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SUMMARY
This paper addresses the link position setpoint control
problem of n–link robotic manipulators with amplitude-
limited control inputs. We design a global-asymptotic exact
model knowledge controller and a semi-global asymptotic
controller which adapts for parametric uncertainty. Explicit
bounds for these controllers can be determined; hence, the
required input torque can be calculated a priori so that
actuator saturation can be avoided. We also illustrate how
the proposed control algorithm in this paper can be slightly
modified to produce a proportional-integral-derivative (PID)
controller which contains a saturated integral term. Experi-
mental results are provided to illustrate the improved
performance of the proposed control strategy over a
standard adaptive controller that has been artificially limited
to account for torque saturation.

KEYWORDS: Control inputs; Adaptive control; Robot manip-
ulators; PID controller.

1. INTRODUCTION
Over the past twenty years, a considerable amount of
research has targeted the link position control problem for
rigid-link robots. Unfortunately, most of the proposed
controllers do not take into account the fact that the
commanded input may require more torque than is phys-
ically possible (i.e., due to large initial condition offsets, an
aggressive desired trajectory, or some other disturbance).
That is, when the actuator constraints are surpassed, hard
nonlinearities, not included in the robot model, are encoun-
tered. Once the unmodelled actuator constraints have been
breached, degraded control performance in addition to
thermal and/or mechanical failure can occur; hence, the
need for a control scheme which can ensure that the actuator
limits are not breached, is well motivated.

Based on the need for controllers that take actuator
constraints into account, several researchers have proposed
amplitude limited controllers1–6. Specifically, Santibáñez
and Kelly6, proposed a global asymptotic regulating con-
troller that is composed of a saturated proportional

derivative (PD) feedback loop plus an exact model knowl-
edge feedforward gravity compensation term. In reference
[3], the same authors generalized a class of regulators for
the control problem given in reference [6]. Motivated by the
research given in references [3] and [6], Loria et al.4

designed an output feedback (OFB) global asymptotic
regulating controller; however, exact knowledge of the
gravity terms was still required. To provide for robustness,
Colbaugh et al.1,2 designed full-state feedback (FSFB) and
OFB global asymptotic regulating controllers that com-
pensate for uncertainty; however, the control strategy
switches between one controller that is used to drive the
setpoint error to a small value, and another controller that is
used to drive the setpoint error to zero. To the best of our
knowledge, the only researchers to attack the tracking
control problem with amplitude-limited torque inputs are
given in references [5] and [7]. Specifically in the former
Loria et al. designed an exact model knowledge OFB semi-
global tracking controller. In reference [7], Dixon et al.
proposed an adaptive FSFB semi-global tracking controller;
however, the magnitude of the feedback portion of the
control laws could not be arbitrarily small.

In this paper, we design two amplitude-limited torque
input, link position setpoint controllers for robot manip-
ulators. The first controller is a global FSFB exact model
knowledge controller that is presented in order to facilitate
the development of a second controller which provides for
robustness. The second controller is a semi-global FSFB
adaptive controller that includes an amplitude-limited
proportional derivative (PD) feedback loop plus a feedfor-
ward term that adapts for gravity and static friction effects.
The advantage of the proposed algorithm is that: (i) the
controller compensates for unknown parametric effects, (ii)
the magnitude of the feedback portion of the controller can
be made arbitrarily small provided dynamic friction is not
included in the model, (iii) and the maximum required
torque can be calculated a priori. This paper is organized as
follows. Section 2 presents the robot manipulator dynamic
model and its associated properties. Sections 3 and 4 present
the design and analysis of an exact model knowledge
controller and an adaptive controller, respectively. In
Section 5, we demonstrate how the proposed controller can
be reconfigured as a global link position setpoint PID
controller, similar to that given in Kelly8. Verification of the
control strategy is provided through experimental results
given in Section 6.
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2. MATHEMATICAL MODEL
The mathematical model for a rigid n-link, revolute, direct-
drive robot as follows9

M(q)q̈+Vm(q,q̇)q̇+G(q)+Fd q̇+Fs sgn(q̇)+t (1)

where q(t), q̇(t), q̈(t)PRn denote the link position, velocity,
and acceleration vectors, respectively, the symmetric, pos-
itive definite inertia matrix is denoted by M(q)PRn3 n, the
centripetal-Coriolis matrix is denoted by Vm(q,q̇)PRn3 n, the
gravitational vector is denoted by G(q)PRn, the constant,
diagonal, viscous friction coefficient matrix is denoted by
FdPRn3 n, the constant, diagonal, static friction matrix is
denoted by FsPRn3 n, and t(t)PRn, represents the torque
input vector.

The robot model of (1) has the following beneficial
properties9 that are utilized in the subsequent control design
and analysis.

Property 1: The inertia matrix, satisfies the following
inequalities

m1ij i2 ≤ j TM(q)j ≤ m2ij i2, ;jPRn (2)

where m1, m2 are known positive bounding constants, and
i·i is the standard Euclidean norm.

Property 2: The time derivative of the inertia matrix and
the centripetal-Coriolis matrix satisfy the following skew
symmetric relationship

j TS 1
2

Ṁ(q)2Vm(q,q̇)Dj =0 ;jPRn (3)

Property 3: The gravitational and static friction terms can
be linearly parameterized as follows

G(q)+Fs sgn(q̇) = Yf (4)

where f(t)PRr contains mechanical system parameters,
and the regression matrix Y(q,q̇)PRn3 r contains measurable
functions of the link position and link velocity. We will
assume that lower and upper bounds for each parameter can
be calculated as follows

f i ≤ f i ≤ f i (5)

where f iPR1 denotes the i-th component of f, f i, f iPR
denote the i-th component of f, fPRr, which are defined
as follows

f = [f1, f2, . . ., fr]
T

f = [f1, f2, . . ., fr]
T .

Property 4: The gravity vector, static and dynamic friction
matrices, centripetal-Coriolis matrix, and the time derivative
of the inertia matrix can be upper bounded in the following
manner

iG(q)i ≤zg, iFsi ≤zfs, iVm(q, q̇)i i∞ ≤zciq̇i, iṀ(q)i i∞ ≤zmiq̇i.

(6)

where zg, zfs, zc, and zm are positive scalar bounding
constants, and i·i i∞ denotes the induced infinity norm of a
matrix.

Remark 1. To facilitate the subsequent control design and
stability analysis, we define a vector function Tanh (·)PRn

and a matrix function Cosh (·)PRn3 n as follows

Tanh (j )=[tanh (j1), tanh (j2), . . . , tanh (jn )]T (7)

and

Cosh (j )=diag{cosh (j1), cosh (j2), . . . , cosh (jn )} (8)

where j (t)=[j1, j2, . . . , jn]
T PRn, and diag {·} represents

the standard diagonal matrix whose off-diagonal elements
are zero. Based on the definitions given in (7) and (8 ), it
can easily be shown that the following inequalities hold for
all j (t)PRn, n (t)PRn and CPRn3 n

2On

i=1

ln (cosh (ji )) ≥ iTanh (j )i2 ≥ tanh 2(ij i), (9)

j T CTanh (j ) ≥ lmin{C}iTanh(j )i2, (10)

ij i + 1 ≥
ij i

tanh (i j i)
, (11)

ij i ivi ≤ ij i2 + ivi2, (12)

ij i ≥ iTanh (j ) i, (13)

where lmin {·} denotes the minimum eigenvalue of a
matrix.

3. EXACT MODEL KNOWLEDGE CONTROL
DEVELOPMENT
Our primary control objective is to regulate each link of a
robotic manipulator to a desired link position using an
amplitude limited torque input. To quantify the performance
of the controller, we define the link position setpoint error
q̃(t)PRn as follows

q̃ = q2qd (14)

where qdPRn is the bounded, constant, desired link
position. Based on the control objective, and the subsequent
stability analysis, we propose the following exact model
knowledge controller

t = Yf2KpTanh(q̃ )2Ky Tanh( q̇) (15)

where Kp, KyPRn3 n are constant, diagonal, positive definite
gain matrices, and Yf was defined in (4). After substituting
(15) into (1), we have the following closed-loop system

M(q)q̈ + Vm (q, q̇ )q̇=2Kp Tanh(q̃)
2Ky Tanh(q̇)2Fdq̇ (16)

where (4) has been utilized.

Theorem 1. Given the robot manipulator dynamic equa-
tion defined in (1), the control torque input defined in (15)
ensures global asymptotic link position setpoint control in
the sense that

lim
t→∞

q̃ (t) = 0. (17)

Adaptive control172



Proof: To prove (17), we define the following non-negative
function

V(t) =
1
2

q̇ TM(q)q̇ +On

i=1

kpi ln (cosh(q̃i)) (18)

where kpi and cosh(q̃i) represents the i-th diagonal elements
of Kp and Cosh(q̃), respectively. After taking the time
derivative of (18) and then substituting (16), we have
utilized Property 2 and the facts that qd is a constant vector
and that Fd is positive definite symmetric matrix, we have
the following upper bound for V̇(t)

V̇(t) ≤ 2 q̇T Ky Tanh(q̇) =
n

2g(t) (19)

where g(t)PR1, is a non-negative function. Since V(t) is a
radially unbounded, globally positive function (See Prop-
erty 1), and its time derivative is negative semi-definite we
can conclude that V(t)PL∞ , and hence, q̇(t), q̃(t)PL∞ . Due
to the fact that q̃(t)PL∞ , and the assumption that the desired
setpoint is bounded, we have from (14) that q(t)PL∞ .
Utilizing Property 3, 4, (15), and the fact that q(t)PL∞ gives
that t(t)PL∞ ; hence, from the closed loop dynamics
q̈(t)PL∞ . Since both q̇(t), q̈(t)PL∞ , we have that ġ(t)PL∞ ;
hence, g(t) is uniformaly continuous (UC). From a direct
application of Barbalat’s Lemma [10] we conclude that
lim
t→∞

g(t) = lim
t→∞

(q̇T KyTanh(q̇))=0 and from the properties of
hyperbolic functions lim

t→∞
q̇(t) = 0. Since q̈(t), q̈(t), M(q),

Ṁ(q), Vm (q, q̇)PL∞ , we can utilize the time deriative
of (16), to conclude that &q(t)PL∞ ; thus, q̈(t) is UC. Based

on these arguments, we have that lim
t→∞ Fet

0
d2

dt2 (q(t))dtG exists

and its finite. Since q̈(t) is UC, we can apply the integral
form of Barbalat’s Lemma to conclude that lim

t→∞
q̈(t)=0.

Finally, by taking the limit, as t→∞ , of both sides of (16)
and applying the properties of hyperbolic functions we
conclude that (17) h.

Remark 2. Note that the control torque input given in (15)
can be explicitly upper bounded as follows

it i ≤ zg +z fs +l max{Kp} + l max{Ky} (20)

where zg, z fs are defined in (6); furthermore, the magnitude
of feedback portion of the control law can be made
arbitrarily small. That is, the elements of the feedback gain
matrices Kp and Ky can be arbitrarily small.

4. ADAPTIVE CONTROL DEVELOPMENT
In the previous subsection, the control required exact
knowledge of the vector containing the static friction and
gravitational parameters. To provide for a method of
quantifying robustness, we define the parameter estimation
error f̃(t)PRr as follows

f̃ = f2f̂ (21)

where f̂(t)PRr represents the parameter estimate for f
defined in (4) which is now assumed to be an unknown
constant vector. Motivated by the results of the previous
section, we design an adaptive torque control input as
follows

t = Yf̂2KpTanh(q̃)2Ky Tanh(q̇) (22)

with the parameter adaption law designed in the following
manner

ˆ̇f = proj{Vo} (23)

where the auxiliary term VoPRr is given by

Vo = 2GY T ( q̇ + «Tanh(q̃)) , (24)

GPR r3 r is a constant, diagonal gain matrix, «PR1 is a
positive, adaption weighting gain, the function proj{Vo} is
defined as follows

Voi if f̂i > fi

Voi if f̂i = fi and (Vo)i ≥ 0

proj{Voi} =
n 0 if f̂i = =

fi and (Vo)i < 0
(25)

0 if f̂i = fi and (Vo)i > 0

Voi if f̂i = fi and (Vo)i ≤ 0

Voi if f̂i < fi

fi ≤ f̂(0) ≤ f̄i

where (V o) i denotes the i-th component of Vo , and f̂ i (t)
denotes the i-th component of f̂ (t) (Note that the above
projection algorithm ensures that f i ≤ f̂(t) ≤ f̄i. For further
details the reader is referred to references [11] and [12]).
After substituting (22) into (1), we have the following
closed-loop system

M(q)q̈+Vm(q, q̇)q̇ = 2Yf̃2KpTanh(q̃)

2Ky Tanh(q̇) 2Fd q̇ (26)

where (4) and (21) have been utilized.

Theorem 2: Given the system equation defined in (1), the
control torque input given in (22), along with the adaptation
law given in (23), (24), and (25), ensures semi-global
asymptotic link position setpoint control in the sense that

lim
t→∞

q̃(t) = 0 (27)

provided the control gains Kp and Ky introduced in (22), and
the adaptation weighting gain « introduced in (24) are
chosen to satisfy the following inequalities

lmin {Kp} > lmax {Ky}+lmax {Fd}>0, (28)

« < minH 1

2

m1

m2

, 
lmin{Kp}

2m2
J , (29)

and

lmin{Ky}
2«(zx + lmax{Ky} + lmax{Fd})

≥FÎ l2(0)
1
2 m1 2«m2

+ 1G2

, (30)

where the positive function l 2(t)PR1, and the positive
constant zx are defined as follows
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l 2(t) =S 1
2

m 2 + «m 2Diq̇(t)i2

+On

i=1

(l max{Kp} + 2«m 2)ln(cosh(q̃i (t)))

+
1
2

lmax {G21}if̃(t)i2, (31)

zx = max{m2, zm, zc}, (32)

m1, m2 are defined in (2), and zm, zc are defined in (6).

Proof: To prove the result given by (27), we define the
following non-negative function

V(t) =
1
2

q̇T M(q)q̇ + «TanhT(q̃)M(q)q̇

+On

i=1

kpi ln (cosh(q̃i )) +
1
2

f̃T G21f̃, (33)

where « was defined in (24), and kpi, cosh(q̃i) are the i-th
diagonal components of Kp and Cosh(q̃i), respectively.
Based on (2), (9), and (12), and the form of (33), we can
utilize the Raleigh-Ritz theorem to bound V(t) by the
following inequalities

l1(t) ≤ V(t) ≤ l2(t) (34)

where l2(t) was defined in (31), and the positive function
l1(t)PR1 is defined as follows

l1(t) =S 1
2

m1 2«m2D iq̇(t)i2

+On

i=0

lmin {Kp}22«m2) ln (cosh(q̃i(t)))

+
1
2

lmin {G21}if̃ (t)i2. (35)

Based on (35), it is straightforward to see that if « is
selected according to (29), we can ensure that l1(t) ≥ 0;
hence, from (34) we have that V(t) ≥ 0.

After taking the time derivative of (33), substituting for
(26), utilizing Property 2, and canceling common terms,
we obtain the following expression

V̇(t) = 2«TanhT(q̃ )KpTanh(q̃) 2 q̇T Ky Tanh(q̇)

+ «x2«TanhT(q̃)Ky Tanh(q̇) 2 q̇T Fd q̇

2«TanhT(q̃)Fd q̇+ f̃TG21(Vo 2 ˆ̇f) (36)

where (24) has been utilized, and the auxiliary term

x(t)PRn is defined as follows

x = q̇TCosh22(q̃)M(q)q̇

+ TanhT(q̃)SṀ(q)q̇2Vm(q, q̇)q̇D. (37)

Based on the form of (37) and the properties of Tanh(·) and
Cosh(·) defined in (7) and (8), respectively, we can use
Properties 1 and 4 to show that

i x i ≤ zx i q̇ i 2 (38)

where zx was defined in (32).
We now utilize (10), (12), (23), (24), (25), and (38) to

obtain the following advantageous expression for the upper
bound* for V̇(t) given in (36)

V̇ (t) ≤ 2« (l min{Kp}2l max{Ky }

2l max{Fd}) i Tanh (q̃) i 2

2
l min{Ky }

2
i Tanh (q̇) i 2

2
l min{Ky}

2
i Tanh(q̇) i 2

+ «(zx + l max{Ky} + l max{Fd}) i q̇ i 2. (39)

From (39), we can see that V̇(t)≤0 provided that the
condition given in (28) and the following inequality are both
satisfied

«(zx + lmax{Ky } + l max{Fd}i q̇ i2

2
lmin{Ky}

2
i Tanh(q̇) i 2 ≤ 0. (40)

In order to facilitate further analysis, we utilize (11), (34),
and (35) to obtain the following sufficient condition for
(40)

l min {Ky}
2«(zx + lmax{Ky} + lmax{Fd})

≥SÎ V(t)
1
2m1 2«m2

+ 1D 2

.(41)

If the conditions in (28) and (41) are satified, we can utilize
(39) to express the upper bound for V̇(t) as follows

V̇(t) ≤ 2b i x i2 (42)

where b is some positive scalar constant, and x(t)PR 2n is
given by

x = [TanhT(q̇) Tanh T(q̃)] T (43)

From (42), we have that V̇(t) ≤ 0; therefore,

V(z(t), t) ≤ V(z(0), 0)l 2(z(0), 0) ;t ≥ 0 (44)

where l 2(t) was defined in (31), and z(t)PR3 is given by

* For more details on how the projection algorithm allows one to
proceed from (36) to (39), the reader is referred to reference [15].
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z =Fi q̇ i 2 On

i=1

ln(cosh(q̃i )) i f̃i 2GT

. (45)

Based on (44), we can now express the final sufficient
condition for (41) by the inequality given by (30) (For more
details on the above semi-global stability argument, the
reader is referred to [13], where a similar type of argument
was utilized for different problem).

From (42), we now have that V(t)PL∞ ; hence, q̇(t), q̃(t),
f̃(t), x(t)PL∞ . Since q̃(t)PL∞ , and the desired trajectory is
assumed to be bounded, we have that q(t)PL∞ . From (21),
(23), (24), (25), (5), and the preceding arguments we can
now conclude that ˙̂f (t), f̂(t), t (t)PL∞ . Moreover, based on
(1) and Property 1, and the fact that q̇(t), f̂(t), t (t)PL∞ , we
have that q̈(t), ẋ(t)PL∞ ; hence, x(t) is uniformly continuous
(UC). Since x(t) is UC, it follows that i x (t)i is UC. Now,
since i x(t) i is UC, we can directly apply Barbalat’s Lemma
[10] to (42) to state that lim

t→∞
i x(t) i =0; hence, the properties

of the hyperbolic function can be applied to (43) to yield the
result given in (27).

Remark 3. An important advantage of the proposed
adaptive FSFB controller given by (22), (23), (24), (25),
and (5), is that it can be bounded as follows

it i ≤ iY i i∞ if̄ i + l max{Kp} + l max{Ky} (46)

where i·i i∞ denotes the induced infinity norm of a matrix.
The conditions given in (28), (29), and (30), can be satisfied
by selecting the adaptive weighting gain « arbitrarily small;
hence, the magnitude of feedback portion of the control law
can be made arbitrarily small, provided that dynamic
friction is excluded from the model. That is, the elements of
the feedback gain matrices Kp and Ky can be arbitrarily
small (at least theoretically) if dynamic friction is neglected
in the model and if one follows a tuning procedure governed
by the conditions given in (28), (29), and (30).

5. SATURATED* PID EXTENSION
Recently, Kelly8 illustrated how a proportional integral
derivative (PID) controller with a saturated integral term
provides global asymptotic setpoint regulation even though
the gravity vector may be uncertain (For background on this
problem, the reader is referred to reference [8] and the
references therein). In this section of the paper, we illustrate
how the proposed control algorithm in this paper can be
slightly modified to yield the same type of result given in
reference [8] from an adaptive control perspective. That is,
the analysis utilized in [8] relied on the use of LaSalle’s
Theorem and the use of potential energy terms in the
Lyapunov function while the subsequent analysis uses
Barbalat’s Lemma and properties of the robot manipulator
dynamics.

As done in reference [8], we begin the development by
rewriting (1) without static friction as follows

M(q)q̈ + Vm (q, q̇ )q̇ + G(q) + Fd q̇ = t. (47)

In a similar manner as given in (4), we defined the following
parameterization in terms of the desired link position

Yd (qd )f = G(qd ) (48)

where the desired constant regression matrix Yd (qd )PR n3 r

contains known constants of the desired setpoint position,
and fPR r contains the unknown gravitational parameters.
In Reference [14], Zhang et al. demonstrated that the
following relationship

iG(j )2G(y)i ≤ zg 2iTanh(j2n)i ;j, nPRn (49)

holds for the dynamics of the 6-DOF PUMA robotic
manipulator; hence, this relationship resembles a standard
robot manipulator property (i.e. the above relationship can
be shown to be valid for a number of revolute robot
manipulators).

Based on the control objective, and the subsequent
stability analysis, we propose the following torque con-
troller

t = Ydf̂ 2 Kpq̃ 2 Ky q̇ (50)

and adaptation law
˙̂f = 2GY T

d (q̇ + «Tanh(q̃)) f̂(0) = GY T
d qd 2GY T

d q(0) (51)

where Kp, Ky , G, « are all defined as before. After
substituting (50) into (47) and then adding and subtracting
the term Yd (·)f defined in (48), we obtain the following
closed-loop system

M(q)q̈ + Vm (q, q̇) q̇ = 2Fd q̇2G(q)+G(qd)

2Ydf̃2Kp q̃2Ky q̇ (52)

where (21) has been utilized.

Theorem 3: The closed loop system given by (52) and (51)
renders i Tanh(q̃) iPL2 and global asymptotic link position
setpoint regulation in the sense that

lim
t→∞

q̃(t) = 0 (53)

provided the control gains Kp and Ky given in (50), and the
weighting constant « defined in (51) are selected to satisfy
the following inequalities

lmin{Kp} > lmax{Ky} + Fd +S « + 1

« Dzg 2 (54)

lmin{Ky}>zg 2 +«Slmax{Ky} + Fd + zx ) (55)

and

«<minH 1
2

m1

m2

, 
lmin{Kp}

2m2

, 1J (56)

where Fd and zg2 were defined in (1) and (49), respectively.

Proof: To prove (53), we define the following non-
negative, scalar function

* The term “saturated” is used here to point out that the integral
portion of the control is saturated via the Tanh( · ) function. It does
not imply that the control torque input can be explicitly bounded
a priori as done for the previous controllers.
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V(t)=
1
2

q̇T M (q) q̇ +
1
2

q̃T Kp q̃ + «TanhT (q̃)M(q)q̇

+
1
2

f̃ T G21 f̃ (57)

where « is the same gain as defined in (51). Based on (2),
(12), and the Raleigh-Ritz theorem, we can lower bound
V(t) by the following inequality

l1 Fiq̃i2 iq̇i2 if̃i2GT
≤ V(t) (58)

where l1PR1 is defined as follows

l1 = minHS 1
2

m1 2«m2D,

S lmin {Kp}
2

2«m2D,
1
2

lmin {G21}J. (59)

Based on (59), it is straightforward to see that if « is selected
according to (56), we can ensure that l1 is positive, hence,
from (58), we have that V(t) ≥ 0. After taking the time
derivative of (57), we can utilize Property 2, (52), (51), and
the time derivative of (14) to obtain the following expres-
sion

V̇(t) = 2 q̇T [Ky q̇+G(q)2G(qd)+Fd q̇G

2«TanhT (q̃)[G(q)2G(qd)+Kp q̃+Ky q̇

+Fd q̇]+«x (60)

where x (t) was defined in (37). After utilizing (10), (12),
(38), and (49), we can upper bound V̇(t) of (60) as follows

V̇(t) ≤ 2 Slmin{Ky }2zg2 2«zx 2«lmax{Ky}2«Fd) iq̇i2

2«Slmin{Kp}2lmax{Ky}2Fd 2S «+1
«
D zg2DiTanh(q̃)i2

(61)

where Fd , zg2 , and zx were defined in (1), (49), and (38),
respectively. Provided the conditions given in (54), (55), and
(56) are satisfied, V̇(t) can upper bounded as follows

V̇(t) ≤ 2b izi2 (62)

where b is some positive bounding constant, and z(t)PR2n

is defined as

z = [q̇T Tanh(q̃)T ]T. (63)

From (62), we now have that V(t)PL∞ ; hence, from (58),
we have that q̇(t), q̃(t), f̃(t), z(t)PL∞ . Since q̃(t)PL∞ , we
can utilize (14) to obtain q(t)PL∞ . Standard signal chasing
arguments can now be employed to show that all signals
remain bounded during closed loop operation; hence, it is
easy to show from (52) that ż(t)PL∞ (i.e. z(t) is uniformly
continuous). It also follows directly from (62), that z(t)PL2

(and hence iTanh (q̃) iPL2). Since ż(t)PL∞ and z(t)PL2,
Barbalat’s Lemma15 can be used to state that lim

t→∞
iz(t)i =0;

hence, the properties of hyperbolic functions can be applied
to (63) to yield the result given in (53).h

Remark 4. We note that the adaptive controller given by
(50) and (51) can be rewritten in form very similar to that
given in reference [8]. That is, we note that the adaptation
law given in (51) can be written in the following integral
form

f̂ = 2GYT
d q̃2«GYT

d E t

0
Tanh(q̃)ds (64)

where f̂(0) defined in (51) has been utilized. After
substituting (64) into (50) and then grouping common
terms, we obtain a PID controller with a saturated integral
term as follows

t = 2 K̄p q̃2 K̄y q̇2 K̄I E t

0

Tanh(q̃)ds (65)

where K̄p =Kp + Yd GYT
d , K̄I = «YdGYT

d, and K̄y = Ky.

Remark 5. In reference [14], Zhang et.al. proposed a
global adaptive output feedback tracking controller that can
also be written as a setpoint controller in a form that is
somewhat similar to that given by (65). Specifically, the i-th
component of the control torque input t (t)PRn proposed in
reference [14] can be rewritten as a nonlinear controller
with a saturated integral term as follows

t i = 2 (K̄p q̃)i 2 tanh(q̃i )2 K̄y S yi

12y2
i
D

2 K̄I E t

0
(yi 2 tanh(q̃i)) ds (66)

where K̄p = YdGY T
d, K̄y = k, K̄I = YdGY T

d, (·)i denotes the i-th
component of a vector in general, and y(t)PRn is computed
by the following filter

ṗi = 2 (12 ( pi + kq̃i )
2) (pi + kq̃i + tanh(q̃i ))

+ k (tanh (q̃i )2pi 2kq̃i ), pi (0)=2kq̃i (0)

yi = pi + kq̃i

while p(t)PRn is an auxiliary that allows y(t) to be
computed without link velocity measurements.

6. EXPERIMENTAL VERIFICATION
The proposed adaptive link position setpoint controller was
implemented on an Integrated Motion Inc. 2-link, revolute,
direct-drive robot manipulator with the following dynam-
ics16
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F t1

t2
G=F p1 + 2p3cos(q2)

p2 + p3cos(q2)
p2 + p3cos(q2)

p2
GF q̈1

q̈2
G

+F 2p3sin(q2)q̇2

p3sin(q2)q̇1

2p3sin(q2)(q̇1 + q̇2)
0 GF q̇1

q̇2
G

+F fd1

0
0
fd2
GF q̇1

q̇2
G+F fs1

0
0
fs2
GF sgn(q̇1)

sgn(q̇2)
G

(67)

where p1 = 3.31 kg.m2, p2 = 0.116 kg.m2, p3 = 0.16 kgm2,
fd1 = 1.0 Nm.sec, fd2 = 0.6 Nm.sec, fs1 = 8.45 Nm, and
fs2 = 2.35 Nm. For these dynamics the unknown parameter
vector given in (5) is defined as follows

[ f1 f2 ]T = [ fs1 fs2 ]T. (68)

The links of the robotic manipulator are directly actuated by
switched-reluctance motors which are controlled through
NSK torque controlled amplifiers. A Pentium 266 MHz PC
operating under QNX (a real-time micro-kernal based
operating system) hosts the control algorithm. The control
algorithm was implemented via Qmotor 2.0, an in-house
graphical user-interface that facilitates realtime graphing,
data logging, and the ability to vary control gains without
recompiling the program. Data acquisition and control
implementation were performed using the MultiQ I/O board
at a frequency of 3.0 kHz.

For one familiar with the robotics literature, it is easy to
see that if the hyperbolic tangent functions and the
projection algorithm are removed from the proposed
adaptive controller that we recover the following setpoint
version of Slotine’s robot controller10

t s = Yf̂2Kpq̃2Ky q̇
˙̂f = 2GYT( q̇ + «q̃) .

(69)

It is common practice to saturate the control torque input at
a level just below the maximum threshold of the actuator in
order to prevent potential mechanical/thermal damage. For
example, the setpoint version of the controller given by (69)
might be implemented in the following manner

ti = sat(t s
i ; di ) (70)

where the d 9i s denote a positive constant that represents the
torque saturation constraint of the actuators, sat(·) denotes
the standard, linear piecewise saturation function6 that
saturates at d i , t

s
i denotes the i-th component of t s, and t i

denotes the i-th component of the control torque that is
commanded at each link. However, this ad hoc implementa-
tion of the control given by (70) lacks a stability proof;
hence, there is a potential for instability and degraded
control performance. Since the proposed controller was
motivated by this conundrum, we performed experiments to
compare the controller given by (69) and (70), and the
proposed controller given by (22), (23), (25), (24), and (5).
The desired setpoints for both experiments were chosen as
follows

qd1 = 70deg qd 2 = 270 deg (71)

with the link position and link velocity being initialized to
zero. In order to ensure a fair comparison between the two
controllers, we initialized the parameter estimates for both
controllers to the lower bound defined in (5) as follows

f̂1(0) = f1 = 3.0 f̂2(0) = f2 = 0.80 (72)

where the lower bounds were selected to be 35.5%, and
34% of the values given in (67) for fs1 , and fs2 , respectively.
For the projection algorithm of (25), the upper bounds were
selected to be 177%, and 191% of the values given in (67)
for fs1 , and fs2 , respectively, as follows

f1 = 15.0 f2 = 4.5.

For the controller given by (69) and (70), we limited the
control torque input to approximately 95% of the maximum
available torque by setting the saturation constants as
follows

d1 = 231 Nm d 2 = 37.5 Nm (73)

In order to achieve the best transient response and good
steady-state error performance (see Table I), the control/
adaptation gains for the controller given in (69) and (70)
were selected as follows

Kp =F 1875
0

0
700 G, Ky =F 175

0
0
31.2 G,

G = diag[0.010, 0.022], « = 450. (74)

Table 1: Comparison of Link Position Setpoint Control Performance

Proposed controller Standard controller

Maximum Steady-State Link 1: 0.013 Link 1: 0.013
Tracking Error (deg.) Link 2: 0.004 Link 2: 0.004

Time required to reach a 1% Link 1: 0.43 Link 1: 0.49
envelope of the desired position (sec) Link 2: 0.40 Link 2: 0.39

Link 1: 231.0 Link 1: 2290.6Maximum Computed Torque (Nm) Link 2: 37.5 Link 2: 855.2

Link 1: 231.0 Link 1: 231.0Maximum Delivered Torque (Nm) Link 2: 37.5 Link 2: 37.5
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Fig. 1. Link position.

Fig. 2. Parameter estimates.

Adaptive control178



Fig. 3. Control torque inputs (a) computed, (b) actual.

Fig. 4. Link position.
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Fig. 5. Parameter estimates.

Fig. 6. Control torque inputs.
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The performance of the controller is illustrated in Figure 1,
the parameter estimates are given in Figure 2, and the
associated control torque inputs are given in Figure 3.
Likewise, the gains for the proposed adaptive amplitude-
limited controller were tuned to the following values

Kp =F276.5
0

0
49 G, Ky =F 117

0
0
27.4 G,

G = diag[0.009, 0.08], « = 110. (75)

The performance of the controller is illustrated in Figure 4.
The parameter estimates and the associated control torque
inputs are given in Figure 5 and Figure 6 respectively.

Remark 6. The control gain values used in (74) and (75)
were determined as a result of “tuning” the controller until
the transient response and steady-state error improved. It is
clearly evident that these gains do not satisfy (29) and (30),
however, it should be noted that these conditions are
sufficient conditions spawned from a conservative Lyapunov
based stability analysis.

Remark 7. It is evident from a comparison of the
experimental results (see Table I) that the proposed adaptive
controller and the controller given in (69) and (70)
demonstrate similar staedy-state and transient responses.
Based on our experimental results, we concur with
Satibáñez and Kelly17 that we cannot definitively say that
the proposed controller is better than the standard counter-
part given in (69) and (70). However, due to the fact that the
stability/performance of the standard saturated controller
with uncertain parameters remains an open problem, we
have more confidence in the performance of the proposed
controller with its accompanying proof of stability.

7. CONCLUSION
Through the use of a Lyapunov based design, we have
presented two amplitude limited controllers that achieved
link position setpoint regulation for robot manipulators.
First, a FSFB exact model knowledge controller was
designed to achieve global setpoint control. Then, a FSFB
adaptive controller was proposed for the semi-global
setpoint control problem. As demonstrated in the control
development, an advantage of the proposed controllers is
that the magnitude of feedback portion of the control law
can be made arbitrarily small, provided dynamic friction is
excluded; furthermore, an upper bound on the maximum
torque required can be calculated a priori. We also
illustrated how the proposed control algorithm in this paper
can be slightly modified to yield a PID controller which
yield global adaptive setpoint regulation. Experimental
results present a comparison between the proposed adaptive,
amplitude limited control scheme with a standard counter-

part (i.e. an adaptive controller which has been artificially
limited to account for torque saturation).
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