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Abstract

In this paper, the mapping between the desired camera feature vector and the desired camera pose (i.e., the position and orientation) is
investigated to develop a measurable image Jacobian-like matrix. An image-space path planner is then proposed to generate a desired image
trajectory based on this measurable image Jacobian-like matrix and an image-space navigation function (NF) (i.e., a special potential field
function) while satisfying rigid body constraints. An adaptive, homography-based visual servo tracking controller is then developed to navigate
the position and orientation of a camera held by the end-effector of a robot manipulator to a goal position and orientation along the desired
image-space trajectory while ensuring the target points remain visible (i.e., the target points avoid self-occlusion and remain in the field-of-
view (FOV)) under certain technical restrictions. Due to the inherent nonlinear nature of the problem and the lack of depth information from a
monocular system, a Lyapunov-based analysis is used to analyze the path planner and the adaptive controller. Simulation results are provided
to illustrate the performance of the proposed approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There is significant motivation to provide improved au-
tonomy for robotic systems. In part, this motivation has led
researchers to investigate the basic science challenges leading
to the development of visual servo controllers as a means to
provide improved robot autonomy. In general, visual servo
controllers can be divided into position-based visual servo
(PBVS) control, image-based visual servo (IBVS), and hy-
brid approaches. PBVS is based on the idea of using a vision
system to reconstruct the Euclidean space and then develop-
ing the servo controller on the reconstructed information. A
well-known issue with this strategy is that the target object
may exit the camera field-of-view (FOV). IBVS control is
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based on the idea of directly servoing on the image-space in-
formation, with reported advantages of increased robustness to
camera calibration and improved capabilities to ensure the tar-
get remains visible. Even for IBVS controllers that are formu-
lated as regulation controllers, if the initial error is large then
excessive control action and transient response can cause the
target to leave the FOV, and may lead to trajectories that are
not physically valid or optimal due to the nonlinearities and po-
tential singularities associated with the transformation between
the image space and the Euclidean space (Chaumette, 1998).
For a review of IBVS and PBVS controllers see Hager and
Hutchinson (1996).

In light of the characteristics of IBVS and PBVS, several
researchers have recently explored hybrid approaches. For
example, homography-based visual servo control techniques
(coined 2.5D controllers) have been recently developed in a
series of papers by Malis and Chaumette (e.g., Chaumette,
Malis, & Boudet, 1997; Malis & Chaumette, 2000; Malis,
Chaumette, & Boudet, 1999). The homography-based ap-
proach exploits a combination of reconstructed Euclidean
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information and image-space information in the control design.
The Euclidean information is reconstructed by decoupling the
interaction between translational and rotational components of
a homography matrix. As stated in Malis et al. (1999), some
advantages of this methodology over the aforementioned IBVS
and PBVS approaches are that an accurate Euclidean model
of the environment (or target object) is not required, and po-
tential singularities in the image Jacobian are eliminated (i.e.,
the image Jacobian for homography-based visual servo con-
trollers is typically triangular). Motivated by the advantages
of the homography-based strategy, several researchers have re-
cently developed various regulation controllers for robot ma-
nipulators (see Chen, Dawson, Dixon, & Behal, 2005; Corke
& Hutchinson, 2000; Deguchi, 1998).

While homography-based approaches exploit the advantages
of IBVS and PBVS, a common problem with all the afore-
mentioned approaches is the inability to achieve the control
objective while ensuring the target features remain visible.
To address this issue, Mezouar and Chaumette developed a
path-following IBVS algorithm in Mezouar and Chaumette
(2002) where the path to a goal point is generated via a po-
tential function that incorporates motion constraints; however,
as stated in Mezouar and Chaumette (2002), local minima as-
sociated with traditional potential functions may exist. Using
a specialized potential function (coined as navigation function
(NF)) originally proposed in Koditschek and Rimon (1990) and
Rimon and Koditschek (1992), Cowan et al. developed a hybrid
position/image-space controller that forces a manipulator to a
desired setpoint while ensuring the object remains visible (i.e.,
the NF ensures no local minima) and by avoiding pitfalls such
as self-occlusion (Cowan, Weingarten, & Koditscheck, 2002).
However, as stated in Mezouar and Chaumette (2002), this ap-
proach requires the complete knowledge of the space topology
and requires an object model. In Gans and Hutchinson (2003),
Gans and Hutchinson developed a strategy that switches be-
tween an IBVS and a PBVS controller to ensure asymptotic
stability of the position and orientation (i.e., pose) in the
Euclidean and image space. An image-space based follow-the-
leader application for mobile robots was developed in Cowan,
Shakernia, Vidal, and Sastry (2003) that exploits an image-
space NF. Specifically, an input/output feedback linearization
technique is applied to the mobile robot kinematic model to
yield a controller that yields “string stability” (Fierro, Song,
Das, & Kumar, 2002, Chapter 5). Without a feedforward
component, the controller in Cowan et al. (2003) yields an
approximate “input-to-formation” stability (i.e., a local, linear
exponential system with a bounded disturbance). An NF-based
approach to the follow-the-leader problem for a group of fully
actuated holonomic mobile robots is considered in Pereira, Das,
Kumar, and Campos (2003) where configuration-based con-
straints are developed to ensure the robot edges remain in the
sight of an omnidirectional camera. While a Lyapunov-based
analysis is provided in Pereira et al. (2003) to ensure that the
NF decreases to the goal position, the stability of the overall
system is not examined.

Motivated by the image-space NF developed in Cowan et al.
(2002), an off-line desired image trajectory generator is

proposed based on a new image Jacobian-like matrix for the
monocular, camera-in-hand problem. This approach generates
a desired camera pose trajectory that moves the camera from
the initial camera pose to a goal camera pose while ensuring
that all the feature points of the object remain visible under
certain technical restrictions. To develop a desired camera
pose trajectory that ensures all feature points remain visible,
a unique relationship is formulated between the desired image
feature vector and the desired camera pose. The resulting im-
age Jacobian-like matrix is related to the camera pose, rather
than the camera velocity as in other approaches (Chaumette,
1998). Motivation for the development of this relationship is
that the resulting image Jacobian-like matrix is measurable,
and, hence, does not suffer from the lack of robustness associ-
ated with estimation-based methods. Furthermore, the desired
image generated with this image Jacobian-like matrix satisfies
rigid body constraints (the terminology, rigid body constraints,
in this paper is utilized to denote the image feature vector con-
straints in which feature points have a fixed relative position to
each other in Euclidean space). Building on our recent research
in Chen et al. (2005), an adaptive homography-based visual
tracking controller is then developed to ensure that the actual
camera pose tracks the desired camera pose trajectory (i.e., the
actual features track the desired feature point trajectory) despite
the fact that time-varying depth from the camera to the refer-
ence image plane is not measurable from the monocular camera
system. Based on the analysis of the homography-based con-
troller, bounds are developed that can be used to ensure that the
actual image features also remain visible under certain techni-
cal restrictions. A Lyapunov-based analysis is provided to sup-
port the claims for the path planner and to analyze the stability
of the adaptive tracking controller. Simulation results are pro-
vided to illustrate the performance of the proposed approach.

2. Geometric modeling

2.1. Euclidean homography

Four feature points, denoted by Oi ∀i = 1, 2, 3, 4 are as-
sumed to be located on a reference plane � (see Fig. 1), and
are considered to be coplanar1 and not colinear. The reference
plane can be related to the coordinate frames F, Fd , and F∗
depicted in Fig. 1 that denote the actual, desired, and goal pose
of the camera, respectively.

Specifically, the following relationships can be developed
from the geometry between the coordinate frames and the fea-
ture points located on �:

m̄i = xf + Rm̄∗
i ,

m̄di = xf d + Rdm̄∗
i , (1)

where m̄i(t)�[xi(t) yi(t) zi(t)]T, m̄di(t)�[xdi(t) ydi(t) zdi

(t)]T, and m̄∗
i �[x∗

i y∗
i z∗

i ]T denote the Euclidean coordinates

1 It should be noted that if four coplanar target points are not available
then the subsequent development can exploit the classic eight-points algorithm
(Malis & Chaumette, 2000) with no four of the eight target points being
coplanar.
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Fig. 1. Coordinate frame relationships.

of Oi expressed in F, Fd , and F∗, respectively. In (1), R(t),
Rd(t) ∈ SO(3) denote the rotation between F and F∗ and
between Fd and F∗, respectively, and xf (t), xf d(t) ∈ R3

denote translation vectors from F to F∗ and Fd to F∗ ex-
pressed in the coordinates of F and Fd , respectively. The
constant unknown distance from the origin of F∗ to � is
denoted by d∗ ∈ R and is defined as follows:

d∗ = n∗Tm̄∗
i , (2)

where n∗ ∈ R3 denotes the constant unit normal to the plane
� expressed in the coordinates of F∗. Also from Fig. 1, the
unknown, time-varying distance from the origin of Fd to �,
denoted by d(t) ∈ R, can be expressed as follows:

d = n∗TRT
d m̄di . (3)

Since the Euclidean position of F, Fd , and F∗ cannot be
directly measured, the expressions in (1) need to be related
to the measurable image-space coordinates. To this end, the
normalized Euclidean coordinates of Oi expressed in terms of
F, Fd , and F∗ as mi(t), mdi(t), m∗

i ∈ R3, respectively, are
defined as follows:

mi�
m̄i

zi

, mdi�
m̄di

zdi

, m∗
i �

m̄∗
i

z∗
i

(4)

under the standard assumption that zi(t), zdi(t), z∗
i > � where

� denotes an arbitrarily small positive constant. Based on (2)
and (4), the expression in (1) can be rewritten as follows:

mi = z∗
i

zi︸︷︷︸
�i

(
R + xf

d∗ n∗T
)

︸ ︷︷ ︸
H

m∗
i , (5)

mdi = z∗
i

zdi︸︷︷︸
�di

(
Rd + xf d

d∗ n∗T
)

︸ ︷︷ ︸
Hd

m∗
i , (6)

where �i (t), �di(t) ∈ R denote invertible depth ratios, H(t),
Hd(t) ∈ R3×3 denote Euclidean homographies (Faugeras,
2001).

2.2. Projective homography

Each feature point on � has projected pixel coordinates de-
noted by ui(t), vi(t) ∈ R in F, udi(t), vdi(t) ∈ R in Fd , and
u∗

i , v∗
i ∈ R in F∗ that are defined as follows:

pi�[ui vi 1]T, pdi�[udi vdi 1]T,

p∗
i �[u∗

i v∗
i 1]T. (7)

In (7), pi(t), pdi(t), p∗
i ∈ R3 represent the image-space

coordinates of the time-varying feature points, the desired
time-varying feature point trajectory, and the constant refer-
ence feature points, respectively. To calculate the Euclidean
homography given in (5) and (6) from pixel information, the
projected pixel coordinates of the target points are related to
mi(t), mdi(t), and m∗

i by the following pin-hole lens models
(Faugeras, 2001):

pi = Ami, pdi = Amdi, p∗
i = Am∗

i , (8)

where A ∈ R3×3 is a known, constant, and invertible intrinsic
camera calibration matrix with the following form:

A =
[

a1 a2 a4
0 a3 a5
0 0 1

]
, (9)

where ai ∈ R ∀i = 1, 2, . . . , 5 denote known, constant cali-
bration parameters. After substituting (8) into (5) and (6), the
following relationships can be developed:

pi = �i (AHA−1)︸ ︷︷ ︸
G

p∗
i , pdi = �di (AHdA−1)︸ ︷︷ ︸

Gd

p∗
i , (10)

where G(t), Gd(t) ∈ R3×3 denote projective homographies.
Given the images of the four feature points on � expressed in
F, Fd , and F∗, a linear system of equations can be devel-
oped from (10). From the linear system of equations, a decom-
position algorithm (e.g., the Faugeras decomposition algorithm
in Faugeras (2001)) can be used to compute �i (t), �di(t), n∗,
R(t), and Rd(t) (see Chen et al., 2005 for details).2 Hence,
�i (t), �di(t), n∗, R(t), and Rd(t) are known signals that can be
used in the subsequent development.

2.3. Kinematic model of vision system

The camera pose, denoted by Υ (t) ∈ R6, can be expressed
in terms of a hybrid of pixel and reconstructed Euclidean in-
formation as follows:

Υ (t)�[pT
e1 �T]T, (11)

2 The initial best guess of n∗ can be utilized to resolve the decomposition
ambiguity. See Chen, Dixon, Dawson, and McIntire (2006) for details.
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where the extended pixel coordinate pe1(t) ∈ R3 is defined as
follows:

pe1 = [u1 v1 − ln(�1)]T, (12)

and �(t) ∈ R3 denotes the following axis-angle representation
of R(t) (see Chen et al., 2005 for details):

� = �(t)�(t). (13)

In (12), ln(·) denotes the natural logarithm, and �1(t) is intro-
duced in (5). In (13), �(t) ∈ R3 represents the unit axis of rota-
tion, and �(t) denotes the rotation angle about that axis. Based
on the development in Appendix A, the open-loop dynamics
for Υ (t) can be expressed as follows:

Υ̇ =
[
ṗe1
�̇

]
=

[
− 1

z1
Ae1 Ae1[m1]×

0 −L�

] [
vc
�c

]
, (14)

where vc(t) ∈ R3 and �c(t) ∈ R3 denote the linear and angular
velocity of the camera expressed in terms of F, Aei (ui, vi) ∈
R3×3 is a known, invertible matrix defined as follows:

Aei = A −
[0 0 ui

0 0 vi

0 0 0

]
, i = 1, 2, 3, 4, (15)

and the invertible Jacobian-like matrix L�(�, �) ∈ R3×3 is
defined as (Malis et al., 1999)

L� = I3 − �

2
[�]× +

(
1 − sinc(�)

sinc2(�/2)

)
[�]2×, (16)

where In ∈ Rn×n denotes the n × n identity matrix, [�p]×
denotes the 3 × 3 skew-symmetric expansion of �p(t), and

sinc(�(t))� sin �(t)

�(t)
.

Remark 1. As stated in Spong and Vidyasagar (1989), the
axis-angle representation of (13) is not unique, in the sense
that a rotation of −�(t) about −�(t) is equal to a rotation of
�(t) about �(t). A particular solution for �(t) and �(t) can be
determined as follows (Spong & Vidyasagar, 1989):

�p = cos−1
(

1

2
(tr(R) − 1)

)
, [�p]× = R − RT

2 sin(�p)
, (17)

where the notation tr(·) denotes the trace of a matrix. From
(17), it is clear that

0��p(t)��. (18)

3. Image-based path planning

The path planning objective involves regulating the pose of
a camera held by the end-effector of a robot manipulator to
a desired camera pose along an image-space trajectory while
ensuring the target points remain visible. To achieve this ob-
jective, a desired camera pose trajectory is constructed in this
section so that the desired image feature vector, denoted by

p̄d(t)�[ud1(t) vd1(t) . . . ud4(t) vd4(t)]T ∈ R8, remains in a
set, denoted by D ⊂ R8, where all four feature points of the
target remain visible for a valid camera pose. The constant, goal
image feature vector p̄∗�[u∗

1 v∗
1 . . . u∗

4 v∗
4 ]T ∈ R8 is assumed

be in the interior of D. To generate the desired camera pose
trajectory such that p̄d(t) ∈ D, the special artificial potential
function coined as NF in Koditschek and Rimon (1990), can
be used. Specifically, the NFs used in this paper are defined as
follows (Rimon & Koditschek, 1992).

Definition 1. A map 	(p̄d) : D → [0, 1], is an NF if:

(P1) analytic on D (at least the first and second partial deriva-
tives exist and are bounded on D);

(P2) a unique minimum exists at p̄∗;
(P3) it obtains a maximum value on the boundary of D (i.e.,

admissible on D);
(P4) it is a Morse function (i.e., the matrix of second partial

derivatives, the Hessian, evaluated at its critical points is non-
singular (and has bounded elements based on the smoothness
property in (P1))).

3.1. Pose space to image space relationship

To develop a desired camera pose trajectory that ensures
p̄d(t) ∈ D, the desired image feature vector is related to the
desired camera pose, denoted by Υd(t) ∈ R6, through the fol-
lowing relationship:

p̄d = 
(Υd), (19)

where 
(·) : R6 → D denotes an unknown function that maps
the camera pose to the image feature vector.3 In (19), the
desired camera pose is defined as follows:

Υd(t)�[pT
ed1 �T

d ]T, (20)

where ped1(t) ∈ R3 denotes the desired extended pixel coordi-
nates defined as follows:

ped1 = [ud1 vd1 − ln(�d1) ]T, (21)

where �d1(t) is introduced in (6), and �d(t) ∈ R3 denotes the
axis-angle representation of Rd(t) as follows:

�d = �d(t)�d(t), (22)

where �d(t) ∈ R3 and �d(t) ∈ R are defined in the same
manner as �(t) and �(t) in (13) with respect to Rd(t).

3 The reason we choose four feature points to construct the image feature
vector is that the same image of three points can be seen from four different
camera poses (Horaud, 1987). A unique camera pose can theoretically be
obtained by using at least four points (Chaumette, 1998). Therefore, the map

(·) is a unique mapping with the image feature vector corresponding to a
valid camera pose.
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3.2. Desired image trajectory planning

After taking the time derivative of (19), the following ex-
pression can be obtained:
.

p̄d = LΥd
Υ̇d , (23)

where LΥd
(p̄d)��p̄d/�Υd ∈ R8×6 denotes an image Jacobian-

like matrix. Based on the development in Appendix B, a mea-
surable expression for LΥd

(t) can be developed as follows:

LΥd
= Ī T , (24)

where Ī ∈ R8×12 denotes a constant, row-delete matrix defined
as follows:

Ī =
⎡
⎢⎣

I2 02 02 02 02 02 02 02

02 02 I2 02 02 02 02 02

02 02 02 02 I2 02 02 02

02 02 02 02 02 02 I2 02

⎤
⎥⎦ ,

where 0n ∈ Rn×n denotes an n × n matrix of zeros, 0n ∈ Rn

denotes an n × 1 column of zeros, and T (t) ∈ R12×6 is a
measurable auxiliary matrix defined as follows:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I3 03

�1

�2
Aed2A

−1
ed1 Aed2

[
�1

�2
md1 − md2

]
×
L−1

�d

�1

�3
Aed3A

−1
ed1 Aed3

[
�1

�3
md1 − md3

]
×
L−1

�d

�1

�4
Aed4A

−1
ed1 Aed4

[
�1

�4
md1 − md4

]
×
L−1

�d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

In (25), Aedi(udi, vdi) ∈ R3×3 and the Jacobian-like matrix
L�d(�d , �d) ∈ R3×3 are defined as in (15) and (16) with respect
to udi(t), vdi(t), �d(t), and �d(t), respectively. The auxiliary
variable �i (t) ∈ R in (25) is defined as follows:

�i�
zdi

d
, i = 1, 2, 3, 4. (26)

Based on (3), (4) and (8), �i (t) can be rewritten in terms of
computed and measurable terms as follows:

�i = 1

n∗TRT
d A−1pdi

. (27)

Motivated by (23) and the defn of the NF in Definition 1, the
desired camera pose trajectory is designed as follows:

Υ̇d = −K(Υd)LT
Υd

∇	, (28)

where K(Υd)�k1(L
T
Υd

LΥd
)−1, k1 ∈ R denotes a positive con-

stant, and ∇	(p̄d)�(�	(p̄d)/�p̄d)T ∈ R8 denotes the gradient
vector of 	(p̄d). The development of a particular image-space
NF and its gradient are provided in Appendix C. After substi-
tuting (28) into (23), the desired image trajectory can be ex-
pressed as follows:
.

p̄d = −LΥd
K(Υd)LT

Υd
∇	, (29)

where it is assumed that ∇	(p̄d) is not a member of the null
space of LT

Υd
(p̄d). Based on (23) and (28), it is clear that the

desired image trajectory generated by (29) will satisfy the rigid
body constraints.

Remark 2. Based on comments in Chaumette (1998) and the
current development, it seems that a remaining open problem is
to develop a rigorous, theoretical, and general approach to en-
sure that ∇	(p̄d) is not a member of the null space of LT

Υd
(p̄d)

(i.e., ∇	(p̄d) /∈ NS(LT
Υd

(p̄d)) where NS(·) denotes the null
space operator). However, since the approach in this paper is
developed in terms of the desired image-space trajectory (and
hence, is an off-line approach), a particular desired image tra-
jectory can be chosen (e.g., by trial and error) a priori to ensure
that ∇	(p̄d) /∈ NS(LT

Υd
(p̄d)). Similar comments are provided

in Chaumette (1998) and Mezouar and Chaumette (2002) that
indicate that in practice this assumption can be readily satisfied
for particular cases. Likewise, a particular desired image trajec-
tory is also assumed to be a priori selected to ensure that Υd(t),
Υ̇d(t) ∈ L∞ if p̄d(t) ∈ D. Based on the structure of (20) and
(21), the assumption that Υd(t), Υ̇d(t) ∈ L∞ if p̄d(t) ∈ D
is considered mild in the sense that the only possible alterna-
tive case is if the camera could somehow be positioned at an
infinite distance from the target while all four feature points
remain visible.

Remark 3. It is clear that K(Υd) is positive definite if LΥd
(p̄d)

is full rank. Similar to the statement in Remark 2, this assump-
tion is readily satisfied for the proposed off-line path planner
approach. Based on this assumption, K(Υd) satisfies the fol-
lowing inequalities:

k‖�‖2 ��TK(Υd)�� k̄(·)‖�‖2 ∀� ∈ R6, (30)

where k ∈ R denotes a positive constant, and k̄(·) denotes a
positive, non-decreasing function.

3.3. Path planner analysis

Theorem 1. Provided that the desired feature points can
be a priori selected to ensure that p̄d(0) ∈ D and that
∇	(p̄d) /∈ NS(LT

Υd
(p̄d)), then the desired image trajectory

generated by (29) ensures that p̄d(t) ∈ D and (29) has the
asymptotically stable equilibrium point p̄∗.

Proof. Let V1(p̄d) : D → R denote a non-negative function
defined as follows:

V1(p̄d)�	(p̄d). (31)

After taking the time derivative of (31), the following expres-
sion can be obtained:

V̇1(p̄d(t)) = (∇	)T
.

p̄d . (32)
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After substituting (29) into (32), the following expression can
be obtained:

V̇1(p̄d(t)) = −(LT
Υd

∇	)TK(Υd)LT
Υd

∇	. (33)

Based on (30), V̇1(p̄d(t)) can be upper bounded as follows:

V̇1(p̄d(t))� − k‖LT
Υd

∇	‖2, (34)

which clearly shows that V1(p̄d(t)) is a non-increasing function
in the sense that

V1(p̄d(t))�V1(p̄d(0)). (35)

From (31), (35), and the development in Appendix C, it is clear
that, for any initial condition p̄d(0) ∈ D, p̄d(t) ∈ D∀t > 0;
therefore, D is a positively invariant set (Khalil, 2002). Let
E1 ⊂ D denote the following set: E1�{p̄d(t)|V̇1(p̄d) = 0}.
Based on (33), it is clear that ‖LT

Υd
(p̄d)∇	(p̄d)‖ = 0 in

E1; hence, from (28) and (29), it can be determined that
‖Υ̇d(t)‖ = ‖ .

p̄d (t)‖ = 0 in E1, and that E1 is the largest invari-
ant set. By invoking LaSalle’s Theorem (Khalil, 2002), it can
be determined that every solution p̄d(t) ∈ D approaches E1 as
t → ∞, and hence, ‖LT

Υd
(p̄d)∇	(p̄d)‖ → 0. Since p̄d(t) are

chosen a priori via the off-line path planning routine in (29),
the four feature points can be a priori selected to ensure that
∇	(p̄d) /∈ NS(LT

Υd
(p̄d)). Provided ∇	(p̄d) /∈ NS(LT

Υd
(p̄d)),

then ‖LT
Υd

(p̄d)∇	(p̄d)‖=0 implies that ‖∇	(p̄d)‖=0. Based
on development given in Appendix C, we can now show that
∇	(p̄d(t)) → 0, and, hence, that p̄d(t) → p̄∗. �

4. Tracking control development

Based on Theorem 1, the desired camera pose trajectory can
be generated from (28) to ensure that the camera moves along
a path generated in the image space such that the desired object
features remain visible (i.e., p̄d(t) ∈ D). The objective in this
section is to develop a controller so that the actual camera pose
Υ (t) tracks the desired camera pose Υd(t) generated by (28),
while also ensuring that the object features remain visible (i.e.,
p̄(t)�[u1(t) v1(t) . . . u4(t) v4(t) ]T ∈ D). To quantify
this objective, a rotational tracking error, denoted by e�(t) ∈
R3, is defined as

e��� − �d , (36)

and a translational tracking error, denoted by ev(t) ∈ R3, is
defined as follows:

ev = pe1 − ped1. (37)

4.1. Control development

After taking the time derivative of (36) and (37), the open-
loop dynamics for e�(t) and ev(t) can be obtained as follows:

ė� = −L��c − �̇d , (38)

ėv = − 1

z1
Ae1vc + Ae1[m1]×�c − ṗed1, (39)

where (14) was utilized. Based on the open-loop error systems
in (38) and (39), vc(t) and �c(t) are designed as follows:

�c�L−1
� (K�e� − �̇d), (40)

vc�
1

�1
A−1

e1 (Kvev − ẑ∗
1ṗed1) + 1

�1
[m1]×�cẑ

∗
1, (41)

where K�, Kv ∈ R3×3 denote diagonal matrices of positive
constant control gains, and ẑ∗

1(t) ∈ R denotes a parameter
estimate for z∗

1 that is designed as follows:

.

ẑ ∗
1�k2e

T
v (Ae1[m1]×�c − ṗed1), (42)

where k2 ∈ R denotes a positive constant adaptation gain. After
substituting (40) and (41) into (38) and (39), the following
closed-loop error systems can be developed:

ė� = −K�e�, (43)

z∗
1 ėv = −Kvev + (Ae1[m1]×�c − ṗed1)z̃

∗
1, (44)

where the parameter estimation error signal z̃∗
1(t) ∈ R is defined

as follows:

z̃∗
1 = z∗

1 − ẑ∗
1. (45)

4.2. Controller analysis

Theorem 2. The controller introduced in (40) and (41), along
with the adaptive update law defined in (42), ensures that the
actual camera pose tracks the desired camera pose trajectory
in the sense that

‖e�(t)‖ → 0, ‖ev(t)‖ → 0 as t → ∞. (46)

Proof. Let V2(t) ∈ R denote a non-negative function defined
as follows:

V2�
1

2
eT
�e� + z∗

1

2
eT
v ev + 1

2k2
z̃∗2

1 . (47)

After taking the time derivative of (47) and then substituting
for the closed-loop error systems developed in (43) and (44),
the following expression can be obtained:

V̇2 = − eT
�K�e� − eT

v Kvev

+ eT
v (Ae1[m1]×�c − ṗed1)z̃

∗
1 − 1

k2
z̃∗

1
˙̂z∗

1, (48)

where the time derivative of (45) was utilized. After substituting
the adaptive update law designed in (42) into (48), the following
expression can be obtained:

V̇2 = −eT
�K�e� − eT

v Kvev . (49)

Based on (45), (47) and (49), it can be determined that e�(t),
ev(t), z̃∗

1(t), ẑ∗
1(t) ∈ L∞ and that e�(t), ev(t) ∈ L2. Based

on the assumption that �̇d(t) is bounded (see Remark 2), the
expressions given in (36), (40), and L�(t) in (16) can be used to
conclude that �c(t) ∈ L∞. Since ev(t) ∈ L∞, (37), (12), (8),
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and Ae1(t) in (15) can be used to prove that u1(t), v1(t), �1(t),
m1(t), Ae1(t) ∈ L∞. Based on the assumption that ṗed1(t)

is bounded (see Remark 2), the expressions in (41), (42), and

(44) can be used to conclude that vc(t),
.

ẑ ∗
1(t),ėv(t) ∈ L∞.

Since e�(t) ∈ L∞, it is clear from (43) that ė�(t) ∈ L∞.
Since e�(t), ev(t) ∈ L2 and e�(t), ė�(t), ev(t), ėv(t) ∈
L∞, Barbalat’s Lemma (Slotine & Li, 1991) can be used to
prove the result given in (46). �

Remark 4. Based on the result provided in (46), it can be
proven from the Euclidean reconstruction given in (5) and (6)
that R(t) → Rd(t), m1(t) → md1(t), and z1(t) → zd1(t)

(and hence, xf (t) → xf d(t)). Based on these results, (1) can
be used to also prove that m̄i(t) → m̄di(t). Since 
(·) is a
unique mapping, we can conclude that the desired camera pose
converges to the goal camera pose based on the previous result
that p̄d(t) → p̄∗ from Theorem 1. Based on the above analysis,
m̄i(t) → m̄∗.

Remark 5. Based on (47) and (49), the following inequality
can be obtained:

eT
�e� + eT

v ev �2 max

{
1,

1

z∗
1

}
V2(t) (50)

�2 max

{
1,

1

z∗
1

}
V2(0),

where

V2(0) = 1

2
eT
�(0)e�(0) + z∗

1

2
eT
v (0)ev(0) + 1

2k2
z̃∗2

1 (0).

From (11), (20), (36), (37), and the inequality in (50), the fol-
lowing inequality can be developed:

‖Υ − Υd‖�
√

2 max

{
1,

1

z∗
1

}
V2(0). (51)

Based on (19), the following expression can be developed:

p̄ = 
(Υ ) − 
(Υd) + p̄d . (52)

After applying the mean-value theorem to (52), the following
inequality can be obtained:

‖p̄‖�‖LΥ ′ ‖‖Υ − Υd‖ + ‖p̄d‖, (53)

where every element of Υ ′ lies between the corresponding
elements of Υ and Υ d. Since all signals are bounded, it can be
shown that LΥ ′ ∈ L∞; hence, the following inequality can be
developed from (51) and (53):

‖p̄‖�
b

√
V2(0) + ‖p̄d‖ (54)

for some positive constant 
b ∈ R, where p̄d(t) ∈ D based on
Theorem 1. To ensure that p̄(t) ∈ D, the image space needs
to be sized to account for the effects of 
bV2(0). Based on
(47), V2(0) can be made arbitrarily small by increasing k2 and
initializing p̄d(0) close or equal to p̄(0).

5. Simulation results

To solve the self-occlusion problem (the terminology, self-
occlusion, in this paper is utilized to denote the case when the
center of the camera is in the plane determined by the feature
points) from a practical point of view, we define a distance ratio
�(t) ∈ R as follows:

�(t) = d

d∗ . (55)

From Malis et al. (1999), �(t) is measurable. The idea to avoid
the self-occlusion is to plan a desired image trajectory without
self-occlusion. Based on (54), we can assume that the actual
trajectory is close enough to the desired trajectory such that no
self-occlusion occurred for the actual trajectory.

To illustrate the performance of the path planner given in (29)
and the controller given in (40)–(42), numerical simulations
will be performed for four standard visual servo tasks, which
are believed to represent the most interesting tasks encountered
by a visual servo system (Gans, Hutchinson, & Corke, 2003):

• Task 1: Optical axis rotation, a pure rotation about the optic
axis.

• Task 2: Optical axis translation, a pure translation along the
optic axis.

• Task 3: Camera y-axis rotation, a pure rotation of the camera
about the y-axis of the camera coordinate frame.

• Task 4: General camera motion, a transformation that in-
cludes a translation and rotation about an arbitrary axis.

For the simulation, the intrinsic camera calibration matrix is
given as follows:

A =
⎡
⎢⎣

f ku −f ku cot � u0

0
f kv

sin �
v0

0 0 1

⎤
⎥⎦ , (56)

where u0 = 257 and v0 = 253 pixels represent the pixel
coordinates of the principal point, ku = 101.4 and kv =
101.4 pixels mm−1 represent camera scaling factors, � = 90◦
is the angle between the camera axes, and f = 12.5 mm de-
notes the camera focal length. For all simulations, we select
pi(0) = pdi(0) ∀i = 1, 2, 3, 4, � = 8.

5.1. Simulation results: optical axis rotation

The desired and actual image trajectories of the feature points
are depicted in Figs. 2 and 3, respectively. The translational and
rotational tracking errors of the target are depicted in Figs. 4 and
5, respectively, and the parameter estimate signal is depicted in
Fig. 6. For the resulting Figs. 2–8, the control parameters were
selected as follows:

Kv = I3, K� = 0.3I3, k1 = 400, 000, k2 = 0.04,

K = diag{10, 10, 10, 18, 13, 15, 10, 10}.
The control input velocities �c(t) and vc(t) defined in (40) and
(41) are depicted in Figs. 7 and 8. From Figs. 2 and 3, it is
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Fig. 2. Desired image trajectory of task 1.
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Fig. 3. Actual image trajectory of task 1.
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Fig. 4. Translational tracking error of task 1.
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Fig. 5. Rotational tracking error of task 1.
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Fig. 6. Estimate of z∗
1 of task 1.

clear that the desired feature points and actual feature points
remain in the camera FOV and converge to the goal feature
points. Figs. 4 and 5 show that the tracking errors go to zero
as t → ∞.

5.2. Simulation results: optical axis translation

The control parameters were selected as follows:

Kv = I3, K� = 0.3I3, k1 = 10, 000 k2 = 0.0004,

K = diag{30, 20, 10, 28, 33, 25, 10, 40}.
The actual image trajectories of the feature points are depicted
in Fig. 9. The control input velocities �c(t) and vc(t) defined
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Fig. 7. Angular velocity of task 1.
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Fig. 8. Linear velocity input of task 1.

in (40) and (41) are depicted in Figs. 10 and 11. From Fig. 9,
it is clear that the actual feature points remain in the cam-
era FOV and converge to the goal feature points. To reduce
the length of the paper, we only provide figures for the actual
image trajectory, angular velocity, and linear velocity for this
task (also for tasks 3 and 4). For more simulation results, see
Chen (2005).

5.3. Simulation results: camera y-axis rotation

The control parameters were selected as follows:

Kv = 5I3, K� = 0.3I3, k1 = 1, 000, 000, k2 = 0.04,

K = diag{30, 20, 10, 28, 33, 25, 10, 40}.
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Fig. 9. Actual image trajectory of task 2.
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Fig. 10. Angular velocity input of task 2.

The actual image trajectories of the feature points are depicted
in Fig. 12. The control input velocities �c(t) and vc(t) defined
in (40) and (41) are depicted in Figs. 13 and 14. From Fig. 12,
it is clear that the actual feature points remain in the camera
FOV and converge to the goal feature points.

5.4. Simulation results: general camera motion

The control parameters were selected as follows:

Kv = I3, K� = 0.3I3, k1 = 200, 000, k2 = 0.004,

K = diag{10, 10, 10, 18, 13, 15, 10, 10}.
The actual image trajectories of the feature points are depicted
in Fig. 15. The control input velocities �c(t) and vc(t) defined
in (40) and (41) are depicted in Figs. 16 and 17. From Fig. 15,
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Fig. 11. Linear velocity input of task 2.
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Fig. 12. Actual image trajectory of task 3.
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Fig. 13. Angular velocity input of task 3.
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Fig. 14. Linear velocity input of task 3.
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Fig. 15. Actual image trajectory of task 4.

it is clear that the actual feature points remain in the camera
FOV and converge to the goal feature points.

Unlike position-based visual servoing and 2.5D visual ser-
voing, our visual servo algorithm applies an image-based NF
to ensure all feature points remain in the camera FOV. From
Figs. 3, 9, 12, 15, it is clear that all actual image trajectories
are very close to straight lines connecting the initial images
and the goal images which is the main advantage of image-
based visual servoing with regard to keeping the feature points
in the camera FOV. Since our desired image trajectories are
generated by (29), they satisfy the rigid body constraints. The
common image-based visual servoing algorithms do not have
mechanisms to satisfy rigid body constraints which cause IBVS
robot systems to behave irregularly when the initial error is
large. By monitoring the distance ratio �(t), all the desired tra-
jectories in our simulations avoid the self-occlusion problem.
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Fig. 16. Angular velocity input of task 4.
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Fig. 17. Linear velocity input of task 4.

By comparing the desired image trajectories and the actual im-
age trajectories in our simulations, it is clear that they are very
close to each other. During closed-loop operation, we had ver-
ified that there is no self-occlusion for the actual robot system
in the simulations. To the best of our knowledge, no other re-
sult can guarantee that all feature points remain in the camera
FOV without irregular behavior while avoiding self-occlusion
for full 6-DOF robot systems.

6. Conclusions

A path planner is developed based on an image-space NF
that ensures the desired image trajectory converges to the goal
position while also ensuring the desired image features remain
in a visibility set under certain technical restrictions. An adap-

tive, homography-based visual servo tracking controller is then
developed to navigate the camera-in-hand pose along the de-
sired trajectory despite the lack of depth information from a
monocular camera system. The path planner and the track-
ing controller are analyzed through a Lyapunov-based analysis.
Simulation results are provided to illustrate the performance of
the proposed approach. Further experimental verification of the
performance of our proposed algorithm will be provided in the
future when relevant facilities are available.

Appendix A. Open-loop dynamics

The extended image coordinates pe1(t) of (12) can be written
as follows:

pe1 =
[

a1 a2 0
0 a3 0
0 0 1

] ⎡
⎢⎢⎣

x1

z1
y1

z1
ln(z1)

⎤
⎥⎥⎦ +

[
a4
a5

− ln(z∗
1)

]
, (A.1)

where (7), (8) and (9) were utilized. After taking the time
derivative of (A.1), the following expression can be obtained:

ṗe1 = 1

z1
Ae1

.

m̄1.

By exploiting the fact that
.

m̄1(t) can be expressed as follows:

.

m̄1 = −vc + [m̄1]×�c,

the open-loop dynamics for pe1(t) can be rewritten as follows:

ṗe1 = − 1

z1
Ae1vc + Ae1[m1]×�c.

The open-loop dynamics for �(t) can be expressed as follows
(Chen et al., 2005):

�̇ = −L��c.

Appendix B. Image Jacobian-like matrix

Similar to (14), the dynamics for Υd(t) can be expressed as

Υ̇d =
[
ṗed1
�̇d

]
=

[
− 1

zd1
Aed1 Aed1[md1]×

03 −L�d

] [
vcd
�cd

]
, (B.1)

where �d(t) is defined in (22), zdi(t) is introduced in (4),
Aedi(udi, vdi) is defined in the same manner as in (15) with
respect to the desired pixel coordinates udi(t), vdi(t), mdi(t) is
given in (1), L�d(�d , �d) is defined in the same manner as in
(16) with respect to �d(t) and �d(t), and vcd(t), �cd(t) ∈ R3

denote the desired linear and angular velocity signals that en-
sure compatibility with (B.1). The signals vcd(t) and �cd(t)

are not actually used in the trajectory generation scheme pre-
sented in this paper as similarly done in Chen et al. (2005);
rather, these signals are simply used to clearly illustrate how
.

p̄d (t) can be expressed in terms of Υ̇d(t) as required in (23).
Specifically, we first note that the top block row in (B.1) can be
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used to write the time derivative of ped2(t) in terms of vcd(t)

and �cd(t) with i = 2:

ṗed2 =
[
− 1

zd2
Aed2 Aed2[md2]×

] [
vcd
�cd

]
, (B.2)

where pedi(t) is defined in the same manner as (21) ∀i =
1, 2, 3, 4. After inverting the relationship given by (B.1), we
can also express vcd(t) and �cd(t) as a function of Υ̇d(t) as
follows:[

vcd
�cd

]
=

[−zd1A
−1
ed1 −zd1[md1]×L−1

�d

0 −L−1
�d

]
Υ̇d . (B.3)

After substituting (B.3) into (B.2), ṗed2(t) can be expressed in
terms of Υ̇d(t) as follows:

ṗed2 =
[

zd1

zd2
Aed2A

−1
ed1 Aed2

[
zd1

zd2
md1 − md2

]
×
L−1

�d

]
Υ̇d .

(B.4)

After formulating similar expressions for ṗed3(t) and ṗed4(t) as
the one given by (B.4) for ṗed2(t), we can compute the expres-
sion for LΥd

(p̄d) in (24) by utilizing the definitions of pdi(t)

and pedi(t) given in (7) and (21), respectively (i.e., we must
eliminate the bottom row of the expression given by (B.4)).

Appendix C. Image-space NF

Inspired by the framework developed in Cowan et al.
(2002), an image-space NF is constructed by developing a
diffeomorphism4 between the image space and a model space,
developing a model space NF, and transforming the model
space NF into an image-space NF through the diffeomorphism
(since NFs are invariant under diffeomorphism Koditschek &
Rimon, 1990). To this end, a diffeomorphism is defined that
maps the desired image feature vector p̄d to the auxiliary model
space signal 
(p̄d)�[
1(p̄d)
2(p̄d) . . . 
8(p̄d)]T : [−1, 1]8 →
R8 as follows:


 = diag

{
2

umax − umin
,

2

vmax − vmin
, . . . ,

2

vmax − vmin

}
p̄d

−
[
umax + umin

umax − umin

vmax + vmin

vmax − vmin
. . .

vmax + vmin

vmax − vmin

]T

. (C.1)

In (C.1), umax, umin, vmax, and vmin ∈ R denote the maximum
and minimum pixel values along the u- and v- axis, respectively.
The model space NF, denoted by 	̃(
) ∈ R8 → R, is defined
as follows (Cowan et al., 2002):

	̃(
)� 	̄

1 + 	̄
. (C.2)

In (C.2), 	̄(
) ∈ R8 → R is defined as

	̄(
)� 1
2f (
)TKf (
), (C.3)

4 A diffeomorphism is a map between manifolds which is differentiable
and has a differentiable inverse.

where the auxiliary function f (
) : (−1, 1)8 → R8 is defined
similar to (Cowan et al., 2002) as follows:

f (
) =
[


1 − 
∗
1

(1 − 
2�
1 )1/2�

. . .

8 − 
∗

8

(1 − 
2�
8 )1/2�

]T

, (C.4)

where K ∈ R8×8 is a positive definite, symmetric matrix, and
� is a positive parameter. The reason we use � instead of 1
as in (Cowan et al., 2002) is to get an additional parameter to
change the potential field formed by f (
). See (Cowan et al.,
2002) for a proof that (C.2) satisfies the properties of an NF
as described in Definition 1. The image-space NF, denoted by
	(p̄d) ∈ D → R, can then be developed as follows:

	(p̄d)�	̃ ◦ 
(p̄d), (C.5)

where ◦ denotes the composition operator. The gradient vector
∇	(pd) can be expressed as follows:

∇	�
(

�	

�p̄d

)T

=
(

�	̃

�


�


�p̄d

)T

. (C.6)

In (C.6), the partial derivative expressions �
(p̄d)/�p̄d ,
�	̃(
)/�
, and �f (
)/�
 can be expressed as follows:

�


�p̄d

= diag

{
2

umax − umin
,

2

vmax − vmin
, . . . ,

2

vmax − vmin

}
,

(C.7)

�	̃

�

= 1

(1 + 	̄)2
f TK

�f

�

, (C.8)

�f

�

= diag

{
1 − 
2�−1

1 
∗
1

(1 − 
2�
1 )(2�+1)/2�

, . . . ,
1 − 
2�−1

8 
∗
8

(1 − 
2�
8 )(2�+1)/2�

}
.

(C.9)

It is clear from (C.1)–(C.9) that p̄d(t) → p̄∗ when
∇	(p̄d) → 0.

References

Chaumette, F. (1998). Potential problems of stability and convergence in
image-based and position-based visual servoing. In D. Kriegman, G. Hager,
& A. Morse (Eds.), The confluence of vision and control. Lecture notes in
control and information science series (Vol. 237, pp. 66–78). New York:
Springer.

Chaumette, F., Malis, E., & Boudet, S. (1997). 2D 1/2 visual servoing with
respect to a planar object. In Proceedings of the workshop on new trends
in image-based robot servoing (pp. 45–52).

Chen, J. (2005). Visual servo control with a monocular camera. Ph.D.
dissertation, Department of Electrical and Computer Engineering, Clemson
University, Clemson, SC.

Chen, J., Dawson, D. M., Dixon, W. E., & Behal, A. (2005). Adaptive
homography-based visual servo tracking for fixed camera configuration
with a camera-in-hand extension. IEEE Transactions on Control System
Technology, 13(5), 814–825.

Chen, J., Dixon, W. E., Dawson, D. M., & McIntire, M. (2006). Homography-
based visual servo tracking control of a wheeled mobile robot. IEEE
Transactions on Robotics, 22(2), 407–416.



J. Chen et al. / Automatica 43 (2007) 1165–1177 1177

Corke, P. I., & Hutchinson, S. A. (2000). A new hybrid image-based visual
servo control scheme. In Proceedings of the IEEE conference on decision
and control (pp. 2521–2527), Las Vegas, NV, December.

Cowan, N. J., Shakernia, O., Vidal, R., & Sastry, S. (2003). Vision-
based follow-the-leader. In Proceedings of the international conference on
intelligent robots and systems (pp. 1796–1801), Las Vegas, NV, October.

Cowan, N. J., Weingarten, J. D., & Koditscheck, D. E. (2002). Visual servoing
via navigation function. IEEE Transactions on Robotics and Automation,
18(4), 521–533.

Deguchi, K. (1998). Optimal motion control for image-based visual servoing
by decoupling translation and rotation. In Proceedings of the international
conference on intelligent robots and systems (pp. 705–711), Victoria, BC,
Canada, October.

Faugeras, O. (2001). Three-dimensional computer vision. Cambridge, MA:
The MIT Press.

Fierro, R., Song, P., Das, A., & Kumar, V. (2002). Cooperative control of
robot formations. In Cooperative control and optimization (Vol. 66, pp.
73–93). Dordrecht: Kluwer Academic Press.

Gans, N. R., & Hutchinson, S. A. (2003). An asymptotically stable switched
system visual controller for eye in hand robots. In Proceedings of the
IEEE/RSJ international conference on intelligent robots and systems (pp.
735–742), Las Vegas, NV, October.

Gans, N. R., Hutchinson, S. A., & Corke, P. I. (2003). Performance tests for
visual servo control systems, with application to partitioned approaches
to visual servo control. International Journal of Robotics Research,
22(10–11), 955–981.

Hager, G. D., & Hutchinson, S. (guest editors). (1996). Special section on
vision-based control of robot manipulators. IEEE Transactions on Robotics
and Automation 12(5).

Horaud, R. (1987). New methods for matching 3-d objects with single
perspective view. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-9(3), 401–412.

Khalil, H. K. (2002). Nonlinear systems. (3rd ed.), Englewood Cliffs, NJ:
Prentice-Hall.

Koditschek, D. E., & Rimon, E. (1990). Robot navigation functions on
manifolds with boundary. Advances in Applied Mathematics, 11, 412–442.

Malis, E., & Chaumette, F. (2000). 2 1/2 D visual servoing with respect to
unknown objects through a new estimation scheme of camera displacement.
International Journal of Computer Vision, 37(1), 79–97.

Malis, E., Chaumette, F., & Boudet, S. (1999). 2 1/2 D visual servoing. IEEE
Transactions on Robotics and Automation, 15(2), 238–250.

Mezouar, Y., & Chaumette, F. (2002). Path planning for robust image-based
control. IEEE Transactions on Robotics and Automation, 18(4), 534–549.

Pereira, G. A., Das, A. K., Kumar, V., & Campos, M. F. (2003). Formation
control with configuration space constraints. In Proceedings of the
international conference on intelligent robots and systems (pp. 2755–2760),
Las Vegas, NV, October.

Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial
potential function. IEEE Transactions on Robotics and Automation, 8(5),
501–518.

Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control. Englewood
Cliffs, NJ: Prentice-Hall.

Spong, M. W., & Vidyasagar, M. (1989). Robot dynamic and control. New
York, NY: Wiley.

Jian Chen received a B.E. degree in Testing
Technology and Instrumentation, an M.E. de-
gree in Control Science and Engineering, both
from Zhejiang University, Hangzhou, PR China,
in 1998 and 2001, respectively, and a Ph.D.
degree in Electrical Engineering from Clemson
University, Clemson, South Carolina, in 2005.
After completing his Ph.D. program in August
of 2005, he had worked on MEMS as a research
associate at Clarkson University for 1 year. In
August of 2006, he joined the University of
Michigan, Ann Arbor, as a research fellow. His

research interests include fuel cell modeling and control, MEMS, visual servo
techniques, nonlinear control, and multi-vehicle navigation.

Darren M. Dawson received a B.S. degree in
Electrical Engineering from the Georgia Insti-
tute of Technology in 1984. He then worked for
Westinghouse as a control engineer from 1985
to 1987. In 1987, he returned to the Georgia
Institute of Technology where he received the
Ph.D. degree in Electrical Engineering in March
1990. In July 1990, he joined the Electrical and
Computer Engineering Department where he
currently holds the position of McQueen Quat-
tlebaum Professor. His research interests are
Nonlinear control techniques for mechatronic

applications such as electric machinery, robotic systems, aerospace systems,
acoustic noise, underactuated systems, magnetic bearings, mechanical friction,
paper handling/textile machines, flexible beams/robots/rotors, cable structures,
and vision-based systems. He also focuses on the development of Realtime
hardware and software systems for control implementation.

Warren Dixon received his Ph.D. degree in
2000 from the Department of Electrical and
Computer Engineering from Clemson Univer-
sity. After completing his doctoral studies he
was selected as an Eugene P. Wigner Fellow at
Oak Ridge National Laboratory (ORNL) where
he worked in the Robotics and Energetic Sys-
tems Group. In 2004, he joined the faculty
of the University of Florida in the Mechan-
ical and Aerospace Engineering Department.
His main research interest has been the de-
velopment and application of Lyapunov-based

control techniques for mechatronic systems, and he has published 2 books and
over 100 refereed journal and conference papers. Recent publications have
focused on Lyapunov-based control of nonlinear systems. He was awarded
the 2001 ORNL Early Career Award for Engineering Achievement for his
contributions to Lyapunov-based control methods. He was awarded the 2004
DOE Outstanding Mentor Award for his student advising at ORNL. He
was awarded an NSF CAREER Award in 2006 for new development and
application of Lyapunov-based control methods. He was also awarded the
2006 IEEE Robotics and Automation Society (RAS) Early Academic Career
Award. He serves on the IEEE CSS Technical Committees on Intelligent
Control and Nonlinear Systems, is a member of the ASME DSC Division
Mechatronics Technical Committee, and is currently an associate editor for
IEEE Transactions on Systems, Man, and Cybernetics; Part B: Cybernetics.

Dr. Vilas Kumar Chitrakaran received a B.E
from the University of Madras, India in 1999,
an M.S. from Clemson University, USA in 2003
and a Ph.D. from Clemson University in 2006,
USA, all in Electrical Engineering. His Ph.D.
dissertation focussed on vision-based nonlinear
estimation and control strategies using Lyapunov
design methods. He also has experience in de-
signing real-time robotic and machine vision
systems. Dr Chitrakaran is currently employed
as a Systems Engineer in OC Robotics (Bristol,
UK) where he is engaged in developing vision
systems for snake-like continuum robots.


	Navigation function-based visual servo control62626262
	Introduction
	Geometric modeling
	Euclidean homography
	Projective homography
	Kinematic model of vision system

	Image-based path planning
	Pose space to image space relationship
	Desired image trajectory planning
	Path planner analysis

	Tracking control development
	Control development
	Controller analysis

	Simulation results
	Simulation results: optical axis rotation
	Simulation results: optical axis translation
	Simulation results: camera y-axis rotation
	Simulation results: general camera motion

	Conclusions
	Appendix A. Open-loop dynamics
	Appendix B. Image Jacobian-like matrix
	Appendix C. Image-space NF
	References


