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To the triune God, the maker of heaven and earth, of all things visible and invisible; who
is the paradigm and locus of all truth.
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“It is God who is the ultimate reason of things, and the Knowledge of God is no less the
beginning of science than his essence and will are the beginning of beings”

– Gottfried Leibniz
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Mobile agents are often forced to follow paths in environments where state feed-

back may not always be available, such as in GPS denied environments, and more

broadly, anti-access and area-denial environments. This has given rise to a class of

Relay-Explorer problems, where an agent is tasked with switching between multiple

operation modes, primarily depending on the availability of state feedback.

Past work on these problems established a framework for developing dwell-time

conditions for stable tracking using these methods. However, existing work only applies

to a limited class of reference paths and feedback region geometries. Chapter 2

advances a topologically inspired method for guaranteeing re-acquisition of feedback

for nearly arbitrary geometries in arbitrary dimensions, all while relaxing the dwell-time

conditions and retaining the uniformly ultimately bounded stability result from preceding

work. Numerical experiments in the plane demonstrate an increase of hundreds of

percentage points—even for fairly generic geometries—in the tracking error budget the

agent could afford, using the proposed method, without sacrificing stability.

Chapter 3 extends the study of relay-explorer problems to multi-agent systems

so that the idea of cooperative localization can be used to enhance the path tracking

performance of each agent and to extend the duration the ensemble of agents can

spend operating without state feedback. To accomplish these goals, a new cooperative
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localization method is developed that uses the agents’ dynamics and the distance

measurements between them. Hybrid system theory is used to model and analyze the

proposed localization method and path planning strategy.

Chapter 4 extends the the topological methods from Chapter 2 to time varying

feedback regions. Specifically, this work introduces a novel framework for image-based

tracking systems, addressing scenarios where the tracking agent needs to discontinue

tracking the target agent either due to the need to fulfill other tasks or the target agent

becoming obscured. The proposed approach deploys a Lyapunov-based Deep Neural

Network (Lb-DNN) to learn the dynamics of the target agent when visible, and to

predict its future trajectory when not visible. To ensure that target tracking resumes, the

topologically method from Chapter 2 is extended, using the predicted trajectory of the

target agent. This method informs the tracker agent about the duration it can suspend

tracking the target agent and specifies a pose for the camera for guaranteeing that

tracking resumes at some later time. Simulation results are provided to demonstrate the

performance of the proposed framework.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

State feedback is a critical component in designing path-planning methods used

for guidance, navigation, and control of autonomous vehicles. Factors such as task

definition, operating environment, sensor modality, and adversarial effects may result

in intermittent state feedback, inhibiting a system’s ability to achieve its task. More

specifically mobile agents are often forced to follow paths in environments where state

feedback may not always be available, such as in GPS denied environments (Figure

1-1), and more broadly, anti-access and area-denial environments (A2/AD).

The need to overcome A2/AD environments to obtain state information for the

assurance of mission success has been a critical point of discussion and research in

military, space, exploration, and commercial endeavors. In response to this growing

need in military operations, the Joint Navigation Warfare Center (JNWC) was activated

on October 1st, 2004 to integrate Navigational Warfare (NAVWAR) throughout the

Department of Defense (DoD), with the mission to enable positioning, navigation, and

timing (PNT) superiority to the DoD [3]. One of the main approaches to the defense

against PNT attacks in NAVWAR is to actively neutralize these attacks or reestablish

information flow by creating new lanes of uncorrupted information [4]– [6]. This reliance

on information is emphasized by the Chief of Naval Operations, Admiral Mike Gilday:

“Information has become the cornerstone for how the Navy functions in the 21st century.

Nothing the Navy does, or will do, can exist without it”. [7]

In space-based missions, the utilization of GPS is limited, especially when the

operations extend beyond low Earth orbit (LEO) into deeper space where GPS is

essentially unusable with the current infrastructure [8]. To overcome these limitations,

spacecraft use precisely timed radio signals between the spacecraft and antenna

stations on Earth to determine where the spacecraft is located [9]. However, due to
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Figure 1-1. Example of a GPS denied environment due to a single jammer [2].

the substantial time delay in receiving this state information, the spacecraft is forced to

make decisions intermittently since state information coming from the antenna station is

intermittent. Further, this method also constrains the spacecraft’s trajectory due to the

need for a line of sight between the antenna stations on Earth and the spacecraft when

large celestial-objects are in the way. Even though there are significant problems with

navigation in military and space missions, they are not limited to just these domains and

can be found throughout many commercial systems. For example, GPS requires line-of-

sight between the user and the satellites; however, in environments where obstructions

prevent line of sight (e.g., tall buildings, walls, foliage, etc), GPS communication may be

limited or totally lost (Figure 1-2).

1.2 Literature Review

To overcome the lack of GPS communication, many navigation and control solutions

utilize vision-based systems for localization by using landmarks in the environment

[11–16]. These solutions typically require the landmark to always be in the vision

sensor’s field-of-view, constraining the trajectories an autonomous agent may take. To

relax the requirement of always having a landmark in the field-of-view of a vision sensor,

Simultaneous Localization and Mapping (SLAM) algorithms have been developed which
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Figure 1-2. Illustrative example of an urban canyon with a loss of GPS satellite
communication resulting in the deterioration of positioning accuracy or total
loss of communication [10].
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use relationships between features or landmarks to estimate pose (i.e., position and

orientation) [17–19]. However, SLAM algorithms typically require environments that are

rich with features, which limits their scope of implementation. Further, it is widely known

that SLAM algorithms without proper loop closures result in pose estimation drift due to

the accumulation of measurement noise (c.f, [20] and [21]).

In response to the issues in environments where state information is intermittent,

a body of work has emerged [22]– [27] that embraces these difficulties by consider-

ing them as a class of Relay-Explorer problems. Typically using a switched system

approach, control laws are constructed which use state feedback for navigation when

available (stabilizable mode), and open-loop state estimates otherwise (unstable mode).

For example, in a single agent setting [22], to ensure stability, the agent has to re-

peatedly reacquire feedback by entering a fixed region where feedback is available.

A time-varying feedback region may naturally arise in multi-agent settings. For exam-

ple in [28], some agents may have the capability of relaying feedback information to

feedback-denied members of their team by moving into each other’s communication

radius.

Another method of overcoming the intermittency of state feedback is to deploy

cooperative multi agent systems (MAS) that actively assist each other with localization

by sharing information [29]– [32]. In such results, onboard sensing is shared and used

to collectively assist in the localization of every agent in the MAS. Typically, individual

agents are limited to relative distance measurements. Such measurements have been

used in different ways to help localize each agent in a global coordinate system. For

example, in [32], a Multidimensional Scaling algorithm is used to localize each agent

while considering distance measurement noise found in wireless transceivers but

requires stationary anchors that have perfect state information, which is a common

theme in many cooperative localization techniques. In [29], the closest work in the

literature to the work in Chapter 3, range sensors are used to take relative distance
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measurements between agents, where the measurements have an unknown but

bounded error. These errors prevent the agent from being perfectly localized, but the

bound on the errors allows for feasible regions to be computed where each agent may

reside. This is done by intersecting the geometric constraints imposed by the bounds on

the errors of the distance measurements made by each agent. Although [29] does not

require an anchor node, the result is applied to static nodes, leaving the dynamical case

to future research.

Autonomous mobile agents often require optical sensors, such as a camera,

to accomplish their tasks. Specifically, a tracking agent may be tasked with using a

camera to measure state information of a target agent, such as the pose. These pose

measurements are then used by the tracking agent’s controller to maintain tracking of

the target, i.e., keep its camera pointed at the target. However, cameras have sensing

limitations, such as a finite field of view (FoV). This finite FoV has motivated several

control schemes that force the target to remain in the FoV (cf., [11] and [33]), which

may not be sufficient for maintaining a constant flow of state information. For example,

environmental factors, such as debris [34], noncooperative agents, lens flare, etc, may

act as momentary obstructions that occlude the scene, thus preventing the target from

being seen by the tracking agent, despite being in the FoV of the camera. Further,

the target may be adversarial, intentionally taking advantage of opportunities to elude

tracking by causing occlusions, e.g. by maneuvering behind a building. The task

definition may also hinder tracking. For example, if multiple targets need to be tracked

at the same time, the tracking agent will be required to suspend tracking of one target

to keep information about other targets current. Regardless of the cause, intermittent

feedback presents a number of challenges for estimating the pose and velocities of

agents and targets alike [35].

Traditionally, the estimation challenge resulting from the intermittency of state

feedback has been addressed by probabilistic estimators, such as Kalman and particle

20



filters (cf., [36]– [39]). In such results, the filters are used to estimate the target motion

and then a predictor propagates the target pose estimate forward in time when the

target is not visible. However, these methods typically rely on a linearization of the

target’s dynamics (e.g., [36] and [40]). Furthermore, these probabilistic observers

typically require that the probability distributions that model the system’s uncertainties

are known.

Several deterministic estimators have been developed (e.g., [41]– [47]) for stable

target tracking, despite the indeterminacy in feedback. In these works, two subsystems

are defined: a stable subsystem, where feedback is available; and an unstable subsys-

tem, where feedback is unavailable (e.g., the target is occluded or the tracking agent

suspended tracking to execute another task). This change in subsystems motivates

the use of switched/hybrid analysis techniques (cf., [48] and [49]) to develop dwell time

conditions that typically yield uniformly ultimately bounded stability results. In [41], a

switched-systems framework is proposed yielding a dwell-time condition to inform the

tracking agent, while in its unstable mode, how long it can afford to proceed in this mode

before the estimation error grows too large for reacquisition to remain feasible. However,

this work assumes exact model knowledge of the target. To relax the model knowledge

requirement, motion model learning methods have been proposed. In [42], an integral

concurrent learning method is proposed which learns the motion model of the target

when feedback is available and then uses this learned model to predict the motion of a

target when feedback is unavailable. Similarly, in [47], a deep neural network (DNN) was

deployed to learn the motion model of the target, where an update law was constructed

for both the state estimate and the weight estimate of the DNN. Specifically, the update

law for the state estimator used the learned DNN model and a robust compensator term

to aid in the estimation while the weight estimates converged to the ideal weights for the
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Figure 1-3. Given a feedback region F , an initial starting point p, and a target point
q1 ∈ F , the ball B (p, q1) about q1 inscribed in F represents the maximum
allowed region of uncertainty based on IBC. For this geometry, a much
larger region of uncertainty may be allowed for a majority of starting points p,
provided q1 does not lie in F , replacing q1 with q2, for example.

DNN. The weights for the outer layer of the DNN were updated according to a continu-

ous update law, whereas the weights for the inner layers were updated at discrete times

seeking to minimize a loss function.

1.3 Outline of the Dissertation

Similar to the framework in [22], Chapter 2 and [27] considers a single agent

tasked with tracking a desired path that may lie outside a known feedback region. State

feedback is available when the agent is inside this region, and unavailable otherwise.

Since the desired path may lie partially outside of the feedback region, the agent dead-

reckons when feedback is not available. To achieve the task, a path-planning algorithm

is designed to generate an auxiliary trajectory for the agent to track. The instabilities

inherent to dead-reckoning can impede the agent’s ability to return to the feedback

region. This instability forces the auxiliary trajectory to alternate between following

the desired path and returning to the feedback region. This framework relies on a

Lyapunov-based switched system analysis [48] to derive dwell-time conditions dictating

the duration a system can remain in each operating mode while ensuring stability.
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The predominant factor affecting dwell-time conditions for Relay-Explorer problems

is the need to guarantee the reacquisition of state feedback. To furnish this guarantee,

results in [22] and [25] require the agent to dead-reckon to a point where the region of

state uncertainty is contained within the feedback region, the Inscribed Ball Criterion

(IBC). Crucially, these results only consider feedback regions where the dwell-time

conditions only depend on the distance of the agent to the feedback region (e.g., circular

regions in the plane, or, more generally, in higher dimensional Euclidean space, balls

and half-spaces will have this property). However, applying the same approach in real-

life applications, and to more general geometries results in unnecessarily conservative

bounds. For example, when an agent moves towards a long and narrow rectangular

feedback region, Figure 1-3 shows that a better strategy is to aim at a point beyond the

region, affording a larger error margin at the target point. Intuitively, small perturbations

in the shape of this region should not result in a change of strategy, motivating a

topological approach. Moreover, it is clear that the preceding considerations could

not be easily replicated for an arbitrary geometry of the feedback region, because of

complex interactions between local properties (e.g., curvature at nearby boundary

points) and global properties (e.g., concavities, spirals, etc.).

Chapter 2 addresses the need for generating re-entry guarantees for arbitrary

geometries of the feedback region. To this end, separation properties of embedded

spheres in RD, D ≥ 2 are used (Sections 2.3.1–2.3.2). The resulting Topological

Re-entry Criterion is applied to increase the maximum dwell-time by raising the upper

bound on the allowed error growth, in a state-dependent manner, while being cognizant

of the geometry of the feedback region in the agent’s vicinity (Sections 2.3.3–2.3.5).

The proposed framework generalizes the results in [22] from circular geometries in

R2 to nearly arbitrary contractible geometries in RD of the feedback region, by casting

the problem of constructing auxiliary trajectories as an optimization problem (Section

2.3.4): selecting an optimal auxiliary trajectory is tantamount to computing, at every
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point of the desired path, the largest tracking error the agent can afford without losing

the guarantee of return (the agent’s uncertainty budget at that point). In particular, this

framework guarantees uniformly ultimately bounded errors for repeated optimal choices

of the auxiliary trajectories (Theorem 2.4). To assess the degree of improvement offered

by the topological re-entry criterion over the IBC, an algorithm for computing uncertainty

budgets is given in Section 2.4 and numerical studies in Section 2.5.

Chapter 3 merges the idea of cooperative localization of MASs with Chapter 2

by using relative distance measurements between agents to put constraints on the

possible locations for each agent within their respective region of uncertainty, improving

the overall state estimation in the MAS. The resulting improved region of uncertainty

is similar to the idea of feasible regions in [29], but here the regions of uncertainty are

determined by the growth of the state estimation errors of the individual agents, not the

measurement uncertainty, which are then constrained by the distance measurements,

resulting in corrected state estimates and reduced error bounds. The reduction in the

state estimation error is then used to trigger an update in the auxiliary path plan to allow

the agents to delay upcoming detours into the feedback region.

In Section 3.1, the results of Chapter 2 are revisited. Section 3.2 states the control

problem and provides a complete description of the hybrid system. Then in Section

3.3.2, the cooperative state estimation algorithm is proposed and its continuity consid-

ered. In Section 3.4.3, auxiliary path planning procedures are introduced along with

trigger functions for determining when relative distance measurements should be used

to update auxiliary path plans. Section 3.6 discusses the stability properties of the

system.

Chapter 4 extends the the topological methods from Chapter 2 to time varying

feedback regions. Specifically, this work introduces a novel framework for image-based

tracking systems, addressing scenarios where the tracking agent needs to discontinue

tracking the target agent either due to the need to fulfill other tasks or the target agent
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becoming obscured. The developed approach deploys a Lyapunov-based Deep Neural

Network (Lb-DNN) to learn the dynamics of the target agent when visible, and to predict

its future trajectory when not visible.

Additionally, a related, but rarely examined question of where the tracking agent

should point its camera to best reacquire tracking of the target (i.e., the target re-enters

the tracking agent’s FoV) is addressed. The typical solution is to assume that the

estimation error does not grow beyond the dimensions of the FoV while the center

of the camera’s FoV is pointed at the predicted state of the target until the target

becomes visible again. However, this solution is restrictive. For example, it may be

advantageous to position the camera ahead of the predicted state of the target, in a

particular orientation, to catch the target within the FoV once it exits the occlusion region

(Figure 1-4). This reasoning is motivated by the work in Chapter 2, where the approach

there is analogous to this target tracking problem in the sense that a path planning

scheme is developed for the tracking agent to position its camera, and the resulting

feedback region, so that the target is guaranteed to pass through the boundary of the

FoV, thus guaranteeing that the reacquisition of tracking occurs. To ensure that target

tracking resumes, the topologically inspired method from Chapter 2 is extended, utilizing

the predicted trajectory of the target agent in a role analogous to that of the return path

plan there. This method informs the tracker agent about the duration it can suspend

tracking the target agent and specifies a pose for the camera for guaranteeing that

tracking resumes at some later time. Simulation results are provided to demonstrate the

performance of the proposed framework.

This chapter is structured as follows. Section 4.2 formally states the problem.

Section 4.3 introduces the design and development of the estimator and predictor.

Section 4.3 gives the stability analysis for the estimator and develops growth bounds

of the pose estimation error while feedback is unavailable. Section 4.5 develops the

topologically inspired methodology for guaranteeing reacquisition of tracking and gives
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Figure 1-4. Image A depicts a strategy of having the camera following the predicted
trajectory of the target; however, if the target is occluded for too long
(breaking the dwell time condition), the target may leave the FoV, thus
becoming lost to the tracking agent. Image B depicts the proposed idea of
selecting a position to place the camera’s FoV to catch the target as it leaves
the occlusion region. This selection of a camera’s pose may allow for an
increase in the dwell time condition, since it allows for the region of
uncertainty (the region where the target may be found within) to grow
beyond the size of the FoV.
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the final stability result for the switched system. Section 4.6 discusses a method for

implementing the developed method for guaranteeing reacquisition of tracking. Section

4.7 discusses a series of simulations.

1.4 Notation

Let the space of quaternions be denoted by H ⊆ R4. To accommodate space

constraints, denote Cartesian products A × B × C × · · · × Z by ⟨⟨A,B,C, . . . , Z⟩⟩,

suppressing braces for singletons. The p-norm of v ∈ RD is denoted by ∥v∥p, where in

the case that p = 2, ∥ · ∥, may be used. For any integer D ≥ 1, the Euclidean distance

between p, q ∈ RD is denoted by dist (p, q) ≜ ∥p − q∥2. The shortest distance from

a point to a set is dist(p,A) ≜ inf {dist (p, q) : q ∈ A}. The diameter of A ⊂ RD is

diam(A) ≜ sup {dist (p, q) : p, q ∈ A}. Let the closed unit ball in RD be defined as

BD ≜ {p ∈ RD : ∥p∥ ≤ 1}, and let SD−1 denote the unit sphere in RD. The dimensions,

D,D − 1 respectively, will often be suppressed. Similarly, the open unit ball in RD is

defined as B◦ ≜ {p ∈ RD : ∥p∥ < 1}. The closure of a set A is denoted by both cl(A)

and A, when appropriate. The set of interior points of A ⊆ RD is denoted by A◦. The

Minkowski sum and difference are denoted by ⊕ and ⊖, respectively. In Chapter 3,

Minkowski sums will be denoted by +. Given p ∈ RD and r > 0, the closed ball of

radius r about p is defined as Br(p) ≜ p ⊕ rB. Similarly, the open ball is defined as

B◦
r (p) ≜ p ⊕ rB◦. A point is an interior point of a set if B◦

r (p) ⊆ A for some r > 0. A

different notion of interior is associated with embeddings of SD−1 in RD, see (2–11). The

boundary of A is ∂A ≜ clA \ A◦. The convex hull of A ⊆ RD, denoted by conv(A),

is the minimal convex set containing A, whereas the convex closure of A, denoted by

co(A), is the the closure of the convex hull of A, i.e., cl(conv(A)). Given a set S, its

diagonal is defined as ∆(S) ≜ {(s, s) : s ∈ S} ⊂ S × S. The Clarke tangent cone

to a set S ⊂ RD at a point x ∈ RD is denoted by TS(x). A set A ⊂ RD is said to

be null, if it has Lebesgue measure zero. Let, ReLu(x) ≜ max(0, x) be the Rectified

Linear Unit function. The convolution operator is denoted by ’∗’, and is defined as
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p(t) ∗ q(t) =
∫ t

t0
p(t − τ)q(τ)dτ , for any given p, q : [t0,∞) → R. A set-valued mapping

M : S ⇒ T is a function from S to the power set of T . The regularized signum function

SGN : R ⇒ R is denoted by SGN(x) and has a value of −1 if x < 0, 1 if x > 0, and

[−1, 1] if x = 0. The vector of all ones is denoted by 1. The identity matrix of size n is

denoted by In. The matrix of size n×m with all elements being equal to zero is denoted

by 0n×m. Column vectors constructed via vertical concatenation will be denoted by

[a; b; c; . . . ] ≜ [a⊤, b⊤, c⊤, . . . ]⊤. For vectors vi ∈ RDi×1, i = 1, . . . ,m the expression (vi)
m
i=1

denotes the vector [v1; . . . ; vm]⊤ ∈ R(D1+...+Dm)×1. For a vector v = (vi)
D
i=1 ∈ RD define

|v| ≜ (|vi|)Di=1, sgn(v) ≜ (sgn(vi))Di=1, ReLu(v) ≜ (ReLu(vi))
D
i=1, and vλ ≜ (vλi )

D
i=1, for

λ ∈ R when vi ≥ 0 for all i. For some matrix A ∈ Rn×m, the conjugate transpose of A is

denoted by A∗. The maximum eigenvalue of A is denoted by λmax(A). The spectral norm

of a matrix is defined as ∥A∥S ≜
√
λmax(A∗A). The Hadamard product of two matrices

A,B ∈ RD×E is denoted by A ⊙ B. However, in Chapter 4 the Hamilton product, of two

quaternions q, p ∈ H, is defined as

q ⊙ p ≜

qs −q⊤v

qv qsI3 + (qv)
×

 p, w× ≜


0 −w3 w2

w3 0 −w1

−w2 w1 0

 ,
where qs ∈ R and qv ∈ R3 are the scalar and vector components of the quaternion q,

respectively. The Moore-Penrose pseudo-inverse of a full row rank matrix A ∈ Rn×m is

denoted by A+, where A+ ≜ A⊤ (AA⊤)−1. The right-to-left matrix product operator is

represented by
↶∏

, i.e.,
↶
m∏
p=1

Ap = Am . . . A2A1 and
↶
m∏
p=a

Ap = I if a > m. The Kronecker

product is denoted by ⊗. Given some matrix A ≜ [ai,j] ∈ Rn×m, where ai,j denotes

the element in the ith row and jth column of A, the vectorization operator is defined as

vec(A) ≜ [a1,1, . . . , a1,m, . . . , an,1, . . . , an,m]
T ∈ Rnm. Given any A ∈ Rp×a, B ∈ Ra×r, and

C ∈ Rr×s, the vectorization operator satisfies the property [50, Proposition 7.1.9]

vec(ABC) = (C⊤ ⊗ A)vec (B) . (1–1)
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Differentiating (1–1) on both sides with respect to vec (B) yields the property

∂

∂vec (B)
vec(ABC) = C⊤ ⊗ A. (1–2)
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CHAPTER 2
A TOPOLOGICALLY INSPIRED PATH-FOLLOWING METHOD WITH INTERMITTENT

STATE FEEDBACK

This chapter and the result in [27] advances a topologically inspired method for

guaranteeing re-acquisition of feedback for nearly arbitrary geometries in arbitrary

dimensions, all while relaxing the dwell-time conditions and retaining the uniformly

ultimately bounded stability result from preceding work. Numerical experiments in the

plane demonstrate an increase of hundreds of percentage points, even for fairly generic

geometries, in the tracking error the agent could afford, using the proposed method,

without sacrificing stability.

2.1 Problem Statement

2.1.1 Agent Dynamics

Consider an agent with dynamics modeled by

ẋ = f (x, t) + ζ (t) + d (t) , (2–1)

where x : R≥0 → RD, D ≥ 2, denotes the state; f : RD × R≥0 → RD denotes

locally Lipschitz drift dynamics; d : R≥0 → RD denotes an exogenous disturbance;

and ζ : R≥0 → RD denotes a control input. The following assumption is used in the

subsequent development.

Assumption 2.1. The exogenous disturbance d satisfies ∥d (t)∥ ≤ d̄ for all t ∈ R≥0,

where d̄ ∈ R>0 is known.

2.1.2 Control Objective

Let F ⊂ RD denote a known region where state feedback is available, i.e., state

feedback is available to the agent if and only if x ∈ F . The feedback region F is

modeled as the closure of the interior region of a polyhedral sphere C. Equivalently, F

is the image of an embedding of BD in RD (Section 2.3). The feedback-denied region,

F c ≜ RD \ F , is the set of states where feedback is not available.
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ℱ

𝑝

𝑞

𝑜

𝑛

— 𝑋𝑑
→ 𝑥𝜋

Figure 2-1. The auxiliary trajectory xπ, defined by a path plan π = (n, o, p, q), is
superimposed over the desired path Xd, for a generic feedback region F
(Definition 1). Note that the point q need not lie in F .

The agent is tasked with following a desired polygonal path Xd, which is provided

as a sequence of way points (P0, . . . ,PM) in RD, some of which may lie outside of F .

Repeated dead-reckoning along the sequence of way points is inherently unstable

outside of F . Instabilities during dead-reckoning motivates an approach where the agent

follows a sequence of auxiliary trajectories, relaying between the desired path and the

feedback region (Figure 2-1), to ensure the error system remains bounded.

Definition 2.1 (Auxiliary Trajectory). There are two types of auxiliary trajectories. The

auxiliary trajectory xπ : R≥0 → RD with path plan π = (n, o, p, q), is defined as the

concatenation of three trajectories determined by four way points: n is the point of

departure from the feedback region; o is the first point along a segment of Xd the agent

selects to follow; p is the point of departure from Xd; and q is the target point for the

return trajectory to the feedback region. From n to o, and from p to q, xπ is restricted

to straight line trajectories with constant speed v0. From o to p, xπ coincides with the

desired path Xd, with a piecewise linear parametrization of constant speed v0. For the
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second type of auxiliary trajectory, with plan π = (p, q), set xπ to coincide with a linearly

parametrized line segment from p to q with constant speed v0.

Remark 2.1. Plans π = (p, q) are used for acquisition of feedback from points p /∈ F ,

while plans π = (n, o, p, q) are used for tracking Xd and reacquiring feedback. A plan

terminates the moment feedback is reacquired.

Assumption 2.2. It is assumed that feedback acquisition is instantaneous upon re-entry

into the feedback region.

Remark 2.2. Between the executions of two plans, the agent travels through F , taking

advantage of the available feedback. Two cases may occur. If the next point Pm along

Xd lies in F , there is no need for auxiliary planning. Otherwise, the agent travels to the

point n ∈ F closest to Pm.

To quantify the tracking objectives, define

e ≜ x− xπ, ê ≜ x̂− xπ, ẽ ≜ x− x̂, (2–2)

where x̂ : R≥0 → RD is the agent’s open-loop state estimate, and e, ê, ẽ : R≥0 → RD

are the actual tracking error, estimated tracking error, and state estimation error,

respectively. The challenge is to regulate the norm of the actual tracking error to remain,

eventually, below a prescribed bound.

2.1.3 Switched Controller

Let S ≜ {a, u} be the set of indices denoting the operating modes, where a and

u correspond to the modes where feedback is available and unavailable, respectively.

Mode a is active when x ∈ F◦. Mode u is active otherwise. Let σ(x) ∈ S denote the

switching signal indicating the active subsystem. The control input takes the form ζ ≜

ζa (x, t) when σ (x) = a, and ζ ≜ ζu (x̂, t) when σ (x) = u, where ζa, ζu : RD × R≥0 → RD

are the control inputs when feedback is available and unavailable, respectively. The

closed loop error system for controllers of this kind were studied in [22], Section IV.
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2.2 Error Bounds

To facilitate the analysis, the ith instant when σ switches from u to a is denoted by

tai ∈ R≥0 for all i ∈ Z>0, i.e., the instant the agent enters the interior of the feedback

region. The ith instant when σ switches from a to u is denoted by tui ∈ R≥0, i.e., the

instant the agent exits F◦. Based on the switching instants, dwell-times of the ith

activation of the subsystems a and u are defined as ∆tai ≜ tui − tai and ∆tui ≜ tai+1 − tui ,

respectively.

To analyze the switched system, candidate Lyapunov-like functions are defined as

Ve ≜
1

2
∥e∥2 , Vê ≜

1

2
∥ê∥2 , Vẽ ≜

1

2
∥ẽ∥2, (2–3)

where Ve, Vê, Vẽ : RD → R≥0. To ensure a bound on the error system, the following

assumption is made.

Assumption 2.3. Based on the design of the control input in Section 2.1.3, it is as-

sumed that the time derivatives of (2–3) yields

V̇e ≤ −2λsVe, σ = a, (2–4)

V̇ê ≤ −2λsVê, σ = u, (2–5)

V̇ẽ ≤

{
−2λẽVẽ,

2λuVẽ + δ,

σ = a,

σ = u,
(2–6)

where λs, λẽ, λu, δ ∈ R>0 are known constants.

Remark 2.3. An example of a controller satisfying the assumptions made thus far is

given in Section VI of [22], where values for λs, λẽ, λu, and δ are shown to be functions of

the agent dynamics and the disturbance bound d̄.

While the agent is in the feedback-denied region (i.e., σ = u), solving the ordinary

differential inequalities in (2–4)–(2–6) and substituting in (2–2) and (2–3) yields∥∥∥∥ê(t)∥∥∥∥ ≤ ∥∥∥∥ê (tui )∥∥∥∥e−λs∆t, (2–7)
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∥∥∥∥ẽ(t)∥∥∥∥2 ≤ ∥∥∥∥ẽ (tui )∥∥∥∥2 e2λu∆t +
δ

λu

[
e2λu∆t − 1

]
, (2–8)

for all t ∈ [tui , t
a
i+1), where ∆t ≜ t− tui .

Upon each re-entry into F , it is possible to reset the auxiliary path xπ to a new

path and have x̂
(
tai+1

)
= x

(
tai+1

)
at tai+1. In other words, the auxiliary path is updated

based on the re-entry location of the agent instead of having to travel to the desired

re-entry location before returning to the desired path to follow. Resetting the errors to

zero results in the elimination of the minimum dwell-time condition and the vanishing of

the initial conditions from the maximum dwell-time condition [22]. Since e = ê + ẽ, and

using the reset maps from [22], the bounds in (2–7) and (2–8) yield

∥e(t)∥ ≤ ρ(t− tui ) , t ∈ [tui , t
a
i+1) , (2–9)

where

(ρ(∆t)) 2 ≜
δ

λu

[
e2λu∆t − 1

]
, (2–10)

and ρ(∆t) is referred to as the radius of uncertainty at time t. This bound holds for any

trajectory under any controller satisfying Assumption 2.3, enabling the development of a

dwell-time condition (Theorem 2.3).

2.3 Criteria for Guaranteed Re-entry

2.3.1 Preliminaries: Embedded Spheres in Euclidean Space

An embedded sphere in RD is defined to be the image C ≜ γ
(
SD−1

)
of an injective

continuous map γ : SD−1 → RD. For D = 2, the following classical result may be applied.

Theorem 2.1 (Jordan-Schöenflies, see [51], Thm. E1). An injective continuous map

γ : S1 → R2 extends to a homeomorphism Γ : R2 → R2, a continuous map with

continuous inverse satisfying Γ(p) = γ(p) for all p ∈ S1. The mapping Γ is called a

Schöenflies extension of γ.
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For higher dimensions D > 2, Schöenflies extensions exist under the additional

condition that the embedding γ is collared [52], [53]. The embedding γ is collared if

there is an injective continuous map γ̃ : SD−1 × [−1, 1] → RD such that γ̃(p, 0) = γ(p)

for all p ∈ SD−1. It is well-known that polyhedral, and, more generally, piecewise-regular,

maps γ (with finitely many faces) are collared (§11 in [54]).

The interior and exterior regions of a collared embedded sphere C are defined as

int (C) ≜ Γ
(
(B◦)D

)
, ext (C) ≜ Γ

(
RD\BD

)
, (2–11)

where Γ is any Schöenflies extension of γ. It is important to note int(C) and ext(C) do

not depend on the choice of map γ—only on its image, C. They are also independent

of the choice of the Schöenflies extension Γ. Moreover, the boundary sets ∂int (C) and

∂ext (C) coincide with C, and C separates every point p ∈ int (C) from every point

q ∈ ext (C) in the sense that any continuous curve from p to q must intersect C. For the

rest of this chapter the following assumption is made.

Assumption 2.4. The feedback region F is the closure of int(C), where C is a collared

embedded sphere in RD.

2.3.2 Construction of a Target Region

In the notation of Section 2.2, given tui , consider a plan π = (n, o, p, q). Alternatively,

consider π = (p, q), while setting tui = 0. Let xπ be the associated auxiliary trajectory.

Let p = xπ(t
p
i ) and q = xπ(t

q
i ), then the initial and final uncertainty radii for the plan π are

defined as

ρinit(π) ≜ ρ(tpi − tui ) , ρfin(π) ≜ ρ(tqi − tui ) , (2–12)

where ρ is defined in (2–10). The regions of uncertainty are

Uinit(π) ≜ Bρinit(π)(p) , Ufin(π) ≜ Bρfin(π)(q) . (2–13)

In [22] and [25], re-entry is guaranteed by selecting q ∈ F so that Ufin(π) ⊂ F . This

method is referred to as the Inscribed Ball Criterion (IBC). Treating this inclusion as a
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constraint results in a bound on ρfin(π), and hence also on ρinit(π), since the function ρ

is known. The example in Figure 1-3 illustrates the need for a target region much larger

than F , in which to fit Ufin(π), to obtain less conservative bounds. In this section, such

target regions are introduced.

Recall that F◦ = int (C). Given a point p ∈ ext (C) and a closed, connected region

R ⊂ RD with p ∈ R◦, define TC,R (p) to be the collection of all points q ∈ R◦ for which

any smooth curve γ : [0, 1]→ R◦ from p to q must pass through a point of C. Let EC,R (p)

denote the set of all y ∈ C such that, for some q ∈ TC,R (p) there is a smooth curve

γ : [0, 1]→ R◦ from p to q that crosses C exactly once at y.

Remark 2.4. In the above, it is permissible to restrict attention to smooth curves γ which

intersect C transversely, i.e., their tangent line at any point of intersection with C and the

tangent to C at that point together span RD (§10 of [54]).

Lemma 2.1. If q ∈ TC,R (p), then any curve in R from p to q must pass through a point of

EC,R (p).

Proof. Suppose a curve γ : [0, 1] → R◦ starts at point p = γ (0) and terminates at

the point q = γ (1). Let t′ ≜ inf {t ∈ [0, 1] : γ (t) ∈ C} be the first time γ crosses C. By

Remark 2.4, one may assume γ only crosses C transversely. Set q′ ≜ γ (t′), and let

U be a neighborhood of q′ not containing any other intersection point of γ and C such

that C ∩ U is a single interval. Find ∆t > 0 such that γ([t′, t′ + ∆t]) ⊂ U and now set

q′′ ≜ γ(t′ + ∆t
2
). Since the curve γ′ ≜ γ

∣∣
[0,t′+∆t/2]

crosses C exactly once, q′′ ∈ int(C) and

q′ ∈ EC,R(p), as required (Figure 2-2(left)).

2.3.3 Guarantee of Re-entry into the Feedback Region

Assume once more the agent is executing a plan π = (n, o, p, q) over the time period

t ∈ [tui , t
a
i+1]. At time tpi , the agent departs in the direction of F by dead-reckoning to a

point q ∈ RD (note that it is possible for q to not lie in F). For all t ∈ [tpi , t
q
i ], t

q
i − t

p
i =

∥q−p∥
v0

,

xπ(t) = p + (t− tpi )v, where v = v0
q−p

∥q−p∥ . The true position x(t) is guaranteed to lie in the

ball Bρ(∆t)(xπ(t)), where ∆t and ρ are defined in (2–7) and (2–10), respectively.
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𝑢
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𝐶
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ℱ

𝑇𝐶 ,𝑅

𝑈𝑓𝑖𝑛 (𝜋)

𝑈𝑖𝑛𝑖𝑡 𝜋

𝑣0

— 𝜕𝑅
→ Return Trajectory
--- 𝑥 𝑡
—𝐸𝐶,𝑅(𝑝)

Figure 2-2. Illustration of the proofs of Lemma 2.1 (left) and Theorem 2.2 (right) in the
plane.

Theorem 2.2. Suppose U(π) ≜
⋃

t∈[tpi ,t
q
i ]
Bρ(t−tui )

(xπ(t)) is contained in the interior of a

region R. If Ufin(π) ⊂ TC,R (p) then there exists t ∈ [tpi , t
q
i ] with x (t) ∈ F .

Proof. If Ufin(π) ⊂ TC,R (p), then q = x(tqi ) ∈ TC,R(p). Apply Lemma 2.1 to this point and

the curve γ : [tpi , t
q
i ]→ R, concluding that γ had to pass through a point of EC,R(p). Thus,

x(t) entered int(C) at some earlier time t ∈ (tpi , t
q
i ) (Figure 2-2 (right)).

Remark 2.5. If R is selected as a convex region, then ensuring Uinit(π) ⊂ R and

Ufin(π) ⊂ TC,R(p) suffices for meeting the requirements of Theorem 2.2.

2.3.4 Path-Planning with Infinite Cylinders

Theorem 2.2 states region R should be selected so the error growth in (2–9) of the

agent is accounted for in R up until re-entry can be guaranteed. Since an upper bound

on the error growth rate is given in (2–9), R may be designed to contain all possible

trajectories of x(t), given a plan π = (n, o, p, q). In principle, given the reference point

of departure p = xπ(t
p
i ) and a reference target velocity vector v with ∥v∥ = v0, R could

always be selected to be the (unbounded) cone of uncertainty
⋃

t∈[tpi ,∞)Bρ(t−tui )
(p +
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Figure 2-3. Illustrations of possible target regions R for use with the planner. The
cylinder geometry implemented in this chapter is shown in A. More general
geometries are possible (for example the conical region shown in B), but are
not discussed here due to higher computational overhead.

(t − tpi )v) in that direction. However, this choice is challenging from a computational

perspective, because of the nonlinearity of ρ.

Given any point p ∈ F c, the planner needs to select q and a region R best suited for

guaranteeing the agent’s return to F . In general, to apply Theorem 2.2 a rich collection

R(p) of regions R satisfying p ∈ R◦ with sufficiently large TC,R(p) for some R ∈ R(p)

must be designed.

Figure 2-3 presents two alternatives to the approach using cones of uncertainty:

the cylindrical geometry in Figure 2-3(A) and a conical geometry in Figure 2-3(B). The

subsequent development only considers the cylindrical geometry, in the interest of

reducing computational cost. Specifically, consider

R(p) ≜
{
Rp,v,w : v ∈ RD, ∥v∥ = v0, w > 0

}
, (2–14)

38



where Rp,v,w is the solid cylinder of radius w whose axis passes through p and has

direction v (Figure 2-3(A)),

Rp,v,w ≜

{
z ∈ RD :

∥∥∥∥(z − p)− (z − p) · v
v20

v

∥∥∥∥ ≤ w

}
. (2–15)

A pair (v, w) will be referred to as return parameters. For R = Rp,v,w, the following

observations are made.

• For excessively large values of w (e.g., w big enough for C ⊂ R) then TC,R(p) = F .
Therefore, any ball contained in TC,R(p) provides little improvement upon IBC of
guaranteeing return.

• More generally, R \ C has no more than two unbounded components. When
there is only one such component, the existence of a ball of radius w contained in
TC,R(p) cannot be guaranteed.

• In all other cases, the collection of balls of radius w contained in TC,R(p) is non-
empty: a point of the form q = p+ αv always exists with α > 0 and Bw(q) ⊂ TC,R(p)
(Figure 2-3(A)).

The developed planner seeks to maximize the arc length from o to p along Xd subject

to the constraint of re-entry being guaranteed by R(p). As a result, maximizing tpi −

tui subject to the existence of a point q = p + αv with Bw(q) ⊂ TC,R(p) and R =

Rp,v,w provides a lower bound on the time the agent could spend tracking Xd, which

the planner seeks to maximize. Therefore, the planner looks to solve the following

optimization problem:

∆t∗ ≜ max
p,v,w,α

(
ρ−1(w)− α

)
s.t.

 Bw(p+ αv) ⊂ TC,R(p),

R = Rp,v,w ∈ R (p) ,
(2–16)

given a ball Bw(q) ⊂ TC,R(p). To guarantee re-entry, it is required that x(tqi ) ∈ Bw(q) and

ρ(tqi − tui ) ≤ w. It then follows that tpi − tui ≤ ρ−1(w)− α because α = tqi − t
p
i .

39



For each R = Rp,v,w ∈ R(p), the Maximum Allowed Uncertainty Radius (MAUR) is

defined as

MAUR(p, v, w) ≜ max
α>0

ρ(ρ−1(w)− α)

s.t. Bw(p+ αv) ⊂ TC,R(p), (2–17)

representing the agent’s budget of uncertainty at the point p for the return parameters

v, w. In practice, assuming the distance between any two consecutive way points along

Xd does not exceed some small ϵ > 0, the optimization in (2–16) ranges over all

p = Pm′, m′ ≥ m, where m satisfies o = Pm. Note that it is possible for the optimal p to

satisfy p = o. Hence, an optimal path plan, π∗ = (n∗, o, p∗, q∗), will be given by

n∗ ≜ argmin
n
{dist (n, o) : n ∈ F} , (2–18)

(p∗, v∗, w∗, α∗) ≜ arg max
p,v,w,α

(
ρ−1(w)− α

)
, (2–19)

q∗ ≜ p∗ + α∗v∗, (2–20)

subject to the same constraints as (2–16), and noting that p = xπ∗(∆t∗) is an implicit

constraint on π∗.

2.3.5 Dwell-Time Analysis

Definition 2.2 (Feasible Region). For every point p ∈ F c, let the feasible region G be

defined by

G ≜ F ∪
{
p ∈ F c :

dist(p,F)
v0

< τ(p)

}
, (2–21)

where τ(p) ≜ maxv,w,α {ρ−1(w)− α}, subject to Bw(p+αv) ⊂ TC,R(p) and R = Rp,v,w. The

feasible region for initialization is defined by

G0 ≜ F ∪ {p ∈ F c : τ(p) > 0} . (2–22)
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Theorem 2.3. Suppose an agent is given whose motion is governed by (2–1) and the

controller from Section 2.1.3. Moreover, suppose Assumptions 2.1–2.3 are satisfied.

Let F be a region satisfying Assumption 2.4. Also suppose that, given x (0) ∈ G0 and

e(0) = ê(0) = ẽ(0) = 0, the agent executes a sequence of plans as follows: (a) if

x (0) ∈ F then let πi = (ni, oi, pi, qi), i ≥ 1 each with an associated region Ri ∈ R (pi) as

defined in (2–14); (b) otherwise, let π0 = (p0, q0) with p0 = x (0) and an associated region

R0 ∈ R (p0), followed by a sequence of plans as in (a). If, between plan executions

the agent is confined to F , and all the plans satisfy the re-entry condition of Theorem

2.2—that is Ufin(πi) ⊂ TC,Ri
(pi) for all i—then the actual tracking error is ultimately

bounded, uniformly over G0 and the set of plans, provided the switching signal satisfies

the maximum dwell-time condition ρ(∆tui ) ≤ ρfin(πi), written explicitly as

∆tui ≤
1

2λu
ln

(
λu (ρfin(πi))

2

δ
+ 1

)
, (2–23)

where ρfin(πi) is defined in (2–12).

Proof. For x (0) ∈ G0 \ F it takes at most ρ−1 (diam (F)) time to acquire feedback.

Therefore, without loss of generality assume x (0) ∈ F . With Assumptions 2.1–2.3

satisfied, suppose that plan πi also satisfies Ufin(πi) ⊂ TC,Ri
(pi). By Theorem 2.2, x

is guaranteed to re-enter into the feedback region F , while ρfin(πi) bounds the error

growth from above. By invoking Theorem 1 in [22] the tracking error is ultimately

bounded uniformly over G0 and the set of plans, since it satisfies the dwell-time condition

(2–23).

Theorem 2.4. Suppose Xd is a polygonal curve contained in the feasible region G.

Then Xd can be tracked with a guarantee of re-entry, for any initial condition x(0) ∈ G0,

provided the error system is initialized with e(0) = ê(0) = ẽ(0) = 0.

Proof. Suppose Xd is a polygonal curve contained in the feasible region G. For each

m, let ν(m) denote the smallest m′ > m such that Pm′ /∈ F . The proof proceeds by
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induction. For the base step, at time t = 0, if x(0) ∈ F then set ta1 = 0; otherwise, the

agent executes π0 = (p0, q0) with p0 = x (0) and q0 = x(0) + α0v0, where (v0, w0, α0)

realizes the maximum in the definition of τ(x(0)). By Theorem 2.2, entry into F is

guaranteed, resulting in ta1 ∈ [0, α0]. For the induction hypothesis, assume plans

πi = (ni, oi, pi, qi = pi + αivi), i = 1, . . . , k have been constructed so that (a) o1 = P0;

(b) pi = Pmi
with 1 < m1 < . . . < mk; (c) oi+1 = Pν(mi) for i = 1, . . . , k − 1; and (d) the

conditions of Theorem 2.3 hold.

Let x : [0, tak+1] → RD be an execution of these plans and note x(tak+1) ∈ F . For the

induction step, compute a point nk+1 ∈ F at minimum distance to ok+1 ≜ Pν(mk). Select

πk+1 to be the optimal plan π∗ = (n∗, o, p∗, q∗ = p∗ + α∗v∗) from Section 2.3.4, for a choice

of n∗ = nk+1 and o = ok+1. Set pk+1 = p∗, αk+1 = α∗, vk+1 = v∗, and qk+1 = q∗.

Now extend x as follows: first, the agent proceeds from x(tak+1) to nk+1 through

F—while tracking Xd, if ν(mk) > mk + 1—defining the behavior of x over the time

interval [tak+1, t
u
k+1]; next, the agent executes the plan πk+1, which guarantees re-entry

into F at some time tak+2 ≤ tqk+2. Now it is required to show that the dwell-time condition

ρ
(
∆tuk+1

)
≤ ρfin(πk+1) of Theorem 2.3 is satisfied.

Since ρ is strictly increasing, this is equivalent to requiring ∆tuk+1 ≤

ρ−1 (ρfin(πk+1)) = tqk+1 − tuk+1. Recalling that ∆tuk+1 = tak+2 − tuk+1 finishes the argu-

ment.

Remark 2.6. Note the path plan πk+1 in the proof covers the range of consecutive way

points ok+1 = Pν(mk), . . . ,Pmk+1
= pk+1 along Xd, ν(mk) ≥ mk + 1, while the preceding

plan πk covered the range ok = Pν(mk−1), . . . ,Pmk
= pk ⊂ Xd. Hence, progress will be

made along Xd by any execution of πk+1. In particular, there are no Zeno executions.

2.4 Precomputation and Plan Generation

Since the geometry of the feedback region and the evolution of the region of un-

certainty are known, a brute-force algorithm can be used to obtain all of the needed

information for future path-planning, provided the way points Pm, m = 0, . . . ,M − 1,
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Algorithm 2.1 Data-Set for R

Require: Xd as a list of points P0, . . . ,PM−1 ∈ RD

Require: F = cl(int(C)), C provided as a sequence of vertices
1: for m := 0 to M − 1 do
2: p← Pm

3: for j := 0 to J − 1 do
4: v ← v0 ·

[
cos 2πj

J
, sin 2πj

J

]
5: for k := 0 to K − 1 do
6: w ← wk

7: R← Rp,v,w

8: TC,R(p)←FINDTARGETREGION(p,R, v, w)
9: qm,j,k ←FINDTARGETPOINT(p, v, w, TC,R(p))

10: ρm,j,k ←Equation (2–26)
11: end for
12: end for
13: end for
14: return (qm,j,k, ρm,j,k)

M−1,J−1,K−1
m=0,j=0,k=0

15: function FINDTARGETREGION(p,R, v, w)
16: A← R \ F
17: for all a ∈REGIONS(A) do
18: if p ∈ å then
19: B ← a
20: Exit
21: end if
22: end for
23: return R \B
24: end function

25: function FINDTARGETPOINT(p, v, w, T )
26: α∗ ← min {α > 0: Bw(p+ αv) ⊆ T}
27: return p+ α∗v
28: end function

29: function REGIONS(A)
30: return the list of connected components of A
31: end function
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form a subdivision of Xd of sufficiently fine mesh1 ϵ > 0. For each m, an approxima-

tion to the solution of the optimization problem (2–16) for Pm is obtained by solving

for MAUR(Pm, v, w)—see (2–17)—over a sufficiently dense range of possible return pa-

rameters (v, w), and storing the solution in a data-set. The plans πi constructed in the

preceding section are then selected based on the information in the data-set to satisfy

the mission objectives. To select a return trajectory, the agent solves the optimization

problem in (2–19) by executing a search over the data-set.

To construct the data-set, for each point Pm, m = 0, . . . ,M − 1, return parameters

(vj, wk) are considered, with vj ≜ v0 · [cos (θj) , sin (θj)], Θ ≜
{
θj ≜

2πj
J
: j = 0, . . . , J − 1

}
,

and W ≜ {w0, . . . , wK−1} ⊂ R≥0. Given the feedback region F , Algorithm 2.1 computes

TC,R(Pm) for each R = RPm,vj ,wk
. Next, the nearest return target and associated MAUR

are computed as

qm,j,k ≜ Pm + αm,j,kvj, (2–24)

αm,j,k ≜ min {α > 0: Bwk
(qm,j,k) ⊂ TC,R (Pm)} , (2–25)

ρm,j,k ≜ ρ
(
ρ−1 (wk)− αm,j,k

)
. (2–26)

Note that ρ−1 (wk) − αm,j,k ≤ 0 means Pm /∈ G, in which case Xd cannot be tracked with

a guarantee of re-entry using this method. Also note that v0αm,j,k = dist(Pm, qm,j,k).

Upon termination, the result is a three dimensional array denoted by ρm,j,k ∈

RM×J×K , where each element of the array is the MAUR at point Pm ∈ Xd, associated

with a return trajectory θj ∈ Θ, and a width wk ∈ W .

Remark 2.7. In some applications, it may be necessary to further restrict the MAUR to

ensure a certain degree of accuracy while tracking Xd. If this is the case, the user may

1 Recall that a subdivision S of Xd has mesh µ (S) ≤ ϵ if dist (p, q) ≤ ϵ for every pair
of consecutive points p, q in the subdivision.
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use this predetermined desired upper bound as long as it is less than the MAUR at the

point of departure.

The size of the data-set, M × J ×K, can easily become prohibitive for optimization

by brute force search. To reduce the search space, some of the iterations for the differ-

ent R ∈ R(Pm) may be bypassed by selecting a single return trajectory and/or single

width. In the numerical experiments in Section 2.5, a single pair of return parameters,

(v, w) is assigned to each Pm. Specifically, v is set to equal the vector which bisects the

smallest sector emanating from Pm and containing F ; next, w is selected as the largest

wk ∈ W such that R = RPm,v,wk
satisfies TC,R(p) ̸= F . This results in the data-set having

size M . Algorithm 2 assigns the largest possible radius of uncertainty ρm to the points

qm, but it may fail to account for the effects of the distance traveled from Pm to qm. In

(2–26), maximizing wk may come at the expense of αm having to become large, as well.

Ultimately, this simplification trades geometric information for computational efficiency.

2.5 Numerical Experiments

Experiments were conducted in MATLAB® to investigate different geometries for the

feedback region. In each experiment the MAURs ρm generated by Algorithm 2 (Section

2.4) are compared with the corresponding MAURs—denoted by ρ′m—generated by IBC.

Remark 2.8. In this chapter, the MATLAB® functions, subtract, isinterior, and

regions are used to implement the operations on lines 16, 18, and 30 in Algorithm 2.1,

respectively. All regions were implemented as members of the polyshape class in the

“Elementary Polygon” library.

2.5.1 Experiment: A Generic Example

The task space is a rectangular region in the plane with unitless dimensions

2,048 × 1,536. Generic polygonal feedback region F and desired path Xd were hand-

drawn (Figure 2-4). Xd was then subdivided to ensure a mesh size at most 1, resulting

in 8,449 way points. The parameters are λu = 3, δ=5, and v0 = 2,000, to ensure ρ′m > 0

exists for all m.
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Figure 2-4. Comparison of criteria for guaranteed re-entry at a point. The MAUR for the
topological criterion is larger than that of IBC. Hence, the agent can afford
more uncertainty about its position while guaranteeing re-entry along a
different path (red instead of magenta). Note the IBC return trajectory
(magenta) is shorter, indicating a possible trade-off between maintaining
tracking uncertainty budgets and minimizing deviation from the desired path.
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Figure 2-5. Percent increase, µm, in the MAUR at the point of departure Pm ∈ Xd using
the proposed criterion for guaranteed re-entry. Note µm < 0 between P3592

and P3991 (vertical dashed lines).

Figure 2-5 plots the percent increase µm ≜ ρm−ρ′m
ρ′m

∗ 100 as a function of m. The

plot indicates that Algorithm 2 provides a significant improvement over IBC for this

specific geometry. However, IBC outperforms Algorithm 2 (µm < 0) for points P3,592

to P3,991 (Figure 2-5; also see the points marked in Figure 2-4). This reduction in the

performance of Algorithm 2 results from the MAUR being generated from only one

pair of return parameters. Had Algorithm 2.1 been deployed instead of Algorithm 2,

the list of possible return trajectories would have included the one suggested by IBC,

guaranteeing µm ≥ 0 at every point. Despite its sub-optimal performance, for this

geometry, Algorithm 2 provides an average improvement of 209% over IBC, with the

largest value of µm being 656%.

Using a Windows 10 PC equipped with an Intel® Core™ i7-8086K CPU, the

algorithms were developed and executed in MATLAB® with the assistance of the

parfor function found in the Parallel Computing Toolbox™. Using the tic and toc

functions to measure computation time, under similar computational conditions (i.e.,

CPU temperature, available memory, etc), the simplified algorithm required 5,332

seconds to execute while the inscribed circle method required 223 seconds to execute.
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A B C D

E F G H

Figure 2-6. Geometries: (A) Dumbbell, (B) Generic, (C) Horseshoe, (D) Star, (E)
Switchback, (F) Rounded Rectangle, (G) Standard Rectangle, (H) Circle.

2.5.2 Experiment: Sample Geometries

To gain more insight into the interaction between the uncertainty radii and the

geometry of the feedback region, a select number of example feedback regions was

considered (Figure 2-6). In geometries A–G, the polygons were hand drawn, and the

circular region H was approximated by a regular polygon with 100 vertices.

The same parameters were used in these experiments that were used in Section

2.5.1. A polygonal approximation of a circle is used as the desired path Xd. To ensure

the same mesh requirement, 6,401 vertices was used. The initial point P1 along Xd is the

rightmost point of the circle, with Xd oriented counter-clockwise.

2.5.3 Baseline Experiment: Concentric Circles

As a baseline for comparing the two methods, we replicate the settings of [22].

C and Xd were taken to be (approximate) concentric circles (Figure 2-6(H)). The two

methods render near identical results: the value of µm fluctuates at high frequency

between −0.21% and 2.74%. The fluctuations are caused by the discrete approximation

of the circular boundary of the feedback region C by a regular polygon.
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Figure 2-7. Percent increase, µm, in the MAUR for two types of rectangular feedback
regions. One with sharp corners and one with rounded corners.

2.5.4 Baseline Experiment: Rectangles

Figure 2-7 plots the functions µm for the two rectangular geometries (Figure 2-

6(F,G)) and confirms the intuitive argument, presented in the introduction (Figure 1-3),

behind Algorithms 1 and 2. Also, note how the sharp corners of the standard rectangle

cause ρ′m to approach zero, resulting in the spikes in µm visible in the figure. This

spiking is due to the fact that, for points Pm whose nearest point projection to F results

in a return trajectory collinear with an edge of the rectangle, no inscribed ball can be

constructed. Figure 2-7 demonstrates how rounding the corners mitigates this problem.

2.5.5 Comparing Multiple Geometries

Figure 2-8 presents a comparison of the functions µm for the geometries in Figure

2-6(A–F). The observation made in Section 2.5.4, motivated “rounding” the corners

of all the feedback region shapes. Given these experiments (Figure 2-8), with a total

of 46,855 data points (including the generic example), the mean-average increase in

the maximum allowed radius of uncertainty was found to be 233%. The largest mean-

average for a single geometry was 354%, which was observed in the “star” geometry

(Figure 2-6(D)), whereas the “switchback” geometry (Figure 2-6(E)) yielded the
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Figure 2-8. Percent increase, µm, in the MAUR at the point of departure from Xd for a
variety of geometries.

smallest mean-average of 168%. The largest increase at a single point was found to be

969%, seen in the “horseshoe” geometry (Figure 2-6(C)). The smallest single point was

found in the “dumbbell” geometry with a value of −42%.

Overall, even across a range of unique geometries, the topological criterion for

guaranteed re-entry in Theorem 2.2 is superior to IBC, in terms of MAUR. The topo-

logical criterion was shown to render large improvements even though the sub-optimal

Algorithm 2 was used instead of Algorithm 1. It is expected that Algorithm 1, with a

much richer data-set, would generate larger values for the optimal MAUR. Moreover,

Algorithm 1 is guaranteed to remove any instances where IBC outperforms the topo-

logical method. This guarantee is due to the fact the richer data-set would include the

suggested return trajectories generated by IBC.

2.6 Conclusion

Given an autonomous agent in Euclidean space, a topologically motivated method

for guaranteeing re-entry of the agent into a feedback region was developed, with the

aim of extending the reach of existing methods to include arbitrary geometries of the

feedback region. This method was integrated into an existing framework for developing
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dwell-times for an autonomous system tasked with following a desired path in the

presence of intermittent state feedback. A path-planning algorithm leveraging the new

topological re-entry criterion is presented and evaluated against the same planner using

IBC for synthetic and generic example geometries. The new topological method was

shown to increase the time an agent is able to safely operate in a feedback-denied

region, for a variety of geometries. A simplified and sub-optimal implementation of the

new method yields improvements in the allowed error growth by hundreds of percentage

points. This outcome, as well as computational inefficiencies in the current algorithm,

motivate future investigation along several lines of inquiry. Among these, more efficient

methods for computing MAURs and optimizing the choice of return trajectories, as well

as a method for implementing the “cone of uncertainty”—rather than an infinite strip—as

a target region (Section 2.3.4), are of great interest to the future development of an

optimal implementation. Additionally, it could be beneficial to investigate methods for

reducing the size of the region of uncertainty, as this would increase the dwell-time.

Future research could also focus on applying the topological criterion for guaranteed

re-entry to the task of optimizing traditional long-term tracking objectives such as total

time to task completion, rather than merely maximizing each individual segment.
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CHAPTER 3
MULTI-AGENT LOCALIZATION USING GEOMETRIC CONSTRAINTS WITH

INTERMITTENT STATE FEEDBACK

Chapter 2 established a framework for developing dwell-time conditions and path

planning techniques to guarantee stability, for systems where the objective required

operation in locations where feedback is unavailable. This chapter extends the study

of Relay-Explorer problems to multi-agent systems so cooperative localization can

enhance the path tracking performance of each agent and extend the duration the

ensemble of agents can spend operating without state feedback. To accomplish

these goals, a new paradigm in cooperative localization methodology is developed

that exploits the geometric qualities of the agents’ dynamics and communication

characteristics of a multi agent system. Hybrid system theory is used to model and

analyze the proposed localization method and path planning strategy. In a comparative

simulation study the cooperative behavior is shown to yield significant improvements in

performance over a non-cooperative system.

3.1 Preliminaries

3.1.1 Hybrid Differential Inclusions

A hybrid differential inclusion (HDI) [49] is a tuple H = (C,D, F,G), denoted by:

H :


ż ∈ F (z), z ∈ C,

z+ ∈ G(z), z ∈ D,
(3–1)

where F : C ⇒ Rn, G : D ⇒ Rn are called the flow and jump maps; C,D ⊂ Rn are

the flow and jump sets, respectively; and z+ indicates the value of the state after a jump.

Solutions of H evolve continuously over the flow set according to the constraints on the

dynamics imposed by the flow map. When the state is in the jump set D, it is allowed to

jump to states specified by the jump map G.

A set A ⊂ R≥0 × Z≥0 is a hybrid time domain, if there is a non-decreasing sequence

of non-negative reals (tj)
m
j=0, m ∈ Z≥0 ∪ {∞}, t0 = 0, tm ∈ R≥0 ∪ {∞}, such that
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A =
⋃∞

j=1 Ij, where Ij = [tj−1, tj] × {j − 1}. The sequence (tj)
m
j=0 is called the jump

sequence of the time domain A. A hybrid arc ϕ is a function ϕ : domϕ → Rn, where

(a) domϕ ⊂ R≥0 × Z≥0 is a hybrid time domain with jump sequence (tj)
m
j=0; and (b)

ϕ is a locally absolutely continuous function of Ij, for every j. A solution of H is a

hybrid arc ϕ such that, for all j > 0, (1) ϕ(t, j − 1) ∈ C for almost all t ∈ [tj−1, tj],

and ϕ̇(t, j − 1) ∈ F (ϕ(t, j − 1)) for almost all t ∈ Ij; and (2) ϕ(tj−1, j − 1) ∈ D and

ϕ(tj−1, j) ∈ G(ϕ(tj−1, j − 1)). Multiple consecutive jumps during a time duration of zero in

the t-coordinate of a solution ϕ(t, j)) is said to have multiple jumps in null-time.

3.1.2 Graphs

Let A ≜ {1, . . . , N} be a finite non-empty set denoting a list of N agents. The

configuration space over A is defined as Conf(A) ≜ ((R)2)A . We will refer to x ≜

(xi)i∈A ∈ Conf(A) as a configuration of a multi agent system (MAS) of particle agents

in R2. For any s > 0, the graph Gs(x) on a configuration x is the undirected graph

with agent (or vertex) set A and edge set Es(x) defined by setting ij ∈ Es(x) if and

only if dij ≜ ∥xi − xj∥ ≤ s, where we denote ij ≜ {i, j} for all i, j ∈ A, i ̸= j. Let

A(Gs(x)) ≜ [aij] ∈ RN×N denote the adjacency matrix of Gs(x), where aij = 1 if and only

if ij ∈ Es(x) and aij = 0 otherwise. The neighborhood Ñ i(x) of an agent i ∈ A is the set

of all agents j ∈ A ∖ {i} with ij ∈ Es(x). Let N i(x) ≜ [bj(x)]
N
j=1 ∈ RN , where bj(x) = 1 if

dij ≤ s, or bj(x) = 0 if dij > s or i = j, be the indicator vector of the set Ñ i(x). Note that

Ñ i(x) coincides with the ith column of the adjacency matrix of Gs(x).

3.1.3 Feedback Regions

Let F ⊂ R2 denote a known region where state feedback is available. The feedback

region F is modeled as the closure of the interior region of a polygonal Jordan Curve

J [27]. The feedback-denied region, F∁ ≜ R2 \ F , is the set of states where feedback is

not available, also let F∗ denote the closure of F∁, which is the closure of the exterior of

J .
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The following notion was introduced in Chapter 2. Given a point p ∈ F∁, and a

closed, connected region R ⊂ R2 with p ∈ R◦, define TR(p) to be the collection of all

points q ∈ R◦ for which any smooth curve γ : [0, 1]→ R◦ from p to q must pass through a

point of J .

3.1.4 Guarantee of Re-entry and MAURs

Consider an agent at an unknown point x0 ∈ p + ρ0B, where p ∈ F∁ and ρ0 > 0

are known. The agent’s motion is subject to unknown disturbances, but suppose that

there is a S̄ > 0 and a known function ρ : [0,∞) → [0,∞) with ρ(0) = ρ0 such that,

for any choice of target point q ∈ R2, an available control input uq(τ), τ ∈ [0,∞) exists

generating a trajectory xq(τ) of the agent such that xq(0) = x0, ∥ẋq(τ)∥ ≤ S̄ and

∥xq(τ) − xπ(τ)∥ ≤ ρ(τ) for all τ ≥ 0, where xπ(τ) ≜ p + Sτ q−p
∥q−p∥ is a constant speed

reference trajectory from p to q, with S ∈ R>0 being the desired operating speed of the

agent. Suppose also that ρ is strictly monotone increasing and unbounded, representing

the fact that the uncertainty about its position grows over time. Thus, the agent’s

knowledge regarding its position at time τ amounts to xq ∈ Uq(τ) ≜ xπ(τ) + ρ(τ)B.

Overall, this behavior gives rise to the uncertainty cone

U(p, q) ≜
⋃

τ∈[0,τq ]

Uq(τ), τq ≜
∥q−p∥

S
. (3–2)

The agent is tasked with reacquiring feedback, in the sense that it needs to select a

point q ∈ R2 such that xq(τ) ∈ F is guaranteed for some τ > 0. Let R(p, q) denote the

strip of width 2ρ(τq) centered about the line through p and q. By Theorem 2 of [27], if the

agent selects the target q, then it is guaranteed to re-enter the feedback region at some

time τ ∈ (0, τq], provided Uq(τq) ⊂ TR(p,q)(p). Therefore, the set of return targets for the

initial data (p, ρ0) is defined as

target (p, ρ0) ≜ argmin
q
{∥q − p∥ : q ∈ R2, Uq(τq) ⊂ TR(p,q) (p)}. (3–3)
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Figure 3-1. Given an uncertainty radius of ρ(τp) > diam(F), it is impossible to have a
Uq(τq) ⊆ F since diam(Uq(τq)) > 2diam(F).

For a point p ∈ F∁ define ur(p) ≜ {ρ ∈ R≥0 : target(p, ρ) ̸= ∅}. If ρ ∈ ur(p) and

ρ > ρ′ > 0 then ρ′ ∈ ur(p). Therefore the maximum allowed uncertainty radius at p is

defined as maur(p) ≜ sup ur(p) and then ur(p) = (0, maur(p)].

Remark 3.1. maur(p) ≤ diam(F), always. If not, then there is a point q with ρ(τq) >

diam(F) and such that R(p, q) contains a point of F ∩ pq. But then R(p, q) must contain

the whole of F , which implies TR(p) = F . But then q ∈ F and Uq(τq) ⊆ F , which is

impossible because diam(Uq(τq)) > 2diam(F) (Figure 3-1).

Definition 3.1 (Feasible Region). For every point p ∈ F∁, let the feasible region for an

agent be defined by

G ≜ F ∪
{
p ∈ F∁ : ρ (∥p−F∥/S) < maur (p)

}
. (3–4)

The feasible region for initialization for agent i is defined by

G0 ≜ F ∪
{
p ∈ F∁ : maur (p) > 0

}
. (3–5)
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In the presence of multiple agents i ∈ A with different dynamics these regions are

denoted, respectively, by Gi,Gi0.

Lemma 3.1. G0 is bounded.

Proof. Let p ∈ G0 and q ∈ target(p, ρ), for ρ ∈ ur(p). By Remark 3.1, ρ ≤ diam(F) ≜ δ,

so q ∈ F + δB. Since F + δB is compact, τq ≤ T (p) where T (p) is independent of

the choice of q. Since ∥ẋq∥ ≤ S̄ and xq(τ) ∈ F for some τ ∈ [0, τq], we conclude that

∥p− xq(τ)∥ ≤ τqS̄, as desired.

Corollary 3.1. There is ϑ > 0 with ϑB ⊇ G0 + diam(F)B.

3.2 Problem Formulation

3.2.1 Individual Agent Characteristics

Consider a single agent i with state variables Zi = [xi, x̂i, xiπ, τ
i], where xi : [0,∞)→

R2, x̂i : [0,∞) → R2, xiπ : [0,∞) → R2, and τ i : [0,∞) → [0,∞) denote the true

position state, the estimated position state, the desired position state, and the agent’s

personal clock, respectively. The agent has two modes of operation: state feedback is

available (i.e., xi ∈ F) and state feedback is unavailable (i.e., xi ∈ F∁). When feedback

is available the agent has dynamics described by the differential inclusion1

Żi ∈ F i
a

(
Zi
)
≜
〈〈
∆
(
Di + d̄iB

)
, viπ(τ

i), 1
〉〉
, (3–6)

where Di = Di(Zi) = f i(xi) + ui(Zi), f i : R2 → R2 is the locally Lipschitz drift dynamics;

d̄i > 0 is a known bound on the norm of the unknown disturbance; ui : R6 → R2 is the

controller; and viπ(τ i) = ẋiπ(τ
i) is the desired trajectory to be tracked. When feedback is

unavailable the agent has dynamics described by the differential inclusion

Żi ∈ F i
u

(
Zi
)
≜
〈〈
Di + d̄iB, D̂i, viπ(τ

i), 1
〉〉
, (3–7)

1 When feedback is available x̂i = xi, thus the ∆ operator is used to force this fact for
all Żi.
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where D̂i = D̂i(Zi) = f i(x̂i) + ui(Zi). Note the difference between (3–6) and (3–7),

where the former enforces equality between the first two coordinates and the second

enforces separate constraints on the same coordinates. The dynamics in (3–6) and

(3–7) imply that the state estimate x̂i flows according to the predictor D̂i when feedback

is unavailable, while coinciding with xi when feedback is available. The controller ui

needs to be designed so that it does not depend on xi when feedback is unavailable.

This need motivates the definition of three error signals as

ei ≜ xi − xiπ, êi ≜ x̂i − xiπ, ẽi ≜ xi − x̂i, (3–8)

where ei, êi, ẽi ∈ R2 are the true tracking error (TTE), estimated tracking error (ETE)

and state estimation error (SEE), respectively. Only êi is measurable when feedback is

unavailable.

3.2.2 Cooperative Control Objective

Each agent i with state xi : [0,∞) → R2 is tasked with following a prescribed

polygonal path X i
d provided as a sequence of waypoints P i

κ ∈ R2 \∂F , κ = 1, . . . ,M i. Let

the arc length of the sub-path of X i
d from a point p ∈ [Pk−1,Pk] to a point q ∈ [Pl,Pl+1],

1 ≤ k ≤ l, be defined as

Λi (p, q) ≜ ∥p− P i
k∥+

l−1∑
κ=k

∥P i
κ+1 − Pκ∥+ ∥q − P i

l ∥. (3–9)

Repeated dead-reckoning with a state estimator x̂i : [0,∞) → R2 along the se-

quence of way points is inherently unstable outside of F , because the actual position

and state estimator drift away from one another. This intermittency in state feedback

motivates an approach where each agent i follows a sequence of auxiliary trajectories

xiπ relaying between the desired path and the feedback region (Figure 3-2). The chal-

lenge is to regulate the norms of the TTE ei = xi − xiπ for every agent. The tracking

objective for agent i is defined as regulating the signal ei to a ball, and communication

between agents will be used to reduce the SEE component of the regulation objective.
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Figure 3-2. Depiction of two auxiliary path plans, and a connecting trajectory. In red, an
auxiliary trajectory parameterized by πi = (x∞, x∞, p

i, qi) is used for the
purpose of initially gaining feedback. In green, an auxiliary trajectory xiπ,
defined by a path plan πi = (ni, oi, pi2, q

i
2), is superimposed over the desired

path X i
d, for a generic feedback region F (Definition 1). In pink, a connecting

trajectory is used to join the path plan qi∗ to ni
1. Note that the point qi need

not lie in F .

Observe that the problem is only feasible if X i
d ⊂ Gi and xi(0) ∈ Gi0. By Corollary 3.1,

there exists ϑ > 0 such that ϑB contains Gi0 + diam(F)B for all agents i ∈ A. A point x∞

is selected for future use such that

x∞ ∈ R2 \ ϑB ⊆ R2 \
⋃
i∈A

(
Gi0 + diam(F)B

)
. (3–10)

Definition 3.2 (Auxiliary Trajectory). There are two types of auxiliary trajectories. The

auxiliary trajectory xiπ : [0,∞) → R2 with path plan πi = (ni, oi, pi, qi) ∈ R8 is a function

xiπ = xiπ(τ
i), defined as the concatenation of four trajectories determined by five way

points: xiπ(0) is the initial point at which the plan is computed; the ni is the point of

departure from the feedback region; oi = P i
ℓ is the first point along a segment of X i

d the

agent selects to follow; pi = P i
ℓ′ for ℓ′ ≥ ℓ, is the point of departure from X i

d; and qi is the

target point for the return trajectory to the feedback region. From the initial point xiπ(0) to
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ni a path is selected that is entirely contained within F . From ni to oi, xiπ coincides with a

straight line trajectory with speed Si; this path is referred to as leg no of the plan π. From

oi to pi, xiπ coincides with the desired path X i
d, with a piecewise linear parametrization

with speed Si; this path is referred to as leg op of π. Then, from pi to qi, xiπ coincides

with the straight line trajectory from pi through qi with speed Si; this path is referred to

as leg pq of π. For the second type of auxiliary trajectory—with plan πi = (x∞, x∞, p
i, qi),

see (3–10)—set xiπ to coincide with a linearly parameterized ray from pi through qi with

speed Si. The variable τ i is a personal clock for agent i, which is reset to zero each time

the agent departs from the feedback region. Let τ io, τ ip, τ iq be the values of τ i determined

by xiπ(τ io) = oi, xiπ(τ ip) = pi, and xiπ(τ iq) = qi (the scheduled arrival times for each way

point). Additionally, let viπ ≜ ẋiπ, which is defined for all τ i ∈ [0,∞), except possibly for

τ i = τ io, τ
i
p, τ

i
q, and the times corresponding to the break points P i

k, ℓ < k < ℓ′. Note

that, viπ(τ i) ∈ R2 is piecewise constant and eventually constant because xiπ is piecewise

linear, as depicted in Figure 3-2. The set of all plans for agent i is denoted by Plansi.

Plans πi = (x∞, x∞, p
i, qi) are used for acquisition of feedback from points pi /∈ F ,

while plans πi = (ni, oi, pi, qi) are used for tracking X i
d and reacquiring feedback. The

execution of an auxiliary trajectory terminates the moment feedback is reacquired, at a

point qi∗, and a new plan of type πi = (ni, oi, pi, qi) is computed, together with a plan of

the agent’s motion through F from the point qi∗ to the departure point of the new plan.

Definition 3.3 (Connecting Trajectory). Given points qi∗, ni ∈ F , a connecting trajectory

from qi∗ to ni is an absolutely continuous trajectory xiπ : [0, τ in] → F with xi(0) = qi∗ and

xiπ(τ
i
n) = ni.
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3.3 Controller Design

3.3.1 Agent Controller

Based on (3–8) and the subsequent stability analysis, the controller ui is designed

as

ui ≜


ψi (xi, ei, ki1, β

i, τ i)− d̄isgn(ei), xi ∈ F ,

ψi (x̂i, êi, ki2, α
i, τ i) , xi ∈ F∁,

(3–11)

where ki1 > 0, ki2 > 0, αi ∈ (0, 1), and βi ∈ (0, 1) are control gains, and ψi is the

continuous2 function, for γ > 0,

ψi
(
ξ, η, κ, γ, τ i

)
≜ viπ

(
τ i
)
− f i (ξ)− κ|η|γ ⊙ sgn(η). (3–12)

To bound the error signals as functions of time, the Lyapunov candidates

V i
e ≜

1

2
∥ei∥2 , V i

ê ≜
1

2
∥êi∥2 , V i

ẽ ≜
1

2
∥ẽi∥2, (3–13)

are considered, where V i
e , V

i
ê , V

i
ẽ : R2 → R≥0. Since the controller defined in (3–11) has

a discontinuous right side when xi ∈ F , generalized time derivatives from [56] are used

to evaluate the evolution of the Lyapunov candidates.

Definition 3.4 (Generalized time derivative). Let F : Rn ⇒ Rn have nonempty and

compact values. The generalized time derivative of a locally Lipschitz-continuous

function V : Rn → R with respect to F is the function V̇ F : Rn → R defined as

V̇ F (x) ≜ max
p∈ðV (x)

max
q∈F (x)

p⊤q, (3–14)

where ðV denotes the Clarke gradient of V [57].

Remark 3.2. Note that, V̇ (x(t)) ≤ V̇ F (x(t)) for any solution x(t) of the differential

inclusion ẋ ∈ F (x).

2 See [55] for discussion.
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Since V i
e is continuous, its generalized time derivative with respect to F i

a reduces to(
V̇

i

e

)
F i
a

≜ max
q∈F i

a

[ei, 0,−ei, 0]q. (3–15)

Substituting (3–6) and (3–11) into (3–15) yields(
V̇

i

e

)
F i
a

= −k1∥ei∥β
i+1

βi+1
− d̄i∥ei∥1 + d̄imax

Y ∈B

(
ei
)⊤
Y. (3–16)

Using (3–13), and the facts ∥ei∥βi+1 ≥ ∥ei∥2 and maxY ∈B(e
i)⊤Y ≤ maxY ∈B ∥ei∥∥Y ∥ ≤

∥ei∥ ≤ ∥ei∥1, (3–16) is bounded as(
V̇

i

e

)
F i
a

≤ −2
βi+1

2 ki1
(
V i
e

)βi+1
2 , xi ∈ F . (3–17)

Similar to the steps taken to obtain (3–15), the generalized time derivatives of V i
ê and V i

ẽ

with respect to F i
u reduce to(

V̇
i

ê

)
F i
u

= −2
αi+1

2 k2
(
V i
ê

)αi+1
2 , xi ∈ F∁, (3–18)

and (
V̇

i

ẽ

)
F i
u

= f i
(
xi
)
− f i

(
x̂i
)
+ d̄imax

Y ∈B

(
ẽi
)⊤
Y, xi ∈ F∁. (3–19)

Then using the fact that maxY ∈B(ẽ
i)⊤Y ≤ ∥ẽi∥2, the Lipschitz property of f i, and Young’s

inequality, (3–19) is bounded as(
V̇

i

ẽ

)
F i
u

≤ 2λiV i
ẽ + δi, xi ∈ F∁, (3–20)

where λi = Li + 1
2ϵi

, δi = ϵi

2
(d̄i)2, Li is a Lipschitz constant for f i, δi ≜ 1

2
(d̄i)2, and

ϵi > 0. By Remark 3.2, integrating (3–20) over [t0, t] along a solution of the closed loop

differential inclusion (3–7), substituting in V i
ẽ from (3–13), and solving for ∥ẽi (t) ∥ yields

∥ẽi (t) ∥ ≤
√
∥ẽi (t0) ∥2e2λi∆t +

δi

λi
(
e2λi∆t − 1

)
. (3–21)
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For the case where êi ∈ R, integrating (3–18) over [t0, t], substituting V i
ê from (3–13), and

then solving for êi yields

êi =


(
|êi(t0)|A

i − ki2Ai∆t
) 1

Ai

sgn(êi(t0)), ∆t < T i
s (ê

i
0) ,

0, ∆t ≥ T i
s (ê

i
0) ,

(3–22)

where ∆t ≜ t − t0, Ai ≜ 1 − αi, and T i
s(ê

i
0) ≜ 1

ki2A
i |êi(t0)| is a settling time function

[55]. Expanding (3–22) to non-scalar error systems, while considering the possible

differences in settling times between coordinates, yields

êi (t) =
[
ReLu

(
|êi(t0)|A

i − ki2Ai∆t · 1
)] 1

Ai ⊙ sgn
(
êi0
)
, (3–23)

where ReLu (·) captures the nature of the piecewise expression in (3–22). Note that

∥êi(t)∥ = 0 for ∆t ≥ T i
s(ê

i(t0)) ≜ 1
ki2A

i∥êi(t0)∥A
i

∞ , where the infinity norm accounts for the

possible differences in settling times between each coordinate of ê.

Provided the bounds on the initial conditions ϱ̂i = êi(t0), and ϱ̃i ≥ ∥ẽi(t0)∥ are

satisfied, an upper bound, representing the worse case estimate for the growth of the

TTE (i.e., ei = êi + ẽi), for the interval [t0, t] is

ρi
(
∆t, ϱ̂i, ϱ̃i

)
≜ ∥ρ̂i

(
∆t, ϱ̂i

)
∥+ ρ̃i

(
∆t, ϱ̃i

)
, (3–24)

where

ρ̂i
(
∆t, ϱ̂i

)
≜
[
ReLu

(
|ϱ̂i|Ai − ki2Ai∆t · 1

)] 1

Ai ⊙ sgn
(
ϱ̂i
)
, (3–25)

and

ρ̃i
(
∆t, ϱ̃i

)
≜

√
(ϱ̃i)2 e2λi∆t +

δi

λi
(
e2λi∆t − 1

)
. (3–26)
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Additionally, the rate at which ρ̃ grows, given the initial condition ϱ̃i, is found by comput-

ing the time derivative of (3–26), yielding

˙̃ρi ≜
[
λi
(
ϱ̃i
)2

+ δi
]

e2λi∆t
(
ρ̃i
)−1

. (3–27)

Remark 3.3. The use of the sliding mode controller (3–11) implicitly assumes agent i is

capable of sampling ei at infinite frequency. This allows the TTE to be null through each

traversal of the feedback region. In practice, however, small fluctuations of the TTE will

occur, which may cause unexpected departures from the feedback region. This issue is

addressed in Section 3.5 by insetting the feedback region..

3.3.2 State Estimation

3.3.2.1 Communication and Extended State Structures

For the purpose of reducing the SEE ẽi for agent i ∈ A, agent i will intermittently

request information from any agent at a distance no more than Rcomm away, where

Rcomm is the communication radius. For each agent i, a sample-and-hold state variable

N i ∈ {0, 1}N ⊂ RN is introduced to keep track of the set of agents j ̸= i with which i

communicated last, to aid in computations reducing ẽi. The hybrid dynamics of N i is

given by Ṅ i = 0 between sampling events and (N i)+ = N i(x) during sampling events

(see notation in Section 3.1.2, where s is selected as s = Rcomm).

Each agent has the extended state

X i ≜
(
N i, πi, modei, xi, x̂i, xiπ, τ

i, τ itrig, ρ̃
i, bi
)

(3–28)

and state space

X i ≜ ⟨⟨{0, 1}N , Plansi, {0, 1, 2, 3},R6, [0,∞)3, {0, 1}⟩⟩, (3–29)

where modei ∈ {0, 1, 2, 3} is the operating mode of agent i, as defined in Figure 3-3,

τ itrig ∈ [0,∞) is a timing variable, and bi ∈ {0, 1} is a binary variable used for enforcing

the order of jumps (Section 3.5).
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Figure 3-3. Illustration of the operational modes for agent i. modei = 0 when xi ∈ F .
Otherwise, modei = 1 when τ i ≥ τ in, modei = 2 when τ i ≥ τ io , and modei = 3
when τ i ≥ τ ip. Arrows (n→ m) represent jump transitions between modes.
Arrow labels represent an idealized set of conditions for transitioning
between modes. Tm, m = 1, 2 are trigger functions, which will be discussed
in detail in Section 3.4. Note that some conditions for mode transitions are
suppressed, and will be discussed in further detail in Section 3.5.
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The ensemble state space is defined as X ≜
∏

i∈AX i, where X ≜ (X i)i∈A. Observe

that X is the finite disjoint union of the closed sets XA where A ∈ {0, 1}N×N and X ∈ XA

if and only if N i coincides with the ith column of A for all i ∈ A. The subspace XA

may be regarded as the state space for a system of agents gathering information from

neighbors assigned by the matrix A, regardless of distances.

3.3.2.2 Cooperative State Estimation

For each agent i ∈ A the region of uncertainty about the position xi is defined

as U i ≜ x̂i + ρ̃iB, where ρ̃i is the agent’s current bound on ∥ẽi∥. However, the agent

may attempt to communicate with its neighbors N i to improve the error bound ρ̃i, as

follows. Let Ñ i denote the set of j ∈ A such that N i
j = 1. For any j ∈ Ñ i, it follows that

xi ∈ U j
i ≜ dijS + U j = (x̂j + dijS) + ρ̃jB. Note that U j

i is either a ball (when dij < ρ̃j) or

an annulus about x̂j, with internal radius dij − ρ̃j and external radius dij + ρ̃j (Figure 3-5).

Taking into account all j ∈ Ñ i yields

xi ∈ Û i (X) ≜ U i ∩
⋂
j∈Ñ i

U i
j (X) . (3–30)

Instead of modeling the exact shape of Û i as a function of τ i, the circumscribed ball

about Û i is used to bound the SEE as

(P i, H i) ≜ argmin
r,h

{
r ≥ 0, h ∈ R2 : Û i ⊆ h+ rB

}
, (3–31)

where P i, H i are the circumradius and circumcenter of this ball, respectively, and are

uniquely defined by X i and Xj, j ∈ Ñ i (Figure 3-4). By construction, P i ≤ ρ̃i, making

it potentially advantageous to apply jumps with an update of the form (ρ̃i)+ = P i,

(x̂i)+ = H i when P i < ρ̃i, though additional conditions must be considered, which are

reflected in a collection of event triggers discussed in Section 3.4.

During implementation, computing Û i(X), but more importantly P i and H i, may be

done using Boolean set operations found in standard computational geometry libraries.

For example, the Computational Geometry Algorithms Library (CGAL) [58] will output
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A

B

C

Figure 3-4. Illustration of the process for calculating updated radius of uncertainty P i(X)
and the updated state estimate H i(X). First, in sub-figure A, the relative
distance measurement between agents i and j is illustrated. Second, in
sub-figure B, U i

j is illustrated. Finally, the updated radius of uncertainty
P i(X) and the updated state estimate H i(X) is illustrated, which was
determined by a minimum bounding circle algorithm.
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Figure 3-5. Illustration of relative distance measurements between agents i and j being
used to compute U j

i (X) and Û i(X).

an arrangement of circular arcs exactly representing the boundary of Û i; following this,

an algorithm for enclosing these arrangements of continuous arcs produces P i and

H i (e.g., the algorithms in [59] and [60]). Other minimum enclosing ball algorithms

such as [61] can be used for simpler implementations of the state estimation update

algorithm, where Û i is upper bounded by a polygon.

In general, H i and P i are not continuous as functions of x (that is, with N i(x)

substituted for N i) because of the discontinuous changes in the collection of neighbor

sets N i(x). For each i ∈ A, trajectories of the sample-and-hold dynamics of N i may

not coincide with N i(x), see Figure 3-6. In fact, the matrix N with columns N i will often

differ from the adjacency matrix of the actual communication graph because of the

possible asynchrony of updates as designed in Section 3.5. Thus, N i represents not the

actual network structure, but agent i’s current estimate of its neighbor set, according to

which it executes the plan until an update occurs. The hybrid state space structure of
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Figure 3-6. A configuration (A) of four agents, with Rcomm indicated in green gives rise to
a communication graph with edges indicated in blue. Several arbitrarily small
motions of agent 3 alter the graph discontinuously into one of four graphs
(B)-(E). An update by agent 3 executed shortly after the motion will alter N 3

accordingly, but not N 1,N 2 or N 4.

X , where each of the closed, mutually disjoint subspaces XA, A ∈ {0, 1}N×N accounts

for the possible states of the system under one specific network-wide estimate, A, of

the network structure was motivated by this observation. Note that A may not be the

adjacency matrix of any graph due to the asynchrony of the local network state updates.

Nevertheless, each estimated structure influences the behavior of the ensemble. The

following lemma establishes the continuity of the collaborative state estimate update (the

functions H i and P i) as a function of the extended ensemble state space X , keeping

in mind these functions depend on the estimated local network state N i rather than on

N i(x).

Lemma 3.2. H i and P i are continuous functions of X ∈ X .

Proof. Fix i ∈ A. Since the XA, A ∈ {0, 1}N×N , are pairwise disjoint closed sets,

it suffices to prove that H i, P i are continuous on each XA. Fix A. Thus N i is fixed,

and denote B ≜ Ñ i. By definition, as functions of XA, both H i and P i depend only

on x̂i, ρ̃i, x̂j, ρ̃j, dij, j ∈ B. Let K be the space of non-empty compact subsets of

G0 + diam(F)B, with the Hausdorff metric. K is compact because G0 + diam(F)B is

compact (Lemma 3.1). Then (U j
i )j∈B is a uniformly continuous map of X ∈ XA into KB.
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Let K̃ ≜ {(Fj)j∈B ∈ KB :
⋂

j∈B Fj ̸= ∅}. Then K̃ is a closed subspace of KB and is

therefore compact. The intersection map K̃ → K is continuous and hence uniformly

continuous. Since the map X 7→ Û i is the composition of uniformly continuous maps, it

is uniformly continuous on XA. Finally, K → (G0 + diam(F)B)× [0,∞) maps every F ∈ K

to the center and radius of its circumscribed ball is continuous. Therefore, (H i, P i) is a

continuous function of XA as a composition of continuous maps.

3.4 Path Planning

For the purpose of the computations in this section it is more convenient to keep

track of the timeline according to a prescribed or hypothetical piecewise-linear trajectory.

The following durations will be useful to consider:

T i (n, o, p) ≜ ∥n−o∥+Λi(o,p)
Si , T i (o, p) ≜ Λi(o,p)

Si ,

where o, p are points along X i
d and n ∈ Gi is any point.

3.4.1 Initial Plans

An agent i with initial actual state xi(0) ∈ Gi0 selects an initial path plan of the

form (ni, oi, pi, qi) if xi(0) ∈ F . Otherwise, the agent selects a path plan of the form

(x∞, x∞, p
i, qi) since the agent’s only objective at this point is to acquire state feedback.

In the first case, select

ni ∈
{
n ∈ Fin : ∥P i

1 − n∥ ≤ ∥P i
1 −Fin∥

}
,

oi ≜ P i
1,

pi ≜ P i
maxκ(X),

qi ∈ target
(
pi, ρi

(
T i(ni, oi, pi), 0, 0

))
,

(3–32)

where κ(X) ≜ {k ≥ 1 : ρi (T i(ni, oi,P i
k), 0, 0) ≤ maur(P i

k)}. In the second case, xi(0) ∈

F∁, the path plan is selected as

pi ≜ xi, qi ∈ target
(
pi, 0

)
. (3–33)
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3.4.2 Generating a New Plan

Once a path plan πi(X) = (ni, oi, pi, qi) is terminated at time τ i(X) by agent i

re-entering the feedback region, a new path plan πi(X)+ = rpli(X) ≜ ⟨⟨ni
r, o

i
r, p

i
r, q

i
r⟩⟩ is

generated, whose components are defined as follows. Let ℓ be the largest integer such

that T i(ni, oi,P i
ℓ−1) < τ i(X), meaning that P i

ℓ−1 is the last waypoint on X i
d visited by the

agent. Let κ(X) ≜ {k ≥ ℓ : ρi (T i(ni
r, o

i
r,P i

k), 0, 0) ≤ maur(P i
k)}, which is the collection of

indices of waypoints farther along X i
d from which a return to F is guaranteed. Then,

ni
r ≜

{
n ∈ Fin : ∥P i

ℓ − n∥ ≤ ∥P i
ℓ −Fin∥

}
,

oir ≜ P i
ℓ,

pir ≜ P i
maxκ(X),

qir ≜ target
(
pi, ρi

(
T i(ni

r, o
i
r, p

i
r), 0, 0

))
,

Note that the point oir is selected to ensure progress along X i
d, and that all n ∈ ni

r are at

equal distances to oir, which makes qir independent of the choice of such n.

3.4.3 Updated Path Plans and Trigger Functions

Any update of the state estimate x̂i, ρ̃i provides an opportunity to update the plan

π = πi. Things to consider include tracking performance, distance traveled along X i
d,

and completion time. The path plan is updated differently depending on the current

mode (Figure 3-7). Denoting π+ = updi(X) ≜
〈〈
ni
+, o

i
+, p

i
+, q

i
+

〉〉
, always select oi+ = oi

to ensure that oi is visited. On the first leg of the plan, a state estimate update would be

compatible with ni
+ being set to H i(X); on the second leg, ni

+ = ni. On both legs, the

reduction in the initial SEE may allow for pushing pi+ farther along X i
d than the original pi

was. Similarly to the preceding sections, the following definitions are given, with small

variations.

Set ℓ so that oi = P i
ℓ and, for every k ≥ ℓ let ρi∗(X, k) be the projected bound on the

TTE upon arrival at P i
k, depending on the required type of update. Then

κ (X) ≜ {k ≥ ℓ : ρi∗ (X, k) ≤ maur(P i
k)}
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Figure 3-7. Possible changes in the auxiliary trajectory of agent i due to accepted
state-estimate updates. An example is given for each leg of a path plan π.

is the set of indices k ≥ ℓ corresponding to the points P i
k eligible to be counted as return

targets for the new plan. The quantity

ρi∗ (X) ≜ ρi∗ (X,maxκ (X))

is a bound on the TTE at the farthest admissible return point, resulting in pi+ ≜ P i
maxκ(X).

Any choice of return target from the set qi+ ≜ target(pi+, ρ
i
∗(X)) is an acceptable choice

for a guaranteed return trajectory. It remains to set the values of ρi∗(X, k) separately for

each mode, while making any additional considerations.

3.4.3.1 modei = 1

In this mode, modei = 1, select ni
+ = H i(X) and set

ρi∗ (X, k) ≜ ρi
(
T i(H i (X) , oi,P i

k), 0, P
i (X)

)
.

The resulting update is only beneficial when uncertainty reduction resulting from

updating the state estimate yields a sufficient improvement in the estimation error bound
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upon arrival at oi. This condition corresponds to the trigger condition T i
1 (X) ≤ 0, where

T i
1 (X) ≜ Ψi

1 + ρi1 − ρin,

ρi1 ≜ ρi
(
∥H i (X)− oi∥/Si, 0, P i (X)

)
,

ρin ≜ ρi
(
∥xiπ − oi∥/Si, 0, ρ̃i

)
,

(3–34)

and Ψi
1 ≥ 0 is a user-defined threshold.

3.4.3.2 modei = 2

In this mode, modei = 2, select ni
+ = ni and

ρi∗ (X, k) ≜ ρi
(
T i
(
xiπ,P i

k

)
, H i (X)− xiπ, P i (X)

)
.

This update is only beneficial when uncertainty reduction resulting from updating the

state estimate yields a sufficient improvement in the error bound upon arrival at pi. This

condition corresponds to the trigger condition T i
2 (X) = 0, where

T i
2 (X) ≜ ReLu

(
Ψi

2 + ρi2 − ρin
)
,

ρi2 ≜ ρi
(
T i
(
xiπ, p

i
)
, H i (X)− xiπ, P i (X)

)
,

ρin ≜ ρi
(
T i
(
xiπ, p

i
)
, êi, ρ̃i

)
,

(3–35)

and Ψi
2 > 0 is a user-defined threshold.

3.4.3.3 modei = 3

Even though it may be beneficial to do state estimate updates while in mode

3 to possibly reduce the maximum time it may take for an agent to return to the

feedback region, implementation would require knowledge of maur(H i(X)) and

target(H i(X), P i(X)), which is not part of the precomputed data used in modes 1

and 2. Additionally, there are currently no efficient methods for computing this data in

real-time.
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Figure 3-8. To achieve desirable solution properties, modifications to the ideal mode
transition conditions, as seen in Figure 3-3, were necessary, giving rise to
the realized conditions seen here and in (3–44). For example, it is now
required that xi ∈ F∗

in rather than xi ∈ F∗.

3.5 The Assembled Hybrid System

To avoid chattering effects along ∂F (Remark 3.3), the idealized mode transitions

provided in Figure 3-3 are replaced with the mode transitions defined in Figure 3-8,

using an inset Fin of F by a small distance for which Fin ∩ ∂F = ∅. Consequently,

the flow set of the ensemble hybrid system is constructed as follows, as dictated by the

constraints characteristic of each operational mode, for each agent. Let ϖi : X → X i be

the standard projection such that Ci
m = (ϖi)−1(C̃i

m), where

C̃i
0 ≜

X i ∈ X i
modei = 0, bi = 0,

τ i ≤ τ in

 , (3–36)
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C̃i
1 ≜

X i ∈ X i
modei = 1, bi = 0,

τ itrig ≤ T i
max

 , (3–37)

C̃i
2 ≜

X i ∈ X i
modei = 2, bi = 0,

τ itrig ≤ T i
max, x

i ∈ F∗
in

 , (3–38)

C̃i
3 ≜

X i ∈ X i
modei = 3, bi = 0,

xi ∈ F∗
in

 , (3–39)

where T i
max ∈ R>0 is the duration of time that must elapse before a trigger update may

occur. Define the ensemble flow set as

C ≜
⋂
i∈A

Ci, Ci ≜
3⋃

m=0

Ci
m. (3–40)

C =
⋃

m∈M

Cm, Cm ≜
⋂
i∈A

Ci
m(i), (3–41)

where m : A → {0, 1, 2, 3} is a function that assigns modes, and M denotes the set of all

mode assignments. Observe that C is closed. The ensemble flow map is

F (X) ≜
∏
i∈A

F i
(
X i
)
, F i

(
X i
)
≜ F i

modei

(
X i
)
, (3–42)

where, recalling (3–28), the maps F i
m : C ∩ [modei = m] ⇒ RN+19 are defined as

F i
0(X

i) ≜ ⟨⟨0, 0, 0,∆
(
Di + d̄iB

)
, viπ(τ

i), 1, 0, 0, 0⟩⟩,

F i
m(X

i) ≜ ⟨⟨0, 0, 0,Di + d̄iB, D̂i , viπ(τ
i), 1, 1, θ, 0⟩⟩,

(3–43)

for m = 1, 2, 3, where θ ≜ [λi(ϱ̃i)2 + δi]e2λi∆t(ρ̃i)−1, based on (3–27).
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Transitions between operational modes, state estimate updates, and communication

structure changes happen in the sets

Di
∗ ≜

{
X ∈ X : τ itrig ≥ T i

max, mode
i ∈ {1, 2}, bi = 0

}
,

Di
#1 ≜

{
X ∈ X : T i

1 (X) > 0, modei = 1, bi = 1
}
,

Di
#2 ≜

{
X ∈ X : T i

2 (X) > 0, modei = 2, bi = 1
}
,

Di
11 ≜

{
X ∈ X : T i

1 (X) ≤ 0, modei = 1, bi = 1
}
,

Di
22 ≜

{
X ∈ X : T i

2 (X) ≤ 0, modei = 2, bi = 1
}
,

Di
20 ≜

{
X ∈ X : xi ∈ Fin, mode

i = 2, bi = 0
}
,

Di
30 ≜

{
X ∈ X : xi ∈ Fin, mode

i = 3, bi = 0
}
,

Di
01 ≜

{
X ∈ X : τ i ≥ τ in, mode

i = 0, bi = 0
}
,

Di
12 ≜

{
X ∈ X : τ i ≥ τ io, x

i ∈ F∗
in, mode

i = 1, bi = 0
}
,

Di
23 ≜

{
X ∈ X : τ i ≥ τ ip, x

i ∈ F∗
in, mode

i = 2, bi = 0
}
.

(3–44)

Note that Di
mm, m = 1, 2 depends on the ensemble state of the MAS rather than just

the individual state X i. The ensemble jump set is defined as D ≜
⋃

i∈AD
i, where

Di is the union of the sets defined in (3–44). The jump map for agent i is defined as
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(Gi(X))j = Xj for all j ∈ A∖ {i} and

(Gi((N i, πi , modei, xi, x̂i , xiπ , τ
i, τ itrig, ρ̃

i, bi)i∈A))
i ≜

⟨⟨N i(x), πi , modei, xi, x̂i , xiπ , τ
i, 0 , ρ̃i , 1 ⟩⟩, X∈Di

∗,

⟨⟨ N i , πi , 1 , xi, x̂i , xiπ , τ
i, 0 , ρ̃i , 0 ⟩⟩, X∈Di

#1,

⟨⟨ N i , πi , 2 , xi, x̂i , xiπ , τ
i, 0 , ρ̃i , 0 ⟩⟩, X∈Di

#2,

⟨⟨ N i , updi, 1 , xi, H i, H i, τ i, 0 , P i, 0 ⟩⟩, X∈Di
11,

⟨⟨ N i , updi, 2 , xi, H i, xiπ , τ
i, 0 , P i, 0 ⟩⟩, X∈Di

22,

⟨⟨ N i , rpli, 0 , xi, xi , xi , 0 , 0 , 0 , bi⟩⟩, X∈Di
20,

⟨⟨ N i , rpli, 0 , xi, xi , xi , 0 , 0 , 0 , bi⟩⟩, X∈Di
30,

⟨⟨ N i , πi , 1 , xi, x̂i , xiπ , 0 , τ
i
trig, ρ̃

i , bi⟩⟩, X∈Di
01,

⟨⟨ N i , πi , 2 , xi, x̂i , xiπ , τ
i, τ itrig, ρ̃

i , bi⟩⟩, X∈Di
12,

⟨⟨ N i , πi , 3 , xi, x̂i , xiπ , τ
i, τ itrig, ρ̃

i , bi⟩⟩, X∈Di
23,

(3–45)

where rpli(X) depends on the operating mode and is defined in Section 3.4.2, whereas

H i(X), P i(X), and updi(X) depend on the communication structure, and are defined in

Sections 3.3.2 and 3.4.3. Further, for values of X where (3–45) is ambiguous, Gi(X) is

to be understood as a set, containing all the listed outcomes. The ensemble jump map

is G(X) ≜
⋃

i∈AG
i(X).

Remark 3.4. The purpose of the binary variable bi is to enforce a particular order of the

state update: given an initial condition where bi = 0, it is impossible for agent i to have a

state X i ∈ Di
11 ∪ Di

22 unless the prior state of agent i was contained in Di
∗, thus forcing

agent i to update the communication status with the other agents before computing the

triggering function for a state estimate update, assuring accurate information is used, as

well as the continuity of the x̂i, ρ̃i components of the jump map, by Lemma 3.2.
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3.6 Properties of Solutions

3.6.1 Hybrid Basic Conditions

Having a HDI that is nominally well-posed leads to favorable robustness and

temporal properties [49, Chapter 6]. To have a HDI that is nominally well-posed, it

suffices for the HDI to satisfy the hybrid basic conditions (HBC): (a) C and D are closed;

(b) F is outer semicontinuous and locally bounded on C, with (closed) convex values;

and (c) G is outer semicontinuous and locally bounded on D [49, Theorem 6.30]. In

the case where (a–c) hold with the possible exception that F and/or G are not outer

semicontinuous, the Krasovskii regularization Ĥ of the HDI is still known to satisfy the

HBC [49, Lemma 5.16]. Recall that the regularized HDI is defined as Ĥ ≜ (C, F̂ ,D, Ĝ),

where,

F̂ (X) ≜
⋂
δ>0

coF
(
(X + δB) ∩ C

)
,

Ĝ (X) ≜
⋂
δ>0

G
(
(X + δB) ∩D

)
.

(3–46)

Solutions of Ĥ are called Krasovskii solutions of H.

Lemma 3.3. The sets C and D are closed.

Proof. The set C is closed, by construction. Note that, in (3–44), Di
mm ∪ Di

#m is closed

for all i ∈ A, showing that D is closed as well.

Remark 3.5. Observe also that the sets Di
11 and Di

22 defined in (3–44) are closed

for all i ∈ A. By Lemma 3.2, (3–34), and (3–35), the trigger functions T i
1 and T i

2 are

continuous over X for all i ∈ A. Since X is closed, so are all the Di
11 and Di

22.

Lemma 3.4. Let F̂ , Ĝ be the Krasovskii regularizations of F ,G respectively. Then

F̂ (X) =
∏

i∈A F̂
i(X i), where for each i, F̂ i(X i) = F i(X i) for X i ∈ Ci \ Ci

0, and

F̂ i =
〈〈
0, 0, 0,∆(f̂ i), viπ(τ

i), 1, 0, 0, 0
〉〉
, (3–47)

f̂ i ≜ f i + ψi
(
xi, ei, ki1, β

i, τ i
)
+ d̄i

(
SGN

(
ei
)
+ B

)
,
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otherwise. Further, Ĝ =
⋃

i∈A Ĝ
i(X), where for each i, Ĝi(X) is defined in the same way

as (3–45) where the plans updi(X) =
〈〈
ni
+, o

i, pi+, q
i
+

〉〉
are replaced with ûpdi(X) and

N i(x) is replaced with

(
N̂ i(x)

)
j
≜


0, dij > Rcomm ∨ j = i,

{0, 1}, dij = Rcomm,

1, dij < Rcomm.

Moreover,

ûpdi (X) ⊆
⋃

p∈{Pi
k:k∈κ(X)}

〈〈
ni
+, o

i, p, target
(
p, ρi∗ (X)

)〉〉
, (3–48)

where κ (X) and ρi∗ (X) are defined in Section 3.4.3, implying that every plan in Ĝi(X)

has a guarantee of re-entry. There also exists a discontinuity in (Gi(X))i when T i
1 (X) =

0 and X ∈ Di
#1 ∪Di

11, thus the regularization at this point is

(Ĝi(X))i =
〈〈
N i, πi, 1, xi, x̂i, xiπ, τ

i, 0, ρ̃i, 0
〉〉

∪
〈〈
N i, ûpdi (X) , 1, xi, H i, H i, τ i, 0, P i, 0

〉〉
.

Similarly, when T i
2 (X) = 0 and X ∈ Di

#2 ∪Di
12, the regularized jump map is

(Ĝi(X))i =
〈〈
N i, πi, 2, xi, x̂i, xiπ, τ

i, 0, ρ̃i, 0
〉〉

∪
〈〈
N i, ûpdi (X) , 2, xi, H i, xiπ, τ

i, 0, P i, 0
〉〉
.

Proof. The regularization of the flow map F̂ is determined by direct computation

using the fact that the only discontinuities in F̂ are due to the additive signum function

term in (3–11), when feedback is available. Similarly, the regularization of the jump

map Ĝ is determined through observing that the only discontinuities of Ĝi are due to

discontinuities in the update of the communication neighborhood N i and of the plan

update map updi. The regularization of N i(x) is determined by direct computation.
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To address ûpdi(X), the notation of Section 3.4.3 is used for the rest of the proof.

Since ni
+ and oi are continuous maps, and qi+ is an outer semicontinuous function of

pi+, we only need to compute the regularization of pi+ as a function of X ∈ X . Since

pi+(X) = P i
maxκ(X) by definition, to prove (3–48), it suffices to verify that there is a δ > 0

such that κ(X ′) ⊆ κ(X) for all X ′ ∈ X + δB.

For modei = 1, let ϵ > 0 be such that3 ρi∗(X, k) > maur(P i
k) + ϵ for all k /∈ κ(X). Let δ

be small enough that |ρi∗(X, k) − ρi∗(X ′, k)| < ϵ for every X ′ ∈ X + δB and every k ≥ ℓ.

Then for k /∈ κ(X), ρi∗(X ′, k) > ρi∗(X, k) − ϵ > maur(P i
k), which implies k /∈ κ(X ′). The

proof for leg op is nearly identical. Under these conditions, for small enough δ, the only

possible difference between X i and X ′i is in the components xi, x̂i and the continuity of

ρi carries the argument.

For the discontinuity when T i
m = 0, for m ∈ {1, 2}, (Ĝi(X))i is determined by direct

computation.

3.6.2 Stability of Krasovskii Solutions

Define the set I i0 of admissible initial conditions for agent i as the set of all X ∈ C

such that xi ∈ Gi0, x̂i = xiπ = xi, ρ̃i = 0, bi = 0 and either (a) xi ∈ F , modei = 0 and

πi = (ni
0, o

i
0, p

i
0, q

i
0) has a guarantee of re-entry; or (b) modei = 3 and πi = (x∞, x∞, p

i
0, q

i
0),

where pi0 = xi and qi0 is selected in the same way as Section 3.4.1. Define the set of

admissible initial conditions for the MAS as I0 ≜
⋂

i∈A I i0.

Theorem 3.1. Krasovskii solutions of H with initial conditions in I0 have uniformly

ultimately bounded true tracking error (i.e., TTE).

Proof. By Lemma 3.4, Krasovskii solutions of H have a guarantee of re-entry for all

path plan updates, for each agent i ∈ A. Then [27, Theorem 3] applied separately to

3 Note that the projected bound on the TTE is monotone-increasing as a function of k.
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each agent i ∈ A, implies that the TTE for agent i is ultimately bounded, uniformly over

Gi0.

Claim 3.1. For any agent i with a state X i such that modei = 0, xi remains in F until

τ i ≥ τ in. That is to say, there are no accidental departures from F .

Proof. Given the initial conditions defined by I i0 and by the resetting of the TTE dictated

by the jump maps Di
20 and Di

30, agent i is always initialized in the feedback region F

(modei = 0) with a zero TTE (i.e., ei = 0). Then by the exponential convergence to 0

of ∥ei∥ observed in (3–17), it is concluded that ∥ei∥ = 0 for the duration of time that

xi ∈ F . Further, since a path plan π is constructed such that xiπ ∈ F for the duration of

τ i ∈ [0, τ in), it is concluded that xi ∈ F until τ i ≥ τ in.

3.6.3 Properties of Solutions

The following lemma addresses properties of the flow map.

Lemma 3.5 (Viability Condition). For an arbitrary X0 ∈ C\D there exists a neighborhood

U of X0 such that for every X ∈ U ∩ C, F̂ (X) ∩TC(X) ̸= ∅.

Proof. Let m ∈ M be the unique mode assignment satisfying X0 ∈ Cm. Since the

Cm are pairwise disjoint compact sets, there is a neighborhood W of X0 such that

W ∩ C = W ∩ Cm. From the fact that the constraints defining the Ci
m(i) for different

i are separated it follows that TC(X) =
⋂

i∈A TCi
m(i)

(X) for every X ∈ W . Thus,

verifying that F̂ (X) ∩ TC(X) ̸= ∅ for X ∈ W ∩ C is tantamount to verifying that, for

each i ∈ A, F̂ i(X i) contains a point satisfying the defining inequalities for TCi
m(i)

(X).

Let ϖi : X → X i be the standard projection. Then, Ci
m(i) = (ϖi)−1(C̃i

m(i)), and

TCi
m(i)

(X) = (dXϖ
i)−1(TC̃i

m(i)
(X)), where dXϖi is the differential (at X) of ϖi, which

happens to coincide with the projection to the ith coordinate. Then by the corollary

to [57, Theorem 2.4.5], TC̃i
m(i)

(X) can be computed as

TC̃i
m(i)

(X i) ⊇ ⟨⟨T{0,1}N (N i),TPlansi(π
i),T{m(i)}(mode

i),
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TF∁
in
(xi),TR2(x̂i),TR2(xiπ),T[0,τ in)

(τ i),

T[0,T i
max)

(τ itrig),T[0,∞)(ρ̃
i),T{0}(b

i)⟩⟩,

where it is observed that TF∁
in
(xi) = TR(x

i), T[0,τ in)
(τ i) = T[0,∞)(τ

i), and T[0,T i
max)

(τ itrig) =

T[0,∞)(τ
i
trig), for all X ∈ C \D. Therefore,

TC̃i
m(i)

(X i) ⊇ ⟨⟨{0}N , {0}, {0},R2,R2,R2, [0,∞), [0,∞),

[0,∞), {0}⟩⟩ ⊇
(
F i
0(X

i) ∪ F i
m(X

i)
)
.

Recall that F i ⊂ F̂i.

To address properties of jumps, it is necessary to decompose the jump set D to

examine possible jump sequences. Any X ∈ D belongs in one of the subsets of D listed

in the collection D,

D ≜ {Di
01, D

i
∗ ∩ {modei = 1} \Di

12, D
i
#1, D

i
11, D

i
12 \Di

∗, D
i
∗ ∩Di

12,

Di
∗ ∩ {modei = 2} \ (Di

20 ∪Di
23), D

i
#2, D

i
22, D

i
20 \ (Di

∗ ∪D23), D
i
23 \ (Di

∗ ∪D20), D
i
∗ ∩Di

23 \Di
20,

(3–49)

Di
20 ∩Di

23 \Di
∗, D

i
∗ ∩Di

20 \Di
23, D

i
∗ ∩Di

20 ∩Di
23, D

i
30}.

Details for the construction of D can be found in Appendix A.1. For any D′ ∈ D, with the

exception of Di
∗ ∩ {modei = 1} and Di

∗ ∩ {modei = 2}, any X ∈ D′ has the possibility

of being mapped by G to the flow set C. Further, any X ∈ D′, for any D′ ∈ D has the

possibility of being mapped by G into some other element of D. A complete map of the

possible transitions is provided in Figure 3-9. Now that a viability condition has been

established it can now be shown that every maximal solution of Ĥ is complete.

Lemma 3.6. Every maximal solution of Ĥ is complete.

Proof. By Lemma 3.5, the viability condition of [49, Proposition 6.10] is satisfied. It

suffices to show that alternatives (b) and (c) of [49, Proposition 6.10] do not occur,
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therefore concluding that every maximal solution of Ĥ is complete, as it is the only

remaining option. Alternative (b) does not occur by Theorem 3.1. Alternative (c) does

not occur since Ĝ(D) ⊂ C ∪D, by direct inspection of Figure 3-9.

Remark 3.6. In practice there is an assumption that there are no accidental departures

from the feedback region as this will result in the termination of a solution according

to H (i.e., there would be maximal solutions that are not complete). It was shown in

Claim 3.1 that no accidental departures occur for the modeled hybrid system; however,

it was also acknowledged in Remark 3.3 that this is not a good assumption due to the

use of a sliding mode controller. Thus there is a need to use Fin instead of F to achieve

robustness to this modeling deficiency, allowing for practical implementation.

Lemma 3.7. No complete solution of Ĥ is discrete.

Proof. By direct inspection of Figure 3-9, for any agent i, the extended state ϕi may

not experience more than 4 consecutive null-time jumps at any time along any solution

ϕ of the system Ĥ. The critical observation is that the graph of jump transitions in

Figure 3-9 is a directed acyclic graph [62], implying a bound on the length of a directed

path; in this particular case, 6 happens to be the best bound. See Appendix A.1 for

the full construction of the DAG. Since there are N agents, it follows that no solution

may experience more than 6N consecutive jumps before flow resumes. Therefore, no

complete solution of Ĥ is discrete.

Theorem 3.2. No solution of Ĥ has vanishing times between jumps.

Proof. By Theorem 3.1, all solutions of Ĥ are bounded. Then according to [63, Theorem

1], the nominally well-posed system Ĥ only has solutions with vanishing times between

jumps if it has a complete discrete solution, which is not the case according to Lemma

3.7.

Remark 3.7. The conclusion that no solution of Ĥ has vanishing times between jumps is

a stronger claim than simply showing that no solution to Ĥ is Zeno [63].
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Figure 3-9. Depiction of the directed graph representing all possible sequences of
null-time jumps. Arrows pointing to black nodes represent a possible subset
of D that a solution can jump to in null-time. Each blue node represents the
union of its child nodes. These nodes do not represent a particular state in
D with a defined jump mapping, but rather are used for reducing the number
of arrows in the graph to increase legibility. An arrow entering a blue node
indicates a possible jump into any of its child nodes. Red nodes must jump
into a subset of D, whereas black nodes may jump into the flow set C. By
inspection this graph contains no directed cycles (Lemma 3.6).
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Figure 3-10. Snapshot of a simulation where the agents were always communicating
and an estimate update rate of 0.1 Hz was used. The values for ρ̃ can be
seen in Figure 3-11.

3.7 Simulation Results

3.7.1 Simulation Setup

A comparative investigation through simulation was conducted in MATLAB® to show

the effectiveness of the cooperative behavior proposed in this paper. The simulated

world has dimensions of 1024m × 438.75m, with a polygonal non-convex feedback

region (Figures 3-10 and 3-11). Each simulation is composed of five agents (N = 5)

initialized randomly within the inset feedback region Fin (inset distance of 2.5m). Each

agent is assigned a different desired path, but with a random starting point along that

path. Each agent had the following dynamical components in common: d̄i = 0.01m/s,

ϵi = 100 ki1 = 16, ki2 = 16, αi = 0.5, βi = 0.5, f i(xi) = 0.01xi m/s, Li = 0.01m/s,

Si = 3.8 m/s, and Ψi
1 = Ψi

2 = 1 × 10−6. A unique and randomly generated smooth

disturbance function was assigned to each agent, for each simulation. Three hundred

comparative simulations were performed, each for 3, 600s. For each comparison, three

communication profiles were compared: no communication, 200m communication radius

for each agent, and always communicating. For each communication profile, all initial

conditions of the problem, and disturbance function were kept the same. Additionally,

the first one hundred simulations were done with an cooperative state estimate update
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Figure 3-11. Plot of the radius of uncertainty ρ̃i as a function of time for the simulation in
Figure 3-10. The vertical line on each plot represents the time where the
snapshot in Figure 3-10 was taken. This simulation resulted in the largest
value for R2 (Table 3-1), which was specifically realized by the state
estimates affecting the Yellow agent, where a series of three substantial
state estimate updates nearly resulted in the radius of uncertainty being
zero, allowing the Yellow agent to do more than one full loop about its
desired path.
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rate of 0.1 Hz (i.e., T i
max = 10s for all agents), the second set of one hundred simulations

had an update rate of 1 Hz, and the final one hundred simulations had an update rate of

10 Hz.

To facilitate a comparative performance of the cooperative behavior, the state vector

X i is augmented by the causally inert vector Ti
sim ≜ (τ i0, τ

i
1, τ

i
2, τ

i
3,T

i
1,T

i
2) to include

the timing variables which measure the time agent i spends in each operating mode

0, 1, 2, and 3, the maximum total dwell-time of agent i in operating modes 1, 2 and 3

given a path plan πi, and the maximum total dwell-time in mode 2 given a path plan πi,

respectively.

Each simulation was performed using MATLAB®’s ODE45 solver. A relative toler-

ance and an absolute tolerance of 1 × 10−4 were selected. The state estimation update

algorithm was implemented with the use of the Boolean set operation functions found

in MATALB®’s Computational Geometry library, and Welzl’s algorithm [61] was used

for computing the minimum bounding ball. The values of τ i0, τ i1, τ i2, τ i3, Ti
1, and Ti

2 are

specially recorded just prior to the execution of the jump map when X̃ ∈ D̃i
20 ∪ D̃i

30. At

each recording instance ℓ the functions

(
Ri

1

)
ℓ
≜
τ i1 + τ i2 + τ i3 − Ti

1

Ti
1

∗ 100,

(
Ri

2

)
ℓ
≜
τ i2 − Ti

2

Ti
2

∗ 100,

are computed, and also recorded. Ri
1 measures the percent increase in the total time

that agent i spends in the operating modes 1, 2, and 3 (i.e., the feedback denied region)

compared to the worst-case dwell-time for the path plan πi used to determine Ti
1. The

worst-case dwell-time is only realized if the agent must utilize the full length of the return

trajectory to reacquire feedback, but typically the agent will reacquire feedback much

sooner. The next metric, Ri
2 measures a similar quantity, but instead of modes 1, 2, and

3, this metric measures the percent increase in time spent in mode 2 (i.e., time spent

tracking the desired path X i
d).
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3.7.2 Results

A statistical analysis of the recorded results (i.e.,R1 and R2) was conducted. The

minimum, maximum, mean, and median for each simulation type was calculated and

tabulated in Table 3-1.

3.8 Discussion

Simulation results confirm an improvement in performance when cooperative state

estimation is used (Table 3-1). Depending on the estimation update rate and commu-

nication structure, the agents were able to spend more time tracking the desired path

(R2), and in some instances, they were able to increase the total time in the feedback

denied region (R1), despite the conservative nature of the developed dwell-times (a

consequence of guaranteeing re-entry into the feedback region with unknown distur-

bances). The largest increase in time spent tracking the desired path was observed

in a simulation where there was always communication among all of the agents and

where the estimate update rate was 0.1 Hz (Figure 3-10 for a snap shot of this particular

simulation). Here an improvement of 478% was observed. As expected, simulations

where the agents were always communicating yielded the best performance, but what

was unexpected was that a faster estimate update rate does not necessarily yield better

performance, on average. Based on the recorded results, it was seen that an update

rate of 1Hz yielded the best results, on average. This phenomenon can be explained by

first observing two facts.

Fact 3.1. Let d̂ij ≜ ∥x̂i − x̂j∥ be the distance between the state estimates of agent i and

j. The region of uncertainty reduces as |d̂ij − dij| increases (Figure 3-13).

Fact 3.2. The use of the minimum enclosing ball in (3–31) adds uncertainty to the ideal

uncertainty region Û i (Figure 3-4).

Figure 3-12 shows how a slower estimate update rate can yield better results.

Scenarios like the one illustrated are more likely to be realized if there is a tendency

for the agents to continue drifting away from their respective state estimates (Fact 3.1),
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which is the case for the simulations done in this study due to the presence of the

persistent drift dynamics f i(xi) = 0.01xi (Figure 3-14). Even though the tendency to

drift in the same direction is present, the addition of state uncertainty from the minimum

enclosing ball diminishes the results of the following state estimate update (Fact 3.2),

which is observed in the illustrated scenario (Figure 3-12). This observation may

motivate the use of dynamic state estimate update rates if there is more knowledge of

the nature of the drift dynamics.

In regions where there is a tendency to continue drifting a slower update rate could

be beneficial, whereas in other areas it may be beneficial to have a faster estimate

update rate to increase the chances of capturing a beneficial update. However, future

work should aim to develop a dynamic model for uncertainty regions that are not

modeled as a ball since the hindrance of the minimum enclosing ball would no longer

be present; therefore, a faster update rate would always be preferable. Future work

should also aim at developing algorithms for computing return trajectories in real-time,

allowing for state estimate updates while an agent is operating in mode 3. Something

else to consider may be the computational complexity when a large number of agents

are communicating with each other. In [64], the authors considered a similar problem

and developed an algorithm for selecting a smaller number of agents to be used in an

update. Finally, other information, such as knowledge of communication radii of the

agent, could also yield better updates.

3.9 Conclusion

Chapter 2 considered the problem of tracking a desired trajectory with state

feedback limited to a known region of general shape and advanced a method for

planning detours to reacquire state feedback, with guaranteed success. This chapter

generalizes our previous work to a multi-agent setting, where independent agents

with independent tracking tasks cooperate to improve each other’s state estimators.

Improved state estimation is achieved through opportunistic sharing of relative distance
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Figure 3-12. Illustration of an example scenario where it is beneficial to have a slower
state estimate update rate. Agents i and j have the same initial conditions
for both scenarios; however, the left scenario has an update rate of 1Hz
and the right has a 0.5Hz update rate. Updates in the state estimate and
the region of uncertainty are shown in pink and then propagated to the next
time step in the next frame. To increase legibility, only the update for agent
j is shown in pink, but the update is realized for both agents in the next
frame. The bottom pane of the image shows the results after the updates
at t = 2. Here, it is beneficial to delay an update only if there is a tendency
for dij to continue to diverge from d̂ij, otherwise the scenario depicted here
would not necessarily happen, because bounding the updated uncertainty
region by the minimum enclosing ball adds uncertainty (Fact 3.2).
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R1 R2

Median Mean Max Median Mean Max

0.1 Hz
Never Communicating −15.57 −14.52 −4.50 −0.00 −0.00 0.03

200m Communication Radius −14.64 −10.14 90.88 0.01 6.49 192.40

Always Communicating −8.65 5.00 325.18 5.29 29.55 478.28

1 Hz
Never Communicating −15.58 −14.46 −5.07 −0.00 −0.00 0.03

200m Communication Radius −14.49 −9.44 76.21 0.01 7.53 133.45

Always Communicating −7.45 9.48 281.15 6.50 36.05 466.71

10Hz
Never Communicating −15.57 −14.42 −4.59 −0.00 −0.00 0.03

200m Communication Radius −14.38 −9.55 66.80 0.01 7.27 123.21

Always Communicating −7.12 7.17 291.90 7.03 31.76 469.58

Table 3-1. Tabulated simulation results showing the median, mean, and max values for
the metrics R1 and R2, for each combination of update frequency (i.e, 0.1Hz,
1Hz, and 10Hz) and communication structure (i.e., never communicating,
200m communication radius, and always communicating).

Figure 3-13. Illustration of the different annuli for different values of dij. For the left
region of uncertainty (red circle), the actual state (agent i) was varied
(different colored dots), and the actual state for agent j in the region of
uncertainty on the right is kept equal to the state estimate at the center of
the region of uncertainty. It is observed that when dij diverges from d̂ij, the
resulting annuli (i.e, U j

i , color correlated with respect to the varied actual
state) causes a greater reduction in the region of uncertainty (3–30). Even
though this figure only illustrates the scenario where U j

i is an annulus, the
same conclusions can be made when it is a circle.
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Figure 3-14. A vector field of the drift dynamics f i(xi) = 0.01xi, which was common to all
agents for all simulation runs. This drift dynamics function resulted in a
tendency for dij to diverge from d̂ij.

measurements and state estimation data as the agents enter a communication distance

of one another. The discontinuous character of this interaction, in addition to the

presence of unmodeled disturbances, motivates the use of hybrid differential inclusions

and their Krasovskii regularizations.

The developed cooperative localization method accounts for individual agent

dynamics and uses the relative distance measurements to yield provably improved

updates for the state estimator of each agent. Improved state estimation is critical

for enhancing tracking performance. These updates trigger the re-planing auxiliary

trajectories, ultimately allowing agents to travel further along the desired paths without

destabilizing the system or exceeding the user-prescribed tracking error limits.

Although the developed controller results in closed-loop dynamics not satisfying

the hybrid basic conditions, it is shown that Krasovskii solutions retain the re-entry

guarantees necessary for stability; however, their optimality in terms of maximizing

time spent tracking the desired trajectories remains an open question. Also, temporal

properties of maximal solutions are studied and it was concluded that there are no

vanishing times between jumps (e.g., Zeno behavior).
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A comparative simulation study was conducted which showed that the cooperative

behavior enables the agents to spend more time tracking the desired paths. Simu-

lations also confirmed that when more agents are communicating with one another

performance is increased, as expected. However, it was also shown that special con-

siderations need to be made about the state estimation update frequency. The update

frequency must be considered as a consequence of not having a dynamical model for

uncertainty regions that are not circular, thus requiring the need to bound the reduced

uncertainty regions by a minimum enclosing ball. Future work could focus on removing

the need to bound the reduced uncertainty regions by a ball by developing a dynamical

model for regions of uncertainty that are not necessarily a ball
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CHAPTER 4
IMAGE-BASED TARGET TRACKING IN THE PRESENCE OF INTERMITTENT POSE

MEASUREMENTS VIA LYAPUNOV-BASED DEEP NEURAL NETWORKS

This chapter introduces a novel framework for image-based tracking systems,

addressing scenarios where the tracking agent needs to discontinue tracking a target

either due to the need to fulfill other tasks or the target becoming obscured. The

proposed approach deploys a Lyapunov-based Deep Neural Network (Lb-DNN) to

learn the dynamics of the target when visible, and to predict its future trajectory when

not visible. To ensure that target tracking resumes, the topologically inspired method

from Chapter 2 is further generalized, using the predicted trajectory of the target. This

method informs the tracker agent about the duration it can suspend tracking the target

and specifies a pose for the camera for guaranteeing that tracking resumes at some

later time. Simulation results are provided to demonstrate the efficacy of the developed

methodology for the task of tracking a target intermittently, where the topologically-

inspired camera placement algorithm is successfully deployed to reacquire tracking of

the target

4.1 Preliminaries

4.1.1 Lyapunov Based Deep Neural Networks

DNNs are known to approximate any given continuous function on a compact

set, based on the universal function approximation theorem [65]. Following the work

in [66], let σ ∈ RLin denote the DNN input with size Lin ∈ Z>0, and Θ ∈ Rp denote the

vector of DNN parameters (i.e., weights and bias terms) with size K ∈ Z>0. Then, a

fully-connected feedforward DNN Φ(σ,Θ) with output size Lout ∈ Z>0 is defined using a

recursive relation Φj ∈ RLj+1 modeled as

Φj ≜


W⊤

j ϕj (Φj−1) , j ∈ {1, . . . , k} ,

W⊤
j σa, j = 0,

(4–1)
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where Φ(σ,Θ) = Φk , and σa ≜

[
σ⊤ 1

]⊤
denotes the augmented input that accounts

for the bias terms, kh ∈ Z>0 denotes the total number of hidden layers, Wj ∈ RLj×Lj+1

denotes the matrix of weights and biases, Lj ∈ Z>0 denotes the number of nodes in

the jth layer for all j ∈ {0, . . . , kh} with L0 ≜ Lin + 1 and Lkh+1 = Lout. The vector of

smooth activation functions is denoted by ϕj : RLj → RLj for all j ∈ {1, . . . , kh}. If

the DNN involves multiple types of activation functions at each layer, then ϕj may be

represented as ϕj ≜ [ςj,1; . . . ; ςj,Lj−1; 1], where ςj,i : R → R denotes the activation

function at the ith node of the jth layer. For the DNN architecture in (4–1), the vector

of DNN weights is defined as Θ ≜

[
vec(W0)

⊤ . . . vec(Wkh)
⊤

]⊤
∈ RK, where

K = Σkh
j=0LjLj+1. The Jacobian of the activation function vector at the jth layer is

denoted by ϕ′
j : RLj → RLj×Lj , and ϕ′

j(y) ≜
∂
∂z
ϕj(z)

∣∣
z=y

, for all y ∈ RLj . Let the Jacobian

of the DNN with respect to the weights be denoted by Φ′ (σ,Θ) ≜ ∂
∂θ
Φ(σ,Θ), which can

be represented using Φ′ (σ,Θ) =

[
Φ′

0, Φ′
1, . . . , Φ′

k

]
, where Φ′

j ≜ ∂
∂vec(Wj)

Φ (σ,Θ)

for all j ∈ {0, . . . , kh}. Additionally, let the Hessian of the the DNN with respect to the

weights be denoted by Φ′′ (σ,Θ) ≜ ∂2

∂Θ2Φ(σ,Θ). Then, using (4–1) and the property of the

vectorization operator in 1–2 yields

Φ′
0 =


↶
kh∏
l=1

W⊤
l ϕ

′
l (Φl−1)

 (IL1 ⊗ σ⊤
a ), (4–2)

and

Φ′
j =


↶
kh∏

l=j+1

W⊤
l ϕ

′
l (Φl−1)

(ILj+1
⊗ ϕ⊤

j (Φj−1)
)
, (4–3)

for all j ∈ {1, . . . , kh}. A fully-connected DNN is described here for simplicity of ex-

position. The following observer/predictor and adaptation law development can be

generalized for any network architecture Φ with a corresponding Jacobian Φ′. The

reader is referred to [67]– [70] for extending the subsequent development to ResNets,

LSTMs, PINNs, and dropout architectures, respectively.
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4.1.2 Filippov Regularization

Given the differential equation ẏ = h(y, t) with a discontinuous right-hand-side

(RHS) h : Rn× [0,∞)→ Rn, Filippov’s theory of differential inclusions (e.g., [71] and [72])

can be used to establish that solutions exist almost everywhere (a.e.), i.e., for almost

all t ∈ [0,∞), for ẏ
a.e.
∈ K[h](y), where K[h] denotes the regularization of the function h,

defined as

K[h] ≜
⋂
δ>0

⋂
M null

co (h (B◦
δ (y) \M)) ,

where M runs over all null subsets of Rn × [0,∞). For example, the Filippov regulariza-

tion of the sign function is computed as K[sgn](x) = SGN(x), where SGN(x) = 1, when

x > 0, SGN(x) = −1, when x < 0, and SGN(x) = [−1, 1] when x = 0, or as another

example, the Filippov regularization for the normalization function h(x) = x/∥x∥ of a

vector x ∈ Rn is K[h](x) = h(x) when x ̸= 0 and K[h](x) = B1(0) when x = 0.

4.2 Problem Formulation

4.2.1 Tracker and Target Kinematic Relationships

The objective of this paper is to develop a dynamic observer/predictor to estimate

the pose, linear and angular velocity, and linear and angular acceleration of the target

using the tracker agent’s camera, despite the target intermittently leaving the FoV of the

tracker agent. Let the tracker agent’s camera reference frame be denoted by C which

has an origin at the principal point of the camera, denoted by C, with basis {c1, c2, c3},

where the c1-axis is parallel with the image plane’s vertical; the c2-axis is parallel with

the image plane’s horizontal; and the c3-axis is directed along the camera’s line of sight

and collinear with the optical axis (Figure 4-1). The inertial reference frame is denoted

by I with an origin at the arbitrary point I with basis {i1, i2, i3}. The target’s reference

frame is denoted by T , which has an origin at an arbitrarily selected feature point,

denoted by T , with basis {t1, t2, t3}.

The pose of the tracker agent (i.e., the pose of C with respect to I) is defined as

IXC ≜ [IxC;
IδC], where IxC ∈ R3 is the position of C with respect to I, expressed in
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I, and IδC ∈ S3 is the quaternion parameterization of the rotation matrix I
CR ∈ R3×3,

representing the orientation of C with respect to I, where S3 denotes the space of all

versors (i.e., a quaternion of norm 1).

Assumption 4.1. IXC is always measurable.

The pose of the target (i.e., the pose of T with respect to I) is defined as IXT ≜

[IxT ;
IδT ], where IxT ∈ R3 is the position of T with respect to I, expressed in I,

and IδT ∈ S3 is the quaternion parameterization of the rotation matrix I
TR ∈ R3×3,

representing the orientation of T with respect to I. However, since the pose of the

target cannot be directly measured with respect to the inertial frame, the tracker agent’s

camera reference frame is used, thus the relative pose of the target with respect to the

camera (i.e., T with respect to C, expressed in C) is defined as CXT /C ≜ [CxT /C;
CδT ],

where CxT /C ∈ R3 is the position of T with respect to C, expressed in C, and CδT ∈ S3

is the quaternion parameterization of the rotation matrix C
TR ∈ R3×3, representing the

orientation of T with respect to C. The kinematic relationship is given by

IxT = IxC +
I
CR

CxT /C,

IδT = IδC ⊙ CδT ,

which is illustrated in Figure 4-1. The time-derivative of IXT is expressed as

I
ẊT = Q(IδT )

IξT , (4–4)

where

Q ≜

 I
TR 03×3

04×3
1
2
B(IδT )

 , B(IδT ) ≜

 −(IδT )⊤v

(IδT )sI3 + (IδT )
×
v

 ,
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Figure 4-1. Kinematic diagram between the three reference frames: Inertial (I), Target
(T ), and Camera (C).

I
ξT ≜ [IvT ;

IωT ], and IvT ∈ R3, IωT ∈ R3 are the translational velocity and angular

velocity, respectively [73, Chapter 3.4]. Notice that from (4–4), IξT may be expressed as

IξT = Q+(IδT )
I
ẊT , (4–5)

since Q+Q = I6×6.

4.2.2 Tracking with Occlusions

As a consequence of environmental effects and task-definition (e.g., obstacles,

battery life, terrain, etc), the tracking agent is confined to the operating region O ⊂ E ,

where E ⊂ R3 is convex and compact. The physical space occupied by the target is

denoted by T (IXT ) ⊂ O (i.e., all the 3D feature points on the target for the given state

IXT ). When appropriate, the argument for T (·) will be suppressed for brevity (i.e.,

T = T (IXT )). Pose measurements from the tracking agent’s camera may only be

available when the target is within the tracker agent’s FoV (i.e., T ⊂ F (IXC)) where

F (IXC) ⊂ O is the space contained in the FoV for a given camera pose IXC. However,
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there may be occlusion zones O ⊂ R3 which obscure the target, despite it being in

the FoV of the tracking agent. Specifically, if IXT ∈ O, feedback is unavailable. The

resulting requirement for pose measurements to be available is for T ⊂ F(IXC), where

F(IXC) ≜ F (IXC) \O denotes the feedback region, i.e., the sub-region of the FoV that is

not obscured by the occlusion zones. When appropriate, the argument of the feedback

region will be suppressed for brevity (i.e., F = F(IXC)).

Remark 4.1. In practice, occlusion zones depend on the tracker agent camera’s pose

with respect to objects that may obscure the target. Generation of these zones would

be based on camera properties and environmental characteristics, but to simplify the

problem, this discussion is omitted.

4.3 Estimation and Prediction

To achieve target tracking, a deep neural network (DNN)-based state estimator

and predictor are developed using the pose measurements from the tracker’s camera

as feedback. These pose measurements are used to tune the weights of the DNN

to improve the approximation of the dynamics of the target. Pose measurements are

available except when the target exits the FoV or enters an occlusion zone. When pose

measurements are unavailable a predictor can be used to predict where the target is

based on the learned DNN model of the target’s dynamics and propagating that model

forward in time. This approach gives two modes of operation for the tracker, which

motivates the use of a switching signal σ(t) ∈ {a, u}, where σ(t) = a when feedback is

available (i.e., T ⊂ F) and σ(t) = u when feedback is unavailable (i.e., T ̸⊂ F). Let

taj ∈ R≥0 denote the j th instance in time when σ(t) turns from u to a (i.e., the j th time

that target enters into the tracker’s FoV allowing for pose measurements), and similarly

let tuj ∈ R>0 represent the j th instance in time when σ(t) turns from a to u. (i.e., the

j th time that the target leaves the tracker’s FoV or enters an occluded region), where

j ∈ {1, 2, 3, . . . }. Additionally, define ∆taj ≜ t − taj to be the time that has elapsed since

98



the j th instance in time when σ(t) = a, and ∆tuj ≜ t − tuj to be the time that has elapsed

since the j th instance in time when σ(t) = u.

4.3.1 Modeling Assumptions

Assumption 4.2. The target is initially visible (i.e., T ⊂ F) to the tracker agent.

Assumption 4.3. The target’s pose IXT is confined to a known convex compact

domain Ω ⊂ R7 (i.e., IXT ∈ Ω). Let X denote a known bound satisfying supω∈Ω ∥ω∥ ≤ X,

which is assumed to be known.

Assumption 4.4. The target velocity is a time-independent Lipschitz continuous

function of the target pose. Recalling (4–4), the target’s velocities
I
ẊT are bounded

such that supIXT ∈Ω ∥ IvT ∥ ≤ v̄ and supIXT ∈Ω ∥ IωT ∥ ≤ ω̄, where v̄ and ω̄ are known

constants. Additionally, let supIXT ∈Ω ∥
I
ẊT ∥ ≤ V, where V is a known constant.

Assumption 4.5. There is a known bound A ∈ R≥0 on the linear acceleration of the

target, which satisfies supIXT ∈Ω ∥ I ẍT ∥ ≤ A.

The target is modeled by the multi-input and multi-output (MIMO) second order

nonlinear system
I
ẊT = I

2XT ,

I
2ẊT = f

(IXT ,
I
2XT

)
,

(4–6)

where I
2XT ∈ R7 denotes the velocity state, and f : R7 × R7 → R7 is an unknown

continuous function.
I

2ẊT can be approximated using a DNN as

f
(IXT ,

I
2XT

)
= Φ

(IXT ,
I
2XT ,Θ

)
+ ε

(IXT ,
I
2XT

)
,

where Φ is a C2 function1 , ε : R7 → R7 is the unknown reconstruction error. According to

the universal function approximation theorem [65], for any Y > 0 this approximation can

1 Smooth activation functions are considered in this chapter, but the work in [66] uses
a switched systems analysis accounts for nonsmooth activation functions, which can be
applied here so that one can use nonsmooth activation functions, such as rectified linear
units (ReLUs).
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be made arbitrarily accurate over the compact set

Z ≜
(
X + V + Y

)
B, (4–7)

thus dependence on IXT and I
2XT is allowed by Assumptions 4.3 and 4.4.

Assumption 4.6. The bounds on the function reconstruction error ε over Z and its

time-derivative ε̇ are known, specifically, ∥ε∥ ≤ ε̄ and ∥ε̇∥ ≤ ε̄∗, where ε̄, ε̄∗ ∈ R>0 are

known constants [74].

The objective is to prove that the pose and velocity estimates of the target converge

to the actual pose and velocity states of the target. To observe the states IXT and I
2XT

in (4–6), the DNN-based observer/predictor

I ˙̂
XT =

I
2X̂T ,

I

2
˙̂
XT =


Φ
(
IXT ,

I
2X̂T , Θ̂

)
+ ν, σ(t) = a,

Φ
(I
X̂T ,

I
2X̂T , Θ̂

)
, σ(t) = u,

(4–8)

is developed, where
I
X̂T ≜ [I x̂T ;

I
δ̂T ] and

I
2X̂T ∈ R7 denote the state estimates of

IXT and I
2XT , respectively, Θ̂ ∈ RK is the estimate of the ideal weights, and ν ∈ R7

is a subsequently designed function that involves closed-loop pose estimation error

feedback to ensure convergence of the pose and velocity estimates.

Proof. The ideal DNN weight vector is bounded such that ∥Θ∥ ≤ Θ, where Θ ∈ R≥0 is a

known constant.

4.3.2 Observer and Predictor Development

The estimation error e ∈ R7 is defined as

e ≜ IXT −
I
X̂T . (4–9)

To facilitate the stability analysis, the filtered error signal r ∈ R7 is defined as

r ≜ ė+ αe+ η, (4–10)
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where α ∈ R>0 and η ∈ R7 is the output of the dynamic filter (cf., [68], [75], and [76])

defined as

η ≜ p− (k + α)e, (4–11)

where p ∈ R7, defined as

ṗ ≜


−(k + 2α)p− ef + ((k + α)2 + 1) e, σ(t) = a,

0, σ(t) = u,

(4–12)

p(taj ) = (k + α)e(taj ),

is used as an internal filter variable, and ef ∈ R7 is an auxiliary output of the filter

ėf ≜


p− αef − (k + α)e, σ(t) = a,

0, σ(t) = u,

(4–13)

ef (t
a
j ) = 0,

where k ∈ R>0 is a gain. Using (4–10) and (4–11), the time-derivative of η is

η̇ = −(k + α)r − αη + e− ef . (4–14)

When σ(t) = a, the closed-loop dynamics of the filtered estimation error

ṙ = Φ
(IXT ,

I
2XT ,Θ

)
− Φ

(
IXT ,

I
2X̂T ,Θ

)
+ ε

(IXT ,
I
2XT

)
+O

(
∥Θ̃∥2

)
+ e− ef − ν

+ αė− (k + α)r − αη + Φ′
(
IXT ,

I
2X̂T , Θ̂

)
Θ̃

(4–15)
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is determined using (4–6), (4–8), and (4–14). Based on the stability analysis the

robustness term of the state estimator is designed as

ν ≜ − (γ(k + α) + 2α) η + (γ − α2) e+ βsgn((e+ ef )), (4–16)

where γ, β ∈ R>0 are control gains. Substituting (4–16) and the Taylor series expansion,

Φ
(
IXT ,

I

2X̂T ,Θ
)
= Φ

(
IXT ,

I
2X̂T , Θ̂

)
+ Φ′

(
IXT ,

I
2X̂T , Θ̂

)
Θ̃ +O

(
∥Θ̃∥2

)
,

into (4–15), the expression can be rewritten as

ṙ = Ñ +N − kr − βsgn((e+ ef )) + γ(k + α)η − γe (4–17)

where Θ̃ ≜ Θ − Θ̂ is the ideal weight mismatch error, O
(
∥Θ̃∥2

)
are the higher order

terms of the Taylor series expansion of Φ
(
IXT ,Θ

)
, the auxiliary function Ñ is defined as

Ñ ≜ e− ef + Φ
(IXT ,

I
2XT ,Θ

)
− Φ

(
IXT ,

I
2X̂T ,Θ

)
, (4–18)

and N ≜ N1 +N2 is broken up into two parts defined as

N1 ≜ O
(
∥Θ̃∥2

)
+ ε

(IXT ,
I
2XT

)
, (4–19)

N2 ≜ Φ′
(
IXT ,

I
2X̂T , Θ̂

)
Θ̃. (4–20)

Fact 4.1. The higher order terms of the Taylor series expansion of Φ
(IXT ,

I
2XT ,Θ

)
are

bounded such that ∥O
(
∥Θ̃∥2

)
∥ ≤ O, where O ∈ R>0 is a known constant. This bound is

due to the fact that Φ is smooth.

The weight update law for the Lb-DNN in (4–8) is designed based on the Lyapunov-

based analysis as

˙̂
Θ ≜


proj(Γ((e+ ef )

⊤Φ′(IXT ,
I
2X̂T , Θ̂))⊤), σ(t) = a,

0, σ(t) = u,

(4–21)
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where proj(·) is the projection operator defined in [77, Appendix E, eq. (E.4)], and

Γ ∈ RK×K is a positive definite constant adaptation gain matrix.

Let P ≜ {υ ∈ R28 : ∥υ∥ < b}, where b ∈ R>0 is a constant, then by Assumptions

4.6–4.3.1, Fact 4.1, the triangle inequality, and the use of the projection operator, the

auxiliary functions (4–18)–(4–20) can be upper-bounded as

∥Ñ∥ ≤ ζ1∥z∥, (4–22)

∥N1∥ ≤ ζ2, (4–23)

∥N2∥ ≤ ζ3, (4–24)

∥Ṅ1∥+ ∥Ṅ2∥ ≤ ζ4 + ζ5∥z∥, (4–25)

for all z ∈ P, where ζ1, ζ2, ζ3, ζ4, ζ5 ∈ R>0 are known constants, and z ≜ [e; ef ; η; r] is the

stacked error signal.

To facilitate the forthcoming stability analysis, let y ≜ [z;
√
2Q;
√
2P ], where the

auxiliary term Q ∈ R is defined as

Q ≜
α

2
Θ̃⊤Γ−1Θ̃, (4–26)

which is positive definite (i.e., Q ≥ 0) since Γ is a positive-definite matrix. According to

Assumption 4.3.1 and the projection operator, Q can be bounded as

Q ≤ Γ ≜ 2αΘ
2∥Γ−1∥S. (4–27)

Similar to the auxiliary term defined in [78], the auxiliary term P ∈ R is defined as

P = β∥e+ ef∥1 − (e+ ef )
⊤N + e−λpt ∗ ζ5∥z∥2

+ e−λpt ∗
(
(α− λp)

(
β∥e+ ef∥1 − (e+ ef )

⊤N
))

+ e−λpt ∗ (e+ ef )
⊤ Ṅ + αe−λpt ∗ (e+ ef )

⊤N2,

(4–28)
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where λp ∈ R>0 is a user selected constant. Using Leibniz’s integral rule, the time-

derivative of (4–28) is

Ṗ ≜ −λpP − r⊤ (N1 − βsgn((e+ ef )))− (ė+ ėf )
⊤N2 + ζ5∥z∥2. (4–29)

For the forthcoming Lyapunov analysis, it will be necessary to show that P ≥ 0, which is

established in the following lemma.

Lemma 4.1. Given any collection of Filippov solutions e, ef , η, and r, to (4–10) and

(4–13)–(4–15), respectively; if the gain conditions

α > λp, (4–30)

β > ζ2 + ζ3 +
αζ3 + ζ4
α− λp

, (4–31)

are satisfied, then P (t) ≥ 0.

Proof. This inequality can be verified by applying Hölder’s inequality, and the gain

conditions (4–30) and (4–31) to (4–28) (cf., [78, Appendix: Proof of Lemma 4]).

4.4 Estimator Analysis

For the open and connected set D ≜ {υ ∈ R30 : ∥υ∥ < b}, where b ∈ R>0 is a

constant, the Lyapunov candidate V : D → R, which is a Lipschitz continuous and

positive definite function, is defined as

V (y) ≜
γ

2
e⊤e+

γ

2
e⊤f ef +

γ

2
η⊤η +

1

2
r⊤r +Q+ P, (4–32)

which satisfies

Λ1∥y∥2 ≤ V (y) ≤ Λ2∥y∥2, (4–33)

where Λ1 ≜ min
{

γ
2
, 1
2

}
and Λ2 ≜ max

{
γ
2
, 1
}

. Additionally, let S ⊂ D be the set of

permissible initial conditions (i.e., y(t0) ∈ S)

S ≜
{
υ ∈ R30 : ∥υ∥2 < Λ1

Λ2
b2 − 2Γ

Λ2

}
. (4–34)
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Since the universal function approximation property only holds on the compact domain

Z, it is necessary to show that the inputs to the DNN remain in the compact domain

for all t ∈ [0,∞), which is accomplished by showing that y is constrained to a compact

domain, specifically, y(t) ∈ D for all t ∈ [0,∞), when y(0) ∈ S.

Theorem 4.1. The DNN-based observer in (4–8) along with its update laws in (4–16)

and (4–21), ensures asymptotic estimation when σ = a in the sense that

∥e∥ → 0 and ∥ė∥ → 0 as t→∞,

provided that y(0) ∈ S, Y > (3 + α)b from (4–7), the control gain k is selected sufficiently

large based on the gain conditions in (4–30) and (4–31), and the sufficient condition

λ > ζ5 +
ϵζ21
2
,

is satisfied, where λ ≜ min
{
αγ, k − 1

2ϵ
, λp
}

, ϵ, γ, λp ∈ R>0, and k > 1
2ϵ

.

Proof. Let ẏ = h represent the closed-loop differential equations in (4–10), (4–13),

(4–14), (4–17), (4–21), and (4–29), where h ∈ R30 denotes the right-hand side of the

closed-loop error signals. The generalized time-derivative of (4–32) exists a.e., and

V̇
a.e.
∈ ˙̃V , where ˙̃V ≜ ∩ξ∈∂V (y)ξ

⊤K[Ψ]⊤, ∂V is the generalized gradient of V (see [79]),

and Ψ ≜ [ė; ėf ; η̇; ṙ;
1
2
Q−1/2Q̇; 1

2
P−1/2Ṗ ]. Since V is continuously differentiable, ˙̃V reduces

to ˙̃V = ∇V ⊤K[Ψ] = [e⊤, e⊤f , η
⊤, r⊤,

√
2Q,
√
2P ]K[Ψ]. Using the calculus for K[·] from

( [80, Theorem 1; Properties 2, 5, and 7]), and the projection property in [77, Appendix

E, Lemma E.1.iv], and substituting in (4–10), (4–13), (4–14), (4–17), (4–20), (4–21),

(4–26), and (4–29), ˙̃V can be rewritten as

˙̃V ⊂ γe⊤ (r − αe− η) + γe⊤f (η − αef ) + γη⊤ (−(k + α)r − αη + e− ef )

+ r⊤
(
Ñ +N + γ(k + α)η

)
− r⊤ (kr + βK[sgn](e+ ef ) + γe)

− α ((e+ ef )
⊤N2 − r⊤ (N1 − βK[sgn](e+ ef ))

− (ė+ ėf )
⊤N2 + ζ5∥z∥2 − λpP.

(4–35)
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Using the fact that K[sgn((e+ ef ))] = SGN(e + ef ), the set in (4–35) reduces to a scalar

inequality, since the RHS of (4–35) is continuous a.e., i.e., the RHS is continuous except

for the Lebesgue measure zero set of times when r⊤SGN(e+ ef )− r⊤SGN(e+ ef ) = {0}

[78, Lemma 1]. Canceling common terms yields

˙̃V
a.e.

≤ −αγe⊤e− αγe⊤f ef − αγη⊤η − kr⊤r − λpP + r⊤Ñ − ζ5∥z∥2. (4–36)

Using Young’s inequality and the bound in (4–22) yields

˙̃V
a.e.

≤ −αγ∥e∥2 − αγ∥ef∥2 − αγ∥η∥2 − (k − 1
2ϵ
)∥r∥2 − λpP +

(
ζ5 +

ϵζ21
2

)
∥z∥2, (4–37)

where ϵ ∈ R>0 is a user-defined constant that comes as a result of using Young’s

inequality. Provided that the sufficient conditions λ > ζ5 +
ϵζ21
2

and k > 1
2ϵ

are satisfied

˙̃V
a.e.

≤ −c
(
∥z∥2 + P

)
, (4–38)

for c > λ− ζ5 − ϵζ21
2

.

Then solving the differential inequality in (4–38), and using the bounds in (4–33)

and (4–27), ∥y(t)∥ ≤
√

1
Λ1

(
Λ2∥y(t0)∥2 + 2Γ

)
when y ∈ D. Thus, if ∥y(t0)∥ ≤

√
Λ1

Λ2
b2 − 2Γ

Λ2
,

then ∥y∥ < b, as required by the definition of D. Therefore, if y(0) ∈ S, then y ∈ D for all

t ∈ [0,∞), thus the bounds in (4–22)–(4–25) hold. To show that the universal function

approximation property holds, let Υ ⊂ Z be defined as Υ ≜ {υ ∈ Z : ∥υ∥ ≤ X + (3 +

α)b+V}. Using the fact that ∥y(t)∥ ≤ b implies that ∥e∥ ≤ b and ∥r∥ ≤ b, Assumptions 4.3

and 4.4, (4–9), and (4–10) it is shown that ∥[IXT ;
I
2X̂T ]∥ ≤ X + (3 + α)b + V. Therefore,

if y(0) ∈ S, then [IXT ;
I
2XT ] ∈ Υ ⊂ Z for all t ∈ [0,∞).

The inequalities in (4–33) and (4–38) show that V ∈ L∞; thus e, ef , η, r, Q, P ∈ L∞.

Since η = ėf + αef by (4–11) and (4–13), and by (4–10) and (4–14), then ė, ėf , η̇ ∈ L∞

since e, ef , η, r ∈ L∞. Since IXT ∈ L∞ by Assumption 4.3, then
I
X̂T ∈ L∞ according

to (4–9). Since e, ef , η ∈ L∞, then v ∈ L∞. By the projection operator, ṙ ∈ L∞ since

e, ef , η, r ∈ L∞, ∥ε∥ and ∥O
(
∥Θ̃∥2

)
∥ are bounded, according to Assumption 4.6 and
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Fact 4.1. Since ė, ėf , η̇, ṙ ∈ L∞, it is concluded that z ∈ L∞. From [81, Corollary 1],

c∥z∥2 → 0 as t → ∞, for all y(t0) ∈ S. From the definition of z, ∥e∥, ∥η∥, ∥r∥ → 0 as

t → ∞. Then by (4–10) it is also concluded that ∥ė∥ → 0 as t → ∞. Note that the set of

permissible initial conditions can be made arbitrarily large to include any initial condition

by increasing b.

For the forthcoming dwell time analysis, it is necessary to derive bounds on the

growth rate of the target’s position error when feedback is unavailable. To this end,

define

ep ≜
IxT − I x̂T , (4–39)

to be the position error of the target.

Lemma 4.2. If the conditions of Theorem 4.1 are satisfied, then while σ(t) = a, the

velocity estimation error ∥ė∥ is bounded by the measurable function

∥ėp∥
a.e.

≤ min {v̄, ρa} ,

ρa ≜

√
ϵ2 (4µ− 2γ (∥e∥2 + ∥ef∥2 + ∥η∥2))

2ϵ2 − 1
− (2− ϵ2)∥αe+ η∥2

2ϵ2 − 1
,

µ ≜ V 0e
−c∆taj /Λ2 + 4αΛ2Γ,

V 0 =
γ

2
∥e(taj )∥2 +

γ

2
∥ef (taj )∥2 +

γ

2
∥η(taj )∥2

+
1

2
∥e(taj ) + η(taj )∥2 + (ζ2 + ζ3)∥e(taj ) + ef (t

a
j )∥

+ β∥e(taj ) + ef (t
a
j )∥1 +

α2

2
V2

+ 2Γ,

(4–40)

for all t ∈ [taj , t
u
j+1), where ϵ2 ∈ (1

2
,∞) is a user selected constant.

Proof. Using the bounds from (4–33) and the fact that ∥y∥2 = ∥z∥2 + 2Q + 2P , the

inequality

−∥z∥2 − 2P ≤ 2Q− 1

Λ2

V,
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is realized, which can be used to bound (4–38), yielding

V̇
a.e.

≤ − c

Λ2

V + 2cQ. (4–41)

Using the bound in (4–27), (4–41) can be bounded as

V̇
a.e.

≤ − c

Λ2

V + 2cΓ. (4–42)

Solving the differential inequality in (4–42), yields

V
a.e.

≤ µ, (4–43)

where V 0 ≥ V (taj ) is determined by the use of (4–10)–(4–25), (4–28), (4–27), Assump-

tion 4.4, and the triangle inequality, yielding

V (taj ) ≤ V 0.

Then, using (4–10), (4–32), (4–43) and Young’s inequality, a bound on ∥ėp∥ is

∥ėp∥
a.e.

≤ min {v̄, ρa} , (4–44)

where ϵ2 ∈ (1
2
,∞) is a user defined constant that comes as a consequence of Young’s

inequality.

Lemma 4.3. Suppose κ ≥ 1, λu ≜ max
{

1
ϵ3
, ϵ3 + ϵ4

}
, δu ≜ 1

ϵ4
(A2 + ∥Φ

(I
X̂T ,

I
2X̂T , Θ̂

)
∥2),

and ϵ3, ϵ4 ∈ R>0 are user-selected constants, then while σ(t) = u, the error in the

predicted position of the target ∥ep∥, is bounded by

∥ep (t) ∥ ≤ ρu
(
t, tuj

)
,

ρu
(
tuj , t

)
≜

√
∥e((tuj ))∥2eκλu∆tuj − δu

λu
+

(
min{v̄, ρa(tuj )}2 +

2δu
λu

)
eκλu∆tuj .

(4–45)
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Proof. Consider the Lyapunov candidate Vu, which is a Lipschitz continuous positive

definite function defined as

Vu ≜
1

2
e⊤e+

1

2
ė⊤ė. (4–46)

Taking the time-derivative of (4–46) and substituting in (4–8), yields

V̇u = e⊤ė+ ė⊤
(
I
ẌT − Φ

(I
X̂T ,

I
2X̂T , Θ̂

))
. (4–47)

Then, using Young’s inequality, the triangle inequality, Assumption 4.5, and substituting

in (4–46), (4–47) is bounded such that

V̇u ≤ λuVu + δu. (4–48)

Solving the ordinary differential inequality in (4–48) yields

Vu(t) ≤
(
Vu(t0) +

δu
λu

)
eλu∆t − δu

λu
. (4–49)

Solving for ∥ep∥ by substituting in (4–46) into (4–49) and using the fact that ∥ep∥ ≤ ∥e∥

yields

∥ep∥2 ≤ 2

(
Vu(t

u
j ) +

δu
λu

)
eλu∆tuj − 2δu

λu
. (4–50)

Using (4–44), (4–50) is further bounded as

∥ep∥2 ≤
(
∥e((tuj ))∥2 +min{v̄, ρa(tuj )}2 +

2δu
λu

)
eλu∆tuj − 2δu

λu
. (4–51)

The growth rate in the exponential term of (4–51) can then be scaled by κ ∈ R>0, where

eλu∆tuj ≤ eκλu∆tuj , if κ ≥ 1, yielding the desired result in (4–45).

4.5 Guarantee of Reacquisition

Whenever the target leaves the FoV or becomes occluded, the tracker is required

to determine a new placement for the camera that would guarantee target reacquistion

within a certain interval of time using the estimator and predictor.
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Figure 4-2. Illustration of the feedback region F (blue region) as a result of the camera’s
location and properties, with respect to the occlusion zone O (black region).

For the remainder of this paper, it is assumed for computation simplicity that the

target is restricted to the xy-plane and the tracker agent’s motion is restricted to the

plane parallel to the xy-plane, at height h, with the camera pointed in the direction of the

negative z-axis. Let πxy : R3 → R2 denote the projection to the xy-plane. The camera

properties determine the dimensions w(h)× l(h) of the camera’s FoV (Figure 4-2). Since

h > 0 is fixed, w and l are also fixed.

Assumption 4.7. The boundary of the occlusion zone ∂O is the union of a finite

collection of pairwise-disjoint regular Jordan curves (cf., [27, Assumption 4 and Theorem

1]).

The feedback region at any given moment is the set difference of the FoV and the

occlusion zones, which may be written as a set-valued function of the camera frame (in

relation to the fixed inertial frame) as

F
(IXC

)
≜
{
πxy(

IxC +
I
CRP ) : P ∈ H \ O

}
, (4–52)
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Figure 4-3. The boundary of the feedback region F (blue region) is decomposed into
four disjoint Jordan Curves: J1, J2, J3, and J4.

where, H ≜
[
− l

2
, l
2

]
×
[
−w

2
, w
2

]
× {0}. As a result of Assumption 4.7, the boundary of

the feedback region ∂F
(IXC

)
is also the union of a finite collection of pairwise-disjoint

regular Jordan curves (Figure 4-3).

As the target disappears from view, the tracker may still generate a predicted

trajectory I x̂T with error bounds according to (4–45). Define the region of uncertainty at

time t as

U(tuj , t) ≜ B◦
ρu(tuj ,t)

(I x̂T (t)). (4–53)

Then the target position is located in the cone of uncertainty, defined at time t as

Ucone(t
u
j , t) ≜

⋃
τ∈[tuj ,t]

U(tuj , τ). (4–54)

4.5.1 Target Regions

Based on [27] the notion of a target region is introduced as follows.
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Figure 4-4. For a given feedback region and bounding region (blue and purple region,
A), and an initialization (red region, B), the target region for a point p∗ (green,
C) is the region where all curves originating from p∗ must eventually enter
the feedback region before entering the target region. The target region
(green, D) is the region where all curves originating from the region of
uncertainty is either already in the feedback region or must eventually enter
the feedback region before entering the target region.
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Definition 4.1 (Target Region). Given a region F ⊂ R2, a set S ⊂ R2, and a closed

connected region R ⊂ R2 such that cl(S) ⊂ R◦, let the target region be defined as

TF ,R(S) ≜
⋂

p∗∈S\F

T ∗
F ,R(p

∗),

where T ∗
F ,R(p

∗) is the collection of all points q ∈ R◦ for which any smooth curve γ :

[0, 1] → R◦ from p∗ to q must pass through a point of ∂F . An example of the target

region’s construction is depicted in Figure 4-4.

Definition 4.2 (Boundary for Reacquisition). Given regions F ⊂ R2, S ⊂ R2, and a

closed connected region R ⊂ R2 such that cl(S) ⊂ R◦, let EF ,R(S) to be the set of all

y ∈ ∂F such that for some q ∈ TF ,R(S) there is a smooth curve γ : [0, 1] → R◦ from a

point p ∈ S \ F to q that crosses ∂F exactly once at y.

4.5.2 Guaranteeing Reacquisition

The following lemma and theorem establish criteria for guaranteeing reacquisition,

given a feedback region F .

Lemma 4.4. If p ∈ U(tuj , t) \ F and q ∈ TF ,R(U(t
u
j , t)), then any curve in R from p to q

must pass through a point of EF ,R(U(t
u
j , t)).

Proof. Similarly to [27, Proof of Lemma 1], suppose a curve γ : [0, 1] → R◦ starts at

a point p = γ(0) ∈ U(tuj , t) \ F and terminates at a point q = γ(1) ∈ TF ,R(U(t
u
j , t)).

Let τ ′ ≜ inf{τ ∈ [0, 1] : γ(τ) ∈ ∂F} be the first time γ crosses ∂F . By Remark 3

of [27], one may assume γ only crosses ∂F transversely. Set q′ ≜ γ(τ ′), and let U be

a neighborhood of q′ not containing any other intersection point of γ and ∂F such that

∂F ∩ U is a single interval. Find ∆τ > 0 such that γ([τ ′, τ ′ + ∆τ ]) ⊂ U and now set

q′′ ≜ γ(τ ′ + ∆t
2
). Since the curve γ′ ≜ γ|[0,τ ′+∆t/2] crosses ∂F exactly once, one finds that

q′′ ∈ F◦ and q′ ∈ EF ,R(U(t
u
j , t)), as required.

Theorem 4.2. Suppose that Ucone(t
u
j , t

B) is contained in the interior of a region R, where

tuj ≤ tA ≤ tB, and U(tuj , tB) ⊂ TF ,R(U(t
u
j , t

A)) then there exists t ∈ [tA, tB] with IxT (t) ∈ F .
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Proof. Notice that the point IxT (t
A) ∈ U(tuj , t

A) could be located in F . Hence, IxT (t)

entered F at t = tA. Otherwise, apply Lemma 4.4 to this point and the curve γ :

[tA, tB] → R, concluding that γ had to pass through a point of EF ,R(U(t
u
j , t

A)). Thus,
IxT (t) entered F◦ at some time t ∈ (tA, tB].

Remark 4.2. Theorem 4.2 only shows that the tracked featured point IxT (t) ∈ F ,

but this may not be sufficient for guaranteeing reacquisition of the target. In the case

that it is required that T ⊂ F , it is sufficient to show that IxT (t) ∈ FT , where FT ≜

F ⊖Bdiam(T )(0) is the inset of F by a distance of diam(T ).

Following Theorem 4.2, the goal could be to maximize the amount of time available

for the tracker agent to spend on tasks other than tracking the target (i.e, make tA as

large as possible, and call this optimal value τ ∗A) while guaranteeing that reacquisition

of the target will occur at some t ∈ [τ ∗A, τ
∗
B], where τ ∗B is the maximum length of time

the tracker may need to wait before reacquisition of the target occurs. If the goal is to

maximize tA, then the tracker agent’s planner seeks to find a camera pose P ∗ ≜ [p∗; o∗],

where p∗ ∈ R3 is the optimal position of the camera and o∗ ∈ R4 is the optimal

orientation, that jointly maximizes

(P ∗, τ ∗A, τ
∗
B) ≜ argmax

P,τA,τB

τA

s.t.


U(tuj , τB) ⊂ TF ,R(U(t

u
j , τA)),

F = F(P ),

tuj ≤ τA ≤ τB,

(4–55)

for a given bounding region R ⊃ Ucone(t
u
j , τ

B), where the tracker agent needs to satisfy

IXC = P ∗ for all t ∈ [τ ∗A, τ
∗
B] to guarantee reacquisition. Alternatively, if the goal is

to minimize the time without tracking, then the tracker agent’s planner seeks to find a
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camera pose that solves the optimization problem

(P ∗, τ ∗A, τ
∗
B) ≜ argmin

P,τA,τB

τB

s.t.


U(tuj , τB) ⊂ TF ,R(U(t

u
j , τB)),

F = F(P ),

tuj ≤ τA ≤ τB.

(4–56)

Theorem 4.3. Suppose that the conditions of Theorem 4.1 are satisfied and b is

sufficiently large, if there exists a solution to either of the optimization problems in (4–55)

or (4–56), for all j ∈ Z, then the error signal y is ultimately bounded, uniformly over

D, provided that the switching signal σ(t) satisfies the maximum dwell-time condition

ρu(t
u
j , t) ≤ ρu(t

u
j , τ

∗
B), written explicitly as

∆tuj ≤
1

λu
ln

(
ρu(t

u
j , τ

∗
B) +

δu
λu

Vu(tuj ) +
δu
λu

)
, (4–57)

where τ ∗B is as defined in (4–55) or (4–56).

Proof. While σ(t) = a, y remains bounded according to (4–43), in the sense that

∥y∥
a.e.

≤
√
µ/Λ1. Then suppose that U(tuj , τ ∗B) ⊂ TF ,R(U(t

u
j , τ

∗
A)) and IXC = P ∗ for

all t ∈ [τ ∗A, t
a
j+1), then by Theorem 4.2 and Remark 4.2, reacquistion of the target is

guaranteed to have occurred at some t ∈ [τ ∗A, τ
∗
B]. While σ(t) = u, (4–49) is used to show

that e and ė are bounded in the sense that

∥[e; ė]∥ ≤ E1 ≜

√
2

(
Vu(tuj ) +

δu
λu

)
eλu∆T − δu

λu
, (4–58)

where ∆T ≜ τ ∗B − tuj . Since ėf = 0 while σ(t) = u, ef (t) = ef (t
u
j ) and is therefore

bounded. Since ṗ = 0, from (4–12), while σ(t) = u, p(t) = p(tuj ), thus η is bounded in the

sense that

∥η∥ ≤ E2 ≜ ∥p(tuj )∥+ (k + α)E1, (4–59)

115



according to (4–58). Using (4–58) and (4–59), and the fact that ef (t) = ef (t
u
j ), r is

bounded in the sense that

∥r∥ ≤ E3 ≜ ∥p(tuj )∥+ (1 + k + 2α)E1. (4–60)

Using (4–23)–(4–25) and (4–58)–(4–60), P is bounded in the sense that

P ≤ E4,

E4 ≜ β
(
E1 + ∥ef (tuj )∥

)
+

(
E1 + ∥ef (tuj )∥

)2
2

+
(ζ2 + ζ3)

2

2

+
ζ5Z

2
+ (α− λp)β

√
7
(
E + ∥ef (tuj )∥

)√
λp

+ (α− λp)
(
E1 + ∥ef (tuj )∥

)2
+ (ζ2 + ζ3)

2

2
√
λp

+

(
E1 + ∥ef (tuj )∥

)2
+ (ζ4 + ζ5Z)

2

2
√
λp

+ α

(
E1 + ∥ef (tuj )∥

)2
+ ζ23

2
√
λp

,

(4–61)

where Z≜
√
E2

1 + ∥ef (tuj )∥2 + E2
2 + E2

3 . Additionally, Q is bounded according to (4–27).

Since e, ef , η, r, Q, and P are bounded it is then concluded that y is bounded while

σ(t) = u, in the sense that

∥y∥ ≤ E ≜ max
{
E1, ∥ef (tuj )∥, E2, E3,

√
2E4,

√
2Γ
}
. (4–62)

If b >
√

Λ2E2+2Γ
Λ1

, then y(taj+1) ∈ S and the requirements to resume tracking the target are

satisfied according to Theorem 4.1, therefore, y is ultimately bounded, uniformly over

D.

4.6 Implementation

When solving the optimization problems in (4–55) and (4–56), it would be ideal

to select R = Ucone(t
u
j , τB); however, Ucone is difficult to implement since it would

require the computation of the union of an infinite number of balls. Instead, Ucone can be

approximated by computing the union of a finite number of stadiums (i.e., a rectangle

with semicircles at a pair of opposite sides). To construct this region, the predicted

trajectory of the target I x̂T (t) for t ∈ [tuj , t
B] is first discretized at a regular interval
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of ∆t ∈ R>0 from tuj to tB = L∆t, for L ∈ Z \ {0}, resulting in the approximation
I x̃T (t) ≈ I x̂T (t), defined as

I x̃T (t) ≜



a(1, t), tuj ≤ t < ∆t,

a(2, t), ∆t ≤ t < 2∆t,

...
...

a(L, t), (L− 1)∆t ≤ t ≤ L∆t,

a(k, t) ≜ I x̂T (t
u
j + (L− 1)∆t) +

I x̂T (t
u
j + L∆t)

∆t
(t− (L− 1)∆t)

−
I x̂T (t

u
j + (L− 1)∆t)

∆t
(t− (L− 1)∆t).

(4–63)

Remark 4.3. This discretization results in a discretization error e∆t ≜
I x̂T (t) − I x̃T (t)

which has the known bound ē∆t ∈ R>0 satisfying supI
X̂T ∈Ω ∥e∆t∥ ≤ ē∆t (Figure 4-5).

Over each time interval ∆t, I x̂T (t) is approximated by a line segment, which is then

used to construct a stadium about each resulting line segment. Specifically, given the

time interval [tuj + (ℓ − 1)∆t, tuj + ℓ∆t], for ℓ ∈ {1, . . . L}, the circular components of the

stadium for this line segment, denoted by S(tuj , L,∆t), is defined as

S(tuj , L,∆t) ≜ B◦
ρu(tuj +ℓ∆t)+ē∆t

(I x̂T (tuj + (ℓ− 1)∆t
))
∪B◦

ρu(tuj +ℓ∆t)+ē∆t

(I x̂T (tuj + ℓ∆t
))
.

(4–64)

Finally, the bounding region R(tuj , L,∆t) is then defined as

R(tuj , L,∆t) ≜
L⋃

ℓ=1

conv
(
S(tuj , L,∆t)

)
, (4–65)

where the convex hull takes the circular components in S∆t(ℓ) and constructs the

stadium for that segment (Figure 4-5). Using this bounding region, an algorithm for

computing the state of the tracker agent’s camera that guarantees reacqusition of
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Figure 4-5. Subfigure A illustrates the discretization error of the path I x̂T (t) for
t ∈ [0, 3∆t], where subfigure B illustrates the bounding region about the
discretized curve of I x̂T (t).
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tracking the target is provided in Algorithm 4.1, which is an approximation of a solution

to the optimization problem in (4–55)2 .
Algorithm 4.1

Require: O ⊃ R2, given as a sequence of verticies

Require: P as a list of points p0, . . . , pL ∈ R2

Require: ∆θ ∈ R>0

Require: J = π
2∆θ

Require: ∆t ∈ R>0

Require: tuj ∈ R>0

1: R←MAKEBOUNDINGREGION((tuj , L,∆t,P))

2: for i := 0 to L do

3: for j := 0 to J do

4: F ←MAKEFEEDBACKREGION(i, j)

5: ℓ← 0

6: ℓ∗ ← L+ 1

7: while check = 0 ∧ ℓ ̸= L+ 1 do

8: T ←MAKETARGETREGION(R,F , L− ℓ)

9: check←RETURNCHECK(T, L− ℓ)

10: if check = 1 then

11: ℓ∗ ← ℓ

12: end if

13: ℓ← ℓ+ 1

14: end while

15: ℓi,j ← ℓ∗

16: end for

2 Algorithm 4.1 can easily be modified to find a solution to the optimization problem in
(4–56).
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17: end for

18: (i∗, j∗)← argmini,j(ℓi,j)

19: return [pi∗ ; j
∗∆θ]

20: function MAKEBOUNDINGREGION((tuj , L,∆t,P))

21: return R←Equation (4–65)

22: end function

23: function MAKEFEEDBACKREGION(i, j)

24: F ←MAKEFOV(i, j)

25: return F \ O

26: end function

27: function MAKEFOV(i, j)

28: return the rectangle centered at pi, with orientation

29: j∆θ, given as a sequence of four verticies

30: end function

31: function MAKETARGETREGION(R,F , L− ℓ)

32: U ← U(tuj + (L− ℓ)∆t)

33: A← U \ F

34: B ← R \ F

35: for all a ∈REGIONS(A) do

36: p←FINDPOINT(a)

37: for all b ∈REGIONS(B) do

38: if p ∈ b◦ then

39: Ca ← b

40: Exit

41: end if

42: end for
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43: end for

44: T ← R

45: for all a ∈REGIONS(A) do

46: T ← T \ Ca

47: end for

48: return T

49: end function

50: function FINDPOINT(a)

51: return any point p ∈ a◦

52: end function

53: function RETURNCHECK(T, L− ℓ)

54: Check← 0

55: for m := L− ℓ to L do

56: U ← U(tuj +m∆t)

57: if U ⊂ T then

58: Check← 1

59: Exit

60: end if

61: end for

62: return check

63: end function

64: function REGIONS(A)

65: return the list of connected components of A

66: end function
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Figure 4-6. The target’s trajectory generated by the use of MATLAB®’s minjerkpolytraj

function.

4.7 Simulations

In this section, three simulations are performed. The first one focuses solely

on the DNN-based estimator and the DNN’s ability to learn the dynamics of a ran-

domly generated trajectory. The next simulation focuses on the performance of the

MakeTargetRegion function, as it is the critical component of Algorithm 4.1. This section

is then concluded with a simulation of the performance of the DNN estimator/predictor in

the presence of intermittent state feedback as a consequence of the target entering into

the occlusion zone. Algorithm 4.1 is deployed to guarantee reacquisition of tracking.
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4.7.1 DNN Estimation and Prediction Performance Simulation

To examine the performance of the DNN estimator/predictor developed in

(4–8), a random trajectory for the target was first generated by using MATLAB®’s

minjerkpolytraj function, which generates a minimum jerk polynomial trajectory for

a sequence of waypoints, which in this case, were six randomly generated points con-

tained within a rectangular region with dimensions of 2400x1200. The target then looped

through these way points for a duration of t = 5, 000. The generated path can be seen

in Figure 4-6.While the target followed this trajectory, the estimator/predictor in (4–8)

was deployed, where a fully-connected feedforward DNN composed of three hidden

layers (i.e., kh = 3), with three neurons per layer (i.e., Lj = 3). Further, the hyperbolic

tangent activation function (tanh) was used on the output layer, and the rectified linear

unit (ReLu) activation function was used on all other layers. Additionally, the following

gains were selected: γ = 0.1, k = 20, α = 60, β = 0.0001, Γ =

10I39 039×8

08×39 15I8

. The

results of this simulation are seen in Figure 4-7.

4.7.2 Target Region Generation Simulation

In Algorithm 4.1, the core function, which would be fundamental to any algorithm

that aims to compute optimal camera poses that guarantee reacquisition of tracking, is

MakeTargetRegion. Thus it is of interest to demonstrate the efficacy of this algorithm

when presented with a variety of complex geometries. To this end, a variety of com-

binations of occlusion zones, bounding regions, FoVs, and initialization regions were

given as inputs to the MakeTargetRegion function, four of which are depicted in Figure

4-8. Using MATLAB®’s Computational Geometry library, specifically, the operations

for PolyShape objects (i.e., isinterior, convhull, intersect, subtract, union, and

regions), the algorithm was implemented, which was able to compute the target region

for each test in less than 0.05 seconds on a computer with an Intel® Core™ i7-4790

CPU. The MATLAB® implementation of MakeTargetRegion is found in Appendix ??.
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Figure 4-7. Plots of the norm of the position estimate error (i.e, ∥e∥), norm of the velocity
error (i.e, ∥ė∥), norm of the acceleration estimate error (i.e, ∥ë∥), actual target
position (i.e., IxT ), actual target velocity (i.e., I ẋT ), and actual target
acceleration (i.e., I ẍT ). The dashed vertical line indicates the instance
where the gains were reduced.
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Figure 4-8. A sample of four computed target regions for a variety of occlusion regions,
bounding regions, FoVs and initialization regions. Note that in sample D, the
target region is the empty set. The computation times for the target regions
are as follows: A) 0.0352 seconds; B) 0.0318 seconds; C) 0.0161 seconds;
and D) 0.0443 seconds.
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Figure 4-9. Illustration of the simulation scenario where the target passes through an
occlusion region. The zoomed in region depicts the predicted trajectory, the
bounding region, the optimal camera pose, and the region of uncertainty of
the target when the camera is at the desired location. Here, τ ∗A = tu1 + 10.

4.7.3 Occlusion Simulation

To examine the performance of the DNN observer/predictor proposed in (4–8)

and the effectiveness of the proposed camera placement scheme from Section 4.5, a

trajectory for the target and an occlusion region was manually generated, as seen in

Figure 4-9. For this study, the same DNN architecture from Section 4.7.1 was used,

with the following gains: γ = 0.1, k = 20, α = 60, β = 0.01, and Γ =

15I39 039×8

08×39 10I8

.

For the construction of the bounding region R, the following constants for (4–45) were

selected as: κ = 0.1, ϵ3 = ϵ4 = 1, where the acceleration bound was determined to be

A = 0.4081. When the target was reacquired, reset maps were deployed to reinitialize

the tracking error and filtering errors (i.e., I x̂T (t
a
2) =

IxT (t
a
2), ef (ta2) = 0, and p(ta2) = 0).

The results of this simulation are in Figure 4-10.
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Figure 4-10. Plots of the norm of the position estimate error (i.e, ∥e∥), norm of the
velocity error (i.e, ∥ė∥), and norm of the acceleration estimate error (i.e,
∥ë∥). The red vertical line indicates the instance when tracking was lost,
whereas the green vertical line indicates when tracking was reacquired.
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Despite the relatively quick computation times of the target region seen in Section

4.7.2, the computation time of the optimal camera pose according to Algorithm 4.1 is

slow. In this simulation, it took 47.9267 seconds to find the optimal camera pose over the

provided search space. In this case, the search space consisted of thirty test locations

(i.e., L = 30) and seven orientation (i.e., ∆θ = π/12). As a consequence of Algorithm

4.1’s brute force approach, the MakeTargetRegion function was called 5, 743 times.

4.8 Conclusions

A Lb-DNN estimator and predictor was developed for image-based target tracking,

in the presence of occlusions. A Lyapunov-based stability analysis indicates that the

position and velocity estimates converge asymptotically to the actual position and

velocities, while the target is within the tracking agent’s field of view. To position the

tracking agent’s camera to reacquire a target, a method was developed for computing

an optimal placement of the camera, guaranteeing reacquisition using separation

properties of the boundaries of occluded regions that yielded an algorithm for computing

locations to position the camera to guarantee target reacquisition. The performance

of the estimator, predictor, and camera placement methodology was examined via a

series of simulations. Future work could focus on developing more efficient algorithms

for finding the best camera placement based on the theoretical methods proposed

here. It may also be of interest to investigate ways of extending this camera placement

methodology to a multi-agent system of cooperative agents for expanding the size of the

feedback region by overlaying their cameras’ FoVs, or dispersing the cameras for better

coverage of the target’s cone of uncertainty.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This dissertation has presented contributions related to the advancement of path

planning and estimation methods in the presence of intermittent state feedback, with

a focus on the geometric aspects of the problem. Chapter 2 developed a topologically

motivated method for guaranteeing the re-entry of an agent into a feedback region,

constructing the foundation for subsequent work presented in this dissertation, as well

as future work. Chapter 3 extended the study of relay-explorer problems to multi-agent

systems so that the idea of cooperative localization can be used to enhance the path

tracking performance of each agent and to extend the duration the ensemble of agents

can spend operating without state feedback. In Chapter 4, the topological method for

path planning from Chapter 2 was further generalized to address a higher-dimensional

setting, with feedback regions of varying topology, geometry and orientation, including

ones that have holes or multiple connected components. Additionally, more complex

bounding regions that more closely approximate the cone of uncertainty were inves-

tigated. These improvements on the topological methodology, in conjunction with the

Lb-DNN estimator and predictor scheme allowed for the development of a methodology

for determining where the tracking agent ought to position its camera to guarantee

reacquisition of tracking the target agent.

5.2 Future Work

5.2.1 Geometric Arrangements

Geometric arrangements are subdivisions of some space induced by geometric

objects (e.g., spheres, simplicies, polytopes, polynomials, or Bézeir curves/surfaces)

[58]. For example, Figure 5-1 shows an arrangement of eight parametric curves: C1, C2,

C3, C4, C5, C6, C7, and C8. These curves result in two faces, one bounded (i.e., F1), and

the other unbounded (i.e., F2).
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Figure 5-1. An example of an arrangement composed of eight parametric curves: C1,
C2, C3, C4, C5, C6, C7, and C8. Arrangements of this type could be used to
model feedback regions and regions of uncertainty.
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The use of arrangements in the field of computational geometry has not only

allowed for more computationally efficient algorithms, but it has also allowed for algo-

rithms to move away from fixed-precision approximation methods to exact computing.

In fixed-precision approximation, geometric operations such as Boolean operations

(e.g., union, intersection, delete, etc) are approximated by constructing new geometric

objects, whereas in exact computing operations are done on the geometric objects to

modify them. Additionally, the use of arrangements, allows for more exact modeling. For

example, feedback regions can be modeled by an arrangement of parametric curves,

rather than being bounded by a polygon (Figure 5-1).

Given the long computation times of the MAURs (Chapter 2) and camera place-

ment (Chapter 4)—as a result of the brute-force approaches in both of the proposed

algorithms—more efficient algorithms are required so that further studies on this topic

can be conducted. It is not practical to study, for example, the feasibility regions (Defi-

nition 2.2) or expand the research into more complex systems such as systems where

reactive planning may be necessary. Current work is under development that leverages

tools and ideas found in the field of computational geometry.

Additionally, arrangements can be extended to model the regions of uncertainty

in Chapter 3 as an arrangement of parametric curves, specifically polynomials. The

use of arrangements could be advantageous as it could allow for the development and

implementation of operations that modify the region of uncertainty without the need to

use a minimum bounding circle algorithm.

5.2.2 Bent Return Trajectories

Once an improved algorithm for computing MAURs is realized, a study into more

complex return trajectories can be conducted to further increase the time an agent can

spend in the feedback denied region. A simple example to show the significance of this

study is seen in Figure 5-2 where a simple bent path return trajectory could be used

rather than the traditional straight return trajectory.
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Figure 5-2. A bent path trajectory (red) may have advantages over the standard straight
return trajectory (green) as this would increase the MAUR at point p.
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5.2.3 MAURs as Control Barrier Functions

Control barrier functions (CBFs) are tools used for synthesizing controllers that

provide mathematical guarantees of safety, which can be done by encoding state

constraints as a safe set [82]. CBFs certify the existence of a control law that renders

the safe set forward invariant, or in some cases, asymptotically stable, as seen in

[83]. The motivation for using CBFs over other methods is due to their ability to be

implemented in real-time with limited computational resources as in many spacecraft,

while also providing robustness to model uncertainties and exogenous disturbances.

CBF-based controllers have been implemented in [82] on computationally resource-

constrained systems. A brief technical background on CBFs is now provided.

Consider a differential inclusion F with state x ∈ Rn and input u ∈ Rm modeled

by ẋ ∈ F (x, u), where F : Rn × Rm ⇒ Rn is the set-valued flow map. CBFs are vector

valued functions B : Rn → Rd that guarantee the existence of control inputs that ensure

the forward invariance (i.e. safety) of the safe set S = {x : B(x) ≤ 0}, see [83].

Definition 5.1. A vector-valued function B : Rn → Rd with components B(x) =

[B1(x);B2(x); . . . ;Bd(x)], is called a CBF candidate defining the safe set S if S = {x ∈

Rn : B ≤ 0}. Also let Si ≜ {x ∈ Rn : Bi ≤ 0} and Mi ≜ {x ∈ ∂S : Bi(x) = 0} for each

i ∈ {1, . . . , d}.

Definition 5.2. A continuously differentiable CBF candidate B : Rn → Rd defining the

set S ⊂ Rn is a CBF for F and S on a set O ⊂ Rn with respect to a function γ : Rn → Rd

if 1) there exists an ϵ-neighborhood of the boundary of S such that Nϵ(∂S) ⊂ O, 2) for

each i ∈ {1, . . . , d}, γi(x) ≥ 0 for all x ∈ Nϵ(Mi) \ Si, and 3) the regulation map

Kc (x) ≜ {u ∈ Rm : Γi (x, u) ≤ −γi (x) , ∀i ∈ {1, . . . , d}}

is nonempty for all x ∈ O,where for each i ∈ {1, . . . , d},

Γi (x, u) ≜ sup
f∈F (x,u)

⟨∇Bi(x), f⟩ . (5–1)
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The set Kc(x) represents a set of control inputs that ensure safety. One way to select

inputs from Kc(x) is to solve an optimization problem featuring the constraints defining

Kc.

Assuming that there is a region Ω ⊂ Rn where maur(x) is continuously differentiable,

a CBF candidate could be defined as

Bm ≜ ρ− maur(x), (5–2)

where ρ is a state of a system, representing the radius of uncertainty (Chapter 3). The

safe set could then be defined as Sm ≜ {[x; ρ] ∈ Rn × R≥0 : Bm ≤ 0}. The goal would

be to develop a control algorithm that makes the safe set forward invariant. However, the

challenge in all of this would be to develop the conditions for where maur is continuously

differentiable, and then computing its gradient, to satisfy (5–1). It would also be worth

exploring recent developments for discontinuous CBFs (cf., [84] and [85]) to relax the

continuity requirements.

5.2.4 Probabilistic Guarantee of Re-entry and Covariance Steering

In [1]– [88], path planning methods are presented that utilize the mean and covari-

ance of the exogenous disturbance (modeled as zero-mean white Gaussian noise) on

the system to generate optimal path plans that avoid collisions with elements located in

the environment, under predefined chance constraints. A multidimensional Gaussian

distribution if fully defined by the mean vector and covariance matrix. The centroid of

this multidimensional distribution is described by the vector mean, while the ellipsoid

shape comes from the covariance matrix (Figure 5-3). The multidimensional Gaussian

distribution can be used to model the state of uncertainty of an agent in any arbitrary

dimension. In [1], a system is provided, which is modeled as a stochastic linear system,

where the state covariance (i.e. region of uncertainty) is steered in such a way that its

shape is manipulated to accomplish obstacle avoidance.
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Figure 5-3. Geometric representation of the two dimensional Gaussian distribution in the
plane, where the centroid is described by the vector mean and its shape is
described by the covariance matrix. The green ellipse is referred to as the
3-sigma [89].

135



Consider the discrete-time linear time-varying system with additive noise

xk+1 = Akxk +Bkuk +Dkwk,

where k = 0, . . . N − 1 is the time index, xk ∈ Rnx is the state, uk ∈ Rnu is the control

input, and wk ∈ Rnw is Gaussian noise with zero mean and unit covariance. The initial

state x0 is drawn from the Gaussian distribution x0 ∼ N (µ0, σ0), where µ0 ∈ Rnx is

the mean and σ0 ∈ Rnx×nx is the covariance. The goal is to steer the initial state to a

finale state xN ∼ N (µN , σN), where N is the terminal time index. To this end, a solver is

developed to minimize the quadratic cost function J(x0:N−1, u0:N−1), defined as

J(x0:N−1, u0:N−1) ≜ E

(
N−1∑
k=0

x⊤kQkxk + u⊤k Rkuk

)
, (5–3)

where x0:N−1 is the state sequence, u0:N−1 is the control sequence, Qk, Rk ⪰ 0 are

constants. In addition, chance constraints are developed to prevent the agent from

running into obstacles. To this end, the feasible set is defined as

X ≜ XΩ \

(
Nobs⋃
j=1

Xj

)
,

where XΩ ⊂ Rnx denotes the permissible operating region of the agent, and Xj ⊂ Rnx

are the obstacles, for j ∈ {1, . . . Nobs}. Given X , a chance constraint is applied to the

states to enforce the probability of a constraint violation being smaller than a certain

threshold, rather than using hard constraints since the noise, and therefore the state, is

unbounded. The chance constraint is

P (xk ∈ X ) ≤ Pfail, (5–4)

where P (·) is the probability of the event, and Pfail is the prescribed maximum probability

threshold for failure. The control problem is to develop a control policy that minimizes the

cost function in (5–3) subject to the initial state x0, the terminal state xN , and the state

chance constraints in 5–4. An example of an optimal path plan is depicted in Figure 5-4,
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Figure 5-4. Example path plan solutions that steer only the mean (left) and both the
mean and covariance (right) from an initial state to a final state. [1].

where the state covariance is steered in a way that stretches the state distribution so

that it can fit through a narrow region of X while satisfying the chance constraint in 5–4.

Even though this work is primarily focused on obstacle avoidance, the same prin-

ciples could be applied to generating path plans where the regions of uncertainty,

modeled as a multidimensional Gaussian distribution, could be steered in a way that it

can be squeezed into the feedback region. This ability would give path planning algo-

rithms increased flexibility by increasing the dwell time as new methods for probabilistic

guarantees of re-entry are developed.

5.2.5 Obfuscation of Feedback Regions and Objectives

In some applications it may be necessary to obfuscate the feedback region F or

the agent’s goals. For example, the agent may be operating in a military setting where

the feedback region is a base of operations that provides feedback to an agent. Assume

that there is an adversarial agent that wants to learn where this base of operations (i.e,

feedback region F) is so that the mechanism that provides state feedback could be

neutralized (i.e., strategic placement of a jammer), or the adversary may be interested

in learning what the mission objectives are (i.e., the desired path Xd). Regardless of the

adversaries objectives, it is desirable to construct deceptive [90], private path plans [91].
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From Chapter 3, recall equation (3–3)

target (p, ρ) ≜ argmin
q
{∥q − p∥ : q ∈ R2, Uq(τq) ⊂ TR(p,q) (p)},

which is a set-valued function. Observe that the cardinality of target, computed at a

point p, could be increased if the radius of uncertainty ρ at point p is made much less

than maur(p) (Figure 5-5). With a larger set of target points q ∈ target (p, ρ), a path

planner has more choices when it comes to selecting a path plan that guarantees re-

entry, which could perhaps be considered deceptive and may obfuscate the agent’s

feedback region or objectives from the perspective of the adversary. Requiring ρ at p

to be much less than maur(p) may come at a cost. Increasing the number of available

return trajectories would require a premature departure from Xd as it may become

increasingly necessary to spend less time tracking Xd in favor of executing deceptive

maneuvers. However, it is not clear if an early departure will result in the adversary

learning more about the feedback region as this will increase the frequency of re-entries

into the feedback region, thus increasing the information.

5.2.6 Time Varying DNN Estimator Gains

In Chapter 4, a Lb-DNN estimator was developed as

I ˙̂
XT =

I
2X̂T ,

I

2
˙̂
XT = Φ

(
IXT ,

I
2X̂T , Θ̂

)
+ ν,

where

ν ≜ − (γ(k + α) + 2α) η +
(
γ − α2

)
e+ βsgn((e+ ef )),

is a robust term, designed to compensate for the errors induced by the DNN Φ. From

the Lyapunov-based stability analysis in Section 4.4, it is seen that ν is designed to be

robust against the worst-case error induced by the DNN. Accounting for this worst-case

error can be understood as having no trust in the DNN’s modeling accuracy, and thus
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Figure 5-5. Illustration of three path plans. The first path plan π = (n, o, p, q) is a path
that maximizes the time spent tracking Xd (the bounding region in orange),
whereas the second and third path plan π′

1 = (n, o, p′, q′1) and
π′
2 = (n, o, p′, q′2) departs from Xd at an earlier time to allow for a larger set of

possible return trajectories. Notice that a smaller bounding region (purple
and green regions) can be used for a departure from point p′ since the
region of uncertainty (red) is much smaller than the one at point p. This
smaller bounding region allows for a larger set of possible return trajectories.
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there is a need for a compensator to be present to ensure stable tracking. However, this

compensator hinders the learning of the DNN. The weight update law

˙̂
Θ ≜ proj(Γ((e+ ef )

⊤Φ′(IXT ,
I
2X̂T , Θ̂))⊤),

updates the weights based on the error signals e and ef , but if the tracking error and

filtered error are primarily compensated for by ν rather than an accurate DNN model,

then the effects of the weight update are minimal, and thus the learning is minimal as

there is little error being induced by the DNN.

Initially, it makes sense to have heavy reliance on ν as the DNN initially begins to

train, but as time evolves, it is reasonable to reduce the efficacy of ν by reducing the

values of the robust gains (e.g., β, k, and γ ) in favor of relying more on the DNN. This

motivates the need to investigate time-varying gains, and a trust-metric (i.e., a metric

for the modeling accuracy of the system being estiamted) that informs the dynamics

of these gains. The benefits of reducing the efficacy of ν, can be seen in the following

modifications to the simulation in Section 4.7.1.

To examine the performance of the DNN estimator developed in (4–8) with time-

varying gains, the same random trajectory for the target was used (Figure 4-6). While

the target followed this trajectory, the estimator in (4–8) was deployed, where a fully-

connected feedforward DNN composed of three hidden layers (i.e., kh = 3), with three

neurons per layer (i.e., Lj = 3). Further, the hyperbolic tangent activation function (tanh)

was used on the output layer, and the rectified linear unit (ReLu) activation function was

used on all other layers. Additionally, the following gains were selected: γ = 0.1, k = 20,

α = 60, β = 0.0001, Γ =

10I39 039×8

08×39 15I8

. However, after 5000 seconds, the gains were

reduced to the following: k = 5, α = 15, Γ =

2.5I39 039×8

08×39 3.75I8

. The reduction in these

gains is motivated by the expectation that the weight estimates are converging to the
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ideal weights, in which case, the influence of the robust term in the estimator ν ought

to be reduced in favor of relying on the performance of the trained DNN model of the

target’s dynamics. The results of this simulation are seen in Figure 5-6.

In the error plots in Figure 5-6, it is seen that the norm of the acceleration estimate

error is greatly reduced (on average) after the change in gain values. However, it is

also seen that there are larger spikes in the errors that occur. These spikes come as a

consequence of the reduced efficacy of ν. Given the ad-hoc nature of the gain change,

it isn’t a surprise to see some aspects of the estimator’s performance degrade, which is

why there is a need to investigate a trust-metric for informing the dynamics of the gains.
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Figure 5-6. Plots of the norm of the position estimate error (i.e, ∥e∥), norm of the velocity
error (i.e, ∥ė∥), norm of the acceleration estimate error (i.e, ∥ë∥), actual target
position (i.e., IxT ), actual target velocity (i.e., I ẋT ), and actual target
acceleration (i.e., I ẍT ). The dashed vertical line indicates the instance
where the gains were reduced.
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APPENDIX A
MULTI-AGENT LOCALIZATION USING GEOMETRIC CONSTRAINTS WITH

INTERMITTENT STATE FEEDBACK OF POSSIBLE JUMPS

A.1 Construction of the Directed Acyclic Graph

Suppose that there is a state X such that agent i ∈ A has a state X i ∈ Di such that

modei = 0, then according to (3–44), X i must be contained in Di
01. Next, suppose that

there is a state X such that agent i ∈ A has a state X i ∈ Di such that modei = 1, then

according to (3–44) X i can potentially be contained in the intersection of any subset

of the collection (Di
∗ ∩ {modei = 1}, Di

#1, D
i
11, D

i
12), creating 24 − 1 possibilities, which

are tabulated in Table A-1. However, not all of these combinations are admissible. For

example, X i can not be contained in Di
#1 ∩Di

12 since Di
#1 ∩Di

12 = ∅, because bi cannot

be equal to both 1 and 0. The admissible and inadmissible combinations for an agent

with modei = 1 are tabulated in Table A-1.

Similarly, suppose that there is a state X such that agent i ∈ A has a state X i ∈ Di

such that modei = 2, then according to (3–44) X i can potentially be contained in the

intersection of any subset of the collection (Di
∗ ∩ {modei = 2}, Di

#2, D
i
22, D

i
23, D

i
20),

creating 25 − 1 possibilities. The admissible and inadmissible combinations for an agent

with modei = 2 are tabulated in Table A-2.

Finally, suppose that there is a state X such that agent i ∈ A has a state X i ∈ Di

such that modei = 3, then according to (3–44), X i must be contained in Di
30.

Now that all of the admissible combinations of Di have been identified, all possible

jump sequences in null-time can be determined. To this end, let X i be the state at jump

time j, (X i)+ is the state at jump time j + 1, (X i)++ is the state at jump time j + 2,

(X i)+++ is the state at jump time j + 3, and so on, with each additional “+” representing

the number of sequential jumps in null-time. Each possible jump sequence is now

identified:
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Combinations Admissibility Reason
Di

∗ ∩ {modei = 1} \Di
12 Admissible No contradiction

Di
#1 Admissible No contradiction

Di
11 Admissible No contradiction

Di
12 \Di

∗ Admissible No contradiction
Di

∗ ∩Di
12 Admissible No contradiction

Di
#1 ∩Di

11 Inadmissible T i
1 can’t be both > 0 and ≤ 0

Di
∗ ∩ {modei = 1} ∩Di

#1 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 1} ∩Di

11 Inadmissible bi can’t be equal to both 1 and 0

Di
#1 ∩Di

12 Inadmissible bi can’t be equal to both 1 and 0

Di
11 ∩Di

12 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 1} ∩Di

#1 ∩Di
11 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 1} ∩Di

#1 ∩Di
12 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 1} ∩Di

11 ∩Di
12 Inadmissible bi can’t be equal to both 1 and 0

Di
#1 ∩Di

11 ∩Di
12 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 1} ∩Di

#1 ∩Di
11 ∩Di

12 Inadmissible bi can’t be equal to both 1 and 0

Table A-1. modei = 1 combinations

A.1.1 X i ∈ Di
01

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
01,

then according to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),

X i ∈
〈〈
{0, 1}N , Plansi, {0}, {n}, {n}, {n}, {τ in}, {0}, {0}, {0}

〉〉
. If X i ∈ D01, then the jump

map in (3–45) yields (X i)+ ∈
〈〈
{0, 1}N , Plansi, {1}, {n}, {n}, {n}, {τ in}, {0}, {0}, {0}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow sets (3–36)–

(3–39), (X i)+ must be contained in Ci
1. Therefore, there was one jump in null-time. The

possible null-time jump sequences can be visualized in the DAG in Figure A-1.

A.1.2 X i ∈ Di
∗ ∩ {modei = 1} \Di

12

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
∗ ∩

{modei = 1} \ Di
12, then according to the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ in, τ

i
o), [T

i
max,∞), [0,∞), {0}

〉〉
.

If X i ∈ Di
∗ ∩ {modei = 1} \ Di

12 then the jump map in (3–45) yields

(X i)+ ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ in, τ

i
o), {0}, [0,∞), {1}

〉〉
. If (X i)+ ∈
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Combinations Admissibility Reason
Di

∗ ∩ {modei = 2} \ (Di
20 ∪Di

23) Admissible No contradiction
Di

#2 Admissible No contradiction
Di

22 Admissible No contradiction
Di

20 \ (Di
∗ ∪Di

23) Admissible No contradiction
Di

23 \ (Di
∗ ∪Di

20) Admissible No contradiction
(Di

∗ ∩Di
20) \Di

23 Admissible No contradiction
(Di

∗ ∩Di
23) \Di

20 Admissible No contradiction
Di

20 ∩Di
23 \Di

∗ Admissible No contradiction
Di

∗ ∩Di
20 ∩Di

23 Admissible No contradiction
Di

#2 ∩Di
22 Inadmissible T i

2 can’t be both > 0 and ≤ 0

Di
∗ ∩ {modei = 2} ∩Di

#2 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

22 Inadmissible bi can’t be equal to both 1 and 0

Di
#2 ∩Di

20 Inadmissible bi can’t be equal to both 1 and 0

Di
#2 ∩Di

23 Inadmissible bi can’t be equal to both 1 and 0

Di
22 ∩Di

20 Inadmissible bi can’t be equal to both 1 and 0

Di
22 ∩Di

23 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

#2 ∩Di
22 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

#2 ∩Di
20 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

#2 ∩Di
23 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

22 ∩Di
20 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

22 ∩Di
23 Inadmissible bi can’t be equal to both 1 and 0

Di
#2 ∩Di

22 ∩Di
20 Inadmissible bi can’t be equal to both 1 and 0

Di
#2 ∩Di

22 ∩Di
23 Inadmissible bi can’t be equal to both 1 and 0

Di
#2 ∩Di

20 ∩Di
23 Inadmissible bi can’t be equal to both 1 and 0

Di
22 ∩Di

20 ∩Di
23 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

#2 ∩Di
22 ∩Di

20 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

#2 ∩Di
22 ∩Di

23 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

22 ∩Di
20 ∩Di

23 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

#2 ∩Di
20 ∩Di

23 Inadmissible bi can’t be equal to both 1 and 0

Di
#2 ∩Di

22 ∩Di
20 ∩Di

23 Inadmissible bi can’t be equal to both 1 and 0

Di
∗ ∩ {modei = 2} ∩Di

#2 ∩Di
22 ∩Di

20 ∩Di
23 Inadmissible bi can’t be equal to both 1 and 0

Table A-2. modei = 2 combinations
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Figure A-1. Directed acyclic graph for X i ∈ Di
01.

〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ in, τ

i
o), {0}, [0,∞), {1}

〉〉
, then according to the par-

tial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that either

(X)+ ∈ Di
#1 or (X)+ ∈ Di

11.

• If (X)+ ∈ Di
#1 then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {1},R2,R2,R2, [τ in, τ
i
o), {0}, [0,∞), {0}

〉〉
. After this mapping,

the operating mode remains the same (i.e., modei = 1). Then according to Table
A-1, the partial jump sets in (3–44), and the partial flow sets (3–36)–(3–39), it is
only possible for (X i)++ to be contained in Ci

1, since: (X i)++ /∈ Di
∗ ∩ {modei = 1}

because τ itrig = 0 < T i
max; (X i)++ /∈ Di

#1 because bi = 0 ̸= 1; (X i)++ /∈ Di
11 because

bi = 0 ̸= 1; (X i)++ /∈ Di
∗ ∩ {modei = 1} ∩ Di

12 because τ itrig = 0 < T i
max; and since

(X i)++ /∈ Di
12. Since (X i)++ ∈ Ci

1, there were two jumps in null-time.

• If (X)+ ∈ Di
11 then the regularization of the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {1},R2,R2,R2, [τ in, τ
i
o), {0}, [0,∞), {0}

〉〉
. After this mapping, the

operating mode remains the same (i.e., modei = 1). Then according to Table A-1,
the partial jump sets in (3–44), and the partial flow sets (3–36)–(3–39), it is only
possible for (X i)++ to be contained in Ci

1, since: (X i)++ /∈ Di
∗ ∩ {modei = 1}

because τ itrig = 0 < T i
max; (X i)++ /∈ Di

#1 because bi = 0 ̸= 1; (X i)++ /∈ Di
11 because

bi = 0 ̸= 1; (X i)++ /∈ Di
∗ ∩ {modei = 1} ∩ Di

12 because τ itrig = 0 < T i
max; and since

(X i)++ /∈ Di
12. Since (X i)++ ∈ Ci

1, there were two jumps in null-time.

The possible null-time jump sequences can be visualized in the DAG in Figure A-2.
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Figure A-2. Directed acyclic graph for X i ∈ Di
∗ ∩ {modei = 1} \Di

12.

A.1.3 X i ∈ Di
#1

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
#1, then

according to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), X i ∈〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ in,∞), [0,∞), [0,∞), {1}

〉〉
. If X i ∈ Di

#1 then the jump

map in (3–45) yields (X i)+ ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ in,∞), {0}, [0,∞), {1}

〉〉
.

Then according to Table A-1, the partial jump sets in (3–44), and the partial flow sets

(3–36)–(3–39), it is only possible for (X i)+ to be contained in either Ci
1 \ Di

12 or Di
12

since: (X i)+ /∈ Di
∗ ∩ {modei = 1} because τ itrig = 0 < T i

max; (X i)+ /∈ Di
#1 because

bi = 0 ̸= 1; (X i)+ /∈ Di
11 because bi = 0 ̸= 1; and (X i)+ /∈ Di

∗∩{modei = 1}∩Di
12 because

τ itrig = 0 < T i
max.

• If (X i)+ ∈ Ci
1 \Di

12, then there was one jump in null-time.

• If (X i)+ ∈ Di
12, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. Then according to Table
A-2, the partial jump sets in (3–44), and the partial flow sets (3–36)–(3–39), it is
only possible for (X i)++ to be in: Ci

2 \ (Di
20 ∪Di

23), Di
20 \Di

23, Di
23 \Di

20, or Di
20 ∩Di

23

since: (X i)++ /∈ Di
∗ ∩ {modei = 2} because τ itrig = 0 < T i

max; (X i)++ /∈ Di
#2 because
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bi = 0 ̸= 1; (X i)++ /∈ Di
22 because bi = 0 ̸= 1; (X i)++ /∈ Di

∗ ∩ {modei = 2} ∩ Di
20

because τ itrig = 0 < T i
max; (X i)++ /∈ Di

∗ ∩ {modei = 2} ∩Di
23 because bi = 0 ̸= 1; and

(X i)++ /∈ Di
∗ ∩ {modei = 2} ∩Di

20 ∩Di
23 because τ itrig = 0 < T i

max.

– If (X i)++ ∈ Ci
2 \ (Di

20 ∪Di
23), then there were two jumps in null-time.

– If (X i)++ ∈ Di
20 \ Di

23, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)++ ∈ Di

20 \ Di
23, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {0},F∗
in,R2,R2, {0}, {0}, {0}, {1}

〉〉
. For an agent i with

modei = 0, (X i)+++ can either be in Ci
0 \Di

01 or Di
01.

* If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

* If (X i)+++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),
(X i)++++ must be contained in Ci

1. Therefore, there were four jumps in
null-time.

– If (X i)++ ∈ Di
23 \ Di

20, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)++ ∈〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
. If

(X i)++ ∈ Di
23 \ Di

20, then the jump map in (3–45) yields (X i)+++ =〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
. Since modei = 3

and (X i)+++ /∈ Di
30, (X i)+++ must be contained in Ci

3. Since (X i)+++ must be
in Ci

3, there were three jumps in null-time.

– If (X i)++ ∈ Di
20 ∩ Di

23, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)++ ∈ Di

23 ∩ Di
20, then the jump map in (3–45) yields

(X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉
∪〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
.

* If (X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

,
then according to the partial jump sets in (3–44) and the partial
flow sets (3–36)–(3–39), (X i)+++ must be contained in Di

30. Since
(X i)+++ ∈ Di

30 then the jump map in (3–45) yields (X i)++++ ∈〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

. For an agent i
with modei = 0, (X i)++++ can either be in Ci

0 \Di
01 or Di

01.

148



· If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.

· If (X i)++++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

* If (X i)+++ ∈
〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

, then for
an agent i with modei = 0, (X i)+++ can either be in Ci

0 \Di
01 or Di

01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-3.

A.1.4 X i ∈ Di
11

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
11, then

according to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), X i ∈〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ in,∞), [0,∞), [0,∞), {1}

〉〉
. If X i ∈ Di

11 then the jump

map in (3–45) yields (X i)+ ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ in,∞), {0}, [0,∞), {1}

〉〉
.

Then according to Table A-1, the partial jump sets in (3–44), and the partial flow sets

(3–36)–(3–39), it is only possible for (X i)+ to be contained in either Ci
1 \ Di

12 or Di
12

since: (X i)+ /∈ Di
∗ ∩ {modei = 1} because τ itrig = 0 < T i

max; (X i)+ /∈ Di
#1 because

bi = 0 ̸= 1; (X i)+ /∈ Di
11 because bi = 0 ̸= 1; and (X i)+ /∈ Di

∗∩{modei = 1}∩Di
12 because

τ itrig = 0 < T i
max.

• If (X i)+ ∈ Ci
1 \Di

12, then there was one jump in null-time.
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Figure A-3. Directed acyclic graph for X i ∈ Di
#1.
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• If (X i)+ ∈ Di
12, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. Then according to Table
A-2, the partial jump sets in (3–44), and the partial flow sets (3–36)–(3–39), it is
only possible for (X i)++ to be in: Ci

2 \ (Di
20 ∪Di

23), Di
20 \Di

23, Di
23 \Di

20, or Di
20 ∩Di

23

since: (X i)++ /∈ Di
∗ ∩ {modei = 2} because τ itrig = 0 < T i

max; (X i)++ /∈ Di
#2 because

bi = 0 ̸= 1; (X i)++ /∈ Di
22 because bi = 0 ̸= 1; (X i)++ /∈ Di

∗ ∩ {modei = 2} ∩ Di
20

because τ itrig = 0 < T i
max; (X i)++ /∈ Di

∗ ∩ {modei = 2} ∩Di
23 because bi = 0 ̸= 1; and

(X i)++ /∈ Di
∗ ∩ {modei = 2} ∩Di

20 ∩Di
23 because τ itrig = 0 < T i

max.

– If (X i)++ ∈ Ci
2 \ (Di

20 ∪Di
23), then there were two jumps in null-time.

– If (X i)++ ∈ Di
20 \ Di

23, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,F∗
in,F∗

in, [τ
i
o,∞), {0}, [0,∞), {1}

〉〉
. If

(X i)++ ∈ Di
20 \ Di

23, then the jump map in (3–45) yields (X i)+++ ∈〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

. For an agent i with
modei = 0, (X i)+++ can either be in Ci

0 \Di
01 or Di

01.

* If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

* If (X i)+++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),
(X i)++++ must be contained in Ci

1. Therefore, there were four jumps in
null-time.

– If (X i)++ ∈ Di
23 \ Di

20, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)++ ∈〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
. If

(X i)++ ∈ Di
23 \ Di

20, then the jump map in (3–45) yields (X i)+++ =〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
. Since modei = 3

and (X i)+++ /∈ Di
30, (X i)+++ must be contained in Ci

3. Since (X i)+++ must be
in Ci

3, there were three jumps in null-time.

– If (X i)++ ∈ Di
20 ∩ Di

23, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)++ ∈ Di

23 ∩ Di
20, then the jump map in (3–45) yields

(X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉
∪〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
.

* If (X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

,
then according to the partial jump sets in (3–44) and the partial
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flow sets (3–36)–(3–39), (X i)+++ must be contained in Di
30. Since

(X i)+++ ∈ Di
30 then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
. For an agent i

with modei = 0, (X i)++++ can either be in Ci
0 \Di

01 or Di
01.

· If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.

· If (X i)++++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

* If (X i)+++ ∈
〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

, then for
an agent i with modei = 0, (X i)+++ can either be in Ci

0 \Di
01 or Di

01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-4.

A.1.5 X i ∈ Di
12 \Di

∗

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
12 \Di

∗,

then according to the partial jump sets in (3–44) and the partial flow sets (3–36)–

(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ io,∞), [0, T i

max), [0,∞), {0}
〉〉

.

If X i ∈ Di
12 \ Di

∗, then the jump map in (3–45) yields (X i)+ ∈〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), [0, T i

max), [0,∞), {0}
〉〉

. Then according to Ta-

ble A-1, the partial jump sets in (3–44), and the partial flow sets (3–36)–(3–39), it is only

possible for (X i)+ to be contained in Ci
2 \ (Di

20 ∪Di
23), Di

20 \Di
23, Di

23 \Di
20, or Di

20 ∩Di
23

since: (X i)+ /∈ Di
∗ because τ itrig < T i

max; (X i)+ /∈ Di
#2 because bi = 0 ̸= 1; (X i)+ /∈ Di

22
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Figure A-4. Directed acyclic graph for X i ∈ Di
11.
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because bi = 0 ̸= 1; (X i)+ /∈ Di
∗ ∩Di

20 because τ itrig < T i
max; (X i)+ /∈ Di

∗ ∩Di
23 because

τ itrig < T i
max; and (X i)+ /∈ Di

∗ ∩Di
20 ∩Di

23 because τ itrig < T i
max.

• If (X i)+ ∈ Ci
2 \ (Di

20 ∪Di
23), then there was one jump in null-time.

• If (X i)+ ∈ Di
20 \ Di

23, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,F∗
in,F∗

in, [τ
i
o,∞), [0, T i

max), [0,∞), {1}
〉〉

. If
(X i)+ ∈ Di

20 \ Di
23, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
. For an agent i with modei = 0,

(X i)++ can either be in Ci
0 \Di

01 or Di
01.

– If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

– If (X i)++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according to the
partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)+++

must be contained in Ci
1. Therefore, there were three jumps in null-time.

• If (X i)+ ∈ Di
23 \ Di

20, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+ ∈〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ ip,∞), [0, T i

max), [0,∞), {1}
〉〉

. If
(X i)+ ∈ Di

23 \ Di
20, then the jump map in (3–45) yields (X i)++ =〈〈

{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), [0, T i
max), [0,∞), {1}

〉〉
. Since modei = 3

and (X i)++ /∈ Di
30, (X i)++ must be contained in Ci

3. Since (X i)++ must be in Ci
3,

there were two jumps in null-time.

• If (X i)+ ∈ Di
20 ∩ Di

23, then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), [0, T i
max), [0,∞), {1}

〉〉
. If

(X i)+ ∈ Di
23 ∩ Di

20, then the jump map in (3–45) yields (X i)++ ∈〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), [0, T i
max), [0,∞), {1}

〉〉
∪〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
.

– If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), [0, T i
max), [0,∞), {1}

〉〉
,

then according to the partial jump sets in (3–44) and the partial
flow sets (3–36)–(3–39), (X i)++ must be contained in Di

30. Since
(X i)++ ∈ Di

30 then the jump map in (3–45) yields (X i)+++ ∈〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

. For an agent i with
modei = 0, (X i)+++ can either be in Ci

0 \Di
01 or Di

01.

* If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.
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* If (X i)+++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),
(X i)++++ must be contained in Ci

1. Therefore, there were four jumps in
null-time.

– If (X i)++ ∈
〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

, then for an
agent i with modei = 0, (X i)++ can either be in Ci

0 \Di
01 or Di

01.

* If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

* If (X i)++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),
(X i)+++ must be contained in Ci

1. Therefore, there were three jumps in
null-time.

The possible jump sequences can be visualized in the DAG in Figure A-5.

A.1.6 X i ∈ Di
∗ ∩Di

12

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
∗ ∩Di

12,

then according to the partial jump sets in (3–44) and the partial flow sets (3–36)–

(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ io,∞), [T i

max,∞), [0,∞), {0}
〉〉

.

If X i ∈ Di
∗ ∩ Di

12, then the jump map in (3–45) yields

(X i)+ ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}

〉〉
∪〈〈

{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), [T i
max,∞), [0,∞), {0}

〉〉
.

• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {1},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}

〉〉
, then according

to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)+

must be contained in either Di
#1 or Di

11 since bi = 1.

– If X i ∈ Di
#1 then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {1},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. Then according
to Table A-1, the partial jump sets in (3–44), and the partial flow sets (3–36)–
(3–39), it is only possible for (X i)++ to be contained in Di

12 since: (X i)++ /∈
Di

∗ ∩ {modei = 1} because τ itrig = 0 < T i
max; (X i)++ /∈ Di

#1 because bi = 0 ̸= 1;
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Figure A-5. Directed acyclic graph for X i ∈ Di
12 \Di

∗.

(X i)++ /∈ Di
11 because bi = 0 ̸= 1; and (X i)++ /∈ Di

∗ ∩ {modei = 1} ∩ Di
12

because τ itrig = 0 < T i
max. If (X i)++ ∈ Di

12, then the jump map in (3–45) yields
(X i)+++ ∈

〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}

〉〉
. Then

according to Table A-2, the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+++ to be in: Ci

2 \ (Di
20 ∪ Di

23),
Di

20 \ Di
23, Di

23 \ Di
20, or Di

20 ∩ Di
23 since: (X i)+++ /∈ Di

∗ ∩ {modei = 2}
because τ itrig = 0 < T i

max; (X i)+++ /∈ Di
#2 because bi = 0 ̸= 1; (X i)++ /∈ Di

22

because bi = 0 ̸= 1; (X i)+++ /∈ Di
∗ ∩ {modei = 2} ∩ Di

20 because
τ itrig = 0 < T i

max; (X i)+++ /∈ Di
∗ ∩ {modei = 2} ∩ Di

23 because bi = 0 ̸= 1; and
(X i)+++ /∈ Di

∗ ∩ {modei = 2} ∩Di
20 ∩Di

23 because τ itrig = 0 < T i
max.

* If (X i)+++ ∈ Ci
2 \ (Di

20 ∪Di
23), then there were three jumps in null-time.

* If (X i)+++ ∈ Di
20 \ Di

23, then according to the partial jump sets
in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)+++ ∈ Di

20 \ Di
23, then the jump map in (3–45) yields

(X i)++++ ∈
〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

. For
an agent i with modei = 0, (X i)++++ can either be in Ci

0 \Di
01 or Di

01.

· If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.
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· If (X i)++++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

* If (X i)+++ ∈ Di
23 \ Di

20, then according to the partial jump sets
in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+++ ∈〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
. If

(X i)+++ ∈ Di
23 \ Di

20, then the jump map in (3–45) yields
(X i)++++ =

〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
.

Since modei = 3 and (X i)++++ /∈ Di
30, (X i)+++ must be contained in Ci

3.
Since (X i)++++ must be in Ci

3, there were four jumps in null-time.

* If (X i)+++ ∈ Di
20 ∩ Di

23, then according to the partial jump sets
in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)+++ ∈ Di

23 ∩ Di
20, then the jump map in (3–45) yields

(X i)++++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉
∪〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
.

· If (X i)++++ ∈〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

, then
according to the partial jump sets in (3–44) and the partial
flow sets (3–36)–(3–39), (X i)++++ must be contained in Di

30.
Since (X i)++++ ∈ Di

30 then the jump map in (3–45) yields
(X i)+++++ ∈

〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

. For
an agent i with modei = 0, (X i)+++++ can either be in Ci

0 \Di
01 or Di

01.
1) If (X i)+++++ ∈ Ci

0 \Di
01, then there were five jumps in null-time.

2) If (X i)+++++ ∈ Di
01 , then according to the partial

jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)+++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)++++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)++++++ must be contained in Ci

1. Therefore,
there were six jumps in null-time.

* If (X i)++++ ∈
〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

, then
for an agent i with modei = 0, (X i)++++ can either be in Ci

0 \Di
01 or Di

01.

· If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.
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· If (X i)++++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

– If X i ∈ Di
11 then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {1},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. Then according
to Table A-1, the partial jump sets in (3–44), and the partial flow sets (3–36)–
(3–39), it is only possible for (X i)++ to be contained in Di

12 since: (X i)++ /∈
Di

∗ ∩ {modei = 1} because τ itrig = 0 < T i
max; (X i)++ /∈ Di

#1 because bi = 0 ̸= 1;
(X i)++ /∈ Di

11 because bi = 0 ̸= 1; and (X i)++ /∈ Di
∗ ∩ {modei = 1} ∩ Di

12

because τ itrig = 0 < T i
max. If (X i)++ ∈ Di

12, then the jump map in (3–45) yields
(X i)+++ ∈

〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {1}

〉〉
. Then

according to Table A-2, the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+++ to be in: Ci

2 \ (Di
20 ∪ Di

23),
Di

20 \ Di
23, Di

23 \ Di
20, or Di

20 ∩ Di
23 since: (X i)+++ /∈ Di

∗ ∩ {modei = 2}
because τ itrig = 0 < T i

max; (X i)+++ /∈ Di
#2 because bi = 0 ̸= 1; (X i)++ /∈ Di

22

because bi = 0 ̸= 1; (X i)+++ /∈ Di
∗ ∩ {modei = 2} ∩ Di

20 because
τ itrig = 0 < T i

max; (X i)+++ /∈ Di
∗ ∩ {modei = 2} ∩ Di

23 because bi = 0 ̸= 1; and
(X i)+++ /∈ Di

∗ ∩ {modei = 2} ∩Di
20 ∩Di

23 because τ itrig = 0 < T i
max.

* If (X i)+++ ∈ Ci
2 \ (Di

20 ∪Di
23), then there were three jumps in null-time.

* If (X i)+++ ∈ Di
20 \ Di

23, then according to the partial jump sets
in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)+++ ∈ Di

20 \ Di
23, then the jump map in (3–45) yields

(X i)++++ ∈
〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

. For
an agent i with modei = 0, (X i)++++ can either be in Ci

0 \Di
01 or Di

01.

· If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.

· If (X i)++++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.
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* If (X i)+++ ∈ Di
23 \ Di

20, then according to the partial jump sets
in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+++ ∈〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
. If

(X i)+++ ∈ Di
23 \ Di

20, then the jump map in (3–45) yields
(X i)++++ =

〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
.

Since modei = 3 and (X i)++++ /∈ Di
30, (X i)+++ must be contained in Ci

3.
Since (X i)++++ must be in Ci

3, there were four jumps in null-time.

* If (X i)+++ ∈ Di
20 ∩ Di

23, then according to the partial jump sets
in (3–44) and the partial flow sets (3–36)–(3–39) (X i)+++ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)+++ ∈ Di

23 ∩ Di
20, then the jump map in (3–45) yields

(X i)++++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉
∪〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
.

· If (X i)++++ ∈〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

, then
according to the partial jump sets in (3–44) and the partial
flow sets (3–36)–(3–39), (X i)++++ must be contained in Di

30.
Since (X i)++++ ∈ Di

30 then the jump map in (3–45) yields
(X i)+++++ ∈

〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

. For
an agent i with modei = 0, (X i)+++++ can either be in Ci

0 \Di
01 or Di

01.
1) If (X i)+++++ ∈ Ci

0 \Di
01, then there were five jumps in null-time.

2) If (X i)+++++ ∈ Di
01 , then according to the partial

jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)+++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)++++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)++++++ must be contained in Ci

1. Therefore,
there were six jumps in null-time.

· If (X i)++++ ∈
〈〈
{0, 1}N , {rpli}, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {1}
〉〉

,
then for an agent i with modei = 0, (X i)++++ can either be in Ci

0 \Di
01

or Di
01.

1) If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.
2) If (X i)++++ ∈ Di

01 , then according to the partial jump
sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.
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• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), [T i

max,∞), [0,∞), {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), it is only possible for (X i)+ to be in: Di

∗ \ (Di
20 ∪ Di

23), Di
∗ ∩ Di

20 \ Di
23,

Di
∗ ∩ Di

23 \ Di
20, or Di

∗ ∩ Di
20 ∩ Di

23 since: (X i)+ /∈ Di
#2 because bi = 0 ̸= 1;

(X i)+ /∈ Di
22 because bi = 0 ̸= 1; (X i)+ /∈ Di

20 \ (Di
∗ ∪ Di

23) because τ itrig ≥ T i
max;

(X i)+ /∈ Di
23 \ (Di

∗∪Di
20) because τ itrig ≥ T i

max; and (X i)+ /∈ (Di
20∩Di

23)\Di
∗ because

τ itrig ≥ T i
max.

– If (X i)+ ∈ Di
∗ \ (Di

20 ∪ Di
23), then according to the partial

jump sets in (3–44) and the partial flow sets (3–36)–(3–39), X i ∈〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ

i
p), [T

i
max,∞), [0,∞), {0}

〉〉
. If

(X i)+ ∈ Di
∗ \ (Di

20 ∪ Di
23), then the jump map in (3–45) yields

(X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ

i
p), [T

i
max,∞), [0,∞), {1}

〉〉
.

If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ

i
p), [T

i
max,∞), [0,∞), {1}

〉〉
,

then according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that either (X)++ ∈ Di

#2 or (X)+ ∈ Di
22.

* If (X)++ ∈ Di
#2 then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
. Then ac-

cording to Table A-2, the partial jump sets in (3–44), and the partial
flow sets (3–36)–(3–39), it is only possible for (X i)++ to be contained
in Ci

2, since: (X i)+++ /∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23) because

τ itrig = 0 < T i
max; (X i)+++ /∈ Di

#2 because bi = 0 ̸= 1; (X i)+++ /∈ Di
22

because bi = 0 ̸= 1; (X i)+++ /∈ Di
20 \ (Di

∗ ∪ Di
23) because xi ∈ F∁;

(X i)++ /∈ Di
23 \ (Di

∗ ∪Di
20) because τ i < τ ip; (X i)++ /∈ (Di

∗ ∩Di
20) \Di

23 be-
cause τ itrig = 0 < T i

max; (X i)+++ /∈ (Di
∗∩Di

23) \Di
20 because τ itrig = 0 < T i

max;
(X i)+++ /∈ Di

20 ∩Di
23 \Di

∗ because xi ∈ F∁; and (X i)+++ /∈ Di
∗ ∩Di

20 ∩Di
23

because τ itrig = 0 < T i
max. Since (X i)+++ ∈ Ci

2, there were three jumps in
null-time.

* If (X)++ ∈ Di
22 then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
. Then ac-

cording to Table A-2, the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+++ to be contained in Ci

2,
since: (X i)+++ /∈ Di

∗ ∩ {modei = 2} \ (Di
20 ∪Di

23) because τ itrig = 0 < T i
max;

(X i)+++ /∈ Di
#2 because bi = 0 ̸= 1; (X i)+++ /∈ Di

22 because bi = 0 ̸= 1;
(X i)++ /∈ Di

20 \ (Di
∗ ∪Di

23) because xi ∈ F∁; (X i)+++ /∈ Di
23 \ (Di

∗ ∪Di
20)

because τ i < τ ip; (X i)+++ /∈ (Di
∗ ∩ Di

20) \ Di
23 because τ itrig = 0 < T i

max;
(X i)+++ /∈ (Di

∗∩Di
23)\Di

20 because τ itrig = 0 < T i
max; (X i)++ /∈ Di

20∩Di
23\Di

∗

because xi ∈ F∁; and (X i)+++ /∈ Di
∗ ∩Di

20 ∩Di
23 because τ itrig = 0 < T i

max.
Since (X i)+++ ∈ Ci

2, there were three jumps in null-time.

– If (X i)+ ∈ Di
∗ ∩ Di

20 \ Di
23, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)+ ∈
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〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io, τ
i
p), [T

i
max,∞), [0,∞), {0}

〉〉
. If

(X i)+ ∈ (Di
∗ ∩ Di

20) \ Di
23, then the jump map in (3–45) yields

(X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
∪〈〈

{0, 1}N , Plansi, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {0}

〉〉
.

* If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
,

then according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that either (X)+ ∈ Di

#2 or (X)+ ∈ Di
22.

· If (X)++ ∈ Di
#2, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∗
in,R2,R2, [τ io, τ

i
p), {0}, [0,∞), {0}

〉〉
. Then

according to Table A-2, the partial jump sets in (3–44), and the
partial flow sets (3–36)–(3–39), it is only possible for (X i)+++ to be
contained in Di

20, since: (X i)+++ /∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23)

because τ itrig = 0 < T i
max; (X i)+++ /∈ Di

#2 because bi = 0 ̸= 1;
(X i)+++ /∈ Di

22 because bi = 0 ̸= 1; (X i)+++ /∈ Di
23 \ (Di

∗ ∪ Di
20)

because τ i < τ ip; (X i)+++ /∈ (Di
∗ ∩Di

20) \Di
23 because τ itrig = 0 < T i

max;
(X i)+++ /∈ (Di

∗ ∩ Di
23) \ Di

20 because τ itrig = 0 < T i
max; (X i)+++ /∈

Di
20∩Di

23 \Di
∗ because τ i < τ ip; and (X i)+++ /∈ Di

∗∩Di
20∩Di

23 because
τ itrig = 0 < T i

max. If (X i)+++ ∈ Di
20, then the jump map in (3–45) yields

(X i)++++ ∈
〈〈
{0, 1}N , rpli, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

. For an
agent i with modei = 0, (X i)++++ can either be in Ci

0 \Di
01 or Di

01.
1) If (X i)++++ ∈ Ci

0 \Di
01, then there were four jumps in null-time.

2) If (X i)++++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

· If (X)++ ∈ Di
22, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∗
in,R2,R2, [τ io, τ

i
p), {0}, [0,∞), {0}

〉〉
. Then

according to Table A-2, the partial jump sets in (3–44), and the
partial flow sets (3–36)–(3–39), it is only possible for (X i)+++ to be
contained in Di

20, since: (X i)+++ /∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23)

because τ itrig = 0 < T i
max; (X i)+++ /∈ Di

#2 because bi = 0 ̸= 1;
(X i)+++ /∈ Di

22 because bi = 0 ̸= 1; (X i)+++ /∈ Di
23 \ (Di

∗ ∪ Di
20)

because τ i < τ ip; (X i)+++ /∈ (Di
∗ ∩Di

20) \Di
23 because τ itrig = 0 < T i

max;
(X i)+++ /∈ (Di

∗ ∩ Di
23) \ Di

20 because τ itrig = 0 < T i
max; (X i)+++ /∈

Di
20∩Di

23 \Di
∗ because τ i < τ ip; and (X i)+++ /∈ Di

∗∩Di
20∩Di

23 because
τ itrig = 0 < T i

max. If (X i)+++ ∈ Di
20, then the jump map in (3–45) yields
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(X i)++++ ∈
〈〈
{0, 1}N , rpli, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

. For an
agent i with modei = 0, (X i)++++ can either be in Ci

0 \Di
01 or Di

01.
1) If (X i)++++ ∈ Ci

0 \Di
01, then there were four jumps in null-time.

2) If (X i)++++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

* If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)++ ∈ Ci

0 \Di
01 or (X)++ ∈ Di

01.

· If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

· If (X i)++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)+++ must be contained in Ci

1. Therefore, there were three
jumps in null-time.

– If (X i)+ ∈ Di
∗ ∩ Di

23 \ Di
20, then the jump map in (3–45) yields

(X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), [T i
max,∞), [0,∞), {0}

〉〉
.

* If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
,

then according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that either (X)++ ∈ Di

#2 or (X)++ ∈ Di
22.

· If (X)++ ∈ Di
#2, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

. Then
according to Table A-2, the partial jump sets in (3–44), and the
partial flow sets (3–36)–(3–39), it is only possible for (X i)+++ to be
contained in Di

23 \ (Di
∗ ∪ Di

20), since: (X i)+++ /∈ Di
∗ ∩ {modei =

2} \ (Di
20 ∪ Di

23) because τ itrig = 0 < T i
max; (X i)+++ /∈ Di

#2 because
bi = 0 ̸= 1; (X i)+++ /∈ Di

22 because bi = 0 ̸= 1; (X i)+++ /∈
Di

20 \ (Di
∗ ∪ Di

23) because xi ∈ F∁; (X i)+++ /∈ (Di
∗ ∩ Di

20) \ Di
23

because τ itrig = 0 < T i
max; (X i)+++ /∈ (Di

∗ ∩ Di
23) \ Di

20 because
τ itrig = 0 < T i

max; (X i)+++ /∈ Di
20 ∩ Di

23 \ Di
∗ because xi ∈ F∁;
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and (X i)+++ /∈ Di
∗ ∩ Di

20 ∩ Di
23 because τ itrig = 0 < T i

max. If
(X i)+++ ∈ Di

23 \ (Di
∗ ∪ Di

20), then the jump map in (3–45) yields
(X i)++++ ∈

〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

Then according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)++++ to be contained in
Ci

3 since (X i)++++ /∈ Di
30 because xi ∈ F∁. Therefore, there were four

jumps in null-time.

· If (X)++ ∈ Di
22, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

. Then
according to Table A-2, the partial jump sets in (3–44), and the
partial flow sets (3–36)–(3–39), it is only possible for (X i)+++ to be
contained in Di

23 \ (Di
∗ ∪ Di

20), since: (X i)+++ /∈ Di
∗ ∩ {modei =

2} \ (Di
20 ∪ Di

23) because τ itrig = 0 < T i
max; (X i)+++ /∈ Di

#2 because
bi = 0 ̸= 1; (X i)+++ /∈ Di

22 because bi = 0 ̸= 1; (X i)+++ /∈
Di

20 \ (Di
∗ ∪ Di

23) because xi ∈ F∁; (X i)+++ /∈ (Di
∗ ∩ Di

20) \ Di
23

because τ itrig = 0 < T i
max; (X i)+++ /∈ (Di

∗ ∩ Di
23) \ Di

20 because
τ itrig = 0 < T i

max; (X i)+++ /∈ Di
20 ∩ Di

23 \ Di
∗ because xi ∈ F∁;

and (X i)+++ /∈ Di
∗ ∩ Di

20 ∩ Di
23 because τ itrig = 0 < T i

max. If
(X i)+++ ∈ Di

23 \ (Di
∗ ∪ Di

20), then the jump map in (3–45) yields
(X i)++++ ∈

〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

Then according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)++++ to be contained in
Ci

3 since (X i)++++ /∈ Di
30 because xi ∈ F∁. Therefore, there were four

jumps in null-time.

* If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), [T i

max,∞), [0,∞), {0}
〉〉

,
then according to the partial jump sets in (3–44), and the partial flow sets
(3–36)–(3–39), it is only possible for (X i)++ to be contained in Ci

3 since
(X i)++ /∈ Di

30 because xi ∈ F∁. Therefore, there were two jumps in
null-time.

– If (X i)+ ∈ Di
∗ ∩ Di

20 ∩ Di
23, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)+ ∈〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), [T i
max,∞), [0,∞), {0}

〉〉
. If

(X i)+ ∈ Di
∗ ∩ Di

20 ∩ Di
23, then the jump map in (3–45) yields

(X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉
∪〈〈

{0, 1}N , rpli, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {0}

〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), [T i

max,∞), [0,∞), {0}
〉〉

.

* If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

,
then according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that either (X)++ ∈ Di

#2 or (X)+ ∈ Di
22.

163



· If (X)++ ∈ Di
#2, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
. Then

according to Table A-2, the partial jump sets in (3–44), and the
partial flow sets (3–36)–(3–39), it is only possible for (X i)+++ to be
contained in Di

20∩D23 \Di
∗, since: (X i)+++ /∈ Di

∗∩{modei = 2}\ (Di
20∪

Di
23) because τ itrig = 0 < T i

max; (X i)++ /∈ Di
#2 because bi = 0 ̸= 1;

(X i)+++ /∈ Di
22 because bi = 0 ̸= 1; (X i)+++ /∈ Di

∗ ∩ Di
20 \ Di

23

because τ itrig = 0 < T i
max; (X i)+++ /∈ Di

∗ ∩ Di
23 \ Di

20 because
τ itrig = 0 < T i

max; and (X i)+++ /∈ Di
∗∩Di

20∩Di
23 because τ itrig = 0 < T i

max.
If (X i)+++ ∈ Di

20 ∩ D23 \ Di
∗, then the jump map in (3–45) yields

(X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

1) If (X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)+++ ∈ Ci

0 \Di
01 or (X)+++ ∈ Di

01.
1a) If (X i)+++ ∈ Ci

0 \Di
01, then there were three jumps in null-time.

1b) If (X i)+++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.
2) If (X i)+++ ∈〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

, then
according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+++ to be contained
in Di

30. If (X i)+++ ∈ Di
30, then the jump map in (3–45) yields

(X i)++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)++++ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.
2a) If (X i)++++ ∈ Ci

0 \Di
01, then there were four jumps in null-time.

2b) If (X i)++++ ∈ Di
01, then according to the partial

jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

· If (X)++ ∈ Di
22, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , Plansi, {2},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
. Then
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according to Table A-2, the partial jump sets in (3–44), and the
partial flow sets (3–36)–(3–39), it is only possible for (X i)+++ to be
contained in Di

20∩D23 \Di
∗, since: (X i)+++ /∈ Di

∗∩{modei = 2}\ (Di
20∪

Di
23) because τ itrig = 0 < T i

max; (X i)+++ /∈ Di
#2 because bi = 0 ̸= 1;

(X i)+++ /∈ Di
22 because bi = 0 ̸= 1; (X i)+++ /∈ Di

∗ ∩ Di
20 \ Di

23

because τ itrig = 0 < T i
max; (X i)+++ /∈ Di

∗ ∩ Di
23 \ Di

20 because
τ itrig = 0 < T i

max; and (X i)+++ /∈ Di
∗∩Di

20∩Di
23 because τ itrig = 0 < T i

max.
If (X i)+++ ∈ Di

20 ∩ D23 \ Di
∗, then the jump map in (3–45) yields

(X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

1) If (X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)+++ ∈ Ci

0 \Di
01 or (X)+++ ∈ Di

01.
1a) If (X i)+++ ∈ Ci

0 \Di
01, then there were three jumps in null-time.

1b) If (X i)+++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there four two
jumps in null-time.
2) If (X i)+++ ∈〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

, then
according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+++ to be contained
in Di

30. If (X i)+++ ∈ Di
30, then the jump map in (3–45) yields

(X i)++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)++++ ∈ Ci

0 \Di
01 or (X)++++ ∈ Di

01.
2a) If (X i)++++ ∈ Ci

0 \Di
01, then there were four jumps in null-time.

2b) If (X i)++++ ∈ Di
01, then according to the partial

jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

* If (X i)++ ∈
〈〈
{0, 1}N , rpli, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)++ ∈ Ci

0 \Di
01 or (X)++ ∈ Di

01.
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· If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

· If (X i)++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)+++ must be contained in Ci

1. Therefore, there were three
jumps in null-time.

* If (X i)++ ∈〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), [T i
max,∞), [0,∞), {0}

〉〉
,

then according to the partial jump sets in (3–44), and the partial
flow sets (3–36)–(3–39), it is only possible for (X i)++ to be con-
tained in Di

30. If (X i)++ ∈ Di
30, then the jump map in (3–45) yields

(X i)+++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)+++ ∈ Ci

0 \Di
01 or (X)+++ ∈ Di

01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.

The possible jump sequences can be visualized in the DAGs in Figures A-6–A-14.

A.1.7 X i ∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪Di
23)

Suppose that there is a state X such that agent i ∈ A has the state

X i ∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23), then according to the par-

tial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), X i ∈〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ

i
p), [T

i
max,∞), [0,∞), {0}

〉〉
. If X i ∈ Di

∗ ∩

{modei = 2} \ (Di
20 ∪ Di

23), then the jump map in (3–45) yields (X i)+ ∈〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ

i
p), [T

i
max,∞), [0,∞), {1}

〉〉
. If (X i)+ ∈
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Figure A-6. Directed acyclic graph for X i ∈ Di
∗ ∩Di

12. The graph continues to Figures
A-7–A-14.

〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ

i
p), [T

i
max,∞), [0,∞), {1}

〉〉
, then according to the

partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that either

(X)+ ∈ Di
#2 or (X)+ ∈ Di

22.

• If (X)+ ∈ Di
#2 then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
. Then accord-

ing to Table A-2, the partial jump sets in (3–44), and the partial flow sets
(3–36)–(3–39), it is only possible for (X i)++ to be contained in Ci

2, since:
(X i)++ /∈ Di

∗ ∩ {modei = 2} \ (Di
20 ∪ Di

23) because τ itrig = 0 < T i
max; (X i)++ /∈ Di

#2

because bi = 0 ̸= 1; (X i)++ /∈ Di
22 because bi = 0 ̸= 1; (X i)++ /∈ Di

20\(Di
∗∪Di

23) be-
cause xi ∈ F∁; (X i)++ /∈ Di

23 \(Di
∗∪Di

20) because τ i < τ ip; (X i)++ /∈ (Di
∗∩Di

20)\Di
23

because τ itrig = 0 < T i
max; (X i)++ /∈ (Di

∗ ∩ Di
23) \ Di

20 because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
20 ∩Di

23 \Di
∗ because xi ∈ F∁; and (X i)++ /∈ Di

∗ ∩Di
20 ∩Di

23 because
τ itrig = 0 < T i

max. Since (X i)++ ∈ Ci
2, there were two jumps in null-time.

• If (X)+ ∈ Di
22 then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
. Then accord-

ing to Table A-2, the partial jump sets in (3–44), and the partial flow sets
(3–36)–(3–39), it is only possible for (X i)++ to be contained in Ci

2, since:
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Figure A-7. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-6.
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Figure A-8. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-6.

Figure A-9. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-6.

169



Figure A-10. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-6.

Figure A-11. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-6.

170



Figure A-12. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-6.
This graph continues to Figures A-13 and A-14.

Figure A-13. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-12.
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Figure A-14. Continuation of the directed acyclic graph for X i ∈ Di
∗ ∩Di

12 in Figure A-12.

(X i)++ /∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23) because τ itrig = 0 < T i

max; (X i)++ /∈ Di
#2

because bi = 0 ̸= 1; (X i)++ /∈ Di
22 because bi = 0 ̸= 1; (X i)++ /∈ Di

20\(Di
∗∪Di

23) be-
cause xi ∈ F∁; (X i)++ /∈ Di

23 \(Di
∗∪Di

20) because τ i < τ ip; (X i)++ /∈ (Di
∗∩Di

20)\Di
23

because τ itrig = 0 < T i
max; (X i)++ /∈ (Di

∗ ∩ Di
23) \ Di

20 because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
20 ∩Di

23 \Di
∗ because xi ∈ F∁; and (X i)++ /∈ Di

∗ ∩Di
20 ∩Di

23 because
τ itrig = 0 < T i

max. Since (X i)++ ∈ Ci
2, there were two jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-15.

A.1.8 X i ∈ Di
#2

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
#2, then

according to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), X i ∈〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {0}

〉〉
. If X i ∈ Di

#2, then the jump

map in (3–45) yields (X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {0}

〉〉
.

Then according to Table A-2, the partial jump sets in (3–44), and the partial flow sets

(3–36)–(3–39), it is only possible for (X i)+ to be contained in either Di
20 \ (Di

23 ∪ Di
∗),

Di
23 \ (Di

20∪Di
∗), or Di

20∩D23 \Di
∗, since: (X i)+ /∈ Di

∗∩{modei = 2} \ (Di
20∪Di

23) because

τ itrig = 0 < T i
max; (X i)+ /∈ Di

#2 because bi = 0 ̸= 1; (X i)+ /∈ Di
22 because bi = 0 ̸= 1;

(X i)+ /∈ Di
∗ ∩ Di

20 \ Di
23 because τ itrig = 0 < T i

max; (X i)+ /∈ Di
∗ ∩ Di

23 \ Di
20 because

τ itrig = 0 < T i
max; and (X i)+ /∈ Di

∗ ∩Di
20 ∩Di

23 because τ itrig = 0 < T i
max.

• If (X i)+ ∈ Di
20 \ (Di

23 ∪ Di
∗), then according to the par-

tial jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
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Figure A-15. Directed acyclic graph for X i ∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪Di
23).

(X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)+ ∈ Di

20 \ Di
23, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
. For an agent i with modei = 0,

(X i)++ can either be in Ci
0 \Di

01 or Di
01.

– If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

– If (X i)++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according to the
partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)+++

must be contained in Ci
1. Therefore, there were three jumps in null-time.

• If (X i)+ ∈ Di
23 \ (Di

20 ∪Di
∗), then according to the partial jump sets in (3–44), and

the partial flow sets (3–36)–(3–39), it is only possible for (X i)+ to be contained in
Ci

3 since (X i)+ /∈ Di
30 because xi ∈ F∁. Therefore, there was one jump in null-time.

• If (X i)+ ∈ Di
20 ∩ D23 \ Di

∗, then the jump map in (3–45) yields
(X i)++ ∈

〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.
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– If (X i)++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
implies that (X)++ ∈ Ci

0 \Di
01 or (X)++ ∈ Di

01.

* If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

· If (X i)++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)+ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)+++ must be contained in Ci

1. Therefore, there were three
jumps in null-time.

– If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

,
then according to the partial jump sets in (3–44), and the partial
flow sets (3–36)–(3–39), it is only possible for (X i)++ to be con-
tained in Di

30. If (X i)++ ∈ Di
30, then the jump map in (3–45) yields

(X i)+++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
implies that (X)+++ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

* If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

* If (X i)+++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),
(X i)++++ must be contained in Ci

1. Therefore, there were four jumps in
null-time.

The possible jump sequences can be visualized in the DAG in Figure A-16.

A.1.9 X i ∈ Di
22

Suppose that there is a state X such that agent i ∈ A has the state

X i ∈ Di
22, then according to the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {0}

〉〉
.

If X i ∈ Di
22, then the regularization of the jump map in (3–45) yields (X i)+ ∈〈〈

{0, 1}N , Plansi, {2},R2,R2,R2, [τ io,∞), {0}, [0,∞), {0}
〉〉

. Then according to Table A-2,
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Figure A-16. Directed acyclic graph for X i ∈ Di
#2.

the partial jump sets in (3–44), and the partial flow sets (3–36)–(3–39), it is only possible

for (X i)+ to be contained in either Di
20 \ (Di

23 ∪Di
∗), Di

23 \ (Di
20 ∪Di

∗), or Di
20 ∩D23 \Di

∗,

since: (X i)+ /∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23) because τ itrig = 0 < T i

max; (X i)+ /∈ Di
#2

because bi = 0 ̸= 1; (X i)+ /∈ Di
22 because bi = 0 ̸= 1; (X i)+ /∈ Di

∗ ∩ Di
20 \ Di

23

because τ itrig = 0 < T i
max; (X i)+ /∈ Di

∗ ∩ Di
23 \ Di

20 because τ itrig = 0 < T i
max; and

(X i)+ /∈ Di
∗ ∩Di

20 ∩Di
23 because τ itrig = 0 < T i

max.

• If (X i)+ ∈ Di
20 \ (Di

23 ∪ Di
∗), then according to the par-

tial jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+ ∈

〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io,∞), {0}, [0,∞), {1}
〉〉

. If
(X i)+ ∈ Di

20 \ Di
23, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {1}

〉〉
. For an agent i with modei = 0,

(X i)++ can either be in Ci
0 \Di

01 or Di
01.

– If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

– If (X i)++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If
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(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according to the
partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)+++

must be contained in Ci
1. Therefore, there were three jumps in null-time.

• If (X i)+ ∈ Di
23 \ (Di

20 ∪Di
∗), then according to the partial jump sets in (3–44), and

the partial flow sets (3–36)–(3–39), it is only possible for (X i)+ to be contained in
Ci

3 since (X i)+ /∈ Di
30 because xi ∈ F∁. Therefore, there was one jump in null-time.

• If (X i)+ ∈ Di
20 ∩ D23 \ Di

∗, then the jump map in (3–45) yields
(X i)++ ∈

〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

– If (X i)++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
implies that (X)++ ∈ Ci

0 \Di
01 or (X)++ ∈ Di

01.

* If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

· If (X i)++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)+ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)+++ must be contained in Ci

1. Therefore, there were three
jumps in null-time.

* If (X i)++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

,
then according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)++ to be contained in
Di

30. If (X i)++ ∈ Di
30, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. If (X i)+++ ∈〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to the
partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies
that (X)+++ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
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Figure A-17. Directed acyclic graph for X i ∈ Di
#2.

to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-17.

A.1.10 X i ∈ Di
20 \ (Di

∗ ∪Di
23)

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
20 \ (Di

∗ ∪

Di
23), then according to Table A-2, the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io, τ
i
p), [0, T

i
max), [0,∞), {0}

〉〉
.

If X i ∈ Di
20 \ (Di

∗ ∪ Di
23), then the jump map in (3–45) yields

(X i)+ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If (X i)+ ∈〈〈

{0, 1}N , updi, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {0}

〉〉
, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that (X)+ ∈ Ci
0 \ Di

01 or

(X)+ ∈ Di
01.

• If (X i)+ ∈ Ci
0 \Di

01, then there was one jump in null-time.
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Figure A-18. Directed acyclic graph for X i ∈ Di
20 \ (Di

∗ ∪Di
23).

– If (X i)+ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according to
the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)++

must be contained in Ci
1. Therefore, there were two jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-18.

A.1.11 X i ∈ Di
23 \ (Di

∗ ∪Di
20)

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
23 \ (Di

∗ ∪

Di
20), then according to Table A-2, the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), [0, T i

max), [0,∞), {0}
〉〉

.

If X i ∈ Di
23, then the jump map in (3–45) yields (X i)+ ∈〈〈

{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), [0, T i
max), [0,∞), {0}

〉〉
. If (X i)+ ∈ Di

23 \ (Di
∗ ∪Di

20),

then according to the partial jump sets in (3–44), and the partial flow sets (3–36)–

(3–39), it is only possible for (X i)+ to be contained in Ci
3 since (X i)+ /∈ Di

30 because
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Figure A-19. Directed acyclic graph for X i ∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪Di
23).

xi ∈ F∁. Therefore, there was one jump in null-time. The possible jump sequences can

be visualized in the DAG in Figure A-19.

A.1.12 X i ∈ (Di
∗ ∩Di

20) \Di
23

Suppose that there is a state X such that agent i ∈ A has the state

X i ∈ (Di
∗∩Di

20)\Di
23, then according to the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io, τ
i
p), [T

i
max,∞), [0,∞), {0}

〉〉
.

If X i ∈ (Di
∗ ∩ Di

20) \ Di
23, then the jump map in (3–45) yields

(X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
∪〈〈

{0, 1}N , Plansi, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {0}

〉〉
.

• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ io, τ
i
p), {0}, [0,∞), {1}

〉〉
, then according

to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies
that either (X)+ ∈ Di

#2 or (X)+ ∈ Di
22.

– If (X)+ ∈ Di
#2, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},F∗
in,R2,R2, [τ io, τ

i
p), {0}, [0,∞), {0}

〉〉
. Then accord-

ing to Table A-2, the partial jump sets in (3–44), and the partial flow sets
(3–36)–(3–39), it is only possible for (X i)++ to be contained in Di

20, since:
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(X i)++ /∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23) because τ itrig = 0 < T i

max;
(X i)++ /∈ Di

#2 because bi = 0 ̸= 1; (X i)++ /∈ Di
22 because bi = 0 ̸= 1;

(X i)++ /∈ Di
23 \ (Di

∗ ∪ Di
20) because τ i < τ ip; (X i)++ /∈ (Di

∗ ∩ Di
20) \ Di

23

because τ itrig = 0 < T i
max; (X i)++ /∈ (Di

∗ ∩Di
23) \Di

20 because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
20 ∩ Di

23 \ Di
∗ because τ i < τ ip; and (X i)++ /∈ Di

∗ ∩ Di
20 ∩ Di

23

because τ itrig = 0 < T i
max.

* If (X i)++ ∈ Di
20, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , rpli, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {0}

〉〉
. For an agent i with

modei = 0, (X i)+++ can either be in Ci
0 \Di

01 or Di
01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.

– If (X)+ ∈ Di
22, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},F∗
in,R2,R2, [τ io, τ

i
p), {0}, [0,∞), {0}

〉〉
. Then accord-

ing to Table A-2, the partial jump sets in (3–44), and the partial flow sets
(3–36)–(3–39), it is only possible for (X i)++ to be contained in Di

20, since:
(X i)++ /∈ Di

∗ ∩ {modei = 2} \ (Di
20 ∪ Di

23) because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
#2 because bi = 0 ̸= 1; (X i)++ /∈ Di

22 because bi = 0 ̸= 1;
(X i)++ /∈ Di

23 \ (Di
∗ ∪ Di

20) because τ i < τ ip; (X i)++ /∈ (Di
∗ ∩ Di

20) \ Di
23

because τ itrig = 0 < T i
max; (X i)++ /∈ (Di

∗ ∩Di
23) \Di

20 because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
20 ∩ Di

23 \ Di
∗ because τ i < τ ip; and (X i)++ /∈ Di

∗ ∩ Di
20 ∩ Di

23

because τ itrig = 0 < T i
max.

* If (X i)++ ∈ Di
20, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , rpli, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {0}

〉〉
. For an agent i with

modei = 0, (X i)+++ can either be in Ci
0 \Di

01 or Di
01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
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Figure A-20. Directed acyclic graph for X i ∈ (Di
∗ ∩Di

20) \Di
23.

to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.

• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to
the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that
(X)+ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

– If (X i)+ ∈ Ci
0 \Di

01, then there was one jump in null-time.

– If (X i)+ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+ ∈ Di
01, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according to
the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)++

must be contained in Ci
1. Therefore, there were two jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-20.

A.1.13 X i ∈ (Di
∗ ∩Di

23) \Di
20

Suppose that there is a state X such that agent i ∈ A has the state

X i ∈ (Di
∗∩Di

23)\Di
20, then according to the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), [T i

max,∞), [0,∞), {0}
〉〉

.
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If X i ∈ (Di
∗ ∩ Di

23) \ Di
20, then the jump map in (3–45) yields

(X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), [T i
max,∞), [0,∞), {0}

〉〉
.

• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {1}

〉〉
, then according

to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies
that either (X)+ ∈ Di

#2 or (X)+ ∈ Di
22.

– If (X)+ ∈ Di
#2, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

. Then according
to Table A-2, the partial jump sets in (3–44), and the partial flow sets (3–36)–
(3–39), it is only possible for (X i)++ to be contained in Di

23 \ (Di
∗ ∪ Di

20),
since: (X i)++ /∈ Di

∗ ∩ {modei = 2} \ (Di
20 ∪ Di

23) because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
#2 because bi = 0 ̸= 1; (X i)++ /∈ Di

22 because bi = 0 ̸= 1;
(X i)++ /∈ Di

20 \ (Di
∗ ∪ Di

23) because xi ∈ F∁; (X i)++ /∈ (Di
∗ ∩ Di

20) \ Di
23

because τ itrig = 0 < T i
max; (X i)++ /∈ (Di

∗ ∩Di
23) \Di

20 because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
20∩Di

23\Di
∗ because xi ∈ F∁; and (X i)++ /∈ Di

∗∩Di
20∩Di

23 because
τ itrig = 0 < T i

max. If (X i)++ ∈ Di
23 \ (Di

∗ ∪ Di
20), then the jump map in (3–45)

yields (X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

Then according to the partial jump sets in (3–44), and the partial flow sets
(3–36)–(3–39), it is only possible for (X i)+++ to be contained in Ci

3 since
(X i)+++ /∈ Di

30 because xi ∈ F∁. Therefore, there were three jumps in
null-time.

– If (X)+ ∈ Di
22, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

. Then according
to Table A-2, the partial jump sets in (3–44), and the partial flow sets (3–36)–
(3–39), it is only possible for (X i)++ to be contained in Di

23 \ (Di
∗ ∪ Di

20),
since: (X i)++ /∈ Di

∗ ∩ {modei = 2} \ (Di
20 ∪ Di

23) because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
#2 because bi = 0 ̸= 1; (X i)++ /∈ Di

22 because bi = 0 ̸= 1;
(X i)++ /∈ Di

20 \ (Di
∗ ∪ Di

23) because xi ∈ F∁; (X i)++ /∈ (Di
∗ ∩ Di

20) \ Di
23

because τ itrig = 0 < T i
max; (X i)++ /∈ (Di

∗ ∩Di
23) \Di

20 because τ itrig = 0 < T i
max;

(X i)++ /∈ Di
20∩Di

23\Di
∗ because xi ∈ F∁; and (X i)++ /∈ Di

∗∩Di
20∩Di

23 because
τ itrig = 0 < T i

max. If (X i)++ ∈ Di
23 \ (Di

∗ ∪ Di
20), then the jump map in (3–45)

yields (X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

Then according to the partial jump sets in (3–44), and the partial flow sets
(3–36)–(3–39), it is only possible for (X i)+++ to be contained in Ci

3 since
(X i)+++ /∈ Di

30 because xi ∈ F∁. Therefore, there were three jumps in
null-time.
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Figure A-21. Directed acyclic graph for X i ∈ (Di
∗ ∩Di

23) \Di
20

• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {3},F∁,R2,R2, [τ ip,∞), [T i

max,∞), [0,∞), {0}
〉〉

, then
according to the partial jump sets in (3–44), and the partial flow sets (3–36)–
(3–39), it is only possible for (X i)+ to be contained in Ci

3 since (X i)+ /∈ Di
30

because xi ∈ F∁. Therefore, there was one jump in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-21.

A.1.14 X i ∈ Di
20 ∩Di

23 \Di
∗

Suppose that there is a state X such that agent i ∈ A has the state

X i ∈ Di
20 ∩Di

23 \Di
∗, then according to the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), [0, T i
max), [0,∞), {0}

〉〉
.

If X i ∈ (Di
∗ ∩ Di

23) \ Di
20, then the jump map in (3–45) yields

(X i)+ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), [0, T i

max), [0,∞), {0}
〉〉

.

• If (X i)+ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to
the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that
(X)+ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

– If (X i)+ ∈ Ci
0 \Di

01, then there was one jump in null-time.
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Figure A-22. Directed acyclic graph for X i ∈ Di
20 ∩Di

23 \Di
∗ .

* If (X i)+ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+ ∈ Di
01, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),
(X i)++ must be contained in Ci

1. Therefore, there were two jumps in
null-time.

– If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

,
then according to the partial jump sets in (3–44), and the partial
flow sets (3–36)–(3–39), it is only possible for (X i)+ to be con-
tained in Di

30. If (X i)+ ∈ Di
30, then the jump map in (3–45) yields

(X i)++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then accord-
ing to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39)
implies that (X)++ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

* If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.

· If (X i)++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)+++ must be contained in Ci

1. Therefore, there were three
jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-22.
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A.1.15 X i ∈ Di
∗ ∩Di

20 ∩Di
23

Suppose that there is a state X such that agent i ∈ A has the state

X i ∈ Di
∗∩Di

20∩Di
23, then according to the partial jump sets in (3–44) and the partial flow

sets (3–36)–(3–39), X i ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), [T i
max,∞), [0,∞), {0}

〉〉
.

If X i ∈ Di
∗ ∩ Di

20 ∩ Di
23, then the jump map in (3–45) yields

(X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉
∪〈〈

{0, 1}N , rpli, {0},F∗
in,F∗

in,F∗
in, {0}, {0}, {0}, {0}

〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), [T i

max,∞), [0,∞), {0}
〉〉

.

• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {1}
〉〉

, then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies
that either (X)+ ∈ Di

#2 or (X)+ ∈ Di
22.

– If (X)+ ∈ Di
#2, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , Plansi, {2},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
. Then according

to Table A-2, the partial jump sets in (3–44), and the partial flow sets (3–36)–
(3–39), it is only possible for (X i)++ to be contained in Di

20 ∩ D23 \ Di
∗,

since: (X i)++ /∈ Di
∗ ∩ {modei = 2} \ (Di

20 ∪ Di
23) because τ itrig = 0 < T i

max;
(X i)++ /∈ Di

#2 because bi = 0 ̸= 1; (X i)++ /∈ Di
22 because bi = 0 ̸= 1;

(X i)++ /∈ Di
∗ ∩ Di

20 \ Di
23 because τ itrig = 0 < T i

max; (X i)++ /∈ Di
∗ ∩ Di

23 \ Di
20

because τ itrig = 0 < T i
max; and (X i)++ /∈ Di

∗ ∩ Di
20 ∩ Di

23 because
τ itrig = 0 < T i

max. If (X i)++ ∈ Di
20 ∩ D23 \ Di

∗, then the jump map in (3–45)
yields (X i)+++ ∈

〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

* If (X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)+++ ∈ Ci

0 \Di
01 or (X)++ ∈ Di

01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.
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* If (X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

,
then according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+++ to be contained in
Di

30. If (X i)+++ ∈ Di
30, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. If (X i)++++ ∈〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to the
partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies
that (X)++++ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

· If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.

· If (X i)++++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

– If (X)+ ∈ Di
22, then the regularization of the jump map in (3–45) yields

(X i)++ ∈
〈〈
{0, 1}N , Plansi, {2},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

. Then
according to Table A-2, the partial jump sets in (3–44), and the partial
flow sets (3–36)–(3–39), it is only possible for (X i)++ to be contained in
Di

20 ∩ D23 \ Di
∗, since: (X i)++ /∈ Di

∗ ∩ {modei = 2} \ (Di
20 ∪ Di

23) because
τ itrig = 0 < T i

max; (X i)++ /∈ Di
#2 because bi = 0 ̸= 1; (X i)++ /∈ Di

22

because bi = 0 ̸= 1; (X i)++ /∈ Di
∗ ∩ Di

20 \ Di
23 because τ itrig = 0 < T i

max;
(X i)++ /∈ Di

∗ ∩Di
23 \Di

20 because τ itrig = 0 < T i
max; and (X i)++ /∈ Di

∗ ∩Di
20 ∩Di

23

because τ itrig = 0 < T i
max. If (X i)++ ∈ Di

20 ∩ D23 \ Di
∗, then the jump map in

(3–45) yields (X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉
∪〈〈

{0, 1}N , Plansi, {3},F∗
in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}

〉〉
.

* If (X i)+++ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then
according to the partial jump sets in (3–44) and the partial flow sets
(3–36)–(3–39) implies that (X)+++ ∈ Ci

0 \Di
01 or (X)++ ∈ Di

01.

· If (X i)+++ ∈ Ci
0 \Di

01, then there were three jumps in null-time.

· If (X i)+++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–
(3–39), (X i)++++ must be contained in Ci

1. Therefore, there were four
jumps in null-time.
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* If (X i)+++ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), {0}, [0,∞), {0}
〉〉

,
then according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+++ to be contained in
Di

30. If (X i)+++ ∈ Di
30, then the jump map in (3–45) yields (X i)++++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. If (X i)++++ ∈〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to the
partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies
that (X)++++ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

· If (X i)++++ ∈ Ci
0 \Di

01, then there were four jumps in null-time.

· If (X i)++++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

If (X i)++++ ∈ Di
01, then the jump map in (3–45) yields

(X i)+++++ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
.

Then according to the partial jump sets in (3–44) and the partial flow
sets (3–36)–(3–39), (X i)+++++ must be contained in Ci

1. Therefore,
there were five jumps in null-time.

• If (X i)+ ∈
〈〈
{0, 1}N , rpli, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to
the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that
(X)+ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

– If (X i)+ ∈ Ci
0 \Di

01, then there was one jump in null-time.

– If (X i)+ ∈ Di
01 , then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+ ∈ Di
01, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according to
the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)++

must be contained in Ci
1. Therefore, there were two jumps in null-time.

• If (X i)+ ∈
〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), [T i
max,∞), [0,∞), {0}

〉〉
,

then according to the partial jump sets in (3–44), and the partial flow
sets (3–36)–(3–39), it is only possible for (X i)+ to be contained in
Di

30. If (X i)+ ∈ Di
30, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. If (X i)++ ∈〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to the par-
tial jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that
(X)++ ∈ Ci

0 \Di
01 or (X)+ ∈ Di

01.

– If (X i)++ ∈ Ci
0 \Di

01, then there were two jumps in null-time.
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Figure A-23. Directed acyclic graph for X i ∈ Di
∗ ∩Di

20 ∩Di
23. This graph continues to

Figures A-24–A-25.

* If (X i)++ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)++

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)++ ∈ Di
01, then the jump map in (3–45) yields (X i)+++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according
to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39),
(X i)+++ must be contained in Ci

1. Therefore, there were three jumps in
null-time.

The possible jump sequences can be visualized in the DAGs in Figures A-23–A-25.

A.1.16 X i ∈ Di
30

Suppose that there is a state X such that agent i ∈ A has the state X i ∈ Di
30, then

according to the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), X i ∈〈〈
{0, 1}N , Plansi, {3},F∗

in,R2,R2, [τ ip,∞), [0,∞), [0,∞), {0}
〉〉

. If X i ∈ Di
30, then the jump

map in (3–45) yields (X i)+ ∈
〈〈
{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+ ∈
〈〈
{0, 1}N , updi, {0},F∗

in,F∗
in,F∗

in, {0}, {0}, {0}, {0}
〉〉

, then according to the partial

jump sets in (3–44) and the partial flow sets (3–36)–(3–39) implies that (X)+ ∈ Ci
0 \Di

01

or (X)+ ∈ Di
01.
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Figure A-24. Continuation of the directed acyclic graph in Figure A-23.

Figure A-25. Continuation of the directed acyclic graph in Figure A-23.
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Figure A-26. Directed acyclic graph for X i ∈ Di
30.

• If (X i)+ ∈ Ci
0 \Di

01, then there was one jump in null-time.

– If (X i)+ ∈ Di
01, then according to the partial jump

sets in (3–44) and the partial flow sets (3–36)–(3–39)
(X i)+

〈〈
{0, 1}N , {rpli}, {0}, {n}, {n}, {n}, {0}, {0}, {0}, {1}

〉〉
. If

(X i)+++ ∈ Di
01, then the jump map in (3–45) yields (X i)++ ∈〈〈

{0, 1}N , {rpli}, {1}, {n}, {n}, {n}, {0}, {0}, {0}, {1}
〉〉

. Then according to
the partial jump sets in (3–44) and the partial flow sets (3–36)–(3–39), (X i)++

must be contained in Ci
1. Therefore, there were two jumps in null-time.

The possible jump sequences can be visualized in the DAG in Figure A-26.
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APPENDIX B
MATLAB® IMPLEMENTATION OF TARGETREGION

The TargetRegion function can be implemented in MATLAB®, specifically using

the operations for PolyShape objects (i.e., isinterior, convhull, intersect, subtract,

union, and regions) from MATLAB®’s Computational Geometry library. In addition to

this, findPoint(R) is a generic function that takes a polyShape object, representing

a polygon R ⊂ R2, as an input, and outputs a double, represnting a point p ∈ R2

that is contained within R. The MATLAB® implimentation and desciption is now given:

TargetRegion = MakeTargetRegion(BoundingRegion, FeedbackRegion, Uinit) returns

the target region for a given bounding region R, feedback region F , and initial region of

uncertainty U(tuj , t), according to Algorithm 4.1. TargetRegion, BoundingRegion, and

FeedbackRegion are polyshape objects, whereas Uinit (the initial region of uncertainty)

can either be a polyshape object or a double (i.e., when the region of uncertainity is

defined by a single point).

function TargetRegion = MakeTargetRegion(BoundingRegion ,

FeedbackRegion ,Uinit)

if isa(Uinit ,'double ')

B = subtract(BoundingRegion ,FeedbackRegion);

BRegions = regions(B);

[Blength ,~] = size(BRegions);

TargetRegion = BoundingRegion;

for i = 1: Blength

if isinterior(BRegions(j),Uinit)

TargetRegion = subtract(

TargetRegion ,BRegions(j));

end

end
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else

A = subtract(Uinit ,FeedbackRegion);

B = subtract(BoundingRegion ,FeedbackRegion);

ARegions = regions(A);

BRegions = regions(B);

[Alength ,~] = size(ARegions);

[Blength ,~] = size(BRegions);

TargetRegion = BoundingRegion;

for i = 1: Alength

[px ,py] = findPoint(ARegions(i));

for j = 1: Blength

if isinterior(BRegions(j),[px ,

py])

TargetRegion = subtract

(TargetRegion ,

BRegions(j));

end

end

end

end

end
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