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a b s t r a c t

Adaptive dynamic programming has been investigated and used as a method to approximately solve
optimal regulation problems. However, the extension of this technique to optimal tracking problems for
continuous-time nonlinear systems has remained a non-trivial open problem. The control development
in this paper guarantees ultimately bounded tracking of a desired trajectory, while also ensuring that the
enacted controller approximates the optimal controller.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Reinforcement learning (RL) is a concept that can be used to en-
able an agent to learn optimal policies from interaction with the
environment. The objective of the agent is to learn the policy that
maximizes or minimizes a cumulative long term reward. Almost
all RL algorithms use some form of generalized policy iteration
(GPI). GPI is a set of two simultaneous interacting processes, pol-
icy evaluation and policy improvement. Starting with an estimate
of the state value function and an admissible policy, policy eval-
uation makes the estimate consistent with the policy and policy
improvement makes the policy greedy with respect to the value
function. These algorithms exploit the fact that the optimal value
function satisfies Bellman’s principle of optimality (Kirk, 2004; Sut-
ton & Barto, 1998).
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When applied to continuous-time systems the principle of
optimality leads to the Hamilton–Jacobi–Bellman (HJB) equation
which is the continuous-time counterpart of the Bellman equa-
tion (Doya, 2000). Similar to discrete-time adaptive dynamic pro-
gramming (ADP), continuous-time ADP approaches aim at finding
approximate solutions to the HJB equation. Various methods to
solve this problem are proposed in Abu-Khalaf and Lewis (2002),
Beard, Saridis, andWen (1997), Bhasin et al. (2013), Jiang and Jiang
(2012), Vamvoudakis and Lewis (2010), Vrabie and Lewis (2009)
and Zhang, Luo, and Liu (2009) and the references therein. An in-
finite horizon regulation problem with a quadratic cost function is
the most common problem considered in ADP literature. For these
problems, function approximation techniques can be used to ap-
proximate the value function because it is time-invariant.

Approximation techniques like neural networks (NNs) are com-
monly used in ADP literature for value function approximation.
ADP-based approaches are presented in results such as (Dierks &
Jagannathan, 2010; Zhang, Cui, Zhang, & Luo, 2011) to address the
tracking problem for continuous-time systems, where the value
function, and the controller presented are time-varying functions
of the tracking error. However, for the infinite horizon optimal con-
trol problem, time does not lie on a compact set, and NNs can only
approximate functions on a compact domain. Thus, it is unclear
how a NN with the tracking error as an input can approximate the
time-varying value function and controller.

For discrete-time systems, several approaches have been de-
veloped to address the tracking problem. Park, Choi, and Lee
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(1996) use generalized back-propagation through time to solve a
finite horizon tracking problem that involves offline training of
NNs. An ADP-based approach is presented in Dierks and Jagan-
nathan (2009) to solve an infinite horizon optimal tracking prob-
lem where the desired trajectory is assumed to depend on the
system states. Greedy heuristic dynamic programming based algo-
rithms are presented in results such as (Luo & Liang, 2011; Wang,
Liu, & Wei, 2012; Zhang, Wei, & Luo, 2008) which transform the
nonautonomous system into an autonomous system, and approx-
imate convergence of the sequence of value functions to the opti-
mal value function is established. However, these results lack an
accompanying stability analysis.

In this result, the tracking error and the desired trajectory both
serve as inputs to the NN. This makes the developed controller
fundamentally different from previous results, in the sense that
a different HJB equation must be solved and its solution, i.e. the
feedback component of the controller, is a time-varying function
of the tracking error. In particular, this paper addresses the techni-
cal obstacles that result from the time-varying nature of the opti-
mal control problemby including the partial derivative of the value
function with respect to the desired trajectory in the HJB equation,
and by using a system transformation to convert the problem into
a time-invariant optimal control problem in such a way that the
resulting value function is a time-invariant function of the trans-
formed states, and hence, lends itself to approximation using a NN.
A Lyapunov-based analysis is used to prove ultimately bounded
tracking and that the enacted controller approximates the optimal
controller. Simulation results are presented to demonstrate the ap-
plicability of the presented technique. To gauge the performance of
the proposed method, a comparison with a numerical optimal so-
lution is presented.

For notational brevity, unless otherwise specified, the domain
of all the functions is assumed to be R≥0. Furthermore, time-
dependence is suppressed while denoting trajectories of dynami-
cal systems. For example, the trajectory x : R≥0 → Rn is defined by
abuse of notation as x ∈ Rn, and referred to as x instead of x (t), and
unless otherwise specified, an equation of the form f + h (y, t) =

g (x) is interpreted as f (t)+h (y (t) , t) = g (x (t)) for all t ∈ R≥0.

2. Formulation of time-invariant optimal control problem

Consider a class of nonlinear control affine systems

ẋ = f (x)+ g (x) u,

where x ∈ Rn is the state, and u ∈ Rm is the control input. The func-
tions f : Rn

→ Rn and g : Rn
→ Rn×m are locally Lipschitz and

f (0) = 0. The control objective is to track a bounded continuously
differentiable signal xd ∈ Rn. To quantify this objective, a tracking
error is defined as e , x−xd. The open-loop tracking error dynam-
ics can then be expressed as

ė = f (x)+ g (x) u − ẋd. (1)

The following assumptions are made to facilitate the formulation
of an approximate optimal tracking controller.

Assumption 1. The function g is bounded, thematrix g (x) has full
column rank for all x ∈ Rn, and the function g+

: Rn
→ Rm×n

defined as g+ ,

gTg

−1 gT is bounded and locally Lipschitz.

Assumption 2. The desired trajectory is bounded such that ∥xd∥ ≤

d ∈ R, and there exists a locally Lipschitz function hd : Rn
→

Rn such that ẋd = hd (xd) and g (xd) g+ (xd) (hd (xd)− f (xd)) =

hd (xd)− f (xd) , ∀t ∈ R≥t0 .
The steady-state control policy ud : Rn
→ Rm corresponding to

the desired trajectory xd is

ud (xd) = g+

d (hd (xd)− fd) , (2)

where g+

d , g+ (xd) and fd , f (xd). To transform the time-vary-
ing optimal control problem into a time-invariant optimal control
problem, a new concatenated state ζ ∈ R2n is defined as (Zhang
et al., 2008)

ζ ,

eT , xTd

T
. (3)

Based on (1) and Assumption 2, the time derivative of (3) can be
expressed as

ζ̇ = F (ζ )+ G (ζ ) µ, (4)

where the functions F : R2n
→ R2n, G : R2n

→ R2n×m, and the
control µ ∈ Rm are defined as

F (ζ ) ,


f (e + xd)− hd (xd)+ g (e + xd) ud (xd)

hd (xd)


,

G (ζ ) ,


g (e + xd)

0


, µ , u − ud. (5)

Local Lipschitz continuity of f and g , the fact that f (0) = 0, and
Assumption 2 imply that F (0) = 0 and F is locally Lipschitz.

The objective of the optimal control problem is to design a pol-
icy µ∗

: R2n
→ Rm

∈ Ψ such that the control law µ = µ∗ (ζ )
minimizes the cost functional

J (ζ , µ) ,


∞

0
r (ζ (ρ) , µ (ρ)) dρ,

subject to the dynamic constraints in (4), where Ψ is the set of ad-
missible policies (Beard et al., 1997), and r : R2n

× Rm
→ R≥0 is

the local cost defined as

r (ζ , µ) , ζ TQ ζ + µTRµ. (6)

In (6), R ∈ Rm×m is a positive definite symmetric matrix of con-
stants, and Q ∈ R2n×2n is defined as

Q ,


Q 0n×n

0n×n 0n×n


, (7)

where Q ∈ Rn×n is a positive definite symmetric matrix of con-
stants with the minimum eigenvalue q ∈ R>0, and 0n×n ∈ Rn×n is
a matrix of zeros. For brevity of notation, let (·)′ denote ∂ (·) /∂ζ .

3. Approximate optimal solution

Assuming that a minimizing policy exists and that the optimal
value function V ∗

: R2n
→ R≥0 defined as

V ∗ (ζ ) , min
µ(τ)|τ∈R≥t

∞
t

r (φµ (τ ; t, ζ ) , µ (τ)) dτ (8)

is continuously differentiable, the HJB equation for the optimal
control problem can be written as

H∗
= V ∗′ (ζ )


F (ζ )+ G (ζ ) µ∗ (ζ )


+ r


ζ , µ∗ (ζ )


= 0, (9)

for all ζ , with the boundary condition V ∗ (0) = 0, where H∗ de-
notes the Hamiltonian, and µ∗

: R2n
→ Rm denotes the optimal

policy. In (8) φµ (τ ; t, ζ ) denotes the trajectory of (4) under the
controller µ starting at initial time t and initial state ζ . For the lo-
cal cost in (6) and the dynamics in (4), the optimal policy can be
obtained in closed-form as (Kirk, 2004)

µ∗ (ζ ) = −
1
2
R−1GT (ζ )


V ∗′ (ζ )

T
. (10)
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The value function V ∗ can be represented using a NN with N neu-
rons as

V ∗ (ζ ) = W Tσ (ζ )+ ϵ (ζ ) , (11)

whereW ∈ RN is the constant ideal weight matrix bounded above
by a known positive constant W̄ ∈ R in the sense that ∥W∥ ≤ W̄ ,
σ : R2n

→ RN is a bounded continuously differentiable nonlinear
activation function, and ϵ : R2n

→ R is the function reconstruc-
tion error (Hornik, Stinchcombe, & White, 1990; Lewis, Selmic, &
Campos, 2002).

Using (10) and (11) the optimal policy can be represented as

µ∗ (ζ ) = −
1
2
R−1GT (ζ )


σ ′T (ζ )W + ϵ′T (ζ )


. (12)

Based on (11) and (12), theNNapproximations to the optimal value
function and the optimal policy are given by

V̂

ζ , Ŵc


= Ŵ T

c σ (ζ ) ,

µ

ζ , Ŵa


= −

1
2
R−1GT (ζ ) σ ′T (ζ ) Ŵa, (13)

where Ŵc ∈ RN and Ŵa ∈ RN are estimates of the ideal neural net-
work weightsW . The use of two separate sets of weight estimates
Ŵa and Ŵc for W is motivated by the fact that the Bellman error
(BE) is linear with respect to the value function weight estimates
and nonlinear with respect to the policy weight estimates. Use of
a separate set of weight estimates for the value function facilitates
least squares-based adaptive updates.

The controller is obtained from (2), (5), and (13) as

u = −
1
2
R−1GT (ζ ) σ ′T (ζ ) Ŵa + g+

d (hd (xd)− fd) . (14)

Using the approximations µ and V̂ for µ∗ and V ∗ in (9), respec-
tively, the error between the approximate and the optimal Hamil-
tonian, called the BE δ ∈ R, is given in a measurable form by

δ , V̂ ′


ζ , Ŵc


ζ̇ + r


ζ , µ


ζ , Ŵa


. (15)

The value function weights are updated to minimize
 t
0 δ

2 (ρ) dρ
using a normalized least squares update law1 with an exponential
forgetting factor as (Ioannou & Sun, 1996)

˙̂W c = −ηcΓ
ω

1 + νωTΓω
δ, (16)

Γ̇ = −ηc


−λΓ + Γ

ωωT

1 + νωTΓω
Γ


, (17)

where ν, ηc ∈ R are constant positive adaptation gains,ω : R≥0 →

RN is defined as ω , σ ′ (ζ ) ζ̇ , and λ ∈ (0, 1) is the constant for-
getting factor for the estimation gain matrix Γ ∈ RN×N . The policy
weights are updated to follow the critic weights2 as

·

Ŵ a = −ηa1


Ŵa − Ŵc


− ηa2Ŵa, (18)

where ηa1, ηa2 ∈ R are constant positive adaptation gains. The fol-
lowing assumption facilitates the stability analysis using PE.

1 The least-squares approach is motivated by faster convergence. With minor
modifications to the stability analysis, the result can also be established for a
gradient descent update law.
2 The least-squares approach cannot be used to update the policy weights

because the BE is a nonlinear function of the policy weights.
Assumption 3. The regressor ψ : R≥0 → RN defined as ψ ,
ω√

1+νωTΓω
is persistently exciting (PE). Thus, there exist T , ψ > 0

such that ψ I ≤
 t+T
t ψ (τ)ψ (τ)T dτ .3

Using Assumption 3 and Corollary 4.3.2 in Ioannou and Sun (1996)
it can be concluded that

ϕIN×N ≤ Γ ≤ ϕIN×N , ∀t ∈ R≥0 (19)

where ϕ, ϕ ∈ R are constants such that 0 < ϕ < ϕ.4 Based on
(19), the regressor vector can be bounded as

∥ψ∥ ≤
1

√
νϕ
, ∀t ∈ R≥0. (20)

For notational brevity, state-dependence of the functions hd, F , G,
V ∗, µ∗, σ , and ϵ is suppressed hereafter.

Using (9), (15), and (16), an unmeasurable form of the BE can be
written as

δ = −W̃ T
c ω +

1
4
W̃ T

a Gσ W̃a +
1
4
ϵ′Gϵ′T

+
1
2
W Tσ ′Gϵ′T

− ϵ′F , (21)

where G , GR−1GT and Gσ , σ ′GR−1GTσ ′T . The weight estimation
errors for the value function and the policy are defined as W̃c ,

W − Ŵc and W̃a , W − Ŵa, respectively.

4. Stability analysis

Before stating the main result of the paper, three supplemen-
tary technical lemmas are stated. To facilitate the discussion, let
Y ∈ R2n+2N be a compact set, and let Z , Y ∩ Rn+2N . Using
the universal approximation property of NNs, on the compact set
Y ∩ R2n, the NN approximation errors can be bounded such that
sup |ϵ (ζ )| ≤ ϵ̄ and sup

ϵ′ (ζ )
 ≤ ϵ̄′, where ϵ̄ ∈ R and ϵ̄′

∈ R
are positive constants, and there exists a positive constant LF ∈ R
such that5 sup ∥F (ζ )∥ ≤ LF ∥ζ∥. Using Assumptions 1 and 2 the
following bounds are developed on the compact set Y ∩ R2n to aid
the subsequent stability analysis:ϵ′

4
+

W Tσ ′

2


Gϵ′T

+ ϵ̄′LF ∥xd∥ ≤ ι1, ∥Gσ∥ ≤ ι2,ϵ′Gϵ′T
 ≤ ι3,

12W TGσ +
1
2
ϵ′Gσ ′T

 ≤ ι4,14ϵ′Gϵ′T
+

1
2
W Tσ ′Gϵ′T

 ≤ ι5, (22)

where ι1, ι2, ι3, ι4, ι5 ∈ R are positive constants.

4.1. Supporting lemmas

The contribution in the previous section was the development
of a transformation that enables the optimal policy and the optimal

3 The regressor is defined here as a trajectory indexed by time. It should be noted
that different initial conditions result in different regressor trajectories; hence, the
constants T and ψ depend on the initial values of ζ and Ŵa . Hence, the final result
is not uniform in the initial conditions.
4 Since the evolution of ψ is dependent on the initial values of ζ and Ŵa , the

constants ϕ and ϕ depend on the initial values of ζ and Ŵa .
5 Instead of using the fact that locally Lipschitz functions on compact sets are

Lipschitz, it is possible to bound the function F as ∥F (ζ )∥ ≤ ρ (∥ζ∥) ∥ζ∥, where
ρ : R≥0 → R≥0 is non-decreasing. This approach is feasible and results in
additional gain conditions.
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value function to be expressed as a time-invariant function of ζ .
The use of this transformation presents a challenge in the sense
that the optimal value function, which is used as the Lyapunov
function for the stability analysis, is not a positive definite function
of ζ , because the matrix Q is positive semi-definite. In this section,
this technical obstacle is addressed by exploiting the fact that the
time-invariant optimal value function V ∗

: R2n
→ R can be

interpreted as a time-varying map V ∗
t : Rn

× R≥0 → R, such that

V ∗

t (e, t) = V ∗


e

xd (t)


(23)

for all e ∈ Rn and for all t ∈ R≥0. Specifically, the time-invariant
form facilitates the development of the approximate optimal pol-
icy, whereas the equivalent time-varying form can be shown to be
a positive definite and decrescent function of the tracking error. In
the following, Lemma 1 is used to prove that V ∗

t : Rn
×R≥0 → R is

positive definite and decrescent, and hence, a candidate Lyapunov
function.

Lemma 1. Let Ba denote a closed ball around the origin with the
radius a ∈ R>0. The optimal value function V ∗

t : Rn
× R≥0 → R

satisfies the following properties

V ∗

t (e, t) ≥ v (∥e∥) , (24a)

V ∗

t (0, t) = 0, (24b)

V ∗

t (e, t) ≤ v (∥e∥) , (24c)

∀t ∈ R≥0 and∀e ∈ Ba where v : [0, a] → R≥0 and v : [0, a] → R≥0
are class K functions.

Proof. See Appendix.

Lemma 2. Let Z ,

eT W̃ T

c W̃ T
a

T
, and suppose that Z (τ ) ∈ Z,

for all τ ∈ [t, t + T ]. Then, the NN weights and the tracking errors
satisfy

− inf
τ∈[t,t+T ]

∥e (τ )∥2

≤ −ϖ0 sup
τ∈[t,t+T ]

∥e (τ )∥2
+ϖ1T 2 sup

τ∈[t,t+T ]

W̃a (τ )

2 +ϖ2

− inf
τ∈[t,t+T ]

W̃a (τ )

2 ≤ −ϖ3 sup
τ∈[t,t+T ]

W̃a (τ )

2
+ϖ4 inf

τ∈[t,t+T ]

W̃c (τ )

2 +ϖ5 sup
τ∈[t,t+T ]

∥e (τ )∥2
+ϖ6,

where

ϖ0 =


1 − 6nT 2L2F


2

, ϖ1 =
3n
4

sup
t

gR−1GTσ ′T
2 ,

ϖ2 =

3n2T 2

dLF + sup

t

gg+

d (hd − fd)−
1
2gR

−1GTσ ′TW − hd
2

n
,

ϖ3 =


1 − 6N (ηa1 + ηa2)

2 T 2


2
,

ϖ4 =
6Nη2a1T

2
1 − 6N (ηcϕT )2 /


νϕ
2 ,

ϖ5 =
18

ηa1Nηcϕϵ̄′LFT 2

2
νϕ


1 − 6N (ηcϕT )2 /


νϕ
2 ,

ϖ6 =
18

Nηa1ηcϕ


ϵ̄′LFd + ι5


T 2
2

νϕ


1 − 6N (ηcϕT )2 /


νϕ
2 + 3N


ηa2WT

2
.

Proof. The proof is omitted due to space constraints, and is avail-
able in Kamalapurkar, Dinh, Bhasin, and Dixon (2013).

Lemma 3. Let Z ,

eT W̃ T

c W̃ T
a

T
, and suppose that Z (τ ) ∈ Z,

for all τ ∈ [t, t + T ]. Then, the critic weights satisfy

−

 t+T

t

W̃ T
c ψ

2 dτ ≤ −ψϖ7

W̃c

2 +ϖ8

 t+T

t
∥e∥2 dτ

+ 3ι22

 t+T

t

W̃a (σ )

4 dσ +ϖ9T ,

where ϖ7 =
ν2ϕ2

2

ν2ϕ2+η2c ϕ

2T2
 , ϖ8 = 3ϵ̄′2L2F , and ϖ9 = 2(ι25 +

ϵ̄′2L2Fd
2).

Proof. The proof is omitted due to space constraints, and is
available in Kamalapurkar et al. (2013).

4.2. Gain conditions and gain selection

The following section details sufficient gain conditions derived
based on a stability analysis performed using the candidate
Lyapunov function VL : Rn+2N

× R≥0 → R defined as VL (Z, t) ,

V ∗
t (e, t)+

1
2W̃

T
c Γ

−1W̃c +
1
2W̃

T
a W̃a. Using Lemma 1 and (19),

vl (∥Z∥) ≤ VL (Z, t) ≤ vl (∥Z∥) , (25)

∀Z ∈ Bb,∀t ∈ R≥0, where vl : [0, b] → R≥0 and vl : [0, b] → R≥0

are class K functions, and Bb ⊂ Rn+2N denotes a ball of radius
b ∈ R>0 around the origin, containing Z.
To facilitate the discussion, defineηa12 ,ηa1+ηa2, Z , [eT W̃ T

c W̃ T
a ]

T,

ι ,
(ηa2W+ι4)

2

ηa12
+ 2ηc (ι1)2 +

1
4 ι3, ϖ10 ,

ϖ6ηa12+2ϖ2q+ηcϖ9
8 + ι,

and ϖ11 , 1
16 min(ηcψϖ7, 2ϖ0qT ,ϖ3ηa12T ). Let Z0 ∈ R≥0

denote a known constant bound on the initial condition such that
∥Z (t0)∥ ≤ Z0, and let

Z , vl
−1


vl


max


Z0,


ϖ10T
ϖ11


+ ιT


. (26)

The sufficient gain conditions for the subsequent Theorem 1 are
given by6

ηa12 > max


ηa1ξ2 +

ηc ι2

4


Z
νϕ
, 3ηc ι22Z


,

ξ1 > 2ϵ̄′LF , ηc >
ηa1

λγ ξ2
, ψ >

2ϖ4ηa12

ηcϖ7
T ,

q > max

ϖ5ηa12

ϖ0
,
1
2
ηcϖ8, ηcLF ϵ̄′ξ1


,

T < min


1

√
6Nηa12

,
νϕ

√
6Nηcϕ

,
1

2
√
nLF

,
ηa12

6Nη3a12 + 8qϖ1


, (27)

where ξ1, ξ2 ∈ R are known adjustable positive constants. Fur-
thermore, the compact set Z satisfies the sufficient condition

Z ≤ r, (28)

6 Similar conditions onψ and T can be found in PE-based adaptive control in the
presence of bounded or Lipschitz uncertainties (cf. Misovec, 1999 and Narendra &
Annaswamy, 1986).
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where r , 1
2 supz,y∈Z ∥z − y∥ denotes the radius of Z. Since the

Lipschitz constant and the bounds on NN approximation error de-
pend on the size of the compact set Z, the constant Z depends on
r; hence, feasibility of the sufficient condition in (28) is not appar-
ent. Algorithm 1 in the Appendix details an iterative gain selection
process in order to ensure satisfaction of the sufficient condition
in (28).

4.3. Main result

Theorem 1. Provided that the sufficient conditions in (27) and
(28) are satisfied and Assumptions 1–3 hold, the controller in (14) and
the update laws in (16)–(18) guarantee that the tracking error is
ultimately bounded, and the error ∥µ (t)− µ∗ (ζ (t))∥ is ultimately
bounded as t → ∞.

Proof. The time derivative of VL is

V̇L = V ∗′F + V ∗′Gµ+ W̃ T
c Γ

−1 ˙̃W c − W̃ T
a

˙̂W a

−
1
2
W̃ T

c Γ
−1Γ̇ Γ −1W̃c .

Provided the sufficient conditions in (27) are satisfied, (16), (21),
the bounds in (20)–(22), and the facts that V ∗′F = −V ∗′Gµ∗

−

r (ζ , µ∗) and V ∗′G = −2µ∗TR yield

V̇L ≤ −
q

2
∥e∥2

−
1
8
ηc

W̃ T
c ψ

2 −
ηa12

4

W̃a

2 + ι. (29)

The inequality in (29) is valid provided Z (t) ∈ Z.
Integrating (29), using the facts that −

 t+T
t ∥e(τ )∥2dτ ≤

−T infτ∈[t,t+T ] ∥e(τ )∥2 and −
 t+T
t ∥W̃a(τ )∥

2dτ ≤ −T infτ∈[t,t+T ]

∥W̃a(τ )∥
2, Lemmas 2 and 3, and the gain conditions in (27) yields

VL (Z (t + T ) , t + T )− VL (Z (t) , t)

≤ −
ηcψϖ7

16

W̃c (t)
2 −

ϖ0qT

8
∥e (t)∥2

−
ϖ3ηa12T

16

W̃a (t)
2 +ϖ10T ,

provided Z (τ ) ∈ Z, ∀τ ∈ [t, t + T ]. Thus, VL (Z (t + T ) , t + T )−
VL (Z (t) , t) < 0 provided ∥Z (t)∥ >


ϖ10T
ϖ11

and Z (τ ) ∈ Z, ∀τ ∈

[t, t + T ]. The bounds on the Lyapunov function in (25) yield
VL (Z (t + T ) , t + T ) − VL (Z (t) , t) < 0 provided VL (Z (t) , t) >
vl


ϖ10T
ϖ11


and Z (τ ) ∈ Z, ∀τ ∈ [t, t + T ].

Since Z (t0) ∈ Z, (29) can be used to conclude that V̇L(Z(t0), t0)
≤ ι. The sufficient condition in (28) ensures thatvl−1(VL(Z(t0), t0)+
ιT ) ≤ r; hence, Z (t) ∈ Z for all t ∈ [t0, t0 + T ]. If VL(Z (t0) , t0)
> vl


ϖ10T
ϖ11


, then Z (t) ∈ Z for all t ∈ [t0, t0 + T ]

implies VL (Z (t0 + T ) , t0 + T ) − VL (Z (t0) , t0) < 0; hence,
vl

−1(VL(Z (t0 + T ) , t0 + T ) + ιT ) ≤ r . Thus, Z (t) ∈ Z for all
t ∈ [t0 + T , t0 +2T ]. Inductively, the system state is bounded such
that supt∈[0,∞) ∥Z (t)∥ ≤ r and ultimately bounded7 such that

lim sup
t→∞

∥Z (t)∥ ≤ vl
−1


vl


ϖ10T
ϖ11


+ ιT


.

7 If the regressor ψ satisfies a stronger u-PE assumption (cf. Loría & Panteley,
2002 and Panteley, Loria, & Teel, 2001), the tracking error and theweight estimation
errors can be shown to be uniformly ultimately bounded.
5. Simulation

Simulations are performed on a two-link manipulator to
demonstrate the ability of the presented technique to approxi-
mately optimally track a desired trajectory. The two link robotma-
nipulator is modeled using Euler–Lagrange dynamics as

Mq̈ + Vmq̇ + Fdq̇ + Fs = u, (30)

where q =

q1 q2

T and q̇ =

q̇1 q̇2

Tare the angular positions in
radians and the angular velocities in radian/s respectively. In (30),
M ∈ R2×2 denotes the inertia matrix, and Vm ∈ R2×2 denotes the
centripetal–Coriolis matrix given by M ,


p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2


,

Vm ,

−p3s2q̇2 −p3s2 (q̇1 + q̇2)
p3s2q̇1 0


, where c2 = cos (q2) , s2 = sin (q2) ,

p1 = 3.473 kg m2, p2 = 0.196 kg m2, and p3 = 0.242 kg m2,
and Fd = diag


5.3, 1.1


N m s and Fs (q̇) = [8.45 tanh (q̇1) ,

2.35 tanh (q̇2)]T Nm are the models for the static and the dynamic
friction, respectively.

The objective is to find a policy µ that ensures that the state
x , [q1, q2, q̇1, q̇2]T tracks the desired trajectory xd (t) =

[0.5 cos (2t) , 0.33 cos (3t) , − sin (2t) , − sin (3t)]T , while mini-
mizing the cost


∞

0


eTQe + µTµ


dt , where Q = diag[10, 10,

2, 2]. Using (2)–(5) and the definitions

f ,


x3, x4,


M−1 (−Vm − Fd)


x3
x4


− Fs

TT
,

g ,

0, 0

T
,

0, 0

T
,

M−1TT ,

g+

d ,

0, 0

T
,

0, 0

T
, M (xd)


,

hd ,

xd3, xd4, −4xd1, −9xd2

T
, (31)

the optimal tracking problem can be transformed into the time-
invariant form in (5).

In this effort, the basis chosen for the value function approxi-
mation is a polynomial basis with 23 elements given by

σ(ζ ) =
1
2


ζ 2
1 ζ 2

2 ζ1ζ3 ζ1ζ4 ζ2ζ3 ζ2ζ4 ζ 2
1 ζ

2
2 ζ 2

1 ζ
2
5

ζ 2
1 ζ

2
6 ζ 2

1 ζ
2
7 ζ 2

1 ζ
2
8 ζ 2

2 ζ
2
5 ζ 2

2 ζ
2
6 ζ 2

2 ζ
2
7 ζ 2

2 ζ
2
8 ζ 2

3 ζ
2
5

ζ 2
3 ζ

2
6 ζ 2

3 ζ
2
7 ζ 2

3 ζ
2
8 ζ 2

4 ζ
2
5 ζ 2

4 ζ
2
6 ζ 2

4 ζ
2
7 ζ 2

4 ζ
2
8

T
. (32)

The control gains are selected asηa1 = 5, ηa2 = 0.001, ηc = 1.25,
λ = 0.001, and ν = 0.005, and the initial conditions are x (0) =
1.8 1.6 0 0

T , Ŵc (0) = 10×123×1, Ŵa (0) = 6×123×1, and
Γ (0) = 2000× I23×23, where 123×1 is vector of ones. To ensure PE,
a probing signal

p (t) =


2.55 tanh(2t)


20 sin

√
232π t


cos

√
20π t


+ 6 sin


18e2t


+ 20 cos (40t) cos (21t)


0.01 tanh(2t)


20 sin

√
132π t


cos

√
10π t


+ 6 sin (8et)+ 20 cos (10t) cos (11t)



 (33)

is added to the control signal for the first 30 s of the simulation
(Vamvoudakis & Lewis, 2010).

It is clear from Fig. 1 that the system states are bounded during
the learning phase and the algorithm converges to a stabilizing
controller in the sense that the tracking errors go to zero when
the probing signal is eliminated. Furthermore, Fig. 2 shows that the
weight estimates for the value function and the policy are bounded
and they converge.
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Fig. 1. State and error trajectories with probing signal.
Fig. 2. Evolution of value function and policy weights.
Fig. 3. Hamiltonian and costate of the numerical solution computed using GPOPS.
The NN weights converge to the following values

Ŵc = Ŵa =

83.36 2.37 27.0 2.78 −2.83 0.20 14.13

29.81 18.87 4.11 3.47 6.69 9.71 15.58 4.97 12.42

11.31 3.29 1.19 −1.99 4.55 −0.47 0.56
T
. (34)

Note that the last sixteen weights that correspond to the terms
containing the desired trajectories ζ5, . . . , ζ8 are non-zero. Thus,
the resulting value function V and the resulting policy µ depend
on the desired trajectory, and hence, are time-varying functions
of the tracking error. Since the true weights are unknown, a
direct comparison of the weights in (34) with the true weights is
not possible. Instead, to gauge the performance of the presented
technique, the state and the control trajectories obtained using
the estimated policy are compared with those obtained using
Radau-pseudospectral numerical optimal control computed using
the GPOPS software (Rao et al., 2010). Since an accurate numerical
solution is difficult to obtain for an infinite horizon optimal control
problem, the numerical optimal control problem is solved over a
finite horizon ranging over approximately 5 times the settling time
associated with the slowest state variable. Based on the solution
obtained using the proposed technique, the slowest settling time
is estimated to be approximately 20 s. Thus, to approximate the
infinite horizon solution, the numerical solution is computed over
a 100 s time horizon using 300 collocation points.

As seen in Fig. 3, the Hamiltonian of the numerical solution is
approximately zero. This supports the assertion that the optimal
control problem is time-invariant. Furthermore, since theHamilto-
nian is close to zero, the numerical solution obtained using GPOPS
is sufficiently accurate as a benchmark to compare against theADP-
based solution obtained using the proposed technique. Note that
in Fig. 3, the costate variables corresponding to the desired tra-
jectories are nonzero. Since these costate variables represent the
sensitivity of the cost with respect to the desired trajectories, this
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Fig. 4. Control trajectories µ (t) obtained from GPOPS and the developed
technique.

Fig. 5. Tracking error trajectories e (t) obtained from GPOPS and the developed
technique.

further supports the assertion that the optimal value function de-
pends on the desired trajectory, and hence, is a time-varying func-
tion of the tracking error.

Figs. 4 and 5 show the control and the tracking error trajecto-
ries obtained from the developed technique (dashed lines) plotted
alongside the numerical solution obtained using GPOPS (solid
lines). The trajectories obtained using the developed technique are
close to the numerical solution. The inaccuracies are a result of the
facts that the set of basis functions in (32) is not exact, and the pro-
posed method attempts to find the weights that generate the least
total cost for the given set of basis functions. The accuracy of the
approximation can be improved by choosing a more appropriate
set of basis functions, or at an increased computational cost, by
adding more basis functions to the existing set in (32). The total
cost

 100
0


e (t)T Qe (t)+ µ (t)T Rµ (t)


dt obtained using the nu-

merical solution is found to be 75.42 and the total cost


∞

0 (e (t)T

Qe (t) + µ (t)T Rµ (t))dt obtained using the developed method is
found to be 84.31. Note that from Figs. 4 and 5, it is clear that both
the tracking error and the control converge to zero after approxi-
mately 20 s, and hence, the total cost obtained from the numerical
solution is a good approximation of the infinite horizon cost.

6. Conclusion

An ADP-based approach using the policy evaluation and policy
improvement architecture is presented to approximately solve the
infinite horizon optimal tracking problem for control affine non-
linear systemswith quadratic cost. The problem is solved by trans-
forming the system to convert the tracking problem that has a
time-varying value function, into a time-invariant optimal control
problem. The ultimately bounded tracking and estimation result
was established using Lyapunov analysis for nonautonomous sys-
tems. Simulations are performed to demonstrate the applicability
and the effectiveness of the developedmethod. The accuracy of the
approximation depends on the choice of basis functions and the re-
sult hinges on the system states being PE. Furthermore, computa-
tion of the desired control in (2) requires exact model knowledge.

A solution to the tracking problem without using the desired
control while employing a multi-layer neural network that can
approximate the basis functions remains a future challenge. In
adaptive control, it is generally possible to formulate the control
problem such that PE along the desired trajectory is sufficient to
achieve parameter convergence. In the ADP-based tracking prob-
lem, PE along the desired trajectory would be sufficient to achieve
parameter convergence if the BE can be formulated in terms of the
desired trajectories. Achieving such a formulation is not trivial, and
is a subject for future research.

Appendix

The proofs for the technical lemmas and the gain selection al-
gorithm are detailed in this section.

Algorithm for selection of NN architecture and learning gains

Since the gains depend on the initial conditions and on the
compact sets used for function approximation and the Lipschitz
bounds, an iterative algorithm is developed to select the gains. In
Algorithm 1, the notation {ϖ }i for any parameter ϖ denotes the
value ofϖ computed in the ith iteration. Algorithm 1 ensures sat-
isfaction of the sufficient condition in (28).

Algorithm 1 Gain Selection
First iteration:
Given Z0 ∈ R≥0 such that ∥Z(t0)∥ < Z0, let Z1 = {ϱ ∈ Rn+2{N}1 |

∥ϱ∥ ≤ β1vl
−1(vl(Z0))} for some β1 > 1. Using Z1, compute the

bounds in (22) and (26), and select the gains according to (27). If
Z

1 ≤ β1vl

−1 (vl (∥Z0∥)) , set Z = Z1 and terminate.
Second iteration:
If {Z}1 > β1vl

−1(vl(∥Z0∥)), let Z2 , {ϱ ∈ Rn+2{N}1 | ∥ϱ∥ ≤

β2{Z}1}. Using Z2, compute the bounds in (22) and (26) and select
the gains according to (27). If


Z

2 ≤


Z

1, set Z = Z2 and

terminate.
Third iteration:
If

Z

2 >


Z

1, increase the number of NN neurons to {N}3 to yield

a lower function approximation error

ϵ̄′

3 such that {LF }2


ϵ̄′

3 ≤

{LF }1

ϵ̄′

1. The increase in the number of NN neurons ensures that

{ι}3 ≤ {ι}1. Furthermore, the assumption that the PE interval {T }3
is small enough such that {LF }2 {T }3 ≤ {T }1 {LF }1 and {N}3 {T }3 ≤

{T }1 {N}1 ensures that

ϖ10
ϖ11


3

≤


ϖ10
ϖ11


1
, and hence,


Z

3 ≤

β2

Z

1. Set Z =


ϱ ∈ Rn+2{N}3 | ∥ϱ∥ ≤ β2


Z

1


and terminate.

Proof of Lemma 1

The following supporting technical lemma is used to prove
Lemma 1.

Lemma 4. Let D ⊆ Rn contain the origin and let Ξ : D × R≥0 →

R≥0 be positive definite. If t −→ Ξ (x, t) is uniformly bounded for
all x ∈ D and if x −→ Ξ (x, t) is continuous, uniformly in t, then Ξ
is decrescent in D.
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Proof. Since t −→ Ξ (x, t) is uniformly bounded, for all x ∈ D,
supt∈R≥0

{Ξ (x, t)} exists and is unique for all x ∈ D. Let the
function α : D → R≥0 be defined as

α (x) , sup
t∈R≥0

{Ξ (x, t)} . (35)

Since x → Ξ (x, t) is continuous, uniformly in t, ∀ε > 0, ∃ς (x) >
0 such that ∀y ∈ D,

dD×R≥0 ((x, t) , (y, t)) < ς (x)

H⇒ dR≥0 (Ξ (x, t) ,Ξ (y, t)) < ε, (36)

where dM (·, ·) denotes the standard Euclidean metric on the met-
ric space M . By the definition of dM (·, ·), dD×R≥0 ((x, t) , (y, t)) =

dD (x, y). Using (36),

dD (x, y) < ς (x) H⇒ |Ξ (x, t)− Ξ (y, t)| < ε. (37)

Given the fact thatΞ is positive, (37) impliesΞ (x, t) < Ξ (y, t)+ε
andΞ (y, t) < Ξ (x, t)+εwhich from (35) impliesα (x) < α (y)+
ε andα (y) < α (x)+ε, and hence, from (37), dD (x, y) < ς (x) H⇒

|α (x)− α (y)| < ε. Since Ξ is positive definite, (35) can be used
to conclude α (0) = 0. Thus, Ξ is bounded above by a continuous
positive definite function; hence,Ξ is decrescent in D. �

Based on the definitions in (8)–(7) and (23), V ∗
t (e, t) > 0, ∀t ∈

R≥0 and ∀e ∈ Ba \ {0}. The optimal value function V ∗


0, xTd

T is
the cost incurred when starting with e = 0 and following the op-
timal policy thereafter for an arbitrary desired trajectory xd. Sub-
stituting x (t0) = xd (t0), µ (t0) = 0 and (2) in (4) indicates that
ė (t0) = 0. Thus, when starting from e = 0, a policy that is identi-
cally zero satisfies the dynamic constraints in (4). Furthermore, the
optimal cost is V ∗


0, xTd (t0)

T
= 0,∀xd (t0) which, from (23),

implies (24b). Since the optimal value function V ∗
t is strictly posi-

tive everywhere but at e = 0 and is zero at e = 0, V ∗
t is a positive

definite function. Hence, Lemma4.3 inKhalil (2002) canbe invoked
to conclude that there exists a class K function v : [0, a] → R≥0
such that v (∥e∥) ≤ V ∗

t (e, t) , ∀t ∈ R≥0 and ∀e ∈ Ba.
Admissibility of the optimal policy implies that V ∗ (ζ ) is boun-

ded over all compact subsets K ⊂ R2n. Since the desired trajectory
is bounded, t −→ V ∗

t (e, t) is uniformly bounded for all e ∈ Ba.
To establish that e −→ V ∗

t (e, t) is continuous, uniformly in t , let
χeo ⊂ Rn be a compact set containing eo. Since xd is bounded,
xd ∈ χxd , where χxd ⊂ Rn is compact. Since V ∗

: R2n
→ R≥0

is continuous, and χeo × χxd ⊂ R2n is compact, V ∗ is uniformly
continuous on χeo × χxd . Thus, ∀ε > 0, ∃ς > 0, such that ∀([eTo ,
xTd ]

T , [eT1, x
T
d ]

T ) ∈ χeo × χxd , dχeo×χxd
([eTo , x

T
d ]

T , [eT1, x
T
d ]

T ) < ς H⇒

dR(V ∗([eTo , x
T
d ]

T ), V ∗([eT1, x
T
d ]

T )) < ε. Thus, for each eo ∈ Rn, there
exists a ς > 0 independent of xd, that establishes the continuity
of e −→ V ∗([eT , xTd ]

T ) at eo. Thus, e −→ V ∗([eT , xTd ]
T ) is con-

tinuous, uniformly in xd, and hence, using (23) e −→ V ∗
t (e, t) is

continuous, uniformly in t . Using Lemma 4 and (24a) and (24b),
there exists a positive definite function α : Rn

→ R≥0 such that
V ∗
t (e, t) < α (e) , ∀ (e, t) ∈ Rn

× R≥0. Lemma 4.3 in Khalil (2002)
indicates that there exists a classK function v : [0, a] → R≥0 such
that α (e) ≤ v (∥e∥), which implies (24c).
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