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 a b s t r a c t

Recent developments in approximate dynamic programming (ADP) use deep neural network (DNN)-
based system identifiers to solve the infinite horizon state regulation problem; however, the DNN 
weights do not continually adjust for all layers. In this paper, ADP is performed using a Lyapunov-based 
DNN (Lb-DNN) adaptive identifier that involves online weight updates. Provided the Jacobian of the 
Lb-DNN satisfies the persistence of excitation condition, the Lb-DNN weights exponentially converge 
to a residual approximation error, and the corresponding control policy converges to a neighborhood 
of the optimal policy. Simulation results show that the Lb-DNN yields 49.85% improved root mean 
squared (RMS) function approximation error in comparison to a baseline ADP DNN result and faster 
convergence of the RMS regulation error, RMS controller error, and RMS function approximation error.

Published by Elsevier Ltd.
1. Introduction

Traditional optimal controllers aim to minimize predeter-
mined performance metrics and are typically designed a pri-
ori, relying on knowledge of the system’s dynamical model, by 
solving the Hamilton–Jacobi–Bellman (HJB) equation (Liberzon, 
2012). However, accurately modeling practical systems can be 
challenging, especially for nonlinear systems where solving the 
nonlinear HJB equation analytically may be infeasible. Many 
numerical solution techniques are available to solve the HJB 
equation; however, numerical solution techniques require exact 
model knowledge and typically involve open-loop implementa-
tion of offline solutions. Open-loop implementations are sensitive 
to disturbances, changes in objectives, and changes in the system 
dynamics; hence, online closed-loop solutions of optimal control 
problems are sought-after.

Reinforcement learning (RL) is a method to solve optimization, 
optimal control, and decision making problems where an agent 
interacts with its environment adjusting its actions or control 
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policies based on the feedback it receives (Sutton & Barto, 1998). 
In contrast to traditional optimal control techniques, RL methods 
provide an approximate solution to the HJB equation by adjust-
ing the control policy based on state feedback (Gao, Mynuddin, 
Wunsch, & Jiang, 2021; Modares, Lewis, Kang, & Davoudi, 2018; 
Pang & Jiang, 2020; Vamvoudakis, Vrabie, & Lewis, 2014; Vrabie, 
Pastravanu, Abu-Khalaf, & Lewis, 2009). A common RL tool used 
to approximately solve the HJB equation is approximate dynamic 
programming (ADP), where the optimal value function is approx-
imated using a neural network (NN)-based actor–critic architec-
ture (Kamalapurkar, Walters, Rosenfeld, & Dixon, 2018). The actor 
NN is tasked with learning the optimal control policy, and the 
critic NN is tasked with learning the optimal value function. In 
results such as Kamalapurkar, Walters, et al. (2018), Lewis and Liu 
(2013) and Vrabie, Vamvoudakis, and Lewis (2013) the actor and 
critic NN update laws are designed based on a Lyapunov-based 
analysis to minimize the optimal value function approximation 
error in approximating the HJB equation, known as the Bellman 
error (BE). The BE provides an indirect measure of the quality of 
the value function estimate at each point of evaluation. Through 
a method called BE extrapolation the BE can be evaluated at off-
trajectory points and used in the update laws to yield better 
performance by enhanced exploration (Kamalapurkar, Walters, & 
Dixon, 2016).

The evaluation and extrapolation of the BE requires full knowl-
edge of the system model. Motivated by engineering systems 
that contain uncertain dynamics, ADP methods have been de-
veloped that use an approximate model such as linear param-
eterization (Makumi, Greene, Bell, Bialy et al., 2023; Makumi, 
Greene, Bell, Nivison et al., 2023; Walters, Kamalapurkar, Voight, 
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, 
Schwartz, & Dixon, 2018), single-layer NNs (Deptula, Bell, Doucette
Curtis, & Dixon, 2020; Deptula, Bell, Zegers, Licitra, & Dixon, 2021; 
Kamalapurkar, Andrews, Walters, & Dixon, 2017; Kamalapurkar, 
Klotz, Walters, & Dixon, 2018; Wang, Gao, Zhao, & Ahn, 2020), 
and deep NNs (DNNs) (Greene, Bell, Nivison, & Dixon, 2023; 
Makumi, Bell, & Dixon, 2023, 2024; Philor, Makumi, Bell, & Dixon, 
2024). Recent advancements in Le, Patil, Nino, and Dixon (2024), 
LeCun, Bengio, and Hinton (2015), and Makumi, Bell, et al. (2023) 
showcase the advantages of DNN-based approximators when 
compared to single-layer NNs. However, the DNNs used in Greene 
et al. (2023), Makumi, Bell, et al. (2023), Makumi et al. (2024) and 
Philor et al. (2024), known as multi-timescale DNNs, update only 
the output-layer weights in real-time, whereas the inner-layer 
weights are updated iteratively by minimizing a loss function 
based on datasets obtained over discrete training intervals. As 
a result, the inner-layer weights are not updated via adaptive 
update laws. Moreover, there are no guarantees provided on 
the identification of inner-layer weights under any sufficient 
excitation condition.

Recent advancements in adaptive control provide Lyapunov-
based DNN (Lb-DNN) controllers with real-time updates for all 
weights for several architectures in Griffis, Patil, Bell, and Dixon 
(2023), Griffis, Patil, Hart, and Dixon (2024), Griffis, Patil, Makumi, 
and Dixon (2023), Hart, Griffis, Patil, and Dixon (2024), Hart, Patil, 
Griffis, and Dixon (2023), Patil, Le, Greene, and Dixon (2022), 
Griffis, Patil, Bell, and Dixon (2022). Although these recent online 
DNN results eliminate the restriction of offline training and allow 
for sustained learning, they are designed to address the trajectory 
tracking problem based on tracking error feedback, and are not 
applicable to perform system identification for ADP due to the 
lack of parameter convergence guarantees. Thus, it is desirable to 
construct adaptation laws to identify the system for incorporation 
in ADP.

A common challenge in system identification is the lack of 
availability of state-derivative information. Previous results such 
as Makumi, Bell, et al. (2023), Makumi et al. (2024) and Philor 
et al. (2024) use integral concurrent learning (ICL) to eliminate 
the requirement of state derivative information. However, ICL 
only identifies the outer-layer weights due to the nonlinear pa-
rameterization of the DNN. The nonlinear parameterization also 
makes it difficult to yield performance guarantees on the system 
identification.

This paper introduces the first ADP method involving an Lb-
DNN as an adaptive system identifier. The developed identifier 
uses a least squares adaptation law with a bounded gain forget-
ting factor to update the weights of all layers of the DNN. To 
overcome the challenges posed by the lack of state-derivative 
information, we construct a robust integral of the sign of the error 
(RISE)-based observer that provides a secondary estimate of the 
dynamics. While the RISE-based observer can provide an estimate 
of the dynamics, it would only be an instantaneous estimate and 
could not be used in BE extrapolation. The difference between 
the two estimates is calculated as an identification error which is 
used to develop a least squares adaptive update law (Patil, Griffis, 
Makumi, & Dixon, 2023). Through a combined Lyapunov-based 
stability analysis, the system identifier composed of the DNN 
and RISE-based dynamics observer is shown to exponentially 
converge to a neighborhood of the DNN weight estimation error, 
provided the Jacobian of the DNN satisfies the persistence of 
excitation (PE) condition. Simultaneously, the approximate DNN-
based model is used to achieve approximate BE extrapolation. The 
proposed DNN is used for system identification, while standard 
NNs are used for the actor and critic. The resulting ADP formu-
lation achieves convergence of the developed control policy to a 
neighborhood of the optimal control policy. Comparative simula-
tion results demonstrate a significant performance improvement 
2

with the developed adaptive DNN controller in comparison to the 
multi-timescale DNN. Specifically, the developed controller yields 
49.85% improved root mean squared (RMS) function approxima-
tion error, as well as faster convergence of the RMS regulation 
error, RMS controller error, and RMS function approximation 
error.

2. Background

2.1. Notation

The space of essentially bounded Lebesgue measurable func-
tions is denoted by L∞. The pseudo-inverse of full row rank 
matrix A ∈ Rn×m is denoted by A+, where A+ ≜ A⊤

(
AA⊤

)−1. 
The right-to-left matrix product operator is represented by 

↶∏
, 

i.e., 
↶
m∏

p=1
Ap = Am . . . A2A1 and 

↶
m∏

p=a
Ap = I if a > m. The Kronecker 

product is denoted by ⊗. The Jacobian 
[

∂ f (x,y)
∂x1

⊤

, . . . ,
∂ f (x,y)

∂xn

⊤
]
 is 

denoted by ∇xf (x, y). Unless otherwise specified, let ∇ ≜ ∇x. 
Function compositions are denoted using the symbol ◦, e.g., (g ◦

h)(x) = g(h(x)), given suitable functions g and h. Given w ∈ R and 
some functions f  and g , the notation f (w) = Om(g(w)) means 
that there exists some constants M ∈ R>0 and w0 ∈ R such 
that ∥f (w)∥ ≤ M ∥g(w)∥m for all w ≥ w0. Given some matrix 
A ≜

[
ai,j
]

∈ Rn×m, where ai,j denotes the element in the ith 
row and jth column of A, the vectorization operator is defined 
as vec(A) ≜ [a1,1, . . . , an,1, . . . , a1,m, . . . , an,m]

⊤
∈ Rnm. A square 

diagonal matrix with elements of vector y on the main diagonal 
is denoted by diag(y). An n × n identity matrix is denoted by 
In×n. Matrices of ones and zeros with n rows and m columns are 
denoted by 1n×m and 0n×m, respectively. Both the Euclidean norm 
for vectors and the Frobenius norm for matrices are denoted by 
∥·∥, and the 1-norm is denoted by ∥·∥1. The space of continuous 
functions with continuous first n derivatives is denoted by Cn. 
The notation 

a.a.t.
(·)  denotes that the relation (·) holds for almost 

all time (a.a.t.). Given any A ∈ Rp×a, B ∈ Ra×r , and C ∈ Rr×s, 
the vectorization operator satisfies the property (Bernstein, 2009, 
Proposition 7.1.9) 
vec(ABC) = (C⊤

⊗ A)vec (B) . (1)

Differentiating (1) on both sides with respect to vec (B) yields the 
property 

∂

∂vec (B)
vec(ABC) = C⊤

⊗ A. (2)

A function y : Iy → Rn is called a Filippov solution of ẏ = h(y, t)
on the interval Iy ⊆ R≥0, given some Lebesgue measurable and 
locally essentially bounded function h : Rn

× R≥0 → Rn, if y
is absolutely continuous on Iy, and ẏ ∈ K [h] (y, t) for almost all 
t ∈ Iy, where K [·] denotes the Filippov set-valued map defined 
in Paden and Sastry (1987, Equation 2b).

2.2. Problem formulation

Consider a continuous-time, control-affine nonlinear dynami-
cal system 
ẋ = f (x) + g (x) u (3)

where x ∈ Rn denotes the system state, u ∈ Rm denotes the 
control input, f : Rn

→ Rn denotes the unknown drift dynamics, 
and g : Rn

→ Rn×m denotes the control effectiveness. For 
simplicity in this paper, we assume the function g (x) is known, 
though one could leverage the methods in Deptula et al. (2020) 
to also account for an unknown g x . 
( )
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Assumption 1. The function f  is C2 and f (0) = 0.

Assumption 2. The function g is a known locally Lipschitz function, 
bounded such that 0 < ∥g (x)∥ ≤ g ∀x ∈ Rn, where g ∈ R>0 is a 
known bound.

The control objective is to solve the infinite horizon optimal 
regulation problem online, i.e. find an optimal control policy u
that minimizes the cost function 

J (x, u) =

∫
∞

0
Q (x (τ )) + u (τ )⊤ Ru (τ ) dτ . (4)

In (4), Q : Rn
→ R≥0 is a positive definite (PD) cost function 

where Q  satisfies q (∥x∥) ≤ Q (x) ≤ q (∥x∥) for q, q : R≥0 → R≥0, 
and R ∈ Rm×m is a user-defined constant PD symmetric cost 
matrix.

The cost-to-go (i.e. the infinite horizon value function) V ∗
:

Rn
→ R≥0 is defined as 

V ∗ (x) ≜ min
u∈U

∫
∞

t
Q (x (τ )) + u (τ )⊤ Ru (τ ) dτ , (5)

where U ⊆ R is the action space for u.
A major roadblock in finding the approximately optimal con-

trol policy is that the drift dynamics f  are unknown and involve 
complex nonlinearities. The following section provides a method 
for identifying the unknown drift dynamics in real-time using 
DNNs.

3. System identification

DNNs are known to be effective at approximating unknown 
nonlinear functions such as the drift dynamics f . Previous results 
in Greene et al. (2023), Makumi, Bell, et al. (2023), Makumi 
et al. (2024) and Philor et al. (2024) have used DNNs for sys-
tem identification in the approximate optimal control problem. 
However, in those results, the inner-layer weights of the DNN 
were updated in batches using offline training techniques. Offline 
training techniques require large amounts of data and do not 
account for disturbances and uncertainties in real-time. In this 
section, the system dynamics are identified using an Lb-DNN with 
real-time weight adaptation laws for all layers of the DNN. The 
developed DNN weight estimates are shown to approximately 
converge to their true values under an explicit PE condition, 
unlike the previously cited results.

3.1. Dynamics estimate

Let Φ : Rn
× Rp

→ Rn denote a generalized DNN defined 
in the Appendix where p represents the total number of DNN 
weights. DNNs are known to approximate continuous functions 
on a compact set using the Universal Function Approximation 
theorem (Kidger & Lyons, 2020).1 The drift dynamics can be 
approximated with a DNN on a compact set Ω ⊂ Rn as 
f (x) = Φ(x, θ∗) + ε(x) (6)

where ε : Rn
→ Rn denotes an unknown function reconstruction 

error that can be bounded as supx∈Ω ∥ε(x)∥ ≤ ε, and θ∗
∈ Rp

denotes ideal weights such that supx∈Ω ∥f (x) − Φ(x, θ∗)∥ ≤ ε. An 
estimate of the dynamics is represented as Φ

(
x, θ̂

)
 where θ̂ ∈ Rp

is the subsequently designed adaptive estimate of the ideal DNN 
weights θ∗.2

1 The subsequent stability analysis guarantees that if x is initialized in an 
appropriately-sized subset of Ω , then it will stay in Ω .
2 Various different architectures such as fully-connected DNNs, ResNets, 

LSTMs found in Griffis, Patil, Bell, et al. (2023), Griffis, Patil, et al. (2022), 
and Patil, Le, et al. (2022) respectively, can be used in the system identifier.
3

Assumption 3. There exists a known constant θ ∈ R>0 such that 
the unknown ideal weights can be bounded as ∥θ∗∥ ≤ θ .

Real-time system identifiers typically use an identification 
error as feedback. However, the identification error of the dy-
namics cannot be directly evaluated due to the absence of state-
derivative information. To overcome this challenge, a RISE-based 
dynamics observer is used to obtain an instantaneous second 
estimate of the dynamics (Isaly, Patil, Sweatland, Sanfelice, & 
Dixon, 2024). The subsequent RISE-based dynamics observer is 
capable of exponentially identifying uncertainty and disturbances 
in the function and is designed as
̇̂x = f̂ + gu + α1x̃ (7)
̇̂f = x̃ + kf

(
̇̃x + α1x̃

)
+ βf sgn

(
x̃
)

(8)

where x̂, f̂ ∈ Rn are the observer estimates of x and f , re-
spectively, x̃, f̃ ∈ Rn are the observer errors x̃ ≜ x − x̂ and 
f̃ ≜ f (x) − f̂ , respectively, and α1, kf , βf ∈ R>0 denote con-
stant observer gains. The observer error x̃ is known because 
x and x̂ are known. However, since ̇̃x is unknown, (8) can be 
implemented by integrating both sides and using the relation ∫ t
0

̇̃x (τ ) dτ = x̃(t) − x̃(0) to obtain f̂ (t) = f̂ (0) + kf x̃(t) − kf x̃(0) +∫ t
0

[
(kf α1 + 1)x̃(τ ) + βf sgn

(
x̃ (τ )

)]
dτ  which is a solution to (8). 

Taking the derivative of x̃ and substituting (7) yields 
̇̃x = f̃ − α1x̃. (9)

Additionally, taking the derivative of f̃  and substituting (8) and 
(9) yields 
̇̃f = ḟ − x̃ − kf f̃ − βf sgn

(
x̃
)
, (10)

where ḟ ≜ ∂ f
∂x ẋ. An identification error E ∈ Rn based on the 

observer estimate of f  and the DNN estimate of f  is calculated 
as 

E = f̂ − Φ

(
x, θ̂

)
(11)

and is used to update the weights of the DNN in real-time. 

Remark 1. Although a RISE-based observer is capable of produc-
ing an instantaneous estimate of the drift dynamics by essentially 
acting as a state-derivative estimator, the subsequent control de-
velopment requires extrapolation of the dynamics to unexplored 
areas of the state space that can only be achieved using the 
identified DNN.

3.2. Adaptation laws

To facilitate the subsequent analysis, the least squares adap-
tive update law is designed as 
̇̂
θ = Γθ

(
−kθ̂ θ̂ + Φ ′⊤

(
x, θ̂

)
E
)

, (12)

where the Jacobian Φ ′

(
x, θ̂

)
∈ Rn×p is calculated using (A.2) and 

(A.3), and the term Γθ ∈ Rp×p denotes a symmetric, PD time-
varying least squares adaptation gain matrix that is a solution 
to Slotine and Li (1989, Eqns. (16) and (17)) 
d
dt

Γ −1
θ = −β(t)Γ −1

θ + Φ ′⊤

(
x, θ̂

)
Φ ′

(
x, θ̂

)
, (13)

where the bounded-gain time-varying forgetting factor
β : R≥0 → R≥0 is designed as 

β(t) ≜ β0

(
1 −

λmax {Γθ }
)

, (14)

κ0
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where β0, κ0 ∈ R>0 are user-selected constants that denote the 
maximum forgetting rate and the prescribed bound on λmax {Γθ }, 
respectively. The adaptation gain in (13) is initialized to be PD 
such that λmax {Γθ (0)} < κ0, and it can be shown that Γθ (t)
remains PD for all t ∈ R≥0 (Slotine & Li, 1989). The term β(t)
can be lower bounded as β ≥ β1, where β1 ∈ R≥0 is a constant 
which satisfies the properties stated in the subsequent remark.

If Φ ′

(
x, θ̂

)
 satisfies the PE condition, i.e., there exists con-

stants ϕ1, ϕ2 ∈ R>0 for all t1 ∈ R≥0 and some T ∈ R>0 such that 
ϕ1Ip ≤

∫ t1+T
t1

Φ ′⊤

(
x(τ ), θ̂ (τ )

)
Φ ′

(
x(τ ), θ̂ (τ )

)
dτ ≤ ϕ2Ip, then it 

can be shown that β1 > 0 (Slotine & Li, 1989, Sec. 4.2). 

Remark 2. The PE condition requires the Jacobian Φ ′ to be suffi-
ciently rich, which yields sufficient exploration of the state–space. 
Under this condition, the weight estimates are shown to con-
verge to a neighborhood of their ideal values. As a result, the 
DNN can generalize beyond the explored trajectory, thus allowing 
extrapolation in the subsequent control development.

Analyzing the convergence properties of the adaptive update 
law in (12) is challenging due to the nested nonlinear parameter-
ization of the DNN. A first-order Taylor series approximation is 
used to overcome the challenges of the nested nonlinear param-
eterization introduced by the DNN. Applying a first-order Taylor 
series approximation to the generalized DNN illustrated in the 
Appendix yields 

Φ(x, θ∗) − Φ

(
x, θ̂

)
= Φ ′

(
x, θ̂

)
θ̃ + O

(θ̃2) , (15)

where θ̃ ∈ Rp denotes the parameter estimation error θ̃ ≜ θ − θ̂ , 
and O

(θ̃2) denotes the higher-order terms. By adding and 
subtracting f  and substituting (6) and (15), the identification error 
E can be rewritten as 

E = −f̃ + Φ ′

(
x, θ̂

)
θ̃ + ∆, (16)

where ∆ ≜ O
(θ̃2) + ε(x). Since ̇̃θ ≜ −

̇̂
θ , by substituting (12) 

and (16) the time derivative of θ̃ is calculated as
̇̃
θ = Γθkθ̂θ

∗
− Γθ

(
kθ̂ + Φ ′⊤

(
x, θ̂

)
Φ ′

(
x, θ̂

))
θ̃ (17)

+ ΓθΦ
′⊤

(
x, θ̂

)
f̃ − ΓθΦ

′⊤

(
x, θ̂

)
∆.

3.3. Stability analysis

To achieve exponential convergence, a P-function is included 
in the subsequent Lyapunov analysis in addition to the typical 
sum of norm squared error terms (Patil, Isaly, Xian, & Dixon, 
2022). The P-function is used to prove exponential convergence 
with the RISE-based observer error f̃ , therefore facilitating faster 
function approximation which in turn strengthens the accuracy 
of the control policy. The P-function is designed as
P ≜ β

x̃1 − x̃⊤ ḟ + e−λP t ∗
(
x̃⊤ f̈

)
+ e−λP t ∗

(
(α1 − λP )

(
β
x̃1 − x̃⊤ ḟ

))
, (18)

where λp ∈ R>0 is a user-selected constant, and f̈ ≜ ẋ⊤

(
∂2f
∂x2

)
ẋ+

∂ f
∂x ẍ. The convolutional integral e−λP t ∗ q =

∫ t
t0
e−λP (t−σ )q(σ )dσ

is denoted by ‘∗‘ for any given q : [t0, ∞) → R, and can be 
verified using the Leibniz rule that d

dt

(∫ t
t0
e−λP (t−σ )q(σ )dσ

)
=

q(t)−λP
∫ t
t0
e−λP (t−σ )q(σ )dσ . The convolutional integral therefore 

satisfies the property d
dt

(
e−λP t ∗ q

)
= q(t) − λPe−λP t ∗ q. The 

mapping t ↦→ ∥e(t)∥  is differentiable for almost all time since 
1

4

t ↦→ e(t) is absolutely continuous and ∥·∥1 is globally Lipschitz; 
hence, the use of the chain rule in Shevitz and Paden (1994, 
Theorem 2.2) yields d

dt (∥e∥1)
a.a.t.
∈ K [sgn](e). Taking the time-

derivative of (18), using Leibniz’s rule, and substituting (9) and 
(18) results in3

Ṗ
a.a.t.
∈ −λpP + f̃ ⊤

(
βf sgn

(
x̃
)
− ḟ

)
.

Let zθ ≜
[

x̃⊤ f̃ ⊤ θ̃⊤
√
2P
]⊤

∈ R2n+p+1 denote the con-
catenated state. The candidate Lyapunov function Vθ : R2n+p+1

→

R is defined as 

Vθ (zθ ) =
1
2
x̃⊤x̃ +

1
2
f̃ ⊤ f̃ +

1
2
θ̃⊤Γ −1

θ θ̃ + P . (19)

The Lyapunov function is bounded as 
λ1 ∥zθ∥2

≤ Vθ (zθ ) ≤ λ2 ∥zθ∥2 , (20)

where λ1 ≜ min{
1
2 ,

1
2λmax{Γθ }

} and λ2 ≜ max{ 1
2 ,

1
2λmin{Γθ }

}. Con-
sider the compact domain D ≜

{
ζ ∈ R4n+p

: ∥ζ∥ ≤ χ
}
 where 

χ ∈ R>0 is a bounding constant. The subsequent analysis shows 
that the concatenated state zθ (t) ∈ D for all t ∈ R≥0 if z is 
initialized in the set S ≜

{
ζ ∈ R2n+p+1

: ∥ζ∥ ∈

√
λ1
λ2

χ2 −
C
λ3

}
 in 

the subsequent stability analysis. Using (Patil, Isaly, et al., 2022, 
Lemma 4) it can be shown that P ≥ 0 if the gain conditions 
α > λP (21)

and 

β > Υ1 +
Υ2

α − λP
(22)

are satisfied, where bounds 
ḟ  ≤ Υ1 and 

f̈  ≤ Υ2 hold where 
Υ1 and Υ2 are bounding constants based on Assumption  1 and 
the fact that ẋ and ẍ are bounded when z ∈ D. 

Theorem 1. Provided Assumptions  1–3, the gain conditions in (21), 
(22), and (25), and the feasibility condition χ >

√
λ2C
λ1λ3

 are satisfied, 
the adaptive update laws in (12) and (13) ensure that the estimation 
errors defined in zθ  are uniformly ultimately bounded (UUB) such 

that ∥zθ (t)∥ ≤

√
λ2
λ1

∥zθ (0)∥2 e−
λ3
λ2

t
+

λ2C
λ1λ3

(
1 − e−

λ3
λ2

t
)
.

Proof. Taking the time derivative of (19) yields

V̇θ

a.a.t.
∈ x̃⊤ ̇̃x + f̃ ⊤ ̇̃f + θ̃⊤Γ −1

θ
̇̃
θ +

1
2
θ̃⊤

(
d
dt

Γ −1
θ

)
θ̃ (23)

− λpP + f̃ ⊤
(
βf sgn

(
x̃
)
− ḟ

)
.

By substituting (9), (10), and (17), and canceling coupling terms, 
(23) can be upper bounded as

V̇θ

a.a.t.
≤ −α1x̃2 − kf

f̃ 2 −

(
kθ̂ +

β(t)
2

)θ̃2
− θ̃⊤

(
1
2
Φ ′⊤

(
x, θ̂

)
Φ ′

(
x, θ̂

))
θ̃ − λpP

+ θ̃⊤Φ ′⊤

(
x, θ̂

)(
f̃ − ∆

)
+ kθ̂ θ̃

⊤θ∗.

The parameter estimation error can be bounded as ∥θ̃∥ ≤ χ
when z ∈ D. Additionally, since f  and Φ are continuously 
differentiable, the bounds ∥∆∥ ≤ γ1 and 

Φ ′

(
x, θ̂

) ≤ γ2

hold when zθ ∈ D, where γ1, γ2 ∈ R>0 denote bounding 

3 A more detailed derivation can be found in Patil, Isaly, et al. (2022, Proof 
of Lemma 3).
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constants. Therefore, using Young’s inequality yields the bound 
θ̃⊤Φ ′⊤

(
x, θ̂

)(
f̃ − ∆

)
≤ γ2

θ̃2 +
γ2
2

f̃ 2 +
γ2γ 2

1
2 . As a result, V̇θ

can further be upper-bounded as

V̇θ

a.a.t.
≤ −λ3 ∥z∥2

+ C

−
1
2
θ̃⊤Φ ′⊤

(
x, θ̂

)
Φ ′

(
x, θ̂

)
θ̃ , (24)

when zθ ∈ D, where λ3 ≜ min{α1, kf −
γ2
2 ,

k
θ̂
+β1
2 − γ2, λP } and 

C ≜
γ2γ 2

1 +k
θ̂
θ̄2

2 . Using (20) and (24), when the gain condition 

λ3 > 0 (25)

is satisfied, V̇  can be upper-bounded as 

V̇θ

a.a.t.
≤ −

λ3

λ2
Vθ + C, (26)

when zθ ∈ D. Solving the differential inequality in (26) yields

Vθ (z(t)) ≤ Vθ (z(0)) e−
λ3
λ2

t
+

λ2C
λ3

(
1 − e−

λ3
λ2

t
)

,

when zθ ∈ D, and applying (20) yields the bound 

∥zθ (t)∥ ≤

√
λ2

λ1
∥zθ (0)∥2 e−

λ3
λ2

t
+

λ2C
λ1λ3

(
1 − e−

λ3
λ2

t
)

, (27)

when zθ ∈ D. To guarantee zθ (t) ∈ D for all t ∈ R≥0, (27) 
can be upper bounded as ∥zθ (t)∥ ≤

√
λ2
λ1

∥zθ (0)∥2
+

λ2C
λ1λ3

 for all 
t ∈ R≥0. Due to the fact that D ≜

{
ζ ∈ R4n+p

: ∥ζ∥ ≤ χ
}
, the 

relation zθ (t) ∈ D holds if 
√

λ2
λ1

∥zθ (0)∥2
+

λ2C
λ1λ3

≤ χ , which is 

achieved if ∥zθ (0)∥ ≤

√
λ1
λ2

χ2 −
C
λ3
, i.e., zθ (0) ∈ S; in this case, 

(27) holds for all t ∈ [0, ∞).

Remark 3. The gains α1, kf , and λP  can be selected to be suffi-
ciently high, so that λ3 =

k
θ̂
+β1
2 − γ2. In that case, the rate of 

convergence, λ3
λ2
, primarily depends on Γθ , β1 and kθ̂ . Since β1

is positive under the PE condition as mentioned in Remark  2, a 
larger value of λ3 is obtained, thus achieving faster convergence. 
When the PE condition does not hold, the gain kθ̂ , which is based 
on the sigma modification technique in Ioannou and Sun (1996, 
Sec. 8.4.1), still ensures UUB convergence by assisting the gain 
condition in (25). However, it is desirable not to select kθ̂  to 
be very high and rather leverage more of the PE condition (if 
satisfied), since a high value of kθ̂  results in a higher value for 
C, which can worsen the parameter estimation performance.

4. Approximate optimal control

The optimal value function in (5) is the solution to the corre-
sponding HJB equation 
0 = ∇V ∗ (x)

(
f (x) + g (x) u∗

)
Q (x) + u∗ (x)⊤Ru∗ (x), (28)

with the condition V ∗ (0) = 0 and where u∗
: Rn

→ Rm is 
the optimal control policy. Taking the partial derivative of (28) 
with respect to the minimizing argument u∗ (x), setting it equal 
to zero, and solving for u∗ (x) results in the optimal control policy 

u∗ (x) = −
1
2
R−1g (x)⊤

(
∇V ∗ (x)

)⊤
. (29)

Assumption 4. The optimal value function V ∗ is continuously dif-
ferentiable (Kamalapurkar et al., 2016).
5

4.1. Value function approximation

The optimal value function is generally unknown for nonlinear 
systems. To solve for the optimal control policy in (29), the opti-
mal value function can be approximated with a NN in a compact 
set Ω ⊂ Rn using the Universal Function Approximation Theorem 
as 
V ∗ (x) = W⊤φ (x) + ϵ (x) ∀x ∈ Ω, (30)

where W ∈ RL is a vector of unknown weights, φ : Rn
→ RL

is a user-defined vector of basis functions, and ϵ : Rn
→ R is 

the bounded function reconstruction error. Substituting (30) into 
(29), the optimal control policy in (29) can be approximated with 
a NN as 

u∗ (x) = −
1
2
R−1g (x)⊤

(
∇φ (x)⊤ W + ∇ϵ (x)⊤

)
. (31)

Assumption 5. There exists a set of known positive constants 
W , φ, ∇φ, ϵ, ∇ϵ ∈ R>0 such that sup ∥W∥ ≤ W,
supx∈Ω, ∥φ (x)∥ ≤ φ, supx∈Ω ∥∇φ (x)∥ ≤ ∇φ, supx∈Ω ∥ϵ (x)∥ ≤ ϵ, 
and supx∈Ω, ∥∇ϵ (x)∥ ≤ ∇ϵ (Vrabie et al., 2013, Assumptions 
9.1.c-e).

The ideal weights W  in (30) and (31) are unknown a priori. 
In this paper, an actor–critic NN architecture is used where actor 
and critic weight estimates are used to approximate W . The critic 
weight estimate vector Ŵc ∈ RL is used to approximate (30), 
resulting in the optimal value function estimate V̂ : Rn

×RL
→ R, 

defined as 

V̂
(
x, Ŵc

)
≜ Ŵ⊤

c φ (x) . (32)

The actor weight estimate vector Ŵa ∈ RL is used to approximate 
(31), resulting in the optimal control policy estimate û : Rn

×

RL
→ Rm, defined as 

û
(
x, Ŵa

)
≜ −

1
2
R−1g (x)⊤

(
∇φ (x)⊤ Ŵa

)
. (33)

4.2. Bellman error

The error resulting from approximating the system dynamics, 
the optimal value function, and the optimal control input intro-
duces an error in the HJB equation in (28). This error, termed the 
BE, is representative of the performance of the developed method, 
and is used to update the actor–critic weights in the subsequent 
development. Replacing the drift dynamics f  with the estimate 
Φ

(
x, θ̂

)
, the optimal value function V ∗ (x) with the estimate 

V̂
(
x, Ŵc

)
, and the optimal control policy u∗ (x) with the estimate 

û
(
x, Ŵa

)
 in (28) results in the BE δ̂ : Rn

×RL
×RL

→ R defined 
as

δ̂

(
x, Ŵc, Ŵa

)
≜ Q (x) + û

(
x, Ŵa

)⊤

Rû
(
x, Ŵa

)
+∇V̂

(
x, Ŵc

)(
Φ

(
x, θ̂

)
+ g (x) û

(
x, Ŵa

))
. (34)

The BE represents the difference between the actor and critic 
weight approximations and their ideal weight values. While (34) 
is used for implementation, to facilitate the subsequent stability 
analysis, (34) can be rewritten in terms of the weight approxima-
tion errors W̃c ≜ W − Ŵc and W̃a ≜ W − Ŵa. Subtracting (28) 
from (34) and substituting (30)–(33), the analytical form of the 
BE in (34) can be expressed as 

δ̂

(
x, Ŵc, Ŵa

)
= −ω⊤W̃c +

1
W̃⊤Gφ (x) W̃a + O (x) , (35)
4 a
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where the Bellman regressor ω : Rn
× RL

× Rp
→ Rn is 

ω

(
x, Ŵa, θ̂

)
≜ ∇φ (x)

(
Φ

(
x, θ̂

)
+ g (x) û

(
x, Ŵa

))
 and O (x) ≜

1
2∇ϵ (x)GR∇φ (x)⊤ W +

1
4Gϵ − ∇ϵ (x) f (x), where

GR (x) ≜ g (x) R−1g (x) ⊤, Gφ (x) ≜ ∇φ (x)GR (x) ∇φ (x) ⊤, and 
Gϵ (x) ≜ ∇ϵ (x)GR (x) ∇ϵ (x)⊤. Based on Assumption  2, the func-
tion GR is bounded as supx∈Ω ∥GR∥ ≤ g2

λmax
{
R−1

}
≜ GR, and Gφ

is bounded as supx∈Ω

Gφ

 ≤
(
∇φg

)2
λmax

{
R−1

}
≜ Gφ .

The BE in (34) can be evaluated at any user-defined point in 
the state space using a user-selected state xi, the critic weight 
estimate Ŵc , and the actor weight estimate Ŵa. Using the DNN 
system identifier and adaptive update laws developed in Sec-
tion 3, experience can be simulated by extrapolating the BE 
over unexplored off-trajectory points in the state space via BE 
extrapolation. BE extrapolation uses the estimated dynamics to 
yield simultaneous exploration and exploitation providing simu-
lation of experience and yielding faster policy learning. To gain 
experience for sufficient exploration, the BE is extrapolated to 
user-defined off-trajectory points {xi : xi ∈ Ω}

N
i=1, where N ∈ N

is a user-specified number of total extrapolation trajectories in 
the compact set Ω (Kamalapurkar et al., 2016). As the estimate 
of the identified dynamics becomes more accurate, the estimate 
of the control policy becomes more accurate.

4.3. Update laws for actor and critic weights

The experience gained along the state trajectory and from 
the extrapolated points is used to update the actor and critic 
weights simultaneously. In the subsequent adaptive weight up-
date laws, ηc1, ηc2, ηa1, ηa2, λ ∈ R>0 are positive constant adap-
tation gains, ρ = 1 + νω⊤Γ ω, ρi = 1 + νω⊤

i Γ ωi, ν ∈

R>0 is a user-defined gain, Γ ∈ RL×L is a time-varying least 
squares gain matrix, and Γ , Γ ∈ R>0 denote lower and upper 
bounds for Γ . The normalized regressors ω

ρ
 and ωi

ρi
 are bounded 

as supt∈R≥0

ω
ρ

 ≤
1

2
√

νΓ
 and supt∈R≥0

ωi
ρi

 ≤
1

2
√

νΓ
 for all x ∈ Ω

and xi ∈ Ω , respectively. The critic update law ̇̂Wc ∈ RL is defined 
as 

̇̂Wc ≜ −ηc1Γ
ω

ρ
δ̂ − ηc2Γ

1
N

N∑
i=1

ωi

ρi
δi. (36)

The least squares gain matrix update law Γ̇ ∈ RL×L is defined as 

Γ̇ ≜

(
λΓ − ηc1

Γ ωω⊤Γ

ρ2 −
ηc2Γ

N

N∑
i=1

ωiω
⊤

i Γ

ρ2
i

)
· 1{Γ ≤∥Γ ∥≤Γ

},
(37)

where 1{·} denotes the indicator function ensuring that Γ ≤

∥Γ ∥ ≤ Γ  for all t ∈ R>0. The actor update law ̇̂Wa ∈ RL is defined 
as
̇̂Wa ≜ −ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa

+
ηc1G⊤

φ Ŵaω
⊤

4ρ
Ŵc + ηc2

1
N

N∑
i=1

G⊤

φiŴaω
⊤

i

4ρi
Ŵc . (38)

The following assumption aids in the subsequent stability analysis 
by imposing a condition on sufficient richness of the Bellman 
regressor ω. 

Assumption 6. On the compact set, Ω , a finite set of off-trajectory 
points {xi : xi ∈ Ω}

N
i=1 are user-selected such that 0 < c ≜

inft∈R≥0
λmin

{
1
N

∑N
i=1

ωiω
⊤
i

ρ2
i

}
, where c is a constant scalar lower 

bound of the value of each history stack’s minimum eigenvalues (Ka-
malapurkar et al., 2016).
6

5. Stability analysis

To facilitate the stability analysis, let a concatenated state z ∈

Rn+2L be defined as z ≜
[
x⊤, W̃⊤

c , W̃⊤
a

]⊤

, and let the candidate 
Lyapunov function VL : Rn+2L

→ R≥0 be defined as 

VL (z) ≜ V ∗ (x) +
1
2
W̃⊤

c Γ −1W̃c +
1
2
W̃⊤

a W̃a. (39)

According to Kamalapurkar, Walters, et al. (2018, Lemma 4.3), 
(39) can generally be bounded as 
vl (∥z∥) ≤ VL (z) ≤ vl (∥z∥) (40)

using class K functions vl, vl : R≥0 → R≥0. To facilitate the 
subsequent analysis, let vl (∥z∥) =

1
2q (∥x∥) +

1
12ηc2c

W̃c

2 +

1
16 (ηa1 + ηa2)

W̃a

2 and define r ∈ R>0 to be the prescribed 
radius of a compact ball Br ∈ Rn+2L centered at the origin where 
the convergence of z is desired. 

Theorem 2. Taking the time derivative of (39) yields

V̇L
a.a.t.
≤ ∇V ∗ẋ − W̃⊤

c Γ −1 ̇̂Wc − W̃⊤

a
̇̂Wa (41)

−
1
2
W̃⊤

c Γ −1Γ̇ Γ −1W̃c .

Provided the weight update laws in (36)–(38) are implemented, 
Assumptions  1–6 hold, and the conditions 

ηa1 + ηa2 >
1

√
νΓ

(ηc1 + ηc2)WGφ (42)

c > 3
ηa1

ηc2
+

3 (ηc1 + ηc2)
2 W

2

8ηc2νΓ

(
Gφ

2

2 (ηa1 + ηa2)

)
(43)

l < vl
(
vl

−1 (vl (r)
))

(44)

∥z (0)∥ ≤ vl
−1 (vl (r)

)
(45)

are satisfied, where l is a positive constant that depends on the 
NN bounding constants in Assumption  5, then x, W̃c , and W̃a are 
UUB. Hence, each control policy û converges to a neighborhood of 
its respective optimal control policy u∗.

Proof. Using (3), the HJB equation in (28), and the definitions 
of GR (x) ≜ g (x) R−1g (x) ⊤, Gφ (x) ≜ ∇φ (x)GR (x) ∇φ (x) ⊤, and 
Gϵ (x) ≜ ∇ϵ (x)GR (x) ∇ϵ (x)⊤, the time derivative in (41) can be 
written as

V̇L = −Q (x) −
1
4
W⊤GφW −

1
2
W⊤

∇φ⊤GR∇ϵ⊤
−

1
4
Gϵ

− ∇V ∗gu∗
+ ∇V ∗gu∗

− W̃⊤

c Γ −1 ̇̂Wc

− W̃⊤

a
̇̂Wa −

1
2
W̃⊤

c Γ −1Γ̇ Γ −1W̃c .

Substituting the NN optimal value function representation in (30), 
the NN optimal control policy representation in (31), and the 
approximate control policy in (33) yields

V̇L = −Q (x) −
1
4
W⊤GφW −

1
2
W⊤

∇φ⊤GR∇ϵ⊤
−

1
4
Gϵ

+
1
2
∇ϵGR∇φ⊤W̃a

⊤

+
1
2
W⊤

∇φGR∇ϵ⊤
+

1
2
Gϵ

+
1
2
W⊤GφW̃⊤

a − W̃⊤

c Γ −1 ̇̂Wc − W̃⊤

a
̇̂Wa

−
1
2
W̃⊤

c Γ −1Γ̇ Γ −1W̃c .
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Substituting the weight update laws in (36)–(38) yields

V̇L = −Q (x) −
1
4
W⊤GφW +

1
2
W⊤GφW̃a

+
1
4
Gϵ +

1
2
∇ϵGR∇φ⊤W̃a

− W̃⊤

c

(
−ηc1Γ

ω

ρ
δ̂ − ηc2

1
N

N∑
i=1

ωi

ρi
δi

)
− W̃⊤

a

(
−ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa

)
− W̃⊤

a

(
ηc1G⊤

φ Ŵaω
⊤

4ρ
Ŵc + ηc2

1
N

N∑
i=1

G⊤

φiŴaω
⊤

i

4ρi
Ŵc

)

−
1
2
W̃⊤

c

(
λΓ −1

− ηc1
Γ ωω⊤Γ

ρ2 − ηc2
1
N

N∑
i=1

ωiω
⊤

i

ρ2
i

)
W̃c .

Substituting the BE in (35) and upper bounding terms using 
Assumptions  1–6 yields

V̇L ≤ −q (∥x∥) −
1
2
ηc2c

W̃c

2
− (ηa1 + ηa2)

W̃a

2 +
1
4

∥Gϵ∥

+

(
1
2
W
Gφ

+
1
2
∇ϵ ∥GR∥ ∇φ

)W̃a


+

(
+ηc1W

2 1
8
√

νΓ

Gφ

)W̃a


+

(
−ηc2W

2 1
8
√

νΓ

Gφ

+ ηa2W
)W̃a


+

(
ηc1

1
2
√

νΓ
∥O∥ + ηc2

1
2
√

νΓ
∥O∥

)W̃c


+

(
ηc1W

1
8
√

νΓ

Gφ

+ ηc2W
1

8
√

νΓ

Gφ

)W̃a

2
+

(
ηc2

1
8
√

νΓ
W
Gφ

+ ηa1

)W̃a

 W̃c


+

(
ηc1

1
8
√

νΓ
W
Gφ

)W̃a

 W̃c

 .

Implementing nonlinear damping and substituting the gain con-
ditions in (42) and (43) yields

V̇L ≤ −q (∥x∥) −
1
6
ηc2c

W̃c

2 −
1
8

(ηa1 + ηa2)

W̃a

2
+

2a2

ηa1 + ηa2
+

3 (ηc1 + ηc2)
2
∥O∥

2

8νΓ ηc2c
+

1
4

∥Gϵ∥

+ ηa2
1
2
W

2
.

By consolidating terms into vl and l, the time derivative of (39) 
can be bounded as 

V̇L ≤ −vl (∥z∥) ∀ ∥z∥ ≥ v−1
l (l) , (46)

for all t ∈ R>0. Using (40) and (46), Khalil (2002, Theorem 4.18) 
can be invoked to conclude that every trajectory z (t) that satis-
fies the initial condition ∥z (0)∥ ≤ vl

−1 (vl (r)
)
 is bounded for all 

t ∈ R, z is UUB such that lim supt→∞ ∥z∥ ≤ vl
−1
(
vl
(
v−1
l (l)

))
, and 

the control policy û converges to a neighborhood of the optimal 
control policy u∗. Since z ∈ L∞, it follows that x, W̃c, W̃a ∈ L∞; 
hence, x, Ŵc, Ŵa ∈ L∞ and u ∈ L∞. Additionally, every trajectory 
z that is initialized in the ball Br  is bounded such that z ∈ Br , 
∀t ∈ R≥0. Since z ∈ Br , the states x, Ŵc, Ŵa similarly lie in a 
compact set.
7

Fig. 1. Comparative plots of the regulation error norm ∥x∥ for the developed 
method consisting of adaptive updates of all the DNN layers compared to the 
previous method consisting of multi-timescale updates of the DNN.

6. Simulations

To demonstrate the effectiveness of the developed ADP tech-
nique, comparative simulations are performed on a control-affine 
nonlinear dynamical system with a two dimensional state x =

[x1, x2]⊤. The developed method results are compared with the 
multi-timescale DNN technique in Greene et al. (2023) as the 
baseline. For the baseline method, the inner-layer weights are 
retrained and updated once online, and the mean squared error 
is used as the loss function for training.

For value function approximation, the basis function is se-
lected as φ =

[
x21, x1x2, x

2
2

]
. The initial conditions for the system 

are x (0) = [−5, 5]⊤, Γ (0) = 100 · I3×3, and Ŵc (0) = Ŵa (0) =

0.01 · 13×1. The system dynamics in (3) are

f =

[
x1 x2 0 0
0 0 x1 x2

(
1 − (cos (2x1) + 2)2

) ] θ,

g =

[
0

cos (2x1) + 2

]
,

where θ = [−1, 1, −0.5, −0.5]⊤ (Vrabie et al., 2013). The simula-
tion parameters are selected as ηc1 = 0.005, ηc2 = 0.1, ηa1 = 15, 
ηa2 = 0.1, λ = 0.4, ν = 0.005, N = 100, Γθ = 0.02 · IL×L, α1 = 30, 
kf = 100, βf = 0.2, kθ = 0.001. The cost parameters in (4) are 
selected as Q = xTdiag ([.01, 3]) x and R = .6. The optimal value 
function for the system is given by V ∗ (x) =

1
2x

2
1 + x22 (Vrabie 

et al., 2013). The implemented DNN contains 7 hidden layers with 
7 neurons in each layer.4

Fig.  1 presents the state errors of the infinite horizon reg-
ulation problem. It is shown that using the developed system 
identifier to learn the dynamics in real-time successfully yields 
faster convergence of the system states. The state error rapidly 
converges to steady state at approximately 3 s, whereas it takes 
approximately 7 s for the state errors to converge with the 
baseline method.

Fig.  2 shows the comparative plots of the RMS function ap-
proximation error norm with the developed and baseline method. 

4 The time and memory computational complexity of the DNN forward and 
backward pass is O(kL2), where k is the number of layers and L is the number of 
neurons in each layer. The computational complexity grows linearly in depth and 
quadratically in width. Note that kL2 is also approximately the total number of 
individual weights in the DNN. Therefore, it is the total number of weights in the 
DNN that decides the computational complexity, and a shallow neural network 
consumes equal computational resources as a DNN with an equal number of 
total individual weights.
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Fig. 2. Comparative plots of the RMS function approximation error norm f (x) − Φ

(
X, θ̂

) for the developed method consisting of adaptive updates 
of all the DNN layers compared to the previous method consisting of multi-
timescale updates of the DNN.

Fig. 3. Comparative plots of the control input ∥u∥ for the developed method 
consisting of adaptive updates of all the DNN layers compared to the previous 
method consisting of multi-timescale updates of the DNN.

The simultaneous update on all weights results in a rapid function 
approximation error convergence with the developed method, 
i.e., within 3 s. In contrast, the baseline method does not yield 
function approximation error convergence until after 8 s. The 
developed method results in an RMS error of 2.407 while the 
baseline method results in an RMS error of 4.800. The RMS 
function approximation error is shown to decrease by 49.85% 
when using the developed method compared to the baseline. 
The improved learning of the dynamics is beneficial to the ADP 
framework as it provides a more accurate model to be used in BE 
extrapolation which results in faster convergence to the optimal 
control policy as shown subsequently in Fig.  3.

The aforementioned control objective is to find an optimal 
control policy u that minimizes the cost function. Fig.  3 shows 
that the control policy reaches convergence faster in the devel-
oped method before 3 s, while the baseline method does not 
reach convergence until approximately 4 s.

Fig.  4 shows that the actor and critic weight estimates for 
the value function and control policy are bounded and converge. 
Additionally, Fig.  5 shows the value function approximation V̂
learned by the critic NN compared to the optimal value function 
V ∗.
8

Fig. 4. Evolution of value function and control policy weights.

Fig. 5. Comparative plots of the approximated value function compared to the 
optimal value function.

An additional simulation is performed on a third-order dy-
namical system represented as

f =

[
x1 x2 0 0
0 0 x31 x2

(
1 − (cos (2x1) + 2)2

) ] θ,

g =

[
0

cos (2x1) + 2

]
,

where θ = [−1, 1, −0.5, −0.5]⊤, to demonstrate the efficacy of 
the proposed DNN on a more complex, higher-order system. Fig. 
6 shows that the function approximation error of the developed 
DNN converges within 2 s, and a shallow NN (SNN) consisting 
of only one layer takes approximately 6 s to learn the complex 
dynamics.

7. Conclusion

The developed method uses an adaptive Lb-DNN system iden-
tifier in conjunction with a RISE-based dynamics observer within 
an ADP framework. A least squares continuous-time update law 
is used to update all layers of DNN weights online. The system 
identifier is used to obtain an estimate of the unknown system 
dynamics. Exponential convergence to a neighborhood of the 
DNN weight estimation error, provided the Jacobian of the DNN 
satisfies the PE condition, is shown via a Lyapunov-based stability 
analysis. The entire system is shown to be UUB such that the 
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Fig. 6. Comparative plots of the RMS function approximation error norm f (x) − Φ

(
X, θ̂

) for the developed DNN method compared to a SNN.

developed control policy is shown to converge to a neighborhood 
of the optimal control policy. Simulation results show that the 
adaptive DNN yields 49.85% improved function approximation 
error in comparison to the previously developed multi-timescale 
DNN and faster convergence of the RMS regulation error, RMS 
controller error, and RMS function approximation error.

Appendix

DNNs are known to approximate any given continuous func-
tion on a compact set, based on the universal function approxi-
mation theorem (Kidger & Lyons, 2020). Although various DNN 
architectures can be used, a fully-connected DNN is described 
here as an example. Let σ ∈ RLin  denote the DNN input with 
size Lin ∈ Z>0, and θ ∈ Rp denote the vector of DNN parameters 
(i.e., weights and bias terms) with size p ∈ Z>0. Then, a fully-
connected feedforward DNN Φ(σ , θ ) with output size Lout ∈ Z>0
is defined using a recursive relation Φj ∈ RLj+1  modeled as 

Φj ≜

{
V⊤

j φj
(
Φj−1

)
, j ∈ {1, . . . , k} ,

V⊤

j σa, j = 0,
(A.1)

where Φ(σ , θ ) = Φk, and σa ≜
[

σ⊤ 1
]⊤ denotes the 

augmented input that accounts for the bias terms, k ∈ Z>0
denotes the total number of hidden layers, Vj ∈ RLj×Lj+1  denotes 
the matrix of weights and biases, Lj ∈ Z>0 denotes the number of 
nodes in the jth layer for all j ∈ {0, . . . , k} with L0 ≜ Lin + 1
and Lk+1 = Lout. The vector of smooth activation functions is 
denoted by φj : RLj → RLj  for all j ∈ {1, . . . , k}. If the DNN 
involves multiple types of activation functions at each layer, then 
φj may be represented as φj ≜

[
ςj,1 . . . ςj,Lj−1 1

]⊤, where 
ςj,p : R → R denotes the activation function at the pth node 
of the jth layer. For the DNN architecture in (A.1), the vector of 
DNN weights is θ ≜

[
vec(V0)⊤ . . . vec(Vk)⊤

]⊤ with size 
p = Σk

j=0LjLj+1. The Jacobian of the activation function vector 
at the jth layer is denoted by φ′

j : RLj → RLj×Lj , and φ′

j (y) ≜
∂
∂z φj(z)

⏐⏐
z=y, ∀y ∈ RLj . Let the Jacobian of the DNN with respect to 

the weights be denoted by Φ ′ (σ , θ) ≜ ∂
∂θ

Φ(σ , θ ), which can be 
represented using Φ ′ (σ , θ) =

[
Φ ′

0, Φ ′

1, . . . , Φ ′

k

]
, where 

Φ ′ ≜ ∂ Φ (σ , θ) for all j ∈ {0, . . . , k}. Then, using (A.1) and 
j ∂vec(Vj)

9

the property of the vectorization operator in (2) yields 

Φ ′

0 =

⎛⎜⎝
↶
k∏

l=1

V̂⊤

l φ′

l (Φl−1)

⎞⎟⎠ (IL1 ⊗ σ⊤

a ), (A.2)

and 

Φ ′

j =

⎛⎜⎝
↶
k∏

l=j+1

V̂⊤

l φ′

l (Φl−1)

⎞⎟⎠(ILj+1 ⊗ φ⊤

j

(
Φj−1

))
, (A.3)

for all j ∈ {1, . . . , k}.
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