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Model-Based Reinforcement Learning in Differential
Graphical Games

Rushikesh Kamalapurkar , Justin R. Klotz , Patrick Walters, and Warren E. Dixon

Abstract—This paper seeks to combine differential game theory
with the actor-critic-identifier architecture to determine forward-
in-time, approximate optimal controllers for formation tracking
in multiagent systems, where the agents have uncertain heteroge-
neous nonlinear dynamics. A continuous control strategy is pro-
posed, using communication feedback from extended neighbors
on a communication topology that has a spanning tree. A model-
based reinforcement learning technique is developed to coopera-
tively control a group of agents to track a trajectory in a desired
formation. Simulation results are presented to demonstrate the
performance of the developed technique.

Index Terms—Dynamic programming, graphical games, learn-
ing systems, networked control systems, optimal control.

I. INTRODUCTION

IN THE past few decades, reinforcement learning (RL)-based
techniques have been established as primary tools for online

real-time optimization [1]–[7]. RL techniques are valuable not
only for optimization but also for control synthesis in complex
systems such as a distributed network of cognitive agents.
Combined efforts from multiple autonomous agents can yield
tactical advantages, including improved munitions effects,
distributed sensing, detection, and threat response; and dis-
tributed communication pipelines [8], [9]. While coordinating
behaviors among autonomous agents is a challenging problem
that has received mainstream focus, unique challenges arise
when seeking optimal autonomous collaborative behaviors.
For example, most collaborative control literature focuses on
centralized approaches that require all nodes to continuously
communicate with a central agent, yielding a heavy commu-
nication demand that is subject to failure due to delays, and
missing information [10]. Furthermore, the central agent is
required to carry enough on-board computational resources
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to process the data and to generate command signals. These
challenges motivate the need to minimize communication for
guidance, navigation, and control tasks, and to distribute the
computational burden among the agents.

Since all of the agents in a network have independent col-
laborative or competitive objectives, the resulting optimization
problem is a multiobjective optimization problem. Differential
game theory is often used to define optimality in multiobjective
optimization problems [11]–[16]. For example, a Nash equilib-
rium solution to a multiobjective optimization problem is said to
be achieved if none of the players can benefit from a unilateral
deviation from the equilibrium [17]. Thus, Nash equilibrium
solutions provide a secure set of strategies in the sense that none
of the players have an incentive to diverge from their equilib-
rium policy. Hence, Nash equilibrium has been a widely used
solution concept in differential game-based control techniques.
Online real-time solutions to differential games with centralized
objectives are presented in results such as [18]–[22]; however,
since these results solve problems with centralized objectives
(i.e., each agent minimizes or maximizes a cost function that
penalizes the states of all agents in the network), they are not
applicable for a network of agents with independent decentral-
ized objectives (i.e., each agent minimizes or maximizes a cost
function that penalizes only the error states corresponding to
itself).

In this paper, the objective is to obtain an online forward-in-
time feedback-Nash equilibrium solution (cf. [23]–[28]) to an
infinite-horizon formation-tracking problem, where each agent
desires to follow a mobile leader while the group maintains a
desired formation. The agents try to minimize cost functions
that penalize their own formation-tracking errors and their own
control efforts.

Various methods have been developed to solve optimal track-
ing problems for multiagent linear systems. In [29]–[32], op-
timal controllers are developed to cooperatively control agents
with linear dynamics. In [33], a differential game-based ap-
proach is developed for unmanned aerial vehicles to achieve
distributed Nash strategies. In [34], an optimal consensus algo-
rithm is developed for a cooperative team of agents with linear
dynamics using only partial information.

For multiagent nonlinear systems, an MPC-based approach is
presented in [35]; however, no stability or convergence analysis
is presented. A stable distributed MPC-based approach is pre-
sented in [36] for nonlinear discrete-time systems with known
nominal dynamics. Asymptotic stability is proved without any
interaction between the nodes; however, a nonlinear optimal

2325-5870 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9963-5361
https://orcid.org/0000-0001-8393-7488


424 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

control problem needs to be solved at every iteration to imple-
ment the controller. An optimal tracking approach for formation
control is presented in [37] using single network adaptive critics
where the value function is learned offline. Recently, a leader-
based consensus algorithm is developed in [38] where the exact
model of the system dynamics is utilized, and convergence to op-
timality is obtained under a persistence of excitation condition.

For multiagent problems with decentralized objectives, the
desired action by an individual agent depends on the actions
and the resulting trajectories of its neighbors; hence, the error
system for each agent is a complex nonautonomous dynam-
ical system. Nonautonomous systems, in general, have non-
stationary value functions. Since nonstationary functions are
difficult to approximate using parameterized function approx-
imation schemes, such as neural networks (NNs), designing
optimal policies for nonautonomous systems is challenging.

Since the external influence from neighbors renders the dy-
namics of each agent nonautonomous, optimization in a net-
work of agents presents challenges similar to optimal track-
ing problems. Using insights gained from the authors’ previous
work on optimal tracking problems [39], this paper develops a
model-based RL technique to generate feedback-Nash equilib-
rium policies online, for agents in a network with cooperative
or competitive objectives. In particular, the network of agents is
separated into autonomous subgraphs, and the differential game
is solved separately on each subgraph.

The primary contribution of this paper is the formulation and
online approximate feedback-Nash equilibrium solution of an
optimal network formation-tracking problem. A relative con-
trol error minimization technique is introduced to facilitate the
formulation of a feasible infinite-horizon total-cost differential
graphical game. The dynamic programming-based feedback-
Nash equilibrium solution of the differential graphical game is
facilitated via the development of a set of coupled Hamilton-
Jacobi (HJ) equations. The developed approximate feedback-
Nash equilibrium solution is analyzed using Lyapunov-based
stability analysis to demonstrate ultimately bounded formation
tracking in the presence of uncertainties.

II. NOTATION

Throughout this paper: Rn denotes n-dimensional Euclidean
space, R>a denotes the set of real numbers strictly greater than
a ∈ R, and R≥a denotes the set of real numbers greater than or
equal to a ∈ R. Unless otherwise specified, the domain of all
functions is assumed to be R≥0 . Functions with domain R≥0 are
defined by abuse of notation using only their image. For exam-
ple, the function x : R≥0 → Rn is defined by abuse of notation
as x ∈ Rn . By abuse of notation, the state variables are also
used to denote state trajectories. For example, the state variable
x in the equation ẋ = f(x) + u is also used as x(t) to denote the
state trajectory, that is, the general solution x : R≥0 → Rn to
ẋ = f(x) + u evaluated at time t. Unless otherwise specified, all
of the mathematical quantities are assumed to be time-varying.
Unless otherwise specified, an equation of the form g(x) =
f + h(y, t) is interpreted as g(x(t)) = f(t) + h(y(t), t) for all
t ∈ R≥0 , and a definition of the form g(x, y) � f(y) + h(x) for
functions g : A × B → C, f : B → C and h : A → C is inter-

preted as g(x, y) � f(y) + h(x), ∀(x, y) ∈ A × B. The total
derivative ∂f (x)

∂x is denoted by ∇f and the partial derivative
∂f (x,y )

∂x is denoted by ∇xf(x, y). An n × n identity matrix is
denoted by In , n × m matrices of zeros and ones are denoted
by 0n×m and 1n×m , respectively, and 1S denotes the indicator
function of the set S.

III. GRAPH THEORY PRELIMINARIES

Consider a set of N autonomous agents moving in the state
space Rn . The control objective is for the agents to maintain
a desired formation with respect to a leader. The state of the
leader is denoted by x0 ∈ Rn . The agents are assumed to be on
a network with a fixed communication topology modeled as a
static directed graph (i.e., digraph).

Each agent forms a node in the digraph. The set of all nodes
excluding the leader is denoted by N = {1, . . . N} and the
leader is denoted by node 0. If node i can receive informa-
tion from node j then there exists a directed edge from the jth
to the ith node of the digraph, denoted by the ordered pair (j, i).
Let E denote the set of all edges. Let there be a positive weight
aij ∈ R associated with each edge (j, i). Note that aij �= 0 if
and only if (j, i) ∈ E. The digraph is assumed to have no re-
peated edges, i.e., (i, i) /∈ E,∀i, which implies aii = 0,∀i. The
neighborhood sets of node i are denoted by N−i and Ni , defined
as N−i � {j ∈ N | (j, i) ∈ E} and Ni � N−i ∪ {i}.

To streamline the analysis, an adjacency matrixA ∈ RN ×N is
defined as A � [aij | i, j ∈ N ], a diagonal pinning gain matrix
A0 ∈ RN ×N is defined as A0 � diag([a10 , . . . , aN 0 ]), an in-
degree matrix D ∈ RN ×N is defined as D � diag(di), where
di �

∑
j∈Ni

aij , and a graph Laplacian matrix L ∈ RN ×N is

defined as L � D −A. The graph is assumed to have a span-
ning tree, that is, given any node i, there exists a directed path
from node 0 to node i. A node j is said to be an extended
neighbor of node i if there exists a directed path from node j
to node i. The extended neighborhood set of node i, denoted by
S−i , is defined as the set of all extended neighbors of node
i. Formally, S−i � {j ∈ N | j �= i ∧ ∃κ ≤ N, {j1 , . . . jκ} ⊂
N | {(j, j1), (j1 , j2), . . . , (jκ , i)} ⊂ 2E }. Let Si � S−i ∪ {i},
and let the edge weights be normalized such that

∑
j aij = 1

for all i ∈ N . Note that the subgraphs are nested in the sense
that Sj ⊆ Si for all j ∈ Si .

IV. PROBLEM FORMULATION

The state xi ∈ Rn of each agent evolves according to the
control affine dynamics

ẋi = fi (xi) + gi (xi) ui, (1)

where ui ∈ Rmi denotes the control input, and fi : Rn →
Rn and gi : Rn → Rn×mi are locally Lipschitz continuous
functions.

Assumption 1: The dynamics of the leader are described by
ẋ0 = f0(x0), where f0 : Rn → Rn is a locally Lipschitz contin-
uous function. The function f0 , and the initial condition x0(t0)
are selected such that the trajectory x0(t) is uniformly bounded
for all t ∈ R≥t0 .
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The control objective is for the agents to maintain a prede-
termined formation (with respect to an inertial reference frame)
around the leader while minimizing their own cost functions. For
all i ∈ N , the ith agent is aware of its constant desired relative
position xdij ∈ Rn with respect to all of its neighbors j ∈ N−i ,
such that the desired formation is realized when xi − xj → xdij

for all i, j ∈ N .1 To facilitate the control design, the formation is
expressed in terms of a set of constant vectors {xdi0 ∈ Rn}i∈N
where each xdi0 denotes the constant final desired position of
agent i with respect to the leader. The vectors {xdi0}i∈N are un-
known to the agents not connected to the leader, and the known
desired interagent relative position can be expressed in terms of
{xdi0}i∈N as xdij = xdi0 − xdj0 . The control objective is thus
satisfied when xi → xdi0 + x0 for all i ∈ N . To quantify the
objective, local neighborhood tracking error signals are defined
as

ei =
∑

j∈{0}∪N−i

aij ((xi − xj ) − xdij ) . (2)

To facilitate the analysis, the error signals in (2) are expressed
in terms of the unknown leader-relative desired positions as

ei =
∑

j∈{0}∪N−i

aij ((xi − xdi0) − (xj − xdj0)) . (3)

Stacking the error signals in a vector E �
[ eT

1 , eT
2 , · · · , eT

N ]T ∈ RnN the equation in (3)
can be expressed in a matrix form

E = ((L + A0) ⊗ In ) (X − Xd −X0) , (4)

where X = [xT
1 , xT

2 , . . . , xT
N ]T ∈ RnN , Xd =

[xT
d10 , x

T
d20 , . . . , x

T
dN 0 ]

T ∈ RnN , X0 = [xT
0 , xT

0 , . . . , xT
0 ]T

∈ RnN , and ⊗ denotes the Kronecker product. Us-
ing (4), it can be concluded that provided the matrix
((L + A0) ⊗ In ) ∈ RnN ×nN is nonsingular, ‖E‖ → 0 implies
xi → xdi0 + x0 for all i ∈ N and, hence, the satisfaction of
control objective. The matrix ((L + A0) ⊗ In ) is nonsingular
provided the graph has a spanning tree with the leader at the root
[40]. To facilitate the formulation of an optimization problem,
the following section explores the functional dependence of the
state-value functions for the network of agents.

A. Elements of the Value Function

The dynamics for the open-loop neighborhood tracking

error are ėi =
∑

j∈{0}∪N−i
aij

(
fi(xi) + gi(xi)ui − fj (xj ) −

gj (xj )uj

)
. Under the temporary assumption that each controller

ui is an error-feedback controller, i.e., ui(t) = ûi(ei(t), t), the

error dynamics are expressed as ėi =
∑

j∈{0}∪N−i
aij

(
fi(xi) +

gi(xi)ûi(ei, t) − fj (xj ) − gj (xj )ûj (ej , t)
)

. Thus, the error

trajectory {ei(t)}∞t=t0
, where t0 denotes the initial time, de-

pends on ûj (ej (t), t), ∀j ∈ Ni . Similarly, the error trajectory

1The vectors xdij are assumed to be fixed in an inertial reference frame, that
is, the final desired formation is rigid and its motion in an inertial reference
frame can be described as pure translation.

{ej (t)}∞t=t0
depends on ûk (ek (t), t),∀k ∈ Nj . Recursively, the

trajectory {ei(t)}∞t=t0
depends on ûj (ej (t), t) and, hence, on

ej (t),∀j ∈ Si . Thus, even if the controller for each agent is
restricted to use local error feedback, the resulting error trajec-
tories are interdependent. In particular, a change in the initial
condition of one agent in the extended neighborhood causes a
change in the error trajectories corresponding to all of the ex-
tended neighbors. Consequently, the value function correspond-
ing to an infinite-horizon optimal control problem where each
agent tries to minimize

∫∞
t0

(Q(ei(τ)) + R(ui(τ)))dτ , where
Q : Rn → R and R : Rmi → R are positive definite functions,
is dependent on the error states of all the extended neighbors.

Since the steady-state controllers required for formation
tracking are generally nonzero, quadratic total-cost optimal con-
trol problems result in infinite costs and, hence, are infeasible.
In the following section, relative steady-state controllers are de-
rived to facilitate the formulation of a feasible optimal control
problem.

B. Optimal Formation-Tracking Problem

When the agents are perfectly tracking the desired trajectory
in the desired formation, even though the states of all the agents
are different, the time derivatives of the states of all agents are
identical. Hence, in steady state, the control signal applied by
each agent must be such that the time derivatives of the states
corresponding to the set of extended neighbors are identical. In
particular, the relative control signal uij ∈ Rmi that will keep
node i in its desired relative position with respect to node j ∈
S−i , i.e., xi = xj + xdij , must be such that the time derivative of
xi is the same as the time derivative of xj . Using the dynamics
of the agents from (1), and substituting the desired relative
positions xj + xdij for the states xi , the relative control signals
uij must satisfy

fi (xj + xdij ) + gi (xj + xdij ) uij = ẋj . (5)

The relative steady-state control signals can be expressed in an
explicit form provided the following assumption is satisfied.

Assumption 2: The matrix gi(x) is full rank for all
i ∈ N and for all x ∈ Rn ; furthermore, the relative
steady-state control signal expressed as uij = fij (xj ) +
gij (xj )uj , satisfies (5) along the desired trajectory,
where fij (xj ) � g +

i (xj + xdij )(fj (xj ) − fi(xj + xdij )) ∈
Rmi , gij (xj ) � g +

i (xj + xdij )gj (xj ) ∈ Rmi ×mj , g0(x) � 0
for all x ∈ Rn , ui0 ≡ 0 for all i ∈ N , and g +

i (x) denotes a
pseudoinverse of the matrix gi(x) for all x ∈ Rn and for all
i ∈ N .

Assumption 2 places restrictions on the control-effectiveness
matrices. The matrices gi(x) are full rank for a large class of
systems including, but not limited to, kinematic wheels and
fully actuated Euler-Lagrange systems with invertible inertia
matrices. The second part of Assumption 2 requires the existence
of a feedback controller that can keep the system on the desired
trajectory if the system starts on the desired trajectory. This
assumption depends on the systems, the network, the desired
formation, and the desired trajectory; hence, insights into its
satisfaction are hard to obtain in general. The satisfaction of this
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assumption needs to be verified on a case-by-case basis. For
example, consider a kinematic wheel modeled as

ẋ = g (x)u, g (x) =

⎡

⎢
⎢
⎣

cos (x3) 0

sin (x3) 0

0 1

⎤

⎥
⎥
⎦. (6)

In this case, provided the formation satisfies xdij (3) = 0, that
is, the target formation is such that all of the kinematic wheels
have the same steering angle, the functions fij and gij can be
computed as fij = 0, and gij = I2 . The relative steady-state
control is then uij = uj , which satisfies g(xj + xdij )uj = ẋj

and, hence, Assumption 2 holds.
To facilitate the formulation of an optimal formation-tracking

problem, define the control errors μi ∈ Rmi as

μi �
∑

j∈N−i ∪{0}
aij (ui − uij ) . (7)

The control errors {μi} are treated as the design variables in
the remainder of this paper. Since the control errors {μi} are
designed and the controllers {ui} are implemented in prac-
tice, it is essential to invert the relationship in (7). To facili-
tate the inversion, let So

i � {1, . . . , si}, where si � |Si |. Let
λi : So

i → Si be a bijective map such that λi(1) = i and let λ
j
i

denote λi(j). For notational brevity, let (·)Si
denote the concate-

nated vector [(·)T
λ1

i
, (·)T

λ2
i
, . . . , (·)T

λ
s i
i

]T , let (·)S−i
denote the con-

catenated vector [(·)T
λ2

i
, . . . , (·)T

λ
s i
i

]T , let
∑i denote

∑
j∈N−i ∪{0},

let Ei � [eT
Si

, xT
λ1

i
]T ∈ Rn(si +1) , and let E−i � [eT

S−i
, xT

λ1
i
]T

∈ Rnsi . Then, the control error vectors μSi
∈ R

∑
k ∈Si

mk can
be expressed as

μSi
= Lgi (Ei) uSi

− Fi (Ei) , (8)

where the matrices Lgi : Rn(si +1) → R
∑

k ∈Si
mk ×

∑
k ∈Si

mk are
defined by

[Lgi (Ei)]kl =

⎧
⎪⎨

⎪⎩

−aλk
i λl

i
gλk

i λl
i

(
xλl

i

)
, ∀l �= k,

∑λk
i aλk

i j Im
λk
i

, ∀l = k,

where k, l = 1, 2, . . . , si , and Fi : Rn(si +1) → R
∑

k ∈Si
mk are

defined as

Fi(Ei)�

⎡

⎣
i∑

aλ1
i j f

T
λ1

i j (xj),· · ·,
λ

s i
i∑

aλ
s i
i j f

T
λ

s i
i j

(xj)

⎤

⎦

T

.

Assumption 3: The matrix Lgi(Ei(t)) is invertible for all
t ∈ R and for all i ∈ N .

Assumption 3 is a controllability-like condition. Intuitively,
Assumption 3 requires the control effectiveness matrices to be
compatible to ensure the existence of relative control inputs that
allow the agents to follow the desired trajectory in the desired
formation. Assumption 3 depends on the systems, the network,
the desired formation, and the desired trajectory; hence, insights
into its satisfaction are hard to obtain in general. The satisfaction
of this assumption needs to be verified on a case-by-case ba-
sis. For example, consider the kinematic wheel in (6). Provided

the formation satisfies xdij (3) = 0, that is, the target formation
is such that all of the kinematic wheels have the same steer-
ing angle, we have gij = I2 , and, hence, the matrices Lgi are
given by

[Lgi (Ei)]kl =

⎧
⎨

⎩

−aλk
i λl

i
I2 , ∀l �= k,

∑λk
i aλk

i j I2 , ∀l = k,

It can be shown that Lgi = LSi
⊗ I2 , where LSi

denotes the
Laplacian matrix corresponding to the subgraph Si . Hence, the
graph connectivity condition ensures that the matrices Lgi are
invertible, and in this specific case, Assumption 3 holds.

Using Assumption 3, the control vectors can be expressed as

uSi
= L −1

gi (Ei) μSi
+ L −1

gi (Ei) Fi (Ei) . (9)

Let L k
gi denote the (λ−1

i (k))th block row of L −1
gi . Then, the

controllers ui can be implemented as

ui = L i
g i (Ei) μSi

+ L i
g i (Ei) Fi (Ei) , (10)

and for any j ∈ N−i ,

uj = L j
gi (Ei) μSi

+ L j
gi (Ei) Fi (Ei) . (11)

Using (10) and (11), the error and the state dynamics for the
agents can be represented as

ėi = Fi (Ei) + Gi (Ei) μSi
, (12)

and

ẋi = Fi (Ei) + Gi (Ei) μSi
, (13)

where

Fi (Ei) �
i∑

aij gi (xi) L i
g i (Ei) Fi (Ei)−

i∑
aij fj (xj )

−
i∑

aij gj (xj ) L j
gi (Ei) Fi (Ei) +

i∑
aij fi (xi) ,

Gi (Ei) �
i∑

aij

(
gi (xi) L i

g i (Ei) − gj (xj ) L j
gi (Ei)

)
,

Fi (Ei) � fi (xi) + gi (xi) L i
g i (Ei) Fi (Ei) ,

and Gi(Ei) � gi(xi)L i
g i(Ei).

Let h
μi ,μS−i

ei (t, t0 , Ei0) and h
μi ,μS−i

xi (t, t0 , Ei0) denote the tra-
jectories of (12) and (13), respectively, with the initial time
t0 , initial condition Ei(t0) = Ei0 , and policies μj : Rn(si +1) →
Rmi , j ∈ Si , and let Hi � [(he)T

Si
, hT

xλ1
i
]T . Define the cost

functionals

Ji (ei (·) , μi (·)) �
∫ ∞

0
ri (ei (σ) , μi (σ)) dσ (14)

where ri : Rn × Rmi → R≥0 denote the local costs defined
as ri(ei, μi) � Qi(ei) + μT

i Riμi, where Qi : Rn → R≥0 are
positive definite functions, and Ri ∈ Rmi ×mi are constant pos-
itive definite matrices. The objective of each agent is to mini-
mize the cost functional in (14). To facilitate the definition of a
feedback-Nash equilibrium solution, define the value functions
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Vi : Rn(si +1) → R≥0 as

V
μi ,μS−i

i (Ei) �
∫ ∞

t

ri

(
h

μi ,μS−i

ei (σ, t, Ei) ,

μi

(
Hμi ,μS−i

i (σ, t, Ei)
))

dσ, (15)

where V
μi ,μS−i

i (Ei) denotes the total cost-to-go for Agent i un-
der the policies μSi

, when the subgraph Si starts from the state
Ei . Note that the value functions in (15) are time-invariant be-
cause the dynamical systems {ėj = Fj (Ei) + Gj (Ei)μSj

}j∈Si

and ẋi = Fi(Ei) + Gi(Ei)μSi
together form an autonomous dy-

namical system.
A graphical feedback-Nash equilibrium solution within the

subgraph Si is defined as the tuple of policies {μ∗
j : Rn(sj +1) →

Rmj }j∈Si
such that the value functions in (15) satisfy

V ∗
j (Ej ) � V

μ∗
j ,μ∗

S−j

j (Ej ) ≤ V
μj ,μ∗

S−j

j (Ej ) ,

for all j ∈ Si , for all Ei ∈ Rn(si +1) and for all admissible poli-
cies μj . Provided a feedback-Nash equilibrium solution exists
and the value functions (15) are continuously differentiable for
all i ∈ N , the feedback-Nash equilibrium value functions can be
characterized in terms of the following system of HJ equations:
∑

j∈Si

∇ej
V ∗

i (Ei)
(
Fj (Ei) + Gj (Ei) μ∗

Sj
(Ei)

)

+ ∇xi
V ∗

i (Ei)
(Fi (Ei) + Gi (Ei) μ∗

Si
(Ei)

)

+ Qi (Ei) + μ∗T
i (Ei) Riμ

∗
i (Ei) = 0, ∀E i ∈ Rn(si +1) ,

(16)

where Qi : Rn(si +1) → R is defined as Qi(Ei) � Qi(ei).
Theorem 1: Provided a feedback-Nash equilibrium solu-

tion exists and that the value functions in (15) are continu-
ously differentiable, the system of HJ equations in (16) consti-
tutes a necessary and sufficient condition for {μ∗

j : Rn(sj +1) →
Rmj }j∈Si

to be a feedback-Nash equilibrium solution within the
subgraph Si .

Proof: Consider the cost functional in (14), and assume that
all of the extended neighbors of the ith agent follow their
feedback-Nash equilibrium policies. The value function cor-
responding to any admissible policy μi can be expressed as

V
μi ,μ

∗
S−i

i

([
eT
i , ET

−i

]T )
=
∫ ∞

t

ri

(

h
μi ,μ

∗
S−i

ei (σ, t, Ei) ,

μi

(
Hμi

i , μ∗
S−i

(σ, t, Ei)
))

dσ .

Treating the dependence on E−i as explicit time dependence
define

V
μi ,μ

∗
S−i

i (ei, t) � V
μi ,μ

∗
S−i

i

([
eT
i , ET

−i (t)
]T )

, (17)

for all ei ∈ Rn and for all t ∈ R≥0 . Assuming that the opti-
mal controller that minimizes (14) when all of the extended
neighbors follow their feedback-Nash equilibrium policies ex-

ists, and that the optimal value function V
∗
i � V

μ∗
i ,μ

∗
S−i

i exists
and is continuously differentiable, optimal control theory for

single objective optimization problems (cf. [41]) can be used to
derive the following necessary and sufficient condition:

∂V
∗
i (ei, t)
∂ei

(
Fi (Ei) + Gi (Ei) μ∗

Si
(Ei)

)
+

∂V
∗
i (ei, t)
∂t

+ Qi (ei) + μ∗T
i (Ei) Riμ

∗
i (Ei) = 0. (18)

Using (17), the partial derivative with respect to the state can be
expressed as

∂V
∗
i (ei, t)
∂ei

=
∂V ∗

i (Ei)
∂ei

, (19)

for all ei ∈ Rn and for all t ∈ R≥0 , and the partial derivative
with respect to time can be expressed as

∂V
∗
i (ei, t)
∂t

=
∂V ∗

i (Ei)
∂xi

(Fi (Ei) + Gi (Ei) μ∗
Si

(Ei)
)

+
∑

j∈S−i

∂V ∗
i (Ei)
∂ej

(
Fj (Ei) + Gj (Ei) μ∗

Sj
(Ei)

)
,

(20)

for all ei ∈ Rn and for all t ∈ R≥0 . Substituting (19) and (20)
into (18) and repeating the process for each i, the system of HJ
equations in (16) is obtained. �

Minimizing the HJ equations using the stationary condi-
tion, the feedback-Nash equilibrium solution is expressed in the
explicit form

μ∗
i (Ei) = −1

2
R−1

i

∑

j∈Si

(
G i

j (Ei)
)T (∇ej

V ∗
i (Ei)

)T

− 1
2
R−1

i

(Gi
i (Ei)

)T (∇xi
V ∗

i (Ei))
T , (21)

for all Ei ∈ Rn(si +1) , where G i
j � Gj

∂μ∗
Sj

∂μ∗
i

, and Gi
i � Gi

∂μ∗
Si

∂μ∗
i

.
Since an analytical solution of system of HJ equations in
(16) is generally infeasible to obtain, the feedback-Nash
value functions and the feedback-Nash policies are approxi-
mated using parametric approximation schemes V̂i(Ei , Ŵci) and
μ̂i(Ei , Ŵai), respectively, where Ŵci ∈ RLi and Ŵai ∈ RLi are
parameter estimates. Substitution of the approximations V̂i and
μ̂i in (16) leads to a set of Bellman errors (BEs) δi defined as

δi

(
Ei , Ŵci ,

(
Ŵa

)

Si

)
� μ̂T

i

(
Ei , Ŵai

)
Rμ̂i

(
Ei , Ŵai

)

+
∑

j∈Si

∇ej
V̂i

(
Ei , Ŵci

)
Gj

(
Ej

)
μ̂Sj

(
Ej ,
(
Ŵa

)

Sj

)

+ ∇xi
V̂i

(
Ei , Ŵci

)(
Fi

(
Ei

)
+ Gi

(
Ei

)
μ̂Si

(
Ei ,
(
Ŵa

)

Si

))

+
∑

j∈Si

∇ej
V̂i

(
Ei , Ŵci

)
Fj

(
Ej

)
+ Qi

(
ei

)
. (22)

Approximation of the feedback-Nash equilibrium policies is
realized by tuning the estimates V̂i and μ̂i in order to minimize
the BEs δi . However, computation of δi in (22) and uij in
(7) requires exact model knowledge. In the following text, a
concurrent learning (CL)-based system identifier is developed
to relax the exact model knowledge requirement and to facilitate



428 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

the implementation of model-based RL via BE extrapolation (cf.
[39]). In particular, the developed controllers do not require the
knowledge of the system drift functions fi .

V. SYSTEM IDENTIFICATION

On any compact set χ ⊂ Rn the function fi can be repre-
sented using a NN as

fi (x) = θT
i σθi (x) + εθi (x) , (23)

for all x ∈ Rn , where θi ∈ R(Pi +1)×n denote the unknown
output-layer NN weights, σθi : Rn → RPi +1 denotes a bounded
NN basis function, εθi : Rn → Rn denotes the function re-
construction error, and Pi ∈ N denotes the number of NN
neurons. Using the universal function approximation prop-
erty of single layer NNs, provided the rows of σθi(x) form
a proper basis, there exist constant ideal weights θi and posi-
tive constants θi ∈ R and εθi ∈ R such that ‖θi‖F ≤ θi < ∞
and supx∈χ ‖εθi(x)‖ ≤ εθi , where ‖ · ‖F denotes the Frobenius

norm, i.e., ‖θ‖F �
√

tr(θT θ).
Assumption 4: The bounds θi and εθi are known for all i ∈

N .
Using an estimate θ̂i ∈ R(Pi +1)×n of the weight matrix

θi, the function fi can be approximated by the function
f̂i : Rn × R(Pi +1)×n → Rn defined by f̂i(x, θ̂) � θ̂T σθi(x).
Based on (23), an estimator for online identification of the drift
dynamics is developed as

˙̂xi = θ̂T
i σθi (xi) + gi (xi) ui + kix̃i , (24)

where x̃i � xi − x̂i , and ki ∈ R is a positive constant learn-
ing gain. The following assumption facilitates CL-based system
identification.

Assumption 5. [42], [43] A history stack containing
recorded state-action pairs {xk

i , uk
i }Mθ i

k=1 along with numerically
computed state derivatives { ˙̄xk

i }Mθ i

k=1 that satisfies

λmin

(
Mθ i∑

k=1

σk
θi

(
σk

θi

)T
)

= σθi > 0,

∥
∥ ˙̄xk

i − ẋk
i

∥
∥ < di, ∀k (25)

is available a priori. In (25), σk
θi � σθi(xk

i ), di , σθi ∈ R are
known positive constants, and λmin(·) denotes the minimum
eigenvalue.

The weight estimates θ̂i are updated using the following CL-
based update law:

˙̂
θi =kθiΓθi

Mθ i∑

k=1

σk
θi

(
˙̄xk
i −gk

i uk
i −θ̂T

i σk
θi

)T

+Γθiσθi(xi)x̃T
i ,

(26)
where gk

i � gi(xk
i ), kθi ∈ R is a constant positive CL gain,

and Γθi ∈ R(Pi +1)×(Pi +1) is a constant, diagonal, and positive
definite adaptation gain matrix.

To facilitate the subsequent stability analysis, a candidate
Lyapunov function V0i : Rn × R(Pi +1)×n → R is selected as

V0i

(
x̃i , θ̃i

)
� 1

2
x̃T

i x̃i +
1
2

tr
(
θ̃T

i Γ−1
θi θ̃i

)
, (27)

where θ̃i � θi − θ̂i and tr(·) denotes the trace of a ma-
trix. Using (24)–(26), the identity tr(θ̃T (

∑Mθ i

j=1 σj
θiσ

j
θi)θ̃) =

(vec(θ̃i))T ((
∑Mθ i

j=1 σj
θiσ

j
θi) ⊗ IPi +1)(vec(θ̃i)), and the facts

that λmin{((
∑Mθ i

j=1 σj
θiσ

j
θi) ⊗ IPi +1)} = λmin{

∑Mθ i

j=1 σj
θiσ

j
θi}

and λmax{((
∑Mθ i

j=1 σj
θiσ

j
θi) ⊗ IPi +1)} = λmax{

∑Mθ i

j=1 σj
θiσ

j
θi}

(cf. [44, Theorem 4.2.12]), the following bound on the time
derivative of V0i is established:

V̇0i ≤−ki‖x̃i‖2− kθiσθi

∥
∥
∥θ̃i

∥
∥
∥

2

F
+ εθi‖x̃i‖+ kθidθi

∥
∥
∥θ̃i

∥
∥
∥

F
,

(28)
where dθi � di

∑Mθ i

k=1 ‖σk
θi‖ +

∑Mθ i

k=1(‖εk
θi‖‖σk

θi‖). Using (27)
and (28), a Lyapunov-based stability analysis can be used
to show that θ̂i converges exponentially to a neighborhood
around θi .

VI. APPROXIMATION OF THE BE AND THE RELATIVE

STEADY-STATE CONTROLLER

Using the approximations f̂i for the functions fi , the BEs in
(22) can be approximated as

δ̂i

(

Ei ,Ŵci ,
(
Ŵa

)

Si

, θ̂Si

)

� μ̂T
i

(
Ei , Ŵai

)
Riμ̂i

(
Ei , Ŵai

)

+ ∇xi
V̂i

(
Ei , Ŵci

)(

F̂i

(
Ei , θ̂Si

)
+Gi (Ei) μ̂Si

(

Ei ,
(
Ŵa

)

Sj

))

+
∑

j∈Si

∇ej
V̂i

(
Ei , Ŵci

)
Gj (Ej ) μ̂Sj

(

Ej ,
(
Ŵa

)

Sj

)

+
∑

j∈Si

∇ej
V̂i

(
Ei , Ŵci

)
F̂j

(
Ej , θ̂Sj

)
+ Qi (ei) . (29)

In (29),

F̂i

(
Ei , θ̂Si

)
�
∑iaij

(
f̂i

(
xi, θ̂i

)
− f̂j

(
xj , θ̂j

))

+
∑iaij

(
gi (xi) L i

g i−gj (xj ) L j
gi

)

× F̂i

(
Ei , θ̂Si

)
,

F̂i

(
Ei , θ̂Si

)
� θ̂T

i σθi (xi) + gi (xi) L i
g i F̂i

(
Ei , θ̂Si

)
,

F̂i

(
Ei , θ̂Si

)
�

⎡

⎢
⎢
⎢
⎣

(∑λ1
i aλ1

i j f̂λ1
i j

(
xλ1

i
, θ̂λ1

i
, xj , θ̂j

))

...(∑λ
s i
i aλ

s i
i j f̂λ

s i
i j

(
xλ

s i
i

, θ̂λ
s i
i

, xj , θ̂j

))

⎤

⎥
⎥
⎥
⎦

,

f̂ij

(
xi, θ̂i , xj , θ̂j

)
� g +

i (xj + xdij ) f̂j

(
xj , θ̂j

)

− g +
i (xj + xdij ) f̂i

(
xj + xdij , θ̂i

)
.

The approximations F̂i , F̂i , and F̂i are related to the
original unknown functions as F̂i(Ei , θSi

) + Bi(Ei) = Fi(Ei),
F̂i(Ei , θSi

) + Bi(Ei) = Fi(Ei), and F̂i(Ei , θSi
) + Bi(Ei) =

Fi(Ei), where Bi, Bi , and Bi are O((εθ )Si
) terms that denote

bounded function approximation errors.
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Using the approximations f̂i , an implementable form of the
controllers in (9) is expressed as

uSi
= L −1

gi (Ei) μ̂Si

(

Ei ,
(
Ŵa

)

Si

)

+ L −1
gi F̂i (Ei , θSi

) .

(30)
Using (8) and (30), an unmeasurable form of the virtual con-
trollers implemented on the systems (12) and (13) is given by

μSi
= μ̂Si

(

Ei ,
(
Ŵa

)

Si

)

− F̂i

(
Ei , θ̃Si

)
− Bi (Ei) . (31)

VII. VALUE FUNCTION APPROXIMATION

On any compact set χ ∈ Rn(si +1) , the value functions can be
represented as

V ∗
i (Ei) = WT

i σi (Ei) + εi (Ei) , ∀Ei ∈ Rn(si +1) , (32)

where Wi ∈ RLi are ideal NN weights, σi : Rn(si +1) → RLi

are NN basis functions and εi : Rn(si +1) → R are function ap-
proximation errors. Using the universal function approximation
property of single layer NNs, provided σi(Ei) forms a proper
basis, there exist constant ideal weights Wi and positive con-
stants Wi ∈ R and εi ,∇εi ∈ R such that ‖Wi‖ ≤ Wi < ∞,
supEi ∈χ ‖εi(Ei)‖ ≤ εi , and supEi ∈χ ‖∇εi(Ei)‖ ≤ ∇εi .

Assumption 6: The constants εi ,∇εi , and Wi are known for
all i ∈ N .

Using (21) and (32), the feedback-Nash equilibrium policies
are

μ∗
i (Ei) = −1

2
R−1

i Gσi (Ei) Wi − 1
2
R−1

i Gεi (Ei) ,

for all Ei ∈ Rn(si +1) , where Gσi(Ei) �
∑

j∈Si
(G i

j (Ei))T

(∇ej
σi(Ei))T + (Gi

i (Ei))T (∇xi
σi(Ei))T and Gεi(Ei) �∑

j∈Si
(G i

j (Ei))T (∇ej
εi(Ei))T + (Gi

i (Ei))T (∇xi
εi(Ei))T . The

value functions and the policies are approximated using NNs as

V̂i

(
Ei , Ŵci

)
� Ŵ T

ci σi (Ei) ,

μ̂i

(
Ei , Ŵai

)
� −1

2
R−1

i Gσi (Ei) Ŵai , (33)

where Ŵci and Ŵai are estimates of the ideal weights Wi ,
introduced in (22).

VIII. SIMULATION OF EXPERIENCE VIA BE EXTRAPOLATION

A consequence of Theorem 1 is that the BE provides an indi-
rect measure of how close the estimates Ŵci and Ŵai are to the
ideal weights Wi . From a reinforcement learning perspective,
each evaluation of the BE along the system trajectory can be
interpreted as experience gained by the critic, and each evalu-
ation of the BE at points not yet visited can be interpreted as
simulated experience. In previous results such as [4], [20], [21],
[29], [45], the critic is restricted to the experience gained (in
other words BEs evaluated) along the system state trajectory.
The development in [20], [21], [29], [45] can be extended to
employ simulated experience; however, the extension requires
exact model knowledge. In results such as [4], the formulation
of the BE does not allow for simulation of experience. The
formulation in (29) employs the system identifier developed

in Section V to facilitate approximate evaluation of the BE at
off-trajectory points.

To simulate experience, a set of points {Ek
i }Mi

k=1 is selected
corresponding to each agent i, and the instantaneous BE in (22)
is approximated at the current state and at the selected points
using (37). The approximation at the current state is denoted by
δ̂ti and the approximation at the selected points is denoted by
δ̂k
ti , where δ̂ti and δ̂k

ti are defined as

δ̂ti (t) � δ̂i

(

Ei (t) , Ŵci (t) ,
(
Ŵa (t)

)

Si

,
(
θ̂ (t)

)

Si

)

,

δ̂k
ti (t) � δ̂i

(

Ek
i , Ŵci (t) ,

(
Ŵa (t)

)

Si

,
(
θ̂ (t)

)

Si

)

.

Note that once {ej}j∈Si
and xi are selected, the ith agent can

compute the states of all the remaining agents in the sub-graph.
For notational brevity, the arguments to the functions σi, F̂i ,
Gi , Gi , F̂i , μ̂i , Gσi, Gεi , and εi are suppressed hereafter.

The critic uses simulated experience to update the value func-
tion weights using a least squares-based update law

˙̂
Wci = −ηc1iΓi

ωi

ρi
δ̂ti − ηc2iΓi

Mi

Mi∑

k=1

ωk
i

ρk
i

δ̂k
ti ,

Γ̇i =
(

βiΓi − ηc1iΓi
ωiω

T
i

ρ2
i

Γi

)

1{‖Γ i ‖≤Γ i}, (34)

where ρi � 1 + νiω
T
i Γiωi, Γi ∈ RLi ×Li denotes the time-

varying least-squares learning gain, Γi ∈ R denotes the sat-
uration constant, ‖Γi(t0)‖ ≤ Γi , and ηc1i , ηc2i , βi , νi ∈ R are
constant positive learning gains. In (34),

ωi �
∑

j∈Si

∇ej
σi

(
F̂j + Gj μ̂Sj

)
+ ∇xi

σi

(
F̂i + Gi μ̂Si

)
,

ωk
i �

∑

j∈Si

∇ej
σk

i

(
F̂ k

j + G k
j μ̂k

Sj

)
+∇xi

σk
i

(
F̂k

i + Gk
i μ̂k

Si

)
,

where for a function φi(Ei , (·)), the notation φk
i indicates eval-

uation at Ei = Ek
i ; i.e., φk

i � φi(Ek
i , (·)). The actor updates the

policy weights using the following update law derived based on
the Lyapunov-based stability analysis in Section IX.

˙̂
Wai = −ηa2iŴai +

1
4
ηc1iG

T
σiR

−1
i GσiŴai

ωT
i

ρi
Ŵci

+
1
4

Mi∑

k=1

ηc2i

Mi

(
Gk

σi

)T
R−1

i Gk
σiŴai

(
ωk

i

)T

ρk
i

Ŵci

− ηa1i

(
Ŵai − Ŵci

)
, (35)

where ηa1i , ηa2i ∈ R are constant positive learning gains. The
following assumption facilitates simulation of experience.

Assumption 7. [43] For each i ∈ N , there exists a finite set
of points {Ek

i }Mi

k=1 such that

ρi �

(

inf t∈R≥0

(

λmin

{
∑Mi

k=1
ωk

i (t)(ωk
i )T

(t)
ρk

i (t)

}))

Mi
> 0,

(36)
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where λmin denotes the minimum eigenvalue, and ρi ∈ R is a
positive constant.

IX. STABILITY ANALYSIS

To facilitate the stability analysis, the left hand side of (16) is
subtracted from (29) to express the BEs in terms of the weight
estimation errors as

δ̂ti = −W̃ T
ci ωi − WT

i ∇xi
σi (Ei) F̂i

(
Ei , θ̃Si

)

+
1
4
W̃ T

aiG
T
σiR

−1
i GσiW̃ai − 1

2
WT

i GT
σiR

−1
i GσiW̃ai

+
1
2
WT

i

∑

j∈Si

∇ej
σi (Ei) GjRSj

(
W̃a

)

Sj

− WT
i

∑

j∈Si

∇ej
σi (Ei) F̂j

(
Ej , θ̃Sj

)

+
1
2
WT

i ∇xi
σi (Ei)GiRSi

(
W̃a

)

Si

+ Δi , (37)

where (̃·) � (·) − (̂·), Δi = O((ε)Si
, (∇ε)Si

, (εθ )Si
), and

RSj
� diag([R−1

λ1
j
GT

σλ1
j
, . . . , R−1

λ
s j
j

GT
σλ

s j
j

]) are block diagonal

matrices. Consider a set of extended neighborsSp corresponding
to the pth agent. To analyze asymptotic properties of the agents
in Sp , consider the following candidate Lyapunov function

VLp (Zp, t) �
∑

i∈Sp

Vti (eSi
, t) +

∑

i∈Sp

1
2
W̃ T

ci Γ
−1
i W̃ci

+
∑

i∈Sp

1
2
W̃ T

aiW̃ai +
∑

i∈Sp

V0i

(
x̃i , θ̃i

)
, (38)

where Zp ∈ R(2nsi +2Li si +n(Pi +1)si ) is defined as

Zp �
[

eT
Sp

,
(
W̃c

)T

Sp

,
(
W̃a

)T

Sp

, x̃T
Sp

, vec
(
θ̃Sp

)T
]T

,

vec(·) denotes the vectorization operator, and Vti : Rnsi × R →
R is defined as

Vti (eSi
, t) � V ∗

i

([
eT
Si

, xT
i (t)

]T )
, (39)

for all eSi
∈ Rnsi and for all t ∈ R≥t0 . Since V ∗

ti depends
on t only through uniformly bounded leader trajectories,
Lemma 1 from [46] can be used to show that Vti is a posi-
tive definite and decrescent function.2 Thus, using Lemma 4.3
from [47], the following bounds on the candidate Lyapunov
function in (38) are established

vlp (‖Zp‖) ≤ VLp (Zp, t) ≤ vlp (‖Zp‖) , (40)

2Since the graph has a spanning tree, the mapping between the errors and
the states is invertible. Hence, the state of an agent can be expressed as xi =
hi (eSi

, x0 ) for some function hi . Thus, the value function can be expressed as
V ∗

i (eSi
, x0 ) = V ∗

i (eSi
, h(eSi

, x0 )). Then, V ∗
t i can be alternatively defined as

Vti (eSi
, t) � V ∗

i ([ eSi

x0 (t) ]). Since x0 is a uniformly bounded function of t by

assumption, Lemma 1 from [46] can be used to conclude that Vti is a positive
definite and decrescent function.

for all Zp ∈ R(2nsi +2Li si +n(Pi +1)si ) and for all t ∈ R≥t0 ,
where vlp , vlp : R → R are class K functions.

To facilitate the stability analysis, given any compact ball
χp ⊂ R2nsi +2Li si +n(Pi +1)si of radius rp ∈ R centered at the
origin, a positive constant ιp ∈ R is defined as

ιp �
∑

i∈Sp

∥
∥
∥
∥
∥
∥

∑

j∈Si

∇ej
V ∗

i (Ei) GjBj + ∇xi
V ∗

i (Ei)GiBi

∥
∥
∥
∥
∥
∥

+
∑

i∈Sp

1
2

∥
∥
∥
∥
∥
∥
∇xi

V ∗
i (Ei)GiRSi

εSi
+
∑

j∈Si

∇ej
V ∗

i (Ei) GjRSj
εSj

∥
∥
∥
∥
∥
∥

+
∑

i∈Sp

εθi
2

2ki
+
∑

i∈Sp

3
(
kθidθi +

∥
∥Aθ
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∥
∥
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4σθi

+
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3
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2
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∥
∥
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T
i
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ρi
WT
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σiR
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i Gσi
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+
∑

i∈Sp

5 (ηc1i + ηc2i)
2
∥
∥
∥ωi

ρi
Δi

∥
∥
∥

2

4ηc2iρi

where for any function � : Rl → R, l ∈ N, the notation ‖�‖
denotes supy∈χp ∩Rl ‖�(y)‖ and Aθ

i , B
θ
i , and Aa1

i are uniformly
bounded state-dependent terms. The following sufficient gain
conditions facilitate the subsequent stability analysis.

ηc2iρi

5
>
∑

j∈Sp

3sp1j∈Si
(ηc1i + ηc2i)

2 ∥∥A1aθ
ij

∥
∥

2∥
∥B1aθ

ij

∥
∥

2

4kθjσθj
, (41)

(ηa1i + ηa2i)
3

>
∑

j∈Sp

5sp1i∈Sj
(ηc1j + ηc2j )

2 ∥∥A1ac
ji

∥
∥

2

16ηc2j ρj

+
5η2

a1i

4ηc2iρi
+

(ηc1i + ηc2i) Wi

∥
∥
∥ωi

ρi

∥
∥
∥
∥
∥GT

σiR
−1
i Gσi

∥
∥

4
, (42)

v−1
lp (ιp) < vlp

−1
(
vlp (rp)

)
, (43)

where A1aθ
ij , B1aθ

ij , and A1ac
ji are uniformly bounded state-

dependent terms.
Theorem 2: Provided Assumptions 1–7 hold and the suffi-

cient gain conditions in (41)–(43) are satisfied, the controller in
(33) along with the actor and critic update laws in (34) and (35),
and the system identifier in (24) along with the weight update
laws in (26) ensure that the local neighborhood tracking errors
ei are ultimately bounded and that the policies μ̂i converge to
a neighborhood around the feedback-Nash policies μ∗

i for all
i ∈ N .
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Proof: The time derivative of the candidate Lyapunov func-
tion in (38) is given by

V̇Lp =
∑

i∈Sp

V̇ti (eSi
, t) − 1

2

∑

i∈Sp

W̃ T
ci Γ

−1
i Γ̇iΓ−1

i W̃ci

−
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i∈Sp

W̃ T
ci Γ

−1
i

˙̂
Wci −

∑

i∈Sp

W̃ T
ai

˙̂
Wai +

∑

i∈Sp

V̇0i

(
x̃i , θ̃i

)
.

(44)

Using (16), (28), (31), and (37), the update laws in (34) and
(35), and the definition of Vti in (39), the derivative in (44) can
be bounded as3

V̇Lp ≤
∑

i∈Sp

(

−ηc2iρi

5
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∥
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2

F

)

+ ιp .

Let vlp : R → R be a class K function such that

vlp (‖Zp‖) ≤ 1
2
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∥

2

F
, (45)

where qi : R → R are class K functions such that qi(‖e‖) ≤
Qi(e), ∀e ∈ Rn , ∀i ∈ N . Then, the Lyapunov derivative can
be bounded as

V̇Lp ≤ −vlp (‖Zp‖) (46)

for all Zp such that Zp ∈ χp and ‖Zp‖ ≥ v−1
lp (ιp). Using the

bounds in (40), the sufficient conditions in (41)–(43), and
the inequality in (46), Theorem 4.18 in [47] can be invoked
to conclude that every trajectory Zp(t) satisfying ‖Zp(t0)‖ ≤
vlp

−1(vlp(rp)), is bounded for all t ∈ R≥t0 and satisfies

lim sup
t→∞

‖Zp (t)‖ ≤ vlp
−1
(
vlp

(
v−1

lp (ιp)
))

.

Since the choice of the subgraph Sp was arbitrary, the neigh-
borhood tracking errors ei are ultimately bounded for all i ∈ N .
Furthermore, the weight estimates Ŵai converge to a neighbor-
hood of the ideal weights Wi ; hence, invoking Theorem 1, the
policies μ̂i converge to a neighborhood of the feedback-Nash
equilibrium policies μ∗

i for all i ∈ N . �

X. SIMULATIONS

This section provides a simulation example to demonstrate
the applicability of the developed technique. The agents are
assumed to have the communication topology as shown in
Fig. 1 with unit pinning gains and edge weights. The motion of

3For a detailed derivation of the bound, see [48].

Fig. 1. Communication topology: A network containing five agents.

Fig. 2. State trajectories for the five agents for the one-dimensional example.
The dotted lines show the desired state trajectories.

the agents is described by identical nonlinear one-dimensional
dynamics of the form (1) where fi(xi) = θi1xi + θi2x

2
i , and

gi(xi) = (cos(2xi1) + 2) for all i = 1, . . . , 5. The ideal values
of the unknown parameters are selected to be θi1 = 0, 0, 0.1, 0.5,
and 0.2, and θi2 = 1, 0.5, 1, 1, and 1, for i = 1, . . . , 5, respec-
tively. The agents start at xi = 2 for all i, and their final desired
locations with respect to each other are given by xd12 = 0.5,
xd21 = −0.5, xd43 = −0.5, and xd53 = −0.5. The leader tra-
verses an exponentially decaying trajectory x0(t) = e−0.1t . The
desired positions of agents 1 and 3 with respect to the leader are
xd10 = 0.75 and xd30 = 1, respectively.4

For each agent i, five values of ei , three values of xi , and three
values of errors corresponding to all the extended neighbors are
selected for BE extrapolation, resulting in 5 × 3si total values
of Ei . All agents estimate the unknown drift parameters using
history stacks containing thirty points recorded online using a
singular value maximizing algorithm (cf. [49]), and compute
the required state derivatives using a fifth order Savitzky-Golay
smoothing filter (cf. [50]). Figs. 2–4 show the tracking error,
the state trajectories compared with the desired trajectories, and
the control inputs for all the agents demonstrating convergence
to the desired formation and the desired trajectory. Note that
Agents 2, 4, and 5 do not have a communication link to the
leader, nor do they know their desired relative position with
respect to the leader. The convergence to the desired forma-
tion is achieved via cooperative control based on decentralized
objectives. Fig. 5 shows the evolution and convergence of the
value function weights and the parameters estimates for the
drift dynamics for Agent 1. The errors between the ideal drift

4The optimal control problem parameters, basis functions, and adaptation
gains for all the agents and the plots for weight estimates corresponding to
agents 1-5 are available in [48]
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Fig. 3. Tracking error trajectories for the agents for the one-dimensional
example.

Fig. 4. Trajectories of the control input and the relative control error for all
agents for the one-dimensional example.

Fig. 5. Value function weights and drift dynamics parameters estimates for
Agent 1 for the one-dimensional example. The dotted lines in the drift parameter
plot are the ideal values of the drift parameters.

parameters and their respective estimates are large, however, as
demonstrated by Fig. 3, the resulting dynamics are sufficiently
close to the actual dynamics for the developed technique to gen-
erate stabilizing policies. It is unclear whether the value function
and the policy weights converge to their ideal values. Since an
alternative method to solve this problem is not available to the
best of the author’s knowledge, a comparison between value
function and policy weight estimates and their corresponding
ideal values is infeasible.

XI. CONCLUDING REMARKS

A simulation-based actor-critic-identifier architecture is de-
veloped to obtain feedback-Nash equilibrium solutions to a class
of differential graphical games. It is established that in a coop-

erative game based on minimization of the local neighborhood
tracking errors, the value function corresponding to an agent
depends on information obtained from all their extended neigh-
bors. A set of coupled HJ equations are developed that serve
as necessary and sufficient conditions for feedback-Nash equi-
librium, and closed-form expressions for the feedback-Nash
equilibrium policies are developed based on the HJ equations.
The fact that the developed technique requires each agent to
communicate with all of its extended neighbors motivates the
search for a decentralized method to generate feedback-Nash
equilibrium policies.
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