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Abstract—This letter presents the first result that
enables the use of a concurrent learning (CL) adaptation
law for the weights of all the layers of the DNN-based
controller applied to a class of second-order control-affine
systems. The developed CL-based adaptation achieves
convergence of the DNN’s parameter estimates to a neigh-
borhood of their ideal values, provided the DNN’s Jacobian
satisfies a finite excitation condition. A Lyapunov-based
stability analysis is conducted to ensure convergence of
the tracking error, weight estimation errors, and observer
errors to a neighborhood of the origin. Simulations
demonstrated approximately 40% improvement in function
approximation performance and over 65% improvement on
off-trajectory evaluations compared to a baseline without
CL.

Index Terms—Concurrent learning, system
identification, nonlinear control systems.

I. INTRODUCTION

DEEP Neural Networks (DNNs) have become increasingly
popular due to their powerful function approximation

capabilities [1], [2], [3], [4], [5], [6]. Yet, most DNN
approximators rely on offline training with large datasets
and do not adapt online. This requirement limits their abil-
ity to handle evolving dynamics in applications such as
smart materials, fluid-structure iteration, and human-machine
systems. Motivated by these issues, results such as [3],
[4], [5], [6], [7], [8] (termed Lyapunov-based (Lb)-DNNs)
have enabled online weight adaptation for all the weights
in a DNN, demonstrating improved tracking performance
over shallow NN approaches or traditional offline training
methods. However, these approaches largely address tracking,
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while system identification, important for fault detection and
robust state prediction under intermittent feedback [9], remains
underexplored.

Motivated by the desire to achieve parameter convergence,
results such as [2], [10], [11], [12], [13] use adaptive control
techniques to yield convergence of parameter estimates to
a neighborhood of the actual parameters. In [13], a least
squares update law resulted in parameter estimation error
convergence to a neighborhood of the origin, under the
persistent excitation (PE) condition. However, the PE condi-
tion on the Jacobian cannot be verified online for nonlinear
systems and requires continuous exploration of system states
and parameter trajectories, posing a challenge in balancing
exploration and exploitation. For systems involving linear-
in-parameter (LIP) uncertainty, results such as [11], [12],
[14], [15], [16] achieve parameter convergence without PE
by incorporating data from previously explored trajectories
into the parameter update laws. In [2], a DNN was cast in
LIP form by adapting only the output layer weights online
while keeping the inner layers fixed, enabling the use of
concurrent learning (CL). CL techniques build a history stack
of past data, improving system identification and allowing
off-trajectory exploration [14], [15]. This approach reduces
dependence on instantaneous measurements and broadens the
information used in updates. Extending CL updates to all
layers of a DNN remains challenging due to the nonlinear-
in-parameter (NIP) nature of its inner layers, which presents
significant technical challenges in formulating the prediction
error to account for the nonlinear influence of the inner
layers.

This letter presents the first approach for continuous all-
layer adaptation of a DNN using a CL-based update law
(Lb-CL-DNN). This method relaxes the PE condition, typical
in other results, and ensures parameter convergence under
finite excitation (FE). The novelty developed here is to enable
the update law to dynamically reconstruct the history stack
and to exploit the DNN Jacobian properties to maintain
accurate parameter estimates. These innovations are imperative
given that, unlike LIP regressions, the DNN’s Jacobian is a
function of the parameter estimates and thus transient errors
would result in an inaccurate history stack. A Lyapunov-based
stability analysis guarantees boundedness of the tracking error,
weight estimation errors, and observer errors.
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Notation and Mathematical Background

The space of essentially bounded Lebesgue measur-
able functions is denoted by L∞. Given A � [aj,i] ∈
R

n×m, vec(A) � [a1,1, . . . , an,1, . . . , a1,m, . . . , an,m]�. The
Kronecker product is denoted by ⊗. Given any A ∈ R

n×m,
B ∈ R

m×p, and C ∈ R
p×r, vec(ABC) = (C� ⊗ A)vec(B).

The right-to-left matrix product operator is represented by
�∏

,

i.e.,

�

m∏

p=1

Ap = Am . . .A2A1 and

�

m∏

p=a

Ap = In, if a > m. The

identity matrix of size n × n is denoted by In. Given some
functions f and g function composition is denoted by ◦, where
(f ◦ g)(x) � f (g(x)).

A. Deep Neural Network (DNN) Model

A feedforward DNN �(X, θ) ∈ R
n can be modeled as [4]

�(X, θ) �
(

v�
k φk ◦ · · · ◦ v�

1 φ1

)(
v�

0 Xa

)
, (1)

where θ � [vec(v0)
�, . . . , vec(vk)

�]� ∈ R
ρ , where ρ �∑k

j=0 LjLj+1, j ∈ {0, . . . , k} and k ∈ N denotes the number
of hidden layers within θ , vj ∈ R

Lj×Lj+1 denotes the matrix
of weights and biases in the jth hidden layer, Lj ∈ N denotes
the number of nodes within the jth hidden layer for all j ∈
{0, . . . , k}, and L0 � m + 1, where m is the dimension of
the R

m input vector to the DNN. Where X ∈ � denotes the
input to the DNN, � ⊂ R

m denotes a compact set, and the
augmented input Xa ∈ R

m+1 is defined as Xa �
[
X� 1

]�
. The

vector of smooth activation functions at the jth layer is denoted
by φj ∈ R

Lj and is defined as φj � [ςj,1 . . . ςj,Lj−1 1 ]�, where
ςj,y ∈ R denotes the activation function at the yth node of the
jth layer for all j ∈ {1, . . . , k}. To incorporate a bias term into
the DNN model in (1), the input X and the activation functions
φj are augmented with a 1 for all j ∈ {1, . . . , k}.

To facilitate the development of the online weight adaptation
laws, the DNN model in (1) can also be represented recursively
using the shorthand notation �j as [4]

�j �
{

v�
j φj

(
�j−1

)
, j ∈ {1, . . . , k},

v�
0 Xa j = 0,

where �(X, θ) = �k.
The Jacobian of the feedforward DNN, denoted �′(X, θ),

can be represented as �′(X, θ) � [�′
0(X, θ), . . . , �

′
j(X, θ)] ∈

R
n×ρ , where �′

j �
∂�(X,θ)
vec(vj)

∈ R
n×LjLj+1 , for all j ∈ {0, . . . , k}.

The terms �′
0 and �′

j can be expressed as [4]

�′
0(X, θ) �

⎛

⎜
⎝

�

k∏

l=1

v�
l φ

′
l

⎞

⎟
⎠
(

IL1 ⊗ X�
a

)
,

�′
j (X, θ) �

⎛

⎜
⎝

�

k∏

l=j+1

v�
l φ

′
l

⎞

⎟
⎠
(

ILj+1 ⊗ φ�
j

)
,

for all j ∈ {1, . . . , k}, where the activation function at the
jth layer and its Jacobian are expressed using the shorthand
notations φj � φj(�j−1(X, θ)) and φ′

j � φ′
j(�j−1(X, θ)),

respectively, and φ′
j : R

Lj → R
Lj×Lj is defined as φ′

j(y) �

∂
∂	
φj(	)|	=y, for all y ∈ R

Lj . For each j ∈ {0, . . . , k}, the

activation function φj, its Jacobian φ′
j , and Hessian φ′′

j (y) �
∂2

∂y2φj(y) are bounded as‖φj(y)‖ ≤ a1‖y‖ + a0, ‖φ′
j(y)‖ ≤ b0,

‖φ′′
j (y)‖ ≤ c0, where a0, a1, b0, c0 ∈ R≥0 are known con-

stants.1

Let the DNN parameters which yield the best approximation
of an unknown function f (x, ẋ) be defined using the loss
function L : Rκ → R≥0 given as

L(θ) �
∫

�

(
‖f (x, ẋ)−�(X, θ)‖2 + σ‖θ‖2

)
dμ(xi),

where μ denotes the Lebesgue measure, σ ∈ R>0 denotes
a regularizing constant, and the term σ‖θ‖2 represents L2
regularization, also known as ridge regression [17, Sec. 7.1.1].
A bounded parameter search space � � {θ ∈ R

ρ : ‖θ‖ ≤ θ̄} is
considered where θ̄ ∈ R>0 is a user-selected bound. Therefore,
the desired DNN parameter vector θ∗ ∈ � is formally defined
as

θ∗ � arg min
θ∈�

L(θ). (2)

For the solution of (2) to be unique we make the following
assumption.

Assumption 1: The loss function L is strictly convex over
the set �.

II. CONTROL DESIGN

Consider a control-affine2 nonlinear dynamic system mod-
eled as

ẍ = f (x, ẋ)+ u, (3)

where x, ẋ ∈ R
n denotes the available generalized position

and velocity, f : Rn → R
n denotes an unknown continuously

differentiable function, and u ∈ R
n denotes a control input.

The tracking control objective is to simultaneously track a
user-defined reference trajectory xd ∈ R

n and learn the
unknown function f (x, ẋ) online using a DNN starting from
the initial time t0. Therefore, f (x, ẋ) can be modeled as

f (x, ẋ) = �
(
X, θ∗)+ ε(X), (4)

where the input to the DNN is denoted X � [x�, ẋ�]�.
Due to the continuity of f (x, ẋ) and � and the constraint of
a bounded search space, the function approximation error ε
which bounds supx∈�‖f (x, ẋ)−�(X, θ)‖ exists but may not be
prescribable as stated in the universal function approximation
theorem [18, Th. 3.1].

The reference trajectory is assumed to satisfy ‖xd‖ ≤ xd,
‖ẋd‖ ≤ ẋd, and ‖ẍd‖ ≤ ẍd, where xd, ẋd, ẍd ∈ R>0 are known
constants. To quantify the tracking objective, the trajectory and
auxiliary tracking errors e, r ∈ R

n are defined as

e � x − xd, r � ė + α1e, (5)

1Most activation functions, e.g., sigmoidal, and rectified linear unit
(ReLUs), satisfy the form of these bounds.

2A second-order, control-affine system with matched uncertainties is inten-
tionally considered to narrowly focus on the primary contribution. We believe
future work could extend this method to address more general systems, such
as those with unmatched uncertainties, by incorporating classical techniques,
as no fundamental technical barriers are foreseen.

Authorized licensed use limited to: University of Florida. Downloaded on January 29,2026 at 22:17:38 UTC from IEEE Xplore.  Restrictions apply. 



HART et al.: CL FOR SYSTEM IDENTIFICATION AND CONTROL USING LYAPUNOV-BASED DNNs 2959

where α1 ∈ R>0 is a user-selected control gain. Taking the
time derivative of (5), applying (3), and (4) yields the open-
loop error system

ṙ = �
(
X, θ∗)+ ε(X)+ u − ẍd + α1ė. (6)

The subsequent development considers the concurrent tracking
control and system identification problem. The parameter iden-
tification objective is quantified using the parameter estimation
error defined as θ̃ � θ∗ − θ̂ , where θ̂ ∈ R

ρ represents the
parameter estimates. Using the definitions of �(x, θ∗) and
�(x, θ̂ ), a first-order Taylor series approximation-based model
of the estimation error is used to obtain [4]

�
(
x, θ∗)−�

(
x, θ̂

)
= �′(x, θ̂

)
θ̃ + R

(
x, θ̃

)
, (7)

where R(x, θ̃ ) represents the Lagrange remainder term.

A. Closed-Loop Error System and Control Law
Development

Since f (x, ẋ) in (6) is unknown, we are motivated to develop
an approximation that can be used as a feedforward control
element. Based on the subsequent stability analysis, the control
input is designed as

u = ẍd −�
(

X, θ̂
)

− k1r − e − α1ė, (8)

where k1 ∈ R>0 is a user-defined control gain. Substituting
(4) and (8) into (6), applying (7), and canceling cross terms
yields

ṙ = �′(X, θ̂
)
θ̃ + R

(
x, θ̃

)
+ ε(X)− k1r − e. (9)

B. Dynamic State-Derivative Observer

Motivated by the desire to incorporate previous state
information into the update law in a CL style, the update law
is augmented with a history stack containing the error between
the calculated control input and a reconstructed version of
the control input. To reconstruct (3), an observer is developed
to estimate the unmeasurable state ẍ. The dynamic state-
derivative observer is designed as

˙̂r = �̂− ẍd + α1ė + α2r̃, (10)
˙̂
� = r̃ + k��̃− u̇, (11)

where r̂, �̂ ∈ R
n denote the observer estimates for r and

ẍ, respectively, r̃, �̃ ∈ R
n denote the observer errors, r̃ =

r − r̂ and �̃ = ẍ − �̂, respectively α2, k� ∈ R>0 denote
constant observer gains, and u̇ is the unmeasurable derivative
of the control input. Taking the time derivative of r̃ and �̃ and
applying (10) and (11) yields

˙̃r = �̃− α2r̃, (12)
˙̃
� = ḟ (x, ẋ)+ u̇ − r̃ − k��̃− u̇, (13)

where ḟ (x, ẋ) � d
dt f (x, ẋ) = ∂f

∂x ẋ + ∂f
∂ ẋ ẍ and u̇ � d

dt u. The
observer error r̃ is known because r and r̂ are known. Because
�̃ = ˙̃r +α2r̃, the implementable form of (11) can be obtained
by integrating on both sides and using the relation

∫ t
t0

˙̃r =
r̃(t) − r̃(t0), which yields �̂(t) = �̂(t0) + k�(r̃(t) − r̃(t0)) −
(u(t)− u(t0))+ ∫ t

t0
(k�α2 + 1)r̃(τ )dτ .

Let the concatenated error vectors z ∈ R
2n and ζ ∈ R

ψ be
defined as z � [r̃�, �̃�]� and ζ � [r�, e�, θ̃�]�, respectively,
where ψ � 2n+ρ. Additionally, let the open and connected set
D ⊂ R

ψ be defined as D � {ζ ∈ R
ψ : ‖ζ‖ < χ}, where χ ∈

R>0 denotes a subsequently defined known upper bound. The
following lemma establishes a bound on ḟ (x, ẋ) when ζ ∈ D
to facilitate the convergence analysis for the observer.

Lemma 1: For all ζ ∈ D, there exists a constant δf ∈ R>0
such that the bound ‖ḟ (x, ẋ)‖ ≤ δf holds.

Proof: See Appendix.
Let �1 � min{k�, 2α2}. The following lemma establishes

the convergence properties of the observer error system in (12)
and (13).3

Lemma 2: Consider the observer given by (10) and (11).
The observer error is bounded in the sense that ‖z(t)‖ ≤√

‖z(t0)‖2e−�1(t−t0) + δ2
f
�1
(1 − e−�1(t−t0)) for all t ∈ R≥0,

provided ζ ∈ D. Furthermore, suppose the initial acceleration
error is bounded by a known constant, ‖�̃(t0)‖ ≤ �̄0 where
�̄0 ∈ R>0. The observer can achieve a prescribed accuracy

δ� ∈ R>0 with the settling time t� � t0 + 1
�1

ln(
k��1�̄

2
0−δ2

f

k��1δ
2
�−δ2

f
),

provided the feasibility gain condition k��1 >
δ2

f

δ2
�

is satisfied.

Proof: See Appendix.
Remark 1: Using Lemma 2, the observer errors, �̃ and r̃

will converge to the prescribed ultimate bound δ� after the
time t� has passed.

III. CL ADAPTATION LAWS FOR ADAPTIVE CONTROL

The adaptation law is developed by extending established
CL techniques to the NIP structure of the DNN. The shorthand
notation �′(X, θ̂ ) in (14) denotes the Jacobian of the DNN at
the current state and weight estimates, and �′(Xi, θ̂ ) represents
the Jacobian of the DNN using the current weight estimates
and the previous state Xi, where Xi � X(ti) and ti ∈
[t�, t], represents states within this time interval. Compared to
other CL approaches which begin gathering data immediately,
the history stack is only constructed after t ≥ t� where
the observer settling time t� is defined in Lemma 2. This
time-based condition ensures that the user-defined number of
data points N ∈ N which construct the history stack are
gathered only after the observer has reached its ultimate bound
which is required to ensure accuracy of the stored data. The
implementable form of the CL-DNN update law is designed
as

˙̂
θ = proj

(
�
(
�′�(X, θ̂

)
r − γ1

N∑

i=1

�′�(Xi, θ̂
)(

ui − ûi
)

− γ2θ̂
))
, (14)

where γ1, γ2 ∈ R>0 denote user-selected adaptation gains,
and � ∈ R

ρ×ρ denotes a positive-definite time-varying least

3When the observer is activated with the system at rest, the initial velocity
and acceleration are both zero, simplifying the calculation and eliminating
the need for an upper bound. If the initial acceleration is not exactly known,
a conservative upperbound can be used and will result in a longer settling
time t�.
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squares adaptation gain matrix

d

dt
�−1 =

⎧
⎪⎨

⎪⎩

−β�−1 + γ1

(∑N
i=1�

′�
(

Xi, θ̂
)
�′
(

Xi, θ̂
))
,

if λ�,min < λmin(�) and λmax(�) < λ�,max
0, otherwise

(15)

where β represents a user selected forgetting factor β : R≥0 →
R≥0, and λ�,min, λ�,max are user-selected bounds for the
minimum and maximum eigenvalues of �, respectively. The
adaptation gain in (15) is initialized to be PD and it can
be shown that �(t) remains PD for all t ∈ R≥0 [19]. A
reconstructed estimate of the calculated control input can be
determined as

ûi = �̂i −�
(

Xi, θ̂
)
. (16)

An analytical form of the implementable weight adaptation
law in (14) can be obtained from (3), (4), (7), (14), and (16)
as

˙̂
θ = proj

(
�

(

�′�(X, θ̂
)

r − γ2θ̂ + γ1

N∑

i=1

�′�(Xi, θ̂
)
�′(Xi, θ̂

)
θ̃

+ γ1

N∑

i=1

�′�(Xi, θ̂
)(

R
(

x, θ̃
)

+ ε(Xi)− �̃i

)
)
)
. (17)

IV. STABILITY ANALYSIS

Using the structure of the DNN, the following bounds can
be established

∥
∥
∥R
(

X, θ̃
)∥
∥
∥ ≤ ρ1(‖ζ‖)‖ζ‖2,

∥
∥
∥�̂′(Xi, θ̂

)∥
∥
∥ ≤ ρ2(‖Xi‖), (18)

where ρ1, ρ2 : R≥0 → R≥0 denote strictly-increasing func-
tions. Due to the fact that R(X, θ̃ ), �′(Xi, θ̂ ), and ε are
bounded, then the following bounds can be established

∥
∥
∥�′�(Xi, θ̂

)
R
(

Xi, θ̃
)∥
∥
∥ ≤ ρ3(‖ζi‖)‖ζ‖2,

∥
∥
∥�′�(Xi, θ̂

)
ε(Xi)

∥
∥
∥ ≤ ρ4(‖Xi‖), (19)

where ρ3, ρ4 : R≥0 → R≥0 denote strictly-
increasing functions. Let ρ�(‖ζ‖) ≥ 1

2k1
ρ2

1(‖ζ‖)‖ζ‖2 +
γ 2

1
2

∑N
i=1 ρ

2
3(‖ζi‖)‖ζ‖2, where ρ� : R≥0 → R≥0 denotes an

invertible strictly-increasing function. Since the approximation
capabilities of DNNs holds on a compact domain �, the
subsequent stability analysis requires ensuring X(t) ∈ � for
all t ∈ [t0,∞). This is achieved by yielding a stability result
which constrains ζ in a compact domain. Therefore, consider
the compact domain D � {σ ∈ R

ψ : ‖σ‖ ≤ χ} in which ζ
is supposed to lie to develop Theorem 1. It follows that if
‖ζ‖ ≤ χ then X can be bounded as ‖X‖ ≤ (α+2)χ+xd + ẋd.
Therefore, select � � {σ ∈ R

2n : ‖σ‖ ≤ (α1 +2)χ+xd + ẋd}.
Then ζ ∈ D implies X ∈ �. Let λ � min( k1

2 − 1
2 , α1,

γ1
2 (λmin(

∑N
i=1�

′�(Xi, θ̂ )�
′(Xi, θ̂ ))− 1 − Nδ�) − 1

2 + γ2
2 ) and

λd ∈ R>0 denote the desired convergence rate. To ensure
that arbitrary initial conditions are always included, the user-
selected constant χ is selected as χ � ρ−1

� (λ− λd). Then, it
follows that z(t0) ∈ D = {ζ ∈ R

2n+p : ‖ζ‖ ≤ χ} is always

satisfied. Because the solution t �→ ζ(t) is continuous due
to the Caratheodory existence conditions [20, Ch.2, Th. 1.1],
there exists a time-interval I � [t0, t1) such that ‖ζ(t)‖ < D
for all t ∈ I. It follows that X(t) ∈ � for all t ∈ I, therefore
the universal function approximation property holds over this
time interval. In the subsequent stability analysis, we analyze
the convergence properties of the solutions and also establish
that I can be extended to [t0,∞). Let the set S ⊂ D be the
set of stabilizing initial conditions defined as

S �
{

σ ∈ R
ψ : ‖ζ (t0)‖ <

√
β1

β2
ρ−1
� (λ− λd)

2 − ι

λd

}

,

where β1 � min{ 1
2 ,

1
2

1
λ�,max

}, β2 � max{ 1
2 ,

1
2

1
λ�,min

}, and ι �
1
2ε

2 + γ2
2 θ

2 + γ1
2

∑N
i=1 ρ

2
4(‖Xi‖)+ γ1Nδ�

2

∑N
i=1 ρ

2
2(‖Xi‖).

To guarantee that the adaptive update law in Theorem 1
achieves the parameter identification, i.e., ‖θ̃‖ is minimized,
the history stack needs to be sufficiently rich, i.e., the system
needs to be excited over a finite duration of time as specified
in the following assumption.

Assumption 2: There exists λe > 0 and there exists T > t�
for all t ≥ T such that λmin{∑N

i=1�
′�(Xi, θ̂ )�

′(Xi, θ̂ )} ≥ λe.
Consider the Lyapunov candidate function V : Rψ → R≥0

defined as

V(ζ ) = 1

2
r�r + 1

2
e�e + 1

2
θ̃��−1θ̃ , (20)

which satisfies the inequality β1‖ζ‖2 ≤ V(ζ ) ≤ β2‖ζ‖2.

Taking the time derivative of V(ζ ), and applying (5) and (9)
yields

V̇ = r�(�′(X, θ̂
)
θ̃ + R

(
X, θ̃

)
+ ε(X)− k1r − e

)

− e�α1e + θ̃��−1 ˙̃
θ + 1

2
θ̃�
(

d

dt
�−1

)

θ̃ . (21)

Using (15), the last term in (21) can be bounded as

1

2
θ̃�
(

d

dt
�−1

)

θ̃ ≤ 1

2
θ̃�γ1

(
N∑

i=1

�′�(Xi, θ̂
)
�′(Xi, θ̂

)
)

θ̃ . (22)

Theorem 1 provides convergence guarantees for the tracking
and parameter estimation errors using the update law in (17).

Theorem 1: Let the gain conditions k��1 >
δ2

f

δ2
�

and λd > 0

be satisfied, and ‖ζ(0)‖ ∈ S. For the dynamical system in (3),
the controller in (8) and the adaptation law developed in (17)
ensures the concatenated error vector ζ is bounded in the sense

that ‖ζ(t)‖ ≤
√
β2
β1

‖ζ(t0)‖2e
− λd
β2
(t−t0) + β2ι

β1λd
(1 − e

− λd
β2
(t−t0)),

for all t ∈ R≥0.
Proof: Consider the candidate Lyapunov function in (20).

From (17), (21), and using (22), V̇ can be upper bounded as

V̇ ≤ −r�k1r − e�α1e + r�(R
(

X, θ̃
)

+ ε(X)
)

− θ̃� γ1

2

N∑

i=1

�′�(Xi, θ̂
)
�′(Xi, θ̂

)
θ̃ − θ̃�γ2θ̃ + θ̃�γ2θ

∗

− θ̃�γ1

N∑

i=1

�′�(Xi, θ̂
)(

R
(

Xi, θ̃
)

+ ε(Xi)− �̃i

)
.
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Using Lemma 2, the bound ‖�̃i‖ ≤ δ� holds for all i ∈
{1, . . . ,N}, provided ζ ∈ D, the data is collected after the
settling time t�, and the feasibility gain condition k��1 >
δ2

f

δ2
�

is satisfied. Therefore, using the bounds in (18) and (19),

V̇ can be upper bounded as V̇ ≤ −(λ − ρ�(‖ζ‖))‖ζ‖2 +
ι, when ζ ∈ D. Therefore, when ζ is initialized such that
ζ(t0) ∈ S, then, from the definition of S, λ > λd +
ρ�(

√
β2
β1

‖ζ(t0)‖2 + β2ι
β1λd

). Recall that, because the solution
t �→ ζ(t) is continuous, ζ cannot instantaneously escape S
at t0, therefore there exists a time-interval I such that ζ(t) ∈
S for all t ∈ I, implying ‖ζ(t)‖ <

√
β2
β1

‖ζ(t0)‖2 + β2ι
β1λd

for
all t ∈ I. Because ρ� is strictly increasing, ρ�(‖ζ(t)‖) <
ρ�(

√
β2
β1

‖ζ(t0)‖2 + β2ι
β1λd

) for all t ∈ I. As a result,

V̇ ≤ −λd‖ζ‖2 + ι (23)

for all t ∈ I. Using β1‖ζ‖2 ≤V(ζ )≤ β2‖ζ‖2, V̇, and solv-
ing the differential inequality over I yields V(ζ(t)) ≤
V(ζ(t0))e− λd

β2
(t−t0) + β2ι

λd
(1 − e

− λd
β2
(t−t0)). Using [21, Th. 3.3],

I can be extended to the interval [t0,∞) and ‖ζ(t)‖ <√
β2
β1

‖ζ(t0)‖2 + β2ι
β1λd

for all t ∈ [t0,∞). Under more excitation

λmin{∑N
i=1 �̂

′�(Xi, θ̂ )�̂
′(Xi, θ̂ )} grows, thus increasing λe and

λd, tightening the ultimate bound of ζ . Hence, if ζ(t0) ∈
S, then ζ(t) ∈ S ⊂ D and therefore X ∈ � for all t ≥ 0.
Using (20) and (23) implies e, r, θ̃ ∈ L∞. The fact that
xd, ẋd, ẍd, e, r ∈ L∞ implies x, ẋ ∈ L∞, using this and the
fact θ̂ ∈ L∞ is bounded by the use of the projection operator
implies u is bounded.

V. SIMULATIONS

Comparative simulation results are provided to demonstrate
the performance of the developed method with a baseline
which is tracking error based (i.e., γ1 = 0). Simulations
were performed on a 6-DOF rigid body vehicle with state
vector x = [x,y,z, ϕ, ϑ,ψ]� ∈ R

6. The system dynamics are
represented by f (x, ẋ) = [− kL

m ẋ|ẋ|[ m
s2 ], − kL

m ẏ|ẏ|[ m
s2 ], −g −

kL
m ż|ż|[ m

s2 ], Iyy−Izz
Izz

ϑ̇ψ̇ − kAϕ̇|ϕ̇|[ rad
s2 ], Izz−Ixx

Iyy
ϕ̇ψ̇ − kAϑ̇ |ϑ̇ |[ rad

s2 ],
Ixx−Iyy

Izz
ϕ̇ϑ̇ − kAψ̇ |ψ̇ |[ rad

s2 ]]�where kL = 0.25, kA = 0.03,

m = 1.5kg, g = 9.81 m
s2 , Ixx = 0.0348kg · m2, Iyy =

0.0348kg · m2, Iyy = 0.0977kg · m2, represent the linear
and angular drag coefficients, mass, gravity, X-axis, Y-axis,
and Z-axis inertia, respectively. Simulations were run for
100s with an update preformed every 0.01s to demonstrate
the impact of the real-time adaptation. The settling time t�
was selected as 5s and the history stack was constructed
using a sliding window of the previous 100 data points (1s
of data) with the stack being updated every 5 new data
points gathered or 0.05s. The tracking objective was to track
the desired trajectory xd = [2sin(0.5t), 1.5cos(0.7t), 1 +
0.8sin(0.3t), 0.2sin(0.4t), 0.15cos(0.6t), 0.3sin(0.2t)]� ∈
R

6 and tracking performance e = [e�
p , e�

R ] where ep ∈
R

3 and eR ∈ R
3 are the errors for the position and

rotation metrics, respectively. The simulation is initialized
at x(0) = [0.1,−0.1, 0.05, 0.02,−0.02, 0.01]� and ẋ(0) =
[0, 0, 0, 0, 0, 0]. The DNNs are composed of 4 layers, 12

Fig. 1. Function approximation errors evaluated at off trajectory points.

TABLE I
TRACKING AND FUNCTION APPROXIMATION METRICS FOR THE

DEVELOPED METHODS VS. BASELINE METHOD

neurons,4 and tanh activation functions. The weights of the
DNN were randomly initialized from a uniform distribution
U(−0.25, 0.25). The gains were selected as α1 = 15, α2 = 50,
k1 = 3, k� = 20, β = 0.1, γ1 = 0.5, γ2 = 0.001, and
�(0) = 0.25. The same randomly selected initial weights and
control gains were used to demonstrate the performance of the
adaptation under the same conditions.

The developed method improved function approximation
while maintaining baseline-level control effort of 10.1 N and
tracking performance. The minimal tracking difference is con-
sistent with the function approximation capabilities of DNNs.
The developed method’s guaranteed parameter convergence
led to a 40.54% reduction in the function approximation error
which is defined as f̃ � f (X) − �(X, θ̂ ). To evaluate off-
trajectory performance, a test set of 100 inputs denoted by XOT

was constructed from a uniform distribution, U(−1, 1). The
function approximation error for this unseen data is denoted
f̃OT � f (XOT)−�(XOT , θ̂ ). The mean function approximation
error for the off-trajectory points shown in Figure 1 and in
Table I, which demonstrates a 65.75% improvement in off-
trajectory function approximation compared to the baseline.

VI. CONCLUSION

This letter overcomes challenges in parameter convergence
for continuous all-layer DNN adaptation, arising from the
NIP nature of the inner layers by introducing a Lb-CL-DNN
update law. A Lyapunov-based stability analysis guarantees
ultimately bounded error convergence for both the tracking
and the weight estimation errors. Simulations conducted on
a 6-DOF rigid body vehicle demonstrated improvements in
function approximation of 40.54% compared to the baseline
method and off-trajectory simulations demonstrated 65.75%
improvement for the developed method.

4The computational complexity of the DNN forward and backward pass is
O(kL2), where k is the number of layers, L is the number of neurons in each
layer, and kL2 is approximately the total number of individual weights in the
DNN [13].
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APPENDIX

Proof of Lemma 1: For all ζ ∈ D, ‖ζ‖ < χ , and hence
‖r‖, ‖e‖, ‖θ̃‖ < χ . Since ‖x‖ = ‖e + xd‖ ≤ ‖e‖ + ‖xd‖ ≤
‖e‖ + xd and ‖ẋ‖ = ‖r − α1e + ẋd‖ ≤ ‖r‖ + α1‖e‖ + ẋd,
the bounds ‖x‖ ≤ χ + xd and ‖ẋ‖ ≤ (α1 + 1)χ + ẋd hold
for all ζ ∈ D. Moreover, using (3) and (8), ẍ = f (x, ẋ) −
�(X, θ̂ ) − k1r − e − α1ė + ẍd. Using the structure of the
DNN in (1), and because θ̂ , θ∗ ∈ �, it follows that there
exists �̄ ∈ R>0 such that ‖�(X, θ∗)‖, ‖�(X, θ̂ )‖ ≤ �̄. Hence,
using (4) yields ‖f (x, ẋ)−�(X, θ̂ )‖ ≤ 2�+ ε̄. Therefore, the
definition (5) and bound ‖ẍd‖ ≤ ẍd yields ‖ẍ‖ ≤ ẍ � 2� +
ε̄+ ((k1 +α1)+ (α2

1 +1))χ + ẍd for all ζ ∈ D. Since f (x, ẋ) is
continuously differentiable, there exist constants 	1, 	2 ∈ R>0
such that ‖ ∂f

∂x‖ ≤ 	1 and ‖ ∂f
∂ ẋ‖ ≤ 	2 for all ζ ∈ D. Therefore,

‖ḟ (x, ẋ)‖ ≤ ‖ ∂f
∂x‖‖ẋ‖ + ‖ ∂f

∂ ẋ‖‖ẍ‖ ≤ 	1((α1 + 1)χ + ẋd)+ 	2ẍ.
Thus, selecting δf � 	1((α1+1)χ+ẋd)+	2ẍ yields ‖ḟ (x, ẋ)‖ ≤
δf for all ζ ∈ D. �

Proof of Lemma 2
Proof: Consider the candidate Lyapunov function V�(z) �

1
2�̃

��̃ + 1
2 r̃�r̃. Taking the derivative, using (12), (13),

and canceling cross terms yields V̇�(z) ≤ −�̃�k��̃ −
r̃�α2r̃ + �̃� ḟ (x, ẋ). Using Young’s inequality and
Lemma 1, V̇�(z) can be further upper-bounded as V̇� ≤
−�1V� + δ2

f
2k�

provided ζ ∈ D. Therefore, V�(z(t)) ≤
V�(z(t0))e−�1(t−t0) + δ2

f
2k��1

(1 − e−�1(t−t0)) and ‖z‖ ≤
√

‖z(t0)‖2e−�1(t−t0) + δ2
f

k��1
(1 − e−�1(t−t0)), provided ζ ∈ D.

Furthermore, if ‖�̃(t0)‖ ≤ �̄0 and r̂(t0) = r(t0) (because
r(t0) can be measured), then ‖z(t0)‖ ≤ �̄0. Then ‖z‖ ≤√

�̄2
0e−�1(t−t0) + δ2

f
k��1

(1 − e−�1(t−t0)). For the prescribed
accuracy δ�, using the differential inequality, the settling time

t� = t0 + 1
�1

ln(
k��1�̄

2
0−δ2

f

k��1δ
2
�−δ2

f
) is obtained after imposing δ� ≥

√

�̄2
0e−�1(t−t0) + δ2

f
k��1

(1 − e−�1(t−t0)), provided ζ ∈ D. For
the settling time to be feasible, the argument of the natural
logarithm needs to be positive; imposing this condition yields

the feasibility gain condition k��1 >
δ2

f

δ2
�

.
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