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Concurrent Learning for Parameter Estimation Using Dynamic
State-Derivative Estimators

Rushikesh Kamalapurkar, Benjamin Reish, Girish Chowdhary, and Warren E. Dixon

Abstract—A concurrent learning (CL)-based parameter estimator is de-
veloped to identify the unknown parameters in a nonlinear system. Un-
like state-of-the-art CL techniques that assume knowledge of the state
derivative or rely on numerical smoothing, CL is implemented using a dy-
namic state-derivative estimator. A novel purging algorithm is introduced
to discard possibly erroneous data recorded during the transient phase for
CL. Asymptotic convergence of the error states to the origin is established
under a persistent excitation condition, and the error states are shown to be
uniformly ultimately bounded under a finite excitation condition.

Index Terms—Adaptive systems, concurrent learning, Lyapunov meth-
ods, observers, parameter estimation.

I. INTRODUCTION

Modeling and identification of input–output relationships of nonlin-
ear dynamical systems has been a long-standing active area of research.
A variety of offline techniques have been developed for system identifi-
cation; however, when models are used for feedback control, the ability
to adapt to changes in the environment and the ability to learn from
input–output data are desirable. Motivated by applications in feedback
control, online system identification techniques are investigated in re-
sults such as [1]–[4] and the references therein.

Parametric methods such as linear parameterization, neural net-
works, and fuzzy logic systems approximate the system identification
problem by a finite-dimensional parameter estimation problem, and
hence, are popular tools for online nonlinear system identification.
Parametric models have been widely employed for adaptive control
of nonlinear systems. In general, adaptive control methods do not re-
quire or guarantee convergence of the parameter estimates to their true
values. However, it has been shown that parameter convergence can im-
prove robustness and transient performance of adaptive controllers (see,
e.g., [5]–[8]). Parametric models have also been employed in optimal
control techniques such as model-based predictive control (MPC) (see,
e.g., [9]–[12]) and model-based reinforcement learning (MBRL) (see
e.g., [13]–[16]). In MPC and MBRL, the controller is developed based
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on the parameter estimates; hence, stability of the closed-loop system
and the performance of the developed controller critically depend on
convergence of the parameter estimates to their ideal values.

Data-driven concurrent learning (CL) techniques are developed in
results such as [8], [17], and [18], where recorded data is concurrently
used with online data to achieve parameter convergence under a re-
laxed finite excitation condition as opposed to the persistent excitation
(PE) condition required by traditional adaptive control methods. CL
techniques are motivated by the fact that a direct formulation of the
parameter estimation error can be obtained provided the state derivative
is known or its estimate is otherwise available through techniques such
as fixed-point smoothing [19]. The parameter estimation error can then
be used in a gradient-based adaptation algorithm to drive the parameter
estimates to their ideal values. If exact derivatives are not available, the
parameter estimation error can be shown to decay to a neighborhood of
the origin provided accurate estimates of the state derivatives are avail-
able, where the size of the neighborhood depends on the derivative es-
timation error [19]. Experimental results such as [8] demonstrate that,
since derivatives at past data points are required, noncausal numerical
smoothing techniques can be used to generate satisfactory estimates
of state derivatives. Under Gaussian noise, smoothing is guaranteed to
result in the best possible linear estimate corresponding to the avail-
able data [20, Sec. 5.3]; however, in general, the derivative estimation
error resulting from numerical smoothing cannot be quantified a pri-
ori. Furthermore, numerical smoothing requires additional processing
and storage of data over a time window that contains the point of in-
terest. Hence, the problem of achieving parameter convergence under
relaxed excitation conditions without using numerical differentiation
is motivated.

In this technical note, an observer is employed to estimate the state
derivative. The derivative estimate generated by the observer converges
exponentially to a neighborhood of the actual state derivative. How-
ever, in the transient phase, the derivative estimation errors can be large.
Since CL relies on repeated use of recorded data, large transient errors
present a challenge in the development of a CL-based parameter esti-
mator. If the derivative estimation errors at the points recorded in the
history stack are large, then the corresponding errors in the parameter
estimates will be large. Motivated by the results in [21] and [22], the
aforementioned challenge is addressed in this technical note by design-
ing a novel purging algorithm to purge possibly erroneous data from
the history stack.

The PE condition can be shown to be sufficient to ensure that enough
data can be recorded to populate the history stack after each purge.
Since PE can be an impractical requirement in many applications, this
technical note examines the behavior of the switched error system
under a relaxed finite excitation condition. Specifically, provided the
system states are exciting over a sufficiently long finite time interval,
the error states decay to an ultimate bound. Furthermore, the ultimate
bound can be made arbitrarily small by increasing the learning gains.
Simulation results are provided to demonstrate the effectiveness of the
developed method under measurement noise.

0018-9286 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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II. PROBLEM FORMULATION

The system dynamics are assumed to be nonlinear and uncertain,
described by the differential equation1

ẋ = f (x, u) = fo (x, u) + g (x, u) (1)

where the function f : Rn ×Rm → Rn is locally Lipschitz
continuous, fo : Rn ×Rm → Rn represents a portion of the
dynamics which may be known, and g : Rn ×Rm → Rn repre-
sents unknown dynamics. On a compact set χ ⊂ Rn ×Rm , the
unknown function g can be approximated using basis functions
as g (x, u) = θT σ (x, u) + ε (x, u), where σ : Rn ×Rm → RP

denotes the vector of basis functions, ε : Rn ×Rm → Rn denotes the
function approximation error, and θ ∈ RP ×n denotes the unknown
constant parameter vector. The universal function approximation
property of single-layer neural networks can be used to conclude that,
given a constant ε, there exists a vector of basis functions, σ, a matrix of
ideal parameters, θ, and positive constants σ and θ, such that ‖θ‖ < θ,
‖ε (x, u)‖ < ε, ‖∇x ε (x, u)‖ < ε, ‖∇u ε (x, u)‖ < ε, ‖σ (x, u)‖ <
σ, ‖∇x σ (x, u)‖ < σ, and ‖∇u σ (x, u)‖ < σ, ∀ (x, u) ∈ χ [23].2

The objective is to design a parameter estimator to estimate the
unknown parameters. The system input is assumed to be a stabilizing
controller such that x, ẋ, u, u̇ ∈ L∞. The system state x is assumed to
be available for feedback, and the state derivative ẋ is assumed to be
unknown.

Let x̂ ∈ Rn and ˙̂x ∈ Rn denote estimates of the measurable state, x,
and the unmeasurable state derivative, ẋ, respectively. Let θ̂ ∈ RP ×n

denote an estimate of the unknown matrix θ. To achieve conver-
gence of the estimate θ̂, to the ideal parameter matrix, θ, a CL-
based parameter estimator is designed. The motivation behind CL is to
adjust the parameters based on an estimate of the parameter iden-
tification error, θ̃ � θ − θ̂, in addition to the state estimation error,
x̃ � x− x̂. Since θ̃ is not directly measurable, the subsequent devel-
opment exploits the fact that the term θ̃T σ (x, u) can be expressed as
θ̃T σ (x, u) = ẋ− fo (x, u)− θ̂T σ (x, u)− ε (x, u), provided mea-
surements of the state derivative are available. In CL results such as
[8], [17], and [18], it is assumed that the state derivatives can be com-
puted with sufficient accuracy at a past time instance by numerically
differentiating the recorded data. An approximation of the parameter
estimation error is then expressed as θ̃T σ (xj , uj ) + d + ε (xj , uj ) =
ẋj − fo (xj , uj )− θ̂T σ (xj , uj ), where xj denotes the system state
at a past time instance tj , ẋj denotes the numerically computed state
derivative at tj , and d is a constant of the order of the error between ẋj

and ẋj . While the results in [19] establish that, provided d is bounded,
the parameter estimation error θ̃ can be shown to decay to a ball around
the origin, the focus is on the analysis of the effects of the differentiation
error, and not on development of algorithms to reduce the parameter
estimation error.

In this technical note, a dynamically generated estimate of
the state derivative is used instead of numerical smoothing.
The parameter estimation error is computed at a past recorded
data point as θ̃T σ (xj , uj )− ˙̃xj + ε (xj , uj ) = ˙̂xj − fo (xj , uj )−
θ̂T σ (xj , uj ), where ˙̃xj � ẋj − ˙̂xj . To facilitate the design, let H �
{( ˙̂xj , xj , uj )}Mj=1 be a history stack containing recorded values of

1Unless otherwise specified, an equation of the form h = g (x, y, t) + f is
interpreted as h (t) = g (x (t) , y (t) , t) + f (t), ∀t ∈ [0,∞), and a definition
of the form h (x, t) � g (x, t) + f (x) is interpreted as h (x, t) = g (x, t) +
f (x), ∀ (x, t) ∈ Rn × [0,∞).

2The notation ‖·‖ denotes the Euclidean norm for vectors and the Frobenius
norm for matrices. The notation ∇( ·) represents the partial derivative ∂

∂ ( ·) .

the state, the control, and the state-derivative estimate. Each tuple
( ˙̂xj , xj , uj ) is referred to as a data point in H. A history stack
H is called “full rank” if the state vectors recorded in H sat-
isfy rank(

∑M
j=1 σ(xj , uj )σT (xj , uj )) = P . Based on the subsequent

Lyapunov-based stability analysis, the history stack is used to update
the estimate θ̂ using the following update law:

˙̂
θ=Γσ(x, u)x̃T +kΓ

M∑

j=1

σ(xj , uj)
(
˙̂xj−fo (xj , uj)−θ̂Tσ(xj , uj)

)T

(2)

where Γ ∈ RP ×P and k ∈ R> 0 are constant learning gains.3 The ma-
trix Γ is diagonal and positive definite, and can be used to adjust the
learning rate for each individual parameter. The gain k can be used to
adjust the contribution of CL.

The update law in (2) drives the parameter estimation error to a
ball around the origin, the size of which, is of the order of ˙̃xj . Hence,
to achieve a lower parameter estimation error, it is desirable to drive
˙̃x to the origin. Based on the Lyapunov-based stability analysis in
Section IV, the following adaptive estimator is designed to generate
the state-derivative estimates:4

˙̂x = γθ̂T σ (x, u) + fo (x, u) + (kx + α) x̃ + μ

μ̇ = (kx α + 1) x̃ (3)

where μ ∈ Rn is an auxiliary signal and kx , α ∈ R> 0 and γ ∈ [0, 1]
are positive constant learning gains.

III. ALGORITHM TO RECORD THE HISTORY STACK

A. Purging of History Stacks

The state-derivative estimator in (3) relies on feedback of the state
estimation error, x̃. In general, feedback results in large transient esti-
mation errors. Hence, the state-derivative estimation errors associated
with the tuples ( ˙̂xj , xj , uj ) recorded in the transient phase can be large.
The results in [19] indicate that the parameter estimation errors can be
of the order of maxj

∥
∥ ˙̃xj

∥
∥ . Hence, if a history stack containing data

points with large derivative estimation errors is used for CL, then the
parameter estimates converge but the resulting parameter estimation
errors can be large. To address the aforementioned challenge, this tech-
nical note introduces a new algorithm that purges the erroneous data in
the history stack as soon as more data is available. Since the estimator
in (3) results in exponential convergence of ˙̂x to a neighborhood of
ẋ, newer data is guaranteed to represent the system better than older
data, resulting in a lower steady-state parameter estimation error. The
following section details the proposed algorithm.

B. Algorithm to Record the History Stack

The history stack H is initialized arbitrarily to be full rank. An
arbitrary full-rank initialization of H results in a σ−modification [28]
like adaptive update law that keeps the parameter estimation errors
bounded. The data collected from the system is recorded in an auxiliary
history stackG � {( ˙̂xG

j , xG
j , uG

j )}Mj=1 . The history stackG is initialized

such that ( ˙̂xG
j (0), xG

j (0), uG
j (0)) = (0, 0, 0) and is populated using a

singular value maximization algorithm [17]. When all the elements of
the history stack G have been replaced at least once and it becomes full

3For a ≥ 0, R> a and R≥a denote the intervals (a,∞) and [a,∞), respec-
tively.

4A high-gain state-derivative estimator is used in this technical note for ease
of exposition. High-order sliding mode differentiators (see e.g., [24]–[27]) could
potentially be utilized to estimate ẋ more efficiently.
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Algorithm 1: History Stack Purging With Dwell Time.

if a data point is available then
if G is not full then

add the data to G
else

add the data to G if sm in (
∑M

j=1 σ
(
xG

j , uG
j

)
σT

(
xG

j , uG
j

)
)

increases by a factor (1 + τ )
endif
if sm in (

∑M
j=1 σ

(
xG

j , uG
j

)
σT

(
xG

j , uG
j

)
) ≥ ξη (t) then

if t− δ (t) ≥ T (t) then
H ← G and G ← 0 (purge G)
δ (t)← t
if η (t) < sm in (

∑M
j=1 σ (xj , uj ) σT (xj , uj )) then

η (t)← sm in (
∑M

j=1 σ (xj , uj ) σT (xj , uj ))
endif

endif
endif

endif

rank with a minimum singular value that is above a (static or dynamic)
threshold, H is replaced with G, and G is purged.5 In this technical
note, a dynamic threshold is used, which is set to be a fraction of the
highest encountered minimum singular value corresponding to H up
to the current time.

In the subsequent Algorithm 1, a piece-wise constant function
δ : R≥0 → R≥0 , initialized to zero, stores the last time instance whenH
was updated and a piecewise constant function η : R≥0 → R≥0 stores
the highest encountered value of sm in (

∑M
j=1 σ (xj , uj ) σT (xj , uj ))

up to time t, where sm in denotes the minimum singular value.
The constant ξ ∈ (0, 1) denotes the threshold fraction used to purge
the history stack, and T : R≥0 → R≥0 is a piecewise constant
function.

IV. ANALYSIS

Parameter convergence is typically established assuming that the
system states are persistently exciting. However, from a practical per-
spective, excitation beyond a certain finite time interval may not be
available. If excitation is available only over a finite time interval, then
the parameter estimation errors can be made as small as desired, pro-
vided the history stacks are updated so that the time interval between
two consecutive updates, i.e., the dwell time, is large enough according
to the conditions developed in Theorem 1.

A. Ultimate Boundedness Under Finite Excitation

The updatesH ← G imply that the resulting closed-loop system is a
switched system, where each subsystem corresponds to a history stack,
and each update indicates a switching event.6 To facilitate the anal-
ysis, let ρ : R≥0 → N denote a switching signal such that ρ (0) = 1,
and ρ (t) = i + 1, where i denotes the number of times the update
H ← G was carried out over the time interval (0, t). In the following,
the subscript s ∈ N denotes the switching index, and Hs denotes the

5Techniques such as probabilistic confidence checks [22] or exponentially
decaying singular value bounds [21] can also be utilized to initiate purging.
The following analysis is agnostic with respect to the trigger used for purging
provided G is full rank at the time of purging and the dwell time T is maintained
between two successive purges.

6Since a switching event in Algorithm 2 occurs only when the auxiliary
history stack is full, Zeno behavior is avoided by design.

history stack corresponding to the sth subsystem (i.e., the history stack
active during the time interval {t | ρ (t) = s}), containing the elements
{( ˙̂xsj , xsj , usj )}Mj=1 . To simplify the notation, let

As =
M∑

j=1

σ (xsj , usj ) σT (xsj , usj )

Qs =
M∑

j=1

σ (xsj , usj )
( ˙̃xT

sj + εT (xsj , usj )
)
.

Note that As : R≥0 → RP ×P and Qs : R≥0 → RP ×1 are piece-wise
constant functions of time.

Algorithm 1 ensures that there exists a constant a > 0 such that
λm in {As} ≥ a, ∀s ∈ N, where λm in denotes the minimum eigen-
value. Since the state x remains bounded by assumption, there exists a
constant A such that ‖As‖ ≤ A, ∀s ∈ N.

Using (2), the dynamics of the parameter estimation error, θ̃, can be
written as

˙̃
θ = −Γσ (x, u) x̃T − kΓAs θ̃ + kΓQs . (4)

To establish convergence of the state-derivative estimates, a filtered
tracking error, r ∈ Rn , is defined as r � ˙̃x + αx̃. Using (1), (3), and
(4), the time derivative of the filtered tracking error can be expressed
as

ṙ = − γx̃σT (x, u) Γσ (x, u)− kγθ̃T AT
s Γσ (x, u)− kx r

− x̃ + kγQT
s Γσ (x, u) + γθ̃T F (x, u, u̇) + E (x, u, u̇)

+ (1 − γ) θT F (x, u, u̇) (5)

where F (x, u, u̇) � ∇x σ (x, u) f (x, u) +∇u σ (x, u) u̇ and E(x, u,
u̇) � ∇x ε (x, u) f (x, u) +∇u ε (x, u) u̇. To facilitate the stability
analysis, let E , F , F

o
,x, and Γ be constants such that

‖E (x, u, u̇)‖ ≤ E, ‖F (x, u, u̇)‖ ≤ F , ‖Γ‖ = Γ,
∥
∥fo (x, u) + θT σ (x, u) + ε (x, u)

∥
∥ ≤ F

o
, ‖x‖ ≤ x (6)

for all t ∈ R≥0 . The following stability analysis is split into three parts.
In Part 1, it is established that provided the error states θ̃, x̃, and r
are bounded at a switching instance and that the norms of the state-
derivative estimates stored in the history stack are bounded, then θ̃,
x̃, and r decay to a bound before the next switching instance, where
the bound depends on the derivative estimation errors. In Part 2, it
is established that provided the error states x̃ and r are bounded at
a switching instance, then the derivative estimation error ˙̃x can be
made arbitrarily small before the next switching instance by increas-
ing the learning gains. In Part 3, the results of Part 1 and Part 2 are
used to conclude convergence of the error state θ̃ to a ball around the
origin.

Part 1: Boundedness of the Error Signals: Let
Z � [rT x̃T vec(θ̃)T ]T ∈ R2n +nP and let V : R2n +nP → R≥0

denote a candidate Lyapunov function defined as

V (Z) � 1
2
rT r +

1
2
x̃T x̃ +

1
2

tr
(
θ̃T Γ−1 θ̃

)
(7)

where vec (·) denotes the vectorization operator. Using
the Raleigh–Ritz Theorem and the fact that tr(θ̃T Γ−1 θ̃) =
(vec(θ̃))T (Γ−1 ⊗ In ) (vec(θ̃)), the Lyapunov function V can
be bounded as

v ‖Z‖2 ≤ V (Z) ≤ v ‖Z‖2 (8)
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where v � 1
2 max {1, λm ax {Γ−1}}, v � 1

2 min {1, λm in {Γ−1}} .
The subsequent stability analysis assumes that the learning gains k,
kx , and α, and the matrices As satisfy the following sufficient gain
conditions:7

a >
3σ2

kα
+

4γ2F
2

kkx

+
4kγ2σ2Γ

2
A

2

kx

, kx >
6γ2σ4Γ

2

α
. (9)

The following lemma focuses on a time interval [τ, τ + T ). The objec-
tive of the lemma is to find an envelope that bounds the trajectory of
the candidate Lyapunov function over the interval.

Lemma 1: Let τ, T ∈ R≥0 be constants such that ρ (t) = s, for all
t ∈ [τ, τ + T ). Let V s ∈ R> 0 be a constant such that the candidate
Lyapunov function V satisfies V (Z (τ )) ≤ V s . Then, V is bounded
over the entire interval [τ, τ + T ) as

V (Z(t))≤
(

V s−
v

v
ιs

)

e−
v
v

(t−τ ) +
v

v
ιs , ∀t∈ [τ, τ + T ) (10)

where ιs � ( k
2a

+ k 2 γ 2 σ 2 Γ
2

kx
)Q

2
s +

2(F θ+E )2
(1−γ )2

kx
, v � min{ k a

4 ,
α
3 , kx

8 }, and Qs � ‖Qs‖. Furthermore, the parameter estimation er-
ror can be bounded as

∥
∥
∥θ̃ (t)

∥
∥
∥ ≤ θs , ∀t ∈ [τ, τ + T ) (11)

where θs �
√

1
v

max{
√

V s ,
√

v
v
ιs}.

Proof: Provided the sufficient conditions in (9) are satisfied, (4) and
(5) can be used to bound the time derivative of the candidate Lyapunov
function V as

V̇ ≤ −v

v
V (Z) + ιs .

Using the comparison lemma [29, Lemma 3.4]

V (Z (τ )) ≤
(

V s −
v

v
ιs

)

e−
v
v

(t−τ ) +
v

v
ιs , ∀t∈ [τ, τ + T ) .

If V s ≥ v
v
ιs , then V (Z (τ )) ≤ V s . If V s < v

v
ιs , then V (Z (τ )) ≤

v
v
ιs . Hence, using the definition of Z and the bounds in (8), the bound

in (11) is obtained. �
Part 2: Exponential Decay of ˙̃x: Let Zr �

[
rT x̃T

]T ∈ R2n and
let Vr : R2n → R≥0 be a candidate Lyapunov function defined as
Vr (Zr ) � ‖Zr ‖2 . The following lemma establishes exponential con-
vergence of the derivative estimation error to a neighborhood of the
origin.

Lemma 2: Let all the conditions of Lemma 1 be satisfied. Let V rs

be a constant such that the candidate Lyapunov function Vr satis-
fies Vr (Zr (τ )) ≤ V rs . Then, Vr is bounded over the entire interval
[τ, τ + T ) as

Vr (Zr (t))≤
(

V rs−
ιr s

vr

)

e−v r (t−τ ) +
ιr s

vr

, ∀t∈ [τ, τ + T ) (12)

where vr=min
{

kx
2 , α

}
and ιr s � 4(E+(1−γ )θF )2

kx
+

4γ 2 (kA Γσ+F )2

kx
θ

2
s

+ 4γ 2 k 2 Γ
2
σ 2

kx
Q

2
s . Furthermore, given a constant εr ∈ R> 0 , the gain

kx can be selected large enough such that
∥
∥ ˙̃x (τ + T )

∥
∥ ≤ εr .

Proof: Provided the sufficient conditions in (9) are satisfied, (5)
and Lemma 1 can be used to bound the time derivative of the candidate
Lyapunov function Vr as

V̇r ≤ −vr Vr (Zr ) + ιr s .

7The sufficient conditions can be satisfied provided the gains kx and α are
selected large enough.

Using the comparison lemma [29, Lemma 3.4]

Vr (Zr (t)) ≤
(

V rs −
ιr s

vr

)

e−v r (t−τ ) +
ιr s

vr

, ∀t∈ [τ, τ + T ) .

Using the fact that ˙̃x = r − αx̃, the state-derivative estimation error can

be bounded as
∥
∥ ˙̃x
∥
∥2 ≤ ‖r‖2 + α ‖x̃‖2 ≤ (1 + α) Vr (Zr ) . Based on

(12), given V rs ≥ Vr (Zr (t)), εr > 0, the gain kx can be selected large

enough so that Vr (Zr (τ + T )) ≤ ε2
r

(1+α ) . Hence, given V rs , εr > 0,

the gain kx can be selected to be large enough so that
∥
∥ ˙̃x (τ + T )

∥
∥

≤ εr . �
In the following, the results of Lemmas 1 and 2 are used in an

inductive argument to show that all the states of the dynamical system
defined by (4) and (5) remain bounded and decay to a ball around the
origin provided enough data can be recorded to repopulate the history
stack after at-least two purges.

Part 3: Ultimate Boundedness Under Finite Excitation: To
facilitate the analysis, let {Ts ∈ R≥0 | s ∈ N} be a set of
switching time instances defined as Ts = {t | ρ (τ ) < s + 1,
∀τ ∈ [0, t) ∧ ρ (τ ) ≥ s + 1, ∀τ ∈ [t,∞)}. That is, for a given
switching index s, Ts denotes the time instance when the (s + 1)th
subsystem is switched ON. For notational brevity, let ζs �
4
(
E + (1 − γ) θF

)2
+ 4γ2

(
kσΓ

)2
Q

2
s + 4γ2

(
kAΓσ + F

)2
θ

2
s ,

� � 2
(
Fθ + E

)2
(1 − γ)2 , and β � ( k

2a
+ k 2 γ 2 σ 2 Γ

2

kx
).

Theorem 1: Let ε > 0 be given. Let the history stacks H and G
be populated using Algorithm 2. Let the learning gains be selected
to satisfy the sufficient gain conditions in (9) and the sufficient gain
condition

kx > max
{

32vr v
2Mσ (1 + α) ζ1β

v2v2 ε2 ,
4v�

vvε

}

. (13)

Let T ∈ R> 0 be a time instance such that the system states are
exciting over [0, T ], that is, the history stack can be replenished
if purged at any time t ∈ [0, T ]. Assume that over each switch-
ing interval {t | ρ (t) = s}, the dwell time, T , is selected such
that T (t) = Ts , where Ts is selected to be large enough to satisfy
(
V s − v

v
ιs

)
e−

v
v

(Ts ) ≤ v
v
ιs and

(
V rs − ι r s

v r

)
e−v r (Ts ) ≤ ι r 1

v r
. Fur-

thermore, assume that the excitation interval is large enough so that

T2 < T .8 Then, lim supt→∞

∥
∥
∥θ̃ (t)

∥
∥
∥ ≤ ε.

Proof: Since the history stack H1 is selected at random to contain
bounded elements, Q1 is bounded and all the conditions of Lemmas 1
and 2 are satisfied over the time interval [0, T1 ). Hence, V (Z (T1 )) ≤(
V 1 − v

v
ι1
)
e−

v
v

(T 1 ) + v
v
ι1 , where ι1 = βQ

2
1 + �

kx
. Using the bounds

in (6), Q1 can be computed as Q1 = qMσ(F
o

+ H1 ), where q > 1
is an adjustable parameter and H1 = maxi∈{1 , ··· ,M }

∥
∥ ˙̃x1 i

∥
∥. Further-

more, Vr (Zr (T1 )) ≤ (V r 1 − ι r 1
v r

)e−v r (T 1 ) + ι r 1
v r

, where ιr 1 = ζ 1
kx

and θ1 =
√

1
v

max{
√

V 1 ,
√

v
v
ι1}. Provided T1 is large enough

so that (V r 1 − ι r 1
v r

)e−v r (T 1 ) ≤ ι r 1
v r

and (V 1 − v
v
ι1 )e

− v
v

(T 1 ) ≤ v
v
ι1 ,

then Vr (Zr (T1 )) ≤ 2 ι r 1
v r

� V r 2 and V (Z (T1 )) ≤ 2 v
v
ι1 � V 2 , and

hence, Q2 is bounded.
Let εo > 0 be a constant, to be selected later. Provided the gain kx

is selected such that kx > max{ 2(1+α )ζ 1
v r εo 2 , 4v �

v v ε
}, then V r 2 ≤ εo 2

(1+α ) .

Since T2 < T by assumption, the constants q and V 1 can be selected
to ensure that Vr is bounded by a decaying envelope over the time

interval [T1 , T2 ); hence, supt∈[T 1 ,T 2 )

∥
∥ ˙̃x (t)

∥
∥2 ≤ (1 + α) V r 2 , that is,

8A minimum of two purges are required to remove the randomly initialized
data, and the data recorded during transient phase of the derivative estimator
from the history stack.
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supt∈[T 1 ,T 2 )

∥
∥ ˙̃x (t)

∥
∥ ≤ εo . Hence, Q3 is bounded and the bound Q3

can be selected as Q3 = Mσεo , which implies ι3 = βMσεo + �
kx

.

Selecting εo = v v ε

4v β M σ
, the inequality ι3 ≤ v v ε

2v
is obtained.

If the history stack is only purged twice, then over the in-
terval [T2 ,∞), the Lyapunov function satisfies V (Z (t)) ≤(
V 3 − v

v
ι3
)
e−

v
v

(t−T 2 ) + v
v
ι3 . Hence, lim supt→∞ V (Z (t)) ≤

v
v
ι3 = v ε

2 . Hence, using the bounds on the Lyapunov function in (8),
lim supt→∞ ‖θ̃ (t) ‖ ≤ ε.

The rest of the analysis concerns the case where the history stack
is continually purged whenever enough new data to satisfy the rank
condition is available. The challenge is to find conditions to avoid
error growth during the continual update process. To begin with,
the time-interval [T1 , T2 ) is considered. It is already established that
V (Z (T1 )) is bounded by V 2 � 2 v

v
ι1 . Hence, Lemma 1 can be ap-

plied over the time interval [T1 , T2 ) to conclude that V (Z (T2 )) ≤(
V 2 − v

v
ι2
)
e−

v
v

(T 2 −T 1 ) + v
v
ι2 . Provided T1 − T2 is large enough

so that (V 2 − v
v
ι2 )e

− v
v

(T 2−T 1 ) ≤ v
v
ι2 , then V (Z (T2 )) ≤ 2 v

v
ι2 , and

hence, Q3 is bounded. Similarly, Lemma 2 can be applied over the time
interval [T1 , T2 ) to conclude that provided T1 − T2 is large enough
so that (V r 2 − ι r 2

v r
)e−v r (T 2 −T 1 ) ≤ ι r 2

v r
, then Vr (Zr (T2 )) ≤ 2 ι r 2

v
.

By selecting the constant q such that q > max{1,

√
2(1+α )V r 1

(F
o

+H 1 )
},

it can be ensured that Q1 ≥ Q2 , hence, ι1 ≥ ι2 and V (Z (T1 )) ≥
V (Z (T2 )). Hence, θ1 ≥ θ2 . The inequalities Q1 ≥ Q2 and θ1 ≥ θ2

imply that ιr 1 ≥ ιr 2 , which in turn, implies that Vr (Zr (T1 )) ≥
Vr (Zr (T2 )) .

The inequality Vr (Zr (T1 )) ≥ Vr (Zr (T2 )) and the equation Qs =

Mσ
√

2 (1 + α) V r (s−1) imply that Q2 ≥ Q3 . Using Lemmas 1

and 2 along with the inequality Q2 ≥ Q3 , the inequalities relating
the candidate Lyapunov functions can be propagated to any given
interval [Ts−1 , Ts ) such that Vr (Zr (T1 )) ≥ Vr (Zr (T2 )) ≥ · · · ≥
Vr (Zr (Ts )), V (Z (T1 )) ≥ V (Z (T2 )) ≥ · · · ≥ V (Z (Ts )), ι1 ≥
ι2 ≥ · · · ≥ ιs , and ιr 1 ≥ ιr 2 ≥ · · · ≥ ιr s . In particular, for any
given s > 2, over the interval [Ts−1 ,∞), the candidate Lya-
punov function V satisfies V (Z (t)) ≤

(
V s − v

v
ιs

)
e−

v
v

(t−T s−1 ) +
v
v
ιs . Hence, lim supt→∞ V (Z (t)) ≤ v

v
ιs ≤ v

v
ι3 = v ε

2 . Hence, using
(8), lim supt→∞ ‖θ̃ (t) ‖ ≤ ε. �

Remark 1: The proof of Theorem 1 requires that for any given s,
the dwell time must be selected such that Ts−1 − Ts is large enough to
satisfy

(
V s − v

v
ιs

)
e−

v
v

(T s −T s−1 ) ≤ v
v
ιs . That is, V se

− v
v

(T s −T s−1 ) ≤
v
v
ιs . Since V s is the bound on V (Z (Ts−1 )) and ιs depends on

Qs , which in turn, depends on V s−1 , all the information required
to compute the dwell time for the interval [Ts−1 , Ts ) is available at
t = Ts−1 .

B. Special Case: Asymptotic Convergence

Theorem 1 establishes practical stability (i.e., uniform ultimate
boundedness) of the error system. Asymptotic convergence of the error
states to the origin can be established provided a perfect basis is avail-
able for the approximation of the function g, such that ε (x, u) = 0, for
all (x, u) ∈ χ, the system states are persistently excited such that the
history stack H can always be replaced with a new, full-rank history
stack, and the constant γ, that multiplies the feed-forward part of the
estimator, is set to 1.

Theorem 2: Provided γ = 1, ε (x, u) = 0, for all (x, u) ∈ χ, the
history stacks H and G are populated using Algorithm 2, a minimum
dwell time is maintained such that T (t) ≥ T , the sufficient gain condi-
tions in (9) and (14) are satisfied, and the system states are exciting such

that the history stackH can be persistently purged and replenished, i.e.

s→∞, as t→∞

then,
∥
∥
∥θ̃ (t)

∥
∥
∥→ 0, ‖r (t)‖ → 0, and ‖x̃ (t)‖ → 0 as t→∞.

Proof: Since γ = 1, the constant ιs can be expressed as ιs =
k
2a

Q
2
s + k 2 σ 2 Γ

2

kx
Q

2
s , i.e.,

ιs =
kM 2σ2 (1 + α)2 V r (s−1)

a
+

2k2σ2Γ
2
M 2σ2 (1 + α)2 V r (s−1)

kx

.

Let β = kM 2 σ 2 (1+α )2

2a
+ 2k 2 σ 2 Γ

2
M 2 σ 2 (1+α )2

kx
. Then, ιs = βV r (s−1) .

Similarly, the constant ιr s can be expressed as ιr s =
4(kA Γσ +F )2

kx
θ

2
s + 4k 2 Γ

2
σ 2

kx
Q

2
s . That is,

ιr s =
4
(
kσΓ

)2
M 2σ2 (1 + α)2

kx

V r (s−1) +
4
(
F + kσΓA

)2
θ

2
s

kx

.

From Lemma 1, θ
2
s = 1

v
max

{
V s ,

v
v
ιs

}
≤ 1

v
V s + v

v v
βV r (s−1) . Us-

ing the definitions � � 4(kσ Γ)2
M 2 σ 2 (1+α )2

kx
+

4v β (F + kσ ΓA)2

v v kx
and

ζ � 4(F + kσ ΓA)2
θ

2
s

v kx
, the constant ιr s can be bounded as ιr s ≤

�V r (s−1) + ζV s .
Lemmas 1 and 2, the bounds on ιs and ιr s , and the minimum

dwell time T imply that the bounds V s and V rs on the candi-
date Lyapunov functions can be selected to satisfy the recurrence
relations V s = V s−1e

− v
v
T + v

v
βV rs−2 and V rs = V r (s−1)e

−v r T +
�
vr

V r (s−2) + ζ
v r

V (s−1) . The recurrence relations form the discrete-
time linear time-invariant system

⎡

⎣
V s

V r (s−1)

V rs

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

e−
v
v
T v

v
β 0

0 0 1

ζ

vr

�

vr

e−v r T

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

V s−1

V r (s−2)

V r (s−1)

⎤

⎥
⎦ .

Provided the dwell-time and the learning gains are selected to satisfy

Re

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λm ax

⎡

⎢
⎢
⎢
⎢
⎣

e−
v
v
T v

v
β 0

0 0 1

ζ

vr

�

vr

e−v r T

⎤

⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

< 1 (14)

where Re {·} denotes the real part, then lims→∞ V s = 0 and
lims→∞ V rs = 0. �

V. SIMULATION RESULTS

The developed technique is simulated using a model for a two-link
robot manipulator arm. The uncertainty g (x, u) is linearly parameteri-
zable as gT (x, u) = θT σ (x, u) . That is, the selected model belongs to
a subclass of systems defined by (1), where the function approximation
error, ε, is zero. Since the ideal parameters, θ, are known, the selected
model facilitates quantitative analysis of the parameter estimation er-
ror. The 4-D state of the model is denoted by x �

[
x1 x2 x3 x4

]T
.
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TABLE I
SIMULATION RESULTS FOR THE DEVELOPED TECHNIQUE AND NUMERICAL

DIFFERENTIATION-BASED CL

Numerical Differentiation-Based CL Developed Technique

Noise variance 0.005 0.1 0.005 0.1
RMS steady-state error 1.75 17.55 0.27 0.46

Fig. 1. Trajectories of the system state and the parameter estimates. (a) State
trajectory. (b) Trajectories of the parameter estimates. Dashed lines represent
the ideal values.

The dynamics of the model are described by (1), where

f 0 (x, u) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x3

x4

− (M (x))−1 Vm (x)

[
x3

x4

]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎣

0 0

0 0

(M (x))−1

⎤

⎥
⎦ u

gT (x, u) = θT

⎡

⎢
⎢
⎣

0 0 0 0

0 0 0 0

[
(M (x))−1 (M (x))−1 ]D (x)

⎤

⎥
⎥
⎦

T

. (15)

Fig. 2. Performance of the state-derivative estimator. (a) State estimation error.
(b) State-derivative estimation error.

In (15), u ∈ R2 is the control input, D (x) � diag[x3 , x4 ,
tanh (x3 ) , tanh (x4 )], M (x) � [ p 1 +2p 3 c 2 (x ) ,

p 2 + p 3 c 2 (x ) ,
p 2 + p 3 c 2 (x ) ,

p 2
], and

Vm (x) � [−p 3 s2 (x )x 4 ,
p 3 s2 (x )x 3 ,

−p 3 s2 (x )(x 3 +x 4 )
0 ], where c2 (x) = cos (x2 ) ,

s2 (x) = sin (x2 ), and p1 = 3.473, p2 = 0.196, and p3 = 0.242 are
constants. The system has four unknown parameters. The ideal values
of the unknown parameters are θ =

[
5.3 1.1 8.45 2.35

]T
. The

history stack updates and the purging calculations are performed asyn-
chronously in a separate thread, and the simulations are performed in
real time.

The developed technique is compared against numerical
differentiation-based CL where the numerical derivatives are com-
puted using polynomial regression over a window of collected data.
The state measurements are filtered using a moving average filter for
state-derivative estimation. To facilitate the comparison, multiple sim-
ulation runs are performed using a combination of gains, window sizes,
and thresholds for two levels of noise. The low-noise and high-noise
simulations are performed by adding white Gaussian noise with vari-
ance 0.005 and 0.1, respectively, to the state measurements. The simu-
lations are repeated five times for each combination of gains, and the
gains, window sizes, and thresholds that yield the lowest steady-state
RMS error over five runs are selected for comparison. Table I indicates
that the developed technique outperforms numerical differentiation-
based CL in both of the cases. The following figures illustrate the
performance of the developed technique in one sample run with addi-
tive Gaussian noise with variance 0.005, a smoothing window of 80
samples, and the learning gains k = 5, γ = 1, τ = 0.0019, ξ = 0.95,
kx = diag (11, 11, 91, 91), and α = 1.

Fig. 1(a) shows the evolution of the system state, where the added
noise signal can be observed. Fig. 1(b) demonstrates convergence of the
unknown parameters to a neighborhood of their true values, where the
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Fig. 3. Purging index and the minimum singular value for the history stack.
(a) Minimum singular value of the history stack. (b) Purging index.

dashed lines represent the true values. Fig. 2(a) shows the convergence
of the state estimation error to a ball around the origin. Fig. 2(b) shows
the convergence of the state-derivative estimation error to a ball around
the origin. The transients in Figs. 2(a) and (b) necessitate the need for
history stack purging. Fig. 3(a) shows the minimum singular value of
the history stack H. The singular value is increasing because of the
thresholding algorithm. In this simulation, the threshold parameter, ξ,
is set to one. Fig. 3(b) shows the increments of the purging index, it
can be observed that the history stack gets purged faster initially as
transients offer significant data, and then, the rate of purging levels off
approximately to a constant as the system achieves steady state.9

To demonstrate the sensitivity of the developed technique to changes
in learning gains, a one-at-a-time sensitivity analysis is performed. To
reduce the computational load, the gains of the high-gain derivative
estimator are left unchanged. The parameters τ and ξ, introduced in
Algorithm 2, and the learning gain k, introduced in (2) are selected for
the sensitivity analysis. The values of the steady-state RMS error for
seven different values of each parameter are presented in Table II.

9The measurement noise does not inject excitation into the system since the
noisy measurements are used only for parameter estimation, and the true state
is used for feedback control.

TABLE II
SENSITIVITY ANALYSIS RESULTS FOR THE DEVELOPED TECHNIQUE

k = 2 3 4 5 6 7 8

RMS steady-state
error

0.61 0.39 0.30 0.31 0.33 0.46 0.57

ξ = 0.8 0.85 0.9 0.95 1 1.05 1.1

RMS steady-state
error

0.39 0.36 0.29 0.31 0.32 0.36 0.49

τ = 0.0012 0.0014 0.0016 0.0018 0.0020 0.0022 0.0024

RMS steady-state
error

0.35 0.38 0.36 0.31 0.33 0.32 0.36

The nominal values of k, τ , and ξ are selected to be ξ = 0.95, τ = 0.0018, and k = 5.
The noise variance is set to 0.005 and the values of the remaining parameters are selected
as kx = diag (11, 11, 91, 91), α = 1, and γ = 1, and a moving average filter window
of 80 samples is used to filter the state measurements.

The results in Table II indicate that the developed method is robust
to small changes in the learning gains.

VI. CONCLUDING REMARKS

A CL-based parameter estimator is developed for a nonlinear system.
An adaptive observer that employs full-state feedback is employed to
generate the state-derivative estimates required for CL. The developed
technique is validated via simulations on a nonlinear system where
the state measurements are corrupted by additive Gaussian noise. The
simulation results indicate that the developed technique yields better
results than numerical differentiation-based CL, even more so as the
variance of the additive noise is increased. Even though the simula-
tion results indicate a degree of robustness to measurement noise, the
theoretical development does not account for measurement noise.

Measurement noise affects the developed parameter estimator in two
ways. An error is introduced in the state-derivative estimates generated
using the adaptive observer, and an error is introduced via the history
stack since the state measurements recorded in the history stack are
corrupted by noise. The former can be addressed if a noise rejecting
observer such as a Kalman filter is used to generate the state-derivative
estimates. The latter can be addressed by the use of an inherently noise-
robust function approximation technique, e.g., a Gaussian process, to
approximate the system dynamics. An extension of the developed pa-
rameter estimator that uses output feedback and is provably robust to
measurement noise is a topic for future research.
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