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Approximate N-Player Nonzero-Sum Game
Solution for an Uncertain Continuous
Nonlinear System

Marcus Johnson, Rushikesh Kamalapurkar, Shubhendu Bhasin, and Warren E. Dixon

Abstract— An approximate online equilibrium solution is
developed for an N-player nonzero-sum game subject to
continuous-time nonlinear unknown dynamics and an infinite
horizon quadratic cost. A novel actor—critic—identifier structure
is used, wherein a robust dynamic neural network is used
to asymptotically identify the uncertain system with additive
disturbances, and a set of critic and actor NNs are used to approx-
imate the value functions and equilibrium policies, respectively.
The weight update laws for the actor neural networks (NNs)
are generated using a gradient-descent method, and the critic
NNs are generated by least square regression, which are both
based on the modified Bellman error that is independent of
the system dynamics. A Lyapunov-based stability analysis shows
that uniformly ultimately bounded tracking is achieved, and a
convergence analysis demonstrates that the approximate control
policies converge to a neighborhood of the optimal solutions. The
actor, critic, and identifier structures are implemented in real
time continuously and simultaneously. Simulations on two and
three player games illustrate the performance of the developed
method.

Index Terms— Actor—critic (AC) methods, adaptive control,
adaptive dynamic programming, differential games, optimal
control.

I. INTRODUCTION

ONCOOPERATIVE game theory [1]-[3] can be used

to provide a solution to a number of control engineering
applications. In a differential game formulation, the controlled
system is influenced by a number of different inputs, computed
by different players that are individually trying to optimize a
performance function. The control objective is to determine a
set of policies that are admissible [4], i.e., control policies that
guarantee the stability of the dynamic system and minimize
individual performance functions to yield an equilibrium.
A Nash differential game consists of multiple players making
simultaneous decisions where each player has an outcome that
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cannot be unilaterally improved from a change in strategy.
Players are committed to following a predetermined strategy
based on knowledge of the initial state, the system model, and
the cost functional to be minimized. Solution techniques to
the Nash equilibrium are classified depending on the amount
of information available to the players (e.g., open-loop, feed-
back), the objectives of each player (zero-sum or nonzero-
sum), the planning horizon (infinite horizon or finite horizon),
and the nature of the dynamic constraints (e.g., continuous,
discrete, linear, nonlinear).

A unique Nash equilibrium is generally not expected.
Nonuniqueness issues with Nash equilibria are discussed for
a nonzero-sum differential game in [5]. For an open-loop
nonzero-sum game, where every player knows the initial state
xo at time ¢t € [0, T], conditions for the existence of a
unique Nash equilibrium can be established [6]. For a closed-
loop perfect state information, where every player knows the
complete history of the state at time ¢ € [0, T'], there are
potentially an infinite number of Nash equilibria. In this case,
it is possible to restrict the Nash equilibrium to a subset
of feedback solutions, which is known as the (sub)game
perfect Nash equilibria (or feedback Nash equilibria). Results
in [7] and [8] indicate that (sub)game perfect Nash equilibria
are (at least heuristically) given by feedback strategies and
that their corresponding value functions are the solution to
a system of Hamilton—Jacobi equations. These concepts have
been successfully applied to linear quadratic (LQ) differential
games [5], [7]. A special case of the Nash game is the
min—max saddle point equilibrium, which is widely used to
minimize control effort under a worst case level of uncertainty.
The saddle point equilibrium has been heavily exploited in Hqo
control theory [9], which considers finding the smallest gain
y > 0 under which the upper value of the cost function

Jy (u,v)=/Q(X)+M(X)2—VZIID(X)IIZdT (1
0

is bounded and finding the corresponding controller that
achieves this upper bound. H, control theory relates to LQ
dynamic games in the sense that the worst case Hy, design
problems have equal upper and lower bounds of the objective
function in (1), which results in the saddle-point solution to
the LQ game problem. In both the Hy, control problem and
the LQ problem, the underlying dynamic optimization is a
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two-player zero-sum game with the controller being the min-
imizing player and the disturbance being the maximizing
player. In a zero-sum game with linear dynamics and an
infinite horizon quadratic cost function, the Nash equilibrium
solution is equivalent to solving the generalized game alge-
braic Riccati equation. However, for nonlinear dynamics or a
nonzero-sum game, analytical solutions may not be tractable
for the Hamilton—Jacobi-Bellman (HJB) partial differential
equation.

Due to the difficulty involved in determining a solution to
the HIB equation, dynamic programming [10]-[14] is used
to approximate a solution to the optimal control problem.
Reinforcement learning (RL) is typically employed to imple-
ment dynamic programming online and forward in time. RL is
a method wherein appropriate actions are learned based on
evaluative feedback from the environment. A widely used
RL method is based on the actor—critic (AC) architecture,
where an actor performs certain actions by interacting with
their environment, the critic evaluates the actions and gives
feedback to the actor, leading to an improvement in the
performance of subsequent actions. AC algorithms are per-
vasive in machine learning and are used to learn the optimal
policy online for finite-space discrete-time Markov decision
problems [15]-[17].

The machine learning community [15], [17]-[20] provides
an approach to determine the solution of an optimal
control problem using approximate dynamic programming
(ADP) through RL-based adaptive critics [10]-[14]. The dis-
crete/iterative nature of the ADP formulation naturally leads to
the design of discrete-time optimal controllers [13], [21]-[25].

Some results have also been developed for continuous-
time problems. Baird [26] proposed advantage updating,
an extension of the Q-learning algorithm, which could
be implemented in continuous-time and provided fast
convergence. A HJB-based framework is used in [27] and
[28], and Galerkin’s spectral method is used to approximate
the generalized HJB solution in [29].

The aforementioned approaches for continuous-time
nonlinear systems are computed offline and/or require
complete knowledge of system dynamics. A contribution
in [30] is the requirement of only partial knowledge of the
system, and a hybrid continuous-time/discrete-time sampled
data controller is developed based on policy iteration (PI),
where the feedback control operation of the actor occurs at
a faster time scale than the learning process of the critic.
The method in [31] was extended by designing a hybrid
model-based online algorithm called synchronous PI, which
involved synchronous continuous-time adaptation of both
actor and critic neural networks. Bhasin ez al. [32] developed a
continuous AC-identifier (ACI) technique to solve the infinite
horizon single player optimal control problem using a robust
dynamic neural network (DNN) to identify the dynamics
and a critic NN to approximate the value function. This
technique removes the requirement of complete knowledge
of the system drift dynamics through the use of an indirect
adaptive control technique.

Most of the previous continuous-time RL algorithms that
provide an online approximate optimal solution assume that
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the dynamic system is affected by a single control strategy.
Previous research has also investigated the generalization of
RL controllers to differential game problems [31], [33]-[39].
Techniques utilizing Q-learning algorithms have been devel-
oped for a zero-sum game in [40]. An ADP procedure that
provides a solution to the HJI equation associated with the
two-player zero-sum nonlinear differential game is introduced
in [33]. The ADP algorithm involves two iterative cost func-
tions finding the upper and lower performance indices as
sequences that converge to the saddle point solution of the
game. The AC structure required for learning the saddle point
solution is composed of four action networks and two critic
networks. The iterative ADP solution in [34] considers solving
zero-sum differential games under the condition that the saddle
point does not exist, and a mixed optimal performance index
function is obtained under a deterministic mixed optimal
control scheme when the saddle point does not exist. Another
ADP iteration technique is presented in [35], in which the
nonlinear quadratic zero-sum game is transformed into an
equivalent sequence of LQ zero-sum games to approximate
an optimal saddle point solution. In [36], an integral RL
method is used to determine an online solution to the two
player nonzero-sum game for a linear system without complete
knowledge of the dynamics. The synchronous PI method
in [31] was then further generalized to solve the two-player
zero-sum game problem in [38] and a multiplayer nonzero-
sum game in [39] and [41] for nonlinear continuous-time
systems with known dynamics. Furthermore, [42] presents a
PI method for an infinite horizon two-player zero-sum Nash
game with unknown nonlinear continuous-time dynamics. The
proposed work expands upon the applicability of [31], [38],
[39], and [41] by eliminating the assumption that the drift
dynamics is known, and advances the theory in [32] and [42]
to solve the more general multiplayer nonzero-sum differential
game where the objective is to minimize a set of coupled
cost functions. The single player game in [32] and two-player
zero-sum game in [42] are special cases of the multiplayer
nonzero-sum game presented in this paper.

This paper aims to solve an N-player nonzero-sum infinite
horizon differential game subject to continuous-time uncertain
nonlinear dynamics. The main contribution of this paper is
deriving an approximate solution to an N-player nonzero-sum
game with a continuous controller using an ACI technique.
Previous research has focused on scalar nonlinear systems
or implemented iterative/hybrid techniques that required com-
plete knowledge of the drift dynamics. The developed tech-
nique uses N-actor and N-critic neural network structures
to approximate the optimal control laws and the optimal
value function set, respectively. The main traits of this online
algorithm involve the use of ADP techniques and adaptive
theory to determine the Nash equilibrium solution of the game
in a manner that does not require full knowledge of the system
dynamics and approximately solves the underlying set of
coupled HJB equations of the game problem. For an equivalent
nonlinear system, previous research makes use of offline
procedures or requires full knowledge of the system dynamics
to determine the Nash equilibrium. A Lyapunov-based stability
analysis shows that uniformly ultimately bounded (UUB)
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tracking for the closed-loop system is guaranteed for the
proposed ACI architecture and a convergence analysis demon-
strates that the approximate control policies converge to a
neighborhood of the optimal solutions.

II. N-PLAYER DIFFERENTIAL GAME FOR
NONLINEAR SYSTEMS

Consider the N-player nonlinear, time-invariant, affine in
the input dynamic system given by

x=fx)+ Zg] (x)“j

]—

2

where x € R" is the state vector, u; € R™/ is the control
input, and f : R" — R" and g; : R" — R"*™/ are the drift
and input matrices, respectively. Assume that g1, ..., gy and
f are second-order differentiable, and that f (0) = 0. The
infinite-horizon scalar cost functional J; associated with each
player can be defined as

Ji :ftoorl- (x,ui,uz,...,un)ds 3)

i€ {1,..., N}, t is the initial time, and r;
R"™2j=1" _ R is the local cost for the state and control,
defined as

where i

N
ri (x,ur, ... uy) = Qi (x)+ ZujT-Rijuj 4)
j=1
where Q; : R” — R are continuously differentiable and

positive definite functions and R;; € R™>™/ and R;; €
R™i>™Mi are positive definite symmetric matrices.

The objective of the N-player game is to find a set of
admissible feedback policies (u},u3,...,u}) such that the
value function V; : R" — R defined as

0 N
V; (x;ul,...,uN)Z/ i (x) + § le”f o)
t j=1

is minimized, where V; (x; u1,...,uy) denotes the value of
state x under feedback policies (u1, ..., uy). This paper will
focus on the Nash equilibrium solution for the N-player game,
in which the following N inequalities are satisfied for all
ui €U,i € N:

VIEEV (uf,us, . uly) < V(s un,ul, . uly)
VS EVy (xuf,uy, . uy) < Va(xsuf,ua, ..., uly)
Vi & Vy (x;u’f,u?,...,u*N) < Vy (x;uT,M§,~-~,MN) (6)

where U; denotes the set of admissible policies for the ith
player. The Nash equilibrium outcome of the N-player game
is given by the N-tuple of quantities {V|",V),..., Vy}.
The value functions can be alternately presented by a
differential equivalent given by the following nonlinear
Lyapunov equation [39]:

N
0=r(x,ui,...,uy)+VVy* f(x)—i—Zgj(x)uj
j=1

V() =0 ©
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where VV* £ 0V*/ox € R Assuming the value
functional is continuously differentiable, the Bellman
principle of optimality can be used to derive the following
optimality condition:

N
O—nllt}n Vv f—i—Zgjuj +r
j=1

V¥(©0)=0, ieN ®)

which is the N-coupled set of nonlinear partial differential
equations called the HJB equation. Suitable nonnegative
definite solutions to (7) can be used to evaluate the infinite
integral in (5) along the system trajectories. A closed-form
expression of the optimal feedback control policies is given by
©)

u; (x) = ——R” gl (x) (Vv (x))

The closed-form expression for the optimal control policies
in (9) obviates the need to search for a set of feedback policies
that minimize the value function; however, the solution Vi* to
the HIB equation given in (8) is required. The HIB equation
in (8) can be rewritten by substituting for the local cost in (4)
and the optimal control policy in (9), respectively, as

N
1 -1.T T
0= Qi+ VVif—VVi D giR; gf (V)

j=1
1 N
+ZZVVI*gJR;j lJRj] gj (VV )

V¥ (0) = 0. (10)
Since the HJB equation may not have an analytical solution
in general, an approximate solution is sought. Although
nonzero-sum games contain noncooperative components,
the solution to each player’s coupled HJB equation in (10)
requires knowledge of all the other player’s strategies in (9).
The underlying assumption of rational opponents [43] is char-
acteristic of differential game theory problems, and it implies
that the players share information, yet they agree to adhere
to the equilibrium policy determined from the Nash game.

III. HIJB APPROXIMATION VIA ACI

This paper uses an ACI [42], [44] approximation archi-
tecture to solve for (10). The ACI architecture eliminates
the need for exact model knowledge and utilizes a DNN to
robustly identify the system, a critic NN to approximate the
value function, and an actor NN to find a control policy that
minimizes the value functions. The following development
focuses on the solution to a two-player nonzero-sum game.
The approach can easily be extended to the N-player game
presented in Section II. This section introduces the ACI
architecture, and subsequent sections give details of the design
for the two-player nonzero-sum game solution.

The Hamiltonian H; € R of the system in (2) can be
defined as

Hi =ry, +VViF, (11)
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where VV; £ 0V;/ox € R'™” denotes the Jacobian of the
value function V; and

N
f(x)—i—Zgj (x)uj e R"

j=1

Fu(-xaula"'auN)é

denotes the system dynamics. The optimal policies in (9) and
the associated value functions V* satisfy the HIB equation
with the corresponding Hamiltonian as

Hi (x, VVul, ... uy) =rg +VViFs=0. (12)

Replacing the optimal Jacobian VV* and optimal control
policies u} by estimates VV; and i;, respectively, yields the
approximate Hamiltonian

Hi(x,VVi,iir,...,dN) = rg + VViFy. (13)

The approximate Hamiltonian in (13) is dependent on com-
plete knowledge of the system. To overcome this limitation, an
online system identifier replaces the system dynamics, which
modifies the approximate Hamiltonian in (13) as

H,‘()C,)E,V\}i,ftl,...,ﬁjv) :rﬁ[+V\7,-FAL; (14)
where ﬁu is an approximation of the system dynamics Fj;.
The difference between the optimal and approximate
Hamiltonian equations in (12) and (14) yields the Bellman

residual errors dyjp, € R defined as

5h‘jbl é Hl('x9'£’ V‘,}i9ﬁ1""’ﬁN)
—H;(x, VV,ul, ... uy). (15)
However, since H; = 0 Vi € N, the Bellman

residual error can be defined in a measurable form as
onjb; = Hi(x, X, vV, i, ..., in). The objective is to update
both #; (actors) and ‘71 (critics) simultaneously based on the
minimization of the Bellman residual errors oy, jbi- Altogether,
the actors ii;, the critics V,, and the identifiers F -~ constitute
the ACI architecture. To facilitate the subsequent analysis, the
following properties are given.

Property 1: Given a continuous function h S - R”,
where S is a compact set, there exist ideal weights W and V
such that the function can be represented by an NN as
h(x) T (VTx) 4+ &(x) where o (-) is a nonlinear
activation function and ¢ (x) is the function reconstruction
error.

Property 2: The NN activation function ¢ (-) and its time
derivative ¢’ () with respect to its argument are bounded.

Property 3: The ideal NN weight matrices are bounded by
known positive constants [45], i.e., [|[W]| < W and ||V|| < V.

Property 4: The NN function reconstruction errors and
their derivatives are bounded [45], i.e., |l¢]] < & and
I#]] <&

IV. SYSTEM IDENTIFIER

Consider the two-player case for the dynamics given in (2)
as

Xx=fx)+g (x)ur+ g (x)uz

x (0) = xo (16)
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where uy, up € R" are the control inputs, and the state x € R”
is assumed to be measurable. The following assumptions about
the system will be utilized in the subsequent development.

Assumption 1: The input matrices g and g are known and
bounded, i.e., ||g1ll < g1 and ||g2|| < g» where g| and g, are
known positive constants.

Assumption 2: The control inputs u; and up are bounded
i.e., ui,up € ﬁoo

Based on Property 1, the nonlinear system in (16) can be
represented using a multilayer NN as

)% :Fu(x»ul»’/Q)
=W/oy (Vfo) ter )+ g ()ur+gx)uz (17)

where Wy € RM/F1X% and vV e R™N/ are unknown
ideal NN weight matrices with Ny representing the neurons
in the output layers. The activation function is given by
of = a(Vfo) e RNs+! and er : R" — R" is the function
reconstruction error in approximating the function f. The
proposed multilayer dynamic neural network (MLDNN) used
to identify the system in (16) is

)é = ﬁu(x,f,ul,uz)

= WfT&f +g1ur+gxX)ur+u (18)

where £ € R” is the state of the MLDNN, W, € RN/+1xn,
Vi€ R"*N¢ are the estimates of the ideal weights of the NN,

Gr = 6(\7T)2) € RVs+1 are the NN activation functions, and
1 € R" denotes the RISE feedback term defined as

,uék(i(t)—)E(O))va (19)
where the measurable identification error X € R” is defined as

(20)

~ A A~
X=X—X

and v € R” is a generalized Filippov solution to the differential
equation

vV=(ka+y)X+ fisgn(x); v(0)=0

where k, a, y, f1 € R are positive constant gains, and sgn (-)
denotes a vector signum function. The identification error
dynamics are developed by taking the time derivative of (20)
and substituting for (17) and (18) as

X = Fu(x,f,ul,uz)

= W}Gf—W;&f+8f(x)—ﬂ (21)

where F, = F, — ]:"u.
defined as

An auxiliary identification error is

ri+ak. (22)

Taking the time derivative of (22) and using (21) yields
VZWf fo.x WfO'f_WfO'fo.x WfoVf

+ép(x) —kr —yXx — Bisgn(x) + ox (23)

where 6 = do (VT 2)/d(VT %) \VT gr € RWVrHDxNy The
weight update laws for the DNN in (18) are developed based
on the subsequent stability analysis as

W = proj(Tup6 ; VIZET), Vs = proj(Tys 2% W16}) (24)
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where proj(-) is a smooth projection operator [46], [47],
and T,y € RMFDNHL T o e R™ are positive
constant adaptatlon gain matrices. Adding and subtracting
(1/2)WT A}VfTA + (1/2)WTA}Vfo and grouping similar
terms, the expression in (23) can be rewritten as

F =N+ Npi+Npy—kr —y%— Bisgn(X)  (25)

where the auxiliary signals, N , Np1, and 1\732 e R” in (25)
are defined as

1 . 1
+§W}a}vfx+2wfafvfx (26)
1 o
A TA~r ;T .
1
1 1

To facilitate the subsequent stability analysis an auxiliary
term N32 € R" is defined by replacing X in N> by X, and
N32 = N32 — Np>. The terms Np; and Npy are grouped
as Ng £ Npi + Npo. Using Properties 1-4, Assumption 1,
(22), (24), (27), and (28) the following inequalities can be
obtained

IN| < prdlizID Izl s INB1Il < 1y INB2ll < 02 (29)

[N < &+ capa(lizl) Izl (30)

|57 ¥ma| = s 1712 + o 12 31
where z 2 [T rT1T € R?*, and p1, po : R — R are positive,
globally invertible, nondecreasing functions, and ; € R,
i =1,...,6 are computable positive constants. To facilitate

the subsequent stability analysis, let D C R?**2 be a domain
containing y = 0, where y € R?"*2 is defined as

VAT T VP VO

where the auxiliary signal P € R is a generalized Filippov
solution to the differential equation [48]

P = —rT(Ng1 — frisgn(®)) — 7 Np>
+B2p2(l1zID) Nzl IE

= p1 Y15 (0)| — &7 (0) Np(0)
i=1

where f1, > € R are chosen according to the sufficient
conditions'

(32)

(33)

P0)

P2 > &4 (34)

such that P(r) > O for all + € [0,00). The auxiliary
function Qy R”(ZNf“) — R in (32) is defined as

Qf = 1/4a[tr(Wf waf) + tr(Vf va V)1, where tr(-)
denotes the trace of a matrix.

Br > max({1 + &, G+ D),

IThe derivation of the sufficient conditions in (34) is provided in the
Appendix.
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Theorem 1: For the system in (16), the identifier developed
in (18) along with its weight update laws in (24) ensures
asymptotic identification of the state and its derivative, in the
sense that

lim () =0 and lim |¥()| =0
t—00 [—00

provided Assumptions 1 and 2 hold, and the control gains
k and y are chosen sufficiently large based on the initial
conditions of the states,? and satisfy the following sufficient
conditions

ay > 5, k> (35)

where (5 and (¢ are introduced in (31), and ], S introduced
in (33), are chosen according to the sufficient conditions
in (34).

Proof: To facilitate the subsequent development, let
the gains k and y, be split as k 2k + ko, v =
7ot 72 and let 2 £ miﬂ{a?l - s ki — Cﬁ}
pUzID* £ pi(llzID* + p2(liz)?, and 7 £ minfks, ay2/3).
Let D 2 {y(®)eR*2 ||yl <p~'(2y/2n)} and let
Vi : D — R be a positive definite function defined as

Vi &3 r + 3y X785+ P+ Qy (36)
which satisfies the following inequalities:
Ui(y) = Vi(y) = Ua(y) (37)

where Uj, Uy : R2"*2 5 R are continuous positive definite
functions defined as

Ui (v) £ min(L, y5) IyI> U2 (y) £

Let y = h(y,t) represent the closed-loop differential equa-
tions in (21), (24), (25), and (33), where h : R2"2 x
[0, 00) — R*'*2 denotes the right-hand side of the closed-
loop error signals. Using Filippov’s theory of differential
inclusion [49], the existence of solutions can be established for
y € K[hl(y,1), where K[h] = N N coh(B(y,d) \
0>0 uM=0
M,t), where N denotes the intersection over all sets M

uM=0
of Lebesgue measure zero, co denotes convex closure,

and B(y,d) = {w € R*"*?| ||y — w| < 6}. The generalized
time derivative of (36) exists almost everywhere (a.e.), and

Vi(y) € Vi(y) where

= [ &%

¢eavi(y)

max(1, y¢) Iy[%.

1 T

where 0V is the generalized gradient of V; [50]. Since V7 :
D — R is continuously differentiable \71 can be simplified
as

- a1 .1 N
Vi = VV,TK[r'T iT EP’%P EQ%Q}
T T 1 1 a7 1 1.1 L 1F
:[r y &7 2P1 2Q7]K[r‘ i §P7P§Q7Q]

2See subsequent stability analysis.
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Using the calculus for K[-] from [51], and substituting the
dynamics from (25) and (33), yields

\71 C rT(I\N/ + N1 + Ngz —kr — p1K[sgn(x)] — 7£X)
+ 7,57 (r — aX) — r" (Np1 — f1K [sgn(¥)])
— X" Np2 + Bopa(llzll) Nzl 151

a[w(WFToiWp) +u@I TV (38)

where K{[sgn(x)] = SGN(x) [51], such that SGN(x;) = 1
if x; >0, [-1,1] if X; =0, and —1 if x; < 0. Substituting

(24), canceling common terms, and rearranging the expression
yields

- 1
Vi < —ayrx T —kr r+rTN+2ax Wfafox
Lo araiors | 210
= WietV Npa — N
+20UC rOor fx—i-x (Np3 B2)
1 g
+ Bop2(lizID) izl X1 — atr(Wf Vfox )
1 2o .
—Eatr(fox Wfaf). 39)

The set inclusion in (38) reduces to the scalar inequality in (39)
because the RHS of (38) is set valued only on the Lebesgue
negligible set of times {f | X = 0 & x # 0}. Substituting for
k £ ki +ky and y s £ y1 + 2, using (24), (29), and (31), and
completing the squares, (39) can be upper bounded as

1 oa.e. ~n2 2
Vi < —(ay1 — ) IZI1P — (e — o) 7l
pilzID? o Bip2(lzID* o
= Ll ki . (40
aTeal Kls 4ar; Izl (40)

Provided the sufficient conditions in (35) are satisfied, (40)
can be rewritten as

Vi 'S a4+ 2B 12 S —u () vy eD. @)
In 41), U(y) =c¢ ||z||2 is a continuous, positive semidefinite
function defined on D, where ¢ is a positive constant.

The inequalities in (37) and (41) can be used to show that
Vi € Loo; hence, X,r € Loo. Using (22), standard linear
analy51s can be used to show that X € L, and since x € Lo,
X € Loo. Since Wf € L from the use of projection in (24),
6y € Loo from Property 2, and u € Lo, from Assumption 2,
(18) can be used to conclude that u € L. Using the above
bounds and the fact that &},éf € Lo, it can be shown
from (23) that 7 € L. Let S C D denote a set defined as

s2lyep o) <1 v’}

From (41), [52, Corollary 1] can be invoked to show that
cllz (t)||2 — 0 ast — o0, Yy(0) € S. Using the definition of
z the following result can be shown

X1

Note that the region of attraction in (42) can be made arbi-
trarily large to include any initial conditions by increasing the
control gain #. ]

(42)
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V. AC DESIGN

Using Property 1 and (9), the optimal value function and
the optimal controls can be represented by NNs as

Vi) = Wl g1(x) + e1(x)

wi() = =5 Ri'el (0 (¢ Wi+ @)
V3(x) = W3 o (x) + e2(x)
w3() = =5 Ry 8T (0 (#) OW2 +85(0)7)  (43)

where Wi, Wo € RV are unknown ideal NN weights, N is
the number of neurons, ¢; = [¢i1 ¢i2. .. pin]T : R" — RN
are smooth NN activation functions, such that ¢;; (0) = 0 and
¢>;j(0) =0 j=1,...,Nandi=1,2,and g1, : R" - R
are the function reconstruction errors.

Assumption 3: The NN activation functions
{(/ﬁ,-j cj=1,...,N,i= 1,2} are chosen such that as
N — oo, ¢ provides a complete independent basis for V*
and V5.

Using Assumption 3 and Weierstrass higher order approxi-
mation Theorem, both V;* and VV;* can be uniformly approx-
imated by NNs in (43), i.e., as N — oo, the approximation
errors ¢;,¢,— 0 for i = 1,2, respectively. The critic V and
the actor # approximate the optimal value function and the
optimal controls in (43), and are given as

Vi) = WEgi(x), i1 (x) = —= Ry g7 ()] () Wig

n n 1
Va(x) = Wi (x), da (x) = —53Rn "ol (1) (x)Way (44)

where ch, ch e RN and Wla, Wza € RV are estimates of
the ideal weights of the critic and actor NN, respectively. The
weight estimation errors for the critic and actor are defined
as Wie 2 W; — Wic and Wiy & W; — Wy, for i = 1,2,
respectively. The actor and critic NN weights are both updated
based on minimizing the Bellman error ;5 in (14), which can
be rewritten by substituting V1 and V, from (44) as

Onjby = Wi\ Fy + ri(x, iy, fi2) = Wlooy +r1(x, i1, iin)

Snjby = WaghFy +ra(x, i1, i) = Wion + r1(x, i1, ii2)

(45)

where w; (x, i1, 1) £ (/51/1:",4 e RN fori = 1,2, is the critic NN
regressor vector.

A. Least Squares Update for the Critic
Consider the integral squared Bellman error E,
t
EcWic Waeat) = [ (3, (0) + 835, (0))
0

(46)

The LS update law for the critic Wie is generated by mini-
mizing the total prediction error in (46)

t
/ S, (7 )L’”b‘(’) —0
0

OE,

oWie Wie(r)
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1 t

Wch/wl(T)wl(T)T dt +/w1(r)Tr1(r)dr =0
0 0
t -1

— /wl(r)wl(r)T dr /a)l(r)rl(r) dr

0 0

ch

which gives the LS estimate of the critic weights, provided
(fé w1(t)w1 ()T dr)~! exists. Likewise, the LS update law
for the critic Wa, is generated by
t -1y
Wae = — /wz(r)wz(r)T dt /wz(r)rz(r) dr.
0 0

The recursive formulation of the normalized LS algorithm [53]
gives the update laws for the two critic weights as

A w1
Wic = —melie———————nibp
le Me 1C1 T Vla)lTrlca)l jb1
Wae = —nacTae Ohjby 47)

1+ Uza); Iocan

where vy, v2, #1¢, #2c € R are constant positive gains and
e 2 (fota),-(r)a),-(r)T dt)™' € RV*N for i = 1,2, are
symmetric estimation gain matrices generated by

e = AT+ T L
lc = —Nlc 111c 1C1 i U]@{Flca)l 1lc
. wranT
Ioe = —me| —A2T2e + Toe——F=———T2c ] (48)
1+ v, Tocwn

where 11,1> € (0,1) are forgetting factors. The use of
forgetting factors ensures that "1, and I'». are positive-definite
for all time and prevents arbitrarily small values in some
directions, making adaptation in those directions very slow
(also called the covariance wind-up problem) [54], [55]. Thus,
the covariance matrices (I'1., ['2¢) can be bounded as

(49)

o11l <Tie <potl, @12 <Toe < po2l.

B. Gradient Update for the Actor

The actor update, like the critic update in Section V-A, is
based on the minimization of the Bellman error Jyj,. However,
unlike the critic weights, the actor weights appear nonlinearly
in Jyjp, making it problematic to develop a LS update law.
Hence, a gradient update law is developed for the actor that
minimizes the squared Bellman error E, = &, + &5
whose gradients are given as

OFE ~ ~ T
aWa = (Wia — Wie) " $1G14] Onji,

la

A A T
+ (W1 Gar = W56 ) 1 o,

OFE ~ “ T
—2 = (ch,qﬁéGlz - W1TC¢1G2) &5 Onjb
aWZa

N A T
+ (Waa — Wae) T 5 Gadph Onjin, (50)

1651

where G; £ giRl-;lgi e R™" and Gj; £ giRi;IRjiRi;Igi S
R™" fori = 1,2 and j = 1,2, are symmetric matrices.
Using (50), the actor NNs are updated as

Vo —oroi] o The 0B, _ v

Wia —prOJ[ ol o Wia I12¢(Wia ch)}

WZa = proj — 1212 0Fa _ I‘2251(‘;‘\/251 - WZC) (51
1+w2Ta)z OWaq

where 114, 124, 214, 224 € R are positive adaptation
gains, and proj{-} is a projection operator used to bound
the weight estimates® [46], [47]. The first term in (51) is
normalized and the last term is added as feedback for stability
(based on the subsequent stability analysis).

VI. STABILITY ANALYSIS

_ The dynamics of the critic weight estimation errors Wi and
W, can be developed using (11)-(14), (45) and (47), as

w1
1+ Ula)lTrlca)l

T T ./ 1 w! * /
X [—chwl — WI | By — ut’ Ryt — &), Fyr

ch = el

+a] Rudy + W ¢ (g1 — ut) + g2(ii2 — ub))
_ sl * AT ~
us Ripus + uy Ripun
W r @2
2¢ = Meloe—————
¢ = M2l e 1+ vza)zT Ihean
~ ~ T
x [—WzTCa)z — WL §yFy — ul Ryt — &by Fye
+ 03 Roita W ¢ (g1 — uf) + ga(itn — u3))
T A A
—MT Rz]MT—i-ulTRz]ul:I. (52)
Substituting for (u},u3) and (i1, #2) from (43) and (44),
respectively, in (52) yields
o

Wi = —n.T [ Wit meTier———g——
le Mmelieyryy Wie +mie 101+V1601T1"1c“’1

~ 1.~ T o~ 1 T
X [—W1T¢1Fa + ZW2T,1¢§G12¢§ Waq — ZSéGlze’z
l ~ / /T /T /T
+ 3 (W2a¢>2 +é ) (G2¢1 Wi — G2y Wz)
1~ ~ 1
V41619 Wia — peiGrel — g/lpu*}

~ ~ >
Wae = —macTacway; Wae + mel2e ——F——
1 +vow,; Tocawn

- 1 -~ T ~ 1 T
« [—wggzsm + WGl Wia — 761Garé]

1/~ T T T
+ = (W1a¢>i + &) ) (G1¢>§ Wa — G4y Wl)

2
1 T 4/ Y~ 1 ’ T ,
+ ZW2a¢2G2¢2 Waa — Zeszez — &y Fy| (53)

3Instead of the projection algorithm, ¢ —modification-like terms —I"13, Wla
and —I'13, Wi, can be added to the update laws to ensure that the weights
W14 and Wy, remain bounded, resulting in additional gain conditions.
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where yi(1) £ ;(t)/(1 +vioi () Tic(w;i()/? € RY

are the normalized critic regressor vectors for i = 1,2,
respectively, bounded as
il < ——. lyall < — (54)
= ) 20l =
v VY1011 v V2012

where @11 and @i are introduced in (49). The error sys-
tems in (53) can be represented as the following perturbed
systems:

Wie =Q1 4+ AoiA1, Wae=Q 4+ ApA, (55)

where Q;(Wie,t) 2 —niclicyiy! Wie € RY i = 1,2,
denotes the nominal system, Ag; £ NicLicw; /1 + viwiT Iew;
denotes the perturbation gain, and the perturbations
A; € RNare denoted as

- 1. T ~
A = [_Winiﬁ{Fﬁ + Wia$iGid Wia = & Fu

1 =~ T _~ 1 T T
t+ 3 Wiath Gindi Wea — g€k Gikel, — 4¢iGic]

4 4
/. /T E T
+ 5 (Wka¢k + & ) (Gk¢i Wi - Gik¢k Wk)

where i = 1,2 and k = 3 —i. Using [53, Th. 2.5.1] it can be
shown that the nominal systems

Wie = —mclieyivi Wie, Wae = —macTacyawd Wae  (56)

are exponentially stable if the bounded signals (w(), y2(1))
are uniformly persistently exciting (u-PE) as [56]

to+0;

uinl > / wi (@i () de > unl Y19 >0,i=1,2

fo

where 11, ui2,0; € R are positive constants independent of
the initial conditions. Since €; is continuously differentiable in
Wic and the Jacobian 0€); /0 Wic = —Riclicyi y/iT is bounded
for the exponentially stable system (56) for i = 1,2, the
converse Lyapunov theorem [57, Th. 4.14] can be used to
show that there exists a function V, : RY x [0, ) = R,
which satisfies the following inequalities

el Wil + ciall Waell? < Ve(Wie, Wac, 1)
Ve(Wie, Wae, 1) < c1llWicll® + cazl| Wacll?
- ~ oV, oV, ~
—e31 | Wiel? = el Wael? = —5 4+ —==Q1 (Wi, 1)
ot 6W10
oV, ~
+——Q(Wa, 1)
aWZc
oV, ~
H |l < car|Wiell
anc
oV, ~
H— < cap||Wacll (57)
oWa,

for some positive constants ci;, ¢2;, ¢3i, c4i € R fori =1,2.
Using Properties 1-4, Assumption 1, the projection bounds
in (51), the fact that F,x € L [using (17)], and provided
the conditions of Theorem 1 hold (required to prove that
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F; € Lo), the following bounds are developed to facilitate
the subsequent stability proof

k1 > Wial: w2 > |Wall
T T
k3 > PGy |5 Kka > |$5Gads |l
ks > [|A1ll; ke > || A2l
l _ *112 l _ %112
K7 > 4||G1 G llIVVl +4||G2 Gullvvyll
1
+5IVVI (G2 + G V3T |
1 « « T T
ks = =5 (Vi = v3) (quﬁ] Wia — Gagdh W2a)

1 T o~ T o~
+5 (VVi = VVy) (G1¢i Wia — Gag) W2a)

T T
ko > l$1Guey I, w10 > lg3G1gy |l

T T
ki1 = 191Gy II: k12 = 195G 1ags |l (58)
where x; € R for j = 1,...,12 are computable positive

constants.

Theorem 2: If Assumptions 1-3 hold, the regressors ;
for i = 1,2 are u-PE, and provided (34) and (35), and the
following sufficient gain conditions are satisfied:

c31 > Diakirs + Dogkokrn

¢32 > Iaiakoncs + Tiakixio

where I'114, T214, €31, €32, K1, K2, k3, and x4 are introduced
in (51), (57), and (58), then the controller in (44), the AC
weight update laws in (47), (48), and (51), and the identifier
in (18) and (24), guarantee that the state of the system x(¢),
and the AC weight estimation errors (Wi, (1), Wau(¢)) and
(W1e(1), Wae (1)) are UUB.

Proof: To investigate the stability of (16) with control
inputs %, and i, and the perturbed system (55), consider
Vi + SxRY x RY x [0,00) — R as the continuously
differentiable, positive-definite Lyapunov function candidate,
given as

VL £ Vl*(x) + Vz*(x) + VC(W1C5 W2c, t)

l -, = | R
+ EWlaWW + §W2aW2a
where V* for i = 1,2 [the optimal value function for (16),
is the Lyapunov function for (16), and V. is the Lyapunov
function for the exponentially stable system in (56)]. Since
(V, V) are continuously differentiable and positive-definite
from (5), from [57, Lemma 4.3], there exist class K func-
tions a1 and ap defined on [0, r], where B, C X, such
that

ar(llxl) = Vi(x) + V5 (x) < aa(llxD),
Using (57) and (59), V1 can be bounded as

Vx € B,. (59)

Vi > ar(Ixl) + el Wicll + cral Wae |12
1 - -
+3 (W1l + 1W21?)
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Ve < aa(lx]l) + 21 Wiell? 4 caa || Wae |12
1 - -
+5 (W1l + 1W21?)

which can be written as a3(||w]) < Vip(x, Wie, ch, Wla,
Wza,t) < as(Jw]), Yw € Bs, where v = [xT ch
WI wl WINT e R4V g3 and a4 are class K functions
deﬁned on [0, s], where By € S x RY x RN x RN x RV
is a ball of radius s centered at the origin. Taking the time
derivative of Vi (-) yields

Vi = (Vi + VV5) (f + g1 + g2ila)

oV, oV, aV. oV,
S Q1+ ——Ag A+ —=—
ot anc anc aWZc

oV, ~ A . A
Nc A02A2 — WlTan - W27;1W2a
2¢

Q)

+ (60)
where the time derivatives of V* for i = 1,2, are taken
along the trajectories of (16) with control inputs (i, i2)
and the time derivative of V. is taken along the along the
trajectories of the perturbed (55). Using (12), VV*f =

Qi(x)

Substituting for the VV* f terms in (60), using the fact that
VVigi = —2u?‘T R;; from (9), and using (51) and (57), (60)
can be upper bounded as

2
—-VVr (glu’f —i—gzu;) — — ZlujfTR,-ju’; fori = 1,2.
j:

Vi < —Q—ul (Ri+ Ra)uf—ui (R + Rig)us
2 Riy(ul — i) + 2uf Ry — iig)
+ VVl*gz (ﬁz — uz) + VVz*gl (ﬁl — MT)
+ear Aol Wicllll ALl = eat|Wiell?
+en Bl Walll A2l — sl Wael®

~ I'n oF A N
+ Wl = 4 T12a(Wig — Wie)
_,/1 +a)1Ta)1 oWia
~ I'y OF A .
+ W = — +T22a(Wag — Wae) | (61)
RY. 1+ sza)z OWaq

where O £ Q1 + 0s. Substituting for u;.k, Wi, Onjp;, and A;
for i = 1,2 using (9), (44), (52), and (55), respectively, and
using (49) and (54) in (61), yields

<1G—G vVE|? lG—G vV
L_4|| 1 21V +4|| 2 2IIVVl

1
+5IVVE G+ G) VvV -0

1 T T
) (VVi = VVy) (G1¢i Wia — Gag) W2a)
1 * * -~ -
+5 (VW= vv5) (G1¢1 Wi — Gadh Wza)
N1cPol1

L AWl — w
+ca1 ZW” Wil = e3i | Wil
N2¢902
L A Wae |l — W
+can 2 Jvrons I A2 Wacll — 32l Wae |12

—T124Wial* = Ta2a | Waa ?
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T 124 Wia I Wie | + Ta2a [l Waa ||| Wae |
Iita

+,/1 +wchu1

~ ~ T T -
XWm( Wla) ¢1Gl¢i (_lewl + Al)

W1 G2 = WigGo) ¢ (~Wien + A2)

(e
+
+ ¢1G21 W, ¢2Gl) ¢1 ( WQCCUZ + Az))

=T 7 z T, T =T
Waa [\ Wae=Wau ) $:G29y (—Whm+ A
~ ~ T ~
+ (WzTa(ﬁéGlz— Wi Gz) #) (—Wchwl + Al)
+ (W2T¢>§G12— W1T¢>1G2> ¢>§T (—Wﬂwl +A1)) .
(62)

Using the bounds developed in (58), (62) can be further upper
bounded as

Vi < =0 — (31 — Tiak1x3 — Darakari) [ Wiell?

—(c32 — Dararears — Tiiakixio) | Wae |? + @21 Wl
—T 20| Wiall* = Toza | Waa I* + @1 [ Wi

+T 11ak1 (1 (k355 + Keko) + K6 (Wiko + Wakg))
+T 2102 (2 (karc6 + K5K12) + K5 (Wiki1 + Wakiz))

+x7 + K8

where

o
>

C4111cP01
AL (ﬂxs 4 114 (k153 (61 + K5)) + gk

2 /vien
+ Ta1aka (k11 (ks + Wi) + k12 (102 + Wz)))

C.
®y & ( 42026902

2/v2012
+ Thaki (ko (k1 4+ W) + K10 (16 + Wz)))-

>

K6 + 214 (2K (162 + K6)) + T22472

Provided ¢31 > Ti1ax1k3 + I21ak2K11 and ¢30 > Tojakoks +
I'114k1K10, completing the square yields
VL < =0 — ol Waa > = Ti2all Wiall®
—(1 = 601)(c31 — Tiiaxirs — Tarararer) | Wie |12
—~(1 = 0)(c32 — Tararara — Tiiaxirio) | Wae |12
+T11ax1 (k1 (3K5 + KeKo) + K6 (Wike + Wak1o))
+T 2102 (2 (karc6 + K5K12) + k5 (Wiki1 + Wakiz))
2
@1
—T11ax1K3 —
2
+ b
402(c32 — o1akoka — Ti1aK1%10)

+K7

+
401 (c31 a1ak2K11)

+ K8 (63)
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where 61,6, € (0, 1). Since Q is positive definite, according
to [57, Lemma 4.3], there exist class I functions as and o
such that

as(wl) = F (lwll) < as(lwll)  Yw € By (64)

where

F(lwl) = Q + ToalWaall* + Ti2al| Wiall*
+(1 = 01)(c31 — Triariis — Darararin) |Wicl?
+(1 = 62)(c32 — Tarararcs — Triarixio) | Wacll®

Using (64), in (63) can be further upper bounded as VL <
—as5(|lw]) + Y, where

Y = Tharr (k1 (355 + K6K0) + 56 (Wikg + Wakio))

+Ta1ak2 (K2 (ka6 + K5K12) + k5 (Wiki1 + Waki2))

2

@1
401(c31 — T11ak163 — T214%0K11)

o2

n >
402(c32 — Ta1aroks — Ci1aki1k10)

+ xg

which proves that VL is negative, whenever w lies outside the
compact set Q, £ {w : |w| < a;l (1)}, and hence, |Jw(?)]|
is UUB, according to [57, Th. 4.18]. [ |

Remark 3: Since the actor, critic, and identifier are contin-
uously updated, the developed RL algorithm can be compared
with fully optimistic PI in machine learning [11], where policy
evaluation and policy improvement are done after every state
transition, unlike traditional PI, where policy improvement
is done after convergence of the policy evaluation step.
Convergence behavior of optimistic PI is not fully understood,
and by considering an adaptive control framework, this result
investigates the convergence and stability behavior of fully
optimistic PI in continuous-time.

Remark 4: The PE requirement in Theorem 2 is equivalent
to the exploration paradigm in RL which ensures sufficient
sampling of the state space and convergence to the optimal
policy [15].

VII. NASH SOLUTION

The subsequent theorem demonstrates that the actor NN
approximations converge to the approximate coupled Hamil-
tonians in (10). It can also be shown that the approxi-
mate controllers in (44) approximate the optimal solutions
to the two-player Nash game for the dynamic system given
in (16).

Corollary 5: Provided the assumptions and sufficient gain
constraints in Theorem 2 hold, then the actor NNs Wla and
Waa converge to the approximate coupled HIB solution, in the
sense that the Hamiltonians in (13) are UUB.

Proof: Substituting the approximate control laws in (44),
in the approximate Hamiltonians {H1, H>} in (13), yields

Hy =ry, +V‘71F,;

N 1_ . o
Q1 (x) + VVif(x) + ZVV1G1VV1T

1_. R T X .
+Zvv2612vv2T — 5V (G1VV] +GovVY)
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and
Hy = ry, + VW Fy
= 0 () +VVaf (0)+ ;LV‘72G2V‘72T
+%V\71 Gy Vv — %V‘A/Q(levf +GLVVY).
After adding and subtracting

2
VVif = =VV; (g1} + gau3) — Qi(x) — > ul" Rijus
j=l1
for i = 1,2 and performing ba;ic algebrTaic operations, and
using VViT £ VViT — VViT: ¢ Wia+¢; , the Hamiltonians
can be rewritten as

N 1_ - | -
H = —-VVif(x)— ZVV]levlT — 5vvzclzvva
1_ - 1 S -
—EVV1G2VV2 + 5VV1G1VV1 + ZVV2G12VV2

1 S
+5VVi GV + SV G2VVy (65)

. 1_ - | -
Hy = —VVof (x) — ZVVQGgVVZT — zvvlc;zlvvf
1_ - o1 S -
—EVV2G1VV1 + 5VV2G2VV2 + ZVV1G21VV1

+%VV2G1V\717 + %v%alvvﬁ (66)
If the assumptions and sufficient gain constraints in
Theorem 2 hold, then the right side of (65) and (66)
can be upper bounded by a function that is UUB, i.e.,
IH;| < ©;(Wi4, Waa, ) for i = 1,2. Thus, the approximate
HJBs are also UUB. [ ]
Corollary 6: Provided the assumptions and sufficient gain
constraints in Theorem 2 hold, the approximate control laws in
(44) converge to the approximate Nash solution of the game.
Proof: Consider the control errors (i1, it2) between the
optimal control laws in (9) and the approximate control laws
in (44) given as ii] = uy —iiy, i £ uj — it>. Substituting for
the optimal control laws in (9) and the approximate control
laws in (44) and using Wi = W; — Wia for i = 1,2, yields

1 ~
i = =5 Ry'g] W) (Wia + 61 (0))

1 ~
ity = =3 R 8] ()83.(6) (Waa + 5 ().

Using Properties 1-4, (67) can be upper bounded as

(67)

il = 5 (R 4] (1] + 1)
li2) = 3 Amin(R)2 |65 (1W2a] + 7).

Given that the assumptions and sufficient gain constraints in
Theorem 2 hold, then all terms to the right of the inequal-
ity can be bounded by a function that is UUB, therefore,
the control errors (i1, #7) are UUB and the approximate
control laws (ﬁl, ﬁz) give the approximate Nash equilibrium
solution. [ ]
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VIII. SIMULATIONS

A. Two-Player Game With a Known
Nash Equilibrium Solution

The following two player nonzero sum game considered in
[31], [38], [39], and [58] has a known analytical solution, and
hence is utilized in this paper to demonstrate the performance
of the developed technique. The system dynamics are given
by x = f (x) + g1 (x) u1 + g2 (x) uz, where

(x2 — 2x1)
fx) = —%xl —x2+ %xz(cos (2X1)+2)2
+%x2(sin (4x12) + 2)2
g1 (@) =[0 cosx)+2]"
2 (x) =[0 sin(4x?) +2]".

(68)
(69)

The objective is to design u; and up to minimize the cost
functionals in (3), where the local cost is given by r; =
xTQix + ul Riju;i + u]TRijuj, i =1,2, j =3 —i, where
Rii = 2Ry = 2, Rip = 2Ry = 2, Q1 = 202 =
Ir«2. The known analytical solutions for the optimal value
functions of players 1 and 2 are given as V" (x) =1 /2)c12 +
x%, Vix) = 1/4)612 + 1/2x%, and the corresponding opti-
mal control inputs are given as u} = — (cos (2x1) + 2) x2,
uy = —1/2(sin(4x?) + 2)x,.

To implement the developed technique, the activation func-
tion for critic NNs are selected as ¢; = [)cl2 X1X2 x%]T,
i = 1,2, while the activation function for the identifier DNN is
selected as a symmetric sigmoid with 5 neurons in the hidden
layer. The identifier gains are selected as k = 300, a = 200,
vr =5, p1 =02, I'yr = 0.1lsxs, I'yy = 0.1Ir%2, and
the gains of the AC learning laws are selected as I, =
e = 10, T21s = T'og = 20, n1c = 50, me = 10,
vy = vy = 0.001, and A1 = A, = 0.03. The covariance
matrix is initialized to " (0) = 5000133, the NN weights for
state derivative estimator are randomly initialized with values
between [—1, 1], the weights for the actor and the critic are
initialized to [3, 3, 3]7, the state estimates are initialized to
zero, and the states are initialized to x (0) = [3, —1]. Similar
to results such as [37]-[39], [41], and [59], a small amplitude
exploratory signal (noise) is added to the control to excite
the states for the first 6 s of the simulation, as seen from
the evolution of states and control in Fig. 1. The identifier
approximates the system dynamics, and the state derivative
estimation error is shown in Fig. 1. The time histories of
the critic NN weights and the actors NN weights are given
in Fig. 2, where solid lines denote the weight estimates and
dotted lines denote the true values of the weights. Persistence
of excitation ensures that the weights converge to their known
ideal values in less than 5 s of simulation. The use of two
separate neural networks facilitates the design of least squares-
based update laws in (47). The least squares-based update laws
result is a performance benefit over single NN-based results,
such as [41], where the convergence of weights is obtained
after about 250 s of simulation.
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Fig. 1. Evolution of the system states, state derivative estimates, and control

signals for the two-player nonzero-sum game, with persistently excited input
for the first 6 s.
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Fig. 2. Convergence of actor and critic weights for players 1 and 2 in the
nonzero-sum game.

B. Three Player Game

To demonstrate the performance of the developed technique
in the multiplayer case, the two-player simulation is aug-
mented with another actor. The resulting dynamics are given
by x = f (x) + g1 (x) ur + g2 (x) uz + g3 (x) u3, where

B (x2 — 2x1)

1 1
_Exl — X2+ sz (cos (2x1) + 2)2

S = —i—%xz (sin (4x12) + 2)2

1 ) 2
+sz (cos (4x1) + 2)

g3(x) =[0 cos(4x}) +2]T

(70)

and g and g, are the same as (69). Fig. 3 demonstrates
the convergence of the actor and the critic weights. Since
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Fig. 3. Convergence of actor and critic weights for the three-player
nonzero-sum game.
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Fig. 4. Evolution of the system states, state derivative estimates and control
signals for the three-player nonzero-sum game, with persistently excited input
for the first 6 s.

the Nash equilibrium solution is unknown for the dynamics
in (70), the obtained weights are not compared against their
true values. Fig. 4 demonstrates the regulation of the system
states and the state derivative estimation error to the origin,
and the boundedness of the control signals.

Remark 7: An implementation issue in using the developed
algorithm as well as results such as [37]-[39], [41], and [59]
is to ensure PE of the critic regressor vector. Unlike linear
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systems, where PE of the regressor translates to the sufficient
richness of the external input, no verifiable method exists to
ensure PE in nonlinear systems. In this simulation, a small
amplitude exploratory signal consisting of a sum of sines
and cosines of varying frequencies is added to the control to
ensure PE qualitatively, and convergence of critic weights to
their optimal values is achieved. The exploratory signal n (t),
designed using trial and error, is present in the first 6 s of the
simulation and is given by

n (t) = sin (57t) + sin (et) + sin® (r) + cos> (207)
+ sin? (—1.2¢) cos (0.5¢)..

IX. CONCLUSION

A generalized solution for a N-player nonzero-sum differ-
ential game is developed by utilizing an HJB approximation
by an ACI architecture. The ACI architecture implements the
actor and critic approximation simultaneously and in real time.
The use of a robust DNN-based identifier circumvents the need
for complete model knowledge, yielding an identifier which
is proven to be asymptotically convergent. A gradient-based
weight update law is used for the critic NN to approximate
the value function. Using the identifier and the critic, an
approximation to the optimal control laws is developed, which
stabilizes the closed-loop system and approaches the optimal
solutions to the N-player nonzero-sum game.

While this result provides an approach for approximating
solutions to nonzero-sum differential games, it relies on lim-
iting assumptions, such as the existence and uniqueness of
a set Nash solutions for the nonzero-sum game, knowledge
of the upper bound of the input matrices of the unknown
dynamics, and persistence of excitation for convergence of
learning parameters. Future research will focus on relaxing
the aforementioned assumptions to broaden the applicability
of ADP techniques for nonzero-sum differential games.
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