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Power control in the Physical Layer of a communication network is used to ensure

that each link achieves its target signal-to-interference- plus-noise ratio (SINR) to effect

communication in the reverse link (uplink) of a wireless cellular communication network.

In cellular systems using direct-sequence code-division multiple access (CDMA), the

SINR depends inversely on the power assigned to the other users in the system, creating

a nonlinear control problem. Due to the spreading of bands in CDMA based cellular

communication networks, the interference in the system is mitigated. The nonlinearity

now arises by the uncertain random phenomena across the radio link, causing detrimental

effects to the signal power that is desired at the base station. Mobility of the terminals,

along with associated random shadowing and multi-path fading present in the radio link,

results in uncertainty in the channel parameters. To quantify these effects, a nonlinear

MIMO discrete differential equation is built with the SINR of the radio-link as the state

to analyze the behavior of the network. Controllers are designed based on analysis of

this networked system, and power updates are obtained from the control law. Analysis is

also provided to examine how mobility and the desired SINR regulation range affects the

choice of channel update times. Realistic wireless network mobility models are used for

simulation and the power control algorithm formulated from the control development is

verified on this mobility model for acceptable communication.
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In the Medium Access Control (MAC) layer of a wireless network that uses Carrier

Sense Multiple Access (CSMA), the performance is limited by collisions that occur

because of carrier sensing delays associated with propagation and the sensing electronics,

and hidden terminals in the network. A continuous-time Markov model is used to analyze

and optimize the performance of a system using CSMA with collisions caused by sensing

delays. The throughput of the network is quantified using the stationary distribution of

the Markov model. An online algorithm is developed for the unconstrained throughput

maximization problem. Further, a constrained problem is formulated and solved using a

numerical algorithm. Simulations are provided to analyze and validate the solution to the

unconstrained and constrained optimization problems.

Network traffic in the transport layer of end-to-end congestion networks plays a vital

role in affecting the throughput in the MAC layer. Common queue length management

techniques on nodes in such networks focus on servicing the packets based on their

Quality of Service (QoS) requirements (e.g., Differentiated-Services, or DiffServ, networks).

In Chapter 4, continuous control strategies are suggested for a DiffServ network to

track the desired ensemble average queue length level in the Premium and Ordinary

Service buffers specified by the network operator. A Lyapunov-based stability analysis

is provided to illustrate global asymptotic tracking of the ensemble average queue length

of the Premium Service buffer. In addition, arrival rate delays due to propagation and

processing that affects the control input of the Ordinary Service buffer is addressed,

and a Lyapunov-based stability analysis is provided to illustrate global asymptotic

tracking of the ensemble average queue length of this service. Simulations demonstrate

the performance and feasibility of the controller, along with showing global asymptotic

tracking of the queue lengths in the Premium Service and Ordinary Service buffers.
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CHAPTER 1
INTRODUCTION

The field of communications faces a multitude of challenges while providing Quality

of Service (QoS) for a broad class of applications. For instance, the mobility of nodes in a

wireless network cause random shifts in the doppler frequencies of the signal that is being

transmitted the node to a receiver node. In addition, due to the presence of obstacles in

the path, scattering of the signal takes place, and the received signal is the summation

of these random phase-shifted multi-path signals. This phenomena is commonly known

as multi-path fading, and various models are developed in the literature to characterize

the phenomena. Various techniques such as power control, adaptive modulation and

coding, symbol mapping diversity, time/space diversity reception etc. are used to mitigate

multi-path fading.

Various transmitter power-control methods have been developed to deliver a desired

quality of service (QoS) in wireless networks [1–20]. Early work on power control

using a centralized approach was investigated in [1], which introduced the concept of

signal-to-interference (SIR)-balancing, where it is desired that all receivers achieve

the same SIR. In [2], the optimal solution to the SIR-balancing problem is derived

by reformulating the problem as an eigenvalue/eigenvector problem and invoking the

Perron-Frobenius theorem. Methods were developed to reduce co-channel interference

for a given channel allocation using transmitter power control in [3] and [5]. In [5], the

performance of optimum transmit-power algorithms are analyzed in terms of outage

probabilities. A stochastic distributed transmit-power approach was also investigated in

[3–5]. These algorithms were framed with only path loss affecting the channel uncertainty.

A distributed autonomous power-control algorithm was introduced in [6], where channel

reuse is maximized. Based on a linear analysis of the system, and constraining the

eigenvalues, the power approaches an optimal power vector. A generalized framework

for uplink power control is provided in [8], where common properties for interference
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constraints are identified. An upper limit for the power was imposed for each user in

the constrained power-control algorithm of [7]. Active link protection (ALP) schemes

were introduced in [11] and [13], where the QoS of active links is maintained above a

threshold limit to protect the link quality. An optimum power controller for multicell

CDMA wireless networks was designed in [12], where the channel was assumed to be

slowly varying without fading.

In [15–20] power control algorithms are designed for systems with radio channel

uncertainties caused by mobility of the user terminals. These channel uncertainties

include exponential path loss, shadowing, and multipath fading, which are modeled as

random variables in the signal-to-interference plus noise ratio (SINR) measurements.

Optimization-based approaches that can provide features such as outage guarantees,

robustness, and power minimization in the presence of fading but that require knowledge

of all channel gains are presented in [15–19]. A distributed power-control scheme was

suggested in [20]; however, the fading process is modeled as slowly changing so that the

channel gain can be accurately estimated, and practical limitations on the transmission

power are not considered.

Multipath fading has the most critical effect on the design of a power-control system

because of the time and amplitude scales. Multipath fading is caused by reflections in

the environment, which cause multiple time-delayed versions of the transmitted signal

to add together at the receiver. The time offsets cause the signals to add with different

phases, and thus multipath fading can change significantly over distance scales as short as

a fraction of a wavelength. For instance, for a system using the 900 MHz cellular band,

the channel coherence time (the time for which the channel is essentially invariant) for a

MT traveling at 30 miles/hour is approximately 10 ms.

To allow the power controller to compensate for fast fading in the channel, channel

prediction may be used. Linear models, referred to as autoregressive moving average

process with exogenous input (ARMAX), were used in [21, 22] for the power-control
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process. In [22], a generalized predictive control method was developed to counter

loop-delay in closed loop DS-CDMA power control. A linear prediction method is used

in [23] to predict a link parameter. A short term fading prediction is done in [24, 25].

Hallen et al. focused on long-range fading prediction [26–28] based on the fact that the

amplitude, frequency and phase of each multipath component vary much slower than the

actual fading coefficient. The focus of Chapter 2 is to develop a SINR-based power-control

algorithm that would reduce the outage probability in the radio link by predicting the

power of the channel. The prediction-based power-control process is developed based on

the evolution of radio-link parameters from the SINR dynamics and the available feedback

SINR measurements.

In Chapter 2, the radio channel characteristics discussed above are analyzed, and

the fading power is predicted and used in the control design. For this purpose, a linear

minimum mean-square error (LMMSE) predictor is used to obtain a reliable prediction of

the fading coefficient at the next instance. In our previous work [29], the predictor used

measurements of the fading process. In practice, only the SINR can be measured directly.

A LMMSE predictor is developed that uses only SINR measurements and estimates of the

Doppler frequency that can be derived from local SINR measurements, inclusive of path

loss and shadowing. The motivation behind using the SINR measurements alone is that

it is not possible to calculate the fading power from the SINR measurements when the

latter is affected by shadowing, path loss, and interference in addition to fast fading. A

Lyapunov-based analysis is performed to provide an ultimate bound on the SINR error,

the size of which can be reduced by choosing appropriate control gains. In addition,

variations in other components of the radio channel such as path loss and log-normal

shadowing are also accounted for using this analysis tool. The controller uses local SINR

measurements [6], [11] from the current and neighboring cells to maintain the SINRs of

MTs in the acceptable communication range, provided channel gains are limited to some

practical region of operation. The real channel gains may be arbitrarily low, in which
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case no power control algorithm can achieve the desired performance due to limits on the

available power. In these cases, the controller may not be able to regulate the SINR into

the desired range, and outage may occur, where the SINR falls too low for acceptable

communication. Simulation is used to assess the performance of the proposed prediction

and power-control algorithm. The effects of the choice of prediction window size and

quantization of the power-control command are assessed. In addition, the performance

is compared with a previously proposed up/down power control algorithm from the

literature [30].

In the Medium Access Control (MAC) layer of a wireless network, collisions due to

transmission of packets by more than one node to the same receiver results in packet drops

at the receiver. Such abberations occur due to the presence of sensing delays in Carrier

Sense Multiple Access (CSMA) networks, and presence of Hidden terminals (HTs) in the

network. In addition, queueing constraints of the packets in the Transport Layer of a

network causes congestion and delays of packets in the node.

There has been a significant effort to model various forms of CSMA protocols over

the past few years [31–33]. Work on MAC layer throughput optimization focuses on

manipulating specific parameters of the MAC layer including, for example, window

sizes and transmission rates, to maximize / optimize the throughput in the presence of

constraints. For example, Carrier Sense Multiple Access (CSMA) Markov chain based

throughput modeling and analysis of the MAC algorithms were introduced in [31, 32],

while performance and throughput analysis of the conventional Binomial exponential

backoff algorithms have been investigated in [34, 35]. In most cases, previous MAC-layer

optimization algorithms have focused primarily on parameters and feedback from the

MAC layer by excluding collisions during the analysis (cf. [31, 33]). In Chapter 3, we

develop a continuous-time Markov model for a system using CSMA that incorporates

the effect of collisions and allows optimization of the transmission rates of the network to

maximize throughput or meet specified throughput targets. The purpose of this work is
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to develop approaches that will be useful in future cross-layer optimization and control

algorithms.

Preliminary work on CSMA throughput modeling and analysis was done in [31]

based on the assumption that the propagation delay between neighboring nodes is zero. A

continuous Markov model was developed that provided the framework and motivation for

this work. In [33], a collision-free model is used to quantify and optimize the throughput

of the network. The feasibility of the arrival rate vector guarantees the reachability

of maximum throughput, which in turn satisfies the constraint that the service rate is

greater than or equal to the arrival rate, assuming that the propagation delay is zero.

In general communication networks, effects of propagation delay play a crucial role in

modeling and analyzing the throughput of the network. Recent efforts attempted various

strategies to include delay models in the throughput model. For example, in [36], delay is

introduced, and is used to analyze and characterize the achievable rate region for static

CSMA schedulers. Collisions, and hence delay is incorporated in [37] in the Markov

model, and the mean transmission length of the packets is used as the control variable to

maximize the throughput. In this dissertation, a model for propagation delay is proposed

and incorporated in the model for throughput. This model allows for the transmission

rates to be selected to maximize throughput in an unconstrained optimization problem

and to meet feasible throughput goals in a constrained optimization problem. In addition,

collisions due to hidden terminals in the network are also modeled and analyzed. Link

throughput is optimized by optimizing the waiting times in the network.

Queue length management in dynamic networks such as the Internet has been a

longstanding research focus. Several queueing network models have been proposed for such

networks to perform congestion control. In [38], a widely used framework was introduced

for modeling the Internet where each flow is associated with a utility function and the

objective is to maximize the aggregate utility subject to link constraints. Thereafter,

in [39] and [40], a review of a class of primal-dual algorithms was performed and design
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guidelines were provided for such algorithms that feature dynamic adaptations at both

ends of a decentralized end-to-end congestion network. An Exponential Random Early

Detection (E-RED) was developed that modifies the standard TCP-Reno and Random

Early Detection (RED) algorithms.

The problem of input traffic based modeling of internet-style networks was addressed

in [41] with an emphasis on queue length evolution and server rate limitations. Multi-service

architectures for the Internet such as IntServ and DiffServ architectures (cf. [42, 43]) have

also been an area of recent interest. These architectures characterize the packets based on

their loss and delay requirements, and hence prioritize based on the QoS needed. Tipper

et. al (cf. [41]) developed differential equation models based on the approximate model of

[44] that describe the behavior of the network by time-varying probability distributions

and a nonlinear differential model for representing the dynamics of the network in terms

of time-varying mean quantities (cf. [41]) for computer networks under nonstationary

conditions. Such models are also known as Fluid Flow Models (FFM).

Control efforts in such FFMs focus on providing queue management services.

Classical linear analysis techniques were employed in [45] for Asynchronous Transfer

Mode (ATM) congestion control problems, and the usage of probabilistic feedback showed

better performance in the sense of reducing steady state oscillations. Analytical models

were introduced for ATM Routing in [46] and control and optimization algorithms were

suggested. A stochastic linear model for flow in networks was studied from a control

theoretic perspective in [47]. Subsequently, in [48–50], linear analysis techniques were

employed for congestion control problems. Adaptive flow controllers for high resource

utilization were developed in [51] and [52]. Nonlinear flow controllers were introduced in

[53–55] for ATM based networks using the framework introduced by [41] and [44]. Most of

these techniques introduced were heuristic with elaborate simulations to demonstrate the

system behavior. An Integrated Dynamic Congestion Controller (IDCC) was developed

in [56] based on adaptive nonlinear control techniques, and Lyapunov-based congestion
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control development was introduced. An ultimately bounded stability result is obtained

by assuming that the derivative of the ensemble average arrival rate is bounded by a finite

constant. A sliding mode variable structure congestion controller was utilized in [57] based

on the FFM. In [58], a second order sliding mode controller was introduced that claimed

that the ensemble average arrival rate for premium service was unknown while using the

same in the controller. Recently, a new class of continuous controllers were developed

that asymptotically stabilizes a class of nonlinear systems in the presence of bounded

sufficiently smooth disturbances (cf. [59, 60]). By using the RISE design approach, a

continuous congestion control strategy is developed in Chapter 4 using only the error

measurements between the actual and the desired ensemble average queue length for

Premium Traffic Service for DiffServ networks. This approach is different from [57] in the

sense that the controller is continuous, and global asymptotic regulation of the ensemble

average queue length in the Premium Service buffer is obtained. The inevitable presence

of delay in the arrival rates due to propagation and processing is addressed in the control

development for Ordinary Services, and global asymptotic regulation of the ensemble

average queue length in the Ordinary Service buffer is obtained.
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CHAPTER 2
POWER CONTROL FOR CELLULAR COMMUNICATIONS WITH

TIME-VARYING CHANNEL UNCERTAINTIES

Power control in a code-division multiple access (CDMA) based cellular network is

a challenging problem because the communication channels change rapidly because of

multipath fading. These rapid fluctuations cause detrimental effects on the control efforts

required to regulate the signal-to-interference plus noise ratios (SINRs) to the desired

level. Thus, there is a need for power-control algorithms that can adapt to rapid changes

in the channel gain caused by multipath fading. Much of the previous work has either

neglected the effects of fast fading, assumed that the fading is known, or assumed that all

the link gains are known. In this chapter, we model the effects of fast fading and develop

practical strategies for robust power control based on SINR measurements in the presence

of the fading. We develop a controller for the reverse link of a CDMA cellular system,

and use a Lyapunov-based analysis to prove that the SINR error is globally uniformly

ultimately bounded. We also utilize a linear prediction filter that utilizes local SINR

measurements and estimates of the Doppler frequency that can be derived from local

SINR measurements to improve the estimate of the channel fading used in the controller.

The power-control algorithm is simulated for a cellular network with multiple cells, and

the results indicate that the controller regulates the SINRs of all the mobile terminals

(MTs) with low outage probability. In addition, a pulse-code-modulation technique is

applied to allow the control command to be quantized for feedback to the transmitter.

Simulation results indicate that the outage probabilities of all the MTs are still within the

acceptable range if at least 3-bit quantization is employed. Comparisons to a standard

algorithm illustrate the improved performance of the predictive controller.
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2.1 Network Model and Properties

We consider the reverse link of a cellular system employing CDMA. The SINR

xi(l) ∈ R is defined (in dB) for each radio link i = 1, 2, ...n, as

xi(l) = 10 log

(
agi(l)Pi(l)

Ii(l)

)
, (2–1)

where l ∈ Z, the function log(·) denotes the base 10 logarithm, gi(l) ∈ R is the channel

gain in the radio link between MT i and the Base Station (BS), Pi(l) ∈ R is the power

transmitted by MT i to the BS, a ∈ R is the bandwidth spreading factor or the processing

gain [61] defined as the ratio of the transmission bandwidth (in Hertz) to the data rate (in

bits/second), and Ii(l) ∈ R is the interference from the MTs in all the cells, defined as

Ii(l) =
∑
j ̸=i

gj(l)Pj(l) + ηi. (2–2)

In (2–2), ηi ∈ R denotes the thermal noise power in link i, which is assumed to be a

constant value greater than zero. Since the noise power is bounded and the interference

power from each MT is less than its transmit power, Ii(·) is non-zero and bounded.

The channel gain gi(l) in (2–1) is modeled as [62]

gi(l) = gd0

(
di(l)

d0

)−κ

100.1δi(l)|Hi(l)|2. (2–3)

In (2–3), gd0 ∈ R is the near-field gain (see [63] for model details). The second factor

in (2–3) is the exponential path loss, which depends on the the distance di(l) ∈ R from

MT i to the BS and the path-loss exponent, κ ∈ R, which typically takes values between

two and five. Exponential path loss holds in a region outside the near-field region (i.e.,

the region satisfying df ≤ d0 ≤ di(l), where df is the Fraunhofer distance). MTs cannot

travel within distance d0 of the BS and only communicate with the BS if they are within

a predetermined radius of coverage, so di(·) is non-zero and bounded within a particular

operating cell. The factors 100.1δi(l) and |Hi(l)|2 in (2–3) are used to model large-scale
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log-normal shadowing (from buildings, terrain, or foliage) and small-scale multipath

fading, respectively.

For analytical purposes, the shadowing is generally modeled as log-normal; i.e.,

δi(l) ∈ R is a Gaussian random process. The fading is often modeled as Rayleigh fading,

where Hi(t) is usually taken to be a zero-mean, complex-valued, wide-sense stationary

Gaussian random process [63], and thus |H(t)| is a Rayleigh random variable for each

t. However, both of these processes are unbounded, which means that any non-negative

channel gain is possible, and hence any received power level is possible. However, gi(l)

cannot take arbitrarily large values in practice because the received power cannot exceed

the transmitted power. Furthermore, a cellular system cannot practically transmit to

overfaded users who are in very deep fades (i.e., when gi(l) is close to zero) because doing

so would require extremely large power at that user and the other users (because the

power transmitted to each user causes interference at the other users) [64]. Hence, the

subsequent control-system development is based on the assumption that the shadowing

gain 100.1δi(l) and fading gain |Hi(·)|2 are both bounded from above and below. However,

the performance is simulated in section 2.5 and section 2.6 for channels that may result

in arbitrarily low signal levels, which may result in the power-control algorithm failing to

regulate the SINR to the desired region.

Understanding how the SINR changes is beneficial for the development and analysis

of the subsequent power-control law. Taking the first difference of (2–1) yields

∆xi(l)

Ts

=
[10 log(agi(l + 1))− 10 log(agi(l))]

Ts

+
ui(l)

Ts

− [10 log(Ii(l + 1))− 10 log(Ii(l))]

Ts

, (2–4)

where Ts is the sampling time of the network, and ui(l) ∈ R denotes an auxiliary control

signal defined ∀i = 1, 2, ...., n as

ui(l) , 10 [log(Pi(l + 1))− log(Pi(l))] , (2–5)
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which is used to determine the power update law. The SINR at the next update interval

xi(l + 1) ∈ R can then be expressed as

xi(l + 1) = ϱi [gi (l + 1) , Ii (l + 1)]− ϱi [gi (l) , Ii (l)] + xi(l) + ui(l), (2–6)

where the functional ϱi ∈ R is defined ∀i = 1, 2, ...., n as

ϱi(yi, zi) = 10 log

(
ayi
zi

)
. (2–7)

2.2 Linear Prediction

The development of a power controller for radio links in a CDMA network is

challenging due to rapid, large scale changes in SINR and is exacerbated by a constraint

that each link’s transmit power is less than some Pmax ∈ R. In this chapter, we attempt

to improve performance by estimating the SINR agi(l + 1)/ Ii(l + 1) to compensate

for the delays in measurement and control. Note that the various channel components

that contribute to the SINR, such as fading and shadowing power and path loss are not

computable from the received SINR, which motivates our design based on the SINR.

Let Xi(·) , gi(l)/Ii(l). We use linear minimum mean-square error (LMMSE)

prediction of Xi(l) given n1 past values, Xi(l − 1), Xi(l − 2), .., Xi(l − n1). The LMMSE

estimator is [65]

X̂i(l) =
l−1∑

m=l−n1

β
(m)
i {Xi(m)− µ}+ µ (2–8)

where the coefficients β
(m)
i depend on the second-order statistics of Xi(l), µ is the mean

of the random process Xi(·) for all l. Let fi , vi
λ
cos θi be the Doppler frequency of MT

i, where vi is the velocity of motion of the MT, θi is the angle between the transmitted

signal and the direction of motion of the MT, and λ is the wavelength of the transmitted

signal. The Doppler frequency of the MT can be estimated from the SINR measurements

(cf. [66]). Let Tp be the prediction observation sampling time, which is selected such that
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it is at least the Nyquist rate, i.e., twice the expected maximum of the Doppler frequencies

of the MTs [28].

For the subsequent design of the predictor, define bi(·) ∈ R for each radio link i that

quantifies the channel without fading, i.e.,

bi(·) =
gd0

(
di(·)
d0

)−κ

100.1δi(·)

Ii(·)
. (2–9)

The β
(m)
i ’s in (2–8) satisfy the orthogonality condition [65]. Defining βi ,

[
β
(l−(n1−1))
i ,

.... ,β
(l)
i

]
and using the orthogonality condition yields

βT
i =



E [bi(l)bi(l − n1)]

×E
[
|Hi(l)|2 |Hi(l − n1)|2

]
...

E [bi(l)bi(l − 1)]

×E
[
|Hi(l)|2 |Hi(l − 1)|2

]



T

Z−1, (2–10)

where Zjk = E [bi(l − (n1 − j))bi(l − (n1 − k)) |Hi(l − (n1 − j))|2 |Hi(l − (n1 − k))|2
]

∀j, k = 1, 2, ...., n1− 1, and we have used the fact that bi(·) is independent of |Hi(·)|2. Here,

E [bi(l − (n1 − j))bi(l − (n1 − k))] = E
[

1

(Ii(l − (n1 − j)))2

]
︸ ︷︷ ︸

,Rd

E

[
gd0

(
di(l − (n1 − j))

d0

)−κ (
100.1δi(l−(n1−j))

)2]
︸ ︷︷ ︸

,RI

, (2–11)

since the numerator in (2–9) is independent of the denominator. RI results from slow

variations in the path loss and shadowing, and hence can be estimated from time averages.

Also, the interference during the duration of the prediction sampling can be treated as

approximately constant [67], which is a reasonable approximation when the spreading

factor is large. Based on these assumptions Rd and RI are approximated as 1.
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The autocovariance function for |Hi(·)|2 is R|Hi|2(lTp) ≈ J2
0 (2πfn (lTp)) [68], [69],

where J0 is the zeroth-order Bessel function of the first kind, and fn is the maximum

Doppler frequency. Therefore, from (2–10),

βT
i =



J2
0 (2πfn (Tpn1))

J2
0 (2πfn (Tp (n1 − 1)))

...

J2
0 (2πfnTp)



T

Z−1, (2–12)

where the components of Z are defined ∀j, k = 1, 2, ...., n1 as

Zjk = Zkj =

 J2
0 (2πfn (Tp |j − k|)) ; j ̸= k

σ|Hi|2 ; j = k
, (2–13)

fn ̸= 0 and σ|Hi|2 is the variance of the random process |Hi(·)|2 for all l. The Doppler

frequency of each MT is measured periodically and this is used to update the coefficients

of the LMMSE estimator. Note that the coefficients of βi in (2–12) are bounded if the

covariance matrix in (2–13) is invertible, which will occur with probability 1 if Tp is less

than the Nyquist rate [28]) and the effect of measurement noise is considered. Thus, the

linear predictor X̂i(·) is bounded.

To summarize the algorithm for calculating the channel estimate, an array of previous

and current SINR measurements are inputs to the linear predictor rather than the fading

power |Hi(l)|2. At every instant, the predictor, based on the available SINR measurements

and the autocorrelation model of fading, gives an estimate X̂i(l) of the quantity Xi(l). In

our implementation, the mean of the variable Xi(l) is calculated from 200 initial samples

of the SINR measurements and the transmitter power used, and taking the weighted

average of 10(0.1xi(m))/ (aPi(m)). The constants βi and Z−1 in (2–12) are calculated from

the autocovariance function for |Hi(·)|2 (and can be calculated offline and stored for a

quantized set of Doppler frequencies). The predicted quantity X̂i(l) in (2–8) is an input to

the controller (refer to section 2.3 and section 2.4 for control development).
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Linear prediction of the fading process requires measurement of the xi(·) at the

current and previous instances; the performance of the predictor can be improved by

increasing the number of measurements n1 used to predict the fading process at instance

l. Practically, as the number of time samples used in the estimator becomes large, the

performance of the predictor does not improve but degrades because the matrix Z

becomes ill conditioned.

2.3 Control Development

2.3.1 Control Objective

The network QoS can be quantified by the ability of the SINR to remain within a

specified operating range with upper and lower limits, γmin, γmax ∈ R for each link defined

∀i = 1, 2, ...., n as

γi,min ≤ xi(l) ≤ γi,max, (2–14)

where γi,min and γi,max depend on the quality-of-service requirements of mobile station i.

Keeping the SINR above the minimum threshold eliminates signal dropout, whereas

remaining below the upper threshold minimizes interference to adjacent cells. The control

objective for the following development is to regulate the SINR to a target value γi ∈ R

such that γi,min ≤ γi ≤ γi,max, while ensuring that the SINR remains between the specified

lower and upper limits for each channel. To quantify this objective, a regulation error

ei(l) ∈ R is defined as

ei(l) = xi(l)− γi, ∀i = 1, 2, ...., n. (2–15)

2.3.2 Closed-Loop Error System

By taking the first difference of (2–15), using (2–3), (2–6), and (2–7), and properties

of the log(·) function, the open-loop error dynamics for each link can be determined as

∆ei(l) = χgi(l + 1)− χgi(l) + ui(l), (2–16)
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where the auxiliary function χgi(·) ∈ R is defined ∀i = 1, 2, ...., n as

χgi(·) = xi(·)− 10 log (aPi(·)) (2–17)

where

√
n∑

i=1

χ2
gi(·) is bounded based on the explanation in section 2.1.

Based on (2–16) and the subsequent stability analysis, the auxiliary power controller

ui(l) is designed as

ui(l) = − (kp + ke) ei(l)− Ŷi(l + 1) + χgi(l), (2–18)

where Ŷi(l + 1) ∈ R is defined ∀i = 1, 2, ...., n as

Ŷi(l + 1) = 10 log
{∣∣∣X̂i(l + 1)

∣∣∣} , (2–19)

and ∣∣∣X̂i(·)
∣∣∣ ̸= 0. (2–20)

where X̂i(·) are given in (2–8), and the prediction observation sampling rate is chosen to

be at least the Nyquist rate for (2–20) to hold. From (2–5), (2–18), and (2–19), the power

update law for each radio channel is obtained ∀i = 1, 2, ...., n as

[Pi(l + 1)]dB = − (kp + ke) ei(l)− 10 log
{
a
∣∣∣X̂i(l + 1)

∣∣∣}+ xi(l). (2–21)

2.4 Stability Analysis

Theorem 1: The power update law in (2–21) ensures that all closed loop signals

are bounded, and that the SINR regulation error approaches an ultimate bound ϵ ∈ R,

which can be decreased with increasing kp in (2–18) up to the maximum power limits and

decreasing the sampling intervals up to practical limits, provided ke in (2–18) is selected as

0 < ke ≤ 1, (2–22)

and γmin and γmax in (2–14) are chosen appropriately.
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Proof. Let V (e, l) : D × [0,∞) → R be a positive definite function defined as

V (e, l) =
n∑

i=1

1

2
e2i (l). (2–23)

Taking the first difference of (2–23), by using the fact that ∆(ab) = a∆b + b∆a + ∆a∆b,

and substituting for (2–16) yields

∆V =
n∑

i=1

ei(l) [χgi(l + 1)− χgi(l) + ui(l)] + ∆e2i (l), (2–24)

where ∆ei(l) is the error between the sampling time for radio link i, and
n∑

i=1

∆e2i (l) is

bounded by a constant c, the size of which can be controlled by the sampling time. An

analysis for this claim can be developed as in [70], though the subsequent simulation

is carried out by choosing a high (and feasible) sampling rate. Substituting (2–18) into

(2–24) yields

∆V ≤
n∑

i=1

− kee
2
i (l) +

√√√√ n∑
i=1

e2i (l)(χgi (l + 1)− Ŷi(l + 1))2 +
n∑

i=1

− kpe
2
i (l) + c. (2–25)

Note that kp is used to damp out
n∑

i=1

(χgi (l + 1) − Ŷi(l + 1))2 in (2–25) while ke is the

proportional gain used by the controller where 0 < ke ≤ 1. By completing the squares and

using (2–23), the inequality in (2–25) can be further upper bounded as

∆V ≤ −keV +
25ς

kp
+ c (2–26)

where ς =
n∑

i=1

(χgi (l + 1) − Ŷi(l + 1))2 is upper bounded by some positive scalar c2, i.e.,

ς ≤ c2 based on the development in section 2.1 and section 2.2. Provided the sufficient

condition in (2–22) is satisfied, Lemma 13.1 of [71] can be invoked to conclude that

V (e, l) ≤ (1− ke)
l V (e(l0), l0) +

(
1− (1− ke)

l

ke

)[
25ς

kp
+ c

]
. (2–27)
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Based on (2–23) and (2–27), an upper bound for the SINR error can be developed as

n∑
i=1

e2i (l) ≤
n∑

i=1

e2i (l0) (1− ke)
l +

(
1− (1− ke)

l

ke

)[
25c2
kp

+ c

]
. (2–28)

The assumption that χgi(l) ∈ L∞, the fact that Ŷi(l) ∈ L∞ from section 2.2., (2–19), and

(2–20), and the fact that ei(l) ∈ L∞ from (2–28) can be used to conclude that ui(l) ∈ L∞

from (2–18), and hence Pi(l + 1) ∈ L∞ from (2–21). Based on (2–28), as l → ∞,

the norm-squared SINR error is ultimately bounded as ϵ ≤ ((25c2) / (kekp)) + (c/ke).

The ultimate bound can be decreased by increasing kp; however, the magnitude of kp is

practically restricted by the constraint that 0 < Pmin ≤ Pi(t) ≤ Pmax, and the sampling

interval Ts.

Based on the power constraint, the stability of the system is guaranteed if the given

SINR thresholds γmin and γmax satisfy the following conditions: γmin ≤ χgmin
+ [Pmax]dB,

and γmax ≥ χgmax + [Pmin]dB, where χgmin
≤ |χgi(t)| ≤ χgmax , ∀i from (2–17) and the

explanation in section 2.1.

The controller is designed based on the stability analysis, that in-turn uses the

nonlinear SINR model defined in (2–6). The bounds on the stochastic uncertainties may

be high, and hence high control gains might be required to stabilize the system. Given

limited available power, the SINR may go outside the thresholds of γmin and γmax. To

validate the performance and hence address the feasibility of the controller, a metric

known as Outage Probability, defined as the probability that the SINR xi(l) goes below

γmin (i.e., xi(l) ≤ γmin), is used. Note that if xi(l) ≥ γmax, the radio link achieves better

performance (lower error rates) for radio i but might increase the interference to other

links. Detailed simulations in section 2.5 and section 2.6 evaluate the performance in

terms of outage probabilities.

2.5 Simulation Results

A cellular network topology using the proposed power-control algorithm was

simulated with one cell of interest and one tier of six adjacent cells in the typical seven-cell
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reuse pattern. Ten MTs were simulated in each cell. The Random-Waypoint model is

used to simulate the mobility of the MTs, with the initial topology drawn from the steady

state (stationary) distribution (cf. [72], [73]). The mobile velocity at each waypoint is

randomly chosen from a uniform distribution between 2 km/hr and 48 km/hr. Thus,

the probability density function of the velocity is given by [73] fi(v) = Ch

v
f 0
V |h(v), where

f 0
V |h(v) = 1

48 km/hr−2 km/hr
= 1

46 km/hr
and Ch = 14.47 is a normalization constant. The

subscript h is used to denote the phase of the MT [73]. The velocity for each of the MTs is

obtained using the inverse transform method [74] as

v = exp (3.179r + 0.6931) , (2–29)

where r is uniformly distributed between 0 and 1. The purpose of the simulation section

is to detail the performance of the controller, and this is done by including the plot of the

worst-case scenario of the radio-link, i.e., when the Doppler frequency is high (refer to

Figure 2-3). The simulations were repeated 10 times (Monte Carlo Simulations) operating

70 MTs (10 MTs in each of the typical seven-cell reuse pattern) in each simulation so

that the data collected for the subsequent analysis is sufficient. Also, each simulation

was carried out with fixed control gains kp and ke. The average value of the outage

probabilities of the MTs operating in each of the four maximum Doppler frequency ranges

are tabulated (refer to Table 2-1) along with the feasible window size for various ranges of

the Doppler frequencies.

Path loss, with free space propagation effects and log-normal shadowing, is modeled

[63] as shown in (2–3). The angle θ is measured periodically, and the Doppler frequency

is obtained from (2–29), which is used to generate the Rayleigh fading and update the

coefficients of the LMMSE predictor. The channel sampling time (Ts) and prediction

observation sampling time (Tp) are both set to 1.7 ms, based on performing a continuous

time SINR error analysis [70]. The target SINR, γ was set to 8 dB, with a desired

operating range between 6 and 10 dB, which is defined in subsection 2.3.1. Thermal noise,
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Figure 2-1. Error, channel gain, and power plot of a MT with maximum Doppler
frequency 1.35 Hz.

η, was set to −83 dBm. The initial power level for all MTs was chosen as 10 dBm. Also,

the prediction window size is updated online to avoid an ill-conditioned matrix Z. Starting

at a specified maximum prediction window size, the size of the window is consecutively

reduced by 1 until detZ ≥ 10−5.

The results in Figs. 2-1-2-4 are obtained with kp = 0.65, ke = 1.3 × 10−4, and the

spreading factor a is chosen as 512, which is the maximum for Wideband CDMA systems.

Note that the same values of the control gains and spreading factor are also used in the

subsequent simulations. The control gains were tuned using simulations with a different

set of random seeds than those used in the performance evaluation. The output of the

linear predictor is limited to X̂max = 47 dB for the reasons explained in section 2.2.

Figure 2-1 shows the SINR error, channel gain and power plots of a MT that

has a maximum Doppler frequency of 1.35 Hz. Note that the Doppler frequencies in

simulations are generated from the aforementioned topology model. A Doppler frequency
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Figure 2-2. Prediction error of the MT with maximum Doppler frequency 1.35 Hz.

Figure 2-3. Error, channel gain, and power plot of a MT with maximum Doppler
frequency 31.60 Hz.
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Figure 2-4. Prediction error of the MT with maximum Doppler frequency 31.60Hz.

of 1.35 Hz represents a MT with low mobility. The prediction error for this MT is shown

in Figure 2-2. Figure 2-1 indicates that the power controller regulates the SINR of the MT

within the desired range (γmin ≤ xi(·) ≤ γmax) with low outage probability. Figure 2-3

shows the SINR error, channel gain and power plots of a MT operating with a maximum

Doppler frequency of 31.60 Hz. A Doppler frequency of 31.60 Hz represents a MT with

high mobility1 . The dotted lines note the regions of deep fades, which result in large

prediction errors, as shown in Figure 2-4. The inaccuracy of the linear predictor and the

limits on maximum transmit power (and, correspondingly, control effort) in the deep faded

zones cause outage at the MT at those times. The SINR of this radio link operating with

1 MTs with higher velocities can rely on time diversity, rather than fading, to operate in
a fading channel.
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Table 2-1. Comparison against various prediction window sizes.

Average % of samples such that xi ≤ γmin

Max. Doppler
frequency
range (Hz)

Best window
size such that
detZ ≥ ζ

Max. Pred.
window
size of 1

Max. Pred.
window
size of 2

Max. Pred.
window
size of 3

Max. Pred.
window
size of 4

0− 10 2 10.62 5.19 − −
10− 20 2, 3 15.62 4.01 6.91 −
20− 30 3 19.94 13.42 7.29 −
30− 40 3, 4 22.98 9.88 7.00 5.07

a maximum Doppler frequency of 31.60 Hz is in the acceptable communication range at all

other times, and the required power is in the implementable range.

Simulations were carried out for prediction-based power-control algorithms with

different prediction window sizes based on the same topology model with ten MTs in a

cell to compare the results. Table 2-1 shows the average % outages for different ranges of

the maximum doppler frequency (cf. [15, 75]) of the MTs when the simulation is carried

out using different prediction window sizes. The average % outages for the MTs were

computed by running 5-10 simulations and classifying the MTs based on their maximum

doppler frequencies (column 1 in Table 2-1). The best window size is the maximum

value of the window size so that the matrix Z is not ill-conditioned (i.e., detZ ≥ ζ),

and the corresponding average % outage is entered in bold. The maximum doppler

frequency is measured frequently (cf. [66] and the references therein), i.e., 400Ts in this

simulation, and the measured values are used to calculate the linear coefficients βm
i ,

∀m = 1, 2, ...., n1 − 1. It can be inferred that these bolded values fall within the threshold

level for voice communications. For voice communications, the typical outage target is

10% [76].

The results in Table 2-2 show the performance of the predictive control algorithm for

different numbers of users per cell. Outage probabilities less than 10% can be achieved for

10, 20, or 40 users per cell. However, the control gain kp must be increased as the number
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Table 2-2. Percentage of sample times experiencing outage for different number of users in
the cell of interest. The control gain kp is tuned for the system based on the
number of users, and ke = 1.3× 10−4. The prediction window sizes are selected
based on the condition detZ ≥ ζ (refer to Table 2-1 for the best window size
selection).

Average % of samples where xi ≤ γmin

Doppler freq. range (Hz) 10 users 20 users 40 users
0− 10 1.3 2.2 2.6
10− 20 2.1 4.1 5.0
20− 30 5.1 6.1 6.7
30− 40 5.5 8.4 9.5
Best kp 0.65 0.7 1

Avg. Transmit Power −16.47 dBm −15.51 dBm −14.75 dBm

of users to achieve this outage probability, and this results in an increase in the average

transmitted power per user.

2.6 Power-Control Mechanism

In practice, the number of bits that can be sent for power updates to the mobile

terminal is limited. Thus, this section considers the design of a power-control mechanism

that selects from a finite set of power adjustments. Various results in the literature focus

on developing quantized power-control algorithms [14, 21, 77]. A power-control algorithm

with a fixed step size was introduced in [14]. Due to the time-varying nature of the

radio channel, the performance of this mechanism is limited. A pulse-code-modulation

realization was developed in [77] to reduce the outage probability by varying the

range of the power updates. In this section, a power-update mechanism based on the

pulse-code-modulation realization is used to update the transmitter power at the mobile

terminal, and the outage probabilities of the radio links are compared with the outage

probabilities without quantization obtained in section 2.5.

The realization of the power-control command is based on the error signal generated

at the BS, as shown in Figure 2-5. The quantization of the error signal is done by

analyzing the probability density function (Figure 2-6) of the worst case unquantized
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Figure 2-5. Uplink power-control mechanism.

error signals (cf. section 2.5), i.e., the radio links operating at the high Doppler frequency.

Note that the probability density function of the error signal e(l) is represented as fE(e).

We assume that a power control command is only issued if the error signal is large.

The presence of a power control command is usually signaled by a separate control

bit (as in IS-95/cdma2000). Thus, for k-bit quantization, 2k + 1 levels can be used,

where one level maps to a zero command. The error is then quantized by partitioning

the empirical density of the error signals that operate at high maximum Doppler

frequencies that are obtained from a separate simulation of the unquantized system

(to avoid over-training), shown in Figure 2-6, into bins of equal probability. The quantized

value of the corresponding control is then defined as the median given that the signal

lies in that bin, as that is found to offer better performance than other measures, such as

the conditional mean. The quantization scheme depends on the number of bits used for
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Figure 2-6. Probability density function of the SINR errors of all the MTs operating at
high (> 25 Hz) maximum Doppler frequencies

quantization. For 3-bit quantization, the quantized error signal (in dB) is given by

upcmi
(l) =



3.18 if ui(l) ∈ (2.08,∞)

1.47 if ui(l) ∈ (1.10, 2.08]

0.77 if ui(l) ∈ (0.44, 1.10]

0.17 if ui(l) ∈ (−0.07, 0.44]

0 if ei(l) ∈ (−0.035, 0.035)

−0.31 if ui(l) ∈ (−0.56,−0.07]

−0.81 if ui(l) ∈ (−1.09,−0.56]

−1.47 if ui(l) ∈ (−1.98,−1.09]

−3.00 if ui(l) ∈ (−∞,−1.98]

. (2–30)
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For 2-bit quantization, the quantized error signal (in dB) is given by

upcmi
(l) =



2.08 if ui(l) ∈ (1.10,∞)

0.44 if ui(l) ∈ (−0.07, 1.10]

0 if ei(l) ∈ (−0.035, 0.035)

−0.56 if ui(l) ∈ (−1.09,−0.07]

−1.98 if ui(l) ∈ (−∞,−1.09]

. (2–31)

The thresholds on the error when no power control command is issued is tuned (to

±0.035dB, in this case) based on repeated simulation of the unquantized system,

quantizing the control signal, simulation of the quantized system, and performance

analysis in terms of outage probability.

Monte Carlo Simulations were carried out on the network topology as described

in section 2.5, using the 2-bit (22 = 4 combinations) and 3-bit (23 = 8 combinations)

quantized error signals to determine the n-bit power control command decision that is

provided to the MT. Results were obtained by first simulating using the unquantized

power controller (i.e., power controller with infinite feedback bandwidth). Another

simulation is carried out by seeding the preceding simulation using the same random

seeds, but now using a 2-bit feedback. Similarly, results are obtained for a 3-bit feedback.

Then, 10 new simulations are executed using the unquantized controller, and the above

mentioned process is repeated for 2-bit and 3-bit feedback. Data is collected, stored and

tabulated in Table 2-3. Table 2-3 shows the average outage probability of the various

schemes (unquantized, 2-bit, and 3-bit power control command) obtained from such

repeated simulations to compare and choose the best (in terms of reducing the outage

probability) possible quantization scheme based on the bandwidth constraints. From

Table 2-3, a 3-bit power control command signal provides performance that falls in

the acceptable region for voice communication, and hence this scheme can be used in

conjunction with the controller to deliver the desired QoS for each radio link. Note that

the control gains kp and ke are fixed throughout the course of the simulations.
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Table 2-3. Percentage of sample times experiencing outage for unquantized, 2-bit and 3-bit
power-control commands.

Average % of samples where xi ≤ γmin

Doppler freq.
range(Hz)

Unquantized
control
command

3-bit
command

2-bit
command

0− 10 1.3 1.4 1.5
10− 20 2.1 2.7 3.8
20− 30 5.1 7.3 11.5
30− 40 5.5 9.8 13.6

We compared the performance of our control algorithm with the up/down power

control algorithm described and analyzed in [30]. The up/down power control algorithm

uses 1-bit feedback to determine whether to adjust the power up or down by a fixed

0.5 dB. We compare the performance of the up/down power controller to the power

control algorithm developed in this chapter both with and without channel prediction.

The results are illustrated in Figure 2-7. The results show that the use of 3-bit feedback

with our control algorithm provides substantial gains over the 1-bit up/down control

algorithm for all mobile velocities. For Doppler frequencies over 10 Hz, the use of channel

prediction provides a significant additional performance gain, especially at high Doppler

frequencies. For instance for mobile radios with Doppler frequencies between 30 Hz and

40 Hz, the up/down power controller has outage probability over 0.22. Using the power

control algorithm developed in this chapter, but without channel prediction, lowers the

outage probability to less than 0.19. The addition of channel prediction further lowers the

outage probability to less than 0.1, thereby satisfying the typical target outage probability

for mobile voice communications. Thus, the benefits of using channel prediction and

multi-bit feedback are demonstrated.
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Figure 2-7. Comparison against Song’s power control algorithm.
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CHAPTER 3
THROUGHPUT MAXIMIZATION IN CSMA NETWORKS

3.1 Throughput Maximization in CSMA Networks with Collisions

In MAC layer of a wireless network that uses CSMA, the performance is limited by

collisions that occur because of carrier sensing delays associated with propagation and the

sensing electronics. In this chapter, a continuous-time Markov model is used to analyze

and optimize the performance of a system using CSMA with collisions caused by sensing

delays. The throughput of the network is quantified using the stationary distribution of

the Markov model. An online algorithm is developed for the unconstrained throughput

maximization problem. Further, a constrained problem is formulated and solved using a

numerical algorithm. Simulations are provided to analyze and validate the solution to the

unconstrained and constrained optimization problems.

3.1.1 Network Model

Consider an infrastructure network, such as a wireless local area network (WLAN),

consisting of an access point and n mobile stations. There are n links connecting the

stations to the AP, as shown in Fig. 3-1. All of the nodes in the network are assumed to

sense the transmissions of all of the other nodes, provided that the transmissions do not

begin within a fixed sensing delay, δTs. If two or more nodes initiate packet transmission

within δTs, there will be a collision, and all of the packets involved in the transmission are

assumed to be lost. In a typical CSMA network, the transmitter of node k backs off for a

random period before it sends a packet to its destination node, if the channel is idle. If the

channel is busy, the transmitter freezes its backoff counter until the channel is idle again.

It is assumed that the backoff time, or the waiting time of each link k is exponentially

distributed with mean 1/Rk. The objective in this chapter is to determine the optimal

values of the mean transmission rates Rk, k = 1, 2, ..., n, so that the throughput in the

network is either maximized (if all of the nodes are assumed to have the same traffic

requirements) or so that the throughput requirements of the nodes are met (if feasible).
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Figure 3-1. A n-link network scenario and conflict graph.

For this purpose, a Markovian model is used, and its states, defined as xi ∈ {0, 1}n,

represents the status of the network where 1 represents an active link, and 0 represents an

idle link. For example, if the kth link in state i is active, then xi
k = 1.

Two sets of indices are defined below for the collision-free transmission states, A, and

the collision states, C:

A =

{
i |

n∑
k=1

xi
k = 1

}
C =

{
i |

n∑
k=1

xi
k > 1

}

where xi
k =

 1 if link k in state i is active,

0 otherwise.

Previous work in this field assumed that the propagation delay between neighboring

nodes is zero (cf. [31, 33]), and hence, the motivation behind this chapter is to maximize

the throughput in the network in the presence of sensing delays, and consequently
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collisions. Although collisions due to hidden terminals are possible, this chapter focuses

on collisions due to sensing delay. Nevertheless, the formulations in this chapter can be

extended to hidden terminals as well using the formulations of the rate of transitions in

[31]. The following section explains the continuous CSMA Markov chain in detail.

3.1.2 CSMA Markov Chain

Formulations of Markov models for capturing the MAC layer dynamics in CSMA

networks were developed in [31, 32]. The stationary distribution of the states and the

balance equations were developed and used to quantify the throughput. Recently, a

continuous time CSMA Markov model without collisions was used in [33] to develop an

adaptive CSMA to maximize throughput. Collisions were introduced in [37] in the Markov

model, and the mean transmission length of the packets are used as the control variable to

maximize the throughput. Since most applications experience random length of packets,

the transmission rates (packets/unit time), Rk, k = 1, 2, ..., n, of the links are used as a

practical measure in this chapter.

The model for the waiting times is based on the CSMA random access protocol. The

probability density function of the waiting time Tk is given by

fTk
(tk) =

 Rk exp(−Rktk) for tk ≥ 0,

0 for tk < 0.
(3–1)

Due to the sensing delay experienced by the nodes in the network, the probability that

link k becomes active within a time duration of δTs from the instant link l becomes active

is

pck , 1− exp (−RkδTs) (3–2)

by the memoryless property of the exponential random variable. Thus, the rate of

transistion Gi to one of the non-collision states in the Markov chain in Fig. 3-2 is defined

as

Gi =
N∑
k=1

(
xi
kRk

∏
l ̸=k

(1− pcl)
(1−xi

l)

)
∀ i ∈ A. (3–3)

42



Figure 3-2. CSMA Markov chain for a 2-link scenario with collision states.

The rate of transistion Gi to one of the collision states is given by

Gi =
N∑
k=1

(
xi
kRk

∏
l ̸=k

(pcl)
xi
l (1− pcl)

(1−xi
l)

)
∀ i ∈ C. (3–4)

The state (1, 1) in Fig. 3-2 represent the collision state, which occurs when a link tries to

transmit within a time span of δTs from the instant another link starts transmitting.

The primary objective of modeling the network as a continuous CSMA Markov chain

is to maximize the probability of being in the collision-free transmission states. For this

purpose, the stationary distribution of the continuous time Markov chain is defined as

p
(
xi
)

, exp (ri)∑
j

exp (rj)
, (3–5)
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where

ri ,



ln


n∑

k=1

(
xi
kRk

∏
l̸=k

(1−pcl)
(1−xil)

)
n∑

k=1
xi
kµk

 for i ∈ A,

n∑
k=1

(
xi
kRk

∏
l̸=k

(pcl)
xil(1−pcl)

(1−xil)
)

min
m:xim ̸=0

(µm)
for i ∈ C,

1 otherwise.

(3–6)

where 1/µi is the mean transmission length of the packets if the network is in one of the

states in set A. The set A , Cc \ (0, 0)T represent the set of all collision-free transmission

state indices, where the elements in the set C represent the collision state indices, and the

elements in the set Cc represent the non-collision state indices. In (3–6), the definitions for

the rate of transitions in (3–3) and (3–4) are used, and (3–5) satisfies the detailed balance

equation (cf. [78]).

3.1.3 Throughput Maximization

To quantify the throughput, a log-likelihood function is defined as the summation

over all the collision-free transmission states as

F (R) ,
∑
i∈A

ln
(
p
(
xi
))

. (3–7)

By using the definition for p (xi) in (3–5), the log-likelihood function can be rewritten as

F (R) =
n∑

k=1

ln

(
Rk

µk

)
− (n− 1)

n∑
k=1

RkδTs − n ln

[
n∑

k=1

Rk

µk

∏
l ̸=k

exp (−RlδTs)

+
∑
i∈C

exp

 1

min
m:xi

m ̸=0
(µm)

N∑
k=1

(
xi
kRk

∏
l ̸=k

(pcl)
xi
l (1− pcl)

(1−xi
l)

)
+exp(1)] . (3–8)

For example, the log-likelihood function in (3–7) for a 2-link scenario can be expressed as
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F (R1, R2) = ln

(
R1

µ1

)
−R2δTs + ln

(
R2

µ2

)
−R1δTs

−2 ln

[
exp

(
ln

(
R1 exp (−R2δTs)

µ1

))
+exp

(
ln

(
R2 exp (−R1δTs)

µ2

))
+ exp

(
1

min (µ1, µ2)

(R1 (1− exp (−R2δTs)) +R2 (1− exp (−R1δTs)))) + exp(1)] .

The function F (R) in (3–8) is concave, since natural logarithms and summation of

concave functions is a concave function (cf. [79]). In addition, F (R) ≤ 0 , since

ln (p (xi)) ≤ 0 from the definition of p (xi) in (3–5). The optimization problem is defined as

max
R

(F (R)) . (3–9)

Taking the partial derivative with respect to Rk in (3–8) yields

∂F (R)

∂Rk

=
1

Rk

− (n− 1) δTs −
n

D

{
1

µk

∏
l ̸=k

exp (−RlδTs)

−

( ∑
m:m̸=k

Rm

µm

∏
l ̸=m,k

exp (−RlδTs)

)
δTs exp (−RkδTs)

+
∑
xi∈C

exp
 1

min
m:xi

m ̸=0
(µm)

N∑
k=1

xi
kRk

∏
l ̸=k

(pcl)
xi
l (1− pcl)

(1−xi
l)


 1

min
m:xi

m ̸=0
(µm)

(
xi
k

∏
l ̸=k

(pcl)
xi
l (1− pcl)

(1−xi
l)

+

( ∑
m:m̸=k

xi
mRm

∏
l ̸=m,k

(pcl)
xi
l (1− pcl)

(1−xi
l)

∂

∂Rk

(
(pck)

xi
k (1− pck)

(1−xi
k)
))))]}

, (3–10)
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k = 1, 2, ..., n− 1, where

D ,
n∑

k=1

exp

ln

Rk

∏
l ̸=k

exp (−RlδTs)

µk




+
∑
i∈C

exp

N∑
k=1

(
xi
kRk

∏
l ̸=k

(pcl)
xi
l (1− pcl)

(1−xi
l)

)
min

m:xi
m ̸=0

(µm)
+ exp(1). (3–11)

An online gradient-based algorithm is used to solve the problem in (3–9). The gradient

law is defined as

lnRk (t+ T ) = lnRk (t) +K
∂F (R)

∂Rk

, (3–12)

k = 1, 2, ..., n − 1, where K ∈ R is the step size, T is the time interval between updates,

and ∂F (R)/∂Rk is defined in (3–10). The calculation of ∂F (R)/∂Rk at the transmitter of

link k is determined as follows. The transmitting node of link k calculates the steady-state

probabilities of the states p (xi) , ∀ i ∈ A every T unit time. The transmitting node of link

k calculates the steady-state probabilities of the collision-free transmission states alone,

since these are sufficient to estimate the mean transmission rates Rm,m ̸= k using (3–5).

For a n-link case, the transmitter of link k needs to solve the following set of independent

nonlinear equations (after manipulations of (3–5)),

Rl exp (−RlδTs) =

(
P (Only link l is active)

exp (−RkδTs)

)(
Rk

P (Only link k is active)

)
, (3–13)

∀l ̸= k. Note that link k can use its current value of the mean transmission rate Rk

to solve (3–13). The value of T can be chosen sufficiently large so that p (xi) , ∀ i ∈ A

can be measured accurately. Further, large T affects identification of the collision-free

transmission states by the transmitter of link k using the Carrier Sense (CS) protocol. The

maximum sensing delay δTs and the mean transmission lengths 1/µk, k = 1, 2, ..., n− 1 are

assumed to be known at all the transmitting nodes. Hence, the algorithm is distributed.

46



In addition to maximizing the log-likelihood function, certain constraints must be

satisfied. The service rate S (R) at each transmitter of a link needs to be equal to the

arrival rate λ, and the chosen mean transmission rates Rk, k = 1, 2, ..., n, need to be

non-negative. Thus, the optimization problem can be formulated as

max
R

(F (R))

subject to

lnλ− lnS (R) = 0, (3–14)

and

R ≥ 0, (3–15)

where R ∈ Rn, S (R) ∈ Rn−1, and λ ∈ Rn−1. The service rate for a link is the rate at

which a packet is transmitted, and is quantified as

Sk(R) ,
exp

(
ln

(
Rk

∏
l̸=k

exp(−RlδTs)

µk

))
D

,

k = 1, 2, ..., n − 1, and D is defined in (3–11). Note that lnλk − lnSk (R) = 0, λk > 0

is concave for all k. The optimization problem defined above is a concave constrained

nonlinear programming problem, and obtaining a analytical solution is difficult. There are

numerical techiques adopted in the literature which have investigated such problems in

detail [79–82]. In this work, a suitable numerical optimization algorithm is employed to

solve the optimization problem defined in (3–9), (3–14), and (3–15).

The following section analyzes the numerical results obtained by solving the

unconstrained problem of (3–9), and compares the mean transmission rates obtained

online from the distributed algorithm of (3–12) with the optimal values. Further,

numerical analysis of the constrained problem defined in (3–9), (3–14), and (3–15) is

performed.
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Figure 3-3. Mean transmission rates of nodes 1, 2, and 3 transmitting to the same node 4.
All nodes are in the sensing region. The online algorithm of (3–9) is used with
T = 100 ms, K = 5, and δTs = 0.001 ms.

3.1.4 Simulation Results

A CSMA platform is developed using MATLAB that uses the standard carrier sense

channel access protocol. A slot time of 10 µs is used, and the mean transmission lengths

of the packets, 1/µk, k = 1, 2, ..., n, are set to 1 ms. An update time of T = 100 ms and

a step size of K = 5 are used. The distributed algorithm in (3–12) is used to generate

the rate updates for each transmitting node k = 1, 2, ..., n − 1. The transmitter of link

k calculates the steady-state distribution of the states p (xi) , ∀ i ∈ A every T unit time,

and estimates the mean transmission rates of the other transmitting nodes Rm,m ̸= k

using (3–13) to calculate (3–10). A nonlinear equation solver (MATLAB built-in function

fzero) can be used to solve (3–13). The mean transmission rate updates can thus be

calculated from (3–12). For a 3-link network with sensing delay of 0.001 ms, the mean

transmission rates convergence is shown in Fig. 3-3.
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The optimal value for the mean transmission rates for a 3-link network is calculated

offline for the unconstrained problem of (3–9) for comparison purposes. The MATLAB

built-in function fminunc is used for this purpose, and the optimal value for the mean

transmission rates were obtained as

R1opt = R2opt = R3opt

= 19.84 dataunits/ms. (3–16)

Fig. 3-3 indicates that mean transmission rates obtained from the online distributed

algorithm of (3–12) converge to the optimal values, defined in (3–16).

The online algorithm (3–12) does not take into account the rate constraint defined

in (3–15). The constrained concave nonlinear programming problem defined in (3–9),

(3–14), and (3–15) is solved by optimizing the mean transmission rates Rk, k = 1, 2, ..., n,

of the transmitting nodes in the network of Fig. 3-1 by a suitable numerical optimization

algorithm. A MATLAB built-in function fmincon is used to solve the optimization

problem by configuring it to use the interior point algorithm (cf. [83, 84]).

Once the mean transmission rates are optimized, they are fixed in a CSMA platform

(developed in MATLAB) that uses the carrier sense channel access protocol. The function

fmincon solves the optimization problem only for a set of feasible arrival rates. A slot

time of 10 µs is used, and the mean transmission lengths of the packets, 1/µk, k =

1, 2, ..., n, are set to 1 ms. Further, a stable (and feasible) set of arrival rates, in the sense

that the queue lengths at the transmitting nodes are stable, are chosen before simulation.

A 2-link collision network is simulated using the platform explained above. The

optimal values of the mean transmission rates, R1 and R2, are obtained and tabulated as

shown in Table 3-1 for different values of the sensing delay δTs. Note that the capacity

of the channel is normalized to 1 dataunit/ms. The mean transmission lengths of the

packets, 1/µ1 = 1/µ2 = 1 ms.
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Table 3-1. Optimal values of the mean transmission rates for a 2-link collision network for
various values of sensing delays. The optimum values of the mean transmission
rates are the solution to the constrained problem defined in (3–9), (3–14), and
(3–15).

Max. Feasible
Arrival Rate

Opt. Mean
TX rate

Sensing
Delay

λ1 λ2 R1 R2

0.001 0.4 0.6 4.15 6.22
0.01 0.39 0.42 6.05 6.49
0.1 0.2 0.39 1.33 2.35

A CSMA system with collisions is implemented in MATLAB. Fig. 3-4 shows the

evolution of the queue lengths of the nodes 1 and 2 (refer to Fig. 3-1) for a sensing delay

of δTs = 0.01 ms. The optimal mean transmission rates (R1 = 6.05 dataunits/ms,

R2 = 6.49 dataunits/ms) are generated by fmincon, and the stable arrival rates of

λ1 = 0.16 dataunits/ms and λ2 = 0.2 dataunits/ms are used.

A 3-link collision network is simulated similarly, and the optimal values of the mean

transmission rates, R1,R2 and R3, are obtained and tabulated as shown in Table 3-2 for

different values of the sensing delay δTs. Fig. 3-5 shows the evolution of queue lengths of

the nodes 1, 2, and 3 (refer to Fig. 3-1) for a sensing delay of δTs = 0.01 ms. The mean

transmission lengths of the packets, 1/µ1 = 1/µ2 = 1/µ3 = 1 ms. The optimal mean

transmission rates (R1 = 6.54 dataunits/ms, R2 = 10.19 dataunits/ms, R3 = 11.49

dataunits/ms) are generated by fmincon, and the stable arrival rates of λ1 = 0.01

dataunits/ms, λ2 = 0.05 dataunits/ms, λ3 = 0.02 dataunits/ms are used.

The simulations are repeated 10 times for each of 2-link and 3-link collision networks,

and the average (arithmetic mean) of the number of collisions is calculated for each case.

Table 3-3 shows the average number of collisions when a set of optimized value of the

mean transmission rates are used. The packet collisions in the network are reduced to less

than 0.2% for the sensing delays listed in the table.
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Figure 3-4. Queue lengths of nodes 1 and 2 transmitting to the same node 3. The
optimum values of the mean transmission rates are the solution to the
constrained problem defined in (3–9), (3–14), and (3–15). All nodes are in the
sensing region. δTs = 0.01 ms, R1 = 6.05 dataunits/ms, R2 = 6.49
dataunits/ms, λ1 = 0.16 dataunits/ms, λ2 = 0.2 dataunits/ms.

Table 3-2. Optimal values of the mean transmission rates for a 3-link collision network for
various values of sensing delays. The optimum values of the mean transmission
rates are the solution to the constrained problem defined in (3–9), (3–14), and
(3–15).

Max. Feasible
Arrival Rate

Opt. Mean
TX rate

Sensing
Delay

λ1 λ2 λ3 R1 R2 R3

0.001 0.22 0.31 0.3 7.31 10.28 9.95
0.01 0.13 0.21 0.24 6.54 10.19 11.49
0.1 0.12 0.12 0.1 2.26 2.26 1.94
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Figure 3-5. Queue lengths of nodes 1, 2, and 3 transmitting to the same node 4. The
optimum values of the mean transmission rates are the solution to the
constrained problem defined in (3–9), (3–14), and (3–15). All nodes are in the
sensing region. δTs = 0.01 ms, R1 = 6.54 dataunits/ms, R2 = 10.19
dataunits/ms, R3 = 11.49 dataunits/ms, λ1 = 0.02 dataunits/ms, λ2 = 0.05
dataunits/ms, λ3 = 0.05 dataunits/ms.

Table 3-3. Average number of collisions for a 2-link and 3-link collision networks for
various values of sensing delays. The optimum values of the mean transmission
rates are the solution to the constrained problem defined in (3–9), (3–14), and
(3–15).

Av. collisions using optimized
Mean TX rates, in %

Sensing
Delay, δTs,

in ms
2-link 3-link

0.001 0.06 0.16
0.01 0.08 0.17
0.1 0.02 0.04
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3.2 Throughput Maximization in CSMA Networks with Collisions and
Hidden Terminals

Two sources of failure in the carrier-sensing mechanism are delays in the carrier

sensing mechanism and hidden terminals, in which an ongoing transmission cannot be

detected at a terminal that wishes to transmit because the path loss from the active

transmitter is large. Collisions due to sensing delays was modeled in Section 3.1. In this

section, the effect of these carrier-sensing failures (both due to sensing mechanism and

hidden terminals) is modeled using a continuous-time Markov model. The throughput of

the network is determined using the stationary distribution of the Markov model. The

throughput is maximized by finding optimal mean transmission rates for the terminals in

the network subject to constraints on successfully transmitting packets at a rate that is at

least as great as the packet arrival rate.

3.2.1 Network Model

Consider an (n+ k)-link network with n + k + 1 nodes as shown in Fig. 3-6, where

network A consists of n links and network B consists of k links. Assume that all nodes

can sense all other nodes in the network. However, there is a sensing delay, so that if two

nodes initiate packet transmission within a time duration of δTs, there will be a collision.

Let (n+ k) denote the total number of links in the network. In a typical CSMA network,

the transmitter of node m backs off for a random period before it sends a packet to its

destination node, if the channel is idle. If the channel is busy, the transmitter freezes its

backoff counter until the channel is idle again. This backoff time, or the waiting time, for

each link m is exponentially distributed with mean 1/Rm. The objective in this chapter is

to determine the optimal values of the mean transmission rates Rm, m = 1, 2, ..., n + k, so

that the throughput in the network is maximized. For this purpose, a Markovian model is

used with states defined as xi : A →{0, 1}n+k, where i ∈ A represents the status of the

network, which takes the value of 1 for an active link and 0 represents an idle link. For

example, if the mth link in state i is active, then xi
m = 1.
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Figure 3-6. An (n+ k)-link network scenario and conflict graph.

Previous work assumes that the propagation delay between neighboring nodes is zero

(cf. [31, 33]). Since propagation delays enable the potential for collisions, there exists

motivation to maximize the throughput in the network in the presence of these delays.

Additionally, collisions due to hidden terminals are possible, and this section captures the

effect of hidden terminals in the CSMA Markov chain described in the following section.

3.2.2 CSMA Markov Chain

Formulations of Markov models for capturing the MAC layer dynamics in CSMA

networks were developed in [31, 32]. The stationary distribution of the states and the

balance equations were developed and used to quantify the throughput. Recently, a

continuous time CSMA Markov model without collisions was used in [33] to develop an

adaptive CSMA to maximize throughput. Collisions were introduced in [37] in the Markov

model, and the mean transmission length of the packets are used as the control variable to

maximize the throughput. Since most applications experience random length of packets,
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Figure 3-7. CSMA Markov chain with collision states for a 3-link network scenario with
hidden terminals.

the transmission rates (packets/unit time), Rm, m = 1, 2, ..., n, provide a a practical

measure.

The model for waiting times is based on the CSMA random access protocol. The

probability density function of the waiting time Tm is given by (3–1). Due to the sensing

delay experienced by the network nodes, the probability that link m becomes active within

a time duration of δTs from the instant link l becomes active is given in (3–2). Thus, the

rate of transition Gi to one of the non-collision states in the Markov chain in Fig. 3-7

is as defined in (3–3). The rate of transition Gi to one of the collision states is given in

(3–4). For example, the state (1, 1, 0) in Fig. 3-7 represents the collision state (for network

A), which occurs when a link tries to transmit within a time span of δTs from the instant

another link starts transmitting.
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The primary objective of modeling the network as a continuous CSMA Markov chain

is that the probability of collision-free transmission needs to be maximized. For this

purpose, the rate ri is defined as

ri ,



ln


n∑

u=1

(
xi
uRu

∏
l ̸=u

(1− pcl)
(1−xi

l)

)
n∑

u=1

xi
uµu

 , i ∈ AT

n∑
u=1

(
xi
uRu

∏
l ̸=u

(pcl)
xi
l (1− pcl)

(1−xi
l)

)
min

m:xi
m ̸=0

(µm)
, i ∈ AC

1, i ∈ AI ,

(3–17)

so that the stationary distribution of the continuous time Markov chain can be defined as

in (3–4) as

p (i) , exp (ri)∑
j

exp (rj)
, (3–18)

where, in (3–17), 1/µm is the mean transmission length of the packets if the network is in

one of the states in set AT in sensing region A. The set AT, Ac

C \ (0, 0)T represents the

set of all collision-free transmission states, where the elements in the set AC represents the

collision states, and the elements in the set Ac
C represents the non-collision states. The set

AI represents the inactive state, i.e., xi = (0, 0, 0). In (3–17), the definitions for the rate of

transitions in (3–3) and (3–4) are used, and (3–18) satisfies the detailed balance equation

(cf. [78]).

In addition, if there are Hidden Terminals (HT) in the network as shown in Fig. 3-7,

then ri can be defined for the sensing region B in a similar way as defined for sensing

region A in (3–17). Let sets BT , BC , and BI represent the collision-free transmission

states, collision states, and the inactive states respectively. Based on the transmission,

collision and idle states of the links in the sensing regions A and B, i belongs to one of the
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combinations of the sets AT , AC , AI , BT , BC , and BI . Therefore (cf. [31]),

ri ,



FAFB, i ∈ AT ∪ BT

GAFB, i ∈ AC ∪ BT

FB, i ∈ AI ∪ BT

FAGB, i ∈ AT ∪ BC

GAGB, i ∈ AC ∪ BC

GB, i ∈ AI ∪ BC

FA, i ∈ AT ∪ BI

GA, i ∈ AC ∪ BI

1, i ∈ AI ∪ BI ,

where

FA , ln


n∑

u=1

(
xi
uRu

∏
l ̸=u

(1− pcl)
(1−xi

l)

)
n∑

u=1

xi
uµu

 ,

GA ,

n∑
u=1

(
xi
uRu

∏
l ̸=k

(pcl)
xi
l (1− pcl)

(1−xi
l)

)
min

m:xi
m ̸=0

(µm)
.

FB and GB can be defined similarly for network B in Fig. 3-6.

3.2.3 Throughput Maximization

To quantify the throughput, a log-likelihood function is defined as the summation

over all the collision-free transmission states as

F (R) ,
∑

i∈(AT∪BI)∪(AI∪BT )

ln (p (i)) . (3–19)

57



By using the definition for p (i) in (3–5), the log-likelihood function in (3–19) can be

rewritten as

F (R) =
n∑

u=1

ln

(
exp

(
ln

(
Ru

µu

)))
− (n− 1)

n∑
u=1

RuδTs

+
k+n∑

v=1+1

ln

(
exp

(
ln

(
Rv

µv

)))
− (k − 1)

k+n∑
v=n+1

RvδTs

− (n+ k) ln

[ ∑
i∈AT∪BT

exp (FAFB) +
∑

i∈AC∪BT

exp (GAFB)

+
∑

i∈AI∪BT

exp (FB) +
∑

i∈AT∪BC

exp (FAGB)

+
∑

i∈AC∪BC

exp (GAGB) +
∑

i∈AI∪BC

exp (GB)

+
∑

i∈AT∪BI

exp (FA) +
∑

i∈AC∪BI

exp (GA) +
∑

i∈AI∪BI

exp (1)

]
. (3–20)

The function F (R) in (3–8) is concave, since natural logarithm and summation of concave

functions is a concave function (cf. [79]). In addition, F (R) ≤ 0 since ln (p (xi)) ≤ 0 from

the definition of p (xi) in (3–18). The optimization problem is defined as

max
R

(F (R)) . (3–21)

In addition to maximizing the log-likelihood function, certain constraints must be satisfied.

The service rate S (R) at each transmitter of a link needs to be equal to the arrival rate λ,

and the chosen mean transmission rates Rk, k = 1, 2, ..., n, need to be non-negative. Thus,

the optimization problem can be formulated as

max
R

(F (R))

subject to

lnλ− lnS (R) = 0, (3–22)

and

R ≥ 0, (3–23)
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where R ∈ Rn, S (R) ∈ Rn−1, and λ ∈ Rn−1. The service rate for a link is the rate at

which a packet is transmitted, and is quantified for sensing region A as

Sm(R) ,
exp

(
ln

(
Rk

∏
l̸=m

exp(−RlδTs)

µm

))
∑
j

exp (rj)
,

m = 1, 2, ..., n − 1, and the denominator is defined in (3–17). Service rates for sensing

region B can be defined similarly. Note that lnλm − lnSm (R) = 0, and λm > 0 is

concave for all m. The optimization problem defined above is a concave constrained

nonlinear programming problem, and obtaining an analytical solution is difficult. There

are numerical techiques adopted in the literature which have investigated such problems in

detail [79–82]. As detailed in Section 3.2.4, a suitable numerical optimization algorithm is

employed to solve the optimization problem defined in (3–21)-(3–23).

3.2.4 Simulation Results

The constrained concave nonlinear programming problem defined in (3–21)-(3–23)

is solved by optimizing the mean transmission rates Rm, m = 1, 2, ..., n + k, of the

transmitting nodes in the network of Fig. 3-6. A MATLAB built-in function fmincon

is used to solve the optimization problem by configuring it to use the interior point

algorithm (cf. [83, 84]).

Once the mean transmission rates are optimized, they are fixed in a simulation

(developed in MATLAB) that uses the CSMA MAC protocol. The function fmincon

solves the optimization problem only for a set of feasible arrival rates. A slot time of 10 µs

is used, and the mean transmission lengths of the packets, 1/µm, m = 1, 2, ..., n + k, are

set to 1 ms. Further, a stable (and feasible) set of arrival rates, in the sense that the queue

lengths at the transmitting nodes are stable, are chosen before the simulation.

The collision network of Fig. 3-6 is simulated using the platform explained above.

The optimal values of the mean transmission rates, R1, R2, and R3, are obtained and

tabulated as shown in Table 3-4 for different values of the sensing delay δTs (Note that
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Table 3-4. Optimal values of the mean transmission rates for a 3-link collision network
with hidden terminals (refer to Fig. 3-7) for various values of sensing delays.
The optimum values of the mean transmission rates are the solution to the
constrained problem defined in (3–21)-(3–23).

Max. Feasible

Arrival Rate

Opt. Mean

TX rate

Sensing

Delay
λ1 λ2 λ3 R1 R2 R3

0.001 0.2 0.2 0.1 3.94 3.94 1.96

0.01 0.18 0.17 0.11 3.78 3.58 2.23

0.1 0.12 0.12 0.1 2.56 2.56 1.65

in the scenario of Fig. 3-6, the sensing delay applies to the nodes in network A). The

capacity of the channel is normalized to 1 dataunit/ms. The mean transmission lengths of

the packets are 1/µ1 = 1/µ2 = 1/µ3 = 1 ms.

A simulation of a CSMA system with collisions is implemented in MATLAB. Fig.

3-8 shows the evolution of the queue lengths of nodes 1, 2, and 4 (refer to Fig. 3-6) for

a sensing delay of δTs = 0.01 ms. The optimal mean transmission rates (R1 = 3.78

dataunits/ms, R2 = 3.58 dataunits/ms, R3 = 2.23 dataunits/ms) are generated by

fmincon, and the stable arrival rates of λ1 = 0.05 dataunits/ms, λ2 = 0.05 dataunits/ms,

and λ3 = 0.01 dataunits/ms are used.
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Figure 3-8. Queue lengths of nodes 1, 2, and 4 transmitting to the same node 3. The
optimum values of the mean transmission rates are the solution to the
constrained problem defined in (3–21)-(3–23). All nodes are in the sensing
region, and δTs = 0.01 ms, R1 = 3.78 dataunits/ms, R2 = 3.58 dataunits/ms,
R3 = 2.23 dataunits/ms, λ1 = 0.02 dataunits/ms, λ2 = 0.05 dataunits/ms,
λ3 = 0.05 dataunits/ms.
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CHAPTER 4
CONGESTION CONTROL FOR DIFFERENTIATED-SERVICES NETWORKS WITH

ARRIVAL-RATE DELAYS

Network packet traffic in the transport layer plays a vital role in affecting the

throughput of Internet-style networks. Common queue length management techniques on

nodes in such networks focus on servicing the packets based on their Quality of Service

(QoS) requirements (e.g., Differentiated-Services, or DiffServ, networks). In this chapter,

continuous control strategies are suggested for a DiffServ network to track the desired

ensemble average queue lengths in multiple queues. A Lyapunov-based stability analysis

is provided to illustrate global asymptotic regulation of the ensemble average queue length

of the Premium Service buffer. In addition, arrival rate delays due to propagation and

processing that affects the control input of the Ordinary Service buffer are addressed,

and a Lyapunov-based stability analysis is provided to illustrate global asymptotic

regulation of the ensemble average queue length of this service. Simulations demonstrate

the performance and feasibility of the controller, along with showing global asymptotic

regulation close to the desired values of the queue lengths in the Premium Service and

Ordinary Service buffers.

4.1 Queuing System Model

DiffServ architectures are examples of high-speed network architectures used in

TCP/IP and ATM technologies. In [56], inspired by [43], the incoming traffic to a node

in a network is classified into Premium Traffic Service, Ordinary Traffic Service, and

Best Effort Traffic Service. Premium Traffic Service is designed for applications such as

video conferencing, audio, and video on demand, which are characterized by stringent

loss and delay constraints. Ordinary Traffic Service have some flexibility in terms of delay

requirements. Examples of such applications include web browsing, email, and ftp. Finally,

Best Effort Traffic Service are designed for the class of applications that do not have any

delay or loss constraints. In this chapter, the control objective is defined for applications

that use Premium Traffic Service and Ordinary Traffic Service (refer to Fig. 4-1).
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Figure 4-1. Schematic of a DiffServ Queueing System.

The subsequent development is based on a Fluid Flow Model (FFM) commonly used

in network performance analysis (cf. [41, 44]). Such models are general, and describe

a wide range of queueing and contention systems (cf. [85–87]). Assuming no packet

drops, the flow conservation principle for a single queue (cf. [41, 56]) is used to define the

evolution of the ensemble average of the queue length, q(t) ∈ R+, in the system as

q̇ = −uG (q) + λ, (4–1)

where q(0) = q0, and G : R+ → [0, 1) is the offered load, also known as the ensemble

average utilization of the queue at time t, and the control input u (t) ∈ R+ is the queue

server capacity. In (4–1), λ (t) ∈ R+ is the ensemble average arrival rate defined as

λ (t) = E [a] ,
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where E [a] denotes the expected value of the arrival rate, a(t) ∈ R+. The queueing

model based on [56] uses M/M/1 (i.e., Markovian input, Markovian output, single

server) assumptions (cf. [41, 44]) to obtain the ensemble average queue length evolution.

In addition, the presence of possible delays (cf. [88–90]) in the arrival rates to the

Premium Service, and more critically the Ordinary Service buffers will affect the control

significantly. Such delays arise due to processing and propagation (for instance, the IDCC

scheme in [56] can potentially cause delays). In this work, we address time-varying arrival

rate delays; hence, the ensemble average queue length evolution can be expressed as

q̇i = −ui

(
qi

1 + qi

)
+ λi (t− τi (t)) , (4–2)

where i ∈ {p, r} and subscripts p and r represent Premium Service and Ordinary Service

respectively. It is assumed that 0 ≤ τr (t) ≤ τrmax , and |τ̇r (t)| ≤ τ drmax
< 1, where

τrmax and τ drmax
are known positive constants. The assumption for τ̇r(t) indicates that

the time-delay must be slowly time-varying. It is also assumed that |τ̇p (t)| ≤ τ dpmax
and

|τ̈p (t)| ≤ τ dpmax
, where τpmax and τ dpmax

are known positive constants. The model in (4–2)

is valid for 0 ≤ qi (t) ≤ qbuffer size and 0 ≤ u(t) ≤ userver, where qbuffer size is the maximum

possible queue size, and userver is the maximum allowable server rate.

4.2 Premium Service

The unknown average arrival rate of the Poisson arrival process is denoted by λa
p (t) ,

λp (t− τp (t)) ∈ R+, and up (t) ∈ R+ is the queue server capacity that acts as the control

variable. It is assumed that ∀t, λa
p (t) is upper bounded by the allowable rate for incoming

Premium Traffic, denoted by λa
pmax

, which in-turn is bounded by userver [56]. In addition

to λp (t) being bounded, its first and second derivatives are assumed to be bounded [56].

Since τ̇p (t) and τ̈p (t) are assumed to be bounded, the first and second time derivatives of

λa
p (t) can be bounded from its definition as∣∣∣λ̇a

p

∣∣∣ ≤ ζλ̇a
p
,

∣∣∣λ̈a
p

∣∣∣ ≤ ζλ̈a
p
. (4–3)
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4.2.1 Control Design

To facilitate the subsequent analysis of the queueing system, an ensemble average

queue length error ep (t) ∈ R is defined as

ep , qp − qpd , (4–4)

where qpd (t) ∈ R is the desired ensemble average queue length provided by the network

operator. It is assumed that the first and second derivatives of the desired ensemble

average queue length are known and bounded [56]. To facilitate the subsequent analysis, a

filtered tracking error is defined as

rp , ėp + αpep, (4–5)

where αp ∈ R+ denotes a constant control gain. The filtered tracking error is only

introduced to facilitate the subsequent analysis and is not assumed to measurable. Taking

the time derivative of (4–4) and using (4–5) yields

rp = q̇p − q̇pd + αep

= −up

(
qp

1 + qp

)
+ λa

p (t)− q̇pd + αep. (4–6)

From M/M/1 queueing formulas, the ensemble average utilization of the queue is defined

as G (qp) , qp/ (1 + qp) and is assumed to be known (cf. [56, 57]). Hence, the control law

for premium service is defined as

up ,
(

qp
1 + qp

)−1

µ, (4–7)

where µ (t) is a subsequently designed auxiliary controller. After substituting (4–7) into

(4–6), the filtered tracking error can be rewritten as

rp = −µ+ λa
p (t)− q̇pd + αep. (4–8)

65



To facilitate the design of µ (t), the time derivative of (4–8) is obtained as

ṙp = −µ̇+ λ̇a
p (t)− q̈pd + αėp. (4–9)

Based on (4–9) and the subsequent stability analysis, the auxiliary control term µ(t) is

defined as

µ , q̇pd (0)− q̇pd (t) + ν, (4–10)

where ν (ep) ∈ R is the Filippov solution to the following differential equation

ν̇ = (kp1 + kp2 + αp) rp + βsgn (ep) + ep, v (0) = 0, (4–11)

where kp, β ∈ R+ are constant control gains. The existence of solutions can be established

using Filippov theory of differential inclusions (cf. [91–94]) for ν̇ ∈ K [h] (ep, rp, t) where

h (ep, rp, t) ∈ R is defined in the right-hand side of ν̇ in (4–11), and

K [h] ,
∩
δ>0

∩
µSm=0

coh (B (v, δ)− Sm) ,

where
∩

µSm=0

denotes the intersection of all sets Sm of Lebesgue measure zero, co denotes

convex closure, and B (v, δ) denotes the open ball of radius δ around v.

The closed-loop error system is obtained by substituting the time derivative of (4–10)

into (4–9) as

ṙp = λ̇a
p (t)− ((kp1 + kp2 + αp) rp + βsgn (ep) + ep) + αėp. (4–12)

4.2.2 Stability Analysis

Theorem 4.1: The controller designed in (4–7) and (4–11) ensures global asymptotic

ensemble average queue length regulation in the Premium Service buffer provided the

control gains are selected according to the sufficient conditions

kp2 >
α2
p

2
, αp < 2, (4–13)
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and

β > ζλ̇a
p
+

1

α
ζλ̈a

p
, (4–14)

where ζλ̇a
p
and ζλ̈a

p
are introduced in (4–3).

Proof. Let yp(t) ∈ R3 be defined as yp(t) ,
[
zTp (t)

√
P

]T
where zp(t) ∈ R2 is defined as

zp(t) ,
[
ep (t) rp (t)

]T
, and the auxiliary function P (ep, t) ∈ R is the Filippov solution

to the following differential equation

Ṗ (t) = −rp

(
λ̇a
p − βsgn (ep)

)
, (4–15)

P (ep (t0) , t0) = β |ep (0)| − ep (0) λ̇
a
p (0) . (4–16)

Existence of solutions for P (ep, t) can be established using Filippov theory of differential

inclusions in a manner similar to the development in (4–11). Provided the sufficient

condition in (4–14) is satisfied, the condition that P (t) ≥ 0 can be proven (refer to

Appendix C). Let Va (yp, t) : R3× [0,∞) → R be a regular and a continuously differentiable

function in yp,defined as

Va (yp, t) =
1

2
r2p +

1

2
e2p + P. (4–17)

The time derivative of (4–17) exists almost everywhere (a.e.), i.e., for almost all t ∈ [t0, tf ],

and V̇a (yp, t)
a.e
∈ Vp (yp, t), where

.

Ṽ p (yp, t) =
∩

ξ∈∂Vp(yp,t)

ξTK

[
ėp ṙp

1

2
P− 1

2 Ṗ

]
,

where ∂Vp (yp) is the generalized gradient of Vp (yp, t) [95]. Since Vp (yp, t) is a continuously

differentiable function in yp,
.

Ṽ p ⊂ ∇VpK [·]T , (4–18)

where

∇Vp =
[
ep rp 2

√
P
]
.
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Using the calculus of K [·] from [96] and by using (4–12) and (4–15), (4–15) can be

expressed as

.

Ṽ p ⊂ rp

{
λ̇a
p − (kp1 + kp2 + αp) rp − βK [sgn (ep)]− ep + αpėp

}
+ep {rp − αpep} − rp

(
λ̇a
p − βK [sgn (ep)]

)
, (4–19)

where K [sgn (ep)] = Ψ (ep) [96] such that

Ψ (ep) =


1, if ep (t) > 0

[−1, 1] , if ep (t) = 0

−1, if ep (t) < 0.

Using (4–5), (4–19) can be rewritten as

.

Ṽ p

a.e.

≤ −kp1 |rp|
2 − kp2 |rp|

2 − αp |rp|2 + αprp {rp − αpep}

−αp |ep|2 , (4–20)

where the set in (4–19) reduces to the scalar inequality in (4–20) since the RHS is

continuous a.e., i.e., the RHS is continuous except for the Lebesgue negligible set of

times when ep = 0 [97, 98]. Applying Young’s Inequality, (4–20) can be rewritten as

.

Ṽ p

a.e.

≤ −kp1 |rp|
2 − kp2 |rp|

2 − αp |rp|2 + αp |rp|2 +
α2
p

2
|ep|2

+
α2
p

2
|rp|2 − αp |ep|2 .

.

Ṽ p

a.e.

≤ −kp1 |rp|
2 −

(
kp2 −

α2
p

2

)
|rp|2 −

(
αp −

α2
p

2

)
|ep|2 .

If the condition in (4–13) is satisfied

.

Ṽ p

a.e.

≤ −Wp (yp) , (4–21)

where Wp (yp) , σp ∥zp∥2 where σp , min
{
kp1 ,

(
kp2 −

α2
p

2

)
,
(
αp −

α2
p

2

)}
. Since ep (t),

rp (t) ∈ L∞, standard linear analysis methods can be used to prove that ėp (t) ∈ L∞

from (4–5). Since ep (t), rp (t) ∈ L∞, the assumption that qpd (t), q̇pd (t) exist and are
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bounded can be used along with (4–4) and (4–5) to conclude that qp (t), q̇p (t) ∈ L∞.

Therefore, from (4–7) and (4–10), up (t), µ (t) ∈ L∞. Since ep (t), rp (t), ėp (t), λ̇
a
p (t) ∈ L∞,

(4–12) indicates that ṙp (t) ∈ L∞. The definition of Wp (y) and zp(t) can be used to prove

that Wp (y) is uniformly continuous. Therefore, Barbalat’s lemma [99] can be invoked to

conclude that

∥zp (t)∥2 → 0 as t → ∞. (4–22)

From the definition of zp(t), (4–22) can be used to show that

rp(t) → 0 and ep(t) → 0 as t → ∞.

4.3 Ordinary Service

The evolution of the ensemble average queue length for the Ordinary Service is given

in (4–2) with i = r, i.e.,

q̇r = −ur

(
qr

1 + qr

)
+ λr (t− τr (t)) , (4–23)

where

ur (t) = userver − up (t)

is known, and the control variable (ensemble average arrival rate) λr (t− τr (t)) ∈ R needs

to be designed. Let the ensemble average queue length error for the Ordinary Service

queueing system er (t) ∈ R be defined as

er , qr − qrd , (4–24)

where qrd (t) ∈ R is the desired ensemble average queue length for this service. To facilitate

the subsequent analysis, the filtered tracking error rr(t) is defined as

rr , ėr + αrer + λr (t)− λr (t− τr (t)) . (4–25)
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Based on the subsequent stability analysis, the controller for Ordinary Service, i.e., λr (t),

is designed as

λr (t) , −kr


(
1 +

αr

kr

)
er +

t∫
0

[(
αr +

1

kr

)
er (θ) + λr (θ)− λr (t− τr (θ))

]
dθ


+ur

(
qr

1 + qr

)
+ q̇rd + kr

(
1 +

αr

kr

)
er (0)

−ur (0)

(
qr (0)

1 + qr (0)

)
− q̇rd (0) . (4–26)

After taking the derivative of (4–24), using (4–23), and substituting for ėr in (4–25) yields

rr = −ur

(
qr

1 + qr

)
− q̇rd + αrer + λr (t) . (4–27)

An additional derivative of (4–27) is taken to facilitate the subsequent analysis. Hence, by

using (4–26), the derivative of (4–27) can be expressed as

ṙr =
d

dt

[
−ur

(
qr

1 + qr

)]
− q̈rd + αrėr − kr [ėr + αrer + λr (t)− λr (t− τr (t))]

+
d

dt

[
ur

(
qr

1 + qr

)]
+ q̈rd − αrėr − er.

= −krrr − er. (4–28)

4.3.1 Stability Analysis

Theorem 4.2: The controller designed in (4–26) ensures global asymptotic ensemble

average queue length regulation in the Ordinary Service buffer provided the control gains

are selected according to the sufficient conditions

αr >
1

2
,

2ω (1− τ̇r)

2ω + 1
> τr, (4–29)

where ω ∈ R+ is a subsequently defined control gain.

Proof: Let yr(t) ∈ R3 be defined as yr(t) ,
[
zTr (t)

√
Q

]T
where zr(t) ∈ R2 is

defined as zr(t) ,
[
er (t) rr (t)

]T
. Let Q

(
λ̇r, t, τr

)
∈ R denote the Lyapunov-Krasovskii

70



functional, defined as

Q , ω

t∫
t−τr(t)

 t∫
s

∣∣∣λ̇r (θ)
∣∣∣2 dθ

 ds, (4–30)

where ω ∈ R+ is a known positive constant. Let Vr (yr, t) : R3 × [0,∞) → R be a

positive-definite function defined as

Vr =
1

2
e2r +

1

2
r2r +Q. (4–31)

Taking the derivative of (4–31), and using (4–25), (4–28) and (4–30) yields

V̇r = er (rr − αrer − ea) + rr (−krrr − er) + ωτr

∣∣∣λ̇r

∣∣∣2 − ω (1− τ̇r)

t∫
t−τr(t)

∣∣∣λ̇r (θ)
∣∣∣2 dθ, (4–32)

where

ea , λr (t)− λr (t− τr (θ)) =

t∫
t−τr(t)

λ̇r (θ) dθ.

Using Young’s inequality,

|er| |ea| ≤
|er|2

2
+

|ea|2

2
. (4–33)

Using (4–33) and by utilizing the fact that

∣∣∣λ̇r (t)
∣∣∣2 ≤ t∫

t−τr(t)

∣∣∣λ̇r (θ)
∣∣∣2 dθ, |ea|2 ≤ τr

t∫
t−τr(t)

∣∣∣λ̇r (θ)
∣∣∣2 dθ,

the expression in (4–32) can be upper bounded as

V̇r ≤ −αr |er|2 − kr |rr|2 +
|er|2

2
+

τr
2

t∫
t−τr(t)

∣∣∣λ̇r (θ)
∣∣∣2 dθ + ωτr

t∫
t−τr(t)

∣∣∣λ̇r (θ)
∣∣∣2 dθ

−ω (1− τ̇r)

t∫
t−τr(t)

∣∣∣λ̇r (θ)
∣∣∣2 dθ

= −
(
αr −

1

2

)
|er|2 − kr |rr|2 −

(
ω (1− τ̇r)− ωτr −

τr
2

) t∫
t−τr(t)

∣∣∣λ̇r (θ)
∣∣∣2 dθ.
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If (4–29) is satisfied, then

V̇r ≤ −Wr (yr) , (4–34)

where Wr (yr) , σr ∥zr∥2, for some positive constant σr ∈ R+. The inequality in (4–34)

can be used to show that er (t), rr (t) ∈ L∞. The closed-loop error system can be used to

show that the remaining signals are bounded. The definition of Wr (y) and zr(t) can be

used to prove that Wr (y) is uniformly continuous. Therefore, Barbalat’s lemma [99] can

be invoked to conclude that

∥zr (t)∥2 → 0 as t → ∞. (4–35)

From the definition of zr(t), (4–35) can be used to show that

rr(t) → 0 and er(t) → 0 as t → ∞.

4.4 Simulation Results

Numerical simulations are performed in Matlab to demonstrate the performance of

the developed controller for the DiffServ network. Since the model in (4–2) is valid for

0 ≤ u(t) ≤ userver, the controllers implemented in the simulations for the Premium Service

and Ordinary Service are

up (t) , max

[
0,min

{
userver,

(
qp

1 + qp

)−1

µ

}]
(4–36)

and

ur (t) = max [0, userver − up (t)] , (4–37)

respectively. Hence, the initial parameters are chosen appropriately based on the domain

of operation of the DiffServ system. The maximum allowable server rate, userver, is chosen

to be 200 dataunits per unit time, where 1 unit time is equal to 100 ms. Initial ensemble

average queue length for both the Premium Service, qp (0), and the Ordinary Service,

qr (0), are chosen to be 100 dataunits. The initial server rate for Premium Service, up (0),

and the initial auxiliary control, µ (0), are both chosen to be 50 dataunits per unit time.
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From (4–37), ur (0) = 950 dataunits per unit time. The ensemble average arrival rate for

Ordinary Service, λr (0), is chosen to be 100 dataunits per unit time.

The desired ensemble average queue length for Premium, qdp (t), and Ordinary

Service, qdr (t), are chosen to be 100 and 50 dataunits respectively. The arrival rate at the

input of the Premium Service queue is chosen as

λp (t) = 30 + 0.05 cos
(π
5
t
)

dataunits/unit time.

The control gains are chosen as

kp1 = 0.05, kp2 = 0.05, αp = 0.501, β = 0.1

for Premium Service, and

kr = 0.1

for Ordinary Service. The Ordinary Service controller uses the technique of feedback

linearization without arrival-rate delays (see [100]). The implemented controller for

Premium Service is obtained by using (4–11) and substituting (4–10) into (4–36). Fig.

4-2 shows the ensemble average queue length plot and the corresponding server rates for

Premium Services without arrival-rate delays. The queue length for Premium Service

asymptotically converges close to the desired value as shown in Fig. 4-2.

Fig. 4-3 shows the ensemble average queue length plot and the corresponding average

arrival rates for Ordinary Services without arrival-rate delays. The queue length error for

Ordinary Service exponentially converges to zero.

With delays, the ensemble average queue length plot and the corresponding server

rates for Premium Services is shown in Fig. 4-4 with a time-varying delay

τp(t) = 0.5 + 0.1 sin
(π
2
t
)

seconds.

It can be inferred from Fig. 4-2 and Fig. 4-4 that the arrival-delay delay acts as a

disturbance for Premium Service buffer, and hence the convergence of the ensemble
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Figure 4-2. Ensemble average queue length and service rates for Premium Service without
arrival-rate delays.

Figure 4-3. Ensemble average queue length and average arrival rates for Ordinary Service
without arrival-rate delays.
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Figure 4-4. Ensemble average queue length and service rates for Premium Service with
average arrival-rate delay.

average queue length in the Premium Service buffer without delay is similar to the

convergence with delay, provided the delay bounds established in Section 4.1 are satisfied.

The ensemble average queue length in Ordinary Service buffer asymptotically

converges close to zero with arrival-rate delay, unlike the case with no delay where we

obtain exponential convergence (see Fig. 4-3). The control gains are chosen as

kp1 = 0.5, kp2 = 0.12, αp = 0.15, β = 0.1

for Premium Service, and

kr = 0.3, αr = 0.01

for Ordinary Service. Fig. 4-5 shows the ensemble average queue length plot and the

corresponding average arrival rate plot for Ordinary Service with time-varying delay,

τr(t) = 0.1 + 0.1 sin
(π
2
t
)

seconds.
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Figure 4-5. Ensemble average queue length and average arrival-rate for Ordinary Service
with average arrival-rate delay.

76



CHAPTER 5
CONCLUSION

5.1 Summary of Results

In Chapter 2, A LMMSE prediction-based power-control algorithm was developed for

a wireless CDMA-based multiple cellular networked system despite uncertain multipath

fading. The predictor uses local SINR measurements at the previous and current time

instances, along with the Doppler frequency (which can also be estimated from the SINR

measurements) to estimate the channel uncertainties. A Lyapunov-based analysis is used

to develop the controller and a resulting ultimate bound for the sampled SINR error,

which can be decreased up to a point by increasing the control gains. Simulations indicate

that the SINRs of all the radio links are regulated in the region γmin ≤ xi(·) ≤ γmax with

an outage probability of less than 10%, and power requirements of all the MTs were in the

implementable range. Outages at some samples were determined to be due to limitations

of the linear predictor, and this highlights the need for more sophisticated prediction and

control development tools to address this issue. Simulations are also done using 2-bit

and 3-bit control feedback, and the results show that the performance is still within the

acceptable outage range if at least a 3-bit power control command is used. Comparison

against a standard power control algorithm from the literature is done to demonstrate the

advantages of using channel prediction and multi-bit feedback.

In Chapter 3, a model for collisions is developed and incorporated in the continuous

CSMA Markov chain. An online distributed algorithm for maximizing the collision-free

transmission states is developed that estimates the rates from the steady-state distribution

of the Markov states. To account for the rate constraints, a constrained optimization

problem is defined, and a numerical solution is suggested. Simulation results infer that

the average number of collisions by using the optimized parameters is reduced to less

than 0.2%. In addition, a model for collisions caused due to hidden terminals is developed

and incorporated in the continuous CSMA Markov chain. A constrained optimization
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problem is defined, and a numerical solution is suggested. Simulation results are provided

to demonstrate the stability of the queues for a given stable set of arrival rates

In Chapter 4, a continuous control strategy is suggested for a DiffServ network to

track the desired ensemble average queue length level specified by the network operator.

A Lyapunov-based stability analysis is provided to illustrate global asymptotic tracking of

the queue lengths in the Premium Service buffer. In addition, arrival rate delays due to

propagation and processing that affects the control input of the Ordinary Service buffer

is addressed, and a Lyapunov-based stability analysis is provided to illustrate global

asymptotic tracking of the ensemble average queue length of this service. Simulations

demonstrate the performance and feasibility of the controller, along with showing global

asymptotic tracking of the queue lengths in the Premium Service and Ordinary Service

buffers.

5.2 Recommendations for Future Work

Future efforts will focus extending the result in Chapter 3 to design cross-layer

throughput maximization and topology reconfiguration algorithms to address mobility,

energy, and queue length constraints at the terminals. Further, service rate limitations in

Chapter 4 remains an open problem that could be further explored.
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APPENDIX A
ESTIMATION OF RANDOM PROCESSES

A-1 General MMSE based estimation theory

Let W (l) be some random process that needs to be estimated. The problem of finding

the estimates of the zero mean gaussian random variables can be defined as

ε2min = min
Ŵ (l)

E

[(
W (l)− Ŵ (l)

)2]
given W (l − 1),W (l − 2),W (l − 3), ..

= min
Ŵ (l)

E
[(

W 2(l)− 2Ŵ (l)W (l) + Ŵ 2(l)
)]

given W (l − 1),W (l − 2),W (l − 3), ..

= min
Ŵ (l)

E
[
W 2(l)

]
− 2Ŵ (l)E [W (l)] + Ŵ 2(l) given W (l − 1),W (l − 2),W (l − 3), ..

To find the minimum value of the estimate of W ,

d

dŴ (l)

{
E
[
W 2(l)

]
− 2Ŵ (l)E [W (l)]

}
= 0 given W (l − 1),W (l − 2),W (l − 3), ..

=⇒ 0− 2E [W (l)] + 2Ŵ (l) = 0 given W (l − 1),W (l − 2),W (l − 3), ..

The estimate is given [65] as

Ŵ (l) = E [W (l) | W (l − 1),W (l − 2),W (l − 3), ..] .

The conditional estimate is given by

E [W (l) | W (l − 1),W (l − 2),W (l − 3), ..] ,

where W (l),W (l − 1),W (l − 2),W (l − 3), .. are all jointly gaussian and W (l − 1),W (l −

2),W (l− 3), .... are the past values of the random variable W that are used to estimate the

current value W (l).
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A-2 Gaussian Case

The conditional probability density function is given by [101]

fW (l) [W (l) | W (l − 1),W (l − 2),W (l − 3), ..]

=
fW (l),W (l−1),W (l−2),... [W (l),W (l − 1),W (l − 2),W (l − 3), ..]

fW (l−1),W (l−2),... [W (l − 1),W (l − 2),W (l − 3), ..]
,

where the numerator and denominator are joint density functions of the zero-mean

gaussian random variables W upto instants l and l − 1 respectively. The Covariance

Matrices Kn and Kn−1 are defined as

Kn = E
[
[Yl] . [Yl]

T
]
,

and Kn−1 = E
[
[Yl−1] . [Yl−1]

T
]
,

where

Yl =

[
W (l − s) W (l − (s− 1)) . . W (l)

]T
,

and Yl−1 =

[
W (l − s) W (l − (s− 1)) . W (l − 1)

]T
.

Since the means of the random variables W are zero at any l

fW (l) [W (l) | W (l − 1),W (l − 2),W (l − 3), ..]

=
exp

{
−1

2
Y T
l K−1

n Yl

}
(2π)

n
2 |Kn|1/2

.

{
exp

{
−1

2
Y T
l−1K

−1
n−1Yl−1

}
(2π)

(n−1)
2 |Kn−1|1/2

}−1

. (A-1)

Since W (l) is a zero-mean gaussian random process, the MMSE estimate is a linear

estimate, i.e., E [W (l) | W (l − 1),W (l − 2),W (l − 3), ..] can be obtained by manipulating

Equation A-1. For a simple case with only one given value, the linear MMSE estimation is
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given by

E [W (l) | W (l − 1)]

= µW (l) + ρW (l)W (l−1)

(
σW (l)

σW (l−1)

)(
W (l − 1)− µW (l−1)

)
=

[
ρW (l)W (l−1)

(
σW (l)

σW (l−1)

)]
W (l − 1), (A-2)

where ρW (l)W (l−1) is the autocorrelation function, σW (l) and σW (l−1) are the variances.
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APPENDIX B
ORTHOGONALITY CONDITION

Let Y , X1, X2, X3, ...., XN be gaussian random variables with zero means. The

MMSE estimate is the conditional mean, given by

E [Y | X1,X2, X3, ...., XN ] =
N∑
k=1

aiXi.

The random variables

(
Y −

N∑
k=1

aiXi

)
, X1, X2, X3, ...., XN are jointly gaussian. Since

the first term is uncorrelated with all the rest, it can be inferred that the random variable(
Y −

N∑
k=1

aiXi

)
is uncorrelated with X1, X2, X3, ...., XN . Therefore,

E

[(
Y −

N∑
k=1

aiXi

)
| X1,X2, X3, ...., XN

]
= E

[(
Y −

N∑
k=1

aiXi

)]

= E [Y ]−
N∑
k=1

aiE [Xi] = 0,

since E [Y ] = E [Xi] = 0. The condition

E

[(
Y −

N∑
k=1

aiXi

)
| X1,X2, X3, ...., XN

]
= 0 (B-1)

is known as the Orthogonality Condition, which can also be written as

[
Y − aTX

]
⊥ X,

where

X =

[
X1 X2 . . XN

]T
.

The ai’s can be obtained from the orthogonality condition.

Note: From Equation B-1, we get

E [Y | X1,X2, X3, ...., XN ]−
N∑
k=1

aiE [Xi | X] = 0.
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=⇒ E [Y | X1,X2, X3, ...., XN ]−
N∑
k=1

aiXi = 0

=⇒ E [Y | X1,X2, X3, ...., XN ] =
N∑
k=1

aiXi.

Thus, the conditional mean of a zero-mean gaussian random variable Y is given by a linear

estimate of the given variables Xis.

Calculation of ai’s.

From the Orthogonality condition in Equation B-1 [65]

E

[(
Y −

N∑
k=1

aiXi

)
| Xp

]
= 0, 1 ≤ p ≤ k

=⇒ E [Y Xp] =
N∑
k=1

aiE [XkXp] , 1 ≤ p ≤ k.

=⇒ kY X = aTKY Y , (B-2)

where

a ,
[
a1 a2 . . aN

]T
,

kY X ,
[
E [Y X1] E [Y X2] E [Y X3] . . E [Y XN ]

]
=

[
KY X1 KY X2 KY X3 . . KY XN

]
,

and the covariance matrix

KXX = E
[
XXT

]
.

From Equation B-2

aT = kY XK
T
XX .
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APPENDIX C
PROOF OF P ≥ 0

Lemma: The solution to the differential equation

Ṗ (t) = −rp

(
λ̇a
p − βsgn (ep)

)
, (B-1)

P (ep (t0) , t0) = β |ep (0)| − ep (0) λ̇p (0) (B-2)

satisfies the condition

P (ep, t) ≥ 0

if β satisfies the condition

β > ζλ̇a
p
+

1

αp

ζλ̈a
p
. (B-3)

Proof. By using (4–5), integrating by parts, and regrouping yields

t∫
0

rp

(
λ̇a
p (τ)− βsgn (ep (τ))

)
dτ =

t∫
0

ėp

(
λ̇a
p (τ)− βsgn (ep (τ))

)
dτ

+

t∫
0

αpep

(
λ̇a
p (τ)− βsgn (ep (τ))

)
dτ

= λ̇a
p (t) ep (t)− λ̇a

p (0) ep (0)− β |ep (t)|+ β |ep (0)|

−
t∫

0

αpep

(
1

αp

∂λ̇a
p (τ)

∂τ

)
dτ +

t∫
0

αpep

(
λ̇a
p (τ)− βsgn (ep (τ))

)
dτ. (B-4)

From (2–13), the expression in (B-4) can be upper bounded by

t∫
0

rp

(
λ̇p (τ)− βsgn (ep (τ))

)
dτ ≤ |ep (t)|

[
ζλ̇p

− β
]

+β |ep (0)| − λ̇p (0) ep (0) +

t∫
0

αp |ep (τ)|
(
ζλ̇a

p
+

1

αp

ζλ̈a
p
− β

)
dτ.
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Therefore, if the condition in (B-3) is satisfied, then

t∫
0

rp

(
λ̇a
p (τ)− βsgn (ep (τ))

)
dτ

≤ β |ep (0)| − λ̇a
p (0) ep (0)

≤ P (ep (t0) , t0) . (B-5)

Integrating (B-1) on both sides, and using (B-2) yields

P (ep (t) , t) = β |ep (0)| − ep (0) λ̇
a
p (0)

−
t∫

0

rp (τ)
(
λ̇a
p (τ)− βsgn (ep (τ))

)
dτ,

which indicates that P (ep (t) , t) ≥ 0 from (B-5).
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