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a b s t r a c t

A dynamic neural network (DNN) based robust observer for uncertain nonlinear systems is developed.
The observer structure consists of a DNN to estimate the system dynamics on-line, a dynamic filter to
estimate the unmeasurable state and a sliding mode feedback term to account for modeling errors and
exogenous disturbances. The observed states are proven to asymptotically converge to the systemstates of
high-order uncertain nonlinear systems through Lyapunov-based analysis. Simulations and experiments
on a two-link robot manipulator are performed to show the effectiveness of the proposed method in
comparison to several other state estimation methods.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Full state feedback is not available in many practical systems.
In the absence of sensors, the requirement of full-state feedback
for the controller is typically fulfilled by using ad hoc numerical
differentiation techniques, which are sensitive to noise, leading to
unusable state estimates. Observers are an alternative method to
numerical methods. Several nonlinear observers are available in
literature to estimate unmeasurable states. For instance, sliding
mode observers were designed for nonlinear systems in Canudas
De Wit and Slotine (1991), Mohamed, Karim, and Safya (2010)
and Slotine, Hedrick, and Misawa (1986) based on an assumption
that exact model knowledge of the dynamics is available. Model-
based observers are also developed in Lee and Khalil (1997) and
Shin and Lee (1999) which require a high-gain to guarantee
estimation error regulation. The observers introduced in Astolfi,
Ortega, and Venkatraman (2010) and Lotfi and Namvar (2010)
are both applied for Lagrangian dynamic systems to estimate the
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velocity. Global exponential convergence to the true velocity is
obtained in Astolfi et al. (2010), and a global asymptotic result
is proven in Lotfi and Namvar (2010). The result in Astolfi et al.
(2010) is based on the immersion and invariance approach to
reconstruct the unmeasurable state. The use of this approach
requires the solution of a partial differential equation. Given the
challenge of finding such a solution, an approximation technique
is employed that introduces error in the estimation, the effects
of which are dominated by high-gain terms introduced in the
observer dynamics. In Lotfi and Namvar (2010), the system
dynamicsmust be expressed in a non-minimalmodel and feedback
from force sensors are used to develop a velocity estimate. In
Adhyaru (2012), a constrained optimal observer is developed for a
nonlinear systemunder the assumption of exactmodel knowledge,
where a nonquadratic performance cost function is used to impose
magnitude constraints on an observer gain matrix.

The design of robust observers for uncertain nonlinear systems
is considered in Davila, Fridman, and Levant (2005), Dawson,
Qu, and Carroll (1992), Vasiljevic and Khalil (2008) and Xian, de
Queiroz, Dawson, and McIntyre (2004). In Davila et al. (2005), a
second-order sliding mode observer for uncertain systems using
a super-twisting algorithm is developed, where a nominal model
of the system is assumed to be available and estimation errors
are proven to converge in finite-time to a bounded set around the
origin. In Dawson et al. (1992), the developed observer guarantees
that the state estimates exponentially converge to the actual
state, if there exists a vector function satisfying a complex set of
matching conditions. An asymptotic velocity observer is developed
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in Xian et al. (2004) for general second-order systems; however,
all nonlinear uncertainties in the system are damped out by a
sliding-mode term resulting in high-frequency state estimates. In
Vasiljevic and Khalil (2008), a high-gain derivative estimator is
developed to estimate the derivative(s) of a signal in the presence
of measurement noise. In the absence of noise, the derivative
estimation error asymptotically converges as the observer gain
grows to infinity. In contrast, the result developed in this paper
yields asymptotic convergence with bounded gains.

Neural networks (NN) and fuzzy logic systems provide an
effective approximation method that facilitates new observer
designs, improving and complementing the base of conventional
observer design approaches. For example, the approaches in
Boulkroune, Tadjine, MSaad, and Farza (2008), Choi and Farrell
(1999), Kim and Lewis (1999), Park and Park (2003) and Vargas
and Hemerly (2001) use the universal approximation property
in adaptive observer designs. However, estimation errors in
Boulkroune et al. (2008), Choi and Farrell (1999), Kim and Lewis
(1999), Park and Park (2003) and Vargas and Hemerly (2001) are
only guaranteed to be bounded due to function reconstruction
errors resulting from the NN or fuzzy system.

The challenge to obtain asymptotic estimation stems from
the fact that to robustly account for disturbances, feedback of
the unmeasurable error and its estimate are required. Typically,
feedback of the unmeasurable error is obtained by taking the
derivative of the measurable state and manipulating the resulting
dynamics (e.g., this is the approach used in methods such as Kim
& Lewis, 1999 and Xian et al., 2004). However, such an approach
provides a linear feedback term of the unmeasurable state. Hence,
a slidingmode term could not be simply added to the NN structure
of the result in Kim and Lewis (1999), for example, to yield an
asymptotic result, because it would require the signum of the
unmeasurable state. It is unclear how such a nonlinear function
of the unmeasurable state can be injected in the closed-loop
error system using traditional methods. Likewise, it is not clear
how to simply add an NN-based feedforward estimation of the
nonlinearities in results such as Xian et al. (2004) because of the
need to inject nonlinear functions of the unmeasurable state.

The approach used in this paper circumvents the challenge
of injecting feedback to yield an asymptotic result by using
nonlinear (sliding-mode) feedback of the measurable state, and
then exploiting the recurrent nature of a dynamic neural network
(DNN) structure to inject terms that cancel cross terms associated
with the unmeasurable state. The approach is facilitated by using
the filter structure inspired by Xian et al. (2004) and a novel
stability analysis. The stability analysis is based on the idea of
segregating the nonlinear uncertainties into terms which can be
upper-bounded by constants and termswhich can upper-bounded
by states. The terms upper-bounded by states can be canceled
by the linear feedback of the measurable errors, while the terms
upper-bounded by constants are partially rejected by the sliding
mode feedback (of the measurable state) and partially eliminated
by the novel DNN-based weight update laws.

The contribution of this paper (and its preliminary version in
Dinh, Kamalapurkar, Bhasin, & Dixon, 2011) is that the observer
is designed for Nth order uncertain nonlinear systems, where the
output of the Nth order system is assumed to be measurable up to
N − 1 derivatives. The on-line approximation of the unmeasurable
uncertain nonlinearities via the DNN structure should heuristically
improve the performance of methods that only use high-gain
feedback. Asymptotic convergence of the estimated states to
the real states is proven using a Lyapunov-based analysis. The
developed observer can be used separately from the controller
even if the relative degree between the control input and the
output is arbitrary. Simulation and experiment results on a two-
link robot manipulator indicate the effectiveness of the proposed
observer when compared with the standard numerical central
differentiation algorithm, along with the high-gain observer
proposed in Vasiljevic and Khalil (2008) and the observer in Xian
et al. (2004).

2. DNN-based observer development

Consider an Nth order control affine nonlinear system given in
MIMO Brunovsky form as

ẋ1 = x2,
...

ẋN−1 = xN , (1)
ẋN = f (x) + G(x)u + d,

where x =

xT1 xT2 . . . xTN

T
∈ RNn is the generalized state of

the system, u ∈ Rm is the control input, f : RNn
→ Rn, G : RNn

→ Rn×m are unknown continuous functions, d ∈ Rn is an external
disturbance. The following assumptions about the system in (1)
will be utilized in the observer development.

Assumption 1. The state x is bounded, i.e., xi ∈ L∞, i = 1,
2, . . . ,N , and the state x1 is measurable up to and including the
N − 1th derivative, i.e. xi, i = 1, 2, . . . ,N − 1, are measurable.

The states xi, i = 1, 2, . . . ,N − 1 are available from sensor
feedback. However, the higher order state xN is not used by
the subsequent development because it is not typically included
as available sensor measurements. The subsequent development
does not require feedback of the state xN . Motivation of this design
choice is that it reduces the need for an additional sensor or
additional signal processing that is typically not included in the
stability analysis. For example, to control the trajectory of robotic
manipulator, many results have been developed that only require
output feedback (e.g., for the second order system, only position
feedback is required). Such results are motivated by the facts that
typical robotic systems do not include tachometers and numerical
derivatives introduce additional noise. If sufficient sensing of xN
is available, then the developed observer could be simplified (e.g.,
the subsequently desired dynamic filter could be eliminated) or an
alternate method could be used.

Assumption 2. The unknown functions f and G, and the control
input u are C1, and u, u̇ ∈ L∞.

Assumption 3. The disturbance d is differentiable, and d, ḋ ∈ L∞.

The universal approximation property states that given any
continuous function F : S → Rn, where S is a compact set, there
exist ideal weights such that the output of the NN, F̂ approximates
F to an arbitrary accuracy (Hornick, 1991). Hence, the unknown
functions f andG in (1) can be replaced bymulti-layer NNs (MLNN)
as

f (x) = W T
f σf


N
j=1

V T
fj xj


+ εf (x) ,

gi(x) = W T
giσgi


N
j=1

V T
gijxj


+ εgi (x) , (2)

where Wf ∈ RLf +1×n, Vfj ∈ Rn×Lf are unknown ideal constant
weight matrices of the MLNN having Lf hidden layer neurons, gi is
the ith column of the matrix G, Wgi ∈ RLgi+1×n, Vgij ∈ Rn×Lgi are
unknown ideal constant weight matrices of the MLNN having Lgi
hidden layer neurons, i = 1 . . .m, j = 1, 2, . . . ,N, σf : RNn

→
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RLf +1 and σgi : RNn
→ RLgi+1 defined as σf , σf (

N
j=1 V

T
fj
xj),

σgi , σgi(
N

j=1 V
T
gij
xj) are activation functions (sigmoid, hyperbolic

tangent, etc.), and εf , εgi : RNn
→ Rn, i = 1 . . .m are the function

reconstruction errors. Using (2) and Assumption 2, the system in
(1) can be represented as

ẋ1 = x2,
...

ẋN−1 = xN , (3)

ẋN = W T
f σf + εf + d +

m
i=1


W T

giσgi + εgi

ui

where ui ∈ R is the ith element of the control input vector u. The
following assumptions will be used in the observer development
and stability analysis.

Assumption 4. The ideal NN weights are bounded by known
positive constants (Lewis, Selmic, & Campos, 2002), i.e.

Wf
 ≤

W̄f ,
Vfj

 ≤ V̄fj ,
Wgi

 ≤ W̄gi, and
Vgij

 ≤ V̄gij , i = 1 . . .m, j =

1, 2, . . . ,N , where ∥·∥ denotes the Frobenius norm for a matrix
and Euclidean norm for a vector.

Assumption 5. The activation functions σf , σgi and their partial
derivatives, σ ′

f , σ
′

gi, σ
′′

f , σ ′′

gi, i = 1 . . .m, are bounded (Lewis et al.,
2002).

Assumption 6. The function reconstruction errors εf , εgi, and the
respective first partial derivatives are bounded, with i = 1 . . .m
(Lewis et al., 2002).

The following multi-layer DNN architecture is proposed to
observe the system in (1)
˙̂x1 = x̂2,

...

˙̂xN−1 = x̂N , (4)

˙̂xN = Ŵ T
f σ̂f +

m
i=1

Ŵ T
giσ̂giui + v,

where x̂ = [x̂1 x̂2 . . . x̂TN ]
T

∈ RNn is the state of the DNN ob-
server, Ŵf ∈ RLf +1×n, V̂fj ∈ Rn×Lf , Ŵgi ∈ RLgi+1×n, V̂gij ∈ Rn×Lgi ,

i = 1 . . .m, j = 1, 2, . . . ,N are the weight estimates, σ̂f ∈

RLf +1, and σ̂gi ∈ RLgi+1 are defined as σ̂f , σf (
N

j=1 V̂
T
fj
x̂j), σ̂gi ,

σgi(
N

j=1 V̂
T
gij
x̂j), and v ∈ Rn is a function that is subsequently de-

signed to provide robustness to function reconstruction errors and
external disturbances.

Remark 1. In (4), the feedforward NN terms Ŵf σ̂f , Ŵgiσ̂gi use
internal feedback of the observer states x̂: a DNN structure. The
recurrent feedback loop in a DNN enables it to approximate dy-
namic systems with any arbitrary degree of accuracy (Funahashi &
Nakamura, 1993; Polycarpou & Ioannou, 1991). This property mo-
tivates the DNN-based observer design. The DNN is automatically
trained to estimate the systemdynamics by the subsequentweight
update laws, weight estimates, and filter output.

The objective is to prove that the estimated state x̂ converges
to the system state x. To facilitate the subsequent analysis, the
estimation error x̃1 ∈ Rn is defined as

x̃1 , x1 − x̂1. (5)

To facilitate the subsequent stability analysis and compensate for
the lack of direct measurements of xN , the following filtered
estimation errors are defined as

x̃2 , ˙̃x1 + α1x̃1,

x̃j , ˙̃xj−1 + αj−1x̃j−1 + x̃j−2, j = 3, . . . ,N − 1

r , ˙̃xN−1 + αx̃N−1 + η, (6)

where α, α1, . . . , αN−2 ∈ R are positive constant control gains,
and η ∈ Rn is an output of the dynamic filter (Xian et al., 2004)

η = p − (k + α)x̃N−1,

ṗ = −(k + 2α)p − x̃f + ((k + α)2 + 1)x̃N−1,

˙̃xf = p − αx̃f − (k + α)x̃N−1, (7)
p(0) = (k + α)x̃N−1(0), x̃f (0) = 0,

where x̃f ∈ Rn is an auxiliary output of the filter, p ∈ Rn is used as
an internal filter variable, and k ∈ R is a positive constant gain. The
filtered estimation error r is not measurable, since the expression
in (6) depends on ẋ.

Remark 2. The second order dynamic filter to estimate the system
velocity was first proposed for the output feedback controller in
Xian et al. (2004). The filter in (7) admits the filtered estimation
error x̃N−1 as an input and produces x̃f and η. The auxiliary signal
p is utilized to only generate the signal η without involving the
derivative of the estimation error ˙̃xN−1 which is unmeasurable.
Hence, the filter can be physically implemented. A difficulty to
obtain asymptotic estimation is that the filtered estimation error r
is not available for feedback. A relationship between the two filter
outputs is η = ˙̃xf +αx̃f , and this relationship is utilized to generate
the feedback of r . By taking the time derivative of r , the term ẍf
appears implicitly inside η̇. Consequently, the unmeasurable term
˙̃xN is introduced in a way that it can be replaced by r .

Remark 3. Several observer designs (cf. Calise, Hovakimyan, &
Idan, 2001, Kim, Lewis, & Abdallah, 1997 and Lotfi & Namvar,
2010) exploit a strictly positive real (SPR) condition to show
convergence, typically exploiting the Meyer–Kalman–Yakubovich
lemma. Designs based on the SPR condition require the dynamic
order of the observer to be large. The developed observer avoids
this condition by using a dynamic filter to inject the negative
feedback of r(t), yielding convergence of the observer.

Taking the derivative of η and using (6) and (7) yields

η̇ = −(k + α)r − αη + x̃N−1 − x̃f . (8)

The closed-loop dynamics of the derivative of the filtered estima-
tion error r in (6) is determined from (3)–(6) and (8) as

ṙ = W T
f σf − Ŵ T

f σ̂f +

m
i=1

[W T
giσgi − Ŵ T

giσ̂gi]ui + εf

+

m
i=1

εgiui + d − v + α(r − αx̃N−1 − η)

− (k + α)r − αη + x̃N−1 − x̃f . (9)

Based on the subsequent analysis, the robust disturbance rejection
term v is designed to inject cross terms to account for related terms
in the stability analysis and a sliding mode term to deal with the
disturbances in the system as

v = −[γ (k + α) + 2α]η + (γ − α2)x̃N−1 + β1sgn(x̃N−1 + x̃f ),
(10)

where γ , β1 ∈ R are positive constant control gains. By adding
and subtracting W T

f σf (
N

j=1 V̂
T
fj
xj) + Ŵ T

f σf (
N

j=1 V̂
T
fj
xj) +

m
i=1
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[W T
giσgi(

N
j=1 V̂

T
gij
xj) + Ŵ T

giσgi(
N

j=1 V̂
T
gij
xj)]ui and substituting v

from (10), the expression in (9) can be rewritten as

ṙ = Ñ + N − kr − β1sgn(x̃N−1 + x̃f ) + γ (k + α)η − γ x̃N−1, (11)

where the auxiliary function Ñ ∈ Rn is defined as

Ñ , Ŵ T
f


σf


N
j=1

V̂ T
fj xj


− σ̂f


+ x̃N−1 − x̃f

+

m
i=1

Ŵ T
gi


σgi


N
j=1

V̂ T
gijxj


− σ̂gi


ui, (12)

and N ∈ Rn is segregated into two parts as

N , N1 + N2. (13)

In (13), N1, N2 ∈ Rn are defined as

N1 , W̃ T
f σ ′

f


N
j=1

Ṽ T
fj xj


+ W T

f O


N
j=1

Ṽ T
fj xj

2

+

m
i=1

εgiui + εf + d +

m
i=1

W̃ T
giσ

′

gi


N
j=1

Ṽ T
gijxj


ui

+

m
i=1

W T
giO


N
j=1

Ṽ T
gijxj

2

ui,

N2 , W̃ T
f σf


N
j=1

V̂ T
fj xj


+

m
i=1

W̃ T
giσgi


N
j=1

V̂ T
gijxj


ui

+ Ŵ T
f σ ′

f


N
j=1

Ṽ T
fj xj


+

m
i=1

Ŵ T
giσ

′

gi


N
j=1

Ṽ T
gijxj


ui, (14)

where W̃f , Wf − Ŵf ∈ RLf +1×n, Ṽfj , Vfj − V̂fj ∈ Rn×Lf , W̃gi ,

Wgi − Ŵgi ∈ RLgi+1×n, Ṽgij , Vgij − V̂gij ∈ Rn×Lgi , i = 1 . . .m, j =

1, 2, . . . ,N are the estimate mismatches for the ideal NN weights;
O(
N

j=1 Ṽ
T
fj
xj)2 ∈ RLf +1,O(

N
j=1 Ṽ

T
gij
xj)2 ∈ RLgi+1 are the higher

order terms in the Taylor series approximation of the vector func-
tions σf , σgi in the neighborhood of

N
j=1 V̂

T
fj
xj and

N
j=1 V̂

T
gij
xj, re-

spectively, as

σf = σf


N
j=1

V̂ T
fj xj


+ σ ′

f


N
j=1

Ṽ T
fj xj


+ O


N
j=1

Ṽ T
fj xj

2

,

σgi = σgi


N
j=1

V̂ T
gijxj


+ σ ′

gi


N
j=1

Ṽ T
gijxj


+ O


N
j=1

Ṽ T
gijxj

2

, (15)

where the terms σ ′

f , σ ′

gi are defined as σ ′

f , σ ′

f (
N

j=1 V̂
T
fj
xj)

= dσf (θ)/dθ |
θ=
N

j=1 V̂ T
fj
xj

and σ ′

gi , σ ′

gi(
N

j=1 V̂
T
gij
xj) = dσgi(θ)/

dθ |
θ=
N

j=1 V̂ T
gij

xj
. To facilitate the subsequent analysis, an auxiliary

function N̂2 ∈ Rn is defined by replacing the terms xj in N2 by
x̂j, j = 1, 2, . . . ,N , respectively.

The weight update laws for the DNN in (4) are developed based
on the subsequent stability analysis as

˙̂W f = proj[Γwf σ̂f (x̃N−1 + x̃f )T ],
˙̂V fj = proj[Γvfj x̂j(x̃N−1 + x̃f )T Ŵ T

f σ̂ ′

f ], j = 1..N
˙̂W gi = proj[Γwgiσ̂giui(x̃N−1 + x̃f )T ], i = 1 . . .m

˙̂V gij = proj[Γvgij x̂jui(x̃N−1 + x̃f )T Ŵ T
giσ̂

′

gi], i = 1 . . .m, (16)
Fig. 1. The architecture of the DNN-based observer.

where Γwf ∈ R(Lf +1)×(Lf +1), Γwgi ∈ R(Lgi+1)×(Lgi+1), Γvfj , Γvgij ∈

Rn×n, are constant symmetric positive-definite adaptation gains,
the terms σ̂ ′

f , σ̂
′

gi are defined as σ̂ ′

f , σ ′

f (
N

j=1 V̂
T
fj
x̂j) = dσf (θ)/

dθ |
θ=
N

j=1 V̂ T
fj
x̂j
, σ̂ ′

gi , σ ′

gi(
N

j=1 V̂
T
gij
x̂j) = dσgi(θ)/dθ |

θ=
N

j=1 V̂ T
gij

x̂j
,

and proj(·) is a smooth projection operator (see Section 4.3 of
Dixon, Behal, Dawson, & Nagarkatti, 2003, or Appendix E of Krstic,
Kokotovic, & Kanellakopoulos, 1995 for details) used to guarantee
that the weight estimates Ŵf , V̂fj , Ŵgi, and V̂gij remain bounded.

The architecture of the observer is shown in Fig. 1.
Using (5)–(7), Assumptions 2–5, the proj(·) algorithm in (16)

and the Mean Value Theorem, the auxiliary function Ñ in (12) can
be upper-bounded asÑ ≤ ζ1 ∥z∥ , (17)

where z ∈ R(N+2)n is defined as

z , [x̃T1 . . . x̃TN−1x̃
T
f η

T rT ]T . (18)

Based on (5)–(7), Assumptions 1–6, the Taylor series expansion in
(15) and the weight update laws in (16), the following bounds can
be developed:

∥N1∥ ≤ ζ2, ∥N2∥ ≤ ζ3,

Ñ2

 ≤ ζ5 ∥z∥ ,Ṅ ≤ ζ4 + ρ(∥z∥) ∥z∥ , (19)

where ζi ∈ R, i = 1 . . . 5, are computable positive constants,
ρ ∈ R is a positive, globally invertible, non-decreasing function,
and Ñ2 , N2 − N̂2.

To facilitate the subsequent stability analysis, let y ∈ R(N+2)n+2

be defined as

y ,

zT

√
P


Q
T

, (20)

and let D ⊂ R(N+2)n+2 be the open and connected set D ,
y ∈ R(N+2)n+2

| ∥y∥ < ρ−1(λ −
ζ 2
1

4
√
2k2

)

. In (20), the auxiliary

function P ∈ R is a generalized Filippov solution to the differential
equation

Ṗ , −rT (N1 − β1sgn(x̃N−1 + x̃f ))
− (˙̃xN−1 + ˙̃xf )TN2, +

√
2ρ(∥z∥) ∥z∥2 , (21)

P(0) , β1

n
i=1

x̃N−1i(0) + x̃fi(0)
− (x̃N−1(0) + x̃f (0))TN (0) ,

where the subscript i = 1, 2, . . . , n denotes the ith element
of x̃N−1(0) or x̃f (0), and β1 ∈ R is a positive constant chosen
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according to the sufficient condition

β1 > max


ζ2 + ζ3, ζ2 +
ζ4

α


, (22)

where ζi, i = 2, 3, 4 are introduced in (19). Provided the sufficient
condition in (22) is satisfied, P ≥ 0 (see Bhasin, Kamalapurkar,
Dinh, & Dixon, 2013, Dinh, Bhasin, & Dixon, 2010). The auxiliary
function Q ∈ R in (20) is defined as

Q ,
α

2


m
i=1

tr(W̃ T
giΓ

−1
wgi W̃gi) +

N
j=1

tr(Ṽ T
fj Γ

−1
vfj

Ṽfj)

+ tr(W̃ T
f Γ −1

wf W̃f ) +

N
j=1

m
i=1

tr(Ṽ T
gijΓ

−1
vgij

Ṽgij)


(23)

where tr(·) denotes the trace of a matrix. Since the gains Γwf ,

Γwgi, Γvfj , Γvgij are symmetric, positive-definite matrices, Q ≥ 0.

3. Lyapunov stability analysis for DNN-based observer

Theorem 1. The DNN-based observer proposed in (4) along with its
weight update laws in (16) ensures semi-global asymptotic estimation
in the sense thatx̃j → 0 and

xN − x̂N
 → 0 as t → ∞,

with j = 1 . . . (N − 1), provided the control gain k = k1 + k2
introduced in (7) is selected sufficiently large based on the initial
conditions of the states,1 the gain condition in (22) is satisfied, and
the following sufficient conditions are satisfied:

αj, α, k1 >
1
2
, γ >

2α2ζ 2
5 + 1

2α − 1
, and λ >

ζ 2
1

4
√
2k2

(24)

where

λ ,
1

√
2


min


αγ −

γ

2
− α2ζ 2

5 , γ


αj −

1
2


, k1


−

1
2


, (25)

and ζ1, ζ5 are introduced in (17) and (19), respectively.

Proof. Consider the candidate Lyapunov function VL : D → R,
which is a Lipschitz continuous positive definite function defined
as

VL ,
γ

2

N−1
j=1

x̃Tj x̃j +
γ

2
x̃Tf x̃f +

γ

2
ηTη +

1
2
rT r + P + Q , (26)

which satisfies the following inequalities:

U1(y) ≤ VL(y) ≤ U2(y), (27)

where U1,U2 : R(N+2)n+2
→ R are continuous positive definite

functions defined as U1(y) , min(
γ

2 , 1
2 ) ∥y∥2 , U2(y) , max

(
γ

2 , 1) ∥y∥2.
Let ẏ = h represent the closed-loop differential equations in

(6)–(8), (11), (16) and (21), where h ∈ R(N+2)n+2 denotes the
right-hand side of the closed-loop error signals. Using Filippov’s
theory of differential inclusions (Aubin & Frankowska, 2008; Fil-
ippov, 1964, 1988; Smirnov, 2002), the existence of solutions
can be established for ẏ ∈ K [h](y), where K [h] , ∩δ>0 ∩µM=0

1 See the subsequent proof.
co h(B(y, δ) \ M), where ∩µM=0 denotes the intersection of all
sets M of Lebesgue measure zero, co denotes convex closure, and
B(y, δ) =


w ∈ R(N+2)n+2

| ∥y − w∥ < δ

. The generalized time

derivative of (26) exists almost everywhere (a.e.), i.e. for almost
all t ∈


t0, tf


, and V̇L ∈

a.e. ˙̃V L, where ˙̃V L = ∩
ξ∈∂VL(y)

ξ TK [Ψ ]T , ∂VL

is the generalized gradient of VL (Clarke, 1990), and Ψ ,

˙̃x
T
1

. . . ˙̃x
T
N−1

˙̃x
T
f η̇

T ṙT 1
2P

−
1
2 Ṗ 1

2Q
−

1
2 Q̇

. Since VL is continuously differen-

tiable, ˙̃V L can be simplified as (Shevitz & Paden, 1994) ˙̃V L =

∇V T
L K [Ψ ]T =


γ x̃T1 . . . γ x̃TN−1γ x̃Tf γ ηT rT2P

1
2 2Q

1
2

K [Ψ ]T . Using

the calculus for K [·] from Paden and Sastry (1987, Theorem 1,
Properties 2, 5, 7), and substituting the dynamics from (6)–(8), (11),
(21) and (23) and adding and subtracting α(x̃N−1 + x̃f )T N̂2 and us-

ing (14), ˙̃V L can be rewritten as

˙̃V L ⊂ γ x̃T1(x̃2 − α1x̃1) + γ x̃TN−1(r − αx̃N−1 − η)

+ γ x̃Tf (η − αx̃f ) + γ

N−2
j=2

x̃Tj

x̃j+1 − αjx̃j − x̃j−1


+ γ ηT [−(k + α)r − αη]

+ γ ηT x̃N−1 − x̃f

− α(x̃N−1 + x̃f )T N̂2

− krT r − γ rT x̃N−1

+ rT

Ñ + N − β1K


sgn(x̃N−1 + x̃f )


+ γ (k + α)η


− rT


N1 − β1K


sgn(x̃N−1 + x̃f )


− (˙̃xN−1 + ˙̃xf )TN2

+
√
2ρ(∥z∥) ∥z∥2

+ α(x̃N−1 + x̃f )T

×


Ŵ T

f σ̂ ′

f


N
j=1

Ṽ T
fj x̂j


+ W̃ T

f σ̂f

+

m
i=1

W̃ T
giσ̂giui +

m
i=1

Ŵ T
giσ̂

′

gi


N
j=1

Ṽ T
gij x̂j


ui



− α


tr(W̃ T

f Γ −1
wf

˙̂W f ) +

N
j=1

tr(Ṽ T
fj Γ

−1
vfj

˙̂V fj)

+

m
i=1

tr(W̃ T
giΓ

−1
wg

˙̂W gi) +

m
i=1

N
j=1

tr(Ṽ T
gijΓ

−1
vgij

˙̂V gij)


. (28)

Using the fact that K [sgn(x̃N−1 + x̃f )] = SGN(x̃N−1 + x̃f ) (Paden &
Sastry, 1987), such that SGN(x̃N−1i + x̃fi) = 1 if (x̃N−1i + x̃fi) > 0,
[−1, 1] if (x̃N−1i+x̃fi) = 0, and−1 if (x̃N−1i+x̃fi) < 0 (the subscript
i denotes the ith element), the set in (28) reduces to the scalar
inequality, since the right-hand-side (RHS) of (28) is continuous
a.e., i.e., the RHS is continuous except for the Lebesgue measure
zero set of timeswhen2 rTSGN


x̃N−1 + x̃f


−rTSGN


x̃N−1 + x̃f


=

0. Substituting the weight update laws in (16) and canceling

2 Let Φ , x̃N−1 + x̃f . The set of times Λ , {t ∈ [0, ∞) : r (t)T K [sgn
(Φ (t))] − r (t)T K [sgn (Φ (t))] ≠ {0}} ⊂ [0, ∞) is equal to the set of times
{t : Φ (t) = 0 ∧ r (t) ≠ 0}. Using the fact that η = ˙̃xf + αx̃f , r can be expressed as
r = Φ̇+αΦ . Thus, the setΛ can also be represented by {t : Φ (t) = 0 ∧Φ̇ (t) ≠ 0}.
Since φ : [0, ∞) → Rn is continuously differentiable, it can be shown that the set
of time instances


t : Φ (t) = 0 ∧ Φ̇ (t) ≠ 0


is isolated, and thus, measure zero;

hence, Λ is measure zero.
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common terms yields

˙̃V L
a.e.
≤ −γ

N−2
j=1

αjx̃Tj x̃j − γαx̃TN−1x̃N−1 + γ x̃TN−2x̃N−1

− γαx̃Tf x̃f − γαηTη − krT r + rT Ñ

+ α(x̃N−1 + x̃f )T Ñ2 +
√
2ρ(∥z∥) ∥z∥2 . (29)

Using (17), (19), the facts that

γ x̃TN−2x̃N−1 ≤
γ

2

x̃N−1
2 +

γ

2

x̃N−2
2

αζ5
x̃N−1 + x̃f

 ∥z∥ ≤ α2ζ 2
5

x̃N−1
2 + α2ζ 2

5

x̃f 2 +
1
2

∥z∥2 ,

substituting k = k1 + k2, and completing the squares, the expres-
sion in (29) can be further bounded as

˙̃V L
a.e.
≤ −γ

N−2
j=1


αj −

1
2

x̃j2 − α(γ − αζ 2
5 )
x̃f 2

−


αγ −

γ

2
− α2ζ 2

5

 x̃N−1
2 − αγ ∥η∥

2
− k1 ∥r∥2

+


1
2

+
ζ 2
1

4k2
+

√
2ρ(∥z∥)


∥z∥2 .

Provided the sufficient conditions in (24) are satisfied, the
following inequality can be developed as:

˙̃V L
a.e.
≤ −

√
2


λ −
ζ 2
1

4
√
2k2

− ρ(∥z∥)


∥z∥2 a.e.
≤ −U(y) ∀y ∈ D,

(30)

where λ is defined in (25), and U(y) = c ∥z∥2, for some positive
constant c , is a continuous positive semi-definite functionwhich is
defined onD . The inequalities in (27) and (30) show that VL ∈ L∞;
hence, x̃j, x̃f , η, r, P and Q ∈ L∞, with ∀j = 1 . . .N − 1; (6)–

(8) are used to show that
·

x̃j,
·

x̃f , η̇ ∈ L∞, with ∀j = 1 . . .N − 1.
Since xj ∈ L∞ by Assumption 1, x̂j ∈ L∞ using (5). Since
x̃j, x̃f , η ∈ L∞, using (10), v ∈ L∞. SinceWf ,Wgi, σf , σgi, εf , εgi ∈

L∞, i = 1 . . .m, by Assumptions 4–6, the control input u and the
disturbance d are bounded by Assumptions 2–3, and Ŵf , Ŵgi ∈

L∞, i = 1 . . .m, by the use of the proj(·) algorithm, from (9),
ṙ ∈ L∞; then ż ∈ L∞, by using (18). Let S ⊂ D denote a set
defined as

S ,


y ∈ D|U2(y) < ε1


ρ−1


λ −

ζ 2
1

4
√
2k2

2


. (31)

From (30), (Fischer, Kamalapurkar, & Dixon, 2013, Corollary 1) can
be invoked to show that c ∥z∥2

→ 0 as t → ∞, ∀y(0) ∈ S. Based
on the definition of z the following result can be proven:x̃j , ∥η∥ , ∥r∥ → 0 as t → ∞ ∀y(0) ∈ S, ∀j = 1 . . .N − 1.

From (6), it can be further shown thatxN − x̂N
 → 0 as t → ∞ ∀y(0) ∈ S.

Note that the region of attraction in (31) can be made arbitrarily
large to include any initial condition by increasing the control gains
k, γ , αj and α (i.e., a semi-global type of stability result). �

4. Experiment and simulation results

Experiments and simulations on a two-link revolute, direct
drive robot manipulator are performed to compare the proposed
method with several other estimation methods. The following
dynamics of the testbed is considered for the simulations and
experiments:

M(x)ẍ + Vm(x, ẋ)ẋ + Fdẋ + Fs(ẋ) = u, (32)

where x =

x1 x2

T are the angular positions (rad) and ẋ =
ẋ1 ẋ2

Tare the angular velocities (rad/s) of the two links
respectively. In (32), M is the inertia matrix and Vm is the
centripetal–Coriolis matrix, defined as

M (x) ,


p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2


,

Vm (x, ẋ) ,


−p3s2ẋ2 −p3s2 (ẋ1 + ẋ2)
p3s2ẋ1 0


. (33)

In (32) and (33), parameters for simulation are selected as the
best-guess of the testbed model as p1 = 3.473 kg m2, p2 =

0.196 kg m2, p3 = 0.242 kg m2, c2 = cos(x2), s2 = sin(x2).
Fd = diag {5.3, 1.1} N m s and Fs(ẋ) = diag{8.45 tanh(ẋ1), 2.35
tanh(ẋ2)} N m are the models for dynamic and static friction,
respectively. The system in (32) can be rewritten as

ẍ = f + Gu + d,

where d ∈ R2 is the additive exogenous disturbance and f : R4
→

R2, and G : R4
→ R4 are defined as f , M−1 (−Vm − Fd) ẋ −

Fs, G , M−1.
The proportional derivative (PD) controller given by u =

20(x − xd) + 10(ẋ − ẋd) to track a desired trajectory xd(t) =
0.5 sin(2t) 0.5 cos(2t)

T is applied, where the angular velocity
ẋ, used only in the control law, is determined numerically by a
standard backwards difference algorithm.

The objective is to design an observer ˙̂x to asymptotically
estimate the angular velocities ẋ using only the measurements of
the angular positions x. The control gains for the experiment are
selected as k = 7, α = 7, γ = 8, β1 = 6, and Γwf = Γwg1 =

Γwg2 = 3I8×8, Γvf = Γvg1 = Γvg2 = 3I2×2, where In×n denotes an
identitymatrix of appropriate dimensions. TheNNs are designed to
have sevenhidden layer neurons and theNNweights are initialized
as uniformly distributed random numbers in the interval [−1, 1].
The initial conditions of the system and the identifier are selected
as x0 =


0 0

T , ẋ0 =

0 0

Tand x̂0 = ˙̂x0 = [0, 0]T , respectively.
A global asymptotic velocity observer for uncertain nonlinear

systems was developed by Xian et al. (2004) as

˙̂x = p + K0x̃, ṗ = K1sgn(x̃) + K2x̃,

and a high gain (HG) observer that is asymptotic as the gain goes
to infinity was developed in Vasiljevic and Khalil (2008) as

˙̂x = zh +
αh1

εh1
x̃, żh =

αh2

εh2
x̃.

Both these designs are based on a purely robust feedback strategy.
One of the contributions of this work is the addition of a feed-
forward adaptive component to compensate for the uncertain
dynamics. To gauge the benefit of this approach, the proposed
observer is compared with the observers in Vasiljevic and Khalil
(2008) and Xian et al. (2004). Control gains for the observer in Xian
et al. (2004) are selected as K0 = 10, K1 = 6, and K2 = 10, and
control gains for the HG observer in Vasiljevic and Khalil (2008)
are selected as αh1 = 0.6, αh2 = 25, εh1 = 0.01, and εh2 = 0.015.
To make the comparison feasible, the gains of all observers are
tuned to get the steady state RMS of position estimation errors
to be approximately equal to 0.17 for a settling time of 1 s. The
experiment results for the velocity estimators in Vasiljevic and
Khalil (2008) and Xian et al. (2004), and the proposed method are
compared with the central difference algorithm. The experiment
results are shown in Fig. 2(a)–(d). The velocity estimates of the
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(a) Velocity estimations (Xian et al., 2004). (e) Frequency analysis (Xian et al., 2004). (i) Frequency analysis (Xian et al., 2004).

(b) Velocity estimations (Vasiljevic & Khalil,
2008).

(f) Frequency analysis (Vasiljevic & Khalil,
2008).

(j) Frequency analysis (Vasiljevic & Khalil,
2008).

(c) Velocity estimations (proposed). (g) Frequency analysis (proposed). (k) Frequency analysis (proposed).

(d) Velocity estimations (central difference). (h) Frequency analysis (central difference). (l) Frequency analysis (central difference).

Fig. 2. Velocity estimate ˙̂x using (a) Xian et al. (2004), (b) Vasiljevic and Khalil (2008), (c) the proposed method, and (d) the center difference method on a two-link
experiment testbed (solid line: Link 1, dashed line: Link 2). The other figures (e)–(l) indicate the respective frequency analysis of velocity estimation ˙̂x (plus marker: Link 1,
asterisk marker: Link 2).
Table 1
Transient (t = 0–1 s) and steady state (t = 1–10 s) velocity estimation errors ˙̃x for different velocity estimation methods in presence of noise 50 dB.

Central difference Method in Xian et al. (2004) Method in Vasiljevic and Khalil (2008) Proposed

Transient RMS error 66.2682 0.1780 0.1040 0.1309
Steady state RMS error 8.1608 0.0565 0.0538 0.0504
proposed observer and observer in Vasiljevic and Khalil (2008)
are similar, where the transient response of the proposed method
is improved over the observer in Vasiljevic and Khalil (2008);
moreover, both methods have lower frequency content than the
observer in Xian et al. (2004) and the central difference method.
To illustrate the lower frequency response of the proposedmethod
compared to Xian et al. (2004) and the central difference method,
frequency analysis plots of the experiment results are shown in
Fig. 2(e)–(l).

Given the lack of velocity sensors in the two-link experiment
testbed to verify the velocity estimates, a simulation was
performed using the dynamics in (32). To examine the effect of
noise, white Gaussian noisewith SNR 60 dB is added to the position
measurements. Fig. 3 shows the simulation results for the steady-
state velocity estimation errors and the respective frequency
analysis for the velocity estimate of the observer in Xian et al.
(2004), the observer in Vasiljevic and Khalil (2008), the developed
method, and the central difference method. Table 1 gives a
comparison of the transient and steady state RMS (Root Mean
Square) velocity estimation errors for these different methods.
Results of the standard numerical central differentiation algorithm
are significantly worse than the other methods in the presence of
noise as seen from Fig. 3 and Table 1. Although, simulation results
for Vasiljevic and Khalil (2008) and the developed method are
comparable, differences exist in the structure of the observers and
proof of convergence of the estimates. The observer in Vasiljevic
and Khalil (2008) is a purely robust feedback technique and the
estimation result is proven to be asymptotic as the gains tend
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(a) Estimation error at steady-state (Xian
et al., 2004).

(e) Frequency analysis (Xian et al., 2004). (i) Frequency analysis (Xian et al., 2004).

(b) Estimation error at steady-state
(Vasiljevic & Khalil, 2008).

(f) Frequency analysis (Vasiljevic & Khalil,
2008).

(j) Frequency analysis (Vasiljevic & Khalil,
2008).

(c) Estimation error at steady-state
(proposed).

(g) Frequency analysis (proposed). (k) Frequency analysis (proposed).

(d) Estimation error at steady-state
(central difference).

(h) Frequency analysis (central
difference).

(l) Frequency analysis (central
difference).

Fig. 3. The steady-state velocity estimation error ˙̃x using (a) Xian et al. (2004), (b) Vasiljevic and Khalil (2008), (c) the proposedmethod, and (d) the center differencemethod
on simulations, in presence of sensor noise (SNR 60 dB) (solid line: Link 1, dashed line: Link 2). The other figures (e)–(l) indicate the respective frequency analysis of velocity
estimation ˙̂x (plus marker: Link 1, asterisk marker: Link 2).
to infinity. On the other hand, the proposed method is a robust
adaptive observer with a DNN structure to learn the system
uncertainties, combining a dynamic filter and a robust sliding
mode structure, thus guaranteeing asymptotic convergence with
finite gains. Further, the observer in Xian et al. (2004) is also
a purely robust feedback method, where all uncertainties are
damped out by a sliding mode term resulting in higher frequency
velocity estimates than the developed observer, as seen from both
experiment and simulation results.

5. Conclusion

A novel design of an adaptive observer using DNNs for high-
order uncertain nonlinear systems is proposed. The DNN works
in conjunction with a dynamic filter without an off-line training
phase. A sliding feedback term is added to the DNN structure to
account for reconstruction errors and external disturbances. The
observation states are proven to asymptotically converge to the
system states. Simulations and experiments on a two-link robot
manipulator show the improvement of the proposed method in
comparison to several other estimation methods.
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