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1. Introduction

Reinforcement learning (RL) is a concept that can be used to en-
able an agent to learn optimal policies from interaction with the
environment. The objective of the agent is to learn the policy that
maximizes or minimizes a cumulative long term reward. Almost
all RL algorithms use some form of generalized policy iteration
(GPI). GPI is a set of two simultaneous interacting processes, pol-
icy evaluation and policy improvement. Starting with an estimate
of the state value function and an admissible policy, policy eval-
uation makes the estimate consistent with the policy and policy
improvement makes the policy greedy with respect to the value
function. These algorithms exploit the fact that the optimal value
function satisfies Bellman'’s principle of optimality (Kirk, 2004; Sut-
ton & Barto, 1998).

* This research is supported in part by NSF award numbers 1161260, 1217908,
ONR grant number N00014-13-1-0151, and a contract with the AFRL Mathematical
Modeling and Optimization Institute. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsoring agency. The material in this paper
was not presented at any conference. This paper was recommended for publication
in revised form by Associate Editor Antonio Loria under the direction of Editor
Andrew R. Teel.

E-mail addresses: rkamalapurkar@ufl.edu (R. Kamalapurkar),
huyendtt214@gmail.com (H. Dinh), sbhasin@ee.iitd.ac.in (S. Bhasin),
wdixon@ufl.edu (W.E. Dixon).

http://dx.doi.org/10.1016/j.automatica.2014.10.103
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

When applied to continuous-time systems the principle of
optimality leads to the Hamilton-Jacobi-Bellman (HJB) equation
which is the continuous-time counterpart of the Bellman equa-
tion (Doya, 2000). Similar to discrete-time adaptive dynamic pro-
gramming (ADP), continuous-time ADP approaches aim at finding
approximate solutions to the HJB equation. Various methods to
solve this problem are proposed in Abu-Khalaf and Lewis (2002),
Beard, Saridis, and Wen (1997), Bhasin et al. (2013), Jiang and Jiang
(2012), Vamvoudakis and Lewis (2010), Vrabie and Lewis (2009)
and Zhang, Luo, and Liu (2009) and the references therein. An in-
finite horizon regulation problem with a quadratic cost function is
the most common problem considered in ADP literature. For these
problems, function approximation techniques can be used to ap-
proximate the value function because it is time-invariant.

Approximation techniques like neural networks (NNs) are com-
monly used in ADP literature for value function approximation.
ADP-based approaches are presented in results such as (Dierks &
Jagannathan, 2010; Zhang, Cui, Zhang, & Luo, 2011) to address the
tracking problem for continuous-time systems, where the value
function, and the controller presented are time-varying functions
of the tracking error. However, for the infinite horizon optimal con-
trol problem, time does not lie on a compact set, and NNs can only
approximate functions on a compact domain. Thus, it is unclear
how a NN with the tracking error as an input can approximate the
time-varying value function and controller.

For discrete-time systems, several approaches have been de-
veloped to address the tracking problem. Park, Choi, and Lee
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(1996) use generalized back-propagation through time to solve a
finite horizon tracking problem that involves offline training of
NNs. An ADP-based approach is presented in Dierks and Jagan-
nathan (2009) to solve an infinite horizon optimal tracking prob-
lem where the desired trajectory is assumed to depend on the
system states. Greedy heuristic dynamic programming based algo-
rithms are presented in results such as (Luo & Liang, 2011; Wang,
Liu, & Wei, 2012; Zhang, Wei, & Luo, 2008) which transform the
nonautonomous system into an autonomous system, and approx-
imate convergence of the sequence of value functions to the opti-
mal value function is established. However, these results lack an
accompanying stability analysis.

In this result, the tracking error and the desired trajectory both
serve as inputs to the NN. This makes the developed controller
fundamentally different from previous results, in the sense that
a different HJB equation must be solved and its solution, i.e. the
feedback component of the controller, is a time-varying function
of the tracking error. In particular, this paper addresses the techni-
cal obstacles that result from the time-varying nature of the opti-
mal control problem by including the partial derivative of the value
function with respect to the desired trajectory in the HJB equation,
and by using a system transformation to convert the problem into
a time-invariant optimal control problem in such a way that the
resulting value function is a time-invariant function of the trans-
formed states, and hence, lends itself to approximation using a NN.
A Lyapunov-based analysis is used to prove ultimately bounded
tracking and that the enacted controller approximates the optimal
controller. Simulation results are presented to demonstrate the ap-
plicability of the presented technique. To gauge the performance of
the proposed method, a comparison with a numerical optimal so-
lution is presented.

For notational brevity, unless otherwise specified, the domain
of all the functions is assumed to be Rsg. Furthermore, time-
dependence is suppressed while denoting trajectories of dynami-
cal systems. For example, the trajectory x : R>o — R"is defined by
abuse of notation as x € R", and referred to as x instead of x (t), and
unless otherwise specified, an equation of the form f + h (y, t) =
g (x)isinterpretedasf (t) +h (y (t),t) = g (x(t)) forallt € R>o.

2. Formulation of time-invariant optimal control problem

Consider a class of nonlinear control affine systems

x=f®+eg®@u,

where x € R" is the state, and u € R™ is the control input. The func-
tionsf : R" — R"and g : R" — R™™ are locally Lipschitz and
f (0) = 0. The control objective is to track a bounded continuously
differentiable signal x4 € R". To quantify this objective, a tracking
error is defined as e £ x — x4. The open-loop tracking error dynam-
ics can then be expressed as

e=f(0+g@u—X. )

The following assumptions are made to facilitate the formulation
of an approximate optimal tracking controller.

Assumption 1. The function g is bounded, the matrix g (x) has full
column rank for all x € R", and the function g* : R" — R™*"

defined as gt 2 (ng)71 g" is bounded and locally Lipschitz.

Assumption 2. The desired trajectory is bounded such that ||x4]| <
d € R, and there exists a locally Lipschitz function hg : R" —
R" such that X; = hq (xq) and g (x4) g+ (Xg) (ha (xa) — f (X)) =
hg (xa) — f (Xa) , Yt € Rxy.

The steady-state control policy uy : R™ — R™ corresponding to
the desired trajectory x4 is

ug (xa) = g7 (hg (xq) — fa) (2)

where g 2 g* (xq) and fy 2 f (xq). To transform the time-vary-
ing optimal control problem into a time-invariant optimal control
problem, a new concatenated state ¢ € R?" is defined as (Zhang
et al., 2008)

e [eT,xg]T. (3)
Based on (1) and Assumption 2, the time derivative of (3) can be
expressed as

{=FQ@Q)+GQ@)u (4)
where the functions F : R — R2' G : R2" — R2™M and the
control u € R™ are defined as

F()2 [f (e+xq) — hg ()iczz)(:;ig (e +xq) Ug (Xd)] ’

G(g‘)é[g(ea_xd)}, wEu—uy. (5)

Local Lipschitz continuity of f and g, the fact that f (0) = 0, and
Assumption 2 imply that F (0) = 0 and F is locally Lipschitz.

The objective of the optimal control problem is to design a pol-
icy u* : R — R™ e ¥ such that the control law ;1 = u* (¢)
minimizes the cost functional

](C,M)éfo r (¢ (p), n(p)dp,

subject to the dynamic constraints in (4), where ¥ is the set of ad-
missible policies (Beard et al., 1997), and r : R?® x R™ — Ry is
the local cost defined as

r¢,mw)2¢'Q¢ + n'Ru. (6)

In (6), R € R™™ is a positive definite symmetric matrix of con-
stants, and Q € R?>™?" is defined as

ge [0,% n 0]

where Q € R™" is a positive definite symmetric matrix of con-
stants with the minimum eigenvalue g € R. ¢, and 0,5, € R™" is

a matrix of zeros. For brevity of notation, let ()’ denote 9 () /3¢.

, (7)

Onxn

3. Approximate optimal solution

Assuming that a minimizing policy exists and that the optimal
value function V* : R?" — R defined as
o0
/r(qﬁ“(f;t,i),u(f))df (8)

t

V()£ min
u(t)|TeR>¢

is continuously differentiable, the HJB equation for the optimal
control problem can be written as

H*=V* (@) (FQ)+G@)u" () +r(¢, n* () =0, 9)

for all ¢, with the boundary condition V* (0) = 0, where H* de-
notes the Hamiltonian, and p* : R*" — R™ denotes the optimal
policy. In (8) ¢* (t; t, £) denotes the trajectory of (4) under the
controller p starting at initial time ¢ and initial state ¢. For the lo-
cal cost in (6) and the dynamics in (4), the optimal policy can be
obtained in closed-form as (Kirk, 2004)

1
@) = —oRE @) (v ©)" . (10)
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The value function V* can be represented using a NN with N neu-
rons as

VE@) =Wlo (@) +e(), (11)

where W € RN is the constant ideal weight matrix bounded above
by a known positive constant W € R in the sense that |W| < W,
o : R?" — RN is a bounded continuously differentiable nonlinear
activation function, and € : R** — R is the function reconstruc-
tion error (Hornik, Stinchcombe, & White, 1990; Lewis, Selmic, &
Campos, 2002).

Using (10) and (11) the optimal policy can be represented as

1
@) = —ER‘1GT @) (@ @OW+€T(©). (12)

Based on(11)and (12), the NN approximations to the optimal value
function and the optimal policy are given by

V(e We) = Wlo .
o (6 W) =~ R @0 () W (13

where WC e RV and Wa € R" are estimates of the ideal neural net-
work weights W. The use of two separate sets of weight estimates
Wa and Wc for W is motivated by the fact that the Bellman error
(BE) is linear with respect to the value function weight estimates
and nonlinear with respect to the policy weight estimates. Use of
a separate set of weight estimates for the value function facilitates
least squares-based adaptive updates.
The controller is obtained from (2), (5), and (13) as

1 A~
u= _5R_]GT (&) 0" () Wa+ g (ha (xa) = fa) - (14)

Using the approximations & and V for u* and V* in (9), respec-
tively, the error between the approximate and the optimal Hamil-
tonian, called the BE § € R, is given in a measurable form by

5éﬁ/(;,vi/c)é+r(g,u(;,wa)). (15)

The value function weights are updated to minimize fot 8% (p)dp
using a normalized least squares update law! with an exponential
forgetting factor as (Ioannou & Sun, 1996)

A

W.=—n.I (16)

R
1+vo'Tw

[= T (17)
= 1+vo'Tw )’

where v, 1. € Rare constant positive adaptation gains, w : R>o —

RN is defined as w 2 ¢’ (¢) ¢, and A € (0, 1) is the constant for-

getting factor for the estimation gain matrix I" € R¥*N, The policy

weights are updated to follow the critic weights? as

Wa = —Na1 (Wa - Wc) - nGZWaa (18)

where 141, g2 € R are constant positive adaptation gains. The fol-
lowing assumption facilitates the stability analysis using PE.

1 The least-squares approach is motivated by faster convergence. With minor
modifications to the stability analysis, the result can also be established for a
gradient descent update law.

2 The least-squares approach cannot be used to update the policy weights
because the BE is a nonlinear function of the policy weights.

Assumption 3. The regressor ¥ : R — RN defined as v £
= is persistently exciting (PE). Thus, there exist T, i > 0

A 1+vol e
suchthat yI < [ (1) ¢ (1) de

Using Assumption 3 and Corollary 4.3.2 in loannou and Sun (1996)
it can be concluded that

YInxn = T = @Inkn,  VE € R (19)

where @, ¢ € R are constants such that 0 < ¢ < .4 Based on
(19), the regressor vector can be bounded as

1
Yl < ——, VteRs. (20)
/VQ -

For notational brevity, state-dependence of the functions hy, F, G,
V*, u*, o,and € is suppressed hereafter.

Using (9), (15), and (16), an unmeasurable form of the BE can be
written as

. 1- -1
§=-Wao+ ijgawa + Ze/g,e/T
1
+ EWTa/ge’T —€'F, (21)

where § 2 GR™'G" and §, 2 0'GR™'G"¢"". The weight estimation
errors for the value function and the policy are defined as W, 2
W — W, and W, & W — W,, respectively.

4. Stability analysis

Before stating the main result of the paper, three supplemen-
tary technical lemmas are stated. To facilitate the discussion, let
Y e R?™2N be a compact set, and let Z £ Y N RN, Using
the universal approximation property of NNs, on the compact set
Y N R2", the NN approximation errors can be bounded such that
sup |e (¢)] < € and sup |e’ (§)| < &,where€ € Rand€’ € R
are positive constants, and there exists a positive constant Lr € R
such that® sup |F (¢)|| < L ||Z||. Using Assumptions 1 and 2 the
following bounds are developed on the compact set Y N R?" to aid
the subsequent stability analysis:

€  Wie'\ I

2T e | L Ikl <0 g0l < e

/ T 1 T 1 / T
[€9e™] <0 |3V e +5€'507 | <,
1 / T 1WT / T < 22
46 ge + 3 o' e’ || <ts, (22)

where (1, to, L3, L4, L5 € R are positive constants.

4.1. Supporting lemmas

The contribution in the previous section was the development
of a transformation that enables the optimal policy and the optimal

3 The regressor is defined here as a trajectory indexed by time. It should be noted
that different initial conditions result in different regressor trajectories; hence, the
constants T and ¥ depend on the initial values of ¢ and W,. Hence, the final result
is not uniform in the initial conditions.

4 Since the evolution of Y is dependent on the initial values of ¢ and W,, the
constants ¢ and ¢ depend on the initial values of ¢ and W,.

5 Instead of using the fact that locally Lipschitz functions on compact sets are
Lipschitz, it is possible to bound the function F as ||F (¢)|| < p (¢ 1], where
p : Rsp — Rsg is non-decreasing. This approach is feasible and results in
additional gain conditions.
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value function to be expressed as a time-invariant function of ¢.
The use of this transformation presents a challenge in the sense
that the optimal value function, which is used as the Lyapunov
function for the stability analysis, is not a positive definite function
of ¢, because the matrix Q is positive semi-definite. In this section,
this technical obstacle is addressed by exploiting the fact that the
time-invariant optimal value function V* : R?*® — R can be
interpreted as a time-varying map V;" : R" x R>¢ — R, such that

Vi (e t) = V* <[Xde(t)]> (23)

foralle € R" and for all t € R. Specifically, the time-invariant
form facilitates the development of the approximate optimal pol-
icy, whereas the equivalent time-varying form can be shown to be
a positive definite and decrescent function of the tracking error. In
the following, Lemma 1 is used to prove that V;* : R" xR>¢ — Ris
positive definite and decrescent, and hence, a candidate Lyapunov
function.

Lemma 1. Let B, denote a closed ball around the origin with the
radius a € R.. The optimal value function V}* : R" x Ryg — R
satisfies the following properties

Vt* (ev t) Z Q(”e”) ) (243)
Vv (0,t) =0, (24b)
Ve, ) <v(llell), (24¢)

Vt € RypandVe € Bywherev : [0, a] - Rspandv : [0, a] — Rxg
are class X functions.

Proof. See Appendix.
a [T wT Wit
Lemma2. Let Z 2 [e" W] W], and suppose that Z (t) € Z,

forall T € [t,t + T]. Then, the NN weights and the tracking errors
satisfy

— inf _[le(0)|?
€[t t+T]
- 2
<-wy sup lle(@®)|*+@T> sup HWa (T)H + @
€[t t+T] €[t t+T]
- 2 - 2
— inf HWa (r)” < —w3 Ssup HWa (1.')”
Te(t,t+T] €[t t+T]
- 2
+oy inf [We@| +ms sup eI+,
€[t t+T] Telt,t+T]
where
1 — 6nT2L2 3n
@y = 7( F), w1 = —sup |[gR G0 | 2,
2 4
2
3n?T? (de + sup |gg; (ha — fa) — 28R 'GTo" W — hy ||>
wy = ‘ s
n
(1= 6N (a1 + 1a2)> T?)
w3 = 3 5
6Nn? T?
Wy = Ta1 N
(1 — 6N (19T)? / (ve) )
— 2
18 (na1Nn pe'LeT?)
w5 = N
vp (1 — 6N (5c@T)? / (ug) )
18 (N1ja1nc@ (€'Led + 15) T2)° _
—— ( ﬂaﬂ?cﬁﬂ( F 5) ) 13N (ﬂaZWT)Z-

vy <1 — 6N (n.@T)? / <v£)2>

Proof. The proof is omitted due to space constraints, and is avail-
able in Kamalapurkar, Dinh, Bhasin, and Dixon (2013).

Lemma3. Let Z 2 [ef W[ WGT]T, and suppose that Z (1) € Z,
forall T € [t, t + T]. Then, the critic weights satisfy

t+T B P 2 t+T
A L e T e
t t

T 4
+ 3[% / H W, (O‘)H do + woT,
t

We

"222

————, Wy = 3@’21.2, and wg = 2(:2 +
2(v2g2+n?¢2T2) 8 F 9 ( >

where w7 =
=212 42
€”Lzd%).

Proof. The proof is omitted due to space constraints, and is
available in Kamalapurkar et al. (2013).

4.2. Gain conditions and gain selection

The following section details sufficient gain conditions derived
based on a stability analysis performed using the candidate
Lyapunov function V; : R™2N x R,y — R defined as V; (Z, t) 2
Vi (e, t) + %VVCTI"‘WVC + %WHTWC,. Using Lemma 1 and (19),

wdlZzl) =V, 0 =udZl), (25)

VZ € By, Vt € Rxo, where vy : [0, b] — R>gand ; : [0, b] — Ry
are class X functions, and B, C R"2N denotes a ball of radius
b € R.( around the origin, containing Z.

To facilitate the discussion, define 112 2 741 + 142, Z 2 [eT W WITF,

v 2

= 707&2:\::4) + 277c (h)z + %13, w10 £ —wsﬂmﬂgyzgﬂcwg + ¢,
and w11 S l—%min(ncﬂzm,ZwogT, ZD'3nalzT). Let Z() € Rzo
denote a known constant bound on the initial condition such that
1Z (to) | < Zo, and let

T @il
yAERY vy | max | Zp, +.T ). (26)
- o1

The sufficient gain conditions for the subsequent Theorem 1 are
given by®

Nelo ? —
Na12 > Max (770152 + - —, 377::‘§Z) s
4 v vy

2w,
> 28y, ne> Ly s SRy
)\Z“;‘_Z N7
W 1
q > max ( Sna12’ N3, ncLFg,é:]) ,
- Wy 2

Ve 1

1
T < min , —, )
(V 6Nnaa V6Nng 24/nlr

Na12
) (27)
6Nn;,, + 8gzzr1

where &1, & € R are known adjustable positive constants. Fur-
thermore, the compact set Z satisfies the sufficient condition

Z<r, (28)

6 Similar conditions on ¥ and T can be found in PE-based adaptive control in the
presence of bounded or Lipschitz uncertainties (cf. Misovec, 1999 and Narendra &
Annaswamy, 1986).
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where r £ % Sup, yez Iz — y|| denotes the radius of Z. Since the

Lipschitz constant and the bounds on NN approximation error de-
pend on the size of the compact set Z, the constant Z depends on
r; hence, feasibility of the sufficient condition in (28) is not appar-
ent. Algorithm 1 in the Appendix details an iterative gain selection
process in order to ensure satisfaction of the sufficient condition
in (28).

4.3. Main result

Theorem 1. Provided that the sufficient conditions in (27) and
(28) are satisfied and Assumptions 1-3 hold, the controller in (14) and
the update laws in (16)-(18) guarantee that the tracking error is
ultimately bounded, and the error || (t) — w* (¢ (t))|| is ultimately
bounded ast — oo.

Proof. The time derivative of V} is
V. = V'F + VGu + W r='w, - ww,
1- . -
- 5WCTF—]FF—]WC.

Provided the sufficient conditions in (27) are satisfied, (16), (21),

the bounds in (20)-(22), and the facts that V¥F = —V*Gu* —
r(¢, n*) and VG = —2u* R yield

. q 1 - 2 -2

Vo< = llel? = <ne [ Wlw | = 222 ||+ (29)

The inequality in (29) is valid provided Z (t) € Z.
Integrating (29), using the facts that — [HT le(m)||2dt <

. T g .
—Tinfeeim lle(@)|? and — [ [Wo(0)[Pdr < —Tinfeepeesmy
[Wa(z) ||, Lemmas 2 and 3, and the gain conditions in (27) yields

ViZ@t+T),t+T)—-V (Z(),t)

Ny oz | -~ 2 woqT
<——" W tH ——Je®]|?
=——|w.o| - ==t

w- T ~ 2

— % HWa t) H + @107,

providedZ () € Z, Vt € [t,t + T].Thus,V, (Z (t +T),t+T) —
VL (Z (t),t) < 0 provided ||Z (¢)] > /“g—ff andZ (t) € Z, V7 €

[t,t + T]. The bounds on the Lyapunov function in (25) yield
ViZEt+T),t+T) -V, (Z(t),t) < 0provided V, (Z(t),t) >

— mloT) andZ (t) € Z, VTt € [t,t + T].

@11

Since Z (tp) € Z,(29) can be used to conclude that Vi(Z(to), to)

< (. The sufficient condition in (28) ensures that ﬂ” (VL(Z(ty), to)+

(T) < r;hence, Z(t) € Zforallt € [ty, tog + T]. If VL.(Z (to) , to)
@10l

> F,(F) then Z (t) [to, to + T]

o ) € Zforallt €

implies Vi (Z(to +T),to+T) — VL (Z(to),ts) < O; hence,
v ' (VZ (to+T),to + T) +T) < r.Thus, Z(t) € Z for all
t € [to+T, to+ 2T]. Inductively, the system state is bounded such
that sup;cjo.«) I1Z ()|l < r and ultimately bounded’ such that

T
lim sup [|IZ ()] < v~ (w( 20 ) + LT) .
t—00 - W11

7 If the regressor 1 satisfies a stronger u-PE assumption (cf. Loria & Panteley,
2002 and Panteley, Loria, & Teel, 2001), the tracking error and the weight estimation
errors can be shown to be uniformly ultimately bounded.

5. Simulation

Simulations are performed on a two-link manipulator to
demonstrate the ability of the presented technique to approxi-
mately optimally track a desired trajectory. The two link robot ma-
nipulator is modeled using Euler-Lagrange dynamics as

MG + Vinq + Faq + Fs = u, (30)

where ¢ = [q: qz]T and q = [q qz]Tare the angular positions in
radians and the angular velocities in radian/s respectively. In (30),
M e R**? denotes the inertia matrix, and V,, € R?>*? denotes the

p1+2p3c;  p2 +P362]
s

. _— o N
centripetal-Coriolis matrix given by M = [ P2+ P3Cy 5

—p3s2G2 —p3s2 (41 + G2) :
Vin £ [ Pasaly 0 , where c; = cos (q2) , s2 = sin(q2),

p1 = 3.473 kg m?, p, = 0.196 kg m?, and p3 = 0.242 kg m?,
and Fy = diag[5.3, 1.1] Nmsand F;(q) = [8.45tanh (),
2.35tanh (¢2)]" N m are the models for the static and the dynamic
friction, respectively.

The objective is to find a policy u that ensures that the state
X 2 [q1, q2, 41, G2]"tracks the desired trajectory x4 (t) =
[0.5cos (2t), 0.33cos (3t), —sin (2t), — sin (3t)]7, while mini-
mizing the cost [, (e'Qe + u' 1) dt, where Q = diag[10, 10,
2, 2]. Using (2)-(5) and the definitions

T

fA[x3, X4, (M’] (—Vin — Fa) [ﬁﬂ—ﬂ)T] ,
g=[[o. of. [o. o, m].
g+é[[0, o, [o. 0], M(xd)],

ho 2 [xas. Xaao —4%a. —9%a] (31)

the optimal tracking problem can be transformed into the time-
invariant form in (5).

In this effort, the basis chosen for the value function approxi-
mation is a polynomial basis with 23 elements given by

1

o(;)=5[;f G 08 Gl GG Gl i e
S RSt N Sl e oY N Tl Y C N oY M S H e
AN S A I o e T N S T T IR € 7))

The control gains are selected as nq; = 5, 14 = 0.001, 1. = 1.25,
A = 0.001, and v = 0.005, and the initial conditions are x (0) =

[1.8 16 0 o]T, W, (0) = 10 x 15351, W, (0) = 6 x 12351, and
I' (0) = 2000 x I3x23, Where 1,3, is vector of ones. To ensure PE,
a probing signal

255 tanh(Zt)(ZO sin <\/232nt) cos (\/ZOnt)
+65in (18€2t) + 20 cos (40t) cos (21t))
0.01 tanh(Zt)(ZO sin («/132m) cos («/10nt)

~+ 6 sin (8et) + 20 cos (10t) cos (1 1t))

p(t) =

is added to the control signal for the first 30 s of the simulation
(Vamvoudakis & Lewis, 2010).

It is clear from Fig. 1 that the system states are bounded during
the learning phase and the algorithm converges to a stabilizing
controller in the sense that the tracking errors go to zero when
the probing signal is eliminated. Furthermore, Fig. 2 shows that the
weight estimates for the value function and the policy are bounded
and they converge.



R. Kamalapurkar et al. / Automatica 51 (2015) 40-48

System States

—qa (rad)

—q1 (rad/s)
—4 —— ¢ (rad/s)
0 10 20 30 40
Time(s)

Tracking Error

-2
—e; (rad)
-3 —es (rad)
—e3 (rad/s)
4 ——ey (rad/s)
0 10 20 30 40

45

Time(s)

Fig. 1. State and error trajectories with probing signal.
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Fig. 2. Evolution of value function and policy weights.

-3 Hamiltonian From GPOPS
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Fig. 3. Hamiltonian and costate of the numerical solution computed using GPOPS.

The NN weights converge to the following values

We = W, = [83.36 2.37 27.0 2.78 —2.83 0.20 14.13
29.81 18.87 4.11 3.47 6.69 9.71 15.58 4.97 12.42

11.31 3.29 1.19 —1.99 4.55 —0.47 0.56]T. (34)

Note that the last sixteen weights that correspond to the terms
containing the desired trajectories s, ..., {g are non-zero. Thus,
the resulting value function V and the resulting policy u depend
on the desired trajectory, and hence, are time-varying functions
of the tracking error. Since the true weights are unknown, a
direct comparison of the weights in (34) with the true weights is
not possible. Instead, to gauge the performance of the presented
technique, the state and the control trajectories obtained using
the estimated policy are compared with those obtained using
Radau-pseudospectral numerical optimal control computed using
the GPOPS software (Rao et al., 2010). Since an accurate numerical

solution is difficult to obtain for an infinite horizon optimal control
problem, the numerical optimal control problem is solved over a
finite horizon ranging over approximately 5 times the settling time
associated with the slowest state variable. Based on the solution
obtained using the proposed technique, the slowest settling time
is estimated to be approximately 20 s. Thus, to approximate the
infinite horizon solution, the numerical solution is computed over
a 100 s time horizon using 300 collocation points.

As seen in Fig. 3, the Hamiltonian of the numerical solution is
approximately zero. This supports the assertion that the optimal
control problem is time-invariant. Furthermore, since the Hamilto-
nian is close to zero, the numerical solution obtained using GPOPS
is sufficiently accurate as a benchmark to compare against the ADP-
based solution obtained using the proposed technique. Note that
in Fig. 3, the costate variables corresponding to the desired tra-
jectories are nonzero. Since these costate variables represent the
sensitivity of the cost with respect to the desired trajectories, this
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Fig. 4. Control trajectories w (t) obtained from GPOPS and the developed
technique.
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Fig. 5. Tracking error trajectories e (t) obtained from GPOPS and the developed
technique.

further supports the assertion that the optimal value function de-
pends on the desired trajectory, and hence, is a time-varying func-
tion of the tracking error.

Figs. 4 and 5 show the control and the tracking error trajecto-
ries obtained from the developed technique (dashed lines) plotted
alongside the numerical solution obtained using GPOPS (solid
lines). The trajectories obtained using the developed technique are
close to the numerical solution. The inaccuracies are a result of the
facts that the set of basis functions in (32) is not exact, and the pro-
posed method attempts to find the weights that generate the least
total cost for the given set of basis functions. The accuracy of the
approximation can be improved by choosing a more appropriate
set of basis functions, or at an increased computational cost, by
adding more basis functions to the existing set in (32). The total

cost 0]00 (e(®" Qe (t) + 1 (t)" Ry (1)) dt obtained using the nu-

merical solution is found to be 75.42 and the total cost fooo e @)’

Qe (t) + 1 ()T Ry (t))dt obtained using the developed method is
found to be 84.31. Note that from Figs. 4 and 5, it is clear that both
the tracking error and the control converge to zero after approxi-
mately 20 s, and hence, the total cost obtained from the numerical
solution is a good approximation of the infinite horizon cost.

6. Conclusion

An ADP-based approach using the policy evaluation and policy
improvement architecture is presented to approximately solve the
infinite horizon optimal tracking problem for control affine non-
linear systems with quadratic cost. The problem is solved by trans-
forming the system to convert the tracking problem that has a
time-varying value function, into a time-invariant optimal control

problem. The ultimately bounded tracking and estimation result
was established using Lyapunov analysis for nonautonomous sys-
tems. Simulations are performed to demonstrate the applicability
and the effectiveness of the developed method. The accuracy of the
approximation depends on the choice of basis functions and the re-
sult hinges on the system states being PE. Furthermore, computa-
tion of the desired control in (2) requires exact model knowledge.

A solution to the tracking problem without using the desired
control while employing a multi-layer neural network that can
approximate the basis functions remains a future challenge. In
adaptive control, it is generally possible to formulate the control
problem such that PE along the desired trajectory is sufficient to
achieve parameter convergence. In the ADP-based tracking prob-
lem, PE along the desired trajectory would be sufficient to achieve
parameter convergence if the BE can be formulated in terms of the
desired trajectories. Achieving such a formulation is not trivial, and
is a subject for future research.

Appendix

The proofs for the technical lemmas and the gain selection al-
gorithm are detailed in this section.

Algorithm for selection of NN architecture and learning gains

Since the gains depend on the initial conditions and on the
compact sets used for function approximation and the Lipschitz
bounds, an iterative algorithm is developed to select the gains. In
Algorithm 1, the notation {z }; for any parameter @ denotes the
value of w computed in the ith iteration. Algorithm 1 ensures sat-
isfaction of the sufficient condition in (28).

Algorithm 1 Gain Selection

First iteration:

Given Zy € Rxq such that [|Z(tp)|| < Zo, let Z; = {0 € R™"2INh |
loll < Bivi~'(¥i(Zy))} for some B; > 1.Using Z;, compute the
bounds in (22) and (26), and select the gains according to (27). If
{Z}, < Bro ' @i (I1Zo]))) . set Z = Z; and terminate.

Second iteration:

If{Z}); > v '@(Zl), let Z; 2 {o € RN | o <

B2{Z}1}. Using Z,, compute the bounds in (22) and (26) and select
the gains according to (27). If {Z}, < {Z},,set Z = Z, and
terminate.

Third iteration:

If{Z}, > {Z}, increase the number of NN neurons to {N}; to yield
alower function approximation error {€'}, such that {L¢}, {¢'}, <

{Le}4 {E’}r The increase in the number of NN neurons ensures that
{t}3 < {t};. Furthermore, the assumption that the PE interval {T},
is small enough such that {Lr}, {T}; < {T}; {Lr}; and {N}; {T}; <

(T}, {N}, ensures that {%3}3 < {%[1)}1 and hence, {Z}, <

B2{Z},.Set Z = {0 € R™2WNs | |jo|| < B, {Z},} and terminate.

Proof of Lemma 1

The following supporting technical lemma is used to prove
Lemma 1.

Lemma4. Let D C R" contain the origin and let & : D X R>g —
R be positive definite. If t —— & (x, t) is uniformly bounded for
allx € Dand if x —> & (x, t) is continuous, uniformly in t, then &
is decrescent in D.
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Proof. Since t — & (x, t) is uniformly bounded, for all x € D,
SUP;ep., {& (%, )} exists and is unique for all x € D. Let the
function o : D — Rxg be defined as

a(x) 2 sup {& (x,0)}. (35)

teR>g

Sincex — & (x, t) is continuous, uniformly int, Ve > 0,3¢ (x) >
0 such that Vy € D,

dDXRZQ ((xv t) ) (.V, t)) < g (X)
— d]RZO (E (X7 t) ) g (ya t)) <§g, (36)

where dy, (-, -) denotes the standard Euclidean metric on the met-
ric space M. By the definition of dy (-, ), dpxr., (X, t), (¥, 1)) =
dp (x,y). Using (36), -

dpx,y) <c() = [Ex1)—-E WD <e. (37)

Given the fact that = is positive, (37)implies & (x, t) < Z (y, t)+¢
and & (y,t) < & (x, t)+¢& which from (35)implies @ (x) < o (y¥)+
eanda (y) < «a (x)+e¢,and hence, from (37),dp (x,y) < ¢ (x) —
lo (x) —a (y)| < e.Since Z is positive definite, (35) can be used
to conclude « (0) = 0. Thus, Z is bounded above by a continuous
positive definite function; hence, £ is decrescentin D. O

Based on the definitions in (8)-(7) and (23), V;* (e, t) > 0, Vt €
R and Ve € B, \ {0}. The optimal value function V* ([0, xg]T) is

the cost incurred when starting with e = 0 and following the op-
timal policy thereafter for an arbitrary desired trajectory x4. Sub-
stituting x (t5) = x4 (to), 1 (to) = 0 and (2) in (4) indicates that
é (to) = 0. Thus, when starting from e = 0, a policy that is identi-
cally zero satisfies the dynamic constraints in (4). Furthermore, the

optimal cost is V* ([0 Xl (to)]T) = 0, Vx4 (to) which, from (23),

implies (24b). Since the optimal value function V;* is strictly posi-
tive everywhere but ate = 0 and is zero ate = 0, V;" is a positive
definite function. Hence, Lemma 4.3 in Khalil (2002) can be invoked
to conclude that there exists a class X function v : [0, a] — Rs¢
such thatv (le]]) < V{* (e, t), Vt € Rxg and Ve € B,.
Admissibility of the optimal policy implies that V* (¢) is boun-
ded over all compact subsets K C R?". Since the desired trajectory
is bounded, t —— V}* (e, t) is uniformly bounded for all e € B,.
To establish that e — V}* (e, t) is continuous, uniformly in ¢, let
Xe, C R" be a compact set containing e,. Since x4 is bounded,
X4 € Xxg Where x, C R"is compact. Since V* : R?" — Ry
is continuous, and xe, X xx, C R?" is compact, V* is uniformly
continuous on e, X xx,. Thus, Ve > 0, 3¢ > 0, such that V([eg,
TT [T 4 TT T ,T9T 1T 1T
Xq's (€1, X3]") € Xeo X Xngr Qyeg x 1y ([€05 X417, [€7, X4]") < ¢ =
dr(V*([el, x117), V*([e], x]17)) < e. Thus, for each e, € R", there
exists a ¢ > 0 independent of x4, that establishes the continuity
of e —> V*([e’,x!]") at e,. Thus, e —> V*([e', x]]") is con-
tinuous, uniformly in x4, and hence, using (23) e — V" (e, t) is
continuous, uniformly in t. Using Lemma 4 and (24a) and (24b),
there exists a positive definite function o : R" — R such that
V(e t) <a(e), V(e t) € R" x R>o. Lemma 4.3 in Khalil (2002)
indicates that there exists a class X functionv : [0, a] - R such
that @ (e) < v (|le|), which implies (24c).
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