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Plug-and-Play Cooperative Navigation: From
Single-Agent Navigation Fields to Graph-
Maintaining Distributed MAS Controllers
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Abstract—A class of closed-form distributed controllers
achieving leader-following in a multiagent system (MAS)
with distance-limited communications in a compact ob-
structed environment is developed: given a user-provided
navigation field for a single point agent as an input, the
desired MAS PnP (“Plug-and-Play”) controller is obtained
through a closed-form expression. In particular, coopera-
tive navigation in an environment of arbitrary complexity is
achievable whenever an adequate single-agent navigation
solution is available. Sufficient conditions on the navigation
field in relation to the communication radius are developed,
guaranteeing that a prescribed initial graph of agents re-
tains all of its edges while following a leader. In contrast
with existing work, the standard radial symmetric interac-
tions among agents are replaced with an asymmetrically
rescaled version of the provided navigation field, removing
the need for assumptions such as the sphericity or convex-
ity of obstacles, and enabling the switching of the attractive
interactions between neighbors on and off as needed. This
approach elucidates the tradeoffs between communication
range, the size of the MAS, the control effort required for
cooperation, and the complexity of navigating in the pro-
vided environment. The reliance of the approach on naviga-
tion fields enables the use of state-of-the-art sensing-based
reactive navigation methods designed for settings with in-
complete prior knowledge of the environment and based
on a sphere-world model layer. For this reason, two case
studies are provided—one of sphere worlds, and the other
of topological sphere worlds with star-convex obstacles—
comparing different variations of the PnP controller derived
from state-of-the-art single-agent navigation fields.
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I. INTRODUCTION

A. Motivation

MOBILE robotic platforms are increasingly expected to
operate in cooperative settings, which creates a need

for efficient distributed navigation methods mindful of commu-
nication constraints. Nonconvex obstacles in real-life settings
increase the tension between task execution and the need for
maintaining a connected communication structure by introduc-
ing nonconvex inequality constraints into the problem. Safety
requirements such as collision-avoidance among agents com-
plicate the problem even further. A standard assumption in the
literature on distributed multiagent system (MAS) navigation
with connectivity maintenance is that any pair of agents may
communicate state information to each other, provided the dis-
tance between them does not exceed a prescribed threshold
R > 0. Such pairs are often referred to as available edges.
Despite many advances, the MAS literature has stuck to a set of
conservative assumptions simplifying the geometry of obstacles
or removing them altogether, while focusing on other aspects
and extensions of the problem. Over time, the initial smooth
controllers for holonomic single-integrator agents requiring con-
tinuous communication [1], [2], [3], [4], [5] gave way to general
discussions of graph maintenance such as [6]; to solutions allow-
ing for complex behaviors such as formation reconfiguration [7];
and to challenging contexts such as intermittent communication
and actuation [8], [9], [10]; and second order agent dynam-
ics [11]—just to name a few. At the same time, new advances
in the literature on single agent reactive navigation based on a
recent broad extension [12] of the Rimon-Koditschek navigation
paradigm [13] have made reactive navigation possible even with
multiple nonconvex obstacles [14], [15]. More refined methods,
specialized for the plane, using harmonic functions have also
been developed [16], [17]. Following a preliminary conference
version [18], this article develops a framework for directly
harnessing the capabilities of arbitrary single-agent navigation
methods for the purpose of cooperative navigation of a connected
MAS, while removing the need for advanced knowledge of the
environment beyond what is required for navigation by a single
agent using the provided method. The framework introduces
a class of extensions of a provided single-agent navigation
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solution to a multiagent one, along with formal guarantees of
communication graph maintenance, making any future single-
agent navigation methods immediately applicable in the dis-
tributed MAS setting. This “future-proofing” feature is of par-
ticular importance in dimension 3 and higher, where single-agent
navigation methods are currently largely unavailable for do-
mains that are not topological sphere worlds.1

B. Related Work

Assume that the MAS workspace Ω ⊂ Rd is a compact do-
main with piecewise-smooth boundary.

1) Navigation Functions (NFs): In [20], an NF on Ω with
target x∗ ∈ int(Ω) is defined as a C2-smooth2 function ϕ :
Ω → [0, 1] such that (a)ϕ−1({1}) = ∂Ω, (b)ϕ−1({0}) = {x∗},
(c) all the critical points of ϕ are nondegenerate, and (d) ϕ
has no local minima in int(Ω) except for x∗. Then, ∂Ω is a
repelling set of the dynamical system ẋ = n(x∗, x) � −∇ϕ(x)
on Ω, x∗ is its unique stable equilibrium, and the complement
of the basin of attraction of x∗ has zero measure. The connected
components O1, . . . , Ob of the set Ω∗ � Rd \ Ω are usually
regarded as obstacles to navigation. This navigation paradigm is
desirable due to its built-in guarantee of stability and bounded
actuation [13]. The original constructions, known as Rimon-
Koditschek navigation functions (RKNFs), took the form

ϕ � γ

(
γk +

b∏
i=1

βi

)−1/k

(1)

where γ : Ω → [0,∞) and βi : Ω → [0,∞), i = 1, . . . , b are
C2-smooth functions with γ−1(0) = {x∗} and where, for each
i = 1, . . . , b, the zero level set of βi coincides with the boundary
∂Oi of Oi. The function γ may be seen as a cost, while each βi

plays the role of a barrier for the dynamics ẋ = −∇ϕ(x) in the
complement of Oi, preventing its trajectories from exiting the
workspace into Oi. Note that no two functions in the collection
{γ, β1, . . . , βb} have common zeros in this situation. In practice,
the functions γ and βi are often selected as (at least) C2-smooth
functions of Rd with nonvanishing gradients on ∂Ω and ∂Oi,
respectively.3 For sphere worlds—workspaces Ω obtained by
excavating a disjoint collection of Euclidean balls from a larger
Euclidean ball—the cost γ(x) = ‖x− x∗‖2 and quadratic bar-
rier functions βi were shown in [20] to give rise to an NF ϕ,
provided k > 0 is large enough. These results were extended to
star-shaped obstacles via coordinate transformations [13], and
broader geometric settings were studied [19], [21], [22], includ-
ing variations on the algebraic construction ofϕ, alternative cost
functions, and vector fields replacing n(x∗, x) = −∇ϕ(x). In
parallel, recognizing that the RKNF construction and its variants
require complete advance knowledge of Ω by the agent, alter-
native generalizations were developed in results such as [12],
[14], [15], and [16] for broader classes of workspaces, known as
topological sphere worlds, where the gradient field of a naviga-
tion function is replaced by a vector field n(x∗,−) computable

1With the notable exception of [19], where navigation functions are con-
structed for topologically complex domains in R3 such as knot complements,
subject to specific curvature conditions.

2Originally, Rimon and Koditschek required analyticity, but C2 smoothness
suffices for their results. Further weakening of the assumptions along ∂Ω is
possible as well.

3This requirement may be relaxed to the gradients not vanishing almost
everywhere [13].

directly from local sensory information, while retaining the same
convergence properties.

2) Graph Maintenance Methods: The established ap-
proaches to MAS control with distance-limited communications
rely on the graphs GR(x), whose vertex set V indexes the
agents and each p ∈ V is labeled by the corresponding agent
state xp ∈ Rd; the edge set ER(x) is the set of available edges
for the communication range R; and x � (xp)p∈V denotes the
combined MAS state. The graph maintenance (GM) approach
focuses on maintaining E ⊆ ER(x(t)) for all t ≥ 0, provided an
initial communication graph G = (V, E) with E ⊆ ER(x(0)).

The connectivity maintenance (CM) approach requires that
GR(x(t)) remain connected for all t ≥ 0 while allowing the set
of available edges to vary over time. This may be achieved,
for example, by ensuring that a reduced weighted Laplacian
of GR(x) remains nonsingular (see, e.g., [2] and [23]), or by
seeking to maximize the smallest positive eigenvalue of GR(x)
subject to task constraints (e.g., [24]). More recent work in this
direction, such as [25], applies to a general class of obstacles,
through the use of control-barrier functions (CBF). The CM
approach is more flexible than GM, as it allows the MAS to
switch between communication structures as long as connectiv-
ity is maintained. Nevertheless, this article focuses on GM for
two reasons. First, GM does not require agents to be continually
aware of peers dropping in and out of communication range,
instead relying on peer-to-peer communication over a set E of
edges determined a priori. Second, despite the loss of flexibil-
ity as compared to CM, GM has the advantage of explicitly
acknowledging the underlying switched/hybrid nature of the
overarching coordination problem: continuous modes of the
MAS are matched with communication protocols (enumerated
by graphs), which facilitates a compositional approach to higher-
level planning for more complex tasks, as in [26]. The GM
literature divides, roughly, into two technical approaches, one
applying distributed navigation functions and the other relying
on variants of consensus dynamics.

a) GM via distributed navigation functions
(DNFs): Introduced in [1], the DNF approach is a fully dis-
tributed alternative to NF constructions such as [27]. It was
successfully applied to a variety of MAS coordination problems,
such as formation control with obstacle/collision avoidance,
e.g., [5], [28]. A DNF-based controller has each agent p ∈ V
descend the p-component ∇pϕp � ∂ϕp

∂xp
of the gradient of a

“personal” navigation function ϕp, constructed similarly to the
RKNFs of (1), but depending only on state information commu-
nicated to agent p by its neighbors in the communication graph
G, e.g.,

ϕp � γp

(
γk
p +

∏
i

βp,i

)−1/k

(2)

where each γp is a personal cost function, and the βp,i are barrier
functions representing interactions between agent p and the
obstacles O1, . . . , Ob for i = 1, . . . , b, as well as other possible
mission constraints on the agent, for i > b. In this setting,
complex interactions among hypersurfaces in the MAS config-
uration space corresponding to communication constraints, ob-
stacles, collisions, etc., result in significant technical difficulties
in establishing the forward invariance of the set of admissible
configurations satisfying all the constraints. Convergence from
almost all initial conditions is much harder to guarantee than in
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the NF setting: the singular sets ∇pϕp = 0, p ∈ V are no longer
0-dimensional, and Morse theory cannot be readily invoked.
Instead, the common practice is to deploy Lyapunov [1], [5] and
dual-Lyapunov [7] methods, e.g., using

∑
p∈V ϕp as a candi-

date (dual) Lyapunov function. Moreover, existing results resist
generalization because of their reliance on simplifying assump-
tions embodied in the dependence of the cost and barrier func-
tions on interagent distances and the distances of agents to the
centers of known spherical obstacles.

b) Laplacian-driven GM: Another dominant ap-
proach relies on pairwise interactions between neighbors gener-
ating closed-loop dynamics of consensus type, e.g.,

ẋ = −(Lw ⊗ Id)x+ v (3)

where Lw : RV → RV is the weighted Laplace operator with
nonnegative symmetric weights satisfying wpq = 0 if pq /∈ E
and otherwise wpq = r(‖xp − xq‖); r : R≥0

→ R≥0
is often re-

ferred to as the edge tension function, which may be designed to
fit the task specification; and (Rd)V is identified with RV ⊗Rd

in the usual way [4], [6], [29] (second-order variants exist as
well, e.g., [30]). The role of the first term in (3) and its variants
is to ensure a desired degree of connectivity (e.g., simply remain-
ing within communication range [4], or maintaining a desired
relative position [3], [30]) by taking advantage of the contrac-
tive contribution of this term (each agent is driven toward the
weighted baricenter of the positions of its neighbors), whereas
the second term v = (vp)p∈V is meant to ensure the overall
task, such as target capture, leader-tracking or formation control.
Ensuring that the edges ofG are maintained throughout time may
then be done by imposing growth conditions on the function r(σ)
as σ approaches R from below, and leveraging spectral bounds.4

CM and GM results are often obtained through analysis of the
time derivative of a network potential such as the one reviewed
below in Section II-B. Similar constructions exist, approaching
the problem by superposing attractive and repulsive potentials.
For example, in [3], the theory of subharmonic potentials was
combined with Rantzer’s theorem [31].

More modern techniques relying on CBFs could also be
used for incorporating obstacle-avoidance into, e.g., an existing
consensus controller [32]. These techniques rely on replacing
the reference controller with an approximation selected from
a set of safe inputs, which is computed online using barrier
certificates. These methods face computational challenges due
to the complexity of nonconvex obstacles and the growth of
the set of constraints with the size of the network, noting that,
similarly to (2), each obstacle-agent pair (i, p) and each pq ∈ E
contributes at least one constraint. Further difficulties with ap-
plying this framework arise when the geometric complexity of
obstacles leads to a failure of continuity (or even existence) of
the input selection in certain configurations.

4Collision avoidance may also be enforced by imposing a growth condition
on r(σ) as σ approaches R0 from above, where R0 ∈ (0, R) is a distance that
is considered safe for a pair of agents, but for this a repulsive field enforced
by negative values of r is required. Similarly, obstacle avoidance may be
enforced via the introduction of static virtual agents at the centers of obstacles,
which results in additional terms on the right-hand side of (3), and the de-facto
imposition of a spherical obstacles assumption.

C. Contributions

The approach in this article, extending the preliminary work
in [18], is to reduce the MAS coordination problem to a single-
agent navigation problem, by having the behavior of all agents in
the MAS be given by a closed-form formula that takes as input
a single navigation solution. For this reason, we refer to this
approach as a “plug and play” (PnP) approach. The following
notion, generalizing the properties of gradient fields of navi-
gation functions, as detailed in the beginning of Section I-B1,
and of other reactive constructions (see, e.g., [22]), serves as the
primary input to the PnP controller, enabling us to abstract away
from the geometry of any specific class of environments.

Definition 1: Let Ω ⊂ Rd, d ≥ 2 be a compact domain given
as the set of points z ∈ Rd with β(z) ≥ 0, where β : Rd →
R is C∞-smooth, with ∇β �= 0 almost everywhere in ∂Ω. A
navigation field on Ω is a locally Lipschitz continuous map n :
Ω× Ω → Rd satisfying the following conditions for every y ∈
int(Ω):

1) 〈n(y, z),∇zβ(z)〉 ≥ 0 everywhere on ∂Ω;
2) z = y is the unique stable equilibrium of n(y,−);
3) for almost all initial conditions x(0) ∈ Ω, the solutions

x(t) of ẋ = n(y, x) converge to y as t → ∞;
4) there is a continuous positive function α : Ω → R such

that ‖n(y, z)‖ ≥ α(y)‖y − z‖ holds for all z in a neigh-
borhood of y.

The emphasis is on the continuous dependence of n(y, z)
on both the state z and the navigation target y. In other
words, we regard {n(y,−)}y∈Ω as a uniformly bounded
continuous family of locally Lipschitz continuous controllers
for a single-integrator agent with dynamics5 ẋ = u and state
in Ω, keeping Ω forward invariant (since β is a barrier for
n(y,−) along ∂Ω), and guaranteeing limt→+∞ x(t) = y for
almost all initial conditions x(0) ∈ Ω, for each fixed y. The PnP
distributed MAS controller is constructed from a navigation
field n, and a connected graph G = (V, E) as

ẋp = up, up �
∑
q∼p

ξpqn (xq, xp) + vp (4)

where ξpq (x) ≥ 0 is a state-dependent gain, v = (vp)p∈V is the
task component of the controller, and q ∼ p means q goes over
all the vertices with pq ∈ E . Since this article focuses on a single
leader 	 ∈ V navigating to a prescribed targetx∗, the task compo-
nent is chosen so as to ensure the arrival of the leader at the des-
ignated target (see Section III-C for the detailed construction).
The coefficients ξpq (x) are nonconstant and asymmetric, as they
depend both on n(xq, xp) and on edge weights wpq = r(‖xq −
xp‖) obtained using an appropriately designed tension function
r. An R-local property of n, referred to as (R, δ)-goodness
(see Definition 2), is identified, which may be thought of as
preventing the navigation field from generating overly wasteful
motions towards R-close targets. (R, δ)-goodness results in
bounds on the difference between the PnP field and the weighted
consensus dynamics associated with the specially designed ten-
sion function r, enabling a graph maintenance guarantee. For
the sake of concreteness, these constructions are applied in the
specific setting of a chain of agents with a single leader, where
the PnP controller, together with an appropriate choice of v,

5Standard extensions are possible, and we focus on the fully actuated case for
simplicity.
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is shown to guarantee that (a) every edge of the original chain
remains available for all time; (b) no agent initialized in int(Ω)
exits Ω; and (c) the leader’s position converges to the target x∗
from almost every initial configuration x(0) ∈ int(Ω)V . The
actual result is more general, however, guaranteeing (a)+(b) for
any v = v(x) that satisfies certain bounds. There are several
material differences between (4) and perturbed Laplacian-based
dynamics (3). Most notably, the summands ξpqn(xq, xp), which
seem to come in place of the wpq(xq − xp) are no longer skew-
symmetric as functions ofV × V . Nevertheless, these alterations
are motivated by the following idea for enforcing (b): By the
Bony–Brezis theorem,6 the PnP controller is automatically guar-
anteed to provide workspace invariance for agent p for as long
as ξpq ≥ 0 for all q ∼ p and vp satisfies 〈vp(z),∇zβ(z)〉 ≥ 0
along ∂Ω. This leaves us free to design the coefficients ξqp as
closed-form functions of n(xq, xp) in a way that also enforces
(a), resulting in a closed-form formula for the desired MAS
controller, which only requires the ability for each agent to
compute {n(xq, xp)}q∼p in real time. For comparison, consider
the computational complexity of CBF-based GM with obstacle
avoidance as discussed in Section I-B2b: each agent is required
to compute in real time a continuous selection of the set of safe
inputs (usually as the solution to an optimization problem), de-
termined by constraints indexed (at least) by its neighbors and by
the smooth facets of all obstacles. Thus, the PnP controller takes
advantage of each individual agent’s proficiency (the ability to
compute n(−, z) at any state z) to achieve a drastic reduction
in the overall computational burden on each agent of the MAS.
An important contribution in excess of those presented in the
preliminary version [18] of this article is the systematic exten-
sion of the design and analysis of Laplacian and PnP dynamics
to nonnegative tension functions r that are allowed to vanish
in substantial portions (e.g., whole subintervals) of their domain
(see Section III). Results from algebraic connectivity theory (see
Appendices A-C and A-D) are applied to the analysis of the
time-derivative of the total potential of perturbed weighted con-
sensus dynamics (3), to generate graph-maintenance guarantees
for two parametric families of PnP controllers, one characterized
by a contractive behavior similar to that of weighted consensus
dynamics, and the other characterized by lazy7 behavior, where
neighboring agents at a safe distance do not exert any attractive
force on each other (Theorem 2, Section IV). While the former
family may be seen as merely a technical extension of the
results of [18], the latter represents a step toward minimizing
the control effort required for maintaining the communication
protocol constraints imposed on the MAS while still achieving
the overall navigation task of (a)+(b)+(c) just discussed. The
resulting framework may be of interest in other applications,
where lower bounds on the Fiedler value of G and its subgraphs
play a role in the Lyapunov analysis of the closed-loop dynamics
of the MAS state. Finally, Section IV discusses single-obstacle
and multiple-obstacle example settings with appropriate state-
of-the-art navigation fields and presents simulation results for
the PnP controller in these settings.

6More commonly known as Nagumo’s Lemma [33, Th. 3.1] in the case where
∂Ω is smooth, the more general results required for work with the setup of
Definition 1 (Ω nonconvex and/or ∂Ω nonsmooth) are known together as the
Bony–Brezis theorem [34, Sec. 2], [35].

7Here, we borrow the term from the theory of probability, where a lazy random
walk is one that assigns a positive probability to remaining in the same state.

II. NOTATION AND PRELIMINARIES

Henceforth, V is a nonempty finite set of cardinality N ,
indexing the set of agents of a MAS with state vectors in
Rd, d ≥ 2. Vectors x � (xp)p∈V ∈ (Rd)V are referred to as
configurations (of the MAS). For A ⊂ Rd and x ∈ Rd, ‖x‖A �
infy∈A ‖x− y‖ is the Euclidean distance of x to A. The closed
Euclidean unit ball in Rd is denoted by Bd. The notation ‖ · ‖
refers to the Euclidean norm, and ‖ · ‖p is the p-norm. If S is
a finite set, the standard basis vectors in RS are the functions
ea ∈ RS ,a ∈ S defined as ea(s) � δas ∈ {0, 1}, where δas = 1

if and only if s = a. If T ⊆ S, then 1T �
∑

a∈T ea ∈ RS is the
function with a constant value 1 on T , and zero everywhere
else in S. For any real-valued function f and L ∈ R, [f = L],
[f ≤ L], and [f ≥ L] denote the L-level, sublevel, and super-
level sets of f in S, respectively.

A. Graphs and Connectivity

The following are the standard notions from graph theory used
in this article.

1) Simple Graphs and Subgraphs: For a nonempty set V ,
the set

(V
2

)
is defined as the set of all two-point subsets pq �

{p, q} ⊂ V , p �= q. By a (simple) graph on the vertex set V we
mean a pair G = (V, E), where E ⊆ (V2). By a subgraph of G =
(V, E) we mean a graph (V∗, E∗) with V∗ ⊆ V and E∗ ⊆ E . For
a fixed graphG = (V, E), the relation pq ∈ E is denoted by q ∼G
p, and by q ∼ pwhen there is no risk of ambiguity in determining
the relevant G. The degree dp(G) of p ∈ V in G is the number
of q ∈ V satisfying q ∼G p. Also, Δ(G) denotes the maximum
degree of a vertex in G.

Example 1: The graph on V with an edge set
(V
2

)
is called

the complete graph on V , and denoted by KV . Let k ≥ 1 be
an integer. Then, the k-path is the graph Pk with vertex set
{0, 1, . . . , k} and with edges p ∼ q if and only if |q − p| = 1.
The vertices 0 and k are called the endpoints of Pk. More
generally, a k-path in a graph G is a subgraph isomorphic to
Pk. The number k is referred to as the length of the path.

For any ∅ �= S ⊆ V , the subgraph of G = (V, E) induced by
S is the graphG[S] � (S, E [S]), where, by definition, pq ∈ E [S]
if and only if pq ∈ E and p, q ∈ S. We say that S is a k-clique
in G if k = |S| and G[S] = KS .

2) Weights on Graphs: A weight κ on G is a nonnegative
symmetric function κ : V × V → R≥0

, denoted (p, q) �→ κpq ,
such that, for all p, q ∈ V , κpq ≥ 0 if pq ∈ E and κpq = 0
otherwise. The weight κ is said to be degenerate, if κpq = 0 for
some edge pq ∈ E . For any weight κ, denote by E+

κ the set of
edges pq ∈ E with κpq > 0. We will also denote G+

κ � (V, E+
κ )

and refer to this subgraph of G as the support of κ.
3) Walks and Connectivity: A walk of length k in G from p

to q is a sequence (p0, . . . , pk) of vertices satisfying pi−1pi ∈ E
for i = 1, . . . , k, and p0 = p, pk = q. The smallest k admitting a
walk from p to q is referred to as the distance from p to q in G and
is denoted by |p− q|G . The quantity |p− q|G is set to zero when
p = q and is set to infinity when there is no path joiningp to q.G is
said to be connected, if every p, q ∈ V are at finite distance from
each other. An equivalence class of the relation |p− q|G < ∞
on V induces a subgraph called a connected component of G.
We denote the set of connected components of G by [[G]]. An
important example arises when a weight w of the kind discussed
in Section I-B2b happens to be degenerate on a connected graph
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G. Then, the subgraphG+
w contains all the vertices ofG, but fewer

edges, and may become disconnected, with [[G+
w ]] containing

more than one element.

B. Edge Potentials and Perturbed Consensus Dynamics

1) Edge Tension Function and Edge Potentials: Let r :
R≥0

→ R≥0
be a piecewise continuous function with finitely

many jumps. We will say that r is nondegenerate if r(σ) > 0 for
allσ ≥ 0. Following [6], the edge potentialsVpq : (Rd)V → R≥0

with tension r are defined as

Vpq(x) � P (‖xp − xq‖), P (σ) �
∫ σ

0

r(s)sds (5)

for any p, q ∈ V , p �= q. This design is chosen to ensure that Vpq

satisfies the identity

∂Vpq/∂xp = r(‖xp − xq‖)(xp − xq) (6)

everywhere except for the case when ‖xq − xp‖ is a point of
discontinuity for r. When r is nondegenerate, we will refer to the
corresponding edge potentials Vpq as nondegenerate, and vice
versa. Most edge potentials appearing in the literature (e.g., [3],
[4]) are covered by this construction, where r is always selected
to be continuous and nondegenerate, and often a monotone
nondecreasing function.

2) Total Potential and Perturbed Distance-Based Con-
sensus Dynamics: This section recalls crucial facts about dy-
namics of the type (3) subject to the state-dependent weights
wpq � r(‖xp − xq‖). The identity (6) ensures that the total
potential and weights

VG(x) �
∑
pq∈E

Vpq(x), wpq � r(‖xq − xp‖) (7)

satisfy the identity [29, Sec. 7.2]

∇VG(x) = 2(Lw ⊗ Id)x (8)

while the closed-loop dynamics of (3), together with (8), yield

V̇G = 〈−(Lw ⊗ Id)x+ v, 2(Lw ⊗ Id)x〉
= − 2‖(Lw ⊗ Id)x

⊥
w‖2 + 2〈v, (Lw ⊗ Id)x

⊥
w〉. (9)

This equation lies at the heart of our approach to the design and
analysis of PnP controllers, including in the case of degenerate
weights (when wpq may equal zero for edges of the graph G).
Recall that the vector Laplacian operatorLw ⊗ Id is the positive-
semidefinite operator on (Rd)V given by

((Lw ⊗ Id)x)p =
∑
q∼p

wpq(xq − xp). (10)

Since the multiagent literature seldom makes use of weighted
Laplacians with degenerate weights, a detailed review of their
construction, properties, and other necessary information is
provided in the appendices (Appendix A).

III. PNP CONTROLLER

Extending the preliminary discussion in Section I-C, this
section formally introduces the control objective, design as-
sumptions, basic GM guarantee, and the PnP controller in full
detail.

A. Control Objective and Design Assumptions

We are given N agents, with states xp ∈ Rd, p ∈ V evolving
under ẋp = up, where up ∈ Rd, d ≥ 2 is a continuous control
input. The state xp of each agent is confined to a workspace
Ω ⊂ Rd satisfying the assumption of Definition 1. Then, the
sublevel set [β ≤ 0] has finitely many connected components,
which are referred to as obstacles.

Two agents are capable of communicating with each other—
but are not obliged to do so—whenever ‖xp − xq‖ ≤ R. Com-
munication in the MAS may only occur along edges of a pre-
scribed connected graph G = (V, E). Hence, only initial con-
figurations x(0) lying in the interior of the domain CR(G) are
considered, where, for any s > 0, one defines

Cs(G) �
{
x ∈ ΩV : E ⊆ Es(x)

}
,

Es(x) � {pq : ‖xp − xq‖ ≤ s} .
Es(x) is the set of edges available to the MAS at configuration
x for communication over distances not exceeding s.

A single agent 	 ∈ V is designated as the leader and tasked
with reaching a user-specified target location x∗ ∈ int(Ω),
while the MAS as a whole is tasked with maintaining the
prescribed communication structure G = (V, E) for all time:
x(t) ∈ CR(G) is required to hold for all t ≥ 0. For simplicity,
collisions among agents are allowed, and we assume the agents
have complete state feedback at all times. Each agent is provided
with a means to compute the navigation field n on the workspace
Ω. In this sense, each agent shares with the others an effective
means of navigating Ω towards any target while avoiding all
obstacles. Coordination is achieved through the ability of each
agent to access the state information of all its neighbors in G, as
long as x(t) ∈ CR(G) holds.

It stands to reason that some navigation fields may vary
too much over short distances to provide useful means of
navigation—much less coordination. The following definition
is used to eliminate navigation fields of this kind from consid-
eration.

Definition 2: Let δ ∈ (0, 1]. A navigation field n on Ω is
(R, δ)-good, if every y, z ∈ Ω with ‖y − z‖ ≤ R also satisfy

〈n(y, z), y − z〉 ≥ δ‖n(y, z)‖‖y − z‖. (11)

In other words, a good navigation field is one that is always
at a sufficiently acute angle (namely, one whose cosine≥δ) to
the radial field for nearby targets.

B. Weak Invariance Principle for Graph Maintenance

1) General Argument for Graph Maintenance: The fol-
lowing result was presented in [10] and [18], inspired by the
analysis in [6]. Here, it is reformulated and extended to fit a
broader class of edge tension functions. Note the independence
of the new statement from the particular choice of a controller for
the MAS. This matters, as distinct versions of the PnP controller
are studied in this article.

Theorem 1: LetVG be the total edge potential obtained via (7),
using a piecewise continuous tension function r : R≥0

→ R≥0

with only finitely many discontinuities of jump type in the
interval [0,∞). Further, let � ∈ (0, R] satisfy

|E|P (�) < P (R). (12)
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Suppose x(t) : R≥0
→ ConfV(Ω) is continuous and piecewise

C1 with bounded ẋ(t) and x(0) ∈ C�(G), and suppose V̇G ≤ 0
whenever ‖Δx(t)‖∞ ∈ [�,R]. Then,x(t) ∈ CR(G) for all time.

Proof: Suppose x(t) is a trajectory with x(0) ∈ C�(G) ex-
iting CR(G). Let t1 � inf{t ∈ [0,∞) : x(t) /∈ CR(G)} and let
t0 � sup{t ∈ [0, t1) : x(t) ∈ C�(G)}. The assumptions on ẋ(t)
and r imply

VG(t1)− VG(t0) =
∫ t1

t0

V̇G(t)dt ≤ 0. (13)

Since r ≥ 0, the function P is monotone nondecreasing. There-
fore, x(t0) ∈ Cρ(G) implies P (‖xq(t0)− xp(t0)‖) ≤ P (�) for
all pq ∈ E , which results in

VG(t0) =
∑
pq∈E

P (‖xq(t0)− xp(t0)‖) ≤
∑
pq∈E

P (�) = |E|P (�).

Applying (12), we obtain VG(t0) < P (R). At the same time,
note that ‖xp(t1)− xq(t1)‖ = R for at least one edge pq ∈ E ,
yielding P (R) ≤ VG(t1); hence, VG(t0) < VG(t1), contradict-
ing (13). �

Considering the proof, the distance between two neighbors
p, q ∈ V is said to be safe if 0 ≤ ‖xp − xq‖ ≤ �, and unsafe if
� < ‖xp − xq‖ ≤ R, keeping in mind that distances greater than
R between neighbors are not allowed by our task specification.

2) Example: A Bound for Nondegenerate Edge Poten-
tials: In [6, Prop. 3.2], G is connected and r is designed
as a continuous monotone nondecreasing function satisfying
μ ≤ r(σ) ≤ r(R) for all σ ∈ [0, R], where μ > 0 is a design
parameter. Therefore, xw = xV and, using (72) and (86), we
may continue (9) as

V̇G = − 2‖(Lw ⊗ Id)x
⊥
w‖2 + 2〈v, (Lw ⊗ Id)x

⊥
w〉

≤ − 2λ2(G, w)2‖x⊥
V ‖2 + 2λN (G, w)‖x⊥

V ‖‖v‖
≤ − λ2(G, w)2‖Δx‖2∞ + 2λN (G, w)

√
N‖Δx‖∞‖v‖

≤ − μ2λ2(G)2‖Δx‖2∞
+ 4

√
NΔ(G)r(‖Δx‖∞)‖Δx‖∞‖v‖. (14)

Consequently, any pq ∈ E with ‖xp − xq‖ ≥ � > 0 produces

V̇G ≤ −μ2λ2(G)2�2 + 4
√
NΔ(G)r(‖Δx‖∞)‖Δx‖∞‖v‖.

If, in addition, all pq ∈ E have length not exceeding R, then

V̇G ≤ −μ2λ2(G)2�2 + 4r(R)Δ(G)
√
NR‖v‖ (15)

enabling the conclusion that V̇G(x) ≤ 0 for small enough ‖v‖,
whenever ‖Δx‖∞ ∈ [�,R]. Applying Theorem 1 to any solution
x(t) of (3) with x(0) ∈ C�(G) reproduces the weak invariance
principle of [6, Prop. 3.2].

3) General Bounds for the Total Edge Potential: The
presence of a known lower bound μ on the weights is crucial
for the argument laid out in Section III-B2, both for enabling the
spectral bounds from (86) and for obtaining the negative-definite
term in the time derivative of the total edge potential. The follow-
ing computation sets up the machinery required for analyzing
the degenerate case, demonstrating that a more careful spectral
analysis always allows one to proceed in a fashion similar to the
nondegenerate one. A more fine-tuned analysis of the weighted
vector Laplacian Lw ⊗ Id is required in the degenerate case,

relying on its orthogonal decomposition into the Laplacians of
the connected components of the graph G+

w , which is reviewed
in the appendices (Appendix A-D). Combining (9) with (87)
and (89) yields

V̇G = − 2‖(Lw ⊗ Id)x
⊥
w‖2 + 2〈v, (Lw ⊗ Id)x

⊥
w〉

= − 2
∑

G∗∈[[G+
w ]]

‖(Lw|G∗ ⊗ Id)x
⊥
V∗‖2

+ 2〈v, (Lw ⊗ Id)x
⊥
w〉 (16)

≤ − 2
∑

G∗∈[[G+
w ]]

λ2(G∗, w|G∗ )2‖x⊥
V∗‖2

+ 2〈v, (Lw ⊗ Id)x
⊥
w〉. (17)

Equation (16) provides an improvement over the bound pro-
vided in (14) by exposing negative-definite terms that were unac-
counted for when the tension function was allowed to vanish. In
the presence of edges with null weights, the negative-definite
term in (14) vanishes, rendering that bound useless for the
purpose of invoking Theorem 1. In contrast, any edge with
nonzero weight contributes a negative-definite term to (17), cor-
responding to the connected component of G+

w which contains
that edge. Continuing from (17) using Cauchy-Schwartz, (75)
and (91) yields

V̇G ≤ − 2
∑

G∗∈[[G+
w ]]

λ2(G∗, w|G∗ )2‖x⊥
V∗‖2

+ 2‖(Lw ⊗ Id)x
⊥
w‖‖v‖

≤ −
∑

G∗∈[[G+
w ]]

λ2(G∗, w|G∗ )2‖π1
V∗Δx‖2∞

+ 2‖(Lw ⊗ Id)x
⊥
w‖‖v‖

≤ −
∑

G∗∈[[G+
w ]]

λ2(G∗, w|G∗ )2‖π1
V∗Δx‖2∞

+ 2
√
NλN (G, w)‖Δx‖∞‖v‖ (18)

which is applied in Section IV to the analysis of the PnP
controller.

C. Controller Design

Definition 3: Consider the problem formulation of
Section III-A, where G with |E| ≥ 2 is fixed in advance
and n is a provided (R, δ)-good navigation field with a known
bound U � supz∈Ω ‖n(x∗, z)‖. The PnP controller with tension
r : R≥0

→ R≥0
is defined as u � (up)p∈V

up(x) �
∑
q∼p

ξpqn
p
q + vp (19)

where npq(x) � n(xq, xp), and ξpq (x) � ξ(xq, xp) with

ξ(y, z) � r(‖y − z‖)‖y − z‖2
〈n(y, z), y − z〉 (20)
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and the task component v � (vp)p∈V is defined as

v�(x) � γn (x∗, x�)−
∑
q∼�

ξ�qn
�
q (21)

with vp(x) = 0 for p ∈ V , p �= 	, and γ > 0 a gain parameter.
Though all of the above depend on the choice of the tension
function r, we suppress any references to r wherever possible.

Remark 1: Note from (21) that the leader 	 follows the
trajectories of the field γn(x∗, x�) without being affected by
the other agents. Therefore, the leader is guaranteed to reach x∗,
by item 3) of Definition 1. The case where v�(x) = γn(x∗, x�)
is also of interest, due to the followers affecting the trajectory of
the leader, but will not be addressed in this article.

Remark 2: Note the denominator in (20) is positive whenever
‖y − z‖ ≤ R, because n is (R, δ)-good. Moreover

‖y − z‖ ≤ R =⇒ ‖ξ(y, z)n(y, z)‖ ≤ Rr(R)

δ
(22)

and ξ(y, z)n(y, z) is a continuous function of z in a neighbor-
hood of y, by item 4) of Definition 1.

Remark 3: The n(x∗, x�) term in v� may be replaced by a
different reference vector field that keeps Ω invariant, implying
that applications of the PnP controller are not confined to nav-
igation tasks. Other first-order task specifications are possible,
such as the time derivative of a desired path in int(Ω) for the
leader to follow, transforming the navigation task into a more
general leader-following task. The results of this article will be
affected by this kind of change only to the extent it affects the
bound U .

1) Design of the Tension Function: This article considers
two variants of the PnP controller arising from the following
design of the tension function:

r(s) �

⎧⎨
⎩
μ, if s ∈ [0, �)

μ+ ω(s− �)1+α, if s ∈ [�,R]

0, if s ∈ (R,∞)

(23)

where μ, α ≥ 0, ω > 0 are parameters.8 Note that r(s) ≥ μ
for all s ∈ [0, R], in agreement with the role played by μ in
Section III-B2.

1) The contractive PnP controller arises when μ > 0, and
is characterized by a tendency of the distances between
neighboring agents to contract at a rate bounded below by
a function of μ. This controller differs only cosmetically
from the controller presented in the preliminary confer-
ence version [18] of the present article.

2) The lazy PnP controller, obtained when μ = 0, is charac-
terized by the absence of attractive interactions between
neighboring agents at distances below the safe distance �.

To present a unified analysis of the WIPs for the two con-
trollers, the following constants are introduced:

m � R

�
, M � r(R)

r(�∗)
(24)

where �∗ ∈ [�,R) is selected to equal � in the contractive case,
and �∗ > � in the lazy case is to be determined with the goal in

8Note that α ≥ 0 is required for VG to be continuously differentiable, and
α ≥ 1 is required for r to be continuously differentiable. This article focuses on
the range α ∈ [0, 1], in the interest of limiting control effort.

mind of satisfying (12) with �∗ in place of �. Note that m > 1
by construction, and that it is best not to impose higher lower
bounds on m, so as not to limit the applicability of the WIP by
disqualifying values of � that are too close to the communication
radius R. By contrast, upper bounds on m are easily imposed by
the user without limiting system capabilities. We will henceforth
require

1 < m ≤ 4

3
<

√
2 ≤

√
|E|. (25)

Imposing this upper bound on m is tantamount to requiring that
� ≥ 3

4R. A direct calculation of the edge potential P yields
P (σ) = μ

2σ
2 if σ ∈ [0, �], and

P (σ) =
μ

2
σ2 +

ω (σ − �)2+α

(2 + α)(3 + α)
((2 + α)σ + �) (26)

for σ ∈ [�,R]. Applying the condition in (12) helps determine
appropriate parameter values as follows.

a) Parameters for the contractive controller: In
the contractive case, μ acts as a gain constant after factoring ω
as ω = ω∗μ. Condition (12) of the WIP, in its original form, is
ensured by selecting an appropriate value of ω∗. Specifically,
recalling that �∗ = � in this case

P (R)

P (�∗)
= m2 +

2ω∗�1+α (m− 1)2+α

(2 + α) (3 + α)
((2 + α)m+ 1)

and (12), after some algebra, becomes

P (R)

P (�∗)
> |E| ⇐⇒ ω∗ >

(2+α)(3+α)m1+α(|E|−m2)
2R1+α(m−1)2+α((2+α)m+1)

.

Therefore, by m > 1 and (25), selecting

ω∗ � 2 + α

2R1+α
· m

1+α
(|E| −m2

)
(m− 1)2+α > 0 (27)

guarantees the condition (12). At the same time, substituting (27)
into (24) yields the bound

M ≤ 1 +
(2 + α)

2 (m− 1)
|E| . (28)

b) Parameters for the lazy controller: In the lazy
case, ω assumes the role of a gain, and �∗ is computed so as to
satisfy P (R)/P (�∗) > |E| while keeping �∗ ∈ (�,R) as large
as possible. Some algebraic manipulation reveals that

P (R)

P (σ)
>

(m− 1)2+α

(m∗ − 1)2+α , m
∗ � σ

�

noting that 1 < m∗ < m. As a result, the required inequality is
satisfied by selecting

σ = �∗ � �+
R− �

|E|1/(2+α)
. (29)

From (23), the value of the tension function at this position is

r(�∗) = ω (�∗ − �)1+α = ω |E|− 1+α
2+α (R− �)1+α . (30)

Together with r(R) = ω(R− �)1+α, the preceding equality
results in

M = |E| 1+α
2+α < |E| . (31)
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Fig. 1. Orthogonal decomposition of a navigation field.

IV. COMMUNICATION GRAPH MAINTENANCE

For the rest of this section, let n denote a (R, δ)-good nav-
igation field on Ω, let G be a connected graph on V , and let u
be the associated PnP controller (Definition 3) with the tension
function designed according to one of the options detailed in
Section III-C1. The purpose of this section is to obtain conditions
under which every trajectory of ẋ = u with initial condition in
C�∗(G) remains in CR(G) for all time (by applying Theorem 1),
where �∗ ∈ [�,R) is selected according to Section III-C1.

A. Bounds for the PnP Controller

Consider the decomposition n � p+ o of an (R, δ)-good
navigation field n, where, for y, z ∈ Ω, p(y, z) ∈ Span(y−z)
and o(y, z) ⊥ (y−z), see Fig. 1. When ‖y−z‖ ≤ R, this yields

ξ(y, z)n(y, z) = r(‖y − z‖)(y − z) + ξ(y, z)o(y, z) (32)

‖o(y, z)‖ ≤
√
1− δ2‖n(y, z)‖ (33)

‖ξ(y, z)o(y, z)‖ ≤ δ∗r(‖y − z‖)‖y − z‖ ≤ δ∗r(R)R (34)

by (11) and (20), where δ∗ �
√
1−δ2

δ . Applying these to the
PnP field and using the compact notation opq(x) � o(xq, xp),
the following identity over CR(G) is obtained:

u = −(Lw ⊗ Id)x+O+ v, Op �
∑
q∼p

ξpqo
p
q . (35)

Substituting (35) and using (34) yields

‖O‖2 =
∑
p∈V

∥∥∥∥∥
∑
q∼p

ξqpo
q
p

∥∥∥∥∥
2

≤
∑
p∈V

(∑
q∼p

ξqp‖oqp‖
)2

≤
∑
p∈V

(Δ(G)δ∗r(R)R)2 = N (Δ(G)δ∗r(R)R)2

which results in

‖O‖ ≤
√
NΔ(G)δ∗r(R)R. (36)

Using (34) and the triangle inequality, we obtain

‖v‖ ≤ γU + d� · δ∗r(R)R. (37)

Using (88), followed by (91) we also have

‖(Lw ⊗ Id)x‖ ≤ ‖Lw‖‖x⊥
w‖ ≤ 2Δ(G)r(R)

√
NR. (38)

In particular, the above yield

〈O, (Lw ⊗ Id)x〉 ≤ ‖O‖‖(Lw ⊗ Id)x‖
≤ 2NΔ(G)2δ∗r(R)2R2 (39)

〈v, (Lw ⊗ Id)x〉 ≤ 2
√
NΔ(G)r(R)R · ‖v‖

≤ 2γU
√
NΔ(G)r(R)R

+ 2
√
NΔ(G)d�δ∗r(R)2R2. (40)

B. Bounds for the Total Potential

Regarding O+ v as a perturbation of the weighted Laplacian
dynamics in (3) using (35) enables a bound on the time derivative
of the total potential (7) under the PnP controller for ‖Δx‖∞ ∈
[�∗, R] by means of (9)

V̇G = − 2‖(Lw ⊗ Id)x‖2 + 2〈O+ v, (Lw ⊗ Id)x〉
≤ − 2‖(Lw ⊗ Id)x‖2

+ 4Nδ∗r(R)2R2Δ(G)2
(
1 +

d�

Δ(G)√N

)

+ 4γU
√
NΔ(G)r(R)R. (41)

Further, (41) may be weakened, using d�

Δ(G) ≤ 1 and N ≥ 1, to
a bound that holds for any G, e.g.,

V̇G ≤ − 2‖(Lw ⊗ Id)x‖2 + 8Nδ∗r(R)2R2Δ(G)2

+ 4γU
√
NΔ(G)r(R)R. (42)

For simplicity, all the development hereafter is based on (42),
while more precise bounds taking into account specific graph
structures could be obtained from (41).

1) Bounds Under the Contractive PnP Controller: In this
case, 0 < μ ≤ r(σ) ≤ r(R) for all σ, and (42) yields

V̇G ≤ − μ2λ2(G)2�2 + 8Nδ∗r(R)2R2Δ(G)2

+ 4γU
√
NΔ(G)r(R)R

where �∗ = � in this case. Dividing both sides by μ2�2 yields

1

μ2�2
V̇G ≤ − λ2(G)2 + 8NΔ(G)2δ∗M2m2

+ 4
√
NΔ(G)Mm · γU

μ�
. (43)

Thus, V̇G ≤ 0 under any conditions guaranteeing the inequality

8NΔ(G)2δ∗M2m2 + 4
√
NΔ(G)Mm · γU

μ�
≤ λ2(G)2 (44)

and Theorem 1 may be invoked in any such case, leading to
the conclusion that G will be maintained for all time. Note
that (44) imposes geometric restrictions on the navigation field,
expressed in the requirement that δ∗ be sufficiently small, as
well as in the requirement that the gain γ be small enough to
accommodate (44). For example, one way of securing (44) is to
ensure that the triple (n, R, δ) satisfies

δ∗ · 9NΔ(G)2M2m2 ≤ λ2(G)2 (45)
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and to then select the gain γ to satisfy

4γU

μ�
≤ δ∗

√
NΔ(G)Mm ⇐⇒ γ ≤ δ∗

4U

√
NΔ(G)r(R)R.

Further developing the right-hand side using (24) and (27) yields

γ ≤ μδ∗

4U

√
NΔ(G)R ·

(
1 +

2 + α

2
· |E| −m2

m− 1

)
(46)

which, given α ∈ [0, 1], enables the selection of

γ � μδ∗

4U

√
NΔ(G)R · 2 + α

6
|E| . (47)

2) Bounds Under the Lazy PnP Controller: Continu-
ing (42) for the design parameters of the lazy controller using
the development from (18), one has r(�∗) ≤ r(σ) ≤ r(R) for
all σ ∈ [�∗, R], and hence, for all x with ‖Δx‖∞ ∈ [�∗, R]

V̇G ≤ −
∑

G∗∈[[G+
w ]]

λ2(G∗, w|G∗ )2‖π1
V∗Δx‖2∞

+ 8Nδ∗r(R)2R2Δ(G)2 + 4γU
√
NΔ(G)r(R)R

where at least one component G0 = (V0, E0) ∈ [[G+
w ]] contains

an edge pq with ‖xq − xp‖ ≥ �∗. Therefore, by discarding all
the components of G+

w not containing pq from the count, the
inequality may be continued as

V̇G ≤ − λ2(G0, w|G0
)2(�∗)2 + 8Nδ∗r(R)2R2Δ(G)2

+ 4γU
√
NΔ(G)r(R)R

≤ − λ2(G0)
2r(�∗)2(�∗)2 + 8Nδ∗r(R)2R2Δ(G)2

+ 4γU
√
NΔ(G)r(R)R

which, noting that R
�∗ < m, may further be bounded as

1

r(�∗)2(�∗)2
V̇G ≤ − λ2(G0)

2 + 8Nδ∗M2m2Δ(G)

+ 4γU
√
NΔ(G)Mm

producing a condition analogous9 to (44), where λ2(G) is re-
placed by λ2(G0)

8NΔ(G)2δ∗M2m2 + 4
√
NΔ(G)Mm · γU

r(�∗)�∗
≤ λ2(G0)

2.

(48)
Requiring again that δ∗ be sufficiently small (45), Theorem 1
may be invoked, provided

4γU

r(�∗)�∗
≤ δ∗

√
NΔ(G)Mm

or, equivalently in the lazy case

γ ≤ ωδ∗

4U

√
NΔ(G)R · (R− �)1+α

(
1 +

m− 1

|E|1/(2+α)

)
.

In particular, selecting the simplified

γ � ωδ∗

4U

√
NΔ(G)R · (R− �)1+α (49)

9Recall that r(�∗) = μ for the contractive PnP controller.

in view of m > 1, satisfies this requirement. Note the similarity
with (47) in that μ there plays the same role as ω in (49). At the
same time, note how the difference R− � figures prominently
in (49), as opposed to (47), where it is the size of the graph that
matters most for the choice of γ.

C. Graph-Maintenance for a Single Chain

In the special case where G is a path, substituting Δ(G) =
2 and λ2(G) = 4 sin2 π

2N (see [36]) into the conditions (45)
and (47) or (49) (depending on the type of PnP controller being
deployed), and invoking Theorem 1 results in the following
theorem.

Theorem 2: Suppose G is an N -path and 	 is an end of G.
Further, suppose that the following holds:

δ∗ ·M2m2 ≤ 4

9N
sin4

π

2N
. (50)

Then, for any γ ≤ γ∗, where

γ∗ � δ∗

2U

√
NR ·

{
μ · 2+α

6 |E| , μ > 0

ω ·R (R− �)1+α , μ = 0
(51)

any trajectory x(t) of u with initial condition x(0) ∈ C�(G)
satisfies the following statements:

1) x(t) remains in CR(G) for all time;
2) x�(t) → x∗ for almost all x�(0) ∈ Ω.

Proof: In the case of the contractive PnP controller (μ > 0),
the assumption in (50) together with the choice of γ∗ guarantee
the inequality in (44), which is tantamount to V̇G(x(t)) ≤ 0
holding whenever ‖Δx(t)‖∞ ∈ [�,R]. A direct application of
Theorem 1 finishes the proof. In the more challenging case of
the lazy PnP controller (μ = 0), a crucial observation is that any
connected component G0 = (V0, E0) of a subgraph of G is itself
a N0-path for some N0 ≤ N , resulting in

λ2(G0) = 4 sin2
π

2N0
≥ 4 sin2

π

2N
= λ2(G)

and meaning that (50) implies (45). The choice of γ∗ then
ensures that (48) is satisfied, and V̇G(x(t)) ≤ 0 follows whenever
‖Δx(t)‖∞ ∈ [�∗, R]. Applying Theorem 1 with �∗ replacing �
allows one to conclude that x(t) ∈ CR(G) holds for all t ≥ 0 for
all initial conditions x(0) ∈ C�∗(G). In particular, since � < �∗,
the same is true for all initial conditions x(0) ∈ C�(G), as
desired. �

Remark 4: A loose formulation of Theorem 2 is that a short
enough chain of agents in a domain whose boundary is not too
curved (in comparison to 1

R ) is guaranteed to remain intact for all
time, while the leader converges to the desired target. While (51)
informs the selection of γ with clear tradeoffs between the size
of the network and the PnP gains, (50) reflects a restriction on the
pair (Ω, n). Observe how smaller values of N allow for larger
values of δ∗, which is tantamount to less stringent requirements
from the navigation field n. The right-hand side of (50) only
depends on N , decreasing rapidly with N , while δ∗ =

√
1−δ2

δ
only approaches zero as δ approaches 1 (from below). However,
δ cannot be treated as a design parameter, since it reflects the
quality of the navigation fieldn itself, givenR. In turn,n depends
on the geometry of Ω. At this point, in the case of a smooth ∂Ω,
one expects the curvature of the boundary to play a central role
in any future detailed analysis: reducing R enables a value of δ
nearer to 1, and hence smaller values of δ∗, where the precise
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Fig. 2. MAS tracks under a lazy PnP controller in a sphere world:
Ω is a rectangle E with three circular disks removed, as described in
Section V-A1.

relationship depends on an upper bound on the curvature of ∂Ω.
Finally the ratios m = R

� and M = r(R)
r(�∗) may both be regarded

as design parameters of the PnP field, while being constrained
by the requirements of Theorem 1.

V. CASE STUDIES

Simulations were carried out to compare the contractive PnP
controller and the lazy PnP controller. The purpose of this section
is to expand the initial study conducted in [18] using state-of-the-
art single-agent navigation fields found in the literature, to cover
environments with multiple, nonconvex obstacles. A review and
analysis of navigation fields for two related classes of environ-
ments are included below (navigation in sphere worlds using
the method of [12] and navigation in topological sphere worlds
where the obstacles are star-convex with smooth boundaries
using the method of [14]). Both methods are described in detail
to provide a guide to our implementation.10

A. Navigation in Sphere Worlds

1) Constructing a Navigation Field: Let Oi � x∗
i + ρiB

d,
i = 1, . . . , b, be a collection of pairwise disjoint closed balls,
serving as obstacles, contained in a bounded convex environ-
ment provided as d-dimensional polytope in the form E �
{x ∈ Rd : Mx ≤ C}, where M = [m1| · · · |ma]

� ∈ Ra×d and
C = [c1, . . . , ca]

� ∈ Ra. Also, let nj � − mj

‖mj‖ be an inward

facing normal at any point z ∈ ∂E satisfying 〈mj , z〉 = cj . For
each i = 1, . . . , b, let oi(z) � x∗

i + ρi(z − x∗
i ) and let

Hi(z) �
{
x ∈ Rd : ‖x− z‖ ≤ ‖x− oi(z)‖

}
(52)

10Code is available at https://github.com/kotmasha-/PnP_multi-agent_
navigation.

The polytope

P (z) � E ∩
b⋂

i=1

Hi(z) (53)

may be regarded as a neighborhood of z within which navigation
is inherently safe. Following [12], a navigation field nsph on
Ω � E \⋃b

i=1 Oi is constructed by setting

nsph(y, z) � πz(y)− z (54)

where πz : Rd → P (z) is the nearest point projection map.
2) Computing the Navigation Field: Developing (52)

shows x ∈ Hi(z) holds if and only if

〈x, x∗
i − z〉 ≤ ‖x∗

i − z‖2 − ρi‖x∗
i − z‖

2
+ 〈z, x∗

i − z〉 (55)

so that πz(y) is the unique solution of the quadratic program

πz(y) = argmin
x

‖x− y‖2 s.t.

{
Mx ≤ C

Ax ≤ D +Az
(56)

where A = A(z) ∈ Rb×d and D = D(z) ∈ Rb are derived
from (55), their ith rows satisfying

A(z)i � (x∗
i − z)� (57)

D(z)i �
‖x∗

i − z‖2 − ρi‖x∗
i − z‖

2
. (58)

Using (54), a change of the optimization variable in (56) to
ξ � x− y yields

nsph(y, z) = argmin
ξ

‖ξ‖2 s.t.

{
Mξ ≤ C −My
Aξ ≤ D +A(z − y)

(59)

which was used to implement nsph in Section V-A4.
3) Verifying the Properties of a Navigation Field: Since

establishing the admissibility of nsph as an input to the PnP con-
troller required explicit knowledge of the field’s construction,
we include a rather detailed analysis of nsph here, for the sake
of completeness, as well as to provide a simplified treatment
(as compared to [12]). Strictly speaking, Ω does not have a
smooth boundary, but, rather, a piecewise smooth one. The
properties of a navigation field (Definition 1) are still meaningful
in this more general setting, since the nonsmooth points of
∂Ω = ∂E ∪⋃b

i=1 ∂Oi form a null subset of ∂E. For the rest
of this paragraph, let y ∈ int(Ω) be fixed. To verify Condition
1 of Definition 1, consider z ∈ ∂Ω.

1) If z ∈ ∂Oi for some i = 1, . . . , b then z = oi(z) is the
unique point of intersection of the convex polytope P (z)
with the ball Oi, implying that the radius vector z − x∗

i

satisfies 〈z − x∗
i , x− z〉 ≥ 0 for all x ∈ P (z). In partic-

ular, for x = πz(y) the desired inequality is obtained.
2) If z ∈ ∂E then, without loss of generality, there is one and

only one j ∈ {1, . . . , a} such that 〈mj , z〉 = cj , with nj

being the inward facing normal to ∂Ω at z. Since P (z) ⊆
{x ∈ Rd : 〈mj , x〉 ≤ cj}, it follows that 〈nj , x− z〉 ≥ 0
for allx ∈ P (z), and hence also forx = πz(y), as desired.

To verify Conditions 2 and 3 of a navigation field, consider
the Lyapunov candidate Vy(z) � ‖y − z‖2. By the convexity of
P (z), every z ∈ Ω has

〈y − πz(y), z − πz(y)〉 ≤ 0 (60)
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Fig. 3. PnP controllers deployed successfully on a chain of agents in the sphere world from Fig. 2 (R = 2): contractive (left, μ = 0.015, γ = 1)
versus lazy (right, ω = 220, γ = 0.1). The two graphs depict the evolution of normalized distances between consecutive agents over time. Under
the lazy controller, distances between neighbors tend to stretch, later decaying to the safe radius �. The contractive controller forces a steady
exponential decrease in the interagent distances as the leader nears the target.

Fig. 4. MAS tracks under a lazy PnP controller in a topological sphere
world with star-convex obstacles: Ω is a rectangle E with three deformed
disks removed, as described in Section V-B1. Note the pairwise disjoint
buffer regions [βj ≤ εj ] marked in red surrounding the obstacles.

which, after some algebra, results in

〈∇zVy, nsph(y, z)〉 ≤ −2‖nsph(y, z)‖2.
In other words, 〈∇zVy, nsph(y, z)〉 ≤ 0 for all z ∈ Ω, with equal-
ity only at equilibrium points of nsph. Since z ∈ int(P (z))
whenever z ∈ int(Ω) but πz(y) ∈ {y} ∪ ∂P (z) always, equi-
librium points of nsph other than y may only lie on the bound-
ary ∂Ω. In fact, they are precisely the points of the form11

ei(y) � x∗
i + ρi

x∗
i−y

‖x∗
i−y‖ , i = 1, . . . , a. Moreover, direct compu-

tation shows that all the directions tangent to ∂Oi at ei(y) are

11Note that ei(y) is the point of ∂Oi farthest from the target y.

unstable. To verify Condition 4 of a navigation field, observe
that every y ∈ int(Ω) has ry > 0 such that y + 2ryB ⊂ Ω.
Then, for every z ∈ y + ryB, y ∈ P (z) must hold, producing
nsph(y, z) = y − z and meeting the requirement of Condition
4 with α(y) ≡ 1. For a discussion of (R, δ)-goodness, see
Appendix B.

4) Simulation Results. Sphere World: Simulations were
carried out in a sphere world, testing both the contractive and lazy
PnP controllers usph based on nsph. Fig. 2 shows agent tracks of
a typical successful run of a lazy PnP controller on a chain of 15
agents. Fig. 3 compares the results of successful runs of both PnP
controllers in this setting in terms of how close each edge of the
chain approached breaking. Note how the requirements imposed
on the gains γ, μ, ω by Theorem 2 are much more stringent (by
several orders of magnitude) than the parameter values used in
the simulations. These simulation results also serve as a base-line
for comparison with the simulations conducted in Section V-B
with nonconvex obstacles.

B. Navigation With Multiple Star-Convex Obstacles

For simplicity of implementation, star-convex obstacles in an
environmentE ⊂ R2 were considered, whereE is a finite-sided
polytope as in the preceding section. Following [14], obstacles
Oj are provided as sublevel sets [βj ≤ 0] such that each Oj is
star-convex relative to x∗

j and contains a ball x∗
j + ρjB. In addi-

tion, numbers εj > 0 are provided in advance, such that the sets
[βj ≤ εj ] are pairwise disjoint and are all contained inint(E)—
see Fig. 4. The workspace is given by Ω = E \⋃b

j=1 Oj , and
a diffeomorphism h : Ω → Ωsph is computed, where Ωsph is
the sphere world Ωsph � E \⋃b

j=1(x
∗
j + ρjB). The map h is

constructed as described in Section V-B1, giving rise to the
navigation field

n(y, z) � Dh(z)−1 · nsph (h(y), h(z)) (61)

on Ω, induced from the field nsph on Ωsph by pullback.
Remark 5: Although n is conjugate to nsph via the map h :

Ω → Ωsph, the map hV : ΩV → ΩV
sph does not conjugate the PnP

controller u based on n to the PnP controller usph.
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Fig. 5. PnP controllers deployed successfully on a chain of agents in a topological sphere world with nonconvex obstacles. Normalized distances
(R = 2) between consecutive agents are shown for a contractive PnP controller (left, μ = 0.15, γ = 1) and a lazy PnP controller (right, ω = 25,
γ = 0.02). A salient feature of the lazy PnP controller is the behavior of the normalized edge-lengths mirroring the interaction between high-curvature
segments of the obstacle boundary (the tips of the teeth in the gear-like obstacle depicted in Fig. 4) and the tension between neighboring agents
passing in close proximity to those segments (the spikes in the graphs).

1) Construction of the Conjugating Homeomorphism:
Following [14, Sec. 3], the map h is constructed as

h(z) � σd(z)z +

b∑
j=1

σj(z)

(
x∗
j + ρj

z − x
∗
j

‖z − x∗
j‖

)
(62)

with σd � 1−∑b
j=1 σj and

σj(z) � ηj(βj(z)), ηj(s) �
ζ(εj − s)

ζ(εj)
(63)

and where ζ is the standard C∞ bump function given by
ζ(s) � exp(−1/s) for s > 0 and otherwise ζ(s) = 0. As a
result, η′j(s) = −(εj − s)−2ηj(s) for s < εj and η′j(s) = 0 for
s ≥ εj . By [14, eq. (13)], the derivative of h is

Dh(z) = σd(z)I2

+

b∑
j=1

ρjσj(z)

‖z − x∗
j‖

(
I2 −

(
z − x∗

j

) (
z − x∗

j

)�
‖z − x∗

j‖2
)

+

b∑
j=1

ρj − ‖z − x∗
j‖

‖z − x∗
j‖

(
z − x∗

j

)
Dσj(z) (64)

where Dσj(z) = η′j(βj(z))Dβj(z) takes the form

Dσj(z) = − σj(z)

(εj − βj(z))
2Dβj(z). (65)

Under the conditions that ∇βj �= 0 along [βj = 0] and that the
thickened obstacles [βj ≤ εj ] are pairwise disjoint, the collec-
tion Σ � {σ1, . . . , σb, σd} is a C∞-smooth partition of unity
over Ω, and h is, indeed, a diffeomorphism [14, Proposition 1,
Assumption 1]. To better showcase the PnP approach, the barrier
functions βj were selected in a way that would allow a direct
redesign of the obstacles in the simulation code. The boundary
∂Oj of each obstacle was parametrized as a smooth periodic

curve

γj(θ) � x∗
j + rj(θ)[cos θ, sin θ]

� (66)

where rj(θ) is a C∞-smooth real-valued function of period 2π
satisfying rj(θ) > ρj for all θ ∈ R. The barriers βj are selected
as

βj

(
x∗
j + ρ[cos θ, sin θ]�

)
� ρ2 − rj(θ)

2

noting that βj = 0 precisely on ∂Oj . The buffer parameters εj
need to be selected so that the dilated curves γ̃j , j = 1, . . . , b,
given in polar coordinates by ρ = (rj(θ)

2 + ε2j )
1/2, form a

pairwise-disjoint collection.12 Differentiating βj away from its
singularity at x∗

j—indeed, ρ > ρj for any point of Ω—yields

Dβj = 2ρ[cos θ, sin θ]� − 2rj(θ)r
′
j(θ)

ρ
[− sin θ, cos θ]�.

Thus, (62), (65), and (64) are now implementable.
2) Simulation Results. Nonsphere World: Simulations

were carried out in a world with star-convex obstacles with
boundaries parametrized as trigonometric polynomials in θ with
periods π, 2π

3 , 2π
7 , see (66), testing both the contractive and lazy

PnP controllers with borderline gains. Fig. 4 shows agent tracks
under a lazy PnP controller on a chain of 15 agents, while Fig. 5
compares the same lazy controller with a contractive one in terms
of interagent distances, as was done earlier for a sphere world in
Section V-A4. Note how, again, the requirements imposed on the
gains γ, μ, ω by Theorem 2 are more stringent by several orders
of magnitude than the parameter values used in these successful
simulations.

VI. CONCLUSION

This article develops generalized edge-weighted Laplacian-
based controllers for use in distributed navigation of multiagent
systems with distance-limited communication in general ob-
structed environments. The developed generalization replaces

12In simulation, this is an easy condition to verify.
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line-of-sight attractive interactions with a provided single-agent
navigation field, covering the case of degenerate edge-weights,
which allows for reduced attractive interactions along edges
that are not at risk of exceeding the communication distance
bound. Conditions for applying this method to chains of agents
following a leader are derived, and numerical experiments with
complex nonconvex and multiple obstacles indicate that much
less conservative conditions may be available, depending on
additional information about obstacle geometry and/or prop-
erties of the provided navigation field. The developed con-
trollers take advantage of the ability of a single agent to nav-
igate the environment to give rise to a family of closed-form,
low computational complexity MAS controllers, avoiding the
complexities of modern optimization-based cooperative control
schemes. The results of this work apply to broader classes of
communication structures, where the communication graph G
is not necessarily a path. Most notably, cycles in G winding
around obstacles may present topological obstructions to nav-
igation, preventing the leader from reaching the target with-
out breaking edges of G. It follows that the conditions of
Section IV-B cannot be satisfied in such settings, e.g., by a
planar networkG containing a cycle that encircles an obstacle, no
matter the geometry of the workspace. A deeper understanding
of the interactions between such obstructions, curvature con-
ditions on the workspace boundary, the apparent tendency of
the PnP contractive field to drive connected components of the
MAS to consensus, and the pertinent properties of the provided
navigation field, such as Definition 2, is a goal of ongoing
research.

APPENDIX A
GRAPH COCHAINS AND GRAPH LAPLACIANS

A. Cochain Spaces of a Graph

Let G = (V, E) be a graph. For any subset O ⊆ V × V ,
the set Oop is defined by setting (p, q) ∈ Oop if and only if
(q, p) ∈ O. An orientation on G is a subset O ⊂ V × V such
that (a) O ∩Oop = ∅, and (b) pq ∈ E holds if and only if
(p, q) ∈ O ∪Oop. Henceforth, let O be a fixed orientation.
The space Ck(G,Rn) of k-cochains with coefficients in Rn is
the vector space of skew-symmetric c : Vk+1 → Rn vanishing
on (u0, . . . , uk) whenever {u0, . . . , uk}is not a k-clique in G.
This article only considers cochains for k = 0, 1 and n = 1, d.
Inner products on C0(G,R) and C1(G,R) are selected to have
the orthonormal bases ε0 � {ep}p∈V and ε1 � {ωp,q}(p,q)∈O,
respectively, where ωp,q � e(p,q) − e(q,p) ∈ C1(G,R). These
inner products are extended over Ck � Ck(G,Rd) via
the identification with Ck(G,R)⊗Rd, where Rd is taken
with the standard inner product. Further, for k = 0, 1, we
define ∥∥∥∥∥∥

∑
f∈εk

f ⊗ xf

∥∥∥∥∥∥
∞

� max
f∈εk

‖xf‖ (67)

noting the identification (xp)p∈V ≡∑p∈V ep ⊗ xp of configu-
rations with 0-cochains.

Denoting C0|S � Span(ea)a∈S ⊗Rd and C1|S �
Span(ωp,q)pq∈E[S] ⊗Rd for all S ⊆ V , let πk

S : Ck → Ck

denote the corresponding orthogonal projections of Ck onto

Ck|S . Then it is clear that, for any f ∈ Ck, the equality
f = πk

Sf + πk
V\Sf is an orthogonal decomposition of f , and the

following orthogonal sum decomposition holds:

Ck =
⊕

G∗∈[[G]]
Ck|V∗ ∼=

⊕
G∗∈{G}

Ck(G∗,Rd) (68)

where V∗ refers to the vertex set of G∗.

B. Agreement Spaces

The agreement subspace of S ⊆ V is defined as

ΔS �
{
1S ⊗ x : x ∈ Rd

} ⊆ C0 (69)

which, when regarded as a subspace of (Rd)V , may be identified
with the set of all vectors x with xp = 0 for p ∈ V \ S and with
xp = xq for all p, q ∈ S. Let

x � xS + x⊥
S + π0

V\Sx (70)

be the orthogonal decomposition13 of x with xS ∈ ΔS , x⊥
S ∈

Δ⊥
S ∩C0|S . Note that ΔS ⊂ C0|S , and xS + x⊥

S = π0
Sx. For

any G = (V, E) one has the orthogonal decomposition

x =
∑

G∗∈[[G]]
(xV∗ + x⊥

V∗) (71)

in the notation of (68). The following are well-known:

xV = 1V ⊗ 1

N

∑
q∈V

xq (72)

1√
N

‖x⊥
V ‖ ≤ ‖Δx‖∞ ≤

√
2‖x⊥

V ‖ (73)

where Δx ∈ C1 is defined as

Δx �
∑

(p,q)∈O
ωp,q ⊗ (xq − xp) ≡ (xq − xp)(p,q)∈O (74)

and ‖Δx‖∞ = max(p,q)∈O ‖xq − xp‖, by (67). Consequently,
for the general S ⊆ V

xS = 1S ⊗ 1

|S|
∑
q∈S

xq (75)

1√|S| ‖x
⊥
S‖ ≤ ‖π1

S(Δx)‖∞ ≤
√
2‖x⊥

S‖ (76)

where ‖π1
S(Δx)‖∞ � max(p,q)∈O∩(S×S) ‖xq − xp‖.

C. Weighted Codifferential and Laplacian

In Section II-B, we introduce a privileged, distance-based
weight w on V . The w-weighted graph Laplacian Lw :
C0(G,R) → C0(G,R) is the linear operator given by

(Lwg)p �
∑
q∼p

wpq(gp − gq) = wpgp −
∑
q∼p

wpqgq (77)

13Here, x⊥
S should not be confused with (xS)

⊥ = x⊥
S + π0

V\Sx.
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where wp �
∑

q∼p wpq . Let dw : C0(G,R) → C1(G,R) be
defined by

(dwf)(p, q) �
√
wpq (f(q)− f(p)) . (78)

Then, observing thatLw = d∗
wdw, one concludesLw is positive

semidefinite. The vector extensions, Lw ⊗ Id : C0 → C0 and
dw ⊗ Id : C0 → C1, then satisfy the identity

Lw ⊗ Id = (dw ⊗ Id)
∗(dw ⊗ Id) (79)

implying that Lw ⊗ Id : C0 → C0 is positive semidefinite and
is given by (10). Moreover, the following identity holds for
x,y ∈ C0:

〈(Lw ⊗ Id)x,y〉 = 〈(dw ⊗ Id)x, (dw ⊗ Id)y〉 (80)

=
∑

(p,q)∈O
wpq〈xq − xp, yq − yp〉. (81)

In particular, the following also holds for all x ∈ C0:

〈(Lw ⊗ Id)x,x〉 =
∑
pq∈E

wpq‖xp − xq‖2. (82)

The eigenvalues of Lw are nonnegative reals, written as

0 = λ1(G, w) ≤ λ2(G, w) ≤ . . . ≤ λN (G, w). (83)

The constant function 1V always satisfies Lw1V = 0. The
weight a ∈ W(G) with apq = 1 if and only if pq ∈ E is referred
to as the adjacency matrix of the graph G and gives rise to the
operators dG � da,LG � La, as well as to λk(G) � λk(G, a).
A weighted Laplacian Lw may be related to the graph Laplacian
LG via the identity

Lw = d∗
GOwdG (84)

where Ow is the diagonal operator on C1(G,R) given by
Owωp,q = wpqωp,q for all (p, q) ∈ O. In the nondegenerate
case, if 0 < θ ≤ wpq ≤ Θ for all pq ∈ E , then w′ � w − θa and
w′′ � Θa− w are weights on G. From Oa = I it follows that:

0 ≤ Lw′ = d∗
G(Ow − θI)dG = Lw − θLG

0 ≤ Lw′′ = d∗
G(ΘI−Ow)dG = ΘLG − Lw

resulting, respectively, in

λ2(G, w) ≥ θλ2(G) (85)

λN (G, w) ≤ ΘλN (G) ≤ 2ΘΔ(G) (86)

recalling that λN (G) ≤ 2Δ(G) [36, Th. 2].

D. Laplacians of Disconnected Graphs

When G = (V, E) is connected and w is a nondegenerate
weight on G, the kernel ker(Lw) is spanned by 1V , resulting in
λ2(G, w) > 0 and in ker(Lw ⊗ Id) coinciding with the agree-
ment subspace ΔV . The general case of a degenerate weight
w requires considering the support of w, G+

w , which may not
be connected. For each component G∗ = (V∗, E∗) ∈ [[G+

w ]] with
N ∗ = |V∗| vertices, the weight w|G∗ : V∗ × V∗ → R≥0

given by
restrictingw is a nondegenerate weight onG∗, and the orthogonal
decomposition (68) for the graphG+

w is invariant underLw ⊗ Id.

Thus,Lw ⊗ Id coincides withLw|G∗ ⊗ Id on eachC0|V∗ , produc-
ing

Lw ⊗ Id =
⊕

G∗∈[[G+
w ]]

Lw|G∗ ⊗ Id. (87)

In particular, applying the known results for the connected and
nondegenerate case to each individual connected components
yields the orthogonal decomposition

ker(Lw ⊗ Id) =
⊕

G∗∈[[G+
w ]]

ΔV∗ . (88)

Denoting by x � xw + x⊥
w the orthogonal decomposi-

tion with xw ∈ ker(Lw ⊗ Id) and x⊥
w ∈ ker(Lw ⊗ Id)

⊥ =
Im(Lw ⊗ Id), we obtain from (71) and (75) the orthogonal sum
formula

xw =
∑

G∗∈[[G+
w ]]

1V∗ ⊗ 1

|V∗|
∑
q∈V∗

xq (89)

x⊥
w =

∑
G∗∈[[G+

w ]]

x⊥
V∗ (90)

which, together with (76) yields

‖x⊥
w‖ ≤

√
N‖Δx‖∞. (91)

APPENDIX B
VERIFYING (R, δ)-GOODNESS IN SPHERE WORLDS

The purpose of this section is to verify that nsph is, indeed
(R, δ)-good for some δ > 0, provided the obstacles are large
enough.14 Crude lower bounds on δ are studied as functions
of the ratios ρj/R. We first analyze the case when z is 2R
away from all obstacles but one. Let z ∈ Ω lie at a distance of
2Rν < R from the obstacleOj . Denote the radius of the obstacle
by ρj = λR. Fixing y ∈ int(Ω) ∩ (z +RB), let Π denote the
affine plane spanned by z, x∗

j , and y (generically, Π is uniquely
determined by this data). Then, πz(y) ∈ Π and a lower bound δ
on cos(β − α) is sought, where β � ∠(πz(y)− z, x∗

j − z) and

α � ∠(y − z, x∗
j − z). Note that the value of λ ∈ (1,∞) is an

immutable property of the setting, while the value of ν ∈ (0, 1)
is a property of the point z in relation to ∂Ω, so δ must be
provided in terms of R and λ, but not ν. Let p denote a unit
vector in the direction of x∗

j − z, and let n be a unit vector in
an orthogonal direction parallel to Π so that any y /∈ P (z) may
be written as y = z + (Rν +Rφ)p+ (Rη)n, for φ, η ≥ 0, as
depicted in Fig. 6, making it possible to regard cos(β − α) as a
function of (η, φ), denoted by g(φ, η)

g(φ, η) =
〈(Rφ+Rν)p+Rηn,Rνp+Rηn〉√
(Rφ+Rν)2 + (Rη)2

√
(Rφ)2 + (Rη)2

14A restriction of this kind is necessary, because, for example, if R is larger
than 2ρj for some j, then a point z ∈ Ω exists such that Oj ⊂ int(z +RB),
and it becomes impossible to bound cos∠(y − z, nsph(y, z)) for y ∈ z +RB
from below by a positive number. For example, if z ∈ ∂Oj then there are points
y ∈ (z +RB) \Oj arbitrarily close to x∗

j + ρj(x
∗
j − z), the antipode of z on

Oj , for which nsph(y, z) is nonzero and tangent to ∂Oj , resulting in an angle
∠(y − z, nsph(y, z)) arbitrarily close to π

2 .
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Fig. 6. Verifying (R, δ)-goodness of the sphere-world navigation field
nsph at distance 2Δ from a single obstacle Oj with center x∗

j and
radius ρj = λR, λ > 1 (other obstacles are too far away from z to
impose constraints on the navigation to R-close targets y ∈ z +RB).
This figure depicts the intersection of the ball z +RB with the plane
containing z, x∗

j , and y, together with the quantities and points of interest
(A,B,C,D,E) in the analysis.

=
φν + ν2 + η2√

(φ+ ν)2 + η2
√

ν2 + η2
. (92)

Increasing φ while keeping η fixed causes cos(β − α) to de-
crease, implying cos(β − α) is bounded from below by its
values along the union of circular arcs [A,B,C] ∪ [C,D,E]
as depicted in Fig. 6. Not excluding points of Oj , g(φ, η) is
minimized along the circumference of the circle Π ∩ (z +RS),
that is, along the curve in Fig. 6 provided by (φ+ ν)2 + η2 = 1,
producing

g(φ, η) ≥
(√

1− η2 − ν
)
ν + ν2 + η2

1 ·
√
ν2 + η2

(93)

which, upon differentiation dη, may be shown to be minimized
when ν2 + η2 = ν

√
1− η2, leading to

g(φ, η) ≥ ν2 + 2η2√
ν2 + η2

=
2(ν2 + η2)− ν2√

ν2 + η2

≥ 2
√
ν2 + η2 − ν2 ≥ ν(2− ν).

To complement the setting depicted in Fig. 6, ν ≥ 1
3 is substi-

tuted into the preceding inequality, yielding g(φ, η) ≥ 5
9 .

Assuming ν ∈ (0, 1
3 ), a crude bound for points y with φ ≤ 2ν

is obtained from (92) using g(φ, η) ≥ g(2ν, η) and neglecting
the tern φν in the numerator, as follows. If η ≥ ν, then the
remaining expression is an increasing function ofη in the interval
[0,∞), which yields

g(φ, η) ≥
√
ν2 + η2√

(2ν + ν)2 + η2
>

√
2ν2

10ν2
=

√
5

5
>

11

25
. (94)

If η < ν, then β − α ≤ β < π/4, resulting in cos(β − α) >√
2
2 =

√
2·9
2·3 > 4

6 = 2
3 . Denote by D the point of intersection

of ∂Oj with z +RS in Π, and by B the point of intersec-
tion of ∂Oj with the hyperplane [φ = 2ν] in Π. Fig. 6 sug-
gests that B does not lie in z +RB if λ is large enough. In
this case, the bound g(φ, η) > 11

25 holds for all (φ, η) by the
same argument as in (94). Direct computation shows that B =
(φ1, η1) � (2ν,

√
2λν − ν2) andD = (2ν,

√
1− 9ν2) in (φ, η)

coordinates. Thus, B ∈ z +RB if and only if 2λν − ν2 ≤
1− (3ν)2, and a lower bound on g(φ, η) along the arc BCD
of the boundary of (z +RB) ∩ Ω is still needed. If η1 ≥ 3ν
then α ≥ π/4 forcing cos(β − α) > 2

3 again, this time due to
β − α ≤ π/2− α ≤ π/4. The condition for this to happen is
2λν − ν2 ≥ 9ν2, or, equivalently, λ ≥ 5ν. This inequality could
be enforced by demanding that λ > 2. Thus,nsph is (R, 11

25 )-good
at every point z ∈ Ω such that z +RB intersects at most one
obstacle, provided all obstacles have radii at least 2R. Better
bounds are possible with a more careful analysis. In the multiple
obstacles setting, note how the same bounds apply if the clear-
ance between obstacles is at least 3R. In the more general case,
a lower bound on δ in the presence of multiple obstacles may
be assembled from the individual bounds using Jung’s theorem
on the sphere [37]. Thus, it is important to note in conclusion
of this section that, even in the best-case scenario of Ω being a
sphere world, it is currently unrealistic to expect a navigation
field to be (R, δ)-good with values of δ near unity, as required
by (50). This makes the simulation results in Section V-A4 even
more important, as they lend support to the conjecture that more
refined bounds on ‖O‖ than those of (36) may exist, obviating
the need in the stringent restrictions on δ posed by Theorem 2.
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