 and π∗

1, π∗
j can be

related to π∗
j−1 (j = 3, ..., k) based on the following projective homographies:

p∗mji = αj(j−1)iGj(j−1)p
∗

m(j−1)i (4–106)

p∗r(j−1)i = αrm(j−1)iGrm(j−1)p
∗

m(j−1)i (4–107)

where Gj(j−1) and Grm(j−1) are respectively defined as

Gj(j−1) = A
(
Rj(j−1) + xhj(j−1)n

∗T
m(j−1)

)
A−1

Grm(j−1) = A
(
Rrm(j−1) + xhrm(j−1)n

∗T
m(j−1)

)
A−1

and

αj(j−1)i =
z∗m(j−1)i

z∗mji

αrm(j−1)i =
z∗m(j−1)i

z∗
r(j−1)i

(4–108)

Rj(j−1) = R∗

mjR
∗T
m(j−1) (4–109)

Rrm(j−1) = R∗

r(j−1)R
∗T
m(j−1). (4–110)
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Figure 4-6. A simplified equivalent model showing a moving camera (coordinate frame
I) observing the current UGV (coordinate frame F(t)) and the stationary
reference object Fj

∗ and the pose of Fj
∗ is expressed in terms of IR.

Relationships can also be developed in terms of the normalized Euclidean coordinates as

m
′∗

rji =
z∗r(j−1)i

z′∗rji

(
Rj(j−1) + xhj(j−1)αrm(j−1)i (4–111)

·
n∗T

m(j−1)m
∗

m(j−1)i

n∗T
r(j−1)m

∗

r(j−1)i

n∗T
r(j−1)

)

m∗

r(j−1)i

z′∗rji

z∗
r(j−1)i

=

[

0 0 1

]
(
Rj(j−1) + xhj(j−1)αrm(j−1)i

·
n∗T

m(j−1)m
∗

m(j−1)i

n∗T
r(j−1)m

∗

r(j−1)i

n∗T
r(j−1)

)

m∗

r(j−1)i. (4–112)

Recursively, from (4–100)-(4–112), m
′∗
rji (t) can be related to the known normalized

Euclidean coordinate m∗
r1i. For the third case, the geometric model can be simplified as

depicted in Fig. 4-6.
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Once m
′∗
rji (t) is computed based on the deductions in case 2, the geometric model

in Fig. 4-6 is equivalent to that in Fig. 4-2. Therefore, the Euclidean reconstruction in

Section 4.3 can be used to build the Euclidean relationships among different coordinate

frames.

4.4.4 Tracking and Mapping

The tracking control design is the same as that in Section 4.3, once the Euclidean

relationship between F and Fd is obtained based on the Euclidean reconstruction analysis

as shown in Section 4.4.3. The time-varying Euclidean position of the UGV and the

stationary position of the reference objects can be localized with respect to the global

coordinate system IR. Using the known geometric length s21i and a unit normal n∗
r1 (i.e.,

the normal to π∗
1 expressed in IR), the geometric reconstruction method in [52, 63, 64] can

be utilized to obtain m̄∗
r1i(t). Based on the computed m̄∗

r1i(t), (4–105) can be used to find

z′∗r2i, and then (4–104) can be used to find m̄
′∗
r2i (t). Recursively, based on (4–106)-(4–112),

the Euclidean coordinates of the other reference objects denoted as m̄
′∗
rji (t) (j = 3, ..., k)

can be computed. Similarly, using the known geometric length s1i and a unit normal n(t)

(i.e., the normal to π expressed in I), the geometric reconstruction method in [63] can also

be utilized to obtain m̄i(t). Based on the computed m̄i(t), (4–68) and (4–69) can be used

to find m̄
′

i(t).

4.4.5 Simulation Results

A numerical simulation was performed to illustrate the localization and mapping

performance given the controller in (4–92), (4–93), and the adaptive update law in (4–94).

The simulation scenario is shown in Fig. 4-7, such that the pose of current UGV F(t) is

estimated with respect to three stationary reference objects F∗
1 , F∗

2 , and F∗
3 while tracking

the desired trajectory Fd encoded as a sequence of images. The origins of the coordinate

frames F , F∗
1 , F∗

2 , F∗
3 , and Fd, and the four coplanar feature points on the planes π, π∗

1,

π∗
2, π∗

3, and πd are chosen such that the Euclidean coordinates of the feature points in F ,

F∗
1 , F∗

2 , F∗
3 , and Fd are given by si, s1i, s2i, s3i, and si (where i = 1, 2, 3, 4), respectively.
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The initial pose of current UGV F(0) = F(t)|t=0, stationary reference objects

F∗
j , j = 1, 2, 3, and the initial position of the time-varying desired UGV Fd(0) = Fd|t=0

were considered as

F(0) =












cos(27) −sin(27) 0 −2.50

sin(27) cos(27) 0 1.20

0 0 1 0

0 0 0 1












F∗

1 =












cos(45) −sin(45) 0 −1.30

sin(45) cos(45) 0 0.80

0 0 1 −0.50

0 0 0 1












F∗

2 =












cos(35) −sin(35) 0 −1.25

sin(35) cos(35) 0 1.90

0 0 1 −1.50

0 0 0 1












F∗

3 =












cos(25) −sin(25) 0 0.50

sin(25) cos(25) 0 2.75

0 0 1 −2.00

0 0 0 1












Fd(0) =












cos(60) −sin(60) 0 −2.10

sin(60) cos(60) 0 0.30

0 0 1 0

0 0 0 1












.

The control gains in (4–92) and (4–93) and the adaptation gain in (4–94) were

selected as

kω = 1.0038 kv = 3.88 γ1 = 10.

The performance of the visual servo tracking controller is shown in Fig. 4-7, which

shows the Euclidean space trajectory of the feature points attached to the planes π and

πd, taken by I and IM , respectively and the time-varying trajectory of the current and

reference camera, I and IM , respectively. From Fig. 4-7, it can be seen that the current

trajectory corresponding to the time-varying UGV F(t) is indistinguishable from the

desired trajectory corresponding to the time-varying UGV Fd(t) due to relatively low

tracking error (see Fig. 4-8). The resulting tracking errors are plotted in Fig. 4-8, which

asymptotically approach zero. The linear and angular velocity control inputs are shown
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Figure 4-7. Euclidean space trajectory of the feature points attached to the current (i.e.
F(t) ) and desired (i.e. Fd(t)) UGV taken by I and IM , respectively and
the time-varying trajectory of the current and reference camera, I and IM ,
respectively. F(0) denotes the initial position of the current UGV, F(t)
denotes the time-varying position of the current UGV, Fd(0) denotes the
initial position of the desired UGV, I(0) denotes the initial position of the
current camera, I(t) denotes the time-varying position of the current camera,
IM(0) denotes the initial position of the time-varying reference camera, IM (t)
denotes the time-varying position of the time-varying reference camera, and
F∗

1 , F∗
2 , and F∗

3 denote the position of the stationary reference objects.

in Fig. 4-9. Figs. 4-10 and 4-11 show the regulation results in presence of an additive

white Gaussian noise of standard deviation σ = 0.1 pixels. Fig. 4-12 shows the results

of localization of the current UGV attached to F(t) and mapping of reference targets

attached to F∗
1 , F∗

2 , and F∗
3 expressed in constant reference frame IR.
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Figure 4-8. Linear (i.e., e1 (t) and e2 (t)) and angular (i.e., e3(t)) tracking error.
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Figure 4-9. Linear (i.e., vc(t)) and angular (i.e., ωc(t)) velocity control inputs.
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Figure 4-10. Linear (i.e., e1 (t) and e2 (t)) and angular (i.e., e3(t)) tracking error in
presence of an additive white Gaussian image noise.
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Figure 4-11. Linear (i.e., vc(t)) and angular (i.e., ωc(t)) velocity control inputs in presence
of an additive white Gaussian image noise.
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Figure 4-12. Results of localization of the current UGV attached to F(t) and mapping of
reference targets attached to F∗

1 , F∗
2 , and F∗

3 expressed in constant reference
frame IR. Specifically, trajectory (1) shows the time-varying pose of the
moving camera attached to I(t), trajectory (2) shows the time-varying
pose of the moving camera attached to IM(t), and trajectory (3) shows the
time-varying pose of the current UGV attached to F(t) measured in the
stationary reference camera frame IR. F(0) denotes the initial position of
the current UGV and F∗

1 , F∗
2 , and F∗

3 denote the position of the stationary
reference objects.

4.5 Error Propagation in Daisy-Chaining

The daisy-chaining based control scheme developed in Section 4.4 is based on

estimating the pose of an UGV with respect to stationary reference objects F∗
i where

i = 1, ..., n using a moving monocular camera. Since the stationary reference object

can leave the camera FOV and a new reference object enters the FOV, it is necessary to

determine the pose of the new reference object with respect to the receding object in order

to provide the pose information of a moving agent such as an UGV or the camera itself.

For example, if F∗
j is leaving the FOV and F∗

j+1 is entering the FOV, then a homography
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relationship is obtained between F∗
j and F∗

j+1. The errors in estimating the pose of F∗
j+1

would be propagated to subsequent reference objects F∗
j+n where n = 2, ..., m. The

control law is established by comparing the current pose of an UGV with the desired

pose measured in the stationary reference object. Therefore, the pose measurement error

propagated through multiple stationary reference objects can result in erroneous control

input and possibly lead to system instability.

In this section, the error propagation in daisy-chaining based pose estimation is

analysed by performing a numerical simulation. The simulation scenario consists of

a moving airborne monocular camera (e.g., a camera attached to an UAV) with the

coordinate frame I(t) travelling at an altitude of 100m and capturing the images of the

stationary reference objects F∗
i where i = 1, ..., 8 as shown in Fig. 4-13. The camera is

assumed to traverse a circular trajectory with a ground speed of 10m/s. At time t = 0,

pose of the camera is assumed to be known with respect to the world coordinate frame

and subsequently the camera pose is estimated based on the reference objects F∗
i using the

daisy-chaining method. The goal is to determine the deviation of the estimated trajectory

from the actual camera path in terms of position and orientation estimation errors after a

finite number of loops. The position and orientation errors, eT (t) and eR(t), respectively,

are defined as

eT = ‖t − t̂‖ eR = ‖I − RT R̂‖, (4–113)

where t, t̂ ∈ R
3 denotes the actual and estimated camera position in the world frame,

respectively. R, R̂ ∈ R
3×3 denotes the actual and estimated rotation of camera coordinate

frame with respect to the world frame and I ∈ R
3×3 represents an identity matrix. Fig.

4-14 shows the pose estimation error after establishing 240 daisy-chains by traversing the

circular trajectory 30 times. As seen from Fig. 4-14, in the absence of image noise the

pose estimation error grows linearly and it is a result of numerical errors in estimating the

rotation and translation during each daisy-chain that get propagated in the subsequent
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Figure 4-13. A simulation scenario depicting the circular trajectory of camera and a set of
stationary reference objects F∗

i where i = 1, ..., 8.

daisy-chains. Fig. 4-16 shows the result of error propagation in presence of an additive

white Gaussian noise with standard deviation σ = 0.5 pixels, which demonstrates

similarity with the ‘dead-reckoning’ systems. The estimated camera trajectory shown in

Fig. 4-15 indicates deviation from the actual path in presence of noise when compared to

Fig. 4-13. The error propagation problem can be addressed by mitigating the error using

the known position of the camera in the scene or using an additional sensor. Specifically,

the camera position can be updated when the camera revisits a known Euclidean point in

the space, which can be determined by observing the known feature point ‘constellation’.

Another approach based on sensor fusion could include an additional sensor (e.g., a GPS)

to provide an absolute position of the camera when the measurement is available. Fig.
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Figure 4-14. Error propagation in daisy-chaining pose estimation method in absence of
feature point noise after 240 daisy-chains by traversing the circular trajectory
30 times.

4-15 shows the estimated trajectory of the camera and Fig. 4-18 shows the result of error

propagation in presence of an additive white Gaussian noise with standard deviation

σ = 0.5 pixels after updating the camera position at the end of each circular trajectory.

It can be seen from Fig. 4-18 that the pose estimation error in daisy-chaining can be

bounded by using an additional sensor or using the knowledge of the schene.

4.6 Concluding Remarks

In this chapter, a daisy-chaining vision-based control, localization and mapping

approach has been presented. A visual servo tracking controller is first developed using

this daisy-chaining approach to enable a control object to track a desired trajectory
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Figure 4-15. A simulation scenario depicting the estimated camera trajectory in presence
of white Gaussian image noise and a set of stationary reference objects F∗

i

where i = 1, ..., 8.

represented by a sequence of images. An example is followed to show its application in

tracking control of a nonholonomic UGV. By fusing the daisy-chaining strategy with the

geometric reconstruction method, the Euclidean position of the UGV and reference objects

are identified to provide SLAM of the UGV.

113



0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

time [s]

P
os

iti
on

 E
rr

or
 (

e T
 [m

])

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

time [s]

O
rie

nt
at

io
n 

E
rr

or
 (

e R
)

Figure 4-16. Error propagation in daisy-chaining pose estimation method in presence
of white Gaussian noise after 240 daisy-chains by traversing the circular
trajectory 30 times.
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Figure 4-17. A simulation scenario depicting the estimated camera trajectory in presence
of white Gaussian image noise by updating the camera position at the end
of each circular trajectory and a set of stationary reference objects F∗

i where
i = 1, ..., 8.
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Figure 4-18. Error propagation in daisy-chaining pose estimation method in presence of
white Gaussian noise by updating the camera position at the end of each
circular trajectory.
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CHAPTER 5
CONCLUSIONS

5.1 Research Summary

The research presented in this dissertation monograph centers around the design and

analysis of visual servo control strategies and vision-based robust pose estimation with

an objective of long range navigation and control of autonomous systems. The focus of

the research in Chapter 2 is to develop a computationally deterministic pose estimation

method that is robust to feature outliers. Chapter 2 presents the development of a novel

robust algorithm for estimation of the relative pose between two calibrated images, which

is coined as Pose Estimation by Gridding of Unit Spheres (PEGUS).

The key idea behind the method is, if there are M matched pairs of feature points

between two views, one can compute a maximum of
(

M

P

)
possible pose hypotheses by using

a P-point algorithm. The developed algorithm selects a subset of “low-noise” hypotheses

by empirically estimating the probability density function of the rotation and translation

random variables, and averages them, conforming manifold constraints, to compute a

pose estimate. The selection of low-noise hypotheses is facilitated by a unit-quaternion

representation of rotation, which enables clustering of the rotation hypotheses on the

3-sphere S
3 to identify the dominant cluster or mode. An identical approach facilitates

estimation of unit translation that lie on the 2-sphere S
2.

The results in Chapter 2 demonstrate an improved performance of PEGUS against

RANSAC+least squares as well as non-linear mean shift method, both in terms of the

estimation accuracy and computation time. By virtue of non-iterative formulation

underlying the deterministic structure of PEGUS, the computation time is more

predictable than that of RANSAC and non-linear mean shift algorithm, thus making it

amenable to a variety of real-time applications such as tracking control of an autonomous

agent. Chapters 3 and 4 provide the development of vision-based control methods which

can be benefitted from the robust pose estimation method given in Chapter 2.
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Control of a moving object using a stationary camera and vice versa are well attended

problems in the literature of visual servo control and various solutions exist for a class of

autonomous systems. However, control of a moving object using the image feedback from

a moving camera has been a well-known problem due to the unknown relative velocity

associated with moving camera and moving object. In Chapter 3, a collaborative visual

servo controller, which is coined the daisy-chaining method, is developed with an objective

to regulate a sensor-less unmanned ground vehicle (UGV) to a desired pose utilizing the

feedback from a moving airborne monocular camera system.

The contribution of research in Chapter 3 is the development of multi-view geometry,

or photogrammetry, based concepts to relate the coordinate frames attached to moving

camera, moving UGV, and desired UGV pose specified by an a priori image. Geometric

constructs developed for traditional camera-in-hand problems are fused with fixed-camera

geometry to develop a set of Euclidean homographies. Due to intrinsic physical constraints,

one of the resulting Euclidean homographies is not measurable through a set of spatiotemporal

images as the corresponding projective homography can not be developed. Hence, the

new geometric formulations, termed virtual homography, are conceived to solve for the

homography in order to develop a measurable error system for the nonholonomic UGV.

Asymptotic regulation results are proved using the Lyapunov-based stability analysis.

Further, in Chapter 3, the results are extended to include asymptotic regulation of an

UGV based on the scenario that the given reference objects can leave camera field-of-view

(FOV) while another reference object enters FOV. The controller is developed - with the

underlying geometrical constructs that daisy chain multiple reference objects - such that

the airborne camera does not require to maintain a view of the static reference object;

therefore the airborne camera/UGV pair can navigate over an arbitrarily large area.

Simulation results are provided to demonstrate the performance of the daisy-chaining

based control.
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Building on the results in Chapter 3, the complex problem of cooperative visual

servo tracking control is formulated in Chapter 4 with an objective to enable an UGV to

follow a desired trajectory encoded as a sequence of images utilizing the image feedback

from a moving airborne monocular camera system. The desired trajectory of an UGV is

recorded by a moving airborne monocular camera IM traversing an unknown time-varying

trajectory. The control objective is to track an UGV along the desired trajectory using the

image feedback from a moving airborne camera I that may traverse different trajectory

than that of IM . The association as well as the relative velocity problem is addressed

by introducing a daisy-chaining structure to link a series of projective homographies and

expressing them in a constant reference frame. An adaptive parameter update law is

employed to actively compensate for the lack of object model and depth measurements.

Based on the open-loop error system, a tracking control law is developed through the

application of Extended Barbalat’s lemma in the Lyapunov-based framework to yield an

asymptotic stability.

The tracking results are extended to reseed the stationary reference objects while

formulating the additional projective homography relationship to provide an unrestricted

applicative area of operation. The theoretical development in Chapter 4 manifests the

coalescence of daisy-chaining controller and newly formed geometric reconstruction

technique towards application in visual simultaneous localization and mapping (vSLAM).

Simulation results are provided demonstrating the tracking control of an UGV in presence

of multiple stationary reference objects and visual simultaneous localization and mapping

(vSLAM) results are presented.

The daisy-chaining based control scheme developed in Chapters 3and 4 is based on

estimating the pose of an UGV with respect to stationary reference objects F∗
i where

i = 1, ..., n using a moving monocular camera. Since the stationary reference object

can leave the camera FOV and a new reference object enters the FOV, it is necessary

to determine the pose of the new reference object with respect to the receding object in
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order to provide the pose information of a moving agent such as an UGV or the camera

itself. Therefore, the error in pose measurement between the stationary reference objects

would be propagated through the subsequent reference objects. The error propagation is

analyzed in Chapter 4 by performing a numerical simulation, which shows that the pose

estimation error grows linearly. Possible solutions are provided, along with simulation

results, to mitigate the error propagation in daisy-chaining.

5.2 Recommendations for Future Work

Robust pose estimation method presented in Chapter 2 is based on estimating the

probability density function (pdf) of rotation and translation random variables using the

histogram density estimator by segmenting the 3-sphere and 2-sphere, respectively. Future

work would focus on developing a method to determine the ‘best’ segmention of sphere to

minimize the pose estimation error and reduce the computation time. Also, an adaptive

parameter law can be developed to determine the distance ǫ around the mode to extract

the low-noise measurements.

The daisy-chaining method developed in Chapters 3 and 4 assumes a known

geometric length on the moving agent and stationary reference objects. In practice,

this assumption might be a too restrictive. Therefore, the future work would include a

nonlinear observer-based range identification method in the daisy-chaining framework

to estimate the required geometric length on the object. In order to estimate such a

Euclidean parameter using the two-dimensional image information, an additional sensor

would be included to provide the six degree-of-freedom camera velocity. The velocity

measurements can also be fused with the pose estimates in a Kalman-like structure to

mitigate the error propagation in daisy-chaining.
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