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Abstract—This paper investigates the planning problem
using an optimal reactive synthesis method for multi-agent
systems (MAS) to reach approximate consensus with inter-
mittent communication. The reactive synthesis approach can
satisfy high-level mission specifications, while the low-level
dynamics provide real-time state information for corrections.
The MAS control synthesis problem can be cast as a relay-
explorer problem, where a relay agent intermittently provides
navigational feedback to multiple explorer agents in a pre-
defined sub-region. Within each sub-region, there is one relay
agent responsible for servicing the corresponding explorer
agents. Each time the estimated trajectory of an explorer
agent crosses the boundary and enters another sub-region, the
neighboring relay agent takes over the servicing responsibility.
In this paper, a set of planning strategies corresponding to
candidate instantiations (i.e., pre-specified representative in-
formation scenarios) is pre-synthesized to dynamically switch
among the explorers in real-time. To guarantee the stability
of the switched strategies and the approximate consensus
of the explorer agents, maximum dwell-time conditions are
developed using a Lyapunov-based analysis to allow explorer
agents to drift for a pre-defined time period without requiring
servicing from relay agents. A simulation study is included to
demonstrate the performance of the developed method.

I. INTRODUCTION
Motivated by advantages of intermittent communica-

tion versus requiring continuous communication in multi-
agent systems (MAS), recent research has focused on
developing event-triggered and self-triggered control. In
[1]-[6], the control methods only use sampled data for
networked agents when desired stability and performance
properties trigger the communication conditions. However,
these methods typically assume the network is connected
to ensure communication when required.

Recently a class of relay-explorer problems has emerged
in [7]-[9] where a relay agent intermittently provides state
feedback to a set of explorer agents. To guarantee the
stability of the switched systems, stabilizing maximum
dwell-time conditions are developed to allow the explorer
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agents to dead-reckon (i.e., feedback from non-absolute
sensors such as wheel encoders) for a pre-defined time
period before requiring state feedback from the relay agent.
The authors in [8] develop a switched systems approach to
enable a distributed MAS to reach consensus at a desired
location under intermittent communication. Specifically, a
relay agent has full knowledge of state feedback, switches
between multiple explorers lacking absolute positional sen-
sors to provide each explorer navigational information
intermittently. Similarly, authors in [9] develop a distributed
controller to enable formation control and leader tracking
for the explorer agents, while a relay agent intermittently
provide state feedback to an explorer, enabling a MAS
to explore an unknown environment indefinitely. However,
the method in [8] relies on one relay agent to service
multiple explorer agents, which requires the relay agent to
reach certain explorer agent within specified time periods
to guarantee system stability. When the number of explorer
agents is increased, the relay agent needs to maneuver to the
corresponding explorer agent fast enough to ensure stability,
which might be impractical in some applications and limits
scalability.

Alternatively, the aforementioned stabilizing maximum
dwell-time conditions can be encoded by metric temporal
logic (MTL) specifications as in [10] and [11]. MTL
specifications in [11] express the maximum dwell-time
condition and practical constraints for the relay agent such
as charging its battery and staying in specific regions of
interest. Specifically, the followers’ controllers are designed
to ensure the stability of the switched system provided
the dwell-time conditions are satisfied. The leader’s con-
troller is synthesized by using the MTL specifications
which encode the dwell-time conditions and the additional
practical constraints. The authors solve the mixed-integer
linear programming (MILP) problem iteratively to obtain
the optimal control inputs for the relay agent. Hence, the
relay agent is required to iteratively compute the inputs to
ensure the explorer agents can be serviced sufficiently often
to reach approximate consensus. However, the computation
requirements for the relay agent might not be applicable to
agents with limited computation power.

The previous example can be treated as a reactive plan-
ning problem, where the MAS has to react to an uncon-
trolled environment, and guarantee correctness with respect
to a given mission specification for all possible behaviors
of the environment for all time. Such a planning problem
can be solved by using a standard reactive synthesis method
such as [12]. Particularly, there is a rich literature focused
on synthesis for a fragment of linear temporal logic (LTL),
i.e., Generalized Reactivity 1 (GR(1)) in [13]-[16].

In this paper, we propose a technique to solve the



approximate consensus problem in MAS by using reac-
tive synthesis in high-level mission specifications, which
can encode the stabilizing dwell-time conditions derived
from low-level dynamics to ensure system stability. The
synthesized planning strategy enables the relay agents to
determine the next servicing agent based on the states of
real-time execution. The developed approach is scalable
to accommodate more explorer agents by incorporating
more relay agents and sub-regions. The high-level strategy
planning and low-level control design combination enables
the MAS to reach approximate consensus under intermit-
tent communication. Additionally, the strategy planning is
flexible to adapt to exogenous disturbances, i.e., when an
explorer agent leaves a certain region, the relay agents
can transfer servicing responsibilities and switch to cor-
responding strategies. A simulation study is performed to
demonstrate the performance of the developed technique.

II. PRELIMINARIES
Let Z>0 denote the set of positive integers. For p, q ∈

Z>0, the p×q zero matrix and the p×1 zero column vector
are denoted by 0p×q and 0p, respectively. The p×p identity
matrix is denoted by Ip. The maximum singular value of
(·) is denoted as Smax (·). The maximum and minimum
eigenvalues of a symmetric matrix G ∈ Rp×p are denoted
by λmax (G) ∈ R and λmin (G) ∈ R, respectively.

III. PROBLEM FORMULATION
A. Problem Statement

Consider a MAS consisting of M relay agents indexed
by a set of leaders L , {1, 2, ...,M} and N explorer
agents indexed by a set of followers F , {1, 2, ..., N}
for some M,N ∈ Z>0, where M < N .1 The MAS is
operating within a region denoted by Rz , where z ∈ Z>0.
Within the operating region, the explorer agents lack ab-
solute positional information, while the relay agents have
absolute sensing (e.g., GPS). Let xi : [0,∞) → Rl and
xj : [0,∞) → Rm denote the state of relay agent i and
explorer agent j, respectively, where i ∈ L, j ∈ F , and
l,m ∈ Z>0. The objective is to approximately regulate
states of the explorer agents within a goal region centered
at g ∈ Rz with radius Rg ∈ R>0.

Assumption 1: The entire operating region Rz ,
⋃
i∈L

Si

can be partitioned into M number of sub-regions, and
each sub-region is defined by a compact set Si ⊂ Rz ,
where i denotes the index of the corresponding sub-region.
The number of sub-regions is equal to the number of
relay agents. Assumption 2: Each relay agent i ∈ L is
responsible for servicing the explorer agents j ∈ F within
the sub-region Si for all t ∈ [0,∞).

We are interested in designing a strategy for the relay
agents to service the explorer agents for them to reach
approximate consensus. The relay agents cannot control the
actions of the explorer agents or the other relay agents.
Hence, we represent each relay agent i a reactive system
in an uncontrolled environment. Formally, we define a

1In this paper, we are interested in the scenario where the number of
explorer agents is greater than the number of relay agents.
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Figure 1: An illustrative example of an MAS consisting of
three relay agents (represented by quadcopters) in three
different sub-regions (separated by virtual walls) to
regulate nine explorer agents (represented by ground
robots) to a goal region (represented by a red circle).

finite set Ii , {µi,1, . . . , µi,a} of atomic propositions or
Boolean inputs, controlled by the environment, and a finite
set Oi , {νi,1, . . . , νi,b} of Boolean outputs, controlled by
the relay agent i, where a, b ∈ Z>0. Together, they define
the reactive system’s input alphabet ΣI,i , 2Ii and the
output alphabet ΣO,i , 2Oi . We define Σi , ΣI,i × ΣO,i.
Informally, we model the status of the environment as
observed as agent i’s physical sensors by the valuations
of the atomic propositions in set Ii. Similarly, we model
the actions and state of relay agent i by the valuations of
the atomic propositions in set Oi.

We represent the interaction between relay agent i and
the uncontrolled environment as a two-player game. For-
mally, the game is played on a game structure which is a
tuple Gi = (Qi, q0,Σi, δi), where Qi is a finite set of states
and q0 ∈ Qi is the initial state, Σi = ΣI,i × ΣO,i is the
alphabet of actions available to the environment and the
agent, respectively, and δi : Qi × Σi → Qi is a complete
transition function, that maps each state, input (environment
action) and output (relay agent action) to a successor state.

In every state q ∈ Qi (starting with q0), the environment
chooses an input σI ∈ ΣI,i, and then the agent chooses
some output σO ∈ ΣO,i. These choices define the next
state q′ = δ(q, (σI, σO)), and so on. The resulting (infinite)
sequence π = (q0, σI,0, σO,0, q1)(q1, σI,1, σO,1, q2) . . . is
called a play.

A strategy for relay agent i is a function ρO,i : [0,∞)×
ΣI,i → ΣO,i which maps a prefix (the history of the play
so far) and an action of the environment to an action of the
relay agent.

We say the game is winning for the relay agent if
it satisfies a winning condition. We consider games in
which the agent has a GR(1) winning condition, which
are common in a variety of practical applications. In the
following, we make use of the LTL operators next ©,
always � and eventually ♦ [17].

Given a game structure G and a GR(1) winning condition
ϕ for the agent, we seek to synthesize a strategy ρ for every
relay agent such that for every strategy for the environment
it holds that all resulting plays satisfy ϕ. In such cases we
say that ρ satisfies ϕ, denoted ρ |= ϕ. The strategy synthesis
problem for GR(1) winning conditions was solved in [12].



B. Agent Dynamics
Let yi, yj : [0,∞) → Rz denote the position of relay

agent i and explorer agent j, respectively. The linear time-
invariant dynamics of relay agent i and explorer agent j
are

ẋi (t) = Aixi (t) +Biui (t) , (1)
yi (t) = Cixi (t) , (2)
ẋj (t) = Axj (t) +Buj (t) + dj (t) , (3)
yj (t) = Cxj (t) , (4)

where Ai ∈ Rl×l, A ∈ Rm×m, Bi ∈ Rl×n, B ∈ Rm×n,
Ci ∈ Rz×l, and C ∈ Rz×m are known system matrices,
and n ∈ Z>0. In (1) and (3), ui, uj : [0,∞)→ Rn denote
the control input of relay agent i and explorer agent j,
respectively, and dj : [0,∞) → Rm denotes an exogenous
disturbance acting on explorer agent j. The disturbance
term in (3) could destabilize the dynamics due to the
divergence of the local state feedback from the absolute
coordinate information during dead-reckoning periods.

IV. CONTROL OBJECTIVE

To quantify the objective, let the tracking error ej :
[0,∞)→ Rm of explorer agent j be defined as

ej (t) , xg − xj (t) , (5)

where xg ∈ Rm denotes a predetermined user-selected
state. To facilitate the subsequent analysis, define the state
estimation error e1,j : [0,∞) → Rm and the estimated
tracking error e2,j : [0,∞)→ Rm as

e1,j (t) , x̂j (t)− xj (t) , (6)
e2,j (t) , xg − x̂j (t) , (7)

respectively, where x̂j : [0,∞)→ Rm denotes the estimate
of xj . Using (6) and (7), (5) can also be expressed as

ej (t) = e1,j (t) + e2,j (t) . (8)

To facilitate the stability analysis of the relay agents, we
define the leader tracking error e3,j : [0,∞)→ Rz as

e3,j (t) , Cx̂j (t)− Cixi (t) . (9)

Assumption 3: The state estimate of explorer agent
x̂j (t) is initialized as x̂j (0) = xj (0) for all j ∈ F .
Assumption 4: The initial position of explorer agent xj (0)
is known to the corresponding relay agent i ∈ L for
all j ∈ F . Assumption 5: The exogenous disturbance
dj is continuous and bounded, i.e., ‖dj (t)‖ ≤ dj for
all t ∈ [0,∞), where dj ∈ R>0 is a known constant
and ‖·‖ denotes the Euclidean norm. Assumption 6: The
system matrices Bi and Ci are full-row rank matrices for
all t ∈ [0,∞), i ∈ L. The right pseudo inverses of Bi
and Ci are denoted by B+

i and C+
i , respectively, where

B+
i , B

T
i

(
BiB

T
i

)−1
and C+

i , C
T
i

(
CiC

T
i

)−1
.

Problem 1. Given the system dynamics described in (1)-
(4) for a sub-region Si, the control objective is to design
controllers uj (t) and observers x̂j (t) for the explorer
agents, and design controllers ui (t) for the relay agents

to satisfy the following properties. Stability: The error
signals e1,j (t), e2,j (t) and e3,j (t) are bounded for each
j ∈ F within the sub-region Si. Approximate Consensus:
The states of all the explorer agents within the sub-region
Si reach approximate consensus within the goal region
centered at g with radius Rg .

The above problem can be solved by using the com-
bination of the high-level synthesis planning and low-
level control design. We first design the controllers and
observers for the explorer and relay agents, and derive the
corresponding stability conditions required to reach approx-
imate consensus. We incorporate the required stabilizing
maximum-dwell time conditions to the synthesis of correct-
by-construction strategy planning, which provides the next
servicing explorer agents to relay agents.

A. Approximate Consensus
A goal region centered at the position denoted by

g , Cxg ∈ Rz with radius Rg is capable of providing
state information to each explorer agent j ∈ F once
‖Cxj (t)− Cxg‖ ≤ Rg . The task of the relay agents is to
service each explorer agent by providing state, i.e., position
and velocity information while the explorer agents navigat-
ing to g under the intermittent state feedback provided by
the relay agents. Let R ∈ R>0 denote the communication
radius of the relay agents and explorer agents, and relay
agent i and explorer agent j can communicate if and only
if ‖yi (t)− yj (t)‖ ≤ R. Let Rg = R for simplicity of
exposition and without loss of generality. Given the tracking
error in (5), approximate consensus is achieved within the
goal region whenever

lim sup
t→∞

‖ej (t)‖ ≤ R

Smax (C)
∀j ∈ F.

Given an integer K ∈ Z≥0, an explorer agent j is in
the sub-region Si at time t + K if its estimated posi-
tion Cx̂j ∈ Si at time t + K. We define the function
ηKi : [0,∞) → 2F that determines when outputs the
subset of explorer agents will be within the sub-region
Si in K time steps for some K ≥ 0. Put simply, ηKi (t)
will output the set of explorer agents Fi ⊆ F whose
estimated state is in sub-region Si at time t + K. If
the estimated trajectory of an explorer agent crosses the
boundary of a sub-region in less than t + K steps, the
relay agent will communicate with the neighboring relay
agent to notify the crossing action, hand-over the servicing
responsibility, and transfer the last serviced position of the
explorer agent. The parameter K is a user-defined time
parameter to allow relay agents to conduct the hand-over
without violating the dwell-time condition. This forms an
assume-guarantee contract between relay agents and we
formalize this notion in Section VII. Note that partitioning
the region for optimal distribution of relay and explorer
agents (such as minimizing boundary crossings and hand-
overs) is an active area of current interest. In this paper, we
manually partitioned the operating region into three sub-
regions for simplicity.

Let ζi : [0,∞) → F be a piece-wise constant switch-
ing signal that determines which explorer the relay agent



i is to service within the sub-region Si. At t = 0,
relay agent i will compute the servicing time of each
explorer agent j as denoted by tjs, where s indicates
the sth servicing instance. Immediately after t = 0,
relay agent i will maneuver towards explorer agent j,
where j is dictated by ζi and provide state information
once ‖yi (t)− yj (t)‖ ≤ R. Hence, the (s+ 1)

th ser-
vicing time for explorer agent j is defined as tjs+1 ,
inf
{
t ≥ tjs : (‖yi (t)− yj (t)‖ ≤ R) ∧ (ζi (t) = j)

}
, where

∧ denotes the conjunction logical connective.2 Let{
tjs
}∞
s=0
⊂ R be an increasing sequence of servicing times

determined by the subsequently defined maximum dwell-
time condition (see Theorem 1) for explorer agent j. The
servicing time in tjs+1 defines the necessary conditions
to enable communication between the relay agent i and
explorer agent j. Nonetheless, the maximum dwell-time
condition provides an upper bound on the servicing time
based on the need to ensure stability as subsequently shown.

At time tjs,
∥∥yi (tjs)− yj (tjs)∥∥ ≤ R, where the re-

lay agent i will service explorer agent j and compute
the future servicing time tjs+1. Immediately after tjs, the
relay agent i will leave explorer agent j to go service
other explorers. Let tjr denote the time the relay agent
i begins maneuvering towards explorer agent j, where
tjr , inf

{
t ≥ tjs : (‖yi (t)− yj (t)‖ > R) ∧ (ζi (t) = j)

}
.

Proper design of ζi requires tjr < tjs+1 for the relay
agent i to satisfy the maximum dwell-time condition. Let{
tjr
}∞
r=0
⊂ R be an increasing sequence of return times for

explorer agent j. Note that one of the contributions of this
work is to provide a scalable and provably correct method
to compute ζi (t) for all relay agents i ∈ L. We detail this
process in Section VII.

V. OBSERVER AND CONTROLLER
DEVELOPMENT

The state estimate of explorer agent j ∈ F is obtained
from the following model-based observer

˙̂xj (t) , −Ae2,j (t)+Buj (t) , t ∈
[
tjs, t

j
s+1

)
, (10)

x̂j
(
tjs
)
, xj

(
tjs
)
, (11)

where the position estimate ŷj : [0,∞) → Rz of explorer
agent j can be modeled as

ŷj (t) , Cx̂j (t) . (12)

The control input of explorer agent j is designed as

uj (t) , BTPe2,j (t) , (13)

where P ∈ Rm×m is the positive definite solution to the
Algebraic Riccati Equation (ARE) given by

ATP + PA− 2PBBTP + kAREIm = 0m×m (14)

such that kARE > 0 is a user-defined parameter. The control
input of relay agent i is designed as

ui (t) , B+
i C

+
i (−CiAixi (t) + ki (t) e3,j (t))

+B+
i C

+
i C (−Ae2,j (t) +Buj (t)) , (15)

2For s = 0, tj0 is taken to be the initial time, e.g., tj0 = 0.

where ki : [0,∞)→ R>0 is a subsequently defined piece-
wise constant parameter. Substituting (3), (6), (7), (10), and
(11) into the time derivative of (6) yields

ė1,j (t) = Ae1,j(t)−Axg−dj(t) , t ∈
[
tjs, t

j
s+1

)
,(16)

e1,j
(
tjs
)

= 0m. (17)

Substituting (10), (11), and (13) into the time derivative of
(7) yields

ė2,j (t) =
(
A−BBTP

)
e2,j (t) , t ∈

[
tjs, t

j
s+1

)
, (18)

e2,j
(
tjs
)

= xg − xj
(
tjs
)
. (19)

Substituting (3), (8), and (13) into the time derivative of (5)
yields

ėj (t) =
(
A−BBTP

)
ej(t)+BBTPe1,j (t)

−Axg − dj (t) . (20)

Substituting (1), (10), (15) into the time derivative of (9)
yields

ė3,j (t) = C (−Ae2,j (t)+Buj (t))

−Ci (Aixi (t)+Biui (t)) , t ∈
[
tjs, t

j
r

)
(21)

e3,j
(
tjs
)

= Cxj
(
tjs
)
− Cixi

(
tjs
)

(22)

and

ė3,j (t) = −ki (t) e3,j (t) , t ∈
[
tjr, t

j
s+1

)
(23)

e3,j
(
tjr
)

= Cx̂j
(
tjr
)
− Cixi

(
tjr
)
. (24)

VI. STABILITY CONDITIONS
In this section, we provide conditions that generate a sta-

ble switched system for each sub-region, and then prove ap-
proximate consensus for the corresponding explorer agents
within the sub-region. When explorer agents cross bound-
aries, the synthesized strategies are changed for the relay
agents to adapt to the different number of explorer agents
within sub-regions. Eventually, all the explorer agents in the
entire operating region reach approximate consensus within
the goal region centered at g with radius Rg . Specifically,
Theorem 1 presents the maximum dwell-time condition the
relay agent i has to satisfy to ensure the state estimation
error e1,j (t) is bounded for all t ∈

[
tjs, t

j
s+1

]
. Theorem 2

shows the observer in (10) and controller in (13) ensure the
estimated tracking error e2,j (t) is exponentially regulated
for all t ∈

[
tjs, t

j
s+1

)
when the ARE in (14) is satisfied.

Theorem 3 indicates the observer in (10) and controller in
(13) ensure the tracking error ej (t) is uniformly ultimately
bounded (UUB) provided the relay agent i satisfies the
maximum dwell-time condition in (25) and e1,j

(
tj0

)
= 0m.

Theorem 4 provides a sufficient gain condition to enable
timely servicing by the relay agent i, and shows the
leader tracking error e3,j (t) is bounded for t ∈

[
tjs, t

j
s+1

]
.

Theorem 5 shows when the GR(1) specifications for relay
agents described in (54) are satisfied, the observer in (10),
the controllers in (13) and (15) enable the explorer agents
reach approximate consensus within the goal region.



A. Explorer Agent Analysis
To demonstrate the tracking error ej (t) is bounded for

the explorer agent j, we provide three theorems. The
following theorem proves the state estimation error e1,j (t)

is bounded for all t ∈
[
tjs, t

j
s+1

]
.

Theorem 1. When the relay agent i satisfies the maximum
dwell-time condition given by

Tj , t
j
s+1−tjs ≤

1

Smax (A)
ln

(
VTSmax (A)

κj
+ 1

)
, (25)

where Tj ∈ R>0 denotes the maximum dwell-time for
explorer agent j, VT ∈

(
0, R

Smax(C)

)
is a user-defined

parameter, κj , Smax (A)xg + dj ∈ R>0, xg ∈ R>0 is a
bounding constant such that ‖xg‖ ≤ xg , then ‖e1,j (t)‖ ≤
VT for all t ∈

[
tjs, t

j
s+1

]
.

Proof: Let t ≥ tjs, and suppose
∥∥e1,j (tjs)∥∥ = 0.3

Consider the common Lyapunov-like functional candidate
V1,j : Rm → R≥0 defined as

V1,j (e1,j (t)) ,
1

2
eT
1,j (t) e1,j (t) . (26)

Substituting the closed-loop error system (16) into the time
derivative of (26) yields

V̇1,j (e1,j (t)) = eT
1,j (t) (Ae1,j (t)−Axg − dj (t)) . (27)

Using the definition of κj in (25), (27) can be upper
bounded by

V̇1,j (e1,j (t)) ≤ Smax (A) ‖e1,j (t)‖2+κj ‖e1,j (t)‖ . (28)

Substituting (26) into (28) yields

V̇1,j (e1,j (t)) ≤ 2Smax (A)V1,j (e1,j (t))

+κj

√
2V1,j (e1,j (t)). (29)

Invoking the Comparison Lemma in [18, Lemma 3.4] on
(29) over

[
tjs, t

j
s+1

)
yields

V1,j(e1,j (t))≤
κ2j

2S2
max(A)

(
exp

(
Smax (A)

(
t− tjs

))
−1
)2
.

(30)
Substituting (26) into (30) yields

‖e1,j (t)‖ ≤ κj
Smax (A)

(
exp

(
Smax (A)

(
t− tjs

))
− 1
)
.

(31)
Define Φj :

[
tjs, t

j
s+1

)
→ R as

Φj (t) ,
κj

Smax (A)

(
exp

(
Smax (A)

(
t− tjs

))
− 1
)
. (32)

Since ‖e1,j (t)‖ ≤ κj

Smax(A)

(
exp

(
Smax (A)

(
t− tjs

))
− 1
)

for all t ∈
[
tjs, t

j
s+1

)
and

∥∥∥e1,j (tjs+1

)∥∥∥ = 0, where

tjs+1 > tjs and Φj

(
tjs+1

)
> 0, therefore ‖e1,j (t)‖ ≤

3
∥∥∥e1,j (tjs)∥∥∥ = 0 because relay agent i serviced explorer agent j at

time tjs.

Φj (t) for all t ∈
[
tjs, t

j
s+1

]
. If Φj

(
tjs+1

)
≤ VT , then

‖e1,j (t)‖ ≤ VT for all t ∈
[
tjs, t

j
s+1

]
. In addition,

Φj

(
tjs+1

)
≤ VT yields the maximum dwell-time condition

in (25). Therefore, ‖e1,j (t)‖ ≤ VT for all t ∈
[
tjs, t

j
s+1

]
provided

∥∥e1,j (tjs)∥∥ = 0 and (25) hold.
Next, we show the estimated tracking error e2,j (t) is

exponentially regulated for all t ∈
[
tjs, t

j
s+1

)
.

Theorem 2. If the ARE in (14) is satisfied, then the
observer in (10) and controller in (13) ensure the estimated
tracking error in (7) is exponentially regulated in the sense
that

‖e2,j(t)‖≤

√
λmax (P )

λmin (P )

∥∥e2,j(tjs)∥∥exp

(
− kARE

2λmax(P )

(
t− tjs

))
(33)

for all t ∈
[
tjs, t

j
s+1

)
and each servicing instance s ∈ Z.

Proof: Consider the common Lyapunov functional
V2,j : Rm → R≥0 defined as

V2,j (e2,j (t)) , eT
2,j (t)Pe2,j (t) . (34)

By the Rayleigh quotient, (34) can be bounded as

λmin(P )‖e2,j (t)‖2≤V2,j(e2,j (t))≤λmax(P )‖e2,j (t)‖2.
(35)

Substituting the closed-loop error system (18) into the time
derivative of (34) yields

V̇2,j(e2,j(t)) = eT
2,j (t)

(
ATP + PA− 2PBBTP

)
e2,j(t).

(36)
Using (14), (36) can be obtained as

V̇2,j (e2,j (t)) = −kARE ‖e2,j (t)‖2 . (37)

Using (35) in (37) yields

V̇2,j (e2,j (t)) ≤ − kARE
λmax (P )

V2,j (e2,j (t)) . (38)

Invoking the Comparison Lemma in [18, Lemma 3.4] on
(38) over

[
tjs, t

j
s+1

)
and substituting in (35) yields (33).

Using the relationship described in (8), and results from
Theorems 1 and 2, the following theorem shows the track-
ing error ej (t) is bounded.

Theorem 3. If the relay agent i satisfies the maximum
dwell-time condition in (25) for each s ∈ Z and e1,j

(
tj0

)
=

0m, then the observer in (10) and controller in (13) ensure
the tracking error in (5) is UUB in the sense that

‖ej(t)‖≤

√
λmax (P )

λmin (P )
‖ej(0)‖exp

(
− kARE

2λmax (P )
t

)
+

c

kARE

λmax (P )

λmin (P )

(
1−exp

(
− kARE

2λmax(P )
t

))
,(39)

where c , 2VTSmax

(
PBBTP

)
+ 2xgSmax (PA) +

2djSmax (P ) ∈ R>0 is a known constant.



Proof: Suppose the relay agent i satisfies the maximum
dwell-time condition in (25) for each s ∈ Z and e1,j

(
tj0

)
=

0m. Consider the common Lyapunov functional Vj : Rm →
R≥0 defined as

Vj (ej (t)) , eT
j (t)Pej (t) . (40)

By the Rayleigh quotient, (40) can be bounded as

λmin (P ) ‖ej (t)‖2 ≤ Vj (ej (t)) ≤ λmax (P ) ‖ej (t)‖2 .
(41)

Substituting the closed-loop error system (20) into the time
derivative of (40) yields

V̇j(ej(t)) = 2eT
j (t)P

(
BBTPe1,j(t)−Axg−dj(t)

)
+eT

j (t)
(
ATP+PA− 2PBBTP

)
ej(t).(42)

Using (14), (42) can be upper bounded as

V̇j (ej (t)) ≤ −kARE ‖ej (t)‖2 + 2Smax (P ) ‖ej (t)‖ dj
+2Smax

(
PBBTP

)
‖ej (t)‖ ‖e1,j (t)‖

+2Smax (PA) ‖ej (t)‖xg. (43)

Since the relay agent i satisfies the maximum dwell-time
condition in (25) for each s ∈ Z, ‖e1,j (t)‖ ≤ VT for all
t ∈ [0,∞) by Theorem 1. Using the definition for c, (43)
can be upper bounded as

V̇j (ej (t)) ≤ −kARE ‖ej (t)‖2 + c ‖ej (t)‖ . (44)

Invoking the Comparison Lemma in [18, Lemma 3.4]
on (44) over [0,∞) and substituting in (41) yields (39).
Note that (39) implies ej (t) ∈ L∞. Since ej (t) ∈ L∞
and e1,j (t) ∈ L∞ given the relay agent i satisfies
the maximum dwell-time condition in (25) for each
s ∈ Z, (5) and (8) imply xj (t) ,e2,j (t) ∈ L∞.
Since xj (t) , e1,j (t) ,e2,j (t) ∈ L∞, (6) and (13)
imply x̂j (t) ,uj (t) ∈ L∞ provided B and P are
constant matrices. Hence, ẋj (t) , yj (t) ∈ L∞ by (3)
and (4). Since e1,j (t) , e2,j (t) , ej (t) , uj (t) , x̂j (t) ∈
L∞, (10), (12), (16), (18), (20) imply
˙̂xj (t) , ŷj (t) , ė1,j (t) , ė2,j (t) , ėj (t) ∈ L∞.
Remark 1. From Theorem 3, note that

lim sup
t→∞

‖ej (t)‖ ≤ c

kARE

λmax (P )

λmin (P )
, γ (c) , (45)

where γ (c) can be made arbitrarily small by selecting a
small c, i.e., selecting a small VT and setting the desired
state as the origin.

B. Relay Agent Analysis
To prove the leader tracking error e3,j (t) is bounded for

t ∈
[
tjs, t

j
s+1

]
, we provide the following theorem.

Theorem 4. If
∥∥yi (tjr)− yj (tjr)∥∥ > R, then the controller

of the relay agent i in (15) can satisfy the maximum dwell-
time condition in (25) for explorer agent j provided

ki (t) ≥ 1(
tjs+1 − t

j
r

) ln

( ∥∥e3,j (tjr)∥∥
R− Smax (C)VT

)
(46)

for all t ∈
[
tjr, t

j
s+1

)
, where ki (t) is a piece-wise constant.

In addition, the leader tracking error in (9) is bounded for
t ∈
[
tjs, t

j
s+1

]
.

Proof: Consider the common Lyapunov functional
candidate V3,j : Rz → R≥0 defined as

V3,j (e3,j (t)) ,
1

2
eT
3,j (t) e3,j (t) . (47)

Substituting the closed-loop error system (23) when t ∈[
tjr, t

j
s+1

)
into the time derivative of (47) yields

V̇3,j (e3,j (t)) = −ki (t) eT
3,j (t) e3,j (t) , (48)

where ki (t) is constant over
[
tjr, t

j
s+1

)
. Substituting (47)

into (48) yields

V̇3,j (e3,j (t)) = −2ki (t)V3,j (e3,j (t)) . (49)

Invoking the Comparison Lemma in [18, Lemma 3.4] on
(49) over

[
tjr, t

j
s+1

)
and substituting in (47) yields

‖e3,j (t)‖ =
∥∥e3,j (tjr)∥∥ exp

(
−ki (t)

(
t− tjr

))
. (50)

Consider t ∈
[
tjr, t

j
s+1

)
, the jump discontinuity of

e3,j (t) at tjs+1 is given by Ψj

(
tjs+1

)
, e3,j

(
tjs+1

)
−

lim
t→(tjs+1)

−
e3,j (t) ∈ Rz , where e3,j

(
tjs+1

)
is defined by

(22) and lim
t→(tjs+1)

−
e3,j (t) denotes the limit of e3,j (t)

as t → tjs+1 from the left. Since Ψj

(
tjs+1

)
=

− lim
t→(tjs+1)

−
Ce1,j (t), then by Theorem 1

∥∥∥Ψj

(
tjs+1

)∥∥∥ ≤
Smax (C)VT . It then follows that the magnitude of the jump
discontinuity is bounded by∣∣∣∣∣∥∥∥e3,j (tjs+1

)∥∥∥− lim
t→(tjs+1)

−
‖e3,j (t)‖

∣∣∣∣∣ ≤ Smax (C)VT .

(51)
Communication between the relay agent i and explorer
agent j occurs when ‖yi (t)− yj (t)‖ ≤ R where
‖yi (t)− yj (t)‖ ≤ Smax (C) ‖e1,j (t)‖+ ‖e3,j (t)‖. There-
fore,

∥∥∥yi (tjs+1

)
− yj

(
tjs+1

)∥∥∥ ≤ R can be ensured pro-

vided Smax (C)
∥∥∥e1,j (tjs+1

)∥∥∥+
∥∥∥e3,j (tjs+1

)∥∥∥ ≤ R. From

Theorem 1,
∥∥∥e1,j (tjs+1

)∥∥∥ ≤ VT . Using (50) and (51), it

follows that Smax (C)
∥∥∥e1,j (tjs+1

)∥∥∥ +
∥∥∥e3,j (tjs+1

)∥∥∥ ≤
Smax (C)VT +

∥∥e3,j (tjr)∥∥ exp
(
−ki (t)

(
tjs+1 − tjr

))
≤ R

provided (46) holds. To ensure ki (t) for t ∈
[
tjr, t

j
s+1

)
is well-defined, VT must be selected such that∥∥e3,j (tjr)∥∥ > R − Smax (C)VT > 0. Note that
if 0 <

∥∥e3,j (tjr)∥∥ ≤ R − Smax (C)VT , then
Smax (C)

∥∥e1,j (tjr)∥∥ +
∥∥e3,j (tjr)∥∥ ≤ Smax (C)VT +

R − Smax (C)VT ≤ R provided VT ∈
(

0, R
Smax(C)

)



and communication between the relay agent i and
explorer agent j is possible without the need to maneuver
the relay agent i towards explorer agent j. By (47)
and (50), the leader tracking error in (9) is bounded.
Since e3,j (t) ∈ L∞ and x̂j (t) ∈ L∞ by Theorem
3, then xi (t) ∈ L∞. Since xi (t) , e3,j (t) ∈ L∞ and
e2,j (t) , uj (t) ∈ L∞ by Theorem 3, the controller
ui (t) ∈ L∞ by (15). Substituting (21) when t ∈

[
tjs, t

j
r

)
into the time derivative of (47) yields V̇3,j (e3,j (t)) =
eT
3,j (t) (C (−Ae2,j (t) +Buj (t))− Ci (Aixi (t) +Biui (t))).

From Theorem 2, e2,j (t) ∈ L∞ for t ∈
[
tjs, t

j
s+1

)
. Since

tjr < tjs+1 by design, e2,j (t) ∈ L∞, i.e., ‖e2,j (t)‖ ≤ e2,j
for t ∈

[
tjs, t

j
r

)
, where e2,j ∈ R>0. Using (7), since

‖xg‖ ≤ xg and e2,j (t) ∈ L∞, x̂j (t) ∈ L∞, i.e.,
‖x̂j (t)‖ ≤ x̂j for t ∈

[
tjs, t

j
r

)
, where x̂j ∈ R>0. Since

ui (t) , uj (t) ∈ L∞, then there exist U i, U j ∈ R>0 such
that ‖ui (t)‖ ≤ U i and ‖uj (t)‖ ≤ U j for all t.4 Therefore,
V̇3,j (e3,j (t)) can be upper bounded as

V̇3,j (e3,j (t)) = Smax (Ai) ‖e3,j (t)‖2 + ε ‖e3,j (t)‖ , (52)

where ε , Smax (CA) e2,j + Smax (CB)U j +
Smax (CiBi)U i + Smax (Ai)Smax (C) x̂j ∈ R>0 is a
bounding constant. Invoking the Comparison Lemma in
[18, Lemma 3.4] on (52) over

[
tjs, t

j
r

)
and substituting in

(47) yields

‖e3,j (t)‖ ≤ ε

Smax(Ai)

(
exp
(
Smax(Ai)

(
t−tjs

))
−1
)

+
∥∥e3,j (tjs)∥∥exp

(
Smax (Ai)

(
t− tjs

))
. (53)

By (51) and (53), e3,j (t) ∈ L∞ for t ∈
[
tjs, t

j
r

)
. Since

e3,j (t) ∈ L∞ for t ∈
[
tjr, t

j
s+1

)
, the leader tracking error

in (9) is bounded for t ∈
[
tjs, t

j
s+1

]
.

VII. SYNTHESIS

A. Strategy Synthesis
Recall that the goal of the synthesized strategy is to

compute switching signal ζi (t) for all relay agents i ∈ L.
We approach the problem using reactive synthesis as it is
a natural formulation to capture any potential unknowns
in the environment (such as travel time between explorer
agents) as environmental inputs and still provide theoretical
guarantees of correctness that the maximum dwell-time
condition given in Theorem 1 for all explorer agents is
satisfied. In this section, we highlight how we can use
contract-based synthesis to decentralize the reactive syn-
thesis problem amongst the relay agents. In other words,
our method enables each relay agent to compute their own
ζi (t) independently and in parallel.

We decentralize the problem by enforcing each relay
agent to only be responsible for servicing explorer agents
in its region. Each relay agent thus needs to keep track
of which explorer agents it is responsible for, as well as
how much time has elapsed since that agent had last been

4The relay agent i executes (15) by cycling through all j ∈ F for all
t, which was shown to be bounded for each j ∈ F .

serviced. To this end, we introduce two sets of atomic
propositions. First, for a relay agent i, we define a set of
service propositions Yi = {y1i , . . . , yNi } that corresponds to
the explorer agents that relay agent i is currently responsible
for servicing, i.e., yji = > if explorer agent j is in Si.
We additionally define servicei : [0,∞) → 2Yi which
maps the history of the play so far to the set of explorer
agents in the corresponding sub-region Si. In practice, the
function ηKi (t) outputs the set of explorer agents Fi ⊆ F ,
and servicei converts Fi into valuations of the service
propositions Yi.

Second, we define the discrete time set Td ,
{t[0], t[1], . . . }, where t[h] = hTs for h ∈ I, I , {0, 1, . . . }
is the time index set, and Ts ∈ R>0 is the sampling
period. Then we define the set of timing propositions
T ji = {τ0, τ1, . . . , τTj}, where Tj denotes the maximum
dwell-time defined in Theorem 1, and T ji encodes how
much time explorer agent j has to be serviced before
violating the dwell-time condition, i.e., τh = > if explorer
j has to be serviced in at most t[h] time steps for the
maximum dwell-time condition to be satisfied.

Formally, each relay agent i will have environment
atomic propositions Ei = Yi ∪

(⋃N
j=1 T

j
i

)
. The GR(1)

requirements that each relay agent must satisfy are ϕi =∧N
j=1 (� (yj → ¬τ0)), where the valuation yj is set by

servicei. Informally, ϕi states that if explorer agent j is
in Si, then it must be serviced by relay agent i before the
time left to service reaches 0 as denoted by τ0 = >.

Each relay agent is unaware of the specification and
implementation details of the other relay agents. To ensure
that relay agents coordinate to satisfy their specifications,
every controller must additionally satisfy contract speci-
fications. These contract specifications take the form of
assume-guarantee contracts. Informally, a relay agent gives
a guarantee of satisfying a contract specification with all
other relay agents. This guarantee is used as an assumption
for the synthesis of the other relay agents’ controllers
and vice-versa. In this paper, we focus on providing
a framework to conduct the assume-guarantee synthesis.
However, in practice, the contract specifications are domain
and environment-specific. We provide an example of a
contract specification used to coordinate hand-offs used in
the implementation in section VIII. Since explorer agents
can enter and leave sub-regions, the currently responsible
relay agent must ensure there is sufficient time for the
next relay agent to service the incoming explorer agent.
We denote this contract specification as φi and define
it as φi =

∧N
j=1

(
�
(

(yj ∧ ¬© yj)→ ¬
(∧K

h=0 τ0

)))
for some user-provided integer K ≤ Tj . This contract
specification states that if explorer agent j is leaving region
Si in the next time step, it must have at least K time steps
before it needs to be serviced again. This contract gives the
next relay agent some buffer time to service explorer agent
j when it enters the next region.

The full GR(1) specifications for relay agent i to satisfy



are

Φi = �♦

 M∧
α=1,α6=i

φα

→ N∧
j=1

(� (yj → ¬τ0) ∧ φi) .

(54)
By construction, if ρi |= Φi for all i ∈ L then the maximum
dwell-time condition for all explorer agents are satisfied and
consensus is achieved.

Last, we present Theorem 5, which provides theoret-
ical guarantees for achieving stability and approximate
consensus (in Problem 1) by satisfying the full GR(1)
specifications described in (54).

Theorem 5. With the observer in (10), controllers
in (13) for explorer agents, controllers in (15)
for relay agents, the parameters are selected

such that ki (t) ≥ 1

(tjs+1−t
j
r)

ln

(
‖e3,j(tjr)‖

R−Smax(C)VT

)
,

VT ∈
(

0, R
Smax(C)

)
, γ (c)Smax (C) ≤ R, Assumptions 1-6

and the GR(1) specifications for relay agents described
in (54) are satisfied, then the explorer agents reach
approximate consensus within the goal region in the sense
that

lim
t→∞

sup ‖ej (t)‖ ≤ γ (c∗) , (55)

where c∗ = 2xgSmax (PA) + 2djSmax (P ).

Proof: From results of Theorems 1-3, the tracking
error ej (t) is UUB provided the relay agent i satisfies
the maximum dwell-time condition described in (25) for
all t ∈

[
tjs, t

j
s+1

]
. By satisfying the GR(1) specifications

for relay agent i described in (54) for all i ∈ L, then
the maximum dwell-time condition for all the explorer
agents are satisfied. According to (45), ‖ej (t)‖ ≤ γ (c).
By satisfying γ (c)Smax (C) ≤ R, then e1,j (t) = 0m, and
γ (c) can be reduced to γ (c∗). Therefore, we obtain (55).

VIII. SIMULATION
Two simulation examples demonstrate that the developed

technique of combining the high-level strategy planning and
low-level control design can regulate the explorer agents to
reach approximate consensus. Specifically, Section VIII-A
shows nine explorer agents originated in three different
pre-defined sub-regions (divided by functions X = 0,√

3X − 3Y = 0 and
√

3X + 3Y = 0 in the Cartesian
coordinate system) that are serviced by three relay agents
for state corrections. Each of the three relay agents is
responsible for servicing the corresponding three explorer
agents within its sub-region, and the nine explorer agents
reach a goal region centered at g , [0, 0] ∈ R2 with
radius R. To demonstrate the developed method requires
less control effort and can be used in a distributed fashion,
we provide the following two baseline methods for com-
parison. We use the round-robin scheduler for the relay
agents to service certain explorer agents while satisfying
the maximum dwell-time conditions. We also conduct a
centralized reactive synthesis planning to compare to the
developed distributed strategy planning.

To further demonstrate that the applicability of the devel-
oped method, Section VIII-B showcases that eight explorer
agents reach approximate consensus even when an ex-
plorer agent’s trajectory crosses sub-regions. The servicing
responsibilities among relay agents can be transferred to
account for boundary crossing between sub-regions, and
the corresponding planning strategies can accommodate the
changing number of explorer agents within a sub-region.

A. Local Maneuvering
We adopt the dynamics of the relay and explorer agents in

(1)-(4), where Ai = Bi = Ci = A = B = C , I2, and i =
1, 2, 3. The disturbances for the explorer agents are modeled
as dj (t) , d∗j [sin (t) , cos (t)]

T, where j = 1, 2, 3, ..., 9.5
The initial positions of explorer agents 1-9 and relay agents
1-3 are shown in Figure 3, and the simulation parameters
are selected as shown in Table I. We use the tool Slugs [13]
for the strategy synthesis.

As shown in the following figures, Figure 2(a) depicts
the norm of the state estimation error e1,j (t) throughout
the simulation, showing the errors are bounded. Figure 2(b)
depicts the norm of the estimated tracking error e2,j (t) is
regulated to zero. Figure 2(c) shows the leader tracking
error e3,j (t) for each explorer agent with respect to its
corresponding servicing relay agent. Figure 3 depicts the
true and estimated trajectories for the explorer agents, and
the trajectories for the relay agents. As shown in Figures 2
and 3, the errors are bounded and the states of nine explorer
agents are regulated towards the origin.

To illustrate the developed method requires less con-
trol effort than the other standard scheduler methods, we
provide a comparison using round-robin scheduler. Specif-
ically, we set the target servicing sequence to be 1-2-3 in
a loop for the relay agent within the sub-region while the
round-robin scheduler also satisfies the corresponding max-
imum dwell-time conditions. Since the round-robin sched-
uler can not achieve the objective while using the same
initial control gains for the relay agents and exogenous
disturbances for the explorer agents, we select the initial
gains for the relay agents to be k1 (0) = 4, k2 (0) = 3.8,
and k3 (0) = 4 as shown in Table I. As shown in Figure 4,
the round-robin scheduler in Figure 4(b) requires 101.4%
more control effort to complete the objective compare to the
control effort needed for the developed method in Figure
4(a). The synthesized strategies enable the relay agents to
service the explorer agents who need the state corrections
the most, based on their previous servicing times and the
corresponding maximum dwell-time conditions before the
state estimation errors exceed the user-defined threshold,
i.e., ‖e1,j (t)‖ ≤ VT . As shown in Figure 3, the relay
agent in the top-right sub-region services explorer agents
1 (initialized at [100,−10]

T) and 2 (initialized at [70, 70]
T)

more often than servicing explorer agent 3 (initialized at
[30, 100]

T). Because the explorer agents experienced differ-
ent exogenous disturbances with the same user-defined state
estimation error bound, the corresponding maximum dwell-
time conditions are different, i.e., (25), which leads to some

5For the specific values used in the simulation, we refer the reader to
Table I.



Table I: Simulation parameters

Local Maneuvering Round-robin Global Maneuvering

d∗1 = 1 d∗2 = 0.45 d∗3 = 0.15 d∗1 = 1 d∗2 = 0.45 d∗3 = 0.15 d∗1 = 1 d∗2 = 0.15 d∗3 = 0.45

d∗4 = 1 d∗5 = 0.45 d∗6 = 0.15 d∗4 = 1 d∗5 = 0.45 d∗6 = 0.15 d∗4 = 1 d∗5 = 0.45 d∗6 = 1

d∗7 = 1 d∗8 = 0.45 d∗9 = 0.15 d∗7 = 1 d∗8 = 0.45 d∗9 = 0.15 d∗7 = 0.45 d∗8 = 0.15

Rg, R = 5 VT = 3 kARE = 0.005 Rg, R = 5 VT = 3 kARE = 0.005 Rg, R = 5 VT = 3 kARE = 0.005

k1 (0) = 2.8 k2 (0) = 2.1 k3 (0) = 2.8 k1 (0) = 4 k2 (0) = 3.8 k3 (0) = 4 k1 (0) = 7 k2 (0) = 6 k3 (0) = 3

Table II: Computation time for generating the synthesized
strategies

M = 2, N = 3 M = 2, N = 5 M = 2, N = 7 M = 3, N = 6 M = 3, N = 9 M = 3, N = 12

distributed 0.028s 3.05s 6.91s 0.084s 9.06s 11.67s
centralized 109.43s TO TO TO TO TO

explorer agents needing more service than others. Because
the round-robin scheduler sets a specific servicing sequence,
some explorer agents got redundant services while ensuring
the maximum dwell-time condition for each explorer agent
is satisfied. Therefore, the developed method requires less
control effort to achieve the objective.

A centralized strategy planning approach is also com-
pared to our distributed method. The centralized strategy
refers to a method where more than one relay agent is
pre-synthesized in the planning to service all the explorer
agents at the same time. For example, a distributed strategy
can incorporate two relay agents, and each relay agent
is responsible for servicing three explorer agents. While
the centralized strategy will have these two relay agents
servicing all six explorer agents together. As shown in Table
II, the centralized strategies scale badly in computation time
as the number of relay and explorer agents increased, which
impedes applicability.6

(a) (b) (c)

Figure 2: Norm for (a) state estimation error, (b)
estimated tracking error, and (c) leader tracking error for
the nine explorer agents without crossing the sub-region
boundaries, i.e., local maneuvering.

B. Global Maneuvering
By further demonstrating the developed method is appli-

cable, we now consider eight explorer agents and three relay
agents initialized in three different pre-defined sub-regions.
Throughout the simulation, an explorer agent (i.e., explorer

6When generating the synthesized strategies, the maximum dwell-time
for each explorer agent is selected as 5 time units. The times listed in
Table II are generated using a Linux Ubuntu 20.04 operating system, Intel
i7-4820K CPU @ 3.70GHz x 8 processor, and 32 GB memory computer.

Figure 3: Agent trajectories for the nine explorer agents
without crossing the sub-region boundaries, i.e., local
maneuvering. The blue, green and red lines denote the
three relay agents, and the other lines denote the nine
explorer agents.

(a) (b)

Figure 4: Control effort of the relay agents using (a) the
developed approach, and (b) the round-robin scheduler.

agent 3 initialized at [1, 100]
T) leaves top-right sub-region

and enters top-left sub-region as depicted in Figure 5. While
the trajectory of explorer agent 3 crosses the boundaries,
servicing responsibilities between the relay agents in top-
right and top-left sub-regions are transferred, and the relay
agents only need to service the explorer agents in their own
sub-regions. The dynamics and system matrices used in this
simulation example are the same as those in Section VIII-A,
and the disturbances for the explorer agents are modeled
as dj (t) , d∗j [− sin (t) , cos (t)]

T, where j = 1, 2, 3, ..., 8.
The initial positions of explorer agents 1-8 and relay agents
1-3 are shown in Figure 5, and the simulation parameters
are selected as shown in Table I.

Similar to Section VIII-A, Figure 5 shows that the
states of the explorer agents reach approximate consensus
at the origin. Note that explorer agent 3 leaves top-right
sub-region and enters the top-left sub-region during the
simulation, and the relay agent in top-left sub-region needs



(a) (b)

Figure 5: (a) Agent trajectories for the eight explorer
agents with one explorer agent crossing the sub-region
boundaries, i.e., global maneuvering. The blue, green and
red lines denote the three relay agents, and the other lines
denote the eight explorer agents. (b) Zoomed in plot of
the trajectories, where the explorer agent 3 crosses the
boundaries because of exogenous disturbance, and the
relay agent in the right sub-region transfers the servicing
responsibility to the relay agent in the left sub-region after
the crossing.

to start servicing explorer agent 3 after crossing, and the
relay agent in top-right sub-region does not need to service
explorer agent 3 after crossing. As shown in Figure 5(b),
explorer agent 3 crosses the boundary (denoted by X = 0 in
the Cartesian coordinate system) because of the exogenous
disturbance. After explorer agent 3 crosses the boundary,
the relay agent in top-right sub-region only services ex-
plorer agents 1 (initialized at [100,−10]

T) and 2 (initialized
at [70, 70]

T). The relay agent in top-left sub-region services
explorer agents 3 (initialized at [1, 100]

T), 4 (initialized
at [−70, 70]

T) and 5 (initialized at [−100,−10]
T). This

simulation example shows the developed method can ac-
commodate for transferring of servicing responsibilities in
between relay agents.

IX. CONCLUSION
By using the reactive synthesis approach to satisfy the

high-level mission specifications and the low-level control
design to provide performance guarantees, we show the
distributed MAS can reach approximate consensus while
relay agents switch among explorer agents to provide
state information. Future work will focus on extending
the current approach to satisfy more complicated mission
specifications.

REFERENCES

[1] X. Wang and M. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability,” IEEE Trans. Autom. Control, vol. 54,
pp. 452–467, Mar. 2009.

[2] X. Meng and T. Chen, “Event based agreement protocols for multi-
agent networks,” Automatica, vol. 49, pp. 2125–2132, Jul. 2013.

[3] T. H. Cheng, Z. Kan, J. R. Klotz, J. M. Shea, and W. E. Dixon,
“Event-triggered control of multi-agent systems for fixed and time-
varying network topologies,” IEEE Trans. Autom. Control, vol. 62,
no. 10, pp. 5365–5371, 2017.

[4] H. Li, X. Liao, T. Huang, and W. Zhu, “Event-triggering sampling
based leader-following consensus in second-order multi-agent sys-
tems,” IEEE Trans. Autom. Control, vol. 60, no. 7, pp. 1998–2003,
Jul. 2015.

[5] W. Heemels and M. Donkers, “Model-based periodic event-
triggered control for linear systems,” Automatica, vol. 49, no. 3,
pp. 698–711, 2013.

[6] P. Tabuada, “Event-triggered real-time scheduling of stabilizing
control tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp.
1680–1685, Sep. 2007.

[7] H.-Y. Chen, Z. Bell, P. Deptula, and W. E. Dixon, “A switched sys-
tems approach to path following with intermittent state feedback,”
IEEE Trans. Robot., vol. 35, no. 3, pp. 725–733, 2019.

[8] F. Zegers, H.-Y. Chen, P. Deptula, and W. E. Dixon, “A switched
systems approach to consensus of a distributed multi-agent system
with intermittent communication,” in Proc. Am. Control Conf.,
2019, pp. 2372–2377.

[9] R. Sun, C. Harris, Z. Bell, and W. E. Dixon, “Relay-explorer
approach for multi-agent exploration of an unknown environment
with intermittent communication,” in Proc. IEEE Conf. Decis.
Control, 2020, pp. 5218–5223.

[10] J. Ouaknine and J. Worrell, “On the decidability of metric temporal
logic,” in Proc. Annual IEEE Symp. on Logic in Comput. Sci.,
Washington, DC, USA, 2005, pp. 188–197.

[11] Z. Xu, F. M. Zegers, B. Wu, W. E. Dixon, and U. Topcu, “Controller
synthesis for multi-agent systems with intermittent communication:
A metric temporal logic approach,” in Proc. Allerton Conf. on
Commun., Control, and Compu., Sept. 2019.

[12] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar,
“Synthesis of reactive (1) designs,” J. Comput. Syst. Sci., vol. 78,
no. 3, pp. 911–938, 2012.

[13] R. Ehlers and V. Raman, “Slugs: Extensible GR(1) synthesis,” in
Computer Aided Verification - 28th Int. Conf., Toronto, ON, Canada,
2016, pp. 333–339.

[14] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-
Gazit, “Reactive mission and motion planning with deadlock reso-
lution avoiding dynamic obstacles,” Auton. Robots, vol. 42, no. 4,
pp. 801–824, 2018.

[15] S. Bharadwaj, R. Dimitrova, and U. Topcu, “Synthesis of surveil-
lance strategies via belief abstraction,” in Proc. IEEE Conf. Decis.
Control, 2018, pp. 4159–4166.

[16] S. Bharadwaj, A. P. Vinod, R. Dimitrova, and U. Topcu, “Near-
optimal reactive synthesis incorporating runtime information,” in
Proc. IEEE Int. Conf. on Robot. and Autom., 2020, pp. 10 342–
10 348.

[17] C. Baier and J.-P. Katoen, Principles of Model Checking (Repre-
sentation and Mind Series). The MIT Press, 2008.

[18] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ:
Prentice Hall, 2002.


