
Journal of Applied and Computational Topology (2025) 9:17
https://doi.org/10.1007/s41468-025-00217-9

Topology-aware planning under linear temporal logic
constraints

Dan P. Guralnik1 · Yu Wang1 ·Warren E. Dixon1

Received: 12 February 2025 / Revised: 14 June 2025 / Accepted: 17 June 2025
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025

Abstract
Symbolic planning methods for continuous state spaces have traditionally relied on
model-checking techniques being applied to a discrete model of the space in ques-
tion. Such models are usually obtained as dual graphs to tilings of the state space by
contractible regions (finite polytopes, usually), converting the planning problem into
a graph search problem. The inherently high computational complexity of these meth-
ods motivates considering discretizations that are more frugally constructed, while
retaining all the pertinent topological information about the state space. Moreover,
Farber’s theory of topological complexity of continuous planning favors the require-
ment that the homotopy types of the state space and its models coincide. The Nerve
Lemma indicates it may be possible to obtain the desired models of a state space as
particular sub-complexes of the barycentric subdivision of the nerve N(U) of a good
open cover U indexed by the symbols. This article develops the basic theory required
for conducting symbolic planning over models obtained in this way. The obstructions
to deploying themodel-checking paradigm for path-planning over an open coverU are
identified and characterized, resulting in a modelNred(U) called the reduced nerve of
the cover, and an algorithm for solving LTL-planning problems is presented. Further-
more, in the case of a good cover, it is shown that all the vertices of the complement
of Nred(U) may be deleted from the subdivided nerve without altering its homotopy
type.

Keywords Temporal logic based planning · Continuous planning · Homotopy type ·
Nerve complex · Triangulated space · Discretization · Transition system

Dan P. Guralnik, Yu Wang, and Warren E. Dixon all authors contributed equally to this work.

B Dan P. Guralnik
danguralnik@ufl.edu

Yu Wang
yuwang1@ufl.edu

Warren E. Dixon
wdixon@ufl.edu

1 Department of Mechanical & Aerospace Engineering, University of Florida, P.O.Box 116250,
Gainesville, Florida 32611, United States

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s41468-025-00217-9&domain=pdf

 17 Page 2 of 41 D. P. Guralnik et al.

1 Introduction

Planning for a broad range of tasks, rather than specific ones, has long been a goal in
robotics and machine intelligence (Koditschek 1992, 2021; Kress Gazit et al. 2018;
LamnabhiLagarrigue et al. 2017). The implicit, though crucial, role playedby topology
in determining the complexities of robotic planning and control problems has been
moving to the forefront of research in recent years. For example, a homotopy invariant
TC(X) ∈ Z≥0 of a topological space X called topological complexity was introduced
in Farber (2003) to serve as a measure of the complexity of point-to-point planning.
The space X is ofminimal complexity, TC(X) = 0, if and only if a continuous planner
exists for X , if and only if X is contractible. Similarly, topology of the state space
impacts the quality of guarantees for reactive navigation (Koditschek andRimon 1990;
Rimon and Koditschek 1992), and, more generally state-feedback control, beginning
with seminal results such as Brockett’s obstruction (Brockett 1983), and culminating
with the recent works (Baryshnikov 2023; Kvalheim 2023), including modern hybrid
approaches (Montgomery and Sanfelice 2024). Topological insights inform many
computational tools for geometric planning. For instance, topological abstractions are
used to decipher and simplify the shapes of configuration spaces while preserving
essential properties (Pokorny et al. 2014; Marinakis and Dudek 2010). Furthermore,
topological invariants are used to develop algorithms that classify and compute optimal
solutions across diverse topologies in configuration spaces (Bhattacharya et al. 2013;
Mavrogiannis et al. 2023).

At the same time, topological considerations in the management of composite
tasks expressed through logical formulae remain less studied despite multiple recent
examples of real-world applications in areas such as unmanned aerial vehicle coor-
dination (Karaman and Frazzoli 2011), traffic regulation (Maierhofer et al. 2022),
sequential robotic manipulation (Wells et al. 2021), and others. Planning problems
for tasks expressed in temporal logic can be complex, requiring policies that consider
historical actions. Existing literature often necessitates user intervention to decompose
these tasks into sequences of simpler tasks, which can be computationally expensive
and, in general, not scalable.

Among temporal logic formalisms, Linear Temporal Logic (LTL) is more exten-
sively applied due to its expressive capabilities and relatively low computational
demands. LTLextendsBoolean logic by incorporating the temporal connectives “next”
(©) and “until” (U). These connectives extend the foundational principles of Boolean
logic to articulate changes in system state over discrete linear time. The inclusion of
these temporal connectives enables the expression of diverse time-related planning
objectives. For example, given atomic propositions α and β representing regions in
configuration space, the simple expression αUβ states the requirement that the agent
confine its state to the region α until the region β is reached. Infinite-horizon objec-
tives are also expressible in LTL, such as ensuring the recurrence of a desired set of
semantic states.

LTLwas introduced as a high-level language for expressing general planning objec-
tives for robots (Fainekos et al. 2005b, 2009; Kress Gazit et al. 2009) based on a
discrete abstraction of the configuration space. Planning methods were then general-
ized from discrete to continuous spaces using hybrid approaches combining high-level

123

Topology-aware planning under linear temporal logic constraints Page 3 of 41 17

discrete planning with low-level continuous planning (Fainekos et al. 2005a), or by
directly operating in the continuous configuration space (Karaman et al. 2008; Belta
and Sadraddini 2019). More recently, planning objectives have been extended from
LTL to other temporal logics, such as cLTL (Sahin et al. 2019) and HyperLTL (Wang
and Pajic 2020). However, all the aforementioned works assume the configuration
space is a regular Euclidean domain, and do not account for its topology. Thus, plan-
ning for LTL in more general topological spaces remains an open problem, which we
address in this paper.

1.1 Generalizing the LTL planning paradigm

A particularly attractive feature of LTL is the representability of LTL formulae ϕ by
finite automata Aϕ , which enables the solution of discrete planning problems stated
in terms of LTL-based constraints. The states of the automata Aϕ represent historical
information, while their transitions represent reasoning over that information given
incoming observations. The sensory inputs of the system are modeled as Boolean
labels L = {lα : X → {�,⊥}}α∈AP represented by a finite set of atomic propositions
AP, so a transition of Aϕ occurring at a state x ∈ X is labeled with an observation

ς(x) � {α ∈ AP : lα(x) = �} .

When the system state X is discrete, the state-of-the-art solution to the problem of
planning a path satisfying ϕ is to search the extension of X byAϕ , often referred to as
the product automaton, for a valid directed path consisting of an initial segment ending
at an accepting state (transient behavior), followed by a loop (recurrent behavior). It is
natural to ask whether such searches could be supplanted by simpler computations in
the presence of additional structural information about the system. In particular, in the
case of X being a tame enough topological space, we ask what properties one should
minimally require of the sets U(α) � l−1

α (�) to make use of available information
about topological invariants of X , for the purpose of avoiding a fruitless search?

Our paradigm captures a general class of planning problems. The symbols α ∈ AP
may be used to express a wide variety of semantic requirements and constraints and the
space X itself does not need to be an instance of some specific physical environment.
For example, the dynamical states of a mechanical system S are often described
as lying in the tangent bundle π : T E � E over a manifold E which is itself a
principal RN -bundle p : E � B over a “shape space” B, which may have non-
trivial topology.1 If X is such a space (i.e., X = T E in the example), a symbol α

may correspond to a collection of shape configurations of S expressing a mechanical
constraint on the interaction between components of S; or a dynamic state relating the
velocities of different system components to their relative positions and orientations.
In the context of a particular task, any such symbol or a Boolean combination thereof
may be specified as acceptable (“safe”), desirable (a goal to be reached), or to be
avoided (“unsafe”), where each of these roles may depend on historical context within

1 E.g., for an n-link planar arm, B is a domain in the n-torus; if the arm is not anchored, then E is an
R2-principal bundle over the n-torus B.

123

 17 Page 4 of 41 D. P. Guralnik et al.

Fig. 1 The two prevalent methods of modeling continuous state spaces in the LTL-based planning literature.
The tiling model (left), where each atomic proposition corresponds to the system state being contained in a
specific tile (blue/red/grey); and the hub model (right), which is a simplified setup with a single ‘hub’ tile
(grey) connecting all the others (red). Note how the tiling model may be used to refine the hub model

the current mission. Here, the word “safe” is most often associated in the literature
with system states which, given the current history and state, must be avoided for fear
of damaging the system or incurring some other unacceptable cost, such as hurting a
person.

A crucial characteristic of the LTL context is, therefore, that robotic tasks in con-
tinuous spaces are formulated in terms of discrete sensory inputs (e.g., is a certain
landmark nearby? Are any of the robot’s legs touching the ground? Is the robot walk-
ing on concrete or on sand?), whereas the configuration spaces of robotic systems
are described in terms of the complex interactions between robot morphology and
environment geometry. Bringing these two different viewpoints of a mission—the
discrete and the continuous—to a common denominator is a necessary step, but the
approaches to doing so differ. Direct computational methods such as mixed integer
programming (Shoukry et al. 2017) are known to be computationally expensive. To
mitigate this complexity, the configuration space is often abstracted into a discrete
graph (c.f. Kress Gazit et al. 2009; Fainekos et al. 2009), where nodes represent sys-
tem states and edges represent transitions between states. Some efforts have relied
on heuristic partitioning methods using zonotopes (Ren et al. 2021) or more general
polytopes (Tokuda et al. 2021). However, the specific partitioning methods were pri-
marily geared towards simplifying local computations rather than towards accounting
for the global topology of the configuration space, resulting in only semi-decidable
algorithms: in other words, these algorithms may not always terminate to give feasible
paths.

Two ideas about partitioning prevail in the literature, whose idealized descriptions
(the actual implementations vary) may be summarized as follows (see Figure 1).

• “Tiling model”. The connected configuration space X is expressed as being tiled
by the {U(α)}α∈AP (e.g. in Fainekos et al. (2009), Kress Gazit et al. (2009)). That
is, U(α) is open and non-empty for all α ∈ AP, and U(α) ∩ U(β) = ∅ whenever
α 	= β (tiles are interiorly disjoint), but, at the same time, X = ⋃

α∈AP U(α) (the
closures of the tiles cover everything). The individual tiles U(α) are required to
be path-connected (usually contractible, e.g., convex polytopes). Each pair with
U(α) ∩ U(β) 	= ∅ corresponds to an edge of a “connectivity graph” with vertex
set AP. The resulting graph is used to construct a discrete transition system, whose
transitions correspond to controllers effecting motions between neighboring tiles
‘along’ the edges of the graph. Notably, the underlying semantics are highly sim-

123

Topology-aware planning under linear temporal logic constraints Page 5 of 41 17

plified: at any time, the system state either satisfies at most one atomic proposition,
or a small number thereof (depending on the actual implementation and combi-
natorics of the tiling), the latter case only occurring instantaneously (or nearly so)
during transitions, with the origin and goal tiles being known in advance.

• “Hub model”. This is a special case of a tiling model, where one has ∗ /∈ AP as
an additional symbol, and open sets U(α), α ∈ AP ∪ {∗} forming a tiling in the
preceding sense, but with the additional property that the edges in the connectivity
graph of the tiling are precisely those of the form {α, ∗}. The hub model often
arises as a simplification of the tiling model, where less consequential tiles are
unified into a single region labeled by ∗. In fact, works like (Fainekos et al. 2009;
Kress Gazit et al. 2009) combine the use of the tiling model for navigation with the
use of the simplified hub model for planning. Note that the set U(∗) both separates
between any two of the U(α), α ∈ AP, and serves as a conduit between them,
while not being contractible in general (Fig. 1, right, for example). A majority of
TL-based planning applications, both in discrete and continuous settings, are of
this form, necessitating a dedicated solution for the navigation problem in U(∗).
Since a mission specification may not be provided in terms of labels conforming

to either model, the first step in the TL-based planning pipeline is to refine the labels
(further subdivide X) so that the original semantic labels of the mission could be
expressed in terms of a tiling—or hub—model. Any LTL formula specifying the
original mission is then rewritten in terms of the new, much larger, alphabet, incurring
major added computational costs stemming from the generally doubly exponential
complexity of subsequent planning, regarded as a function of the size of the alphabet.
Nevertheless, interactions between the refined labels are kept to a minimum, which
is expressible completely in term of the known connectivity graph of the tiling. If the
tiles are simple enough (in practice they are often convex polytopes, with the exception
of U(∗)), then controllers/planners may be constructed to execute motion within and
between tiles, reducing LTL-based planning over X to LTL-based planning over the
connectivity graph of the tiling. Thus, avoiding the computational costs of seemingly
convenient ad-hoc expansions of themission specification alphabet becomes a priority.

The main contribution of the tiling approaches lies with the encoding of the con-
tinuous space X as the dual graph of the tiling. Therefore, one expects that more
compact—yet equally informative—discrete representations of X could be obtained
if the tiling is replaced with an appropriate cover of X representing a coarser subdi-
vision of the original alphabet (and therefore incurring a lower computational cost).
If possible, such a construction would have the added benefit of making use of topo-
logical information, which is obtainable at a much lower cost in the pre-processing
stage of the mission (e.g., the presence of known cut-sets in X that could be inferred
from homological computations), for optimizations in the planning stage, such as
enabling faster rejection of infeasible mission specifications possessing topological
obstructions. The central question becomes:

Question 1.1 Which covers represent the connectivity properties of X with sufficient
precision to address the complexities of path planning? Given an appropriate cover,
how should a discretization of X be constructed?

123

 17 Page 6 of 41 D. P. Guralnik et al.

Another motivating principle for the present work is that continuous behaviors are
desirable in robotic contexts. For example, if the task is to reach a particular con-
figuration x∗ ∈ X , then one would like the path taken by the robot to x∗ to depend
continuously on the initial condition x0 ∈ X , as well as on x∗. This preference was
considered by Farber in his seminal work (Farber 2003), where the topological com-
plexity of path planning was introduced. Recall that if P(X) is the space of continuous
paths c : [0, 1] → X with the uniform topology and π : P(X) → X × X is the end-
point map c �→ (c(0), c(1)), then a continuous path planner is a continuous section
s : X × X → P(X) of π , that is: π ◦ s = idX×X . Farber’s work departs from the
observation that X admits a continuous path planner if and only if X is contractible—a
result that may be seen as analogous to the realization that a point attractor of a contin-
uous vector field has a contractible basin. The topological complexity TC(X) is then
defined as the smallest m ∈ Z≥0 such that X × X admits an open cover {U0, . . . ,Um}
with continuous partial sections si : Ui → P(X) such that π ◦ si = idUi for all
i = 0, . . . ,m, and is shown to be a homotopy invariant of X .

Absent a direct linkage between topological complexity and LTL-based planning,
but seeking to retain information about the homotopy type of X , it seems sensible
to require that the ‘patches’ U(α) corresponding to the labels lα ∈ L be open and
contractible. For sufficiently tame spaces, where the inclusion map of any point is a
cofibration2, the task of reaching a prescribed point may then be regarded as being
equivalent to that of reaching a prescribed contractible neighborhood of that point.
While this consideration resonates well with the tilingmodel (especially when the tiles
happen to be convex polytopes), here it is also proposed to take advantage of possible
intersections of the U(α) rather than refine them to a tiling, in the interest of avoiding
the increase in complexity incurred by refinement, and trying to obtain complexity
savings from computable topological invariants. If the open sets U(α), α ∈ AP are
allowed to form a cover, dropping the more restrictive requirement that they form a
tiling, then a classical result called the nerve lemma (Kozlov 2008) may be invoked to
conclude that the abstract simplicial complexN(U) = {σ ⊂ AP : ⋂

α∈σ U(α) 	= ∅},
known as the nerve of the indexed coverU, is homotopy-equivalent to X (and therefore
has the same topological complexity), provided all non-empty intersections of the
U(α) are contractible. As a result, N(U) may seem acceptable as a discretization
of X over which the LTL-based planning paradigm described above could be run
(instead of over the connectivity graph of a tiling), but in a “topology-aware” way,
with a potential of forming new insights into the connections between topological
complexity of continuous planning in X and the computational complexity of LTL-
based planning.

It must be stressed at this point that this work does not come to address the question
of how to obtain good covers of a space X , but, rather, on how to make use of such
covers when an LTL-based task specification over X is given in terms of such a
cover. Problems, such as constructing a minimal good cover from a given cellular
decomposition of a space, lie outside the scope of this paper.

2 Such as manifolds and simplicial complexes, for example, or, more generally, locally finite cellular
complexes, and counting out local pathologies exhibited by spaces such as the Hawaiian earring.

123

Topology-aware planning under linear temporal logic constraints Page 7 of 41 17

Fig. 2 The interval X = [0, 1] covered by three intervals indexed by the set AP = {a, b, c} (left) yields
the 2-simplex as its nerve, however, only the simplices {a}, {b}, {a, c}, {b, c} and {a, b, c} are realized
by the cover (right). Any partition of unity {ψα}α∈AP satisfying ψ−1

α (0) = X � U(α) results in a map
	 : X → |N(U)|, 	(x) = ∑

α ψα(x)eα , such as the one depicted here in red, with its image missing the
unrealized simplices {c} and {a, b}

1.2 Results

The first contribution of this work is the observation that N(U) is almost always an
inadequate candidate for the discretization of X sought in Question 1.1. A key reason
for this is that many simplices of N(U) may be unrealized, in the following sense:

Definition 1.2.1 A simplex σ ∈ N(U) is U-realized if σ = ς(x) for some x ∈ X . ��
Considering unrealized simplices shows that N(U) is rarely an adequate model

for path planning. The following example will be the running example throughout
the discussion of unrealized simplices in this article, presenting a simple instance of
having unrealized simplices.

Example 1.2.2 Let X = [0, 1], covered by three intervals,U(a) � [0, 1−2ε), U(b) =
(2ε, 1], and U(c) = (ε, 1− ε), for some ε ∈ (0, 1

5). Then U is a good cover of X , and
its nerve is the full 2-simplex with vertices a, b, c (to simplify notation in examples,
we will identify simplices, e.g. {a, b, c}, with strings, e.g. resp., abc). Note that not
all the simplices in N(U) are U-realized, as discussed in detail in Figure 2.

The upshot of Example 1.2.2 is that unrealized simplices form an obstruction to
path-planning in X using the nerve N(U). Example 1.2.2 demonstrates additional
obstructions: the edge ab, regarded as a path from the vertex a to the vertex b, does
not correspond to any continuous path in the space X in the sense that there exists no
continuous path in [0, 1] from a point satisfying a ∧ ¬b ∧ ¬c to a point satisfying
¬a∧b∧¬c via points satisfying a∧b∧¬c. Even subtler obstructions are present. For
example, note how no path in X induces a direct transition between the vertex a and
the simplex {a, b, c}. In summary, we conclude it is necessary to replaceN(U) with a
more refined model space, from which the U-unrealized simplices ofN(U) have been
removed, and whose combinatorial paths represent paths in X . A natural environment
within which to attempt such a removal meaningfully is the barycentric subdivision
sd(N(U)) of the nerve.

The second contribution of this article is the characterization of a sub-complex
Nred(U) of the barycentric subdivision sd(N(U)) of N(U), which, under appropriate
conditions on the cover U, has the property that any combinatorial path in the 1-
skeleton ofNred(U) is induced from a path in X . The relevant conditions are hinted at
in the following example.

123

 17 Page 8 of 41 D. P. Guralnik et al.

Fig. 3 A disconnected witness set. A topological disk X is covered by convex open ellipsoidal regions
marked a, b, y, z, x , which together constitute a good cover U of X (left). The 0-simplex {x} (ellipsoid
at center) is a realized simplex of N(U), but the set of points ς−1({x}) realizing it in X is disconnected
(shaded). Though a combinatorial path exists in sd(N(U)) (right) joining {a} to {b} via {x}, while avoiding
any simplices containing y or z, there is no path in X capable of avoiding the region y ∪ z

Example 1.2.3 Figure 3 depicts a good open cover U of a topological disk X , where
all simplices of the nerve are realized, but, at the same time, paths exist in sd(N(U))

that are not induced from paths in X . This problem is precisely analogous to the one
identified in Pappas et al. (2000) as the obstruction to the deployment of hierarchical
controllers. The path of simplices (a, ax, x, xb, b) in sd(N(U)) does not describe the
behavior of a path in X , because the connected component of ς−1({x}) reachable from
ς−1(ax) is not reachable from ς−1(xb), as is plainly visible in Fig. 3.

A precise criterion for avoiding the problem presented in Example 1.2.3 is stated
in combinatorial terms in Theorem 6.3.4. As a corollary, one obtains that the path-
connectedness of all witness sets (of realized simplices of the nerve) is sufficient for
the path correspondence to hold (Corollary 6.3.5). The final contribution of this paper
is the following partial result:

Theorem 1.2.4 Suppose U is a good indexed open cover of a space X and let
K = N(U). Then, the sub-complex N [0] of N = sd(K) obtained by deleting all
the vertices corresponding to unrealized simplices3 is a strong deformation retract of
N . In particular, N [0] has the homotopy type of X.

Note how the reduced nerve Nred(U) may be obtained from N = sd(N(U)) by
successive deletions, first of the unrealized vertices, resulting in N [0], and then of
higher-order unrealized simplices, in order of increasing dimension. Hence, Theo-
rem 1.2.4 provides an intermediate construction interpolating between the reduced
nerve, for which a planning result is available, and the nerve, for which a result on
homotopy type reconstruction is available. This intermediate space, N [0], is a solution
to the basic realization problem, though, unlike the reduced nerve, it falls short of solv-
ing its higher-order extension. Further work is required to obtain a strong deformation
retraction of sd(N(U)) onto the reduced nerve under reasonable conditions on U that
could be guaranteed in the design stage.

To close, the results of this paper imply that execution of the standard LTL-based
planning paradigm over the 1-skeleton of the reduced nerve is equivalent to LTL-
based path planning in X without requiring a refining of the atomic labels into a tiling,

3 When deleting a vertex, all the simplices containing that vertex are deleted as well.

123

Topology-aware planning under linear temporal logic constraints Page 9 of 41 17

while possibly retaining information about higher homotopy-theoretic properties of
X (which are fully retained in the intermediate discrete model provided by Theo-
rem 1.2.4). This capability comes at a computational price: it is necessary to both
ensure in the design stage that the cover U is good and that the conditions for the path
correspondence between X andNred(U) are met, and to compute the reduced nerve in
preparation for planning. Nevertheless, the required computations consume no more
resources than the process of refining the planning problem into a tiling with special
geometric properties, while being of minimal complexity given the open cover U.

This article is organized as follows. Section 2 recalls the necessary preliminaries
from topology, such as simplicial complexes, maps and their geometric realizations,
nerves of covers, and some homotopy-theoretic methods such as simplicial collapse,
with the aimof introducing somenewuseful computations and generalized collapses in
Sects. 2.4.2 and 2.5.2. Section 3 formally discusses the problemof LTL-based planning
using the nerve of a good open cover, introducing the appropriate semantics and
presenting the formal desiderata for the Nred(U) construction. A product automaton
method for LTL-based planning over the reduced nerve is presented in Sect. 4, and
the technical work required to characterize Nred(U) and derive its properties, such as
proving Theorem 1.2.4, is presented in Sect. 5. The proof of the path correspondence
is discussed in Sect. 6.

2 Topology preliminaries

This section is intended as a reference for the rest of this article, recalling several
of the classical constructions underpinning combinatorial topology and establishing
notational conventions that will be used throughout. In addition, two technical results
are presented forwhichwe did not find satisfactory accounts in the literature: a detailed
description of links in barycentric subdivisions (Sect. 2.4.2), and the preservation of
homotopy type under generalized collapses (Sect. 2.5.2). The reader familiar with
topological techniques may want to skip to the next section, revisiting this one as
needed.

2.1 Nice topological spaces

All topological spaces, referred to as X ,Y , Z , . . ., are assumed to be II -countable,
normal, Hausdorff, locally compact, locally connected, and locally contractible, to
avoid well-known pathologies. Note that a locally contractible space is locally path-
connected. Recall that two maps f , g : X → Y are said to be homotopic (denoted by
f �̇g), if there exists a map H : X × [0, 1] → X , called a homotopy from f to g,
with the property that H(x, 0) = f (x) and H(x, 1) = g(x) for all x ∈ X . The space
X is said to be contractible if idX is homotopic to a constant map.

123

 17 Page 10 of 41 D. P. Guralnik et al.

Roughly, the local connectivity assumptions on a space X provide that the con-
nected components of an open subspaceU are open4 in X , and coincide with the path
components of U . The countability and separation assumptions, on the other hand,
guarantee that X has many continuous real-valued functions on it: every open set U
may be written as X � Z(f), where Z(f) is the set of zeroes of a continuous function
f : X → [0, 1].
The word ‘space’ shall henceforth refer to spaces satisfying all the above assump-

tions. Primary examples are compact manifolds and finite simplicial complexes.

2.2 Simplicial complexes

Recall that an (abstract) simplicial complex with vertex set V 	= ∅ is a collection K of
finite subsets of V that is closed under taking subsets, that is: if σ ∈ K and τ ⊆ σ , then
τ ∈ K . The sets σ ∈ K are referred to as the (abstract) simplices of K . An abstract
simplex σ ∈ K is said to be of dimension d ∈ Z, or a d-simplex, if |σ | = d + 1. The
set of simplices of dimension less than or equal to d is referred to as the d-skeleton
of K and denoted by skd(K). Note that sk0(K) = V ∪ {∅}, sk−1(K) = {∅}, and
skd(K) = ∅ for all d < −1. The 0-simplices of K (i.e., the elements of V) are also
referred to as the vertices of K . For any collection of simplices A ⊂ K , we denote
by ↓(A) the collection of all τ ⊆ K contained in some element of A. A subset L of
a simplicial complex K is said to be a sub-complex of K , if L is itself a simplicial
complex.

Example 2.2.1 Let V be a non-empty finite set. The simplex with vertex set V , denoted
byBV and referred to as the V -simplex, for short, is the simplicial complex containing
all the subsets of V . The sub-complex ofBV obtained by removing the simplex V is
denoted by SV . It will be referred to as the hollow V -simplex.

2.2.1 Maps, special sub-complexes, constructions

If K1 and K2 are simplicial complexes on vertex sets V1 and V2, then a function
f : V1 → V2 is said to be a simplicial map of K1 to K2 if f (σ) ∈ K2 holds for all
σ ∈ K1. An isomorphism of simplicial complexes is a bijective simplicial map whose
inverse is simplicial.

For a simplex σ of a simplicial complex K , the (closed) star stK (σ) of σ in K is
the sub-complex of all simplices τ ∈ K such that σ ∪ τ ∈ K . The link lkK (σ) of
σ in K is the sub-complex of all τ such that τ ∩ σ = ∅ and τ ∪ σ ∈ K . The open
star st◦K (σ) is defined as the set of all τ ∈ K with σ ⊆ τ (it is not a sub-complex).
Thus, the operation τ �→ τ � σ is a bijective and order-preserving5 map of st◦K (σ)

onto lkK (σ). The inverse of this map will henceforth be denoted by τ �→ σ + τ . For
subsets A ⊂ lkK (σ), the notation σ + A refers to the set {σ + τ : τ ∈ A}.
4 In fact, since the connected components of a subspace are always relatively closed, those ofU are clopen
in U . Here, it is the conclusion regarding the path components of U coinciding with its components that
matters most in the context of this work.
5 Unless otherwise stated, all mention of order in simplicial complexes refer to their ordering with respect
to inclusion, also known as the face poset order.

123

Topology-aware planning under linear temporal logic constraints Page 11 of 41 17

The join K1 ∗ K2 of two simplicial complexes is the simplicial complex consisting
of all sets6 σ1�σ2 such that σ1 ∈ K1 and σ2 ∈ K2. For example,BV1 ∗BV2 = BV1�V2 .
For another example, if K is a simplicial complex and σ is any simplex of K , then
the closed star stK (σ) is isomorphic to the join lkK (σ) ∗Bσ via the simplicial map
taking any vertex v of stK (σ) to itself, noting that any vertex of stK (σ) does not lie in
σ if and only if it is a vertex of lkK (σ).

2.2.2 Geometric realization

The geometric realization of a simplicial complex K on a vertex set V is the topological
space |K | ⊂ P(V),

P(V) �
{
ξ ∈ [0,∞)V : ∑

v∈V ξ(v) = 1
}
, (1)

constructed as
|K | �

⋃
σ∈K Δ̇σ (V) = ⋃

σ∈K Δσ (V), (2)

where

Δ̇σ (V) � {ξ ∈ P(V) : (∀v∈V)(v ∈ σ ↔ ξ(v) > 0)} , (3)

Δσ (V) � {ξ ∈ P(V) : (∀v∈V)(v /∈ σ → ξ(v) = 0)} , (4)

are the open and closed (geometric) simplices of |K |, respectively. We shall generally
omit any mention of V , using Δ̇σ and Δσ instead of Δ̇σ (V) and Δσ (V), respectively,
when there is little risk of ambiguity.

Example 2.2.2 Let V be a finite set. Then,
∣
∣BV

∣
∣ = ΔV is the standard Euclidean

simplex in RV , and
∣
∣SV

∣
∣ = ΔV

� Δ̇V is the standard hollow simplex.

Note how K is in one-to-one correspondence with the open simplices Δ̇σ of |K |:
every point ξ ∈ |K | lies in exactly one open simplex, and distinct open simplices are
pairwise disjoint. For each v ∈ V , the open simplex Δ̇{v} contains only a single point,
the vector ev ∈ P(V) defined by

ev(w) �
{
1, if w = v,

0, if w 	= v.
(5)

The simplex Δσ is then the convex hull of its vertices {ev : v ∈ σ }. The barycenter of
Δ̇σ is a convenient representative of σ in the disjoint decomposition of |K | into open
simplices:

ζσ � 1
|V |

∑
v∈σ ev. (6)

We shall abuse notation by denoting |A| �
⋃

σ∈A Δ̇σ for any subset A ⊂ K . For
example, observe that the set

∣
∣st◦K (σ)

∣
∣ ⊆ |K | constitutes a connected open neighbor-

hood of ζσ in |K | (hence the name, “open star”).

6 The symbol � shall henceforth denote the disjoint union (co-product) operator on sets.

123

 17 Page 12 of 41 D. P. Guralnik et al.

Geometric realization is a functor, in the sense that any simplicial map f : K → L
gives rise to a continuous map | f | : |K | → |L| given by

| f | (∑v∈σ ξvev

)
�

∑
v∈σ ξve f (v), (7)

for all σ ∈ K and ξ ∈ P(σ). The assignment f �→ | f | is functorial, that is: |idK | =
id|K | for any simplicial complex K , and |g ◦ f | = |g|◦ | f | for any pair of composable
simplicial maps f , g.

2.3 Indexed covers and the nerve construction

The prime example of a simplicial complex in this paper is that of the nerve of an open
cover. This section considers discretizations of a topological space (X ,T) arising
from locally finite open covers.

Definition 2.3.1 (Admissible Cover). Let AP be a nonempty set. An admissible cover
of (X ,T) over AP is a map U : AP → T such that the sets

ς(x) � {α ∈ AP : x ∈ U(α)} (8)

are non-empty and finite for all x ∈ X . Dually, for any σ ⊆ AP, the witness set of σ

in X is defined as
Ũ(σ) �

⋂
α∈σ U(α). (9)

The set σ is said to be consistent, if it has a witness—that is, if Ũ(σ) is non-empty. ��
Note that the collection {U(α)}α∈AP is a locally finite open cover of X if U is an

admissible cover of X over AP. Many of the ideas developed in this paper apply to
infinite covers, but we will restrict attention to finite sets AP henceforth.

Definition 2.3.2 (Good Cover). An admissible cover U of X over AP is said to be
good, if the witness set of each consistent σ ⊆ AP is contractible. ��

Using the language just established, the nerve N(U) is defined as the simplicial
complex of all consistent subsets of AP:

N(U) �
{
σ ⊆ AP : Ũ(σ) 	= ∅

}
. (10)

The following result about N(U) is classical.

Lemma 2.3.3 (Nerve Lemma, Kozlov (2008, Theorem 15.21)). If U is a good cover
of X, then |N(U)| is homotopy-equivalent to X. ��

Proofs of the nerve lemma depend on the notion of a partition of unity to construct a
map from X to the geometric realization ofN(U). Under the admissibility assumptions
considered in this article the following notion is natural.

123

Topology-aware planning under linear temporal logic constraints Page 13 of 41 17

Definition 2.3.4 (Partition of Unity Representing a Cover). Let U be an indexed open
cover of X over AP. A partition of unity representingU is a collection	 � {ψα : X →
[0, 1]}α∈AP of continuous functions such that U(α) = X � Z(ψα) for all α ∈ AP, and∑

α∈AP ψα(x) = 1 for all x ∈ X . ��

Since U is locally finite, a partition of unity representing U may be obtained from
an arbitrary collection of continuous functions ϕα : X → [0,∞) satisfying U(α) =
X � Z(ϕα) for all α by setting ψα � ϕα

(∑
α∈AP ϕα

)−1. Every partition of unity 	

representing U gives rise to a continuous map of X to the geometric realization of
N(U):

Lemma 2.3.5 Let U be an indexed open cover of X over AP and let 	 be a parti-
tion of unity representing U. Then, the map ρ	 : X → ΔAP defined by ρ	(x) �∑

α∈AP ψα(x)eα is continuous and satisfies

ρ	(x) ∈ Δ̇ς(x) (11)

for all x ∈ X. In particular, ρ	(X) ⊆ |N(U)|. ��

Proofs of the nerve lemma rely, in essence, on showing that the map ρ	 is a
homotopy equivalence.

2.4 Barycentric subdivision

For any simplicial complex K with vertex set V , the barycentric subdivision sd(K)

is the simplicial complex of all finite chains of the poset (K ,⊆). In other words,
A ∈ sd(K) if and only if A ⊂ K , A is finite, and, for any σ, τ ∈ A, either σ ⊆ τ or
τ ⊆ σ . In particular, the vertices of sd(K) are the elements of K .

At the level of geometric realizations, |sd(K)| ⊂ P(K) ⊂ RK is canonically
homeomorphic to |K | ⊂ P(V) ⊂ RV via the map |sd|K : |sd(K)| → |K | obtained
by linear extension from the assignment eσ �→ ζσ .

2.4.1 Functorial properties

Barycentric subdivision is also a functor, as follows. A simplicial map f : K → L
gives rise to a simplicial map sd(f) : sd(K) → sd(L) defined by sd(f)(σ) � f (σ)

for all σ ∈ sd(K)0 = K . It is then clear that sd(idK) = idsd(K) for any simplicial
complex K . Furthermore, sd(f ◦ g) = sd(f)◦sd(g) holds for any pair of composable
simplicial maps f , g.

As a simple example, consider a sub-complex L < K . Then, the inclusion map
ι : L ↪→ K induces embeddings |ι| : |L| ↪→ |K | and |sd(ι)| : |sd(L)| ↪→ |sd(K)|,
respectively. We will henceforth identify the images of these embeddings in |K | and
|sd(K)| with |L| and |sd(L)|, respectively. Finally, observe that |sd|K (|sd(L)|) = |L|
for all L < K .

123

 17 Page 14 of 41 D. P. Guralnik et al.

2.4.2 Computing links in the barycentric subdivision.

The following is a computation of links in a barycentric subdivision of a complex K ,
instrumental in the derivation of Theorem 1.2.4.

Lemma 2.4.1 Let K be a simplicial complex on a vertex set V and let S = {σ0 ⊂
. . . ⊂ σd}, d ≥ 0 be a simplex of sd(K). For i = 0, . . . , d, let τi = σi � σi−1, where
σ−1 � ∅ and σd+1 � V . Then, the map

gS : lksd(K)(S) → sd(lkK (σd)) ∗ sd(Sτ0) ∗ · · · ∗ sd(Sτd) (12)

defined on the vertices of lksd(K)(S) by setting gS(σ) � σ � σi−1 if and only if
σi−1 ⊂ σ ⊂ σi (for i = 0, . . . , d + 1) is a simplicial isomorphism.

Proof First, recall that σ ∈ K is a vertex of L � lksd(K)(S) if and only if σ /∈ S
and S ∪ {σ } is a chain. Therefore, the map gS is well-defined as a map of vertex sets
of its domain and range complexes. A chain T ∈ sd(K) belongs in L if and only if
T ∩ S = ∅ and T ∪ S is a chain. This requirement is equivalent to T being the disjoint
union of chains Ti , i = 0, . . . , d + 1, such that each τ ∈ Ti satisfies σi−1 ⊂ τ ⊂ σi ,
for every i . Equivalently, the chain gS(Ti) must lie in sd(Sτi) for all i = 0, . . . , d,
and the chain gS(Td+1)must lie in sd(lkK (σd)). Thus, the map gS is indeed simplicial
with simplicial inverse. ��
Corollary 2.4.2 Let K be a simplicial complex. For all σ ∈ K,

lksd(K)({σ }) ∼= sd(lkK (σ)) ∗ sd(Sσ).

Proof Simply apply Lemma 2.4.1 with d = 0, τ0 = σ0 = σ . ��

2.5 Deletions and collapses

Recall that a continuous map f : X → Y is a homotopy equivalence if there exists
g : Y → X such that g ◦ f �̇idX and f ◦ g�̇idY . The spaces X and Y are then said to
have the same homotopy type. A closed subspace A is said to be a deformation retract
of X if there is a retraction r : X → A (that is, r2 = r and r(X) = A) and r�̇idX
via a homotopy H : X × [0, 1] → X that fixes A pointwise at all times.7 In this
situation, the inclusion map ι : A → X is a homotopy equivalence (with homotopy
inverse r). It is natural to askwhich sub-complexes of a simplicial complex K obtained
through the application of successive combinatorial deletions are deformation retracts.
Specifically, the sub-complex delK (σ) � K � st◦K (σ) is referred to as the complex
obtained from K by a deletion Kozlov (2008, Definition 2.12). The effect of a deletion
on the geometric realization of K is that of removing from |K | all the open simplices
Δ̇τ whose closures contain Δ̇σ . One type of deletion always resulting in a deformation
retract (of the parent complex) is a simplicial collapse.

7 That is, H(x, t) = x for all t ∈ [0, 1] and x ∈ A.

123

Topology-aware planning under linear temporal logic constraints Page 15 of 41 17

Fig. 4 A vertex collapse (left) and edge collapses in dimensions two (center) and three (right), together
with the corresponding retractions

2.5.1 Simplicial collapse

A special and well-studied class of strong deformation retractions arising in combi-
natorial topology is that of simplicial collapses.

Definition 2.5.1 (Free Simplex, Simplicial Collapse). A simplex σ ∈ K is said to be
free, if it is contained in exactly one maximal simplex, that will be denoted by σ ∗. If
σ ∈ K is a free simplex, then the deleted complex delK (σ) is said be obtained from
K by a simplicial collapse (of σ).

Intuitively, the space |delK (σ)|may be seen as a deformation retract of |K |, via the
map gradually “pressing in” the faces Δ̇τ of Δσ ∗

for τ ⊇ σ , until there is nothing left
of Δ̇σ ∗

or any of the facets Δ̇τ , see Fig. 4.
More generally, the sub-complex L ⊂ K is said to have been obtained from K by

simplicial collapse, if L is the result of a finite sequence of simplicial collapses having
been applied to K . New simplicial collapses may become available after a preceding
one, and collapses of distinct free simplices may not commute, except when supported
on pairwise non-interacting maximal simplices, hence the following definition.

Definition 2.5.2 (Independent Simplices). A family of simplices � ⊂ K is said to be
independent if st◦K (σ) ∩ st◦K (τ) = ∅ whenever σ, τ ∈ �, σ 	= τ . ��

If � is a family of free simplices, then it is independent if and only if σ ∗ 	= τ ∗

whenever σ, τ ∈ � and σ 	= τ . Deletions of simplices from an independent family
may be carried out in an arbitrary order, always leading to the same result,

delK (�) � K �
⋃

σ∈� st◦K (σ) = ⋂
σ∈� delK (σ) = {

τ ∈ K : ∀σ∈� σ � τ
}
. (13)

These “wholesale deletions”, together with the generalized collapses of the next sec-
tion, become instrumental in the proof of Theorem 1.2.4.

2.5.2 Generalized collapse

Suppose K is a simplicial complex and σ ∈ K has the property that its link, L �
lkK (σ) is contractible. It is not clear how to obtain the deleted complex delK (σ) in a
step-by-step fashion, using simplicial collapses. Nevertheless, one has the following
result, which is central to the argument establishing Theorem 1.2.4.

Lemma 2.5.3 If σ ∈ K is a simplex whose link in K is contractible, then |delK (σ)| is
a deformation retract of |K |. In particular, |K | �̇ |delK (σ)|.

123

 17 Page 16 of 41 D. P. Guralnik et al.

Proof Recalling that U �
∣
∣st◦K (σ)

∣
∣ is an open subset of |K | containing Δ̇σ and

denoting N � stK (σ), observe that ∂U = |N | � U = |delN (σ)|. Thus, ∂U =
|delN (σ)| separates U from |K | � cl|K |(U) = |K | � |N |, implying that |delK (σ)|
is a strong deformation retract of |K | if and only if |delN (σ)| is a strong deformation
retract of |N | = |L ∗Bσ |, which coincides with the geometric join of |L| with Δσ .

To obtain a strong deformation retraction of |N | onto |delN (σ)|, it suffices to prove,
by Kozlov (2008, Corollary 7.15), that the inclusion of |delN (σ)| into |N | is a homo-
topy equivalence. Observe that |N | = |L ∗Bσ | is contractible, because Δσ = |Bσ |
is. Also, |delN (σ)| = |L ∗Sσ | is contractible, because L is. Thus, the inclusion of the
latter in the former is a homotopy equivalence (with homotopy inverse any constant
map from Δσ to |L|). ��

The preservation of homotopy type in the transition from K to delK (σ) under the
conditions of the preceding lemma motivates the following definition.

Definition 2.5.4 (Removal, Generalized Collapse). A simplex σ ∈ K is said to be
removable, if |lkK (σ)| is contractible. In this situation, the complex delK (σ) is said
to be obtained from K by a removal. More generally, a sub-complex K ′ of K is said
to be the result of a generalized collapse of K , if K ′ may be obtained from K by a
finite sequence of removals. ��

Corollary 2.5.5 (Generalized Collapse Yields Deformation Retracts). If � is a finite
independent family of removable simplices in K , then delK (�) may be obtained from
K by generalized collapse, and |delK (�)| is a deformation retract of |K |. ��

3 Problem formulation

We consider the LTL-based path planning problem on a space X over a given set
AP of atomic propositions. Semantics is provided by realizing the elements of AP as
Boolean functions, called labels, whose supports form a good open indexed cover of
X . Formally, consider the following definition.

Definition 3.0.6 A Labeled Topological Space is a tuple (X ,AP, U, L), where

• X is a topological space with topology T satisfying the assumptions stated in
Sect. 2.1;

• U : AP → T is a good open cover of X (see Sect. 2.3).

The set of functions lα : X → {�,⊥} defined by l−1
α (�) = U(α) for α ∈ AP shall be

referred to as the set L of labels corresponding to the indexed cover U. ��

For the rest of this section, let (X ,AP, U, L) be a given labeled topological space
and let X0 be a set of initial states definable in terms of L . For a system with state
space X , the labels L should be thought of as assigning meaning to states x ∈ X .
For example, a label lα ∈ L may correspond to safety, with a state x deemed safe if
lα(x) = � and unsafe otherwise.

123

Topology-aware planning under linear temporal logic constraints Page 17 of 41 17

Definition 3.0.7 (State Satisfaction). A Boolean state over AP is a subset σ ⊂ AP.
A state x in a labeled topological space (X ,AP, U, L) is said to satisfy a Boolean
state σ ⊂ AP, denoted by x |� σ , if lα(x) = � for all α ∈ σ and lα(x) = ⊥ for all
α ∈ AP � σ (equivalently, σ = ς(x) holds if and only if x satisfies σ). ��
Remark 3.0.8 Recalling the notion of a consistent set σ ⊂ AP (Definition 2.3.1), note
that x |� σ if and only if x witnesses σ and σ is maximal with respect to this property.

3.1 LTL semantics over topological spaces and the path planning problem

LTL employs temporal and logical connectives to express how the Boolean values of
labels change as the system state evolves over time. For that, one considers Boolean
paths over the set AP of atomic propositions, as follows.

Definition 3.1.1 (Boolean Paths). A Boolean path over AP is a sequence (finite or
infinite) σ = (σn)n≥0 of Boolean states. The k-prefix prefk(σ) of σ is defined as the
path (σn)

k−1
n=0, and the k-tail (or suffix) ofσ is defined as the path suffk(σ) � (σn+k)n≥0.

��
Intuitively, a continuous path in the state space X gives rise to a Boolean path over

AP, through the labels L , but one must be careful to avoid pathologies.

Definition 3.1.2 (TamePaths).A tamepath in a labeled topological space (X ,AP, U, L)

is a pair (c,J), where c : J → X is a continuousmap of a non-empty interval J ⊂ R

to X , andJ = {Jm}m∈A is a disjoint decomposition J = ⋃
m Jm of J into non-empty

sub-intervals8, with m ranging over an initial interval A of N ∪ {0}, satisfying the
requirements:

1. For all m ∈ A, if s, t ∈ Jm then lα(c(s)) = lα(c(t)) for all α ∈ AP;
2. For all m, n ∈ A with m < n, if s ∈ Jm and t ∈ Jn then s < t .

The k-prefix (prefk(c), prefk(J)) and k-tail (suffk(c), suffk(J)) of a tame path
(c,J) as above are defined by restricting c to

⋃
prefk(J) and

⋃
suffk(J), respec-

tively, where

prefk(J) � {Jm}m∈A,m<k, (14)

suffk(J) � {Jm+k}m∈N∪{0},m+k∈A. (15)

Any tame path (c,J) gives rise to a Boolean path via σm(c,J) := ς(c(tm)), where
tm ∈ Jm is chosen arbitrarily for each m ∈ A. ��
Remark 3.1.3 Not all continuous paths in X are tame, as examples may be constructed
where (lα ◦ c)−1(⊥) is a Cantor set in J .

The restriction to tame paths allows us to apply LTL,whose semantics are originally
defined for discrete-time paths, to continuous-time paths by tracking the changes in

8 Some of which may be degenerate, e.g., Jm may be a singleton for some m ∈ A.

123

 17 Page 18 of 41 D. P. Guralnik et al.

the truth value of atomic propositions along the path. In fact, the tame path condition
is also commonly used in the syntax and semantics of Signal Temporal Logic (STL) or
Metric Interval Temporal Logic (MITL), which can be viewed as counterparts of LTL,
to ensure the decidability of their decision problems (Ouaknine and Worrell 2005;
Maler and Nickovic 2004; Roohi and Viswanathan 2017). In this article, we use the
semantics of LTL over tame paths instead of STL orMITL because we only care about
the temporal order of changes in the truth value of the atomic propositions and ignore
the timing.

Restricting reasoning to tame paths makes it possible to consider a wide range of
behavioral specifications expressible through the labels, e.g., continuing the example
where a label l corresponded to the subset of X where the system state must be
confined out of safety considerations, the LTL formula �l expresses the requirement
that, beginning with the present initial state, the system should remain safe for all
time. Thus, � is the temporal connective standing for “henceforth”. More formally,
the syntax of temporal and logical connectives in LTL is inductively generated by
AP, the unary operators ¬ and ©, and the binary operators ∧ and U, subject to the
requirements that:

1. Each α ∈ AP is an LTL formula;
2. If ϕ is an LTL formula then ¬ϕ and ©ϕ are LTL formulae;
3. If ϕ,ψ are LTL formulae then ϕ ∧ ψ and ϕUψ are LTL formulae.

The logical connectives ¬ and ∧ stand for negation and conjunction, whereas the
temporal connectives© andU stand for “next” and “until”, respectively. Disjunction is
implicitly introduced throughϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2). Other common temporal logic
connectives may be derived from this basic syntax, such as ♦ϕ:=�Uϕ (“eventually
ϕ”) and �ϕ:=¬(♦¬ϕ) (“henceforth ϕ”)9. The semantics of LTL formulae over a
labelled topological space are defined formally as follows.

Definition 3.1.4 (LTL Satisfaction Relation over a Labeled Space). Let (X ,AP, U, L)

be a labeled topological space and let (c,J) be a tame path, which will be referred to
as c, for brevity. The satisfaction relation c |� ϕ, extending Definition 3.0.7, is defined
for LTL formulae over AP inductively, as follows:

c |� α ⇔ c(t0) |� α for some, and hence any, t0 ∈ J0
c |� ¬ϕ ⇔ c 	|� ϕ

c |� ϕ1 ∧ ϕ2 ⇔ c |� ϕ1 and c |� ϕ2
c |� ©ϕ ⇔ suff1(c) |� ϕ

c |� ϕ1Uϕ2 ⇔ ∃t . (sufft (c) |� ϕ2 and ∀s < t . suffs(c) |� ϕ1) .

��
Remark 3.1.5 (Only theTemporalOrderMatters for Semantics).Ononehand, note that
the interval J = ⋃

J and the decomposition J = {Jm}m∈A in Definition 3.1.4 are

9 Some authors prefer the use of “always” to “henceforth”, but note there is a difference between these
notions if one allows past observations into the semantics. We pick the latter interpretation to avoid any
ambiguities.

123

Topology-aware planning under linear temporal logic constraints Page 19 of 41 17

part and parcel of the semantics: formally speaking, the familyJ must be prescribed
in order for the semantics to be specified. On the other hand, a tame path may be
reparametrized: if g : I → J is any order-preserving homeomorphism of an interval
I ⊆ R onto J , then the pair (c◦g,I)withI := {g−1(Jm)}m∈A is also a tame path in
the same labeled space, satisfying the same set of LTL formulae. Thus, the semantics
defined here may be regarded as being sensitive only to the ordering of events, but
not to their particular timing, allowing the domain of definition of a path to be one of
four types, namely: a single point (e.g., J = {0}), a non-degenerate closed interval
(resp., J = [0, 1]), an open interval (resp., J = R), or a semi-open interval (resp.,
J = [0,∞)).

This article is motivated by two fundamental questions about the feasibility of
planning in topological spaces, the first of which is formulated below.

Problem 3.1 (Path Planning to LTL Specification). For any LTL formula ϕ over AP,
decide whether or not a tame path c exists emanating from X0 and satisfying c |� ϕ,
and produce such a path. ��

Some restrictions on the labels—or, equivalently, on the sets U(α)—are necessary
for Problem 3.1 to become tractable. In addition to the mildly restrictive requirement
that the U(α) be open sets (which contributes to a certain lack of symmetry between
atomic propositions and their negations), the requirement that U form a good indexed
cover comes explicitly to harness the nerve N(U) as a potential discrete model of X
of high topological fidelity, over which one might hope to reason when planning.

3.2 Motivation: constructing flows to an LTL specification

Another problemmotivating the current work is, intuitively, of higher complexity, and
relates to the generation of behaviors conforming to an LTL specification, generalizing
the idea of an attractor (e.g., a limit cycle) in dynamical systems.

Problem 3.2 (Construction of LTL-specified Behaviors). Given an LTL formula ϕ

over AP, determine whether there exists a continuous flow f : X ×[0,∞) → X such
that every trajectory c : [0,∞) → X of f with c(0) ∈ X0 is a tame path satisfying
c |� ϕ. If the flow f exists, construct it. ��
Remark 3.2.1 (Motivation for Problem 3.2). It is worth spending some time discussing
the difference between a plan and a behavior. In the controls and robotics literature,
a plan is a designated path xd : J → X for the system to execute up to a prescribed
error tolerance or a desired level of stability: given the plan and the system dynamics,
one closes the control loop by designing a control input for which, respectively, the
position error ‖xd(t) − x(t)‖ could be bounded by a user-provided constant, or by
a function of t converging to zero at a prescribed pace. In contrast, by a behavior
one generally means designing a controller to produce closed-loop dynamics with a
prescribed attractor (or several) having user-defined stability properties. Consequently,
one could regard path-planning based control as focusing on a single instance of a
behavior. For example, the navigation task in X from a path planning perspective is

123

 17 Page 20 of 41 D. P. Guralnik et al.

that of generating, for each x0 and x∗, a path xd : [0, 1] → X with xd(0) = x0 and
xd(1) = x∗ (and then tracking that path) could be generalized to that of specifying a
vector field g on X having x∗ as an asymptotically stable attractor with a large enough
basin (and then designing a controller that enforces the closed-loop dynamics given
by g). In the case of navigation functions, the basin is required to be the whole of
X with the possible exception of a null set of cuts (Rimon and Koditschek 1992).
More complex behaviors, such as robot gaits (Holmes et al. 2006; Baryshnikov and
Shapiro 2014) arise as flows of vector fields with attractive limit cycles. Potentially
even more complex behaviors may be generated using hybrid dynamics as envisioned,
e.g., in Burridge et al. (1999), by switching between different continuous controllers
depending on the system’s logical state, but topological constraints are imposed (on
basins of attraction) by the choice of desired attractor(s). Thus, Problem 3.2 presents
an extension of the notion of a behavior using LTL-based specifications.

3.3 The path correspondence problem and reduced nerves

Both Problem 3.1 and Problem 3.2 are construction problems requiring a-priori a
resolution in terms of an adequate discrete model of X accounting for all the possible
Boolean states as dictated by the labels L . On first inspection, the nerve N(U) seems
to be just such a model: N(U) both contains all the Boolean states of the labeled
topological space (X ,AP, U, L) (as simplices) and constitutes a good candidatemodel
of X because it has the same homotopy type as X . Thus, a tame path (c,J) in X
gives rise to a sequence of faces of N(U), or, equivalently, to a sequence of vertices
of sd(N(U)), by mapping each c(tm), tm ∈ Jm to the Boolean state σm = ς(c(tm)),
and one expects each σm and σm+1 to be related in a way that reflects the continuity
of c (as will be discussed in Sect. 5.1).

These properties, however, are insufficient for planning purposes, because not every
walk in the 1-skeleton of sd(N(U)) is obtainable from a tame path in X by the above
procedure. In fact, a vertex σ ∈ sd(N(U)) may exist for which no x ∈ X satisfies σ .
These difficulties motivate the study of the following problem, addressed in this paper.

Problem 3.3 Characterize a simplicial sub-complex Nred(U) of sd(N(U)) such that:

1. |Nred(U)| is a deformation retract of |sd(N(U))|;
2. σ ∈ N(U) is a vertex in Nred(U) if and only if x |� σ for some x ∈ X ;
3. Every path in the 1-skeleton of Nred(U) is induced by a tame path in X . ��

While Requirements 2. and 3. ofNred(U) stated in Problem 3.3 are geared directly
towards makingNred(U) into a discrete model of X suitable for solving Problem 3.1,
the implications of the first requirement are more circumspect. Since U is a good
cover, if |Nred(U)| is a deformation retract of |sd(N(U))|, then |Nred(U)| has the
homotopy type of X , retaining the homotopy invariants of the latter. In particular,
the topological complexity of continuous path planning in X and in |Nred(U)| are the
same. Moreover, if an explicit deformation retraction of |sd(N(U))| onto |Nred(U)| is
available (in some computable combinatorial form), then continuous path planners in
the sense of Farber over X may be converted into such planners over |Nred(U)| and

123

Topology-aware planning under linear temporal logic constraints Page 21 of 41 17

vice-versa, opening the door for a discussion of the topological complexity of LTL-
based path planning. The next section details a method for solving Problem 3.1 over
Nred(U) under the assumption that a construction ofNred(U) satisfying Requirements
2. and 3. is available.

4 Planning space construction

This section is dedicated to solving Problem 3.1 assuming a solution, K � Nred(U) of
Problem 3.3 is known for the labeled space (X ,AP, U, L). The technique is agnostic
to the specific structure of K , based on the fact that a finite state transition systemAϕ ,
an ω-regular automaton, can monitor the satisfaction of an LTL formula ϕ along a
discrete path through a discrete labeled transition system T by constructing a “product
automaton”. However, it is necessary to precisely determine what transition structures
(Sect. 4.1) may serve legitimately in the role of discretizations of continuous motions
in the continuous space X (Sect. 4.3). Once this goal is achieved, the automaton Aϕ

(whose structure is reviewed in Sect. 4.4) may be used for a generalized construction
that solves the associated Planning problem (Sect. 4.5).

4.1 Transition systems

Treating topological spaces and discrete automata in a unified framework is made
conceptually easier using a category-theoretical viewpoint of non-deterministic tran-
sition systems. The simplification arises from maps of transition systems being used
as a means for comparing the systems. One very general way of encoding a transition
system with multiple transitions at each vertex is provided in the following definition.

Definition 4.1.1 (Transition System). A transition system is a tuple T = (V , E, s, t),
where V is a non-empty set of states and E is a set of non-deterministic transitions.
The map s : E → V specifies for each e ∈ E its initial state se, and t : E → 2V

specifies the set of possible terminal states te ⊆ V . ��
Definition 4.1.2 (Maps of Transition Systems). A map ψ : T1 → T2 of transition
systems Ti = (Vi , Ei , si , ti), i ∈ {1, 2}, is a pair of mapsψ = (ψ0, ψ1) such thatψ0 :
V1 → V2 and ψ1 : E1 → E2 satisfying ψ0(s1e) = s2ψ1(e) and ψ0(t1e) ⊆ t2ψ1(e)
for all e ∈ E1. ��

We shall, henceforth, use the boundary map symbols s and t while omitting any
additional decorations indicating the transition system to which they belong. For con-
sistency, any T = (V , E, s, t) will be referred to simply as T = (V , E), also denoting
VT = V and ET = E . The simplest example of a transition system is as follows.

Example 4.1.3 An interval is a transition system � where V� is an initial interval of
N ∪ {0}, E� = V� � {0}, and the boundary maps are defined as se = e − 1 and
te = {e} for all e ∈ E .

A fundamental notion in discrete dynamics is that of a trajectory. Intuitively, a
trajectory of T = (V , E) ought to be a sequence (v0, v1, . . . , vn, . . .)—finite or

123

 17 Page 22 of 41 D. P. Guralnik et al.

infinite—satisfying the requirement that for each i ≥ 0 for which vi+1 is defined
there exists ei ∈ E such that vi = sei and vi+1 ∈ tei . However, this definition puts
too much emphasis on states, and leaves no record of the transitions applied between
the states. Therefore, instead, we introduce the following more informative definition.

Definition 4.1.4 (Execution). An execution of a transition system T is a map of tran-
sition systems γ : � → T, where � is an interval. The trace tr(γ) of γ is defined as
the sequence (γ0(v))v∈V� , with the indices v in increasing order.

In other words, the intuitive notion of a trajectory coincides with the trace of an
execution. Another use for the notion of a map of transition systems is the following
notion of a refinement order on transition systems.

Definition 4.1.5 (Refinement). Let Ti = (V , Ei) be transition systems with the same
state set V . The system T1 is said to refine T2, if there exists a map ψ : T1 → T2 with
ψ0 = idV . ��
Observe that if T1 refines T2, then every execution of T1 is also an execution of T2,
though the latter may afford executions that are invalid for the former.

4.2 Labeled transition systems and control

Labeled transition systemsmay be seen as having control inputs. The formal construc-
tion is as follows.

Definition 4.2.1 (Labeled Transition System). A transition system labeled by a set �
is a pair (T, λ) where λ : ET → � is a function satisfying the requirement that, for
all e, f ∈ ET , if se = s f and λ(e) = λ(f) then e = f . ��
In a labeled transition system, each label � ∈ � selects (at most) a single transition for
each vertex. It is then possible to think of � as a set of control inputs for generating
executions/trajectories inductively, for each v0 ∈ VT and �ω � (�m)∞m=1 ∈ �ω, as
follows:

• Induction base. The desired execution of Tmay be initiated by selecting v1 ∈ te1 if
there is an e1 ∈ ET such that s(e1) = v0 and λ(e1) = �1, noting that �1 determines
e1. If there is no such e1, then the only execution compatible with the control input
� is γ : � → T with � = ({0}, ∅).

• Induction step. Suppose � is a finite interval, V� = {0, . . . ,m}, m ∈ N, and
γ : � → T is an execution satisfying γ0(0) = v0 and λ(γ1(i)) = �i for all
i = 1, . . . ,m. We ask whether an extension γ+ : �+ → T exists, where �+ is
the interval of length m + 1 and the labeling constraint is satisfied. Clearly, this
happens if and only if there exists a transition em+1 ∈ ET such that sem+1 = γ0(m)

and λ(em+1) = �m+1. If not, then the execution γ terminates.

Therefore, each sequence of labels �ω determines a collection of compatible execu-
tions ex(�ω) and the resulting traces tr(�ω), some of which may terminate in finite
time. Those γ ∈ ex(�ω) which terminate in finite time satisfy the labeling constraints
associated with later times vacuously.

123

Topology-aware planning under linear temporal logic constraints Page 23 of 41 17

Fig. 5 A planning problem on the circle (Example 4.3.2). X = S1 is covered by three sets (left), indexed
by AP = {a, b, c}, giving rise to N(U) = SAP ∼= S2 (center). This example was selected to satisfy
Nred (U) = sd(N(U)), for simplicity. The induced transition system TU is shown (right)

4.3 From labeled topological spaces to finite transition systems

This section considers ways for a labeled topological space to support transition sys-
tems that are mindful of its topology. A labeled topological space gives rise to the
following coarse transition system reflecting the preference for tame paths.

Definition 4.3.1 (Induced transition system). Let (X ,AP, U, L) be a labeled topolog-
ical space and let K = Nred(U). The induced transition system TU has vertex and edge
sets V = E = sk0(K), coinciding with the set of all U-realized simplices σ ∈ N(U),
and, for each such σ , the initial and terminal maps are defined as

sσ � σ,

tσ � {τ ∈ N(U) : {σ, τ } ∈ K } , (16)

which is the 1-neighborhood of σ in the 1-skeleton of K . ��
Therefore, a solutionNred(U) to Problem 3.3 produces a discrete transition system

whose trajectories in TU are precisely the Boolean paths over AP induced by tame
paths in X according to Definition 3.1.2. It remains to connect this construction to
actual planning problems.

Example 4.3.2 Consider the labeled space from Fig. 5, together with a robot with state
in X = S1 (left, black), endowedwith controllers capable of executing either one of two
commands, labeledcw andccw, and corresponding, respectively, to clockwisemotion
or counter-clockwisemotion along the circle. The atoms of the alphabetAP = {a, b, c}
are realized as depicted (left), and Nred(U) = sd(N(U)) holds by visual inspection.
The induced transition system TU is depicted on the right of Fig. 5, with the blue
arrows clearly corresponding to cw-induced transitions and the red arrows—to the
ccw-induced ones. The loops depicted in green result from the possibility that a cw or
ccw command over a short enough period of time might not result in a state transition
over the vertex set V = {a, b, c, ab, ac, bc} ofNred(U). As a result, in every discrete
state, the actions associatedwithcw andccw determine, respectively, a pair of arrows:
a blue/red arrow and a green loop. Given an LTL formula ϕ over AP, the goal is to
plan a sequence of cw/ccw commands that would satisfy10 ϕ.

10 In the sense of the semantics of tame paths (Sect. 3.1).

123

 17 Page 24 of 41 D. P. Guralnik et al.

Thus, practical concerns require the consideration of labeled transition systems,
and the planning problem becomes that of computing an element (or elements) of
�ω guaranteeing that every trajectory emanating from a specified initial set X0 in the
vertex set of K and generated by the control input will satisfy ϕ.

Definition 4.3.3 (Admissible Transition System). Let (X ,AP, U, L) be a labeled topo-
logical space. A labeled transition system (T, λ) on the state space VTU

is said to be
admissible for U, if T refines TU. ��

The labeling itself does not matter for admissibility. The labeling is an external
element having to do with the way input is encoded—not with what transitions are
allowed to happen in principle. Since any trajectory of T is also a trajectory of TU,
we have the automatic guarantee that any input sequence (�m)∞m=1 only generates
trajectories induced from tame paths.

4.4 Limiting deterministic Büchi automata (LDBA)

There are many varieties ofω-regular automata, one of which, following (Sickert et al.
2016), was adopted in this article.

Definition 4.4.1 (LDBA). An LDBA is a tuple A = (Q, �, δ, q0, B) where Q is a
finite set of automaton states; � is a finite alphabet of input symbols; δ : Q × (� ∪
{ε}) → 2Q is a non-deterministic transition function 11; q0 is an initial state; and B is
a set of accepting states. In addition,

1. δ is deterministic except for ε-moves, i.e., |δ(q, α)| = 1 for all q ∈ Q, a ∈ �;
2. there exists a bipartition Q = Qini ∪ Qacc such that:

• Qacc contains all accepting states;
• Qacc is invariant: δ(q, v) ⊆ Qacc for all q ∈ Qacc and v ∈ �;
• ε-moves are not allowed in Qacc: δ(q, ε) = ∅ for all q ∈ Qacc.

A sequence of states q = (qi)∞i=0 ∈ QN∪{0} beginning with the initial state q0 is said
to be a valid path inA, if there are vi ∈ �∪{ε}, i ∈ N∪{0}, such that δ(qi , vi) = qi+1
for all i . A valid path q is accepted by A if and only if B is visited infinitely many
times12 by q (the Büchi condition). A path that is invalid or not accepted is said to be
rejected by A. ��

Note that the presence of ε-moves renders an LDBA non-deterministic. Intuitively,
such moves represent state updates which take no time, motivating the concept of
ε-closure of a state, or, more generally, of a set of states A ⊂ Q, defined as

[A]ε � {q ∈ Q : q is reachable from A by a finite sequence of ε transitions}⊇ A.

(17)

11 Hereafter; ε denotes the empty input.
12 Since B is finite, this is equivalent to there being a b ∈ B such that qi = b for infinitely many different
values of i .

123

Topology-aware planning under linear temporal logic constraints Page 25 of 41 17

An LDBA A may be regarded as a transition system T = T(A) labeled by �, with
VT = Q, ET = Q × � and labeling function λ : ET → � defined by λ(q, σ) = σ ,
and where the boundary maps are given by s(q, σ) = q and

t(q, σ) � δ ([q]ε, σ) = {
δ(q ′, σ) : q ′ ∈ [q]ε

}
. (18)

Thus, a valid path q is precisely a trajectory of T(A) emanating from q0.

Definition 4.4.2 (Language accepted by an LDBA). Let A = (Q, �, δ, q0, B) be an
LDBA. A sequence13 σ = (σi)

∞
i=0 ∈ �N∪{0} is said to generate the path q = (qi)∞i=0,

if qi+1 ∈ δ([qi]ε, σi) for all i ∈ N∪{0}. The set of all pathsq generated byσ is denoted
by L(σ). The language L(A) accepted by the LDBAA is defined by σ ∈ L(A) if and
only if L(σ) contains an accepted path. ��

The following result is one of several in model checking enabling the use of finite-
state automata (here, specifically, LDBAs) as state representations of LTL formulae.

Lemma 4.4.3 Sickert et al. (2016, Theorem 1). For any LTL formula ϕ over AP, there
exists an LDBA with input alphabet 2AP,

Aϕ � (Qϕ, 2AP, δϕ, q0, B), (19)

such that, for any Boolean path σ over AP, σ |� ϕ holds if and only if σ ∈ L(Aϕ). ��
While converting an LTL formula ϕ into the LDBA Aϕ is a non-trivial procedure,

the use of LDBAs is preferable, in part due to the fact that not all LDBAs are of the
form Aϕ . Thus, LDBAs represent an even broader class of temporal specifications
than LTL does.

4.5 The planning space

We are now ready to provide a solution to Problem 3.1, in a slightly more general,
practical form. For the rest of this section, let (X ,AP, U, L) be a labeled topological
space and let X0 be a set of vertices of Nred(U), regarded as the initial condition for
the planning problem. Let (T, λ) be a labeled U-admissible transition system and let
ϕ be an LTL formula over AP: recall that the labels � are to be interpreted as control
inputs to T, while the formula ϕ is the LTL formula encoding the task specification
and represented by the automaton Aϕ = (Qϕ, 2AP, δϕ, q0, B). Also, let � denote the
infinite interval (see Example 4.1.3).

Definition 4.5.1 (PlanningSpace).Given the data above, the associated planning space
is defined as the transition system T̃ϕ = (Ṽ , Ẽ) with states Ṽ � VT × Qϕ , transitions

Ẽ �
{
(e, f) ∈ ET × ET(Aϕ) : λ f = se

}
, (20)

13 Commonly referred to as an ω-word.

123

 17 Page 26 of 41 D. P. Guralnik et al.

Fig. 6 Constructing the planning space for ϕ = aUb and the cover U of Example 4.3.2 (also see Fig. 5).
The automaton Aϕ (left, top) and transition system TU (left, bottom) give rise to the planning space T̃ϕ

(right), also known as the “product automaton”, whichmay be used for planning, according to Lemma 4.5.3.
By a simplifying convention, only transitions inAϕ along possible accepted paths are depicted, while any
others are omitted and may be thought of as arriving at a designated sink state (also omitted). Furthermore,
transitions in Aϕ are labeled in an abbreviated fashion, by Boolean formula over AP = {a, b, c} whose
truth set coincides with the set of λ ∈ 2AP appearing as labels for that transition. For example, the arrow
from r to s labeled b (top left) means r transitions to s for any input σ such that b ∈ σ ; the loop at s labeled
� means the automaton stay in s for all inputs

and boundary maps

s(e, f) � (se, s f),

t(e, f) � te × t f , (21)

with labeling λ(e, f) � λe. ��
A construction of the planning space for Example 4.3.2 is illustrated in Fig. 6. An

elementary observation about the planning space follows.

Lemma 4.5.2 Let maps π : T̃ϕ → T and β : T̃ϕ → T(Aϕ) be defined by π = (π0, π1)

and β = (β0, β1), where

π0(σ, q) � σ, β0(σ, q) � q,

and
π1(e, f) � e, β1(e, f) � f ,

for all (σ, q) ∈ Ṽ and (e, f) ∈ Ẽ . Then, both π and β are maps of transition systems.
Also, π is label-preserving.

123

Topology-aware planning under linear temporal logic constraints Page 27 of 41 17

Proof We verify the conditions of Definition 4.1.2. For any (e, f) ∈ Ẽ ,

π0(s(e, f)) = π0(se, s f) = se, sπ1(e, f) = se;
π0(t(e, f)) = π0(te × t f) = te, tπ1(e, f) = te.

Thus, π is a map of transition systems. The labels are preserved by π by definition,
as λ(e, f) = λe by construction. An analogous computation holds for β. ��

Any execution γ̃ : � → T̃ϕ gives rise to an execution π ◦ γ̃ : � → T. Conversely,
given an execution γ : � → T one says that an execution γ̃ : � → T̃ϕ is a lift of γ , if
γ = π ◦ γ̃ . Lifts are key to LTL-based planning, because of the following satisfaction
criterion.

Lemma 4.5.3 Let � be the infinite interval and let γ : � → T be an execution
emanating from X0. Then, tr(γ) |� ϕ if and only if γ has a lift γ̃ emanating from
X0 × {q0} and visiting 2AP × B infinitely many times.

Proof Suppose the required lift γ̃ exists. Then tr(γ) is a sequence of label inputs
to the transition system T(A) generating the execution β ◦ γ̃ , which emanates from
q0 and visits the set B of accept states infinitely many times. Thus, tr(γ) |� ϕ, by
Lemma 4.4.3.

Conversely, if tr(γ) |� ϕ then tr(γ) ∈ L(Aϕ), meaning that L(tr(γ)) contains
an accepted path q � (qi)∞i=0 (see Definition 4.4.2). In particular, there is an execution
μ : � → T(Aϕ) satisfyingtr(μ) = q. Construct an execution γ̃ : � → T̃ϕ by setting
γ̃0(m) = (γ0(m), μ0(m)), m ≥ 0 and γ̃1(m) = (γ1(m), μ1(m)), m ≥ 1. To ensure
that γ̃1(m) ∈ Ẽ , it is necessary to verify that λμ1(m) = sγ1(m) for allm ≥ 1, by (20).
Now, λμ1(m) = γ0(m − 1) by the construction of T(Aϕ), and, at the same time,
sγ1(m) = γ0(sm) = γ0(m − 1), by the definition of a map of transition systems
(Definition 4.1.2). Thus, γ̃ is an execution of T̃ϕ satisfying the desired properties. ��

Corollary 4.5.4 The system T has an infinite trajectory emanating from X0 and satis-
fying ϕ if and only if T̃ϕ has a state (σ, q) such that q ∈ B and:

1. (σ, q) is reachable from X0 × {q0};
2. T̃ϕ has a directed cycle based at (σ, q). ��

Remark 4.5.5 Note that AP is a finite set, implying that Nred(U) and T̃ϕ are finite.
Therefore, the set B̃ of states of T̃ϕ with Qϕ-component in B is visited infinitely many
times by γ̃ if and only if γ̃ contains a loop based in B̃.

Corollary 4.5.4 explains how the problem of planning for ϕ in the labeled space
(X ,AP, U, L) may be solved by searching the discrete model T̃ϕ , providing at least
one avenue for an algorithmic solution of Problem 3.1 using existing formal methods
approaches, but for the more general class of labels obtained as good covers, provided
a solution of Problem 3.3, which is the topic of the next section.

123

 17 Page 28 of 41 D. P. Guralnik et al.

5 The reduced nerve of an open cover

This section is dedicated to studying notions of realizability and to establishing results
about the structure of the reduced nerve, recalling from Sect. 1.2 the various examples
of obstructions to symbolic path planning overN(U) and the solution of Problem 3.3.

5.1 Realizability

A subtler phenomenon than the realizability introduced in Definition 1.2.1 is that of a
realized simplex in sd(N(U)):

Definition 5.1.1 (U-Small Simplex). Let T ⊂ N(U). A U-small singular T -simplex
in X is a map g : ΔT → X such that (ς ◦ g)(ΔS) = S for all S ⊆ T . If there exists a
U-small T -simplex, the collection T is said to be U-realized. ��

Note how a singleton T = {σ } ⊂ N(U) is U-realized if and only if σ ∈ N(U) is
U-realized. Also, any sub-collection S of a U-realized collection T is also U-realized
(indeed, if g is a U-small T -simplex, then g

∣
∣
ΔS is a U-small S-simplex). Thus, the set

of U-realized subsets ofN(U) forms a simplicial complex, whose vertex set is the set
of U-realized simplices of N(U). Figure 7 illustrates the notion of a U-small simplex
on our running example, Example 1.2.2, and hints at the following result.

Lemma 5.1.2 A U-realized collection T ⊆ N(U) is a chain under inclusion. Hence,
the set of U-realized collections T ⊆ N(U) forms a sub-complex of the barycentric
subdivision sd(N(U)) of N(U).

Proof If not, then let T be a U-realized collection containing a pair of incomparable
simplices σ, τ of N(U), which together form a U-realized pair S � {σ, τ }. Find
α, β ∈ AP such that α ∈ σ � τ and β ∈ τ � σ . Let g : ΔS → X be a continuous
map satisfying ς(g(ξ0)) = σ , ς(g(ξ1)) = τ , and ς(g(ξt) ∈ S for all t ∈ [0, 1], where
ξt � (1− t)eσ + teτ . Consider the closed sets A, B ⊂ [0, 1] defined as

A � {t ∈ [0, 1] : g(ξt) /∈ U(α)} , B � {t ∈ [0, 1] : g(ξt) /∈ U(β)} .

From α /∈ τ and τ = ς(g(ξ1)) it follows that 1 ∈ A. Similarly, 0 ∈ B since β /∈ σ

and σ = ς(g(ξ0)).
We claim that A ∪ B = [0, 1]. For any t ∈ [0, 1], either ς(g(ξt)) = σ , implying

g(ξt) /∈ U(β) and t ∈ B, or ς(g(ξt)) = τ , implying g(ξt) /∈ U(α) and t ∈ A.
Next, we claim that A ∩ B = ∅. Indeed, for every t ∈ [0, 1] one has either

ς(g(ξt)) = σ and then g(ξt) ∈ Ũ(σ) ⊂ U(α), or ς(g(ξt)) = τ implying g(ξt) ∈
Ũ(τ) ⊂ U(β). Either way, g(ξt) ∈ U(α) ∪ U(β) for all t ∈ [0, 1]. However, any
t ∈ A ∩ B must satisfy g(ξt) /∈ U(α) ∪ U(β)—a contradiction.

Since neither of A, B is empty, we obtain a contradiction to [0, 1] being connected,
finishing the proof of the lemma. ��

The result of the last lemma motivates the following definition.

123

Topology-aware planning under linear temporal logic constraints Page 29 of 41 17

Fig. 7 Continuing Example 1.2.2 (left), observe how the simplices {a, abc}, {a, ac, abc} ∈ sd(N(U)) are
not U-realized (center) because there is no path in X from Ũ(abc) to a point of U(a) � Ũ(bc) avoiding
Ũ(ac). At the same time, {a, ac} is a U-realized simplex in X , as witnessed by the interval in X joining
the points x and y. The simplices {a, ab}, {b, ab} ∈ sd(N(U)), too, are unrealized, since ab ∈ N(U) is.
Overall, the reduced nerve Nred (U) (right, red highlight) is a contractible 1-dimensional sub-complex of
sd(N(U))

Definition 5.1.3 (Reduced Nerve). Let (X ,T) be a space and let U : AP → T be an
indexed cover of X . The reduced nerveNred(U) of U is the sub-complex of sd(N(U))

whose simplices are the U-realized collections in N(U). ��

5.2 Basic properties of realized simplices

Realized simplices in N(U) have the following characterization.

Lemma 5.2.1 Asimplexσ ∈ N(U) is unrealized if andonly if Ũ(σ) ⊆ ⋃
β∈AP�σ U(β).

Proof Let σ ∈ N(U). By the definition of ς , for any x ∈ X ,

σ = ς(x) ⇔ x ∈
⋂

α∈σ

U(α) �

⋃

β∈AP�σ

U(β). (22)

Thus σ is U-unrealized if and only if

⋂

α∈σ

U(α) �

⋃

β∈AP�σ

U(β) = ∅,

which proves the assertion of the lemma. ��
Lemma 5.2.2 If σ ∈ N(U) is maximal, then σ = ς(x) for all x ∈ ⋂

α∈σ U(α).

Proof Indeed, ifσ ∈ N(U) is amaximal simplex andβ ∈ AP�σ thenσ∪{β} /∈ N(U),
implying that

⋂
α∈σ U(α) ⊆ X �U(β). Since β ∈ AP�σ was arbitrary, the criterion

in (22) implies every x ∈ ⋂
α∈σ U(α) satisfies σ = ς(x). ��

The preceding lemma focuses attention on the differences between two presen-
tations of |N(U)|, highlighting the role of realized simplices in “keeping the nerve
together”.

Corollary 5.2.3 Let U be an indexed open cover of X. Then the following equality
holds:

|N(U)| =
⋃

x∈X
Δς(x). (23)

123

 17 Page 30 of 41 D. P. Guralnik et al.

Fig. 8 A good cover U of a topological disk featuring an unrealized simplex of N(U) that is not free, as
described in Example 5.2.4)

Proof The geometric realization of a simplicial complex is the union of geometric
realizations of its closed maximal simplices, which, by the preceding lemma, are all
U-realized. ��

Comparing the above presentation with the definition |N(U)| = ⋃
σ∈N(U) Δ̇σ , note

that some of the open simplices Δ̇σ appear as proper faces of the closed simplices
in (23). AllU-unrealized simplices are proper faces ofmaximal ones, and it is therefore
reasonable to investigate their contribution to the homotopy type of the nerve.

Example 5.2.4 (A non-free unrealized simplex). We construct a cover U of a topolog-
ical disk X , indexed by the set of symbols AP = {x, y, z, a}, as depicted in Fig. 8,
with X = U(x) ∪ U(y) ∪ U(z). Note that U(a) is a redundant covering element, ren-
dering {a} an unrealized simplex. The nerve N(U) may be described as the complex
obtained from the 2-dimensional simplex with vertices x, y, z by appending the sim-
plices {x, y, a} and {y, z, a} (and all their faces). The realization of N(U) is a disk.
The realization of the link L = lkN(U)(a) is a 2-path embedded in the disk. Observe
how {a} is the only unrealized simplex ofN(U), and that it is not free inN(U), being
contained in the two maximal simplices {x, y, a} and {y, z, a}. However, since L is
contractible, {a} is removable, hinting at the possibility of applying a generalized
collapse (Lemma 2.5.3) to obtain a simplified model of the disk X .

5.3 Unrealized simplices of the subdivided nerve

Lemma5.2.2 andCorollary 5.2.3motivate the question ofwhether or not the unrealized
simplices ofN(U) could be removed in some way without altering its homotopy type,
while Example 5.2.4 demonstrates that simplicial collapses fail to achieve this goal.
However, the following Lemma shows that generalized collapses (Section 2.5.4) are
the right tool for the job.

Lemma 5.3.1 Suppose σ ∈ N(U) is any U-unrealized simplex of a good cover. Then
σ is a removable simplex of N(U), as well as a removable vertex of sd(N(U)).

Proof Denote K � N(U) and suppose σ ∈ K isU-unrealized. Then, by Lemma 5.2.1,
the non-empty subspace Ũ(σ) is covered by the open contractible sub-spacesUσ (α) �

123

Topology-aware planning under linear temporal logic constraints Page 31 of 41 17

Fig. 9 In Figure 7, the reduced nerve of the running example (Example 1.2.2) was computed as a sub-
complex of sd(N(U)) (left, bold). The removal of the two unrealized vertices {c}, {ab} ∈ sk0(sd(N(U)))

results in a sub-complex containing the reduced nerve (right). Still, some U-unrealized simplices remain in
this complex (red), such as the edge {a, abc} and the 2-simplex {a, ac, abc}

Ũ(σ ∪ {α}), whereα ranges over AP�σ . Of these sets, only the oneswith σ∪{α} ∈ K
are non-empty, corresponding to the vertices of the link L � lkK (σ), the set of which
we denote by L0.

We conclude that Uσ is a good cover of Ũ(σ) indexed by L0. Also, the inclusion
map j : L0 → AP induces a simplicial isomorphism of the nerve N(Uσ) with L ,
since, for all x ∈ X , x witnesses a simplex τ ∈ N(Uσ) if and only if x witnesses the
simplex σ ∪ τ in K . Therefore, since Ũ(σ) is contractible, the Nerve Lemma applied
to Uσ implies that |L| is contractible and it follows that σ is a removable simplex of
K .

Finally, to see that σ is a removable vertex of sd(K), apply Corollary 2.4.2 to con-
clude that lksd(K)({σ }) is isomorphic to the join sd(L)∗sd(Sσ). Since L is contractible,
so is sd(L), and consequently also lksd(K)({σ }), proving that σ is a removable vertex
of sd(K). ��

Among other things, the proof implies thatU-unrealized simplices of co-dimension
1 inN(U) are always free (e.g., the simplex ab in Fig. 2), explaining the need for the
slight subtlety of Example 5.2.4, where special care was needed to create a non-free
unrealized simplex of N(U).

Note that performing generalized collapses on unrealized simplices of N(U) does
not yield consistent results: in Fig. 2, both the unrealized simplices of N(U) are free,
but collapsing the vertex {c} yields the 1-simplex {a, b, ab}, while collapsing the edge
{ab} yields the 2-path {a, ac, c, bc, b}; both are contractible models of X , but there is
not an obvious way of merging them into a common representation of X and U. By
contrast, generalized collapses of the unrealized vertices of sd(N(U)) in this example
may be carried out to obtain a sub-complex of sd(N(U)) containing the reduced nerve,
see Fig. 9(right). This difference between N(U) and sd(N(U)) provided the original
motivation for considering removals in sd(N(U)) instead of inN(U). Unrealized sim-
plices of higher dimension in sd(N(U)) (as opposed to unrealized simplices ofN(U),
which amount to 0-dimensional simplices of sd(N(U))) hold additional information
about the homotopy type of X , as discussed in Fig. 9.

123

 17 Page 32 of 41 D. P. Guralnik et al.

5.4 Organized removal of unrealized simplices

Throughout this section, let U be a good finite indexed cover of X , let K � N(U),
N � sd(N(U)), and let δ denote themaximumdimension of aU-unrealized simplex in
K . For every integer d ≥ 0, let�[d] denote the family ofU-unrealized simplices in N
of dimension less than or equal to d, and let N [d] � delN (�[d]) be the sub-complex
of N obtained by deleting all the simplices in �[d]. Note that Nred(U) = N [d] for
every d ≥ δ. We study the sub-complex N [0].
Proposition 5.4.1 N [0] is obtainable from N by generalized collapse.

Proof For integers j ≥ −1, let �[j, 0] denote the family of vertices {σ } ∈ N where
σ ∈ K ranges over the U-unrealized simplices of dimension less than or equal to j .
Then (�[j, 0]) j≥0 is amonotone non-decreasing sequencewith�[j, 0] = �[δ, 0] for
all j ≥ δ. The sub-complexes N [j, 0] � delN (�[j, 0]) of N satisfy N [0] = N [j, 0]
for all j ≥ δ, and note that N [−1, 0] = N , as �[−1, 0] is empty.

Setting �[j] � �[j, 0] � �[j − 1, 0], observe that N [j, 0] = delN [j−1,0](�[j])
holds for all j ≥ 0. Therefore, to obtain the result of the proposition, it suffices to
verify that�[j] is an independent family of removable simplices of N [j−1, 0] for all
j ≥ 0. By the construction of N = sd(K), no simplex of N may contain (as elements)
two distinct simplices of K of equal dimensions. Thus, for all j ≥ 0, �[j] is an
independent family of simplices of N , and hence also of the sub-complex N [j−1, 0].

It remains to check that every vertex {σ } ∈ N [j − 1, 0] is removable if it belongs
to �[j], for all j ≥ 0. Applying Lemma 2.4.1, we obtain the simplicial isomorphism
g{σ } : lkN ({σ }) → sd(lkK (σ))∗sd(Sσ), mapping any vertex {τ } of lkN ({σ }) to itself,
if τ � σ and to {τ � σ } if σ � τ . If σ ∈ �[j] ∩ N [j − 1, 0], then lkN [j−1,0]({σ }) is
obtained from lkN ({σ }) by removing all simplices (of N) which contain a vertex of
the form {σ ′} for some σ ′

� σ . In other words, lkN [j−1,0]({σ }) is isomorphic to the
join of sd(lkK (σ)) with another simplicial complex. Since lkK (σ) is contractible by
Lemma 5.3.1, so is lkN [j−1,0]({σ }). ��

6 The connectivity trisp and the path correspondence

To address questions about the connectivity ofNred(U), a more refined combinatorial
model of X is required, constructed from all the U-small singular simplices in X . For
motivation, we revisit Example 1.2.3, where the set ς−1(σ) of a U-realized simplex
σ ∈ N(U) was disconnected, resulting in an obstruction to meaningful planning over
Nred(U).

Example 6.0.2 The failure of the combinatorial path (a, ax, x, xb, b) to be induced
by a tame path in X (Fig. 10, left) is explained by there being two path components
x1 and x2 of ς−1({x}), both of which share a connection to y ∪ z via, e.g., a pair of
U-small singular T � {yz, xyz}-simplices g1, g2 connecting x ∩ y ∩ z to x1 and x2,
respectively. While g1 and g2 are homotopic to each other, they cannot be joined by
a homotopy restricting to the same U-small singular T -simplex at every stage of the
deformation. Therefore, it seems possible to distinguish between g1 and g2 (as well as

123

Topology-aware planning under linear temporal logic constraints Page 33 of 41 17

Fig. 10 A good cover of a topological disk requiring a refinement of its reduced nerve to enforce a cor-
respondence between tame paths and combinatorial paths (Example 6.0.2). Observe that “splitting” the
vertex {x} from Fig. 3 into two vertices corresponding to the path components of ς−1({x}) results in a
more complete model for path planning that is capable of demonstrating directly the fact that no (tame)
path exists in X from ς−1({a}) to ς−1({b}) avoiding y ∪ z. Also note how the two path components of
ς−1({y, z}) give rise to the intricate structure at the top of the “doubled simplex” corresponding to xyz

other such pairs) using a more restricted notion of homotopy, and one expects this fact
to give rise to an enriched diagram (Fig. 10, right), which folds onto the one produced
by Nred(U) in Fig. 3(right).

The last observations hint at the necessity of constructing a discrete model of X
large enough to distinguish between certain restricted homotopy classes of U-small
singular simplices. To execute the construction, the notion of a trisp is required, which
will now be reviewed briefly, following Kozlov (2008, Section 2.3).

6.1 Preliminary: trisps

Triangulated spaces, also known as trisps, are a generalization of simplicial complexes
using a more versatile encoding of the gluing instructions necessary for producing
useful subdivision and geometric realization functors in the presence of loops,multiple
edges, and their higher dimensional analogues. We recall the definition of the simplex
category first.

Definition 6.1.1 (Simplex Category). � is the category with Ob� = Z≥0 and the set
of morphisms �(m, n) from m to n, m, n ∈ Ob�, defined as the set of all increasing
maps α : [m + 1] → [n + 1], endowed with the standard composition. ��

One thinks of this category as describing face maps between standard simplices,
as follows. Given integers 0 ≤ m ≤ n, an m-face of the standard n-simplex Δ[n+1]
corresponds to an increasing map α : [m + 1] → [n + 1], which may be regarded
as a simplicial embedding α : B[m+1] ↪→ B[n+1], giving rise to the piecewise-linear
embedding |α| : Δ[m+1] ↪→ Δ[n+1]. Trisps make use of these maps by regarding
them as “abstract face types” to be used in gluing together a collection of simplices
of varying dimensions.

Definition 6.1.2 (Trisp). The gluing instructions for a trisp are a contra-variant functor
� : � → Set from the simplex category to the category of sets. Each �(n), n ∈ Ob�
is regarded as the set of n-simplices of �. Each �(α) : �(n) → �(m), α ∈ �(m, n)

123

 17 Page 34 of 41 D. P. Guralnik et al.

is regarded as assigning to each n-simplex its α-face. To avoid a proliferation of
parentheses, we adopt the notation �(α) : σ �→ �(α)σ for all α ∈ �(m, n). ��

The compactness of this definition is deceptive. Unpacking it, one observes that the
composition requirement, the identity �(β ◦ α) = �(α) ◦ �(β), means that a face of
a face is a face, enabling consistent gluing instructions.

Definition 6.1.3 (Realization of a trisp). Let � be gluing instructions for a trisp. The
geometric realization |�| is the quotient space obtained as

|�| �
⊔

n≥0

�(n) × Δ[n+1]
/

(∼�), (24)

where the�(n) are taken with the discrete topology, and the equivalence relation (∼�)

is generated by all expressions of the form

(σ, |α| (ξ)) ∼� (�(α)σ, ξ) (25)

for α ∈ �(m, n), ξ ∈ Δ[m+1], and σ ∈ �(n). ��
Remark 6.1.4 (Irregular trisps). Self-gluings of a simplex σ occur when �(α)σ =
�(β)σ for α, β ∈ �(m, n), α 	= β. Also, for example, two edges e, f ∈ �(1), e 	= f ,
may share their boundary vertices while remaining interiorly disjoint in |�|: this may
be achieved by setting α, β : [1] → [2] to have α(1) = 1 and β(1) = 2, with
�(α)e = �(α) f and �(β)e = �(β) f .

For simplicity, we will henceforth refer to gluing data � (for a trisp) and to the
resulting space |�| interchangeably as ‘trisps’, same as we do for (abstract) simplicial
complexes and their realizations.

Definition 6.1.5 (Regular Trisp). A trisp � is said to be regular if, for all n ∈ Ob�,
all σ ∈ �(n) and all α, β : [1] → [n + 1] with α 	= β one has �(α)σ 	= �(β)σ .

In other words, � is regular if no simplex of � has two of its vertices identified to
a single point in |�|. In what follows, all the trisps considered in this article will be
regular trisps.

Another characteristic of trisps is that their edges, the elements of �(1), come
equipped with an orientation. Setting α, β : [1] → [2] with α(1) = 1 and β(1) = 2,
the initial point �(α)e of an edge e will be denoted by ∂0e, and the terminal point
�(β)e will henceforth be denoted by ∂1e, coinciding with a more standard notation
used for directed graphs. Since we are more interested in edges of � as arcs in the
space |�|, a definition of an (undirected) edge-path is needed:

Definition 6.1.6 (Edge-Path In a Trisp). An edge-path in a trisp � is a sequence γ =
(fk)mk=1 in �(1) for which there exists a sequence (vk)

m+1
k=1 in �(0) with the property

that {vk, vk+1} = {∂0 fk, ∂1 fk}. The initial and terminal vertices v1, vm+1 of γ shall
be denoted by ∂0γ and ∂1γ , respectively.

123

Topology-aware planning under linear temporal logic constraints Page 35 of 41 17

6.2 Construction of the connectivity trisp

A formal definition of the restricted notion of homotopy alluded to in Example 6.0.2
is as follows.

Definition 6.2.1 (U-homotopy). Let T ∈ sd(N(U)) be any simplex. The space of all
U-small singular T -simplices, endowed with the sub-space topology fromC (ΔT , X),
is denoted by CU(T). For f , g ∈ CU(T), a homotopy H : ΔT × [0, 1]→ X from f
to g is said to be a U-homotopy, if the map Ht : ξ �→ H(ξ, t) is a U-small singular
T -simplex for all t ∈ [0, 1]. The U-homotopy class of f ∈ CU(T) will be denoted
by [f]U, and the space of all such classes, taken with the discrete topology, will be
denoted by hCU(T). ��

Observe that every simplex T = {σ1 � . . . � σn+1} in sd(N(U)), n ∈ Z≥0 is
uniquely represented by the increasing14 map [n + 1] → N(U) sending i to σi . For
the rest of this section, we identify any such T with the corresponding map, which
will be referred to by the same symbol T .

The identification of simplices in sd(N(U))with increasing maps intoN(U)makes
it easier to keep track of face relations among singular simplices. Namely, for each
T ∈ sd(N(U)) as above, any 0 ≤ m ≤ n, and any α ∈ �(m, n) give rise to the face
T ◦ α of T . Consequently, for any singular T -simplex g : ΔT → X , the inclusion
map T ◦ α ↪→ T (regarded as sets) induces the embedding of ΔT ◦α in ΔT as a face,
giving rise to the U-small singular T ◦ α-simplex

∂αg � g ◦ |T ◦ α ↪→ T | . (26)

The following elementary fact enables the construction of the connectivity trisp.

Lemma 6.2.2 Let 0 ≤ m ≤ n be integers and let T ∈ Nred(U) be an n-simplex. Then
for any increasing map α : [m+1] → [n+1] and any f , g ∈ CU(T), if [f]U = [g]U
then also [∂α f]U = [∂αg]U. In other words, ∂α[f]U � [∂α f]U is a well-defined
operation on hCU(T).

Proof Follows directly from Definitions 5.1.1 and 6.2.1. ��
Two trisps emerge from theprecedingobservations. First, the reducednerveNred(U)

itself may be seen as having a trisp structure, which we denote by RU:

• For n ∈ Ob�, the set RU(n) of n-simplices (of the reduced nerve) is the set of all
T ∈ sd(N(U)) of cardinality n + 1, admitting a U-small singular T -simplex.

• For α ∈ �(m, n), the map RU(α) : RU(n) → RU(m) is defined by RU(α)T �
T ◦ α.

Note that this construction may be applied to any simplicial complex, resulting in an
identical geometric realization. The second trisp is constructed from the homotopy
classes of U-small simplices, with Lemma 6.2.2 facilitating the gluing among the
faces, as follows.

14 Increasing, in the sense that i < j implies σi � σ j for all relevant i, j .

123

 17 Page 36 of 41 D. P. Guralnik et al.

Fig. 11 Illustration of applying Definition 6.2.3 to Example 6.0.2, obtaining the geometric realization
depicted in Fig. 10. In the zoomed-in inset (right), three 2-dimensional U-small simplices are shown, top to
bottom: an {y, xy, xyz}-simplex, an {x, xy, xyz}-simplex, and an {x, xz, xyz} simplex. Up toU-homotopy,
these simplices share edges, causing them to form a ‘gallery’ connecting these simplices together so they
fan out of the vertex corresponding to the single U-homotopy class representing {xyz}. These shared
edges are represented by the two singular 1-dimensional simplices—one is an {xy, xyz}-simplex and the
other is an {x, xyz}-simplex, depicted as solid black curves—which are U-homotopic on either side to the
corresponding 1-faces of their 2-dimensional ‘neighbors’

Definition 6.2.3 (Connectivity Trisp). For an admissible coverU of X , the connectivity
trisp R̃U is defined as

R̃U(n) �
⋃

T∈RU(n) hCU(T) = {[g]U : ∃ T ∈ RU(n). g ∈ CU(T)} , (27)

for n ∈ Ob�, and the face maps R̃U(α) : R̃U(n) → R̃U(m) are defined as

R̃U(α)[g]U � [∂αg]U (28)

for all m, n ∈ Ob� and α ∈ �(m, n). ��
Note that the (contra-variant) functoriality of R̃U follows from (26) and the func-

toriality of geometric realization, as applied to simplicial complexes (see Sect. 2.2.2).
At the same time, the geometric realization

∣
∣R̃U

∣
∣ is precisely the construction real-

izing the motivation discussed in Example 6.0.2 and Fig. 10. Figure 11 provides an
illustration of the gluing law (28) on the same example.

The geometric realizations
∣
∣R̃U

∣
∣ and |RU| = |Nred(U)| are related by a map

realizing the folding idea from Example 6.0.2. For each n ∈ Ob� there is a map
π(n) : R̃U(n) → RU(n) defined by15

π(n)[g]U = T ⇐⇒ T ∈ sd(N(U)), |T | = n + 1, g ∈ CU(T), (29)

satisfying, for every m, n ∈ Ob� and α ∈ �(m, n),

π(m) ◦ R̃U(α) = RU(α) ◦ π(n). (30)

15 Here we again omit the parentheses around the argument of the map π(n) to simplify notation.

123

Topology-aware planning under linear temporal logic constraints Page 37 of 41 17

In otherwords,π : R̃U → RU is a natural transformation (which is a rather special case
of a trisp map, Kozlov (2008, Definition 2.48)), and it induces a geometric realization
|π | : ∣

∣R̃U

∣
∣ → |RU| defined, up to quotients, as

|π | (σ, ξ) = (π(n)σ, ξ) (31)

for all n ∈ Ob�, σ ∈ R̃U(n) and ξ ∈ Δ[n+1].

Remark 6.2.4 A vertex of the reduced nerve is a 0-simplex u ∈ RU(0) of the form
u = {ς(x)} for some x ∈ X , witnessed by theU-small {ς(x)}-simplex ex : Δ{ς(x)} →
X defined by ex (e{ς(x)}) � x , noting that e{ς(x)} is the only point of Δ{ς(x)}. If
y ∈ ς−1(ς(x)), then [ex]U = [ey]U holds if and only if there is a path from x to
y in ς−1(ς(x)), since such a path constitutes a U-homotopy between the U-small u-
simplices ex and ey . Thus, the map from X to R̃U(0) given by x �→ [ex]U is a lift of
the map from X to Nred(U) given by x �→ {ς(x)}, through the map π(0).

Definition 6.2.5 (Canonical U-covering). The natural transformation π from (29), as
well as its geometric realization |π | from (31) will both be referred to as the canonical
U-covering map. ��

Despite it not being a covering map—Example 6.0.2 serves as a good illustration
of this fact—the map |π | has, nevertheless, some properties reminiscent of a branched
cover, such as the fact that it sends open simplices homeomorphically onto open
simplices of the samedimension (however, the local degree is not constant). Section 6.3
uses the canonical U-cover to elucidate the path correspondence problem, further
establishing π in a role analogous to that of a covering map.

6.3 Tame paths vs. paths in the reduced nerve

The path correspondence problem is concernedwith constructing a discrete refinement
of N(U) for which combinatorial paths in the 1-skeleton of the model correspond to
tame paths in the labeled space (X ,AP, U, L). The trisp R̃U is precisely such a model,
as shown by the following lemma.

Lemma 6.3.1 Let U be an admissible cover of X over AP. Every U-tame path in X
induces a combinatorial path in the 1-skeleton of the connectivity trisp R̃U. Every
combinatorial path in the 1-skeleton of R̃U is induced by a U-tame path.

Proof It suffices to prove the lemma for tame paths whose image under ς is finite (the
infinite case follows by induction), in correspondence with finite combinatorial paths
in the 1-skeleton of R̃U. Suppose (c,J = {Jk}mk=1) is a U-tame path in X , and let
σk = ς(c(tk)), tk ∈ Jk , k ∈ [m]. Then, every pair Tk := {σk, σk+1}, k ∈ [m − 1]
admits a U-small singular Tk-simplex gk : ΔTk → X constructed as

gk
(
(1− s)eσk + seσk+1

)
� c ((1− s)tk + stk+1) .

Thus, by Lemma 5.1.2, each Tk is a 1-simplex (an edge) ofRU, and the [gk]U ∈ R̃U(1)
form an edge-path in R̃U, as required.

123

 17 Page 38 of 41 D. P. Guralnik et al.

Conversely, suppose fk = {[gk]U}mk=1 is an edge-path in R̃U. By Definition 6.1.6
and Remark 6.2.4, there are vertices vk = [exk]U ∈ R̃U(0), k ∈ [m + 1] such that
{vk, vk+1} = {∂0 fk, ∂1 fk}. For each k ∈ [m], construct the following:
• Let pk : [0, 1] → X be linear reparametrizations of gk so that pk(0) coincides
with the endpoint of gk lying in vk and pk(1) coincides with the endpoint of gk
lying in vk+1;

• Let ak : [0, 1] → X be a path in vk from xk to pk(0);
• Let bk : [0, 1] → X be a path in vk+1 from pk(1) to xk+1.

Let qk be the concatenation of ak , pk , bk , for k ∈ [m], and let c be the concatenation
of q1, . . . , qm , in that order. Then c is the desired tame path (with an appropriately
constructed partition of its domain into intervals). ��
Corollary 6.3.2 LetU be an admissible cover of X over AP. Then, everyU-tame path in
X induces a combinatorial path in the 1-skeleton of RU—or, equivalently, inNred(U).

Proof If c is a tame path in X , let γ̃ be the edge-path in R̃U induced by it. Then π(1)γ̃
is the required edge-path in RU. ��

The canonical U-covering π is useful for making explicit the path correspondence
between X and the reduced nerve.

Definition 6.3.3 (Path-lifting property). LetU be an admissible cover of X .We say that
U has the path-lifting property, if for every edge-path γ inRU and any ṽ1 ∈ π(0)−1∂0γ

there exists an edge-path γ̃ in R̃U with ∂0γ̃ = ṽ1 that satisfies π(1)γ̃ = γ .

The conditions for there being a valid correspondence between tame paths in X
and edge paths in Nred(U) are now clarified by the following result.

Theorem 6.3.4 (Path correspondence criterion). Let U be an admissible cover of X
over AP. Then the following are equivalent:

1. For every x ∈ X and every edge-path γ in Nred(U) emanating from ς(x) there
exists a tame path c in X emanating from x and inducing γ .

2. U has the path-lifting property.

Proof To prove (1)⇒(2), given γ , apply the construction in the proof of Lemma 6.3.1
to the path c to obtain the desired γ̃ . For the converse, given an edge-path γ inRU and
ṽ1 ∈ π(0)−1∂0γ , find x ∈ X such that v1 = [ex]U and a lift γ̃ with ∂0γ̃ = v1. Then,
Lemma 6.3.1 (converse direction) provides the desired tame path. ��

The following corollary of Remark 6.2.4 and Theorem 6.3.4 now explains the
intuition behind the failure of the path correspondence in Example 1.2.3.

Corollary 6.3.5 LetU be an admissible cover of X over AP. If ς−1(σ) is path-connected
for all realized σ ∈ N(U), then every edge-path in Nred(U) is induced from a tame
path. ��

123

Topology-aware planning under linear temporal logic constraints Page 39 of 41 17

Proof It suffices to show that U has the path-lifting property. By the present assump-
tion, it follows from Remark 6.2.4 that the map π(0) is a bijection. By construction,
the map π(1) is a surjection respecting the endpoint maps ∂0 and ∂1. It follows that
every edge-path in RU lifts to an edge path in R̃U. ��

It is unclear at the moment whether or not the path-lifting property may hold for
other reasons. For example, standard covering space theory (where the path-lifting
property is guaranteed) provides an alternative sufficient condition:

Corollary 6.3.6 LetU be an admissible cover of X overAP. If the canonicalU-covering
induces a covering map of geometric realizations, then every edge-path inNred(U) is
induced from a tame path. ��

In conclusion, the result of Lemma 6.3.1 seems to point towards R̃U as a preferred
discrete model for the purpose of path planning, at the price of this model being,
potentially, much larger than the reduced nerve N(U). Studying the homotopy prop-
erties of R̃U in relation to those of X seems like a natural direction for continuing the
present work, with an emphasis on obtaining some clarity regarding the conditions
under which Nred(U) and R̃U may be homotopy equivalent to X .

Author contributions All authors contributed equally to this work.

Funding This research was supported in part by AFOSR award numbers FA9550-19-1-0169, and FA9550-
22-1-0429. Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the sponsoring agency.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

References

Baryshnikov, Y.: Topological perplexity of feedback stabilization. J. Appl. Comput. Topol. 7, 75–87 (2023).
https://doi.org/10.1007/s41468-022-00098-2

Bhattacharya, S., Lipsky, D., Ghrist, R., Kumar, V.: Invariants for homology classes with application to
optimal search and planning problem in robotics. Ann. Math. Artif. Intell. 67(3), 251–281 (2013).
https://doi.org/10.1007/s10472-013-9357-7

Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot
behaviors. Int. J. Robot. Res. 18(6), 534–555 (1999). https://doi.org/10.1177/02783649922066385

Brockett, R.W.: Asymptotic Stability and Feedback Stabilization. In: Brockett, R.W., Millman, R.S., Suss-
man, H.J. (eds.) Differential Geometric Control Theory. Progress inMathematics, vol. 27, pp. 181–191
(1983). https://courses.ece.ucsb.edu/ECE594/594D_W10Byl/hw/Brockett83.pdf

Baryshnikov, Y., Shapiro, B.: How to run a centipede: a topological perspective. In: Geometric Control
Theory and Sub-RiemannianGeometry, pp. 37–51 (2014). https://doi.org/10.1007/978-3-319-02132-
4_3

Belta, C., Sadraddini, S.: Formal methods for control synthesis: An optimization perspective. Annu. Rev.
Control Robot. Auton. Syst. 2(1), 115–140 (2019). https://doi.org/10.1146/annurev-control-053018-
023717

123

https://doi.org/10.1007/s41468-022-00098-2
https://doi.org/10.1007/s10472-013-9357-7
https://doi.org/10.1177/02783649922066385
https://courses.ece.ucsb.edu/ECE594/594D_W10Byl/hw/Brockett83.pdf
https://doi.org/10.1007/978-3-319-02132-4_3
https://doi.org/10.1007/978-3-319-02132-4_3
https://doi.org/10.1146/annurev-control-053018-023717
https://doi.org/10.1146/annurev-control-053018-023717

 17 Page 40 of 41 D. P. Guralnik et al.

Farber, M.: Topological complexity of motion planning. Discrete Comput. Geom. 29(2), 211–221 (2003).
https://doi.org/10.1007/s00454-002-0760-9

Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic
robots. Automatica 45(2), 343–352 (2009). https://doi.org/10.1016/j.automatica.2008.08.008

Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Hybrid controllers for path planning: A temporal logic
approach. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4885–4890
(2005a). https://doi.org/10.1109/CDC.2005.1582935

Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile robots. In:
Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2020–2025.
IEEE, Barcelona, Spain (2005b). https://doi.org/10.1109/ROBOT.2005.1570410

Holmes, P., Full, R.J., Koditschek, D.E., Guckenheimer, J.: The dynamics of legged locomotion:
models, analyses, and challenges. SIAM Rev. 48, 207–304 (2006). https://doi.org/10.1137/
S0036144504445133

Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications to multi-UAV mission
planning. Int. J. Robust Nonlinear Control 21(12), 1372–1395 (2011). https://doi.org/10.1002/rnc.
1715

Kress Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mission and motion planning.
IEEE Trans. Rob. 25(6), 1370–1381 (2009). https://doi.org/10.1109/TRO.2009.2030225

Kress Gazit, H., Lahijanian, M., Raman, V.: Synthesis for robots: Guarantees and feedback for robot
behavior. Annu. Rev. Control Robot. Auton. Syst. 1(1), 211–236 (2018). https://doi.org/10.1146/
annurev-control-060117-104838

Koditschek, D.E.: Task encoding: Toward a Scientific Paradigm for Robot Planning and Control. Robot.
Auton. Syst. 9(1), 5–39 (1992). https://doi.org/10.1016/0921-8890(92)90031-S

Koditschek, D.E.: What is robotics? Why do we need it and how can we get it? Annu. Rev. Control Robot.
Auton. Syst. 4(1), 1–33 (2021). https://doi.org/10.1146/annurev-control-080320-011601

Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics, vol. 21.
Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-71962-5

Koditschek, D.E., Rimon, E.: Robot navigation functions on manifolds with boundary. Adv. Appl. Math.
11(4), 412–442 (1990). https://doi.org/10.1016/0196-8858(90)90017-S

Karaman, S., Sanfelice, R.G., Frazzoli, E.: Optimal control of mixed logical dynamical systems with linear
temporal logic specifications. In: 2008 47th IEEEConference onDecision andControl, pp. 2117–2122
(2008). https://doi.org/10.1109/CDC.2008.4739370

Kvalheim, M.D.: Relationships Between Necessary Conditions for Feedback Stabilizability. (preprint)
(2023)

Lamnabhi Lagarrigue, F., Annaswamy, A., Engell, S., Isaksson, A., Khargonekar, P., Murray, R.M., Nijmei-
jer, H., Samad, T., Tilbury, D., Hof, P.: Systems & Control for the Future of Humanity, Research
Agenda: Current and Future Roles, Impact and Grand Challenges. Annu. Rev. Control 43, 1–64
(2017)

Mavrogiannis, C., Balasubramanian, K., Poddar, S., Gandra, A., Srinivasa, S.S.: Winding through: Crowd
navigation via topological invariance. IEEE Robot. Autom. Lett. 8(1), 121–128 (2023). https://doi.
org/10.1109/LRA.2022.3223024

Marinakis, D., Dudek, G.: Pure topologicalmapping inmobile robotics. IEEETrans. Rob. 26(6), 1051–1064
(2010). https://doi.org/10.1109/TRO.2010.2081410

Maierhofer, S., Moosbrugger, P., Althoff, M.: Formalization of intersection traffic rules in temporal logic.
In: 2022 IEEE Intelligent Vehicles Symposium (IV), pp. 1135–1144 (2022). https://doi.org/10.1109/
IV51971.2022.9827153

Maler, O., Nickovic, D.:Monitoring temporal properties of continuous signals. In: International Symposium
on Formal Techniques in Real-time and Fault-tolerant Systems, pp. 152–166 (2004). https://doi.org/
10.1007/978-3-540-30206-3_12 . Springer

Montgomery, R., Sanfelice, R.G.: 6. Hybrid Control, Morse Theory and Ivan Kupka 12, 135–152 (2024)
Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: 20th Annual IEEE Symposium

on Logic in Computer Science (LICS’05), pp. 188–197 (2005). https://doi.org/10.1109/LICS.2005.
33 . IEEE

Pokorny, F., Hawasly, M., Ramamoorthy, S.: Multiscale topological trajectory classification with persistent
homology. In: Proceedings of Robotics: Science and Systems X 2014, (2014). https://doi.org/10.
15607/RSS.2014.X.054

123

https://doi.org/10.1007/s00454-002-0760-9
https://doi.org/10.1016/j.automatica.2008.08.008
https://doi.org/10.1109/CDC.2005.1582935
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1137/S0036144504445133
https://doi.org/10.1137/S0036144504445133
https://doi.org/10.1002/rnc.1715
https://doi.org/10.1002/rnc.1715
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1146/annurev-control-060117-104838
https://doi.org/10.1146/annurev-control-060117-104838
https://doi.org/10.1016/0921-8890(92)90031-S
https://doi.org/10.1146/annurev-control-080320-011601
https://doi.org/10.1007/978-3-540-71962-5
https://doi.org/10.1016/0196-8858(90)90017-S
https://doi.org/10.1109/CDC.2008.4739370
https://doi.org/10.1109/LRA.2022.3223024
https://doi.org/10.1109/LRA.2022.3223024
https://doi.org/10.1109/TRO.2010.2081410
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1109/IV51971.2022.9827153
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1109/LICS.2005.33
https://doi.org/10.1109/LICS.2005.33
https://doi.org/10.15607/RSS.2014.X.054
https://doi.org/10.15607/RSS.2014.X.054

Topology-aware planning under linear temporal logic constraints Page 41 of 41 17

Pappas, G.J., Lafferriere, G., Sastry, S.: Hierarchically consistent control systems. IEEE Trans. Autom.
Control 45(6), 1144–1160 (2000). https://doi.org/10.1109/9.863598

Ren, W., Calbert, J., Jungers, R.: Zonotope-Based Controller Synthesis for LTL Specifications. In: 2021
60th IEEE Conference on Decision and Control (CDC), pp. 580–585 (2021). https://doi.org/10.1109/
CDC45484.2021.9683150

Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Trans. Robot.
Autom. 8(5), 501–518 (1992). https://doi.org/10.1109/70.163777

Roohi, N., Viswanathan, M.: Revisiting mitl to fix decision procedures. In: International Conference on
Verification, Model Checking, and Abstract Interpretation, pp. 474–494 (2017). https://doi.org/10.
1007/978-3-319-73721-8_22 . Springer

Sickert, S., Esparza, J., Jaax, S., Křetínský, J.: Limit-deterministic büchi automata for linear temporal logic.
In: Chaudhuri, S., Farzan,A. (eds.) ComputerAidedVerification, pp. 312–332. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6_17

Shoukry, Y., Nuzzo, P., Balkan, A., Saha, I., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: Linear Temporal Logic Motion Planning for Teams of Underactuated Robots Using
Satisfiability modulo Convex Programming. In: 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pp. 1132–1137. IEEE, Melbourne, Australia (2017). https://doi.org/10.1109/CDC.
2017.8263808

Sahin, Y.E., Nilsson, P., Ozay, N.: Multirobot coordination with counting temporal logics. IEEE Trans. Rob.
36(4), 1189–1206 (2019)

Tokuda, S., Yamakita, M., Oyama, H., Takano, R.: Convex Approximation for LTL-based Planning. In:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9863–9869
(2021). https://doi.org/10.1109/IROS51168.2021.9636801

Wells, M., Kingston, Z., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: Finite-Horizon Synthesis for Proba-
bilistic Manipulation Domains. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 6336–6342. IEEE, Xi’an, China (2021). https://doi.org/10.1109/ICRA48506.2021.
9561297

Wang, Y., Pajic, M.: Hyperproperties for robotics: Motion planning via HyperLTL. In: IEEE International
Conference on Robotics and Automation, Paris, France, pp. 8462–8468 (2020). https://doi.org/10.
1109/ICRA40945.2020.9196874

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.1109/9.863598
https://doi.org/10.1109/CDC45484.2021.9683150
https://doi.org/10.1109/CDC45484.2021.9683150
https://doi.org/10.1109/70.163777
https://doi.org/10.1007/978-3-319-73721-8_22
https://doi.org/10.1007/978-3-319-73721-8_22
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1109/CDC.2017.8263808
https://doi.org/10.1109/CDC.2017.8263808
https://doi.org/10.1109/IROS51168.2021.9636801
https://doi.org/10.1109/ICRA48506.2021.9561297
https://doi.org/10.1109/ICRA48506.2021.9561297
https://doi.org/10.1109/ICRA40945.2020.9196874
https://doi.org/10.1109/ICRA40945.2020.9196874

	Topology-aware planning under linear temporal logic constraints
	Abstract
	1 Introduction
	1.1 Generalizing the LTL planning paradigm
	1.2 Results

	2 Topology preliminaries
	2.1 Nice topological spaces
	2.2 Simplicial complexes
	2.2.1 Maps, special sub-complexes, constructions
	2.2.2 Geometric realization

	2.3 Indexed covers and the nerve construction
	2.4 Barycentric subdivision
	2.4.1 Functorial properties
	2.4.2 Computing links in the barycentric subdivision.

	2.5 Deletions and collapses
	2.5.1 Simplicial collapse
	2.5.2 Generalized collapse

	3 Problem formulation
	3.1 LTL semantics over topological spaces and the path planning problem
	3.2 Motivation: constructing flows to an LTL specification
	3.3 The path correspondence problem and reduced nerves

	4 Planning space construction
	4.1 Transition systems
	4.2 Labeled transition systems and control
	4.3 From labeled topological spaces to finite transition systems
	4.4 Limiting deterministic Büchi automata (LDBA)
	4.5 The planning space

	5 The reduced nerve of an open cover
	5.1 Realizability
	5.2 Basic properties of realized simplices
	5.3 Unrealized simplices of the subdivided nerve
	5.4 Organized removal of unrealized simplices

	6 The connectivity trisp and the path correspondence
	6.1 Preliminary: trisps
	6.2 Construction of the connectivity trisp
	6.3 Tame paths vs. paths in the reduced nerve

	References

