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Concurrent Learning-based Approximate

Feedback-Nash Equilibrium Solution of N-player

Nonzero-sum Differential Games

Rushikesh Kamalapurkar

Abstract—This paper presents a concurrent learning-based
actor-critic-identifier architecture to obtain an approximate
feedback-Nash equilibrium solution to an infinite horizon N-
player nonzero-sum differential game. The solution is obtained
online for a nonlinear control-affine system with uncertain
linearly parameterized drift dynamics. It is shown that under
a condition milder than persistence of excitation (PE), uniformly
ultimately bounded convergence of the developed control policies
to the feedback-Nash equilibrium policies can be established.
Simulation results are presented to demonstrate the performance
of the developed technique without an added excitation signal.

Index Terms—Nonlinear system, optimal adaptive control,
dynamic programming, data driven control.

I. INTRODUCTION

LASSICAL optimal control problems are formulated in

Bernoulli form as the need to find a single control input
that minimizes a single cost functional under boundary con-
straints and dynamical constraints imposed by the system!* —2],
A multitude of relevant control problems can be modeled as
multi-input systems, where each input is computed by a player,
and each player attempts to influence the system state to
minimize its own cost function. In this case, the optimization
problem for each player is coupled with the optimization
problem for other players, and hence, in general, an optimal
solution in the usual sense does not exist, motivating the
formulation of alternative optimality criteria.

Differential game theory provides solution concepts
for many multi-player, multi-objective  optimization
problems®=5. For example, a set of policies is called
a Nash equilibrium solution to a multi-objective optimization
problem if none of the players can improve their outcomes
by changing their policies while all the other players abide
by the Nash equilibrium policies!®). Thus, Nash equilibrium
solutions provide a secure set of strategies, in the sense
that none of the players have an incentive to diverge from
their equilibrium policies. Hence, Nash equilibrium has been
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a widely used solution concept in differential game-based
control techniques.

In general, Nash equilibria are not unique. For a closed-
loop differential game (i.e., the control is a function of the
state and time) with perfect information (i.e., all the players
know the complete state history), there can be infinitely
many Nash equilibria. If the policies are constrained to be
feedback policies, the resulting equilibria are called (sub)game
perfect Nash equilibria or feedback-Nash equilibria. The value
functions corresponding to feedback-Nash equilibria satisfy a
coupled system of Hamilton-Jacobi (HJ) equations!” 1%,

If the system dynamics are nonlinear and uncertain, an
analytical solution of the coupled HJ equations is generally
infeasible; and hence, dynamic programming-based approxi-
mate solutions are sought!!* =18 In [16], an integral reinforce-
ment learning algorithm is presented to solve nonzero-sum
differential games in linear systems without the knowledge
of the drift matrix. In [17], a dynamic programming-based
technique is developed to find an approximate feedback-Nash
equilibrium solution to an infinite horizon N-player nonzero-
sum differential game online for nonlinear control-affine sys-
tems with known dynamics. In [19], a policy iteration-based
method is used to solve a two-player zero-sum game online
for nonlinear control-affine systems without the knowledge of
drift dynamics.

The methods in [17] and [19] solve the differential game
online using a parametric function approximator such as a
neural network (NN) to approximate the value functions. Since
the approximate value functions do not satisfy the coupled
HJ equations, a set of residual errors (the so-called Bellman
errors (BEs)) is computed along the state trajectories and is
used to update the estimates of the unknown parameters in the
function approximator using least-squares or gradient-based
techniques. Similar to adaptive control, a restrictive persistence
of excitation (PE) condition is required to ensure boundedness
and convergence of the value function weights. Similar to
reinforcement learning, an ad-hoc exploration signal is added
to the control signal during the learning phase to satisfy the
PE condition along the system trajectories!20—22,

It is unclear how to analytically determine an explo-
ration signal that ensures PE for nonlinear systems; and
hence, the exploration signal is typically computed via a
simulation-based trial and error approach. Furthermore, the
existing online approximate optimal control techniques such
as [16 — 17, 19, 23] do not consider the ad-hoc signal in the
Lyapunov-based analysis. Hence, the stability of the overall
closed-loop implementation is not established. These stability
concerns, along with concerns that the added probing signal
can result in increased control effort and oscillatory transients,
provide motivation for the subsequent development.

Based on the ideas in recent concurrent learning-based adap-
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tive control results such as [24] and [25] that show a concurrent
learning-based adaptive update law can exploit recorded data
to augment the adaptive update laws to establish parameter
convergence under conditions milder than PE, this paper
extends the work in [17] and [19] to relax the PE condition.
In this paper, a concurrent learning-based actor-critic-identifier
architecture(?3! is used to obtain an approximate feedback-
Nash equilibrium solution to an infinite horizon N-player
nonzero-sum differential game online, without requiring PE,
for a nonlinear control-affine system with uncertain linearly
parameterized drift dynamics.

A system identifier is used to estimate the unknown param-
eters in the drift dynamics. The solutions to the coupled HJ
equations and the corresponding feedback-Nash equilibrium
policies are approximated using parametric universal function
approximators. Based on estimates of the unknown drift pa-
rameters, estimates for the BEs are evaluated at a set of pre-
selected points in the state-space. The value function and the
policy weights are updated using a concurrent learning-based
least-squares approach to minimize the instantaneous BEs and
the BEs evaluated at pre-selected points. Simultaneously, the
unknown parameters in the drift dynamics are updated using
a history stack of recorded data via a concurrent learning-
based gradient descent approach. It is shown that under
a condition milder than PE, uniformly ultimately bounded
(UUB) convergence of the unknown drift parameters, the value
function weights and the policy weights to their true values can
be established. Simulation results are presented to demonstrate
the performance of the developed technique without an added
excitation signal.

II. PROBLEM FORMULATION AND EXACT SOLUTION
Consider a class of control-affine multi-input systems

N
2)+ Y gi (@), (1)
i=1

where © € R" is the state and @; € R™: are the control inputs
(i.e., the players). In (1), the unknown function f : R™ — R"
is linearly parameterizable, the function g; : R™ — R"*™ is
known and uniformly bounded, f and g; are locally Lipschitz,
and f (0) = 0. Let

U={{uy;:R"—>R™ i=1,--
the tuple {u;,- -

,N}, such that
,un} is admissible w.r.t. (1)}

be the set of all admissible tuples of feedback policies. Let

V{u“ wunt R R denote the value function of the ith
player w.rt. the tuple of feedback policies {uy, -+ ,un} € U,
defined as

vituend () =

yun (¢ (7, 2)))dr,
2

where ¢ (7,x) for 7 € [t,00) denotes the trajectory of (1)
obtained using the feedback policies @; (7) = u; (¢ (7,x))
and the initial condition ¢ (t,z) = z. In (2), r; : R" x R x

- x R™¥ — Ri>q denotes the instantaneous cost defined as
ri(z,ui, e un) = 2T Qi + Zjvzl u]TRZ-juj, where Q; €
R™ ™ is a positive definite matrix. The control objective is to
find an approximate feedback-Nash equilibrium solution to the
infinite horizon regulation differential game online, i.e., to find

/toon- 6 (r,2)ui (B (r,2)) -
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a tuple {uf,--- ,uy} € U such that for all ¢ € {1,--- , N},
for all z € R", the corresponding value functions satisfy

Vit ()=

for all u; such that {u},us, -, u;--- ,ul} € U.
The exact closed-loop feedback-Nash equilibrium solution
{uf ]N} can be expressed in terms of the value functions

V{ul Ut

U‘N} ( )S‘/Z{uivu;! yUis ’uy\l} (

z)
agl5.8-9, 7
u’L = _7Ru gz (v V ) (3)

where V, := -Z and the value functions {V{*, - -
the solutions to the coupled HJ equations

, Vit are

N
1

j=1
1 N T
FVaVi DGy (VaV))” =0, )
j=1
In (4), G, := g;R;.'g] and Gy; := g; R ;' Ri;R ' gT. The HI

equatlons in (4) are 1n the so-called closed loop f]orm they can
be expressed in an open-loop form as

x leﬁ-Zu*TR”u + Vo Vi f 4+ V. V) Zg]u =0.
Jj=1 j=1
(&)

III. APPROXIMATE SOLUTION

Computation of an analytical solution to the coupled non-
linear HJ equations in (4) is, in general, infeasible. Hence,

an approximate solution {‘71, . 7VN}

Vi, -+, Vx ¢, an approximation {4, -+, N} to the closed-
loop feedback-Nash equilibrium solution is computed. Since
the approximate solution, in general, does not satisfy the HJ
equations, a set of residual errors (the so-called Bellman errors
(BEs)) is computed as

is sought. Based on

N N

Jj=1 Jj=1

and the approximate solution is recursively improved to drive
the BEs to zero. The computation of the BEs in (6) re-
quires knowledge of the drift dynamics f. To eliminate this
requirement, a concurrent learning-based system identifier is
developed in the following section.

A. System Identification

Let f(z) = Y (x)6 be the linear parametrization of the
drift dynamics, where Y : R™ — R™*P¢ denotes the locally
Lipschitz regression matrix, and § € RP? denotes the vector
of constant, unknown drift parameters. The system identifier
is designed as

) Ui + ko, (N

N
=Y m)9+Zgi(x
where the measurable state estimation error Z is defined as
T = 1x -2 k, € R"™" is a positive definite, constant
diagonal observer gain matrix, and 0 € RPs denotes the
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vector of estimates of the unknown drift parameters. In tradi-
tional adaptive systems, the estimates are updated to minimize
the instantaneous state estimation error, and convergence of
parameter estimates to their true values can be established
under a restrictive PE condition. In this result, a concurrent
learning-based data-driven approach is developed to relax the
PE condition to a weaker, verifiable rank condition as follows.

Assumption 124251 A history stack M, containing
state-action tuples {(mj,ﬁlj,~~ ,ﬁNj,) li=1,--- 7M9}
recorded along the trajectories of (1) is available a priori, such
that

My

rank Z Y]TYJ

j=1

= Do, ®)

where Y; = Y (x;), and ps denotes the number of unknown
parameters in the drift dynamics.

To facilitate the concurrent learning-based parameter update,
numerical methods are used to compute the state derivative
#; corresponding to (z;,%;). The update law for the drift
parameter estimates is designed as

. Mo N
0 =ToY & +Tgky» Y, (a'cj =Y giyt, — Yje> . (9)
j=1 i=1

where g;, := g; (x;), 'y € RP*P is a constant positive definite
adaptation gain matrix, and k9 € R is a constant positive
concurrent learning gain. The update law in (9) requires the
unmeasurable state derivative ;. Since the state derivative
at a past recorded point on the state trajectory is required,
past and future recorded values of the state can be used along
with accurate noncausal smoothing techniques to obtain good
estimates of ;. In the presence of derivative estimation errors,
the parameter estimation errors can be shown to be UUB,
where the size of the ultimate bound depends on the error in
the derivative estimate[24.

To incorporate new information, the history stack is updated
with new data. Thus, the resulting closed-loop system is
a switched system. To ensure the stability of the switched
system, the history stack is updated using a singular value
maximizing algorithm{**}, Using (1), the state derivative can
be expressed as

N
Tj— Zgijﬂij =Y;0,
i=1
and hence, the update law in (9) can be expressed in the
advantageous form

. My
0 =-ToY % —Toko | Y _Y;'Y; | 0,

j=1

(10)

where 6 := 6 — 0 denotes the drift parameter estimation error.
The closed-loop dynamics of the state estimation error are
given by

(1)

B. Value Function Approximation

The value functions, i.e., the solutions to the HJ equations
in (4), are continuously differentiable functions of the state.

Using the universal approximation property of NNs, the value
functions can be represented as

Vi (z) = Wlho; (2) + e (2), (12)
where W; € RPW: denotes the constant vector of unknown
NN weights, o; R™ — RPW: denotes the known NN
activation function, py; € N denotes the number of hidden
layer neurons, and ¢; : R™ — R denotes the unknown function
reconstruction error. The universal function approximation
property guarantees that over any compact domain C C R",
for all constants €;,€; > 0, there exist a set of weights and
basis functions such that ||W;|| < W, sup,cc|lo; (z)|| <
i supyecllol (@) < % sup,ecllei (@) < & and
sup,cc |€; (z)|| <€, where W;,5;,7;, €, € € R are positive
constants. Based on (3) and (12), the feedback-Nash equilib-
rium solutions are given by

R @) (o @ Wi+ @), (3)

The NN-based approximations to the value functions and
the controllers are defined as

N ~ 1 ~
Vii=Waoi, = =g Ry g ol Wai,  (14)

where W,; € RFPY:, ie., the value function weights, and
Wai € RPWi, ie., the policy weights, are the estimates
of the ideal weights W,;. The use of two different sets of
estimates to approximate the same set of ideal weights is
motivated by the subsequent stability analysis and the fact that
it facilitates an approximate formulation of the BEs which is
affine in the value function weights, enabling least squares-
based adaptation. Based on (14), measurable approximations
to the BEs in (6) are developed as

N
A A 1., A
0 =w Wei + 2" Qiz + ) Wai03Gijof Waj - (15)

J=1

where w; == 0]Y 0 — 3 é\f:l ango;TWaj. The following as-
sumption, which is generally weaker than the PE assumption,
is required for convergence of the concurrent learning-based
value function weight estimates.

Assumption 2. For each i € {1,--- , N}, there exist a finite
set of M, points {x;; € R" | j=1,---, M} such that for
all t € Rzo,

Mai |k E\T
w; (1) (%) (t)
rank —— | = DPw,,
; pr(t)
Mai & B\T
. _ 2 wh(t)(wF) (1)
(téﬁfzo (A“““{,;l PF (D) }))
Cpii= [ >0, (16)

where Ay, denotes the minimum eigenvalue, and Cpi € R
is a positive constant. In (16), wk (¢) oYk (t) —
i T 2 L
1 Z;\Ll ok Gk (4%) " Wy (t), where the superscript ik in-
dicates that the term is evaluated at x = x;;, and pf =

T . .. .
14y (wic ) I‘iwf, where v; € R+ is the normalization gain
and T'; € RPw:*Pw; is the adaptation gain matrix.
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The concurrent learning-based least-squares update law for
the value function weights is designed as

Mo
2 i c in 2wk
Wy = *ncliriw*(si e %51&,
pi Mei = p;
I = (g0 )
i = il — Tlelil § p72 i {HFiHSFi}’

IT; (to)|| < T, (17)
where p; 1= 1—|—Viwl-T ['jw;, 1.y denotes the indicator function,
I'; > 0 € R is the saturation constant, 3; € R. is the constant
positive forgetting factor, 7.1;,7c2; € R are constant positive
adaptation gains, and the approximate BE 6¥ is defined as

R N WT /zk:sz
of = (w, ) W¢1+xaszxzk+Z ZE] 4(
Jj=1

)" iy

The policy weight update laws are designed based on the
subsequent stability analysis as

Wai = —Na1i (Wai - Wci) - TlaziWai+

N
T T T
Z 101105 Gij0 WaJ W
j=1
1 e Tc2i /zk zk /zk T( k) T
122 ARG () WS WL as)
k=1 j=1 Pi

where 7,14, M42; € R are positive constant adaptation gains.
The forgetting factor [3; along with the saturation in the update
law for the least-squares gain matrix in (17) ensure that the
least-squares gain matrix I'; and its inverse is positive definite
and bounded for all i € {1,---, N} as[?

L < @) <Ti, vt € Rxo, 19)

where I, € R is a positive constant, and the normalized
regressor is bounded as

1
<

- 2\/1/2'27: '

’ wi

Pi

IV. STABILITY ANALYSIS

Subtracting (4) from (15), the approximate BE can be
expressed in an unmeasurable form as

i = wiWe + 27 Qi + Z W;FJUQGUUQTWQJ
Jj=1
N N
Z‘TQil‘ + Z U;TRWU; + VIVZ*f + va;* Zgju;
j=1 j=1

~where Z =
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Substituting for V* and v* from (12) and (13) and using f =
Y0, the approximate BE can be expressed as

WTa'G J’TW —~WrolYo — €Yo

aj=j

(5 —wTWm—I—Z

Jj=1
N o
Z;W

Jj=1

Lol Giiol "W+ 2€,Gial W + €Gijel 1+
1 N
52 (WlolGiof' W) + €Go W + W oiGye" )+

Adding and subtracting 4Wa]a]G 0T W; + w] W, yields

aj=j

A ~ 1
61‘ = _w;’TWci + Z Z WTO" GZJUQTW WTO"YG

N
> (WoiGy = WoiGiy) o] Way — Y0+ A,

j=1

DN | =

(20)

where A; = 3 (WT Gy —WlalGij) eff +

T, T T N
QZ_1W ’G]e; + 5 Z_leGe; Z]—115G5
Slmllarly, the approx1mate BE evaluated at the selected points
can be expressed in an unmeasurable form as

N T 1 ik i i
55:—W§TWCZ-+ZZWT oGk (01F) T Wy + Ab—

aj%;
i=1
= WT ik cyik _ pyT glik ik rik TW
52 ;oG = WG (o) W=
WT llkylko (21)
where the constant A¥ € R is defined as A¥ := —¢/iFYikg +

A* . To facilitate the stablhty analysis, a candldate Lyapunov
functlon is defined as

N N
* 1 T 1 1 T7T1x

V-3 fzwmrl Wei 5 2 WailWait
1

2~T~+ HTF 14. (22)
Since V;* are positive definite, the bound in (19) and Lemma
4.3 in [27] can be used to bound the candidate Lyapunov
function as

u(lZ]) < Vi (2:) <

v (llZ1) (23)

a

~ - AT
2T, W ... WCTN,WLE,---,WTN,x,H] c

R20H2N Y pwi+P0 and v, 7 : R>o — R>( are class £
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functions. For any compact set Z C RZ"H2NX1ipw;+po,

define
~WlrolaG, O’T + fe G, U’T ) ,

{1 = max (sup
v ZeZ

w;
Lo = max(sup Heliti (3W;0%Gij — 2W' 0lG;) 0"
61 Nzezll Ap;
Mai n wk T
-2iWs T_rik cvik T rik ik ( ik
S (3w opha — 2w oGl (o)),
2 UM ]

WTO'/—i—G)G /T

)

/T neriLy €0
)=

Ne1i Ly W} Mle2i MAX oY+ W
o 47\/@7 e 4\/v;L; 7

N [—
,_ Z (Neri + Me2i) Wita
lg 1=
i=1 8y/wmil;

Neti SUp || Aq || + ne2; max ||Af||
Zez k

L3 = max(sup”
i \zezll2 L=

L
- Z (QWJTO'; + e;) Gije;-T
—

W

)

L4 = max | sup Ha Gijo;
hj \zZez

L10i i= ,
107 9 yZ.L.
- 1 g (& Me2iCei 2 2Ma1i +Na2i Koy
l - 2 2 ) 4 s vy 8 5 2 y
N
2L§i L%O' >
L= + 10 ) g, (24)
; (2%11‘ + Na2i  Me2iCy;y
where y denotes the minimum eigenvalue of ZMB Y'Y,

g denotes the minimum eigenvalue of Q;, k., denotes the
minimum eigenvalue of k,, and the suprema exist since “
is uniformly bounded for all Z, and the functions G;, Gz;,
o;, and € are continuous. In (24), Ly € Ry denotes the
Lipschitz constant such that ||Y (w)| < Ly ||| for all
w € ZNR"™. The sufficient conditions for UUB convergence
are derived based on the subsequent stability analysis as

ﬂ > 2[,57;,
Ne2iCpi > 2t5i + 2C1t7i + taCaN + Na1i + 2(3L6i 2,
2t N
277alz + Na2i > 4L8 + 2
2
2 K2 T
koy > 00 4 o0y (25)
= G (3

where Z = v~} (v (max (HZ(to)H ) Uz))) and (1,(2,(3 €
R are known positive adjustable constants.

Since the NN function approximation error and the Lips-
chitz constant Ly depend on the compact set that contains
the state trajectories, the compact set needs to be established
before the gains can be selected using (25). Based on the
subsequent stability analysis, an algorithm is developed to
compute the required compact set (denoted by Z) based on
the initial conditions. In Algorithm 1, the notation {w}, for

s t9i = (11N + (1azi + 18) W),

any parameter w denotes the value of w computed in the -
th iteration. Since the constants ¢ and v; depend on Ly only
through the products Ly€; and Ly (3, Algorithm 1 ensures
that

Lc %diam (2), (26)

Ut

where diam(Z) denotes the diameter of set Z.

Algorithm 1. Gain Selection
First iteration:
Given z € R>o such that ||Z (to)]|

{e RN Tlmhim | g <o o

< z, let 21 _

))} Using Z|,
compute the bounds in (24) and select the gains according
o (25). It {(‘7]}] < z, set Z = Z; and terminate.

Second iteration:

If 2 < {—[}1 let 2 = {g € R2VH2N Si{pw, )+

el <o ({2} )}

Using Z2, compute the bounds in (24) and select the gains
according to (25). If {1’7}2 < {L%‘l}], set Z = Z, and
terminate.

Third iteration:

If {li—’}Q > {ﬁ}l, increase the number of NN neu-
rons to {p.‘yib to ensure {Ly},{€}; < {Lv},{€},,
Vi = 1, , N, decrease constant (3 to ensure

{Lyv}y, {3}y < {Lv}, {¢3},, and increase gain kg to
satisfy the gain conditions in (25). These adjustments
ensure {t}, < {¢},.Set Z = {{ e R¥FAN Zi{rwi by tro |

e <ot <U ({ﬁl}Q))} and terminate.

Theorem 1. Provided Assumptions 1~2 hold and the
control gains satisfy the sufficient conditions in (25), where
the constants in (24) are computed based on the compact set
Z selected using Algorithm 1, the system identifier in (7) along
with the adaptive update law in (9), and the controllers in (14)
along with the adaptive update laws in (17) and (18) ensure
that the state z, the state estimation error z, the value function
weight estimation errors We; and the policy weight estimation
errors W,; are UUB, resulting in UUB convergence of the
policies ; to the feedback-Nash equilibrium policies u;.

Proof. The derivative of the candidate Lyapunov function
in (22) along the trajectories of (1), (10), (11), (17), and (18)
is given by

N
V=Y V.V f+Zgjuj>

i=1 7j=1
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N
Z W, < — Nali (W(}; - WS) — Na2iWes+
i=1
L
TW
ZZ cle

*Z

1]1

WT / G O_/T

a?]

77621 Twz T _rik ik ik
W Waj;G(')) 27)
Substituting the unmeasurable forms of the BEs from (20) and
(21) into (27), and using the triangle inequality, the Cauchy-
Schwarz inequality and Young’s inequality, the Lyapunov
derivative in (27) can be bounded as

1 77021712 ~12
V< }: ||| — §: W[ = b 1 -
k'gy 277(112 + Na2i
Zlalr T2 ) W,
H H — ( 4 ) H +

N N N ”
ZLQi Wai JFZLlOi Wei *Z (21 *Lsi) ||17||2*
i— i—1 i—1
al Ne2iC 1
2iCasi
; <C;m — t5; — Qurs — §L2C2N 577(111

2 N (key e ~ |2
tei ||z Weill + —= - -z ‘91' +
Gata | ||)H S (g
N
20,7,' a2i
§j<’“4+”2—L8—) [l 45 @)

i=1

Provided the sufficient conditions in (25) hold and the condi-
tions
Nc2iCyqi

1 1
+ §L2C2N + 5

> 15; + it 2

Na1i + Catei |||,
koy Sl tei
2 G G

hold for all ¢ € R>o. Completing the squares in (28), the
bound on the Lyapunov derivative can be expressed as

(29)

N
y qi 77c21 ~
V-3 3l Z Bettet |57, | — e 1 -
=1
N . , o2k
Z(Znalz;nam) HWai koy H H fi<
=1
L
— (u[lZI)?, vizll> & Z e 2. (30)

Using (23), (26), and (30), Theorem 4.18 in [27] can be in-

voked to conclude that lim; .. sup ||Z (t)|| < v~ ! (v m

Furthermore, the system trajectories are bounded as || Z (¢)]| <
Z for all t € R>. Hence, the conditions in (25) are sufficient
for the conditions in (29) to hold for all ¢t € R>o.

The error between the feedback-Nash equilibrium policy
and the approximate policy can be expressed as

Jut — all < 5 1Rl g5 (|| +
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for all i = 1,---, N, where g; := sup, ||g; (z)||. Since the
weights W,; are UUB, UUB convergence of the approximate
policies to the feedback-Nash equilibrium policies is obtained.
]
Remark 1. The closed-loop system analyzed using the
candidate Lyapunov function in (22) is a switched system. The
switching happens when the history stack is updated and when
the least-squares regression matrices I'; reach their saturation
bound. Similar to least squares-based adaptive control[26], (22)
can be shown to be a common Lyapunov function for the
regression matrix saturation, and the use of a singular value
maximizing algorithm to update the history stack ensures that
(22) is a common Lyapunov function for the history stack
updates[%]. Since (22) is a common Lyapunov function, (23),
(26) and (30) establish UUB convergence of the switched
system.

V. SIMULATION
A. Problem Setup
To portray the performance of the developed approach, the

concurrent learning-based adaptive technique is applied to the
nonlinear control-affine system!!7]

&= f(z)+ g1 (z)ur + g2 (z) ug,
where € R?, u1,us € R, and

f:< )

0 0
g1 = [ cos (2z1) + 2 }’92 [ sin (421) 4 2 }

The value function has the structure shown in (2) with the
weights Q1 = 2Q2 = 21, and R;y = Ris = 2Ry =
2Rs9 = 2, where I» is a 2 x 2 identity matrix. The sys-
tem identification protocol given in Section III-A and the
concurrent learning-based scheme given in Section III-B are
implemented simultaneously to provide an approximate online
feedback-Nash equilibrium solution to the given nonzero-sum
two-player game.

€29

1‘2 — 22E1
—3T1 — J:Q + 322 (cos (2:51) +2)°
+1 122 (sm (43@1) + 2)

B. Analytical Solution

The control affine system in (31) is selected for this
simulation because it is constructed using the converse HJ
approach!?®l such that the analytical feedback-Nash equilib-
rium solution of the nonzero-sum game is

051" [ a2

Vi* = 0 ‘| 19 s
1 m%
025 1" [ a2

‘/2* = 0 ] T1X9 s
0.5 33%

and the feedback-Nash equilibrium control policies for Player
1 and Player 2 are

1 2z; 0 17705
uy = —531_1191T T2 I 0 |,
0 2$2 1
i 2¢1 0 7177 0.25
uy = —§R52192T Ta T 0 .
21’2 0.5
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Since the analytical solution is available, the performance of
the developed method can be evaluated by comparing the
obtained approximate solution against the analytical solution.

C. Simulation Parameters

The dynamics are linearly parameterized as f =
where

Y ()0,

X9 0 T
T 0
0 I

Y(CC) = 0 xTo

0 oy (cos (2z1) 4 2)°
0 5 (sin (423) +2)°

is known and the constant vector of parameters 6 =

[1,-2,—3 1,}1,—1}T is assumed to be unknown. The
initial guess for 6 is selected as 6 (to) = 0.5-[1,1,1,1,1,1]"
The system identification gains are chosen as k = 5,
Iy = diag{20, 20,100, 100,60 60} ke = 1.5. A history
stack of 30 points is selected using a singular value maxi-
mizing algorithm!4 for the concurrent learning-based update
law in (9), and the state derivatives are estimated using a
fifth order Savitzky-Golay filter??). Based on the structure
of the feedback-Nash equilibrium value functions, the ba-
sis function for value function approximation is selected as
o = [22, 2179, 23", and the adaptive learning parameters and
initial conditions are shown for both players in Tables I and
II. Twenty-five points lying on a 5 x 5 grid around the origin
are selected for the concurrent learning-based update laws in
(17) and (18).

TABLE I
SIMAULATION PARMAMERERS
Player 1 Player 2

v 0.005 0.005
el 1 1
Ne2 L.5 1
Nal 10 10
Na2 0.1 0.1

163 3 3

r 10000 10000

D. Simulation Results

Figs. 1 ~4 show the rapid convergence of the actor and
critic weights to the approximate feedback-Nash equilibrium
values for both players, resulting in the value functions and
control policies

47T T

A 0.5021 A 0.2510
Vi=| —00159 | o, Vo=| —0.0074 | o,
0.9942 0.4968

T2z, 0 151 04970 17
’111 = —*RH gl Xro X1 —0.0137 s
L0 22, 0.9810
T 2x, 0 171 02485 17
ﬁQ = R22 g2 Xro X1 —00055
0 29 0.4872

Fig.5 demonstrates that (without the injection of a PE sig-
nal) the system identification parameters also approximately
converge to the correct values. The state and control signal
trajectories are displayed in Figs.6 and 7.

TABLE II
SIMULATION INITIAL CONDITIONS

Player 1 Player 2
We (to) 3,3,3]T 3,3,3]T
W (to) [3,3,3]T [3,3,3]T
T (o) 10073 10073
x (to) [1,1]T (1,17
& (to) [0,0]T [0,0)"
. Player 1 value function weights
6 v VL{“
’ ® W,

w0

A

Time (s)

Fig.1. Player 1 critic weights convergence.

Player 1 actor weights
35 y gl

4
Time (s)

Fig.2. Player 1 actor weights convergence.

VI. CONCLUSION

A concurrent learning-based adaptive approach is developed
to determine the feedback-Nash equilibrium solution to an N-
player nonzero-sum game online. The solutions to the asso-
ciated coupled HJ equations and the corresponding feedback-
Nash equilibrium policies are approximated using parametric
universal function approximators. Based on estimates of the
unknown drift parameters, estimates for the BEs are evaluated
at a set of preselected points in the state-space. The value
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Player 2 value function weights

Time (s)

Fig.3. Player 2 critic weights convergence.

Player 2 actor weights

4 6
Time (s)

Fig.4. Player 2 actor weights convergence.

Unknown parameters in drift dynamics

4 . 6
Time (s)

Fig.5. System identification parameters convergence.
function and the policy weights are updated using a concur-
rent learning-based least-squares approach to minimize the
instantaneous BEs and the BEs evaluated at the preselected
points. Simultaneously, the unknown parameters in the drift
dynamics are updated using a history stack of recorded data
via a concurrent learning-based gradient descent approach.
Unlike traditional approaches that require a restrictive PE

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 3, JULY 2014

condition for convergence, UUB convergence of the drift
parameters, the value function and policy weights to their
true values, and hence, UUB convergence of the policies to
the feedback-Nash equilibrium policies, are established under
weaker rank conditions using a Lyapunov-based analysis.
Simulations are performed to demonstrate the performance of
the developed technique.

The developed result relies on a sufficient condition on
the minimum eigenvalue of a time-varying regression matrix.
While this condition can be heuristically satisfied by choosing
enough points, and can be easily verified online, it cannot,
in general, be guaranteed a priori. Furthermore, finding a
sufficiently good basis for value function approximation is,
in general, nontrivial and can be achieved only through prior
knowledge or trial and error. Future research will focus on
extending the applicability of the developed technique by
relieving the aforementioned shortcomings.

State trajectory

x(f)

4 6
Time (s)

Fig.6. State trajectory convergence to the origin.

Control policies

o(\._,_._._._,_._._.

-2
=
-3
-4
= B Player |
v Player2
-6 1 1 1 T
0 2 4 6 8 10

Time (s)

Fig.7. Control policies of Players 1 and 2.
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