
Received 18 June 2025, accepted 25 June 2025, date of publication 30 June 2025, date of current version 11 July 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3584253

Lyapunov-Based Deep Residual Neural
Network (ResNet) Adaptive Control
OMKAR SUDHIR PATIL , DUC M. LE , EMILY J. GRIFFIS ,
AND WARREN E. DIXON , (Fellow, IEEE)
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA

Corresponding author: Omkar Sudhir Patil (patilomkarsudhir@ufl.edu)

This work was supported in part by the Office of Naval Research under Grant N00014-21-1-2481 and in part by Air Force Office of
Scientific Research (AFOSR) under Award FA8651-21-F-1027 and Award FA9550-19-1-0169.

ABSTRACT Deep Neural Network (DNN)-based controllers have emerged as a tool to compensate for
unstructured uncertainties in nonlinear dynamical systems. A recent breakthrough in the adaptive control
literature provides a Lyapunov-based approach to derive weight adaptation laws for each layer of a
fully-connected feedforward DNN-based adaptive controller. However, deriving weight adaptation laws
from a Lyapunov-based analysis remains an open problem for deep residual neural networks (ResNets). This
paper provides the first result on Lyapunov-derived weight adaptation for a ResNet-based adaptive controller.
A nonsmooth Lyapunov-based analysis is provided to guarantee asymptotic tracking error convergence.
Comparative Monte Carlo simulations are provided to demonstrate the performance of the developed
ResNet-based adaptive controller. The ResNet-based adaptive controller shows a 64% improvement in the
tracking and function approximation performance, in comparison to a fully-connected DNN-based adaptive
controller.

INDEX TERMS Deep neural networks, ResNets, adaptive control, Lyapunov-based methods.

I. INTRODUCTION
Deep Neural Network (DNN)-based controllers have
emerged as a tool to compensate for unstructured uncer-
tainties in nonlinear dynamical systems. The success of
DNN-based controllers is powered by the ability of a DNN
to approximate any continuous function over a compact
domain [1]. A popular DNN-based control method is to
first perform a DNN-based offline system identification
using sampled input-output datasets that are collected by
conducting experiments [2, Sec. 6.6]. Then, using the
identified DNN, a feedforward term is constructed to
compensate for uncertainty in the system. However, the DNN
weight estimates are not updated during task execution, and
hence, such an approach involves static implementation of the
DNN-based feedforward term. Since there is no continued
learning with most DNN methods, questions arise regarding
how well the training dataset matches the actual uncertainties
in the system and the value or quality of the static feedforward

0The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

model. This strategy motivates the desire for a large training
dataset, but such data can be expensive or impossible to
obtain, including the need for higher order derivatives that
are typically not measurable.

Unlike offline methods, a closed-loop adaptive feedfor-
ward term can be developed by deriving real-time DNN
weight adaptation laws from a Lyapunov-based stability
analysis. Various classical results [3], [4], [5], [6], [7] use
Lyapunov-based techniques to develop weight adaptation
laws, but only for single-hidden-layer networks. These results
do not provide weight adaptation laws for DNNs with more
than one hidden layer, since there are mathematical chal-
lenges posed by the nested and nonlinear parameterization of
a DNN that preclude the development of inner-layer weight
adaptation laws. Recent results such as [8], [9], [10] develop
Lyapunov-based adaptation laws for the output-layer weights
of a DNN. However, to update the inner-layer weights, results
in [8], [9], and [10] collect datasets over discrete time-periods
and iteratively identify the inner-layer weights using offline
training algorithms. To circumvent offline identification of
the inner-layer weights, the result in [11] provides a real-time

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 117943

https://orcid.org/0000-0002-3820-2025
https://orcid.org/0000-0003-2891-0439
https://orcid.org/0009-0004-7684-1444
https://orcid.org/0000-0002-5091-181X
https://orcid.org/0000-0002-4558-9803


O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

inner-layer weight adaptation scheme based on a modular
approach. However, modular designs only offer constraints
on the adaptation laws and do not provide constructive
insights on designing the adaptation laws.

Our recent work in [12] provides the first result on
Lyapunov-derived weight adaptation laws for each layer of
a DNN-based adaptive controller. To address the challenges
posed by the nested and nonlinearly-parameterized structure
of the DNN, a recursive representation of the DNN is
developed. Then, a first-order Taylor series approximation
is recursively applied for each layer. Using a Lyapunov-
based stability analysis, the inner- and outer-layer weight
adaptation laws are designed to cancel coupling terms that
result from the approximation strategy. Although the result
in [12] provides Lyapunov-derived weight adaptation laws
for the DNN, the development is restricted to fully-connected
DNNs.

There are several limitations associated with standard
DNN architectures such as fully-connected and convolutional
DNNs. Deeper networks typically suffer from the problem
of vanishing or exploding gradients, i.e., the rate of learning
using a gradient-based update rule is highly sensitive to the
magnitude of DNN weights. Challenges faced from the van-
ishing or exploding gradient problem are ubiquitous to both
offline training [13] and real-time weight adaptation [12].
Additionally, in applications such as image recognition, the
performance of a DNN is found to initially improve by
increasing the depth of the DNN. However, as the depth
exceeds a threshold, performance rapidly degrades [14].
To overcome the vanishing or exploding gradient problem

and the degradation of performance with the increasing depth
of a DNN, results in [14] introduce shortcut connections
across layers, i.e., a feedforward connection between layers
that are separated by more than one layer. DNNs with
a shortcut connection are known as deep residual neural
networks (ResNets). Offline results in [15] and [16] offer
mathematical explanations for why ResNets perform better
than non-residual DNNs. In [15], the parameterization of
a non-residual DNN is shown to cause difficulties in
training DNN layers to approximate the identity function.
As explained in [15], for a DNN to achieve a good training
accuracy, the DNN layers must be able to approximate the
identity function well. Since a shortcut connection in ResNets
is represented using an identity function, ResNets provide
an improved performance when compared to non-residual
DNNs. Additionally, the result in [16] provides explanations
from Lyapunov stability theory on why ResNets are easier to
train offline using the gradient descent algorithm as compared
to non-residual DNNs. The shortcut connections in ResNets
facilitate the stability of the equilibria of gradient descent
dynamics for a larger set of step sizes or initial weights as
compared to non-residual DNNs.

Although there has been significant research across various
applications involving ResNets [14], [17], [18], [19], [20], the
approximation power of ResNets has not yet been explored
for adaptive control problems. Developing a ResNet-based

adaptive feedforward control term with real-time weight
adaptation laws is an open problem. Although real-time
weight adaptation laws are developed for fully-connected
feedforward DNNs in [12], the shortcut connections in
ResNets pose additional mathematical challenges. Unlike
fully-connected DNNs, the shortcut connection prevents a
recursive application of Taylor series approximation for each
layer of the ResNet. As a result, it is difficult to generate the
coupling terms that are generated using the approximation
strategy in [12], that can be canceled using the weight
adaptation laws in the Lyapunov-based analysis.

Our preliminary work in [21] and this paper provide
the first result on Lyapunov-derived adaptation laws for
the weights of each layer of a ResNet-based adaptive
controller for uncertain nonlinear systems. To overcome
the mathematical challenges posed by the residual network
architecture, the ResNet is expressed as a composition of
building blocks that involve a shortcut connection across
a fully-connected DNN. Then, a constructive Lyapunov-
based approach is provided to derive weight adaptation laws
for the ResNet using the gradient of each DNN building
block. A nonsmooth Lyapunov-based analysis is provided to
guarantee asymptotic tracking error convergence. Unlike our
preliminary work in [21], which involved a ResNet with only
one shortcut connection, this paper provides weight adapta-
tion laws for a general ResNet that has an arbitrary number
of shortcut connections. The development of adaptation laws
for ResNets with an arbitrary number of shortcut connections
is challenging due to the complexity of the architecture.
This challenge is addressed by constructing a recursive
representation of the ResNet which involves a composition
of an arbitrary number of building blocks. Then, based
on the recursive representation of the ResNet architecture,
a first-order Taylor series approximation is applied, which
is then utilized to yield the Lyapunov-based adaptation laws.
Additionally, unlike our preliminary work in [21] which did
not provide simulations, this paper provides comparative
Monte Carlo simulations to demonstrate the performance
of the developed ResNet-based adaptive controller, and the
results are compared with an equivalent fully-connected
DNN-based adaptive controller [12]. Since the performance
of ResNet and DNN-based adaptive controllers is sensitive
to weight initialization, the Monte Carlo approach is used
to provide a fair comparison between the two architectures.
In the Monte Carlo comparison, 10,000 simulations are
performed, where the initial weights in each simulation
are selected from a uniform random distribution, and a
cost function is evaluated for each simulation. Then, the
simulation results yielding the least cost for both architectures
are compared. The ResNet-based adaptive controller shows a
64% improvement in the tracking and function approximation
performance, in comparison to a fully-connected DNN-based
adaptive controller.
Notation and Preliminaries:
The space of essentially bounded Lebesgue measurable

functions is denoted by L∞. The right-to-left matrix product

117944 VOLUME 13, 2025



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

operator is represented by
↶∏
, i.e.,

↶
m∏
p=1

Ap = Am . . .A2A1 and

↶
m∏
p=a

Ap = I if a > m. The Kronecker product is denoted

by ⊗. Function compositions are denoted using the symbol
◦, e.g., (g ◦ h)(x) = g(h(x)), given suitable functions g and

h. The notation
a.a.t.
(·) denotes that the relation (·) holds for

almost all time (a.a.t.). Consider a Lebesgue measurable and
locally essentially bounded function h : Rn

×R≥0 → Rn. The
Filippov set-valued map for h at (y, t) ∈ Rn

× R≥0 is defined
as the intersection of convex closures of values attained by h
in every neighborhood of y omitting sets of measure zero, i.e.,

K [h] (y, t) ≜
⋂
δ>0

⋂
mS=0

co h (B (y, δ) \S, t) ,

where
⋂

mS=0
denotes the intersection over all sets S ⊂ Rn of

Lebesgue measure zero [22]. Then, the function y : I → Rn

is called a Filippov solution of ẏ = h(y, t) on the interval I ⊆

R≥0 if y is absolutely continuous on I and ẏ
a.a.t.
∈ K [h] (y, t).1

Given w ∈ R and some functions f and g, the notation
f (w) = Om(g(w)) means that there exists some constants
M ∈ R>0 and w0 ∈ R such that ∥f (w)∥ ≤ M ∥g(w)∥m

for all w ≥ w0. Given some matrix A ≜
[
ai,j
]

∈ Rn×m,
where ai,j denotes the element in the ith row and jth column
of A, the vectorization operator is defined as vec(A) ≜
[a1,1, . . . , a1,m, . . . , an,1, . . . , an,m]T ∈ Rnm. The p-norm
is denoted by ∥·∥p, where the subscript is suppressed when
p = 2. The Frobenius norm is denoted by ∥·∥F ≜ ∥vec(·)∥.
Given any A ∈ Rp×a, B ∈ Ra×r , and C ∈ Rr×s, the
vectorization operator satisfies the property [24, Proposition
7.1.9]

vec(ABC) = (CT
⊗ A)vec (B) . (1)

Differentiating (1) on both sides with respect to vec (B) yields
the property

∂

∂vec (B)
vec(ABC) = (CT

⊗ A). (2)

II. UNKNOWN SYSTEM DYNAMICS AND CONTROL
DESIGN
Consider a control-affine nonlinear dynamic system modeled
as

ẋ = f (x) + u, (3)

where x : R≥0 → Rn denotes any arbitrary Filippov
solution2 to (3), f : Rn

→ Rn denotes an unknown
differentiable drift vector field, and u : R≥0 → Rn denotes

1For a detailed discussion on Filippov solutions and its comparison with
other notions of solutions to discontinuous differential equations, such as
Aizerman-Pyatnitskii and Gelig-Leonov-Yakubovich, the reader is referred
to [23].

2The Filippov solutions may not be unique. In this paper, we analyze
the convergence properties of all Filippov solutions beginning from a set of
initial conditions.

a control input.3 Let the tracking error e : R≥0 → Rn be
defined as

e ≜ x − xd , (4)

where xd : R≥0 → Rn denotes a continuously differentiable
reference trajectory. The reference trajectory is designed such
that ∥xd (t)∥ ≤ xd ∀t ∈ R≥0 and ẋd ∈ L∞, where xd ∈ R>0
is a constant. The control objective is to design a ResNet-
based adaptive controller that achieves asymptotic tracking
error convergence.

FIGURE 1. Illustration of the ResNet architecture in (6). The ResNet is
shown at the top of the figure and is composed of building blocks that
involve a shortcut connection across a fully-connected DNN component.
The fully-connected DNN component for the pth building block (bottom)

is denoted by 8
θ̂p
p for all p ∈ {1, . . . , m}, where the input and the vector of

weights of 8p are denoted by ηp and θ̂p, respectively. Then the output of
the pth building block after considering the shortcut connection is

represented by ηp+1 = ηp + 8
θ̂p
p (ηp) for all p ∈ {1, . . . , m − 1}, and the

output of the ResNet is ηm + 8
θ̂m
m (ηm).

A. ResNet ARCHITECTURE
The unknown drift vector field f can be approximated
using a ResNet. A ResNet is modeled using building
blocks that involve a shortcut connection across a fully-
connected DNN [14]. Let 8p : RLp,0 × RLp,0×Lp,1 ×

. . . × RLp,kp×Lp,kp+1 → RLp,kp+1 denote the pth fully-
connected DNN block defined as 8p(ηp,Vp,0, . . . ,Vp,kp ) ≜(
V T
p,kpφp,kp ◦ . . . ◦ V T

p,1φp,1

) (
V T
p,0ηp

)
for all p ∈ {1, . . . ,m},

where ηp ∈ RLp,0 denotes the input of 8p, kp ∈ Z>0
denotes the number of hidden layers in 8p, and m ∈

Z>0 denotes the number of building blocks. Additionally,
Lp,j ∈ Z>0 denotes the number of nodes, and Vp,j ∈

RLp,j×Lp,j+1 denotes the weight matrix in the jth layer of
8p for all (p, j) ∈ {1, . . . ,m} × {0, . . . , kp}. Similarly,
φp,j : RLp,j → RLp,j denotes a vector of smooth activation
functions.4 If the ResNet involves multiple types of activation

3The control effectiveness term is omitted to better focus on the specific
contributions of this paper without loss of generality. The method in [8] can
be used with the developed method in the case where the system involves an
uncertain control effectiveness term.

4For the case of DNNswith nonsmooth activation functions (e.g., rectified
linear unit (ReLU), leaky ReLU, maxout etc.), the reader is referred to [12]
where a switched analysis is provided to account for the nonsmooth nature
of activation functions. To better focus on our main contribution without loss
of generality, we restrict our attention to smooth activation functions.

VOLUME 13, 2025 117945



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

functions at each layer, then φp,j may be represented as
φp,j ≜

[
ςp,j,1 . . . ςp,j,Lp,j

]T , where ςp,j,i : R → R
denotes the activation function at the ith node of the jth layer
of 8p.5 All the weights of 8p can be represented by the

vector θp ≜
[
vec(Vp,0)T . . . vec(Vp,kp )

T ]T
∈ R6

kp
j=0Lp,jLp,j+1 .

The fully-connected block 8p can be expressed as 8p =

V T
p,kpϕp,kp , where ϕp,0 : RLp,0 → RLp,0 and ϕp,j : RLp,0 ×

RLp,0×Lp,1×. . .×RLp,j−1×Lp,j → RLp,j ∀j ∈ {1, . . . , kp} denote
the recursive relation defined as

ϕp,j ≜

{
φp,j

(
V T
p,j−1ϕp,j−1

)
, j ∈

{
1, . . . , kp

}
,

ηp, j = 0.
(5)

The arguments of ϕp,j are suppressed for notational brevity.
Let φ′

p,j : RLp,j → RLp,j×Lp,j be defined as φ′
p,j(y) ≜

∂
∂yφp,j(y) ∀y ∈ RLp,j . The short-hand notation 8

θp
p (ηp) ≜

8p(ηp,Vp,0,Vp,1, . . . ,Vp,kp ) is defined for notational brevity
in the subsequent development. Then the output of the pth

building block is given by ηp + 8
θp
p (ηp), where the addition

of the input term ηp represents the shortcut connection
across 8p. As shown in Figure 1, the ResNet 8 : Rn

×

R6m
p=16

kp
j=0Lp,jLp,j+1

→ Rn, which defines the mapping
(η1, θ) 7→ 8θ (η1), is modeled as [14]

8θ (η1) ≜ ηm + 8θm
m (ηm) , (6)

where θ ≜
[
θT1 . . . θTm

]T
∈ R6m

p=16
kp
j=0Lp,jLp,j+1 denotes the

vector of weights for the entire ResNet, and ηm is evaluated
using the recursive relation

ηp =

{
ηp−1 + 8

θp−1
p−1

(
ηp−1

)
, p ∈ {2, . . . ,m},

x, p = 1.
(7)

The recursive relation in (7) has valid dimensions under the
constraint L1,0 = L1,k1+1 = L2,0 = L2,k2+1 = . . . = Lm,0 =

Lm,km+1 = n. To facilitate the subsequent development, the
following assumption is made.
Assumption 1: The function space of ResNets given by (6)

is dense in C(�) with respect to the supremum norm, where
C(�) denotes the space of functions continuous over the
compact set � ⊂ Rn.
Remark 1: Assumption 1 implies that ResNets satisfy the

universal function approximation property that is well-known
for various DNN architectures [1]. The universal function
approximation property of ResNets is a common assumption
that is widely used in the deep learning literature, and
has been rigorously established for ResNets with specific
activation functions in [25] and [26].
Consider any vector field f ∈ C(�) and a prescribed accuracy
ε ∈ R>0. Then by Assumption 1, there exists a ResNet
8 with sufficiently large m, kp,Lp,j ∀(p, j) ∈ {1, . . . ,m} ×

{0, . . . , kp} and a corresponding vector of ideal weights θ∗
∈

R6m
p=16

kp
j=0Lp,jLp,j+1 such that supx∈�

∥∥∥f (x) − 8θ∗

(x)
∥∥∥ ≤ ε.

Therefore, the drift vector field x 7→ f (x) can be modeled

5Bias terms are omitted for simplicity of the notation.

as6

f (x) = 8θ∗

(x) + ε(x), (8)

when x ∈ �, where ε : Rn
→ Rn denotes an

unknown function reconstruction error that can be bounded
as supx∈� ∥ε(x)∥ ≤ ε.

To facilitate the subsequent analysis, the following
assumption is made (cf., [27, Assumption 1]).
Assumption 2: There exists a known constant θ ∈ R>0

such that the unknown ideal ResNet weights can be bounded
as ∥θ∗∥ ≤ θ .

B. CONTROL AND ADAPTATION LAWS
The ResNet-based model in (8) can be leveraged to approx-
imate the unknown drift vector field f . However, since the
ideal weights are unknown, adaptive weight estimates are
developed. The adaptive weight estimate for the jth layer
of 8p is denoted by V̂p,j : R≥0 → RLp,j×Lp,j+1 ∀(p, j) ∈

{1, . . . ,m} × {0, . . . , kp}. The weight estimate for the pth

building block θ̂p : R≥0 → R6
kp
j=0Lp,jLp,j+1 is defined as θ̂p =[

vec(V̂p,0)T , . . . , vec(V̂p,kp )
T
]T

for all p ∈ {1, . . . ,m}, the

weight estimate for the ResNet θ̂ : R≥0 → R6m
p=16

kp
j=0Lp,jLp,j+1

is defined as θ̂ ≜
[
θ̂T1 . . . θ̂Tm

]T
, and the ResNet-based

adaptive estimate of f (x) ∀x ∈ � is denoted by 8θ̂ (x). The

weight estimation error θ̃ : R≥0 → R6m
p=16

kp
j=0Lp,jLp,j+1 is

defined as θ̃ ≜ θ∗
− θ̂ . Based on the subsequent stability

analysis, the adaptation law for the weight estimates of the
ResNet in (6) is designed as

˙̂
θ ≜ 08′T e, (9)

where 0 ∈ R6m
p=16

kp
j=0Lp,jLp,j+1×6m

p=16
kp
j=0Lp,jLp,j+1 denotes

a positive-definite adaptation gain matrix, and 8′
∈

Rn×6m
p=16

kp
j=0Lp,jLp,j+1 is a short-hand notation denoting the

8′ ≜ ∂8θ̂ (x)
∂θ̂

. The term 8′ can be evaluated as follows. Let
η̂p ∈ RLp,0 be defined as

η̂p =

{
x, p = 1,

η̂p−1 + 8
θ̂p−1
p−1

(
η̂p−1

)
, p ∈ {2, . . . ,m}.

(10)

Then, it follows that 8θ̂ (x) = η̂m + 8
θ̂m
m (η̂m). To facil-

itate the subsequent development, the short-hand notations

8′
p ≜

(
∂8θ̂ (x)

∂θ̂p

)
, 3p ≜

∂8
θ̂p
p (η̂p)
∂θ̂p

, 3p,j ≜
∂8

θ̂p
p (η̂p)

∂vec(V̂p,j)
,

and 4p ≜
∂8

θ̂p
p (η̂p)
∂η̂p

are introduced. Then 8′
=[(

∂8θ̂ (x)
∂θ̂1

)
, . . . ,

(
∂8θ̂ (x)

∂θ̂m

)]
can be expressed as

8′ ≜
[
8′

1, . . . , 8′
m
]
. (11)

6If f has different input-output dimensions, i.e., f : Rµ
→ Rn with the

input dimension µ, the ResNet architecture can be modified with an extra
fully-connected DNN block 8

θ0
0 (x) ∈ Rµ at the input to account for the

difference in input and output domains.

117946 VOLUME 13, 2025



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

Using the chain rule, the term 8′
p can be computed as

8′
p =


↶
m∏

l=p+1

(In + 4l)

3p, ∀p ∈ {1, . . . ,m}. (12)

In (12), the terms 3p and 4p, for all p ∈ {1, . . . ,m}, can be

computed as follows. Since θ̂p=

[
vec(V̂p,0)T ,. . . ,vec(V̂p,kp )

T
]T
,

it follows that ∂8
θ̂p
p (η̂p)
∂θ̂p

=

[(
∂8

θ̂p
p (η̂p)

∂vec(V̂p,0)

)
, . . . ,

(
∂8

θ̂p
p (η̂p)

∂vec(V̂p,kp )

)]
.

Therefore, using the definitions of 3p and 3p,j yields

3p =
[
3p,0 3p,1 . . . 3p,kp

]
, ∀p ∈ {1, . . . ,m}.

(13)

For brevity in the subsequent development, the short-hand
notations ϕ̂p,j ≜ ϕp,j(η̂p, V̂p,0, . . . , V̂p,j) and ϕ̂′

p,j ≜

ϕ′
p,j(η̂p, V̂p,0, . . . , V̂p,j) are introduced. Using (5), the chain

rule, and the property of vectorization operators in (2), the
terms 3p,0 and 3p,j in (13) can be computed as

3p,0 =


↶
kp∏
l=1

V̂ T
p,l ϕ̂

′
p,l

 (ILp,1 ⊗ η̂Tp ), (14)

and

3p,j =


↶
kp∏

l=j+1

V̂ T
p,l ϕ̂

′
p,l

 (ILp,j+1 ⊗ ϕ̂Tp,j), (15)

for all (p, j) ∈ {1, . . . ,m} × {1, . . . , kp}, respectively.
Similarly, the term 4p can be computed as

4p =


↶
kp∏
l=1

V̂ T
p,l ϕ̂

′
p,l

 V̂ T
p,0, ∀p ∈ {1, . . . ,m}. (16)

Remark 2: If 8p suffers from the vanishing gradient
problem, i.e., ∥4l∥F ≈ 0 for all l ∈ {p + 1, . . . ,m}, then

8′
p =

 ↶
m∏

l=p+1
(In + 4l)

3p ≈ 3p. For an equivalent

fully-connected DNN [12], i.e., in absence of shortcut

connections,
∥∥∥8′

p

∥∥∥
F

=

∥∥∥∥∥∥
 ↶

m∏
l=p+1

4l

3p

∥∥∥∥∥∥ ≈ 0. Thus,

the shortcut connection circumvents the vanishing gradient
problem in the ResNet when 8p has a vanishing gradient.
Based on the subsequent stability analysis, the control input
is designed as

u ≜ ẋd − 8θ̂ (x) − σee− σssgn(e), (17)

where σe, σs ∈ R>0 are constant control gains, and sgn(·)
denotes the vector signum function.

III. STABILITY ANALYSIS
To facilitate the subsequent analysis, let z ≜ [eT , θ̃T ]T ∈

R9 denote a concatenated state, where 9 ≜ n +

6m
p=16

kp
j=0Lp,jLp,j+1. Consider the candidate Lyapunov func-

tion VL : R9
→ R≥0 defined as

VL (z) ≜
1
2
eT e+

1
2
θ̃T0−1θ̃ , (18)

which satisfies the inequality α1 ∥z∥2 ≤ VL (z) ≤ α2 ∥z∥2 ,

where α1, α2 ∈ R>0 are known constants. The universal
function approximation property in (8) holds only on the
compact domain �; hence, the subsequent stability analysis
requires ensuring x(t) ∈ � for all t ∈ R≥0. This is achieved
by yielding a stability result which constrains z in a compact
domain. Consider the compact domain D ≜ {ς ∈ R9

:

∥ς∥ < κ} in which z is supposed to lie, where κ ∈ R>0
is a bounding constant. The subsequent analysis shows that
z(t) ∈ D for all t ∈ R≥0, if z is initialized within the set
S ≜ {ς ∈ R9

: ∥ς∥ <
√

α1
α2

κ}.
Taking the time-derivative of (4), substituting in (3)

and (17), and substituting in (8) yields the closed-loop error
system

ė = 8θ∗

(x) − 8θ̂ (x) + ε(x) − σee− σssgn(e). (19)

The ResNet in (6) is nonlinear in terms of the weights.
Adaptive control design for nonlinearly parameterized sys-
tems is known to be a difficult problem [28]. A number of
adaptive control methods have been developed to address
the challenges posed by a nonlinear parameterization [3],
[12], [28], [29], [30], [31], [32], [33]. In particular, first-
order Taylor series approximation-based techniques have
shown promising results for neural network-based adaptive
controllers [3], [5], [12]. Specifically, the result in [12] uses
a first-order Taylor series approximation to derive weight
adaptation laws for a fully-connected DNN-based adaptive
controller. Thus, motivation exists to explore a Taylor series
approximation-based design to derive adaptation laws for the
ResNet. For the ResNet in (6), a first-order Taylor series
approximation-based error model is given by [27, Eq. 22]

8θ∗

(x) − 8θ̂ (x) = 8′θ̃ +O
(∥∥∥θ̃∥∥∥2) , (20)

where O
(∥∥∥θ̃∥∥∥2) denotes higher-order terms. Since

∥xd (t)∥ ≤ xd for all t ∈ R≥0, x can be bounded as
∥x∥ ≤ ∥e+ xd∥ ≤ ∥z∥ + ∥xd∥ ≤ κ + xd , based on the
definition of D, when z ∈ D. Hence, since the ResNet is
smooth, there exists a known constant 1 ∈ R>0 such that∥∥∥∥O(∥∥∥θ̃∥∥∥2)∥∥∥∥ ≤ 1, when z ∈ D. Then, substituting (20)

into (19), the closed-loop error system can be expressed as

ė = 8′θ̃ +O
(∥∥∥θ̃∥∥∥2)+ ε(x) − σee− σssgn(e). (21)

Then, using (9) and (21) yields

ż = h(z, t), (22)

VOLUME 13, 2025 117947



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

where h : R9
× R≥0 → R9 is defined as

h(z, t) ≜


8′θ̃ +O

(∥∥∥θ̃∥∥∥2)+ ε(x)

−σee− σssgn(e)


−08′T e

 . (23)

Based on the nonsmooth analysis technique in [34], the
following theorem establishes the invariance properties
of Filippov solutions to (22) and provides guarantees of
asymptotic tracking error convergence for the system in (3).
Theorem 1: For the dynamical system in (3), the controller

in (17) and the adaptation law in (9) ensure asymptotic
tracking error convergence in the sense that z, u, ˙̂

θ ∈ L∞

and lim
t→∞

∥e(t)∥ = 0, provided Assumptions 1 and 2 hold,
z(0) ∈ S, and the following gain condition is satisfied:

σs > ε + 1. (24)

Proof: Let ∂VL denote the Clarke gradient of VL
defined in [35, p. 39]. Since z 7→ VL(z) is continuously
differentiable,7 ∂VL(z) = {∇VL(z)}, where ∇ denotes the
standard gradient operator. Based on (23) and the chain rule
in [37, Thm 2.2], it can be verified that t → VL(z(t)) satisfies
the differential inclusion

V̇L
a.a.t.
∈

⋂
ξ∈∂VL (z)

ξTK [h] (z, t)

= ∇VL (z)T K [h] (z, t)

= eT
(
O
(∥∥∥θ̃∥∥∥2)+ ε(x)

)
− σe ∥e∥2

− σseTK
[
sgn

]
(e) + eT8′θ̃ − θ̃T8′T e, (25)

for all z ∈ D. Note that the terms eT8′θ̃ and θ̃T8′T e
cancel. This cancellation of terms is the key motivation for
designing the adaptive update law in (9). Using the fact that
eTK

[
sgn

]
(e) = ∥e∥1, (25) can be bounded as

V̇L
a.a.t.
≤ −σe ∥e∥2 + eT

(
O
(∥∥∥θ̃∥∥∥2)+ ε(x)

)
− σs ∥e∥1 ,

(26)

for all z ∈ D. Based on Holder’s inequality, triangle
inequality, and the fact that ∥e∥ ≤ ∥e∥1, the follow-

ing inequality can be obtained: eT
(
O
(∥∥∥θ̃∥∥∥2)+ ε(x)

)
≤

∥e∥1

(∥∥∥∥O(∥∥∥θ̃∥∥∥2)∥∥∥∥+ ∥ε(x)∥
)

≤
(
ε̄ + 1

)
∥e∥1. Then,

provided the gain condition in (24) is satisfied, the right-hand
side of (26) can be upper-bounded as

V̇L
a.a.t.
≤ −σe ∥e∥2 , (27)

for all z ∈ D. Based on (27), invoking [34, Corollary 2] yields
z ∈ L∞ and lim

t→∞
∥e(t)∥ = 0, when z ∈ D. Using (27),

α1 ∥z(t)∥2 ≤ VL (z(t)) ≤ VL (z(0)) ≤ α2 ∥z(0)∥2, when

7For discontinuous candidate Lyapunov functions, the approach from [36]
can be used in lieu of the continuous development in [37].

z(t) ∈ D. Thus, ∥z(t)∥ <
√

α2
α1

∥z(0)∥, when z(t) ∈ D.

Therefore, z(t) ∈ D is always satisfied if ∥z(0)∥ ≤

√
α1
α2

κ ,
i.e., z(0) ∈ S. To show x ∈ � for ensuring the universal
function approximation holds, consider the set ϒ ⊆ �

defined as ϒ ≜ {ζ ∈ � : ∥ζ∥ ≤ κ + xd }. Since
∥z∥ ≤ κ implies ∥e∥ ≤ κ , the following relation holds:
∥x∥ ≤ ∥e+ xd∥ ≤ κ + xd . Therefore, x(t) ∈ ϒ ⊆ � for all
t ∈ R≥0. Additionally, due to the facts that (x, θ̂ ) → 8θ̂ (x) is
smooth, x ∈ �, and θ̂ ∈ B, it follows that 8θ̂ (x) is bounded.
Since each term on the right-hand side of (17) is bounded, the
control input u ∈ L∞. Since φp,j and φ′

p,j are smooth for all
(p, j) ∈ {1, . . . ,m} × {0, . . . , kp}, it follows from (11)-(16)
that 8′ is bounded. Then, every term on the right-hand side
of (9) is bounded, and hence, ˙̂

θ is bounded.
Remark 3: If the ResNet is used to approximate the

desired drift f (xd ) instead of the actual drift f (x), the
control design and analysis method in our preliminary work
in [21] can be used with the developed method to yield
asymptotic tracking error convergence for any value of the
initial condition e(0) ∈ Rn.
Remark 4: If the sliding-mode term σssgn(e) is removed

from the control input, the adaptation law in (9) can be
modified with standard robust modification techniques such
as sigma modification or e-modification [38, Ch. 8], where a
uniformly ultimately bounded tracking result can be obtained
without requiring knowledge of the bounds θ̄ , 1̄, and ε̄. Note
that the design using a sliding-mode term is not a key feature
of our contribution, but only one approach we selected to
develop the ResNet-based controller. As demonstrated in the
last paragraph of the simulation section, the sliding-mode
term can even be omitted while still achieving a good tracking
performance.
Remark 5: The time and memory complexity of the

approach is O(9), i.e., growing linearly with the total
number of parameters, similar to shallow NNs and fully-
connected DNNs. Thus, the ResNet does not incur any
significant additional computational cost compared to other
architectures of the same size.

IV. SIMULATIONS
Monte Carlo simulations are provided8 to demonstrate
the performance of the developed ResNet-based adaptive
controller, and the results are compared with a fully-
connected DNN-based adaptive controller [12]. The system
in (3) is considered with the state dimension n = 10. The
unknown drift vector field in (3) is modeled as f (x) = Ay(x),
where A ∈ Rn×6n is a random matrix with all elements
belonging to the uniform random distribution U (0, 0.1), and
y(x) ≜ [xT , tanh(x)T , sin(x)T , sech(x)T , (x ⊙ x)T , (x ⊙

x ⊙ x)T ]T , where ⊙ denotes the element-wise product
operator. All elements of the initial state x(0) are selected
from the distribution U (0, 2). The reference trajectory is

8Codes for the simulations are provided at
https://github.com/patilomkarsudhir/Lyapunov-based-ResNet-Adaptive-
Control/tree/main

117948 VOLUME 13, 2025



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

selected as xd (t) = [0.5 + sin(ω1t), . . . , 0.5 + sin(ωnt)],
where ω1, . . . , ωn ∼ U (0, 20). The configuration of the
ResNet in (6) is selected with 20 hidden layers, a shortcut
connection across each hidden layer, and 10 neurons in each
layer. The hyperbolic tangent activation function is used in
each node of the ResNet. The results are compared with an
equivalent fully-connected DNN-based adaptive control, i.e.,
the same configuration as the ResNet but without shortcut
connections. The control and adaptation gains are selected as
σe = 2, σs = 2, and 0 = I

6m
p=16

kp
j=0Lp,jLp,j+1

.

The performance of both the ResNet and the fully-
connected DNN-based adaptive controller is sensitive to
initial weights. To account for the sensitivity of performance
to weight initialization, the initial weights for each method
are obtained using aMonte Carlo method. In theMonte Carlo
method, 10,000 simulations are performed, where the initial
weights in each simulation are selected fromU (−0.05, 0.05),
and the cost J =

∫ 10
0

(
eT (t)Qe(t) + uT (t)Ru(t)

)
dt is

evaluated in each simulation with Q = I10 and R = 0.01I10.
For a fair comparison between the ResNet and the fully-
connected DNN, the simulation results yielding the least J
for each architecture are compared.9

TABLE 1. Performance comparison.

FIGURE 2. Plots of the tracking error norm ∥e∥ and function
approximation error norm

∥∥∥f̃
∥∥∥ with ResNet and fully-connected

DNN-based adaptive controller.

Table 1 provides the norm of the root mean square (RMS)
tracking error, function approximation error, and control
input given by ∥erms∥,

∥∥∥f̃rms

∥∥∥, and ∥urms∥, respectively.

9Although we use the Monte Carlo approach in this section to tune the
initial weights, it can also be used to tune the controller gains using the same
cost function.

In comparison to the fully-connected DNN, the ResNet
shows 63.93% and 64.77% decrease in the norms of the
tracking and function approximation errors, respectively.
As shown in Figure 2, the fully-connected DNN exhibits
a comparatively poor tracking and function approximation
performance. As mentioned in Remark 2, fully-connected
DNNs suffer from the vanishing gradient problem. Thus,
the fully-connected DNN weights remain approximately
constant as shown in Figure 3. Consequently, the fully-
connected DNN-based feedforward term fails to compensate
for the uncertainty in the system which yields a relatively
poor tracking and function approximation. In contrast to the
fully-connected DNN, the presence of shortcut connections
in the ResNet eliminates the vanishing gradient problem
as mentioned in Remark 2. As a result, the ResNet
weights are able to compensate for the system uncertainty
as shown in Figure 3 which yields improved tracking
and function approximation performance. Additionally, the
ResNet requires approximately the same control effort as
the fully-connected DNN. Therefore, the ResNet improves
the tracking performance without requiring a higher control
effort in comparison to the fully-connected DNN.

FIGURE 3. Plot of the weight estimates of the ResNet and fully-connected
DNN. There are a total of 2,000 individual weights in each architecture.
For better visualization, 10 arbitrarily selected weights are shown. The
fully-connected DNN weights adapt slowly due to the problem of
vanishing gradients. However, the ResNet weights are able to adapt faster
since the ResNet does not have vanishing gradients.

Additionally, to demonstrate performance comparison of
the ResNet with shallow NNs, comparative simulations
two different configurations are used for the shallow NN
architecture given by V T

1 φ(V T
0 x). In the first configuration,

10 neurons are used in the hidden layer of the shallow NN,
i.e., the same number of neurons as in hidden layer of the
ResNet. In the second configuration, we use 100 neurons
in the hidden layer of the shallow NN, which yields the
same total number of individual weights as the ResNet (i.e.,
2000). As evident from Figure 4, the ResNet significantly
outperforms both of the shallow NN configurations. Both
of the shallow NN configurations exhibit overshoot in
the tracking and function approximation errors, unlike
the ResNet. The ResNet achieves rapid tracking error

VOLUME 13, 2025 117949



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

convergence in approximately 0.5 seconds. In comparison,
both of the shallow NN configurations fail to demonstrate
exact tracking error convergence, despite containing the
same robust state-feedback gains as the ResNet-based
controller.

FIGURE 4. Comparative plots of the tracking error norm ∥e∥ and the
function approximation error norm

∥∥∥f̃
∥∥∥ with the ResNet and a shallow NN

with 10 neurons.

FIGURE 5. Comparative plots of the tracking error norm ∥e∥ and the
function approximation error norm

∥∥∥f̃
∥∥∥ with the proposed ResNet

architecture (i.e., shortcut connection across every layer, 20 shortcut
connections in total) and the ResNet with only one shortcut connection
from our preliminary work in [21].

Additional simulation results are provided to examine
the benefits of including more shortcut connections in the
ResNet compared to our preliminary work in [21] which
included only one shortcut connection. For the baseline
method from [21], we consider a single shortcut connection
beginning from the input layer and ending at the output
layer of the ResNet. Figure 5 shows the comparative plots
of the tracking error and function approximation error norms
with respect to time, where the developed ResNet (i.e.,
with a shortcut connection across each layer, 20 shortcut

connections in total) is found to provide improved tracking
and function approximation performance. As evident from
Table 1. the developed ResNet provided 12.27 % and 40.72%
reduction in the RMS tracking and function approximation
error norms, respectively, while requiring a comparable
control effort. Such an improvement was expected because
including more shortcut connections implies better miti-
gation of the vanishing gradient problem, as discussed in
Remark 2.

Note that in practice, one can tune a ResNet to contain
sufficiently large number of layers, neurons, and shortcut
connections, which would yield a small value of the approx-
imation error ε, which can be easily compensated using the
sliding-mode term to yield asymptotic tracking. Additionally,
to avoid using a sliding-mode term or the knowledge of the
bound on θ∗, other standard robust modification techniques
such as sigma modification or e-modification [38, Ch. 8] can
be used in the adaptation law, where a uniformly ultimately
bounded (UUB) tracking result can be obtained, as stated
in Remark 4. The sliding-mode term is used to show an
asymptotic tracking result, but it is not central to the main
development. Figure 6 demonstrates the simulation results
where the sliding-mode term σssgn(e) is omitted and the
e-modification based update law ˙̂

θ = −σθ ∥e∥ θ̂ + 08′T e is
used with σθ = 1 and σe = 20. As evident, the ResNet-based
controller with the e-modification is able to track the desired
trajectory with an ultimate bound of 0.15 on the tracking
error, and root mean square (RMS) values of 0.269, 4.669,
and 23.194 for the tracking error, function approximation
error, and control input norms, respectively.

FIGURE 6. Plots demonstrating the tracking and function approximation
errors with the ResNet-based controller, using sigma modification in the
adaptation law.

V. CONCLUSION AND FUTURE WORK
This paper provided the first stability-driven adaptation
laws for the weights of each layer of a ResNet-based
adaptive controller with an arbitrary number of shortcut
connections. Unlike fully-connected DNNs, the ResNet does

117950 VOLUME 13, 2025



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

not exhibit the vanishing gradient problem. Comparative
Monte Carlo simulations were provided where the developed
ResNet-based adaptive controller provided approximately
64% improvement in the tracking and function approximation
performance, in comparison to a fully-connected DNN-based
adaptive controller with the same number of hidden layers
and neurons.

Future work can explore incorporating a long short-term
memory component in the ResNet architecture, based on
our recent work [39], to model uncertainties with long-term
temporal dependencies. Additionally, composite adaptive
methods and physics-informed approaches (e.g., [40]) can
be explored that incorporate a prediction error of the
uncertainty, in addition to the tracking error, in the adaptation
law.

ACKNOWLEDGMENT
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the sponsoring
agency.

REFERENCES
[1] P. Kidger and T. Lyons, ‘‘Universal approximation with deep narrow

networks,’’ in Proc. Conf. Learn. Theory, Jan. 2020, pp. 2306–2327.
[2] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering:

Machine Learning, Dynamical Systems, and Control. Cambridge, U.K.:
Cambridge Univ. Press, 2019.

[3] F. Lewis, A. Yesildirek, andK. Liu, ‘‘Multilayer neural net robot controller:
Structure and stability proofs,’’ IEEE Trans. Neural Netw., vol. 7, no. 2,
pp. 388–399, Mar. 1996.

[4] F. L. Lewis, S. Jagannathan, and A. Yesildirak, Neural Network Control of
Robot Manipulators and Nonlinear Systems. Philadelphia, PA, USA: CRC
Press, 1998.

[5] S. S. Ge, C. C. Hang, T. H. Lee, and T. Zhang, Stable Adaptive Neural
Network Control. Boston, MA, USA: Kluwer Academic, 2002.

[6] P. M. Patre, W. MacKunis, K. Kaiser, and W. E. Dixon, ‘‘Asymptotic
tracking for uncertain dynamic systems via a multilayer neural network
feedforward and RISE feedback control structure,’’ IEEE Trans. Autom.
Control, vol. 53, no. 9, pp. 2180–2185, Oct. 2008.

[7] P. M. Patre, S. Bhasin, Z. D. Wilcox, and W. E. Dixon, ‘‘Composite
adaptation for neural network-based controllers,’’ IEEE Trans. Autom.
Control, vol. 55, no. 4, pp. 944–950, Apr. 2010.

[8] R. Sun, M. L. Greene, D. M. Le, Z. I. Bell, G. Chowdhary, and
W. E. Dixon, ‘‘Lyapunov-based real-time and iterative adjustment of deep
neural networks,’’ IEEE Control Syst. Lett., vol. 6, pp. 193–198, 2022.

[9] G. Joshi and G. Chowdhary, ‘‘Deep model reference adaptive control,’’ in
Proc. IEEE 58th Conf. Decis. Control (CDC), Dec. 2019, pp. 4601–4608.

[10] G. Joshi, J. Virdi, and G. Chowdhary, ‘‘Asynchronous deep model
reference adaptive control,’’ in Proc. Conf. Robot Learn., Jan. 2020.

[11] D. M. Le, M. L. Greene, W. A. Makumi, and W. E. Dixon, ‘‘Real-
time modular deep neural network-based adaptive control of nonlinear
systems,’’ IEEE Control Syst. Lett., vol. 6, pp. 476–481, 2022.

[12] O. S. Patil, D. M. Le, M. L. Greene, and W. E. Dixon, ‘‘Lyapunov-derived
control and adaptive update laws for inner and outer layer weights of a deep
neural network,’’ IEEE Control Syst. Lett., vol. 6, pp. 1855–1860, 2022.

[13] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[14] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[15] M. Hardt and T.Ma, ‘‘Identity matters in deep learning,’’ in Proc. Int. Conf.
Learn. Represent., Jan. 2017.

[16] K. Nar and S. Sastry, ‘‘Residual networks: Lyapunov stability and convex
decomposition,’’ 2018, arXiv:1803.08203.

[17] Y. Tai, J. Yang, and X. Liu, ‘‘Image super-resolution via deep recursive
residual network,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 2790–2798.

[18] J. Li, F. Fang, K. Mei, and G. Zhang, ‘‘Multi-scale residual network for
image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis., Jan. 2018,
pp. 527–542.

[19] M. Boroumand, M. Chen, and J. Fridrich, ‘‘Deep residual network for
steganalysis of digital images,’’ IEEE Trans. Inf. Forensics Security,
vol. 14, no. 5, pp. 1181–1193, May 2019.

[20] T. Tan, Y. Qian, H. Hu, Y. Zhou, W. Ding, and K. Yu, ‘‘Adaptive very
deep convolutional residual network for noise robust speech recognition,’’
IEEE/ACM Trans. Audio, Speech, Lang., Process., vol. 26, no. 8,
pp. 1393–1405, Aug. 2018.

[21] O. S. Patil, D. M. Le, E. J. Griffis, and W. E. Dixon, ‘‘Deep residual
neural network (ResNet)-based adaptive control: A Lyapunov-based
approach,’’ in Proc. IEEE 61st Conf. Decis. Control (CDC), Dec. 2022,
pp. 3487–3492.

[22] A. F. Filippov, Differential Equations With Discontinuous Right-Hand
Sides. Boston, MA, USA: Kluwer Academic, 1988.

[23] G. A. Leonov, M. A. Kiseleva, N. V. Kuznetsov, and O. A. Kuznetsova,
‘‘Discontinuous differential equations: Comparison of solution definitions
and localization of hidden Chua attractors,’’ IFAC-PapersOnLine, vol. 48,
no. 11, pp. 408–413, 2015.

[24] D. S. Bernstein,Matrix Mathematics. Princeton, NJ, USA: Princeton Univ.
Press, 2009.

[25] H. Lin and S. Jegelka, ‘‘ResNet with one-neuron hidden layers is a
universal approximator,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31,
2018.

[26] P. Tabuada and B. Gharesifard, ‘‘Universal approximation power of deep
residual neural networks via nonlinear control theory,’’ in Proc. Int. Conf.
Learn. Represent., May 2021.

[27] F. L. Lewis, A. Yesildirek, and K. Liu, ‘‘Multilayer neural-net robot
controller with guaranteed tracking performance,’’ IEEE Trans. Neural
Netw., vol. 7, no. 2, pp. 388–399, Mar. 1996.

[28] A. M. Annaswamy, F. P. Skantze, and A.-P. Loh, ‘‘Adaptive control
of continuous time systems with convex/concave parametrization,’’
Automatica, vol. 34, no. 1, pp. 33–49, Jan. 1998.

[29] A. Kojić, A. M. Annaswamy, A.-P. Loh, and R. Lozano, ‘‘Adap-
tive control of a class of nonlinear systems with convex/concave
parameterization,’’ Syst. Control Lett., vol. 37, no. 5, pp. 267–274,
Aug. 1999.

[30] W. Lin and C. Qian, ‘‘Adaptive control of nonlinearly parameterized
systems: The smooth feedback case,’’ IEEE Trans. Autom. Control, vol. 47,
no. 8, pp. 1249–1266, Aug. 2002.

[31] W. Lin and C. Qian, ‘‘Adaptive control of nonlinearly parameterized
systems: A nonsmooth feedback framework,’’ IEEE Trans. Autom.
Control, vol. 47, no. 5, pp. 757–774, May 2002.

[32] Z. Qu, R. A. Hull, and J. Wang, ‘‘Globally stabilizing adaptive control
design for nonlinearly-parameterized systems,’’ IEEE Trans. Autom.
Control, vol. 51, no. 6, pp. 1073–1079, Jun. 2006.

[33] S. Basu Roy, S. Bhasin, and I. N. Kar, ‘‘Robust gradient-based adaptive
control of nonlinearly parametrized plants,’’ IEEE Control Syst. Lett.,
vol. 1, no. 2, pp. 352–357, Oct. 2017.

[34] N. Fischer, R. Kamalapurkar, and W. E. Dixon, ‘‘LaSalle-Yoshizawa
corollaries for nonsmooth systems,’’ IEEE Trans. Autom. Control, vol. 58,
no. 9, pp. 2333–2338, Sep. 2013.

[35] F. H. Clarke, Optimization and Nonsmooth Analysis. Philadelphia, PA,
USA: SIAM, 1990.

[36] V. A. Yakubovich, G. A. Leonov, and A. K. Gelig, Stability of Stationary
Sets in Control Systems With Discontinuous Nonlinearities, vol. 14.
Singapore: World Scientific, 2004.

[37] D. Shevitz and B. Paden, ‘‘Lyapunov stability theory of nonsmooth
systems,’’ IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1910–1914,
Sep. 1994.

[38] P. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River, NJ,
USA: Prentice-Hall, 1996.

[39] E. J. Griffis, O. S. Patil, Z. I. Bell, and W. E. Dixon, ‘‘Lyapunov-
based long short-term memory (Lb-LSTM) neural network-based
control,’’ IEEE Control Syst. Lett., vol. 7, pp. 2976–2981,
2023.

[40] R. G. Hart, E. J. Griffis, O. Sudhir Patil, and W. E. Dixon, ‘‘Lyapunov-
based physics-informed long short-term memory (LSTM) neural network-
based adaptive control,’’ IEEE Control Syst. Lett., vol. 8, pp. 13–18,
2024.

VOLUME 13, 2025 117951



O. S. Patil et al.: Lyapunov-Based Deep Residual Neural Network (ResNet) Adaptive Control

OMKAR SUDHIR PATIL received the B.Tech.
degree in production and industrial engineering
from Indian Institute of Technology Delhi (IIT
Delhi), in 2018, the M.S. degree in mechanical
engineering, in 2022, and the Ph.D. degree in
mechanical engineering from the University of
Florida, Gainesville, FL, USA, in 2023.

In 2019, he joined the Nonlinear Controls and
Robotics (NCR) Laboratory, University of Florida,
under the guidance of Dr. Warren Dixon to pursue

his Ph.D. studies. In 2023, he started working as a Postdoctoral Research
Associate at the NCR Laboratory, University of Florida. His research
interests include the development and application of innovative Lyapunov-
based nonlinear, robust, and adaptive control techniques. He was honored
with the BOSS Award for his outstanding bachelor’s thesis project at IIT.
During his Ph.D. studies, he was awarded the Graduate Student Research
Award for outstanding research.

DUC M. LE received the Ph.D. degree in mechan-
ical engineering from the Department of Mechan-
ical and Aerospace Engineering, University of
Florida, Gainesville, FL, USA, in 2022. During
his graduate studies, his research was on nonlinear
controls and autonomy, with a focus on adaptive
control and switched system control in a variety
of applications. He joined Aurora Flight Sciences,
a Boeing Company, as an Aerospace Controls
Researcher, in 2023. His research interests include,

but are not limited to, adaptive control, deep learning, and guidance
navigation and control (GNC).

EMILY J. GRIFFIS received the B.S. and
M.S. degrees in mechanical engineering and the
Ph.D. degree from the University of Florida,
in May 2020, December 2021, and May 2024,
respectively. In 2020, she joined the Nonlinear
Controls and Robotics Laboratory, University of
Florida, under the supervision of Dr.WarrenDixon
to pursue her Ph.D. degree. Her research interests
include using adaptive control and deep learning
to study Lyapunov-based control of nonlinear and
uncertain systems.

WARREN E. DIXON (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from Clem-
son University, Clemson, SC, USA, in 2000. After
working at the Oak Ridge National Laboratory
as an Eugene P. Wigner Fellow and a Research
Staff Member, he joined the University of Florida,
in 2004, where he is currently the Dean’s Lead-
ership Professor and the Department Chair at
the Department of Mechanical and Aerospace
Engineering. His main research interests include

the development and application of Lyapunov-based control techniques
for uncertain nonlinear systems. He is an ASME and IEEE Fellow for
contributions to adaptive control of uncertain nonlinear systems. His work
has been acknowledged by various early and mid-career awards and best
paper awards. His work has been acknowledged by various early and
mid-career awards and best paper awards.

117952 VOLUME 13, 2025


