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Abstract
Multi-agent systems are increasingly applied in space missions, including distrib-
uted space systems, resilient constellations, and autonomous rendezvous and dock-
ing operations. A critical emerging application is collaborative spacecraft servicing, 
which encompasses on-orbit maintenance, space debris removal, and swarm-based 
satellite repositioning. These missions involve servicing spacecraft interacting with 
malfunctioning or defunct spacecraft under challenging conditions, such as limited 
state information, measurement inaccuracies, and erratic target behaviors. Existing 
approaches often rely on assumptions of full state knowledge or single-integrator 
dynamics, which are impractical for real-world applications involving second-order 
spacecraft dynamics. This work addresses these challenges by developing a dis-
tributed state estimation and tracking framework that requires only relative posi-
tion measurements and operates under partial state information. A novel �-filter is 
introduced to reconstruct unknown states using locally available information, and 
a Lyapunov-based deep neural network adaptive controller is developed that adap-
tively compensates for uncertainties stemming from unknown spacecraft dynamics. 
To ensure the collaborative spacecraft regulation problem is well-posed, a trackabil-
ity condition is defined. A Lyapunov-based stability analysis is provided to ensure 
exponential convergence of errors in state estimation and spacecraft regulation to a 
neighborhood of the origin under the trackability condition. The developed method 
eliminates the need for expensive velocity sensors or extensive pre-training, offer-
ing a practical and robust solution for spacecraft servicing in complex, dynamic 
environments.
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1  Introduction

Multi-agent systems play a role in space applications such as distributed space sys-
tems, resilient constellations, and autonomous rendezvous and docking operations 
[1–3]. A rapidly advancing area within this domain is collaborative spacecraft ser-
vicing, which includes on-orbit maintenance, space debris removal, and swarm-
based satellite repositioning [3–5]. While current multi-agent spacecraft servicing 
scenarios often involve a small number of agents, typically between 2 to 5 spacecraft 
[6], future missions are expected to comprise larger constellations of 10 to 20 or 
more agents, necessitating the development of decentralized control strategies that 
can efficiently coordinate and adapt to the complexities of these systems [7]. The 
adoption of collaborative and decentralized approaches in these missions offers sev-
eral benefits, including enhanced reliability, reduced costs, and improved safety, as 
multiple servicing spacecraft can work together to accomplish complex tasks while 
minimizing the risk of single-point failures. These missions often involve multi-
ple servicing spacecraft performing tasks such as approaching, inspecting, or ren-
dezvousing with a non-functional or malfunctioning spacecraft that may be in an 
uncontrolled tumble or exhibiting anomalous behavior.

The space environment introduces unique challenges for these scenarios. These 
include limited knowledge of the defunct spacecraft, reduced state accuracy due 
to measurement errors, and partial or unavailable state measurements [8, 9]. Such 
constraints necessitate methods for reconstructing the state of the spacecraft using 
incomplete information. Furthermore, the characterization of defunct spacecraft in 
complex servicing scenarios is often complicated by orbital dynamics, poor light-
ing conditions, unknown physical properties, and erratic behaviors [10–13]. In such 
cases, state estimation alone may prove inadequate, requiring the additional capabil-
ity to learn the dynamics of the defunct spacecraft to predict its behavior and devise 
effective servicing strategies.

Neural networks (NNs) are frequently employed to approximate the unstructured 
uncertainty inherent in spacecraft dynamics, particularly in scenarios where classi-
cal physics-based models may be insufficient or impractical [14–17]. In contrast to 
white-box approaches, which rely on explicit physical equations, NNs offer a pow-
erful black-box paradigm that can estimate unknown dynamics under challenging 
space weather conditions, including low Earth orbit, electromagnetic interactions 
with unknown gravitational fields, uncertain gravitational perturbations and atmos-
pheric drag. The ability of NNs to learn complex patterns and relationships in data 
makes them well-suited for capturing nonlinearities and uncertainties that arise in 
spacecraft systems. Furthermore, recent advances in deep neural networks (DNNs) 
have significantly improved function approximation capabilities, enabling more 
accurate estimation of uncertain dynamics [18].

To mitigate the uncertainties inherent in complex systems, traditional machine 
learning approaches typically rely on offline training of NNs using pre-collected 
datasets. However, this methodology has several limitations: the required datasets 
can be difficult to obtain, may not accurately reflect the operating conditions of 
the environment, and fail to adapt online to discrepancies between the pretrained 
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data and actual system behavior. In contrast, adaptive control offers a promis-
ing alternative by enabling real-time estimation of unknown model parameters 
while providing stability guarantees for the system. While shallow NNs have ena-
bled online adaptation for decades, DNNs offer enhanced performance, but often 
require extensive offline pre-training, which can be challenging in dynamic envi-
ronments. However, recent breakthroughs in Lyapunov-based DNNs (Lb-DNNs) 
overcome the challenges associated with nonlinear nested uncertain parameters 
[19–23], enabling the construction of analytically-derived update laws based on 
Lyapunov-based stability analysis, which provide convergence and boundedness 
guarantees while allowing for real-time adaptation without pre-training require-
ments. Several results have demonstrated the effectiveness of adaptive NNs in 
spacecraft rendezvous applications, including estimating nonlinear dynamical 
models in the presence of J2 perturbations and orbit uncertainty estimation [14, 
15], and uncertain spacecraft dynamics [16, 17].

The work in [24] pioneered the use of Lb-DNNs for distributed state estima-
tion and tracking in multi-agent systems, while also introducing the notion of 
trackability. To illustrate trackability, consider a network of fixed cameras observ-
ing a dynamic object. Each camera can capture only a subset of the information 
required to fully determine the object’s state. Independent estimation by each 
camera results in incomplete information. By enabling the cameras to share their 
individual estimates, the network forms a collaborative framework that leverages 
collective information. When generalized to multi-agent systems, this approach 
leads to the concept of trackability, which quantifies the richness of information 
required for accurate state estimation in a decentralized system.

For example, in a two-dimensional system with two agents tracking a single 
target, if each agent measures only one degree of freedom and lacks communica-
tion with the other, the agents can only align collinearly with the target. However, 
successful tracking requires the agents to share partial measurements to achieve 
complete state reconstruction. This concept is particularly relevant for multi-
agent spacecraft servicing, where inter-agent communication can significantly 
enhance state estimation and servicing capabilities.

While [24] demonstrated exponential state estimation and tracking within a 
neighborhood of the object of interest, it relied on assumptions that are impracti-
cal for spacecraft servicing, such as single-integrator dynamics and full relative 
state information. Extending these results to second-order spacecraft dynamics 
while assuming full relative velocity information is unrealistic, as relative veloc-
ity sensors are often costly and energy-intensive. Therefore, there is a need for a 
distributed observer capable of reconstructing relative velocities using only rela-
tive position measurements.

This work addresses the challenges of spacecraft servicing by eliminating 
the restrictive assumptions in [24]. The developed method relies solely on rela-
tive position measurements and accommodates partial state information of the 
defunct spacecraft. A novel �-filter is developed, extending the work in [25], to 
reconstruct unknown states using locally available information. Through Lyapu-
nov-based stability analysis, the method guarantees exponential convergence of 
the defunct spacecraft’s state estimates and regulates the servicing spacecraft to 
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a neighborhood of the defunct satellite’s state, provided the trackability condition 
is satisfied.

2 � Notation and Preliminaries

The study of multi-agent systems involves challenges due to the complexity arising 
from multiple interacting agents and nonlinear dynamics. To address these challenges 
effectively, several mathematical tools and notational conventions are introduced in this 
section. Linear algebra provides a compact and efficient way to represent agent states, 
interactions, and transformations using vectors and matrices, while eigenvalue analy-
sis supports stability and convergence studies. The networked nature of multi-agent 
systems is naturally modeled using graphs, and algebraic graph theory offers power-
ful methods to analyze key properties such as consensus, stability, and connectivity. 
Finally, deep neural networks play an increasingly important role in adaptive control 
of multi-agent systems, leveraging their ability to approximate complex mappings and 
learn from data in uncertain and dynamic environments. These tools and notations form 
the foundational elements necessary for modeling, analysis, and control in the context 
of multi-agent systems.

Denote by 1n ∈ ℝ
n the column vector of length n > 1 whose entries are all ones. Sim-

ilarly, 0n ∈ ℝ
n denotes the column vector of length n > 1 whose entries are all zeroes. 

For m, n > 1 , 0m×n ∈ ℝ
m×n denotes the m × n zero matrix. The p × p identity matrix and 

the p × 1 column vector of ones are denoted by Ip and 1p , respectively. Given M ∈ ℤ
>0 , 

the enumeration operation [⋅] is defined as [M] ≜ {1, 2, ...,M} . Let n,m ∈ ℤ
>0 with 

m > n . The Euclidean norm of r ∈ ℝ
n is ‖r‖ ≜ √

r
⊤
r . Given a positive integer N and col-

lection {xi}i∈[N] ⊂ ℝ
n , let (xi)i∈[N] ≜ [x⊤

1
, x⊤

2
, ..., x⊤

N
]⊤ ∈ ℝ

nN . Given H ∈ ℝ
m×m with 

columns {hi}i∈[n] ⊂ ℝ
m, vec(H) = [h⊤

1
, h⊤

2
,… , h⊤

n
]⊤ ∈ ℝ

mn . The Frobenius norm 
is denoted by ‖⋅‖F ≜ ‖vec(⋅)‖ . The Kronecker product of A ∈ ℝ

p×q and B ∈ ℝ
m×n is 

denoted by A⊗ B ∈ ℝ
pm×qn . Given any A ∈ ℝ

p×a , B ∈ ℝ
a×r , and C ∈ ℝ

r×s , the vec-
torization operator satisfies the property vec(ABC) = (C⊤

⊗ A)vec(B) . Differentiating 
on both sides with respect to vec(B) yields the property

The maximum and minimum eigenvalues of G = G⊤ are denoted by �max(G) ∈ ℝ 
and �min(G) ∈ ℝ , respectively. The spectral norm of A ∈ ℝ

n×n is defined as 

𝜎max(A) ≜
√

𝜆max

(
A⊤A

)
 . For A ∈ ℝ

c×c and B ∈ ℝ
d×d , let the block diagonalization 

operator be defined as blkdiag(A,B) =
[

A 0c×d
0c×d B

]
∈ ℝ

(c+d)×(c+d) . The right-to-left 

matrix product operator is represented by 
↶∏

 , i.e., 

↶

m∏
p=1

Ap = Am …A2A1 and 

↶

m∏
p=a

Ap = I 

if a > m.

(1)
𝜕

𝜕vec(B)
vec(ABC) =(C⊤

⊗ A).



The Journal of the Astronautical Sciences           (2025) 72:40 	 Page 5 of 25     40 

The space of essentially bounded Lebesgue measurable functions is denoted 
by L∞ . For A ⊆ ℝ

n and B ⊆ ℝ
m , let �(A,B) denote the set of continuous functions 

f ∶ A → ℝ
m such that f (A) ⊆ B . A function with k continuous derivatives is called 

a �k function.

2.1 � Algebraic Graph Theory

Let G ≜ (V,E) represent a static and undirected graph with number of nodes 
N ∈ ℤ≥2 , where the node set is denoted by V ≜ [N] , and the edge set is denoted by 
E ⊆ V × V . An edge between nodes i and k belongs to the edge set (i.e., (i, k) ∈ E) if 
and only if node i can send information to node k. Since the graph G is undirected, 
(i, k) ∈ E if and only if (k, i) ∈ E . An undirected graph is connected whenever there 
exists a sequence of edges in E linking any two distinct nodes. The neighborhood set 
of node i is Ni ≜ {k ∈ V⧵{i} ∶ (k, i) ∈ E} . Let A ≜ [

aik
]
∈ ℝ

N×N be the adjacency 
matrix of G , where aik = 1 if (k, i) ∈ E and aik = 0 otherwise. Within this work, no 
self-loops are considered. Therefore, aii ≜ 0 for all i ∈ V . The degree matrix of G is 
D ≜ diag(A ⋅ 1N) ∈ ℝ

N×N . Using the degree and adjacency matrices, the Laplacian 
matrix of the graph G is L ≜ D −A.

2.2 � Deep Neural Network Model

Let � ∈ ℝ
L0 denote a DNN input, and � ∈ ℝ

p denote the vector of DNN parameters 
(i.e., weights and bias terms). A fully-connected feedforward DNN Φ(�, �) with 
k ∈ ℤ

>0 hidden layers and output size Lk+1 ∈ ℤ
>0 is defined using a recursive rela-

tion �j ∈ ℝ
Lj+1 modeled as [19]

where Φ(�, �) = �k , 𝜅a ≜ [
𝜅
⊤, 1

]⊤ denotes the augmented input that accounts for 
the bias terms, Lj ∈ ℤ

>0 denotes the a in the jth layer with La
j
≜ Lj + 1 , and 

Vj+1 ∈ ℝ
La
j
×Lj+1 denotes the matrix of weights and biases, for all j ∈ {0,… , k}.

The vector of activation functions is denoted by �j ∶ ℝ
Lj → ℝ

La
j  for all 

j ∈ {1,… , k} . The vector of activation functions can be composed of various acti-

vation functions, and hence, may be represented as 𝜙j =
[
𝜍1,… , 𝜍Lj , 1

]⊤
 for all 

j ∈ {1,… , k} , where �j ∶ ℝ → ℝ for all j ∈
{
1,… , Lj

}
 denotes a bounded �1 acti-

vation function, where 1 accounts for the bias term. For the DNN architecture in (2), 
the vector of DNN weights is 𝜃 ≜ [

vec(V1)
⊤,… , vec(Vk)

⊤
]⊤ with size 

p =
∑k

j=0
La
j
Lj+1.

(2)𝜑j ≜
{

V⊤

j+1
𝜅a, j = 0,

V⊤

j+1
𝜙j

(
𝜑j−1

)
j ∈ {1,… , k},
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Consider yj ∈ ℝ
Lj where yj =

[
y1,… , yLj

]
 with yi ∈ ℝ for all i ∈

{
1,… , Lj

}
 . The 

Jacobian ��j

�yj
∶ ℝ

Lj → ℝ
La
j
×Lj of the activation function vector at the jth layer is given 

by 
[
𝜍
�
1
(y1)e1,… , 𝜍�

Lj
(yLj)eLj , 0Lj

]⊤
 ∈ ℝ

La
j
×Lj , where �′

j
 denotes the derivative of �j with 

respect to its argument for j ∈
{
1,… , Lj

}
 , ei is the ith standard basis vector in ℝLj , 

and 0Lj is the zero vector in ℝLj
.

Let the gradient of the DNN with respect to the weights be denoted by 
∇

�
Φ(�, �) ≜ �

��
Φ(�, �) , which can be represented as 

∇
�
Φ(�, �) =

[
�

�vec(V1)
Φ(�, �),… ,

�

�vec(Vk+1)
Φ(�, �)

]
 ∈ ℝ

Lk+1×p , where �

�vec(Vj)
Φ(�, �) 

∈ ℝ
Lk+1×L

a
j−1

Lj for all j ∈ {1,… , k + 1} . Using (2) and the property of the vectoriza-
tion operator in (1) yields

for j ∈ {0,… , k} , where 𝜚j = 𝜅
⊤

a
 if j = 0 and 𝜚j = 𝜙

⊤

j

(
𝜑j−1

)
 if j ∈ {1,… , k}.1

3 � Problem Formulation

3.1 � System Dynamics

Consider a servicer spacecraft indexed by i and a defunct spacecraft indexed by 0. 
The relative motion of servicer spacecraft with respect to the defunct spacecraft, 
which is assumed to follow an elliptical Keplerian orbit, can be described by the fol-
lowing system of differential equations (see [27])

(3)∇
𝜃
Φ(𝜅, 𝜃) =

⎛⎜⎜⎜⎝

↶

k�
�=j+1

V⊤

�+1

𝜕𝜙�

𝜕𝜑�−1

⎞⎟⎟⎟⎠

�
ILj+1 ⊗ 𝜚j

�
,

1  The following control and adaptation law development can be generalized for any neural network 
architecture Φ with a corresponding Jacobian ∇

�
Φ . The reader is referred to [26] and [20] for extending 

the subsequent development to LSTMs and ResNets, respectively.



The Journal of the Astronautical Sciences           (2025) 72:40 	 Page 7 of 25     40 

where, qx
i
, q

y

i
, qz

i
∈ ℝ represent the radial, in-track, and cross-track rectangular coor-

dinates of the servicer spacecraft relative to the defunct spacecraft, ux
i
, u

y

i
, uz

i
∈ ℝ 

denote the control accelerations of the servicer spacecraft, �, � ∈ ℝ are the orbital 
radius and angular velocity of the defunct spacecraft, respectively, and � is the 
gravitational parameter of the central body. The additional forces influencing the 
servicer’s motion include gravitational perturbations Px

i
(qx

i
),P

y

i
(q

y

i
),Pz

i
(qz

i
) ∈ ℝ , 

which model deviations from an ideal central gravitational field, such as oblate-
ness ( J2 ) or third-body effects (see [28, Equation 3]), and atmospheric drag forces 
Dx

i
(q̇x

i
),D

y

i
(q̇

y

i
),Dz

i
(q̇z

i
) ∈ ℝ (see [29, Equation 1]).

For spacecraft using a radar system for rendezvous navigation, the transformation of 
variables

are used (see [30]), where �i is the range between the servicer spacecraft i and the 
defunct spacecraft, �i is the azimuth angle, and �i is the relative elevation angle. 
After the substitution of this transformation, the relative motion dynamics are given 
by

where qi =
[
𝜎i 𝛾i 𝜙i

]⊤
∈ ℝ

3 , ui =
[
ux
i
u
y

i
uz
i

]⊤
∈ ℝ

3 , fi =
[
f � f � f �

]
∈ ℝ

3 , 
� =

[
�
�
�
�
�
�
]
∈ ℝ

3 where

q̈x
i
= 2𝜏q̇

y

i
+ 𝜏̇q

y

i
+ 𝜏

2qx
i
+

𝜇

�2
−

𝜇(� + qx
i
)

((
� + qx

i

)2
+ (q

y

i
)2 + (qz

i
)2
) 3

2

+ Px
i
(qx

i
)

+ Dx
i
(q̇x

i
) + ux

i
,

q̈
y

i
= −2𝜏q̇x

i
− 𝜏̇qx

i
+ 𝜏

2q
y

i
−

𝜇q
y

i((
� + qx

i

)2
+ (q

y

i
)2 + (qz

i
)2
) 3

2

+ P
y

i
(q

y

i
) + D

y

i
(q̇

y

i
) + u

y

i
,

q̈z
i
= −

𝜇qz
i((

� + qx
i

)2
+ (q

y

i
)2 + (qz

i
)2
) 3

2

+ Pz

i
(qz

i
) + Dz

i
(q̇z

i
) + uz

i
,

�̈ = �𝜏
2 −

𝜇

�2
,

𝜏̇ = −
2�̇𝜏

�
,

qx
i
= �i cos�i cos �i,

q
y

i
= �i cos�i sin �i,

qz
i
= �i sin�i,

(4)q̈i = fi(qi, q̇i) + g(qi)ui + 𝜔(𝜏, 𝜏̇, qi, q̇i)
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and

3.2 � Multi‑Spacecraft System Model

Consider a multi-spacecraft system of servicing spacecraft consisting of N agents 
indexed by i ∈ V , and a single defunct spacecraft indexed by {0} , with V ≜ V ∪ {0} . 
The dynamics for spacecraft i ∈ V are given by (4). Based on the structure of � as 
defined by (7), there exist known constants 𝜔, 𝜔̇ ∈ ℝ

>0 such that ‖‖𝜔(𝜏, 𝜏̇, qi, q̇i)‖‖ ≤ 𝜔 
and ‖‖𝜔̇(𝜏, 𝜏̇, qi, q̇i)‖‖ ≤ 𝜔̇ for all t ∈ [0,∞).

The dynamics for the defunct spacecraft is given by

where q0, q̇0, q̈0 ∈ ℝ
3 denote the defunct spacecrafts unknown generalized posi-

tion, velocity, and acceleration, respectively, and the function f0 ∶ ℝ
3 ×ℝ

3
→ ℝ

3 is 
unknown and of class �1 . In practice, the target spacecraft’s motion is often con-
strained by its initial conditions, orbital mechanics, or other environmental factors, 
which limits its state variations. The following assumption formally captures these 
conditions.

Assumption 1  There exist known constants q0, q̇0 ∈ ℝ
>0 such that ‖‖q0(t)‖‖ ≤ q0 and 

‖‖q̇0(t)‖‖ ≤ q̇0 for all t ∈ [0,∞).

(5)

f 𝜎
i
(qi, q̇i) = 𝜎i𝜙̇

2 −
𝜇(� cos 𝛾i cos𝜙i + 𝜎i)(

�2 + 𝜎
2
i
+ 2�𝜎i cos 𝛾i cos𝜙i

) 3

2

+
𝜇

�2
cos 𝛾i cos𝜙i

+ Px
i
(qx

i
) + Dx

i
(q̇x

i
),

f
𝛾

i
(qi, q̇i) =

𝜇(� sin 𝛾i sec𝜙i)

𝜎i

(
�2 + 𝜎

2
i
+ 2�𝜎i cos 𝛾i cos𝜙i

) 3

2

+
𝜇

�2𝜎i

sin 𝛾i sec𝜙i + P
y

i
(q

y

i
) + D

y

i
(q̇

y

i
),

f 𝜎
i
(qi, q̇i) = −

2𝜎̇i𝜙̇i

𝜎i

−
𝜇

�2𝜎i

cos 𝛾i sin𝜙i +
𝜇� cos 𝛾i sin𝜙i

𝜎i

(
�2 + 𝜎

2
i
+ 2�𝜎i cos 𝛾i cos𝜙i

) 3

2

+ Pz

i
(qz

i
) + Dz

i
(q̇z

i
),

(6)g(qi) =

⎡
⎢⎢⎢⎣

1 0 0

0
1

�i

0

0 0
1

�i

⎤
⎥⎥⎥⎦
,

(7)

𝜔
𝜎(𝜏, qi, q̇i) = (𝜏2 + 2𝜏𝛾̇ + 𝛾̇

2)𝜎 cos2 𝜙,

𝜔
𝛾 (𝜏, 𝜏̇, qi, q̇i) = 2(𝜏 + 𝛾̇)𝜙̇ tan𝜙 − 𝜏̇ − 2(𝜏 + 𝛾̇)

𝜎̇

𝜎
,

𝜔
𝜎(𝜏, q̇i) = −

1

2
(𝜏 + 𝛾̇)2.

(8)q̈0 = f0(q0, q̇0),
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3.3 � Control Objective

Each spacecraft i ∈ V can measure the relative position di,j ∈ ℝ
3 between itself and 

its neighbors j ∈ Ni , defined as

Unique to the defunct spacecraft, each spacecraft i ∈ V can measure the partial rela-
tive position between itself and the defunct spacecraft, given by

where yi ∈ ℝ
mi and Ci ∈ ℝ

mi×3 represents the output matrix of agent i, characteriz-
ing the agent’s heterogeneous sensing capabilities. Since each spacecraft is typically 
equipped with a specific suite of sensors, such as cameras or LIDAR, it is reasonable 
to assume that each spacecraft has knowledge of its own sensor configuration and 
capabilities. Formally, each agent i ∈ V knows its own output matrix Ci.

The primary objective is to design a distributed controller for each servicer space-
craft i ∈ V , that guides the servicer spacecraft towards the defunct spacecraft using 
only the partial relative measurement model. Since relative velocity measurements 
are unavailable, a secondary objective is to develop a decentralized observer that can 
estimate the relative velocities using only locally available information from each 
spacecraft. Additionally, because the defunct spacecrafts state is unknown, a tertiary 
objective is to design a distributed system identifier that reconstructs the defunct 
spacecrafts unknown state while simultaneously using online learning techniques to 
approximate its dynamics.

To quantify the servicing objective, define the tracking error ei ∈ ℝ
3 of agent 

i ∈ V as

Furthermore, define the relative position error �i ∈ ℝ
3 as

where bi ∈ {0, 1} denotes a binary indicator of spacecraft i’s ability to sense the 
defunct spacecraft, for all i ∈ V.

Using (9) and (11), (12) is expressed in an equivalent analytical form as

for all i ∈ V.
In spacecraft servicing scenarios, reliable communication among spacecraft ena-

bles efficient coordination and execution of tasks. The communication topology of 
the network is often designed to be connected, ensuring that information can be 
exchanged between all spacecraft. This connectivity enables the spacecraft to share 

(9)di,j ≜ qj − qi.

(10)yi ≜ Ci

(
q0 − qi

)
,

(11)ei ≜ q0 − qi.

(12)𝜂i ≜
∑
j∈Ni

di,j + biC
⊤

i
yi,

(13)𝜂i =

(
biC

⊤

i
Ciei −

∑
j∈Ni

(
ej − ei

))
,
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resources and adapt to changing mission requirements. The subsequent assumption 
provides a mathematical representation of these conditions.

Assumption 2  The graph G is connected, and there exists at least one bi = 1 for some 
i ∈ V.

4 � Control Design

Define the filtered tracking error ri ∈ ℝ
3 as

where k1 ∈ ℝ
>0 is a user-defined constant, for all i ∈ V . Let 𝜂̂i ∈ ℝ

3 and 𝜁i ∈ ℝ
3 

denote the relative position error and relative velocity error estimates, respectively. 
The corresponding relative position estimation error 𝜂̃i ∈ ℝ

3 and relative velocity 
estimation error 𝜁i ∈ ℝ

3 are defined as

where 𝜁i ≜ 𝜂̇i , for all i ∈ V . Taking the second time-derivative of (11), substi-
tuting (4) and (8) into the resulting expression, and adding and subtracting by 
f0(𝜂i, 𝜁i) − fi(𝜂i, 𝜁i) yields

where f̃i(q0, q̇0, qi, q̇i, 𝜂i, 𝜁i) ≜ f0(q0, q̇0) − f0(𝜂i, 𝜁i) + fi(𝜂i, 𝜁i) − fi(qi, q̇i) ∈ ℝ
3 . Sub-

stituting (17) into the time derivative of (14) yields

4.1 � Lyapunov‑Based Deep Neural Network Function Approximation

Traditional physics-based models can be challenging to formulate in a manner that 
accurately captures the complex dynamics of spacecraft in servicing scenarios, due 
to simplifying assumptions and uncertainties such as varying mass properties and 
environmental conditions. DNNs offer a promising alternative that can learn com-
plex patterns from data without requiring explicit knowledge of the underlying 
physics. This function approximation capability motivates the use of DNN-based 
function approximation to develop more accurate and robust models of spacecraft 
dynamics. The universal function approximation property is assumed to hold over 
the compact set Ω ⊂ ℝ

6 , defined as

(14)ri = ėi + k1ei,

(15)𝜂̃i = 𝜂i − 𝜂̂i,

(16)𝜁i = 𝜁i − 𝜁i,

(17)
ëi = f0(𝜂i, 𝜁i) − fi(𝜂i, 𝜁i) − g(qi)ui(t) − 𝜔(𝜏, 𝜏̇, qi, q̇i) + f̃i(q0, q̇0, qi, q̇i, 𝜂i, 𝜁i),

(18)
ṙi = f0(𝜂i, 𝜁i) − fi(𝜂i, 𝜁i) − g(qi)ui(t) − 𝜔(𝜏, 𝜏̇, qi, q̇i) + f̃i(q0, q̇0, qi, q̇i, 𝜂i, 𝜁i) + k1ėi.

(19)Ω ≜ �
� ∈ ℝ

6 ∶ ‖�‖ ≤ Υ
�
,
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where Υ ∈ ℝ
>0 is a positive constant, for all k ∈ V.2

Let 𝜅i ≜ [
𝜂
⊤

i
𝜁
⊤

i

]⊤
∈ ℝ

6 and define hi ∶ ℝ
6
→ ℝ

3 as hi(𝜅i) ≜ f0(𝜂i, 𝜁i) − fi(𝜂i, 𝜁i) , 
for all i ∈ V . Prescribe 𝜀 > 0 and note that for all i ∈ V , hi ∈ �

(
Ω,ℝ3

)
 . Then, by 

[31, Theorem  3.2], there exists an Lb-DNN such that 
sup

𝜅i∈Ω
‖‖‖Φi(𝜅i, 𝜃

∗
i
) − hi(𝜅i)

‖‖‖ < 𝜀 , for all i ∈ V . Therefore, each agent i ∈ V can 
model the unknown function hi(�i) using an Lb-DNN as

where �∗
i
∈ ℝ

p are the ideal weights, Φi ∶ ℝ
6 ×ℝ

p
→ ℝ

3 , and �i ∶ ℝ
6
→ ℝ

3 is 
an unknown function representing the reconstruction error that is bounded as 
sup

𝜅i∈Ω
‖‖𝜀i(𝜅i)‖‖ < 𝜀.

The Lb-DNN described in (20) is inherently nonlinear with respect to its weights. 
To address the nonlinearity, a first-order Taylor approximation for the Lb-DNN is 
applied. To quantify the approximation, the parameter estimation error �̃i ∈ ℝ

p is 
defined as

for all i ∈ V , where �̂i ∈ ℝ
p represents the weight estimates. The first-order Taylor 

approximation of Φi(�i, �
∗
i
) evaluated at 𝜃̂i is given as

where ∇
�̂i
Φi ∶ ℝ

6 ×ℝ
p
→ ℝ

3×p is the Jacobian of Φi with respect to 𝜃̂i , and 
R1,i ∶ ℝ

p ×ℝ
6
→ ℝ

3 is the first Lagrange remainder, which accounts for the error 
introduced by truncating the Taylor approximation after the first-order term, for all 
i ∈ V.

Using (20) and (22), (18) is rewritten as

where Δi(�̃i, �i) ≜ R1,i(�̃i, �i) + �i(�i) ∈ ℝ
3 . By [32, Theorem  4.7], the remainder 

term R1,i(�̃i, �i) can be expressed as R1,i(
�𝜃i, 𝜅i) =

1

2
𝜃
⊤

i
∇2

𝜃̂i

Φi

(
𝜅i, 𝜃̂i + 𝛾i𝜃i

)
𝜃i , where 

∇2

�̂i

Φi ∶ ℝ
6 ×ℝ

p
→ ℝ

6×p×p is the Hessian of Φi with respect to 𝜃̂i , and �i ∈ [0, 1] , for 
all i ∈ V . Consequently, there exists some constant Mi ∈ ℝ

>0 such that 
𝜎max

(
∇2

�𝜃i

Φi

(
𝜅i, 𝜃̂i + 𝛾i𝜃i

)) ≤ Mi , which, by [33, Theorem  8.8], yields 
‖‖‖R1,i(

�𝜃i, 𝜅i)
‖‖‖ ≤ Mi

2
‖‖𝜃i‖‖2 , given bounded �i , for all i ∈ V.

(20)hi(�i) = Φi(�i, �
∗
i
) + �i(�i),

(21)�̃i = �
∗
i
− �̂i,

(22)Φi(𝜅i, 𝜃
∗
i
) = Φi(𝜅i, 𝜃̂i) + ∇

𝜃̂i
Φi(𝜅i, 𝜃̂i)

�𝜃i + R1,i(
�𝜃i, 𝜅i),

(23)
ṙi = Φi(𝜅i, 𝜃̂i) + ∇

𝜃̂i
Φi(𝜅i, 𝜃̂i)

�𝜃i − g(qi)ui(t) − 𝜔(𝜏, 𝜏̇, qi, q̇i) + k1ėi

+ f̃i(q0, q̇0, qi, q̇i, 𝜅i) + Δi(
�𝜃i, 𝜅i),

2  The domain ℝ
3 ×ℝ

3 is identified with ℝ
6 by treating 

[
� �

]
∈ ℝ

3 ×ℝ
3 as 

� =
[
�
1
⋯ �

3
�
1
⋯ �

3

]
∈ ℝ

6.
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To facilitate the subsequent development, the following assumption is made.

Assumption 3  [34, Assumption 1] There exists 𝜃 ∈ ℝ
>0 such that the unknown ideal 

weights can be bounded as maxi∈V

{‖‖‖�∗i
‖‖‖
} ≤ �.

Assumption 3 is reasonable since, in practice, the user can select � a priori, and sub-
sequently prescribe � using a conservative estimate whose feasibility can be verified 
using heuristic search methods, e.g., Monte Carlo search. Alternatively, adaptive bound 
estimation techniques [35] can be used to estimate �.

4.2 � Distributed Observer‑Based Control Design

The controller, filter, observer, and adaptation law are designed to satisfy a set of condi-
tions that ensure the stability of the closed-loop system. Specifically, the design aims 
to cancel out cross-coupled terms in the Lyapunov function derivative, while bound-
ing or utilizing the remaining terms to achieve negative definiteness. To this end, the 
control design incorporates several key features, including the introduction of auxiliary 
variables, such as a filtered estimation error, and the selection of user-defined constants. 
The subsequent stability analysis will demonstrate that these design elements establish 
the boundedness and convergence properties of the system and will provide a rigorous 
justification for the specific structure of the control input, observer, and adaptation law.

To facilitate the distributed observer design, a filtered estimation error r̃i ∈ ℝ
3 is 

defined as

for all i ∈ V , where k3 ∈ ℝ
>0 is a user-defined constant, and �i ∈ ℝ

3 is designed as

where k4, k5 ∈ ℝ
>0 are user-defined constants. The distributed observer is designed 

as

for all i ∈ V . Based on the subsequent stability analysis, the control input is designed 
as

(24)r̃i ≜ ̇̃𝜂i + k3𝜂̃i + 𝜌i,

(25)

𝜌i(t) = −(k3 + k4)𝜂̃i(t)

+
(
1 − k2

3
− k3k4

)
∫

t

t0

𝜂̃i(𝜏)d𝜏 −
(
k3 + k4 + k5

)
∫

t

t0

𝜌i(𝜏)d𝜏,

𝜌i(0) = 03,

(26)

̇̂𝜂i = 𝜁i,

̇̂
𝜁i =

(∑
j∈Ni

(
gjuj − giui

)
− biC

⊤

i
Cigiui

)
− (k2

3
− 2)𝜂̃i −

(
2k3 + k4 + k5

)
𝜌i,

𝜂̂i(0) = 03,

𝜁i(0) = 03,
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where k2 ∈ ℝ
>0 is a user-defined constant and g−1

i
 is guaranteed to exist by (6), for 

all i ∈ V . Similarly, the adaptation law for the Lb-DNN is designed as

where

for all i ∈ V , where k6 ∈ ℝ
>0 is a user-defined forgetting rate, Γi ∈ ℝ

p×p is a sym-
metric user-defined learning rate with strictly positive eigenvalues, and proj(⋅) 
denotes a smooth projection operator as defined in [36, Appendix E], which ensures 
𝜃̂(t) ∈ B

𝜃
≜ �

𝜃 ∈ ℝ
p ∶ ‖𝜃‖ ≤ 𝜃

�
 for all t ∈ ℝ≥0.

4.3 � Ensemble Analysis

To aid in the stability analysis, the interaction matrix H ∈ ℝ
3N×3N is defined as

where C ≜ blkdiag
(
b1C

⊤

1
C1,… , bNC

⊤

N
CN

)
∈ ℝ

3N×3N . Using (29), (13) is expressed 
in an ensemble form as

where � ≜ (
�i

)
i∈V

∈ ℝ
3N and e ≜ (

ei
)
i∈V

∈ ℝ
3N . Using (14) and (30) yields the use-

ful expression

where r ≜ (
ri
)
i∈V

∈ ℝ
3N . Using (16), (24), (26), (30) and (31), (27) is expressed in 

an ensemble form as

where u ≜ (
ui
)
i∈V

∈ ℝ
3N , g−1 ≜ IN ⊗ g−1 ∈ ℝ

3N×3N , Φ ≜ (
Φi

)
i∈V

∈ ℝ
3N , 

r̃ ≜ (
r̃i
)
i∈V

∈ ℝ
3N , and � ≜ (

�i

)
i∈V

∈ ℝ
3N . Using (29), (26) is expressed in an 

ensemble form as

(27)ui = g−1
i

(
Φi(𝜅i, 𝜃̂i) + k2

(
k1𝜂i + 𝜁i − k3𝜂̃i − 𝜌i

))
,

(28)̇̂
𝜃i = proj

(
Θi, 𝜃̂i, 𝜃

)
,

Θi ≜ Γi

(
∇

𝜃̂i
Φi(𝜅i, 𝜃̂i)

(
𝜁i + k1𝜂i

)
− k6

(
𝜃̂i −

∑
j∈Ni

(
𝜃̂j − 𝜃̂i

)))
,

(29)H ≜ (
L⊗ I3

)
+ C,

(30)� = He,

(31)Hr = 𝜂̇ + k1𝜂,

(32)u = g−1
(
Φ + k2Hr − k2r̃

)
,

(33)
̇̂𝜂 = 𝜁 ,

̇̂
𝜁 = −Hgu − (k2

3
− 2)𝜂̃ −

(
2k3 + k4 + k5

)
𝜌,



	 The Journal of the Astronautical Sciences           (2025) 72:40    40   Page 14 of 25

where 𝜂̂ ≜ (
𝜂̂i

)
i∈V

∈ ℝ
3N , 𝜁 ≜ (

𝜁i

)
i∈V

∈ ℝ
3N , g ≜ IN ⊗ g ∈ ℝ

3N×3N , and 
𝜂̃ ≜ (

𝜂̃i

)
i∈V

∈ ℝ
3N . Furthermore, the time-derivative of (25) is expressed in an 

ensemble form as

Substituting (32) into the ensemble representation of (23) yields

where ∇
𝜃̂
Φ ≜ blkdiag

(
∇

𝜃̂1
Φ1,… ,∇

𝜃̂N
ΦN

)
∈ ℝ

3N×3N , �𝜃 ≜ (
𝜃i

)
i∈V

∈ ℝ
3N , 

w ≜ 1N ⊗𝜔 ∈ ℝ
3N , f̃ ≜ (

f̃i
)
i∈V

∈ ℝ
3N , and Δ ≜ (

Δi

)
i∈V

∈ ℝ
3N . Taking the time-

derivative of (24), using (17), (20), (22), (24), and (30), and then substituting (33) 
and (34) into the ensemble representation of the resulting expression yields

where h ≜ (
hi(�i)

)
i∈V

∈ ℝ
3N . The ensemble representation of (28) is expressed as

where 𝜃̂ ≜ (
𝜃̂i

)
i∈V

∈ ℝ
pN . Substituting (37) into the ensemble representation of (21) 

yields

This work focuses on spacecraft with limited sensing capabilities. Accurate state 
estimation is necessary for spacecraft servicing missions, particularly in scenarios 
where multiple spacecraft track and service a target. Each spacecraft’s sensing limi-
tations may restrict it to measuring only a subset of the target’s states. Without infor-
mation sharing, the collective system may fail to reconstruct the target’s complete 
state. For instance, in a two-dimensional scenario, two spacecraft that each measure 
only one degree of freedom and cannot communicate would be limited to aligning 
collinearly with the target. However, by sharing partial measurements, the spacecraft 
can collaborate to achieve complete state reconstruction, enabling effective tracking 
and servicing.

The trackability condition formalizes this idea, ensuring the spacecraft’s collec-
tive sensing provides sufficient information for accurate state estimation. It guar-
antees stability in the closed-loop error system by ensuring the eigenvalues of the 
matrix H are positive. The following definition describes this concept.

Definition 1  (Trackability, [24, Lemma 2]) A target agent is said to be track-
able if the following condition, known as the trackability condition, is satisfied: 
rank

�∑
i∈V biC

⊤

i
Ci

�
= 3.

(34)𝜌̇ ≜ 𝜂̃ − (k3 + k4)r̃ − k5𝜌.

(35)ṙ = ∇
𝜃̂
Φ�𝜃 − k2Hr + k2r̃ + k1r − k2

1
e − w + f̃ + Δ,

(36)̇̃r = H
(
h − w + f̃

)
+
(
k3 + k4

)
𝜌 − 𝜂̃ − k4r̃,

(37)̇̂
𝜃 =

[
proj

(
Θ1, 𝜃̂1, 𝜃

)⊤

⋯ proj
(
ΘN , 𝜃̂N , 𝜃

)⊤

]⊤
,

(38)�̇𝜃 = −

[
proj

(
Θ1, 𝜃̂1, 𝜃

)⊤

⋯ proj
(
ΘN , 𝜃̂N , 𝜃

)⊤

]⊤
.
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5 � Stability Analysis

Define the concatenated state vector z ∶ ℝ≥0 → ℝ
� as z ≜ [

e⊤ r⊤ 𝜂̃
⊤ r̃⊤ 𝜌

⊤
𝜃
⊤
]⊤ , 

where � ≜ (15 + p)N . Using (14), (24), (34), (35), and (38) yields

By the Universal Approximation Theorem in [31, Theorem 3.2], the subsequent sta-
bility analysis requires ensuring �i(t) ∈ Ω for all i ∈ V , for all t ∈ ℝ≥0 . This require-
ment is guaranteed to be satisfied by achieving a stability result which constrains z to 
a compact domain. Define the compact domain bounding all system trajectories as

where 𝜒 ∈ ℝ
>0 is a bounding constant.

By the continuous differentiability of fk , it follows that fk is Lipschitz continuous 
over D for all k ∈ V . Consequently, hi is Lipschitz continuous over D for all i ∈ V . 
Hence, there exists a constant � ∈ ℝ≥0 such that ‖‖hi‖‖ =

‖‖‖f0(𝜂i, 𝜁i) − fi(𝜂i, 𝜁i)
‖‖‖ ≤ � for 

all i ∈ V and for all time. Furthermore, from (20), there exists a constant LΦ ∈ ℝ≥0 
such that ‖‖∇𝜃̂

Φ‖‖ ≤ LΦ . Similarly, by Assumption 3 and the projection operator, it 
holds that ‖‖𝜃i‖‖ ≤ ‖‖𝜃∗i ‖‖ + ‖‖‖𝜃̂i

‖‖‖ ≤ 2𝜃 . Therefore, there exists Δ ≜ 2M𝜃
2
+ 𝜀 ∈ ℝ

>0 such 
that ‖Δ‖ =

���
�
Δ

i

�
i∈V

��� =
�
NR

1,i
(�𝜃

i
, 𝜅

i
) + 𝜀

i
(𝜅

i
)
�
i∈V

≤ N

�
M

i

2

��𝜃i��2
�
i∈V

+ 𝜀 ≤ 2NM𝜃
2

+ 𝜀 = Δ , 

where M ≜ maxi∈V
{
Mi

}
 , for all z ∈ D.

To facilitate the stability analysis, consider the Lyapunov function candidate 
V ∶ D → ℝ≥0 defined as

where P ≜ blkdiag
(
I15N ,Γ

−1
)
∈ ℝ

�×� and Γ ≜ blkdiag
(
Γ1,… ,ΓN

)
∈ ℝ

pN×pN . By 
the Rayleigh quotient theorem (see [37, Theorem 4.2.2]), (41) satisfies

where �1 ≜ 1

2
min

{
1, �min

(
Γ−1

)}
 and �2 ≜ 1

2
max

{
1, �max

(
Γ−1

)}
 . Based on the 

subsequent set definitions, let 

𝛿 ≜
(
Δ+N𝜔+2LN2

(
q0+q̇0

))2

𝜆
H
k2

+

(
𝜆H�+2LN

2
𝜆H

(
q0+q̇0

)
+N𝜔𝜆H

)2

2k4
+ k6𝜃

2
𝜆J  and 

�3 ≜ 1

2
min

{
�i

}
i=[6]

 , where

(39)ż =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r − k1e

∇
𝜃̂
Φ�𝜃 − k2Hr + k2r̃ + k1r − k2

1
e − w + f̃ + Δ

r̃ − k3𝜂̃ − 𝜌

H
�
h − w + f̃

�
+
�
k3 + k4

�
𝜌 − 𝜂̃ − k4r̃

𝜂̃ −
�
k3 + k4

�
r̃ − k5𝜌

−

�
proj

�
Θ1, 𝜃̂1, 𝜃

�⊤

⋯ proj
�
ΘN , 𝜃̂N , 𝜃

�⊤

�⊤

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)D ≜ {� ∈ ℝ
� ∶ ‖�‖ ≤ �},

(41)V(z) ≜ 1

2
z⊤Pz,

(42)�1‖z‖2 ≤ V(z) ≤ �2‖z‖2,
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where �(⋅) ≜ �max(⋅) and �
(⋅)
≜ �min(⋅).

For the dynamical system described by (39), the set of stabilizing initial condi-
tions S ⊂ ℝ

𝜑 is defined as

and the uniformly ultimately bounded (UUB) set U ⊂ ℝ
𝜑 is defined as

Furthermore, based on the subsequent stability analysis, the parameter interaction 
matrix J ∈ ℝ

pN×pN is defined as

Lemma 1  If the target is trackable, then �⊤H� > 0 for any � ≠ 0nN.

Proof  See [24, Lemma 1] 	� ◻

Theorem 1  Consider the dynamical system described by (4) and (8). For any initial 
conditions of the states ‖‖z(t0)‖‖ ∈ S , the observer given by (26), the controller given 
by (27), and the adaptation law given by (28) ensure that z exponentially converges 
to U in the sense that

for all t ∈
[
t0,∞

)
 , provided that 𝜆3 > 0 , 𝜒 >

√
𝜆2

𝜆1

𝛿

𝜆3

√
𝜆2

𝜆1

+ 1 , Assumptions 1-3 
hold, and the target is trackable.

�1 = 2 − 2�HLΦ − 4LN�H

(
�H + 1

)
,

�2 = k2�H − k2 − LN
(
k3 + 2

(
2�H + 1

)
+
(
1 + k1

)(
2�H + 1

)
+ 2

)
− LΦ

(
1 + �H

)
− 2,

�3 = 2 − LΦ − LN
(
�H + 1

)
,

�4 = k4 − k2 − LN
((

k3 + 2 +
(
1 + k1

)(
2�H + 1

))
+ 1

)
�H − LΦ,

�5 = 2k5 − LN
(
�H + 1

)
− LΦ,

�6 = k6�J − LΦ

(
k3 + 3�H + 3

)
,

(43)S ≜
�

� ∈ ℝ
� ∶ ‖�‖ ≤

�
�1

�2

�2 −
�

�3

�
,

(44)U ≜
�

� ∈ ℝ
� ∶ ‖�‖ ≤

�
�2

�1

�

�3

�
.

(45)J ≜ (LG + IN)⊗ Ip.

(46)‖z(t)‖ ≤
�

�2

�1

�
��z(t0)��2e−

�3

�2
(t−t0) +

�

�3

�
1 − e

−
�3

�2
(t−t0)

�
,
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Proof  Substituting (39) into the time-derivative of (41), using (21), and simplifying 
yields

Invoking [36, Lemma E.1.IV], using (29) and the definition of J  in (45), and using 
the ensemble representation of (21) yields

Using (48), applying the triangle inequality and the Cauchy-Schwarz inequality to 
the right-hand-side of (47) and using the definitions of �

H
 , �

J
 , �J  , LΦ , Δ , and � 

and Assumption 3 to the resulting expression yields

for all z ∈ D . Using the ensemble representation of (14), (15), (30), and (31) yields

Using (50), the ensemble representation of (11), the triangle inequality, Assumption 
1, and the definition of �H yields the bound

Using (30) and (50) yields

By using (51) and (52), (49) is upper bounded as

(47)

V̇(z) = −k1e
⊤e − k2r

⊤Hr − k3𝜂̃
⊤
𝜂̃ − k4r̃

⊤r̃ − k5𝜌
⊤
𝜌 +

(
1 − k2

1

)
r⊤e + k2r

⊤r̃ + k1r
⊤r

+ �𝜃
⊤∇⊤

𝜃̂
Φr + r̃⊤H

(
h − w + f̃

)
+ r⊤

(
Δ − w + f̃

)

− 𝜃
⊤Γ−1

[
proj

(
Θ1, 𝜃

)⊤

⋯ proj
(
ΘN , 𝜃

)⊤

]
.

(48)−𝜃⊤Γ−1

⎡
⎢⎢⎢⎣

proj
�
Θ1, 𝜃̂1, 𝜃

�

⋮

proj
�
ΘN , 𝜃̂N , 𝜃

�
⎤
⎥⎥⎥⎦
≤ −𝜃⊤∇⊤

𝜃̂
Φ
�
𝜁 + k1𝜂

�
+ k6𝜃

⊤J𝜃∗ − k6𝜃
⊤J𝜃.

(49)

V̇(z) ≤ −‖e‖2 − k2𝜆H‖r‖2 − k3‖𝜂̃‖2 − k4‖r̃‖2 − k5‖𝜌‖2 − k6𝜆J
��𝜃��2 + k6𝜃𝜆J

��𝜃��
+ k2‖r‖‖r̃‖ + ‖r‖2 + LΦ

����𝜃
���
�
‖r‖ + ���𝜁

��� + ‖𝜂‖
�

+ 𝜆H‖r̃‖
�‖h‖ + ��f̃�� + N𝜔

�
+ ‖r‖

�
Δ + N𝜔 + ��f̃��

�
,

(50)
���𝜁

��� ≤ 𝜆H‖e‖ + 𝜆H‖r‖ + k3‖𝜂̃‖ + ‖r̃‖ + ‖𝜌‖.

(51)

��f̃�� ≤ LN
��

4𝜆H + 2
�
‖e‖ +

�
2𝜆H + 1

�
‖r‖ + k3‖𝜂̃‖ + ‖r̃‖ + ‖𝜌‖ + 2N

�
q0 + q̇0

��
.

(52)

LΦ
����𝜃

���
�
‖r‖ + ���𝜁

��� + k1‖𝜂‖
� ≤ 2𝜆HLΦ

����𝜃
���‖e‖ + LΦ

�
1 + 𝜆H

�����𝜃
���‖r‖ + k3LΦ

����𝜃
���‖𝜂̃‖

+ LΦ
����𝜃

���‖r̃‖ + LΦ
����𝜃

���‖𝜌‖.
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for all z ∈ D . By using Young’s inequality and completing the square, (53) is upper 
bounded as

for all z ∈ D . Using the definitions of �3 and z yields

for all z ∈ D . From (42), it follows that −�3‖z‖2 ≤ −
�3

�2

V(z) . Therefore, (55) is upper 
bounded as

for all z ∈ D . Solving the differential inequality given by (56) yields

(53)

V̇(z) ≤ −‖e‖2 − k2𝜆H‖r‖2 + ‖r‖2 + LN
�
2𝜆H + 1

�
‖r‖2 − k3‖𝜂̃‖2 − k4‖r̃‖2

− k5‖𝜌‖2 − k6𝜆J
��𝜃��2 + k2‖r‖‖r̃‖ + 2𝜆HLΦ

����𝜃
���‖e‖ + LΦ

�
1 + 𝜆H

�����𝜃
���‖r‖

+ LΦ
����𝜃

���‖r̃‖ + LΦ
����𝜃

���‖𝜌‖ + LN𝜆H

�
4𝜆H + 2

�
‖e‖‖r̃‖ + k3LN𝜆H‖𝜂̃‖‖r̃‖

+ LN𝜆H‖𝜌‖‖r̃‖ + LN
�
4𝜆H + 2

�
‖e‖‖r‖ + LNk3‖𝜂̃‖‖r‖ + LN‖r̃‖‖r‖

+ LN‖𝜌‖‖r‖ + 𝜆H�‖r̃‖ + 2LN2
𝜆H

�
q0 + q̇0

�
‖r̃‖ + N𝜔𝜆H‖r̃‖ + k3LΦ

����𝜃
���‖𝜂̃‖

+ Δ‖r‖ + N𝜔‖r‖ + 2LN2
�
q0 + q̇0

�
‖r‖ + k6𝜃𝜆J

��𝜃�� + LN𝜆H‖r̃‖2,

(54)

V̇(z) ≤ −
�
1 − 𝜆HLΦ − 2LN𝜆H

�
𝜆H + 1

��
‖e‖2

−
1

2

�
k2𝜆H − k2 − LN

�
k3 + 2

�
2𝜆H + 1

�
+
�
1 + k1

��
2𝜆H + 1

�
+ 2

�

−LΦ

�
1 + 𝜆H

�
− 2

�
‖r‖2

−
k3

2

�
2 − LΦ − LN

�
𝜆H + 1

��
‖𝜂̃‖2

−
1

2

�
k4 − k2 − LN

��
k3 + 2 +

�
1 + k1

��
2𝜆H + 1

��
+ 1

�
𝜆H − LΦ

�
‖r̃‖2

−
1

2

�
2k5 − LN

�
𝜆H + 1

�
− LΦ

�
‖𝜌‖2

−
1

2

�
k6𝜆J − LΦ

�
k3 + 3𝜆H + 3

������𝜃
���
2

+ k6𝜃
2
𝜆J

+

�
Δ + N𝜔 + 2LN2

�
q0 + q̇0

��2

𝜆
H
k2

+

�
𝜆H� + 2LN2

𝜆H

�
q0 + q̇0

�
+ N𝜔𝜆H

�2

2k4
,

(55)V̇(z) ≤ −𝜆3‖z‖2 + 𝛿,

(56)V̇(z) ≤ −
𝜆3

𝜆2

V(z) + 𝛿,

(57)V(z(t)) ≤ V
(
z(t0)

)
e
−

�3

�2
(t−t0) +

�2�

�3

(
1 − e

−
�3

�2
(t−t0)

)
,
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for all z ∈ D . From (42), it follows that V

(
z(t

0
)
)
e

−
�
3

�
2

(t−t0 ) ≤ �
2
‖‖z(t0)‖‖2e

−
�
3

�
2

(t−t0 ) and also 
�1‖z(t)‖2 ≤ V(z(t)) . Therefore, (57) can be bounded as

for all z ∈ D . Solving (58) for ‖z(t)‖ yields

for all z ∈ D . The UUB set defined by (44) is obtained by taking the limit as t → ∞ 
of the right-hand side of (59), yielding limt→∞ ‖z(t)‖ ≤ �

�2

�1

�

�3

 , or z(t) ∈ U as 
t → ∞ . The set of stabilizing initial conditions defined by (43)follows from an upper 
bound on (59) given by ‖z(t)‖ ≤ �

�2

�1

���z(t0)��2 + �

�3

 . From the definition of D , the 

condition z ∈ D holds if and only if 
√

�2

�1

√‖‖z(t0)‖‖2 + �

�3

≤ � , which is equivalent to 

‖‖z(t0)‖‖ ≤ √
�1

�2

�2 −
�

�3

 , or ‖‖z(t0)‖‖ ∈ S . For S to be nonempty and U ⊂ S , the feasi-

bility condition 𝜒 >

√
𝜆2

𝜆1

𝛿

𝜆3

√
𝜆2

𝜆1

+ 1 must hold. Let Υ , in (19), be defined as 

Υ ≜ (
�H

(
k1 + 1

)
+ k3 + 2

)
� . By the definition of Ω in (19), it follows that � ∈ D 

implies ‖�‖ ≤ � ≤ Υ for all time. To establish that �i ∈ Ω for all i ∈ V , for ensuring 
the universal approximation property holds, observe that 

��𝜅i�� ≤
�

��𝜂i��2 + ���𝜁i
���
2 ≤ ‖𝜂‖ + ���𝜁

��� ≤ �
𝜆H

�
k1 + 1

�
+ k3 + 2

�
𝜒 = Υ . This con-

firms �i ∈ Ω for all i ∈ V and for all time. Consequently, U ⊂ S ⊂ D , ensuring that 
the universal approximation property and Lipschitz property are satisfied, the state 
remains bounded, and the trajectories converge to a nonempty domain that is strictly 
smaller than the set of stabilizing initial conditions.

Since ‖z‖ ≤ � implies ‖e‖, ‖r‖, ‖𝜂̃‖, ‖r̃‖, ‖𝜌‖, ��𝜃�� ≤ 𝜒 , the states e, r, 𝜂̃ , r̃ , � 
and 𝜃 remain bounded. As �i ∈ Ω , �i is also bounded for all i ∈ V . The bounded-
ness of 𝜃̂i , enforced by the projection operator, ensures Φi(𝜅i, 𝜃̂i) is bounded for all 
i ∈ V . The boundedness of ei implies �i is bounded, as given by (13), for all i ∈ V . 
Similarly, boundedness of e, r, 𝜂̃ , r̃ , and � ensures 𝜁 is bounded by (50). Since e is 
bounded and q0 is bounded by Assumption 1, qi is bounded for all i ∈ V . Likewise, 
boundedness of r, and q̇0 by Assumption 1, implies q̇i is bounded for all i ∈ V . Con-
sequently, the boundedness of g−1

i
 , Φi , �i , 𝜁i , 𝜂̃ , and � ensures ui is bounded, as given 

by (27), for all i ∈ V . Since gi , ui , 𝜂̃i , �i , and 𝜁i are bounded, the observer states ̇̂𝜂i 
and ̇̂𝜁i are bounded by (26), for all i ∈ V . Similarly, boundedness of Φi , �i , 𝜁i , and 𝜃̂i 
ensures ̇̂𝜃i is bounded for all i ∈ V . Therefore, since ui , �i , ̇̂𝜂i , 

̇̂
𝜁 , and ̇̂𝜃i are bounded 

for all i ∈ V , all implemented signals remain bounded for all time. 	�  ◻

(58)�1‖z(t)‖2 ≤ �2
��z(t0)��2e−

�3

�2
(t−t0) +

�2�

�3

�
1 − e

−
�3

�2
(t−t0)

�
,

(59)‖z(t)‖ ≤
�

�2

�1

�
��z(t0)��2e−

�3

�2
(t−t0) +

�

�3

�
1 − e

−
�3

�2
(t−t0)

�
,
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6 � Simulation

In addition to the stability analysis, a simulation is included to provide empirical 
evidence of the controller performance. The scenario involves a network of N = 6 
servicer spacecraft tasked with tracking a single defunct spacecraft, simulating 
an approach and servicing operation. The communication topology governing the 
multi-spacecraft network is depicted in Fig. 1. The simulation spans a duration of 
360 s.

The defunct spacecraft is initialized in a near-Earth elliptical orbit, character-
ized by a periapsis altitude of 300 × 103 kilometers, an apoapsis altitude of 
700 × 103 kilometers, and an inclination angle �

6
 radians. The semi-major axis, a, 

is calculated as the arithmetic mean of the periapsis and apoapsis altitudes. The 

initial orbital velocity is derived from the vis-viva equation, v =
√

�

(
2

rperiapsis
−

1

a

)
 , 

where � denotes the standard gravitational parameter of Earth.
The initial positions of the servicer spacecraft are offset from the defunct 

spacecraft’s initial conditions. These offsets are generated randomly, with radial 
distances uniformly distributed in the range U(2500, 5000) meters, and angular 
deviations in azimuth ( � ) and elevation ( � ) sampled from U(−0.5, 0.5) radians. 
Each servicer spacecraft’s initial velocity matches the defunct spacecraft’s orbital 
velocity to ensure relative dynamics are dominated by initial positional offsets.

Each servicer spacecraft employs an output matrix Ci ∈ ℝ
pi×3 , where the 

entries are uniformly sampled from U(−2, 2) . The matrix row dimension, pi , is 
randomly selected from pi ∈ {1, 2, 3, 4} . The specific matrices selected for this 
simulation are as follows:

C1 =
�
1.5124 −1.8904 0.6818

�
, C2 =

�
−0.2772 1.7565 1.1135

0.8638 1.2110 −1.6287

�
,

C3 =

�
1.5055 1.5784 −1.6598

−1.8437 −1.3206 1.5125

�
, C4 =

⎡⎢⎢⎣

0.3722 0.6866 −0.3528

−1.2097 −0.8414 −1.4315

1.1332 −0.3498 −1.8633

⎤⎥⎥⎦
,

C5 =

⎡⎢⎢⎣

1.9554 0.9926 −0.8782

1.1571 −1.5870 −0.2084

1.6343 −0.8255 −0.8488

⎤⎥⎥⎦
, C6 =

�
0.0991 −1.6655 1.6674

�
.

Fig. 1   Communication Topol-
ogy
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Each servicer spacecraft employs an Lb-DNN consisting of 4 hidden lay-
ers with 4 neurons per hidden layer. This configuration results in a total of 103 
weights per spacecraft. The Lb-DNNs use the tanh activation function in the 
output layer, while the hidden layers employ the Swish activation function [38]. 
The weights are initialized using the Kaiming He initialization method [39] to 
leverage the Swish activation’s smooth approximation of the ReLU function. 
The control gains are selected as ki = 0.65 for i ∈ {1,… , 5} , k6 = 0.0001 , and 
Γi = 0.01 ⋅ I103 for i ∈ {1,… , 6}.

The dynamics governing the servicer and defunct spacecraft follow the non-
linear equations detailed in (4). For the servicer spacecraft, masses and cross-
sectional areas are sampled from the uniform distributions U(25, 1500) kg and 
U(1, 50) m2 , respectively. The properties of all spacecraft are listed in Table  1. 
The measurement model follows (10) and includes additive Gaussian noise with 
zero mean and a standard deviation of 

√
0.5 meters.

A 3D visualization of the trajectories of all servicer spacecraft and the defunct 
spacecraft is shown in Fig. 2. The visualization is limited to the first 60 s of the 
simulation to provide a detailed view of the initial trajectory dynamics. This 
depiction illustrates the cooperative behavior of the servicer spacecraft as they 
maneuver within the operational region.

The performance of the neighborhood velocity estimation is shown in Fig.  3, 
which shows the norm of the estimation error ‖‖𝜁i‖‖ over time for all servicer space-
craft. The results indicate that all servicer spacecraft achieve steady-state estimation 
error values of approximately 5 m∕s after about 150 s. The initial transient spikes 
observed within the first 10  s are attributed to the zero-value initialization of the 
observer. This transient response could be mitigated by initializing the observer with 
prior estimates of the velocity, thereby improving the convergence characteristics.

The tracking performance of the servicer spacecraft is shown in Fig.  4, which 
shows the norm of the tracking error ‖‖ei‖‖ over time. The plot shows that all ser-
vicer spacecraft achieve steady-state tracking error values of approximately 5 meters 
after approximately 200  s. This level of precision is considered sufficient to initi-
ate servicing operations. The oscillatory behavior observed during the steady-state 
phase can be attributed to the choice of control gains. While adjustments to the 

Table 1   Spacecraft Parameters Spacecraft Index Mass (kg) Cross-sec-
tional area 
(m2)

q
0

10,000 1,000
q
1

640.1074 10.1267
q
2

1,087.4786 17.9324
q
3

25.1687 20.4416
q
4

470.9405 27.4020
q
5

241.4649 21.5405
q
6

161.1994 34.5757
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gain parameters could reduce oscillations, such modifications would likely increase 
control effort, necessitating a trade-off between control performance and energy 
efficiency.

Fig. 2   3D visualization of the trajectories of all servicer spacecraft (solid lines) and the defunct space-
craft (dotted line). For visual clarity, only the first 60 s of the simulation

Fig. 3   Plot showing the norm of the neighborhood velocity estimation error 
(‖‖𝜁i‖‖

)
 over time for all ser-

vicer spacecraft
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7 � Conclusion

This work addresses challenges in spacecraft servicing by introducing a distributed state 
estimation and tracking framework that relies solely on relative position measurements 
and operates effectively under partial state information. The proposed �-filter reconstructs 
unknown states using locally available data, while a Lyapunov-based deep neural net-
work adaptive controller compensates for uncertainties arising from unknown spacecraft 
dynamics. To ensure a well-posed collaborative spacecraft regulation problem, a track-
ability condition is established. Lyapunov-based stability analysis guarantees exponential 
error convergence in state estimation and spacecraft regulation to a neighborhood of the 
origin, contingent on this condition. Empirical validation is demonstrated through a simu-
lation involving a network of six servicer spacecraft tasked with tracking a single defunct 
spacecraft. The servicer spacecraft achieve steady-state tracking errors of approximately 
5 m within 200 s, meeting precision requirements for initiating servicing operations.
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