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On the Feasibility and Continuity of Feedback
Controllers Defined by Multiple Control

Barrier Functions
Axton Isaly , Masoumeh Ghanbarpour , Ricardo G. Sanfelice , and Warren E. Dixon , Fellow, IEEE

Abstract—Control barrier functions (CBFs) are a popular
method for encoding safety specifications for dynamical
systems. In this article, a notion of CBF is defined that per-
mits vector-valued barrier functions and flow constraints
involving both the state and the control input. CBFs induce
constraints on the control input that, when satisfied, guar-
antee the forward invariance of a safe set of states. The con-
straints are enforced using a pointwise-optimal feedback
controller. Sufficient conditions for the continuity of the
controller are given. The existence of a CBF is defined to
be equivalent to the feasibility of the optimal feedback con-
troller. Polynomial optimization problems based on sums
of squares are formulated that can be used to certify that a
given function is a CBF. An example of the CBF design pro-
cedure is presented illustrating the process of formulation,
synthesis, and verification.

Index Terms—Lyapunov methods, nonlinear control sys-
tems, optimization, safety.

I. INTRODUCTION

THE use of control barrier functions (CBFs) to synthesize
feedback controllers that render sets of states forward

invariant has recently gained significant interest because of
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the tight relationship between forward invariance and safety.
The CBF literature has demonstrated that CBFs are a practical
method for enforcing complex safety specifications defined by
multiple, sometimes conflicting requirements such as obstacle
avoidance, shifting goal locations, dynamic constraints, and
control input limitations [1], [2], [3], [4]. In practice, these
specifications are often described using multiple CBFs (e.g., [3]
and [1, Sec. V]), whereas the majority of theoretical results are
developed for scalar barrier functions. While it is possible to
combine multiple barrier functions into a scalar one using max
and min operations, as in works like [3] and [5], the resulting
functions are generally nonsmooth, leading to discontinuous
controllers. A framework for studying forward invariance with
multiple barrier functions was developed in [6] in the context
of uncontrolled systems. For controlled systems, the conditions
therein can be interpreted as constraints on the control input that
can be enforced using optimization-based controllers; see [7,
Ch. 11]. The constraints define a set of safety-ensuring control
inputs. Enforcing multiple input constraints defined by multiple
continuously differentiable CBF candidates is a promising way
to obtain control laws that are continuous functions of the state.
This article aims to augment the existing body of practical work
for CBFs by developing a framework for solving problems
with multiple CBFs that is cohesive throughout the process
of problem formulation, controller synthesis, and feasibility
verification.

A. Feasibility

Traditionally, a CBF is defined to guarantee that a safety-
ensuring controller exists, meaning that all objectives in the
safety specification can be met simultaneously. However, tools
for verifying that a given function is a CBF are not fully de-
veloped. While analytical conditions exist to determine whether
a scalar-valued function is a CBF (cf. [8], [9, Proposition 1]),
the problem is significantly more challenging in the presence
of multiple CBFs. In general, a CBF candidate defines a set of
constraints in the decision variable (control input) that vary with
an external parameter (the state of the dynamical system), and
it must be verified that control inputs satisfying the constraints
exist for all states in a given set. This verification should be
done during the design phase so that controllers are certified as
feasible before deployment. The authors of [10] leverage a tool
for checking that multiple constraints have at least one feasible
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solution at a particular point in the state space, but it is not clear
how to verify this property on a given (uncountable) set of states.
One method to ensure feasibility is by adding slack variables or
similar relaxations to the optimization problem at the cost of
losing safety guarantees [2], [11]. Usevitch et al. [11] use slack
variables to ensure feasibility only on the interior of the safe set,
while still enforcing conditions on the boundary of the safe set
that guarantee forward invariance. However, the slack variable
method does not constrain the control input at points in the
interior of the safe set, which permits trajectories to approach the
boundary of the safe set with high velocity. Aggressive control
action must then be used to prevent the trajectory from exiting
the safe set. A more gradual transition to an invariance-ensuring
control can be designed by removing slack variables and adding a
user-prescribed performance function that constrains the control
input at points in the interior of the set, although the feasibility
problem becomes more challenging.

To address the feasibility problem, we use sum of squares
(SoS) programming, which requires the more restrictive assump-
tions that the constraints defining the feasible set are polynomials
and affine in the control input. SoS programming can be used
to verify that given polynomials are nonnegative on a subset
of their domain [12], [13]. Our technique verifies feasibility
on level-sets of a given function (typically the CBF candidate),
which is useful for safe synthesis and computationally simpler
than techniques that search simultaneously for a controller and
CBF (or control Lyapunov function) as in [14], [15], and [16].
The SoS problems in these works depend on conditions that are
bilinear in the decision variables, leading to complex iterative
procedures. In [15], an iterative procedure was developed to
search for a scalar CBF defining a safe set that was in the
complement of given unsafe regions. The safe set was rendered
forward invariant by a feasible controller. Iterative techniques
are valuable when a CBF candidate is unavailable, whereas our
approach is targeted toward verification that a given candidate
is a CBF. Our approach has broad applications for verifying that
an optimization-based controller is feasible before deployment.

B. Continuity

Optimization-based control laws are a natural way to imple-
ment the control input constraints defined by CBFs. For many
common classes of dynamical systems, the input constraints are
convex or affine in the control input, leading to optimization
problems that are convex or quadratic programs. As mentioned
in Section I-A, the control laws are parametric optimization
problems that vary with the state of the dynamical system.
Continuous control laws simplify analysis and, in many cases,
provide robustness properties to the closed-loop system. The
vast majority of CBF literature restricts attention to parametric
optimization problems with one or two constraints, for which
results certifying local Lipschitz continuity are available [17],
[18]. Other works have arbitrary numbers of constraints but
do not study the continuity of the control laws [5], [11]. The
authors of [19, Th. 3] provide a continuity result for a quadratic
program with an arbitrary number of constraints, but the result
requires information about the set of active constraints at the

minimizing value. Since the active set changes with the state, it
can be difficult to make global conclusions about the active set.

Berge’s maximum theorem is an effective method for analyz-
ing the continuity of parameterized optimization problems with
arbitrary numbers of constraints. Berge’s maximum theorem
does not require information about the active constraint set, but it
does require the feasible set to be compact. It is widely accepted
in the parametric optimization literature that compactness of
the feasible set can be replaced with uniform compactness in
the parameter space of the level sets of the cost function [20],
[21]. Interestingly, uniform compactness holds for the majority
of convex optimization problems. Using this observation, we
are able to obtain general results certifying the continuity of
optimization-based control laws.

C. Contributions

The rest of this article is organized as follows. In Section II,
we define a notion of vector-valued CBF for continuous-time
differential inclusions with constraints on the state and control
input. Our construction carefully considers the case where mul-
tiple CBF candidates define the safe set. Differential inclusions
are useful for robust control applications as they can model
uncertainty in the dynamics, and the constraints capture state-
dependent input constraints as a special case. In Section III,
we show that forward (pre)invariance of the safe set defined
by a CBF is guaranteed using control inputs from the safety-
ensuring set. We also provide conditions for when the safe set
is asymptotically stable. Our primary notion of CBF allows
for continuous control laws, whereas the majority of literature
imposes the stronger condition of local Lipschitz continuity,
which is more challenging to verify for optimization-based
control laws. In Section IV, we provide sufficient conditions
under which the CBF-induced pointwise optimal control law
is continuous. These conditions generalize available results by
allowing broader classes of cost functions and not requiring the
feasible set of control inputs to be compact. In Section V, we de-
velop SoS optimization tools that can be used to verify that a CBF
candidate is a CBF. Methods for applying the SoS technique,
even when the actual dynamics of the system are not polynomial,
are discussed. An example is presented in Section VI, illustrating
the process of problem formulation, feasibility verification, and
control synthesis for a system with uncertain, nonpolynomial
dynamics. Finally, Section VII concludes this article.

Relative to our preliminary work in [22], we include a second
notion of CBF called a tangent-cone CBF (t-CBF) that uses
alternative conditions for forward invariance which are com-
parable to notions of CBF in the literature based on Nagumo’s
theorem. The notion of t-CBF helps solve a complication in [22]
where control inputs are required to be selected based on the
tangent cone to the safe set. However, the notion of t-CBF
requires control laws that are locally Lipschitz whereas our
standard notion of CBF only requires continuous control laws.
We include a simple example to aid in understanding our results
for forward invariance. Our result for asymptotic stability is an
addition over [22], and, to the best of our knowledge, is the first
asymptotic stability result for multiple CBFs in the literature. We
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improve our results for continuity of optimization-based control
laws by removing a redundant assumption from [22, Lemma 2].
This article includes proofs that were excluded from [22] due to
space limitations. The detailed example in Section VI is also a
new addition.

Forward invariance with multiple CBFs is studied in [11] us-
ing a tangent-cone-based approach. However, the results require
the safe set to be compact, and require the feasible set of control
inputs to be compact. In addition, the definition of a CBF in [11]
is problematic when multiple CBFs are present as it does not
require the existence of control inputs that simultaneously satisfy
all of the CBF-induced constraints. Notably, Usevitch et al. [11]
allowed for control laws that are only Lebesgue measurable
by taking an alternative analytical approach focusing on the
differential inclusion defined by all the possible safety-ensuring
control inputs.

It should be noted that the method for feasibility verification
in Section V is complimentary to works that seek persistent
feasibility such as [23] and [24]. The latter methods add new
CBF candidates to the problem that are designed to modify
the safe set by removing states where the input constraints are
infeasible. The methods in this article could be used to determine
whether the newly defined CBF candidate is a CBF, while the
methods from [23] and [24] would be useful if it cannot be
verified that a given candidate is a CBF.

D. Preliminaries

For vectors x ∈ R
n, y ∈ R

m, |x| denotes the Euclidean
norm, (x, y) � [xT , yT ]T , and |x|A � infz∈A |x− z| denotes
the distance of x from the set A ⊂ R

n. The shorthand [d] �
{1, 2, . . . , d} is used, and B

n denotes the n-dimensional unit
ball. Given a function B : Rn → R

d, the components are in-
dexed as B(x) � (B1(x), B2(x), . . . , Bd(x)) and the inequal-
ity B(x) ≤ 0 means that Bi(x) ≤ 0 for all i ∈ [d]. For a set
A ⊂ R

n, the notation ∂A denotes its boundary, A its closure,
Int(A) its interior, and U(A) denotes an open neighborhood
around A. A set C ⊂ A is relatively closed in A if C = A ∩ C.

Given a set X ⊂ R
n, a set-valued mapping M : X ⇒ R

m

associates every point x ∈ X with a set M(x) ⊂ R
m. The

mapping M is locally bounded if, for every x ∈ X , there ex-
ists a neighborhood UX(x) � U(x) ∩X such that M(UX(x))
is bounded, M is outer semicontinuous if GraphX(M) �
{(x, u) ∈ X × R

m : u ∈M(x)} is relatively closed in X ×
R

m, and M is lower semicontinuous if, for any open set G ⊂
R

m, the inverse imageM−1(G) � {x ∈ X :M(x) ∩ G �= ∅} is
open.

II. CONTROL BARRIER FUNCTIONS

Consider a constrained control differential inclusion (F,Cu)
with state x ∈ R

n and input u ∈ R
m modeled by

ẋ ∈ F (x, u) (x, u) ∈ Cu (1)

where F : Rn × R
m ⇒ R

n is the set-valued flow map, and
Cu ⊂ R

n × R
m is the flow set. The set-valued nature of the

differential inclusion in (1) can model uncertainty by allowing
trajectories to move in a variety of directions for a given state and

control input (x, u). Differential inclusions are useful for robust
control design because ensuring safety requires every possible
trajectory to remain safe. This work therefore generalizes work
on robust CBFs such as [25]. To facilitate the subsequent devel-
opment, let

Π(Cu) � {x ∈ R
n : ∃u ∈ R

m s.t. (x, u) ∈ Cu} (2)

denote the set of all states for which flowing is allowed, and for
each x ∈ Π(Cu) let

Ψ(x) � {u ∈ R
m : (x, u) ∈ Cu} (3)

denote the set of admissible control inputs at each state.
The CBFs are defined to guarantee the existence of control

inputs that ensure forward invariance (i.e., safety) of a given set
of states S ⊂ Π(Cu). Compared to works such as [2], we use a
notion of CBF that accommodates safe sets defined by multiple
scalar functions. Defining a CBF in this case requires special care
because there are multiple constraints on the control input that
must be satisfied simultaneously. For notational convenience, as
in [6], we use vector-valued functionsB : Rn → R

d to represent
multiple CBFs. Our development is based on the work for
closed-loop hybrid systems in [6] and for hybrid systems with
inputs in [7], which we adapt for the open-loop continuous-time
dynamics in (1).

Definition 1: A vector-valued function B : Rn → R
d is

called a CBF candidate defining the safe set S ⊂ Π(Cu) if

S = {x ∈ Π(Cu) : B(x) ≤ 0} .

Also define Si � {x ∈ R
n : Bi(x) ≤ 0} for every i ∈ [d].

We restrict our attention to continuously differentiable CBF
candidates because of advantages they offer towards synthesiz-
ing continuous controllers. Given a continuously differentiable
CBF candidate, define a function Γ : Cu → R

d such that the ith
component is

Γi(x, u) � sup
f∈F (x,u)

〈∇Bi(x), f〉 , ∀(x, u) ∈ Cu. (4)

The value of Γi(x, u) represents the worst-case growth ofBi(x)
for any possible direction of flow in the set-valued map F (x, u)
defining the control system in (1). When F (x, u) is nonempty
and bounded, the supremum in (4) is finite. Thus, the following
mild assumption is imposed to ensure that Γ is well-defined.
Allowing for an unbounded flow map would lead to solutions
that flow arbitrarily fast, which is not physically meaningful.

Assumption 1: The set F (x, u) is nonempty and bounded for
every (x, u) ∈ Cu.

We also introduce the primary design parameter in the form of
a performance function γ, which is used to define a set of control
inputs that constrain the worst-case growth functionΓ according
to conditions derived from [6] that guarantee forward invariance
of the safe set S. We impose the following assumption. Fig. 1
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Fig. 1. Illustration of the safe set for Example 1 showing the regions
where the performance function γ is constrained according to Assump-
tions 2 and 5. When multiple CBFs are present, the function γi need
only be constrained on the region U(Mi)\Si, which is a region outside
the safe set nearby where Bi defines the boundary of the safe set S.
Assumption 5 constrains γi only on Mi under stricter assumptions.

illustrates a safe set defined by multiple CBFs showing the
regions on which γi is constrained.

Assumption 2: The function γ : Π(Cu) → [−∞,∞]d is such
that, for each i ∈ [d], γi(x) ≥ 0 for all x ∈ (U(Mi)\Si) ∩
Π(Cu), where Mi � {x ∈ ∂S : Bi(x) = 0}.

Definition 2: Let (F,Cu) satisfy Assumption 1. A con-
tinuously differentiable CBF candidate B : Rn → R

d defin-
ing the set S ⊂ Π(Cu) is a CBFfor (F,Cu) and S on a set
O ⊂ Π(Cu) with respect to a function γ : Π(Cu) → [−∞,∞]d

if there exists a neighborhood of the boundary of S such
that U(∂S) ∩Π(Cu) ⊂ O, γ satisfies Assumption 2, and the
set

Kc(x) � {u ∈ Ψ(x) : Γ(x, u) ≤ −γ(x)} (5)

is nonempty for every x ∈ O.
The mapping Kc defines, at each state x ∈ O, a set of

safety-ensuring control inputs. We will subsequently show that
control inputs selected from Kc (i.e., mappings κ : Rn → R

m

for which κ(x) ∈ Kc(x) for every x ∈ O) ensure the forward
(pre)invariance of the safe set S.

Remark 1: The performance function γ is a relaxation of
the conditions in works like [2], which require that γi(x) =
α(Bi(x)) where α is an extended class K function (i.e., strictly
increasing with α(0) = 0). Removing the dependency of the
performance function on the CBF candidate provides some addi-
tional design flexibility. In addition, extended class K functions
are required to be strictly positive outside of the safe set S.
Section III shows that being strictly positive outside the safe set
is stronger than required for forward invariance (Theorem 2)
but does lead to asymptotic stability of the safe set (Theorem 3).
Whenever the set D ⊂ R

n in [2, Definition 5] contains a neigh-
borhood of the safe set, any function that is a zeroing CBF

according to [2, Definition 5] is also a CBF on D for some
function γ according to Definition 2.

Remark 2: In Definition 2, the performance function γ is
not required to be continuous. The least conservative selec-
tion of γ that satisfies Assumption 2 is γi(x) � 0 for x ∈
(U(Mi)\Si) ∩Π(Cu) and γi(x) � −∞ otherwise, in which
caseKc(x) = Ψ(x) outside of (U(Mi)\Si) ∩Π(Cu), where Si

is introduced in Definition 1. However, discontinuous choices
of γ will lead to the mapping Kc having poor regularity.
As we find in Section IV, using a continuous γ facilitates
the systematic design of continuous, safety-ensuring control
laws.

A. Tangent-Cone Conditions

Assumption 2 imposes conditions on the function γ that
must hold on a region outside the set S. In contrast to more
common notions of CBF based on Nagumo’s theorem (cf. [2]),
the conditions in Definition 2 apply to a more general class of
systems and are valid even if the gradients of the component CBF
candidates are degenerate (i.e., ∇Bi(x) = 0 for some x ∈Mi).
It is useful to have conditions that, like Nagumo’s theorem,
restrict γ only on the boundary of S, which we provide in this
section based on [6, Th. 2]. The following assumption is known
as a transversality condition, and reduces to the assumption that
∇B(x) �= 0 for all x ∈ ∂Se ∩Π(Cu) when B is scalar, where
Se � {x ∈ R

n : B(x) ≤ 0}.
Assumption 3: For every x ∈ ∂Se ∩Π(Cu), there exists v ∈

R
n such that 〈∇Bi(x), v〉 < 0 for every i ∈ [d] such that

Bi(x) = 0.
We also impose stronger assumptions on the regularity of the

flow map F . The assumption below is more restrictive than the
assumption used in [6, Th. 2], and is used here to simplify the
development.

Assumption 4: The set-valued mappingF : Rn × R
m ⇒ R

n

is locally Lipschitz on (U(∂S)× R
m) ∩ Cu � A in the sense

that, for every compact setK ⊂ A, there exists a constantL > 0
such that, for all z1, z2 ∈ K,

F (z1) ⊂ F (z2) + L |z1 − z2|Bn.

In this case, we relax Assumption 2 as follows, and use it to
define an alternative notion of CBF.

Assumption 5: The function γ : Π(Cu) → [−∞,∞]d is such
that, for each i ∈ [d], γi(x) ≥ 0 for all x ∈Mi.

Definition 3: Let the data (F,Cu) of (1) and the continuously
differentiable CBF candidate B : Rn → R

d defining the set S
satisfy Assumptions 1 and 3. The candidate B is a t-CBF for
(F,Cu) and S on a set O ⊂ Π(Cu) with respect to a function
γ : Π(Cu) → [−∞,∞]d if U(∂S) ∩Π(Cu) ⊂ O, γ satisfies
Assumption 5, and Kc(x) in (5) is nonempty for every x ∈ O.

The key property of t-CBFs is that control inputs selected
from Kc ensure that vectors in the closed-loop dynamics lie in
the tangent cone to the safe set [26, Def. 5.12]. The following
straightforward corollary of Lemma 3 in [6] shows this result.
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The tangent cone of a set S ⊂ R
n at x ∈ R

n is defined as
TS(x) � {v ∈ R

n : lim infh→0+ |x+ hv|S/h = 0}.
Lemma 1: Suppose B is a t-CBF for (F,Cu) and S = {x ∈

Π(Cu) : B(x) ≤ 0} on a set O ⊂ Π(Cu) with respect to a func-
tion γ : Π(Cu) → [−∞,∞]d. For a given set M ⊂ R

n, sup-
pose that S = {x ∈M : B(x) ≤ 0} and let x ∈ S ∩ Int(M). If
u ∈ Kc(x), then, f ∈ TS(x) for every f ∈ F (x, u).

Proof: If x ∈ Int(S), then, by the definition of the tangent
cone, TS(x) = R

n. Thus, for u ∈ Ψ(x), F (x, u) is nonempty
so the claim that f ∈ TS(x) for every f ∈ F (x, u) is trivial.
Assumex ∈ ∂S andu ∈ Kc(x). Using Assumption 3, Lemma 3
in [6] shows that TS(x) = {v ∈ R

n : 〈∇Bi(x), v〉 ≤ 0, ∀i ∈
Ix}, where Ix = {i ∈ [d] : Bi(x) = 0} = {i ∈ [d] : x ∈Mi}.
For each i ∈ Ix, Assumption 5 implies that Γi(x, u) ≤ 0.
Using the definition of Γi, it follows that if f ∈ F (x, u),
〈∇Bi(x), f〉 ≤ 0, which completes the proof. �

The following example demonstrates some of the notions
introduced above. It will be used throughout the next section
to illustrate other key points.

Example 1: Consider the dynamical system in (1) defined
by F (x, u) = u and Cu = {(x, u) ∈ R

2 × R
2 : max{|x1|,

|x2|} ≤ x̄}, where x̄ > 0. The flow set represents hard con-
straints on the system that, by the definition of solutions,
cannot be violated. For example, the set Π(Cu) = {x ∈ R

2 :
max{|x1|, |x2|} ≤ x̄} may represent the walls of a square
room centered at the origin in R

2. In practice, it is desirable
to prevent agents from closely approaching the boundary of
Π(Cu), so that the safe set for this example may be S �
{x ∈ R

2 : max{|x1|, |x2|} ≤ x̄s} for 0 < x̄s < x̄. The safe set
could be defined by the CBF candidate B : R2 → R

4 with
componentsB1(x) = −x1 − x̄s,B2(x) = −x2 − x̄s,B3(x) =
x2 − x̄s, and B4(x) = x1 − x̄s (see Fig. 1). Note that it is
difficult to define S using a single continuously differentiable
function.

We have Γ(x, u) = (−u1,−u2, u2, u1) for every (x, u) ∈
Cu. It is common to choose γi � Bi for each i ∈ [4], which
always satisfies both Assumptions 2 and 5 since Bi(x) > 0
if x /∈ Si, and, clearly, Bi(x) = 0 for x ∈Mi = {x ∈ ∂S :
Bi(x) = 0}. With this choice of γ, it can be found thatKc(x) =
{u ∈ R

2 : |uj + xj | ≤ x̄s, j ∈ {1, 2}} for all x ∈ Π(Cu). The
set Kc(x) is clearly nonempty for every x ∈ Π(Cu), so that B
is a CBF for (F,Cu) and S on Π(Cu) with respect to γ. Note
that B is also a t-CBF. In particular, the vector v = −x satisfies
Assumption 3 for every x ∈ ∂Se ∩Π(Cu).

III. FORWARD (PRE)INVARIANCE USING SELECTIONS OF Kc

A. Forward Pre-invariance

We next relate the notion of CBF in Definition 2 to forward
preinvariance of the safe set S = {x ∈ Π(Cu) : B(x) ≤ 0}.
Consider a closed-loop system (Fcl, C) defined by (F,Cu) in
(1) and a control law κ : Rn → R

m as

ẋ ∈ Fcl(x) x ∈ C (6)

where C � {x ∈ R
n : (x, κ(x)) ∈ Cu} = {x ∈ R

n : κ(x) ∈
Ψ(x)},Fcl(x) � F (x, κ(x)) ifx ∈ C, andFcl(x) � ∅ ifx /∈ C.

A solution to (Fcl, C) starting from φ0 ∈ C is a locally abso-
lutely continuous function φ : domφ→ R

n such that φ(0) =
φ0, φ(t) ∈ C for all t ∈ Int(domφ), and φ̇(t) ∈ Fcl(φ(t)) for
almost all t ∈ domφ, where domφ ⊂ [0,∞) is an interval
containing zero. A solution is said to be complete if domφ is
unbounded, and it is maximal if there is no solution φ′ such that
φ(t) = φ′(t) for all t ∈ domφ with domφ a proper subset of
domφ′. The following notions of forward invariance are adapted
from [6] for the case of constrained differential inclusions.

Definition 4: A setS ⊂ C is forward preinvariant for (Fcl, C)
if, for each φ0 ∈ S and each maximal solution φ starting from
φ0, φ(t) ∈ S for all t ∈ domφ. The set S is forward invariantfor
(Fcl, C) if it is forward preinvariant and, for each φ0 ∈ S, every
maximal solution φ starting from φ0 is complete.

Note that the flow setC is always forward preinvariant for (6)
but not necessarily forward invariant. The following assumption
and lemma relate regularity conditions imposed on the control
system (F,Cu) in (1) to common regularity conditions for the
closed-loop system that will be used in the next two theorems.
When the dynamics are single-valued, outer semicontinuity of
the dynamics is equivalent to continuity.

Assumption 6: Given the data (F,Cu) of (1), the following
hold:

a) The flow map F : Rn × R
m ⇒ R

n is locally bounded,
outer semicontinuous, and has nonempty and convex
values on Cu.

b) The flow set Cu is a closed subset of Rn × R
m.

Lemma 2: Given the data (F,Cu) defining the control system
in (1), suppose κ : Rn → R

m and C = {x ∈ R
n : (x, κ(x)) ∈

Cu} are such thatκ is continuous onC . If Assumption 6 a) holds,
then, Fcl : R

n ⇒ R
n is locally bounded, outer semicontinuous,

and has nonempty and convex images on C. If Assumption 6 b)
holds, then, C is a closed subset of Rn. Moreover, if F : Rn ×
R

m ⇒ R
n is locally Lipschitz onA ⊂ C × R

m and κ is locally
Lipschitz on Π(A), then, Fcl is locally Lipschitz on Π(A).

Proof: See Appendix A. �
Remark 3: Relative to our preliminary work in [22], we make

a correction in Lemma 2 by assuming that the controller κ is
continuous on the closure of C. This is to prevent an issue
involving the fact thatC may not be closed even ifCu is closed.
The correction is also reflected in the subsequent Theorems 1
and 2 by the additional assumption that the closed-loop control
law is continuous on a closed set. In practice, the modification
is minor as the tools for verifying feasibility and continuity of
closed-loop controllers in Section V already work with closed
sets.

The following result provides conditions under which contin-
uous controllers selected from the mappingKc in (5) render the
set S forward preinvariant for the closed-loop dynamics in (6).
In Section IV, we provide a strategy for designing continuous
safety-ensuring controllers using optimization.

Theorem 1 (Forward pre-invariance): Let Assumption 6 a)
hold for the control system in (1) with data (F,Cu) and suppose
B : Rn → R

d is either a CBF or a t-CBF for (F,Cu) and S ⊂
Π(Cu) onO ⊂ Π(Cu)with respect toγ : Π(Cu) → [−∞,∞]d.
Let the control law κ : Rn → R

m be continuous on O with
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κ(x) ∈ Kc(x) for all x ∈ O and κ(x) ∈ Ψ(x) for all x ∈ S,
where Kc is defined in (5) and Ψ is defined in (3). When B
is exclusively a t-CBF, assume additionally that Assumptions 4
and 6 b) hold, and κ is locally Lipschitz on O. If S = {x ∈
Π(Cu) : B(x) ≤ 0} is closed1 in R

n, then S is forward prein-
variant for the closed-loop system (Fcl, C) defined in (6) by
(F,Cu) and κ.

Proof: Given a neighborhood of ∂S such that U(∂S) ∩
Π(Cu) ⊂ O, which exists by Definition 2, we consider the
restriction of the control system (F,Cu) to flow only on the
set C̃u � (U(∂S)× R

m) ∩ Cu. Using the definition of Π(·),
we have Π(C̃u) = U(∂S) ∩Π(Cu). BecauseB is either a CBF
or t-CBF, Kc(x) �= ∅ for all x ∈ Π(C̃u) ⊂ O. The closed-loop
system (Fcl, C̃) is defined by (F, C̃u) andκ according to (1) with
C̃ � {x ∈ R

n : (x, κ(x)) ∈ C̃u}. Sinceκ(x) ∈ Kc(x) ⊂ Ψ(x)
for all x ∈ Π(C̃u), it follows that C̃ = Π(C̃u). The function
B is a barrier function candidate defining S ∩ C̃ [6, Defini-
tion 3]. Using equivalences established above, it follows that
S ∩ C̃ = S ∩ U(∂S) ∩Π(Cu) = S ∩ U(∂S), which is closed
by the assumption that S is closed. Since κ is continuous on2

cl(C̃) ⊂ O, Lemma 2 shows that Fcl meets the basic assump-
tions in Section 2.3 of [6].

For each i ∈ [d] and x ∈ C̃, 〈∇Bi(x), f〉 ≤ −γi(x) for all
f ∈ F (x, κ(x)) because κ(x) ∈ Kc(x). First assume that B
is a CBF. Since γ satisfies Assumption 2, we conclude that
〈∇Bi(x), f〉 ≤ 0 for all x ∈ (U(Mi)\Si) ∩ C̃ and f ∈ Fcl(x).
Since S ∩ C̃ is closed, we apply Theorem 1 in [6] to conclude
that S ∩ C̃ is forward preinvariant for (Fcl, C̃).

IfB is a t-CBF, we apply Theorem 2 in [6]. Assumption 5 im-
plies that 〈∇Bi(x), f〉 ≤ 0 for all x ∈Mi ∩ C̃ and f ∈ Fcl(x),
where C̃ = U(∂S) ∩Π(Cu). Since Fcl is locally Lipschitz on
U(∂S) ∩ C̃ via Assumption 4 and Lemma 2, condition (20)
in [6] holds (see [6, Remark 9]). Under Assumption 6 b),
Lemma 2 shows that C̃ is closed. Thus, by definition of Fcl,
Fcl(x) = ∅ for x /∈ C̃, so that condition (21) in [6] holds vacu-
ously. Using Assumption 3, we apply [6, Th. 2] to conclude that
S ∩ C̃ is forward preinvariant for (Fcl, C̃).

Forward preinvariance of S for the unrestricted closed-loop
system (Fcl, C) follows from the definition of forward prein-
variance, since solutions to (Fcl, C) starting from S cannot exit
S without passing through C̃. Such solutions remain in S by
forward preinvariance of S ∩ C̃ for the restricted dynamics. �

When the performance functionγ satisfies stronger conditions
than those imposed in Assumption 2, selections ofKc, designed
to enforce all of the barrier function-induced constraints, not
only render S forward preinvariant, but also some larger sets
defined by a subset of the barrier functions. This situation is dif-
ferent from redefining Kc by removing some of the constraints.
The result is motivated by the observation that a common se-
lection for γ is γi � Bi, where by definition Bi(x) > 0 for all
x ∈ R

n\Si.
Corollary 1: Under the assumptions of Theorem 1, assume

additionally that O = Π(Cu) and γi(x) ≥ 0 for all x ∈ O\Si,

1SinceB is assumed to be continuous, a sufficient condition for S to be closed
is that Π(Cu) is closed.

2In some places, we use cl(A) instead of A to denote the closure for aesthetic
reasons.

Fig. 2. Modification of Example 1 where the CBF candidate B4(x) =
x1 − x̄s is removed. The vector field represents the closed-loop dynam-
ics under a control law that renders the safe set forward preinvariant.
Trajectories starting in the right half-plane will terminate on the boundary
of the flow set.

for each i ∈ [d]. For any index set I ⊂ {1, 2, . . . , d}, if the set
SI � {x ∈ Π(Cu) : Bi(x) ≤ 0, ∀i ∈ I} is closed in R

n, then
SI is forward preinvariant for the closed-loop system (Fcl, C)
defined in (6) by (F,Cu) and κ.

The corollary follows by applying Theorem 1 to the CBF
candidateBI : Rn → R

|I| defined by only the components ofB
in I.

Example 2: For some applications, forward preinvariance
may not be a strong enough property. In Example 1, consider
a situation where the safe set is defined by only three of the
CBF candidates (see Fig. 2 ). In this case, the set of safety-
ensuring controls is given by Kc(x) = {u ∈ R

2 : |u2 + x2| ≤
x̄s, u1 + x1 ≥ −x̄s}. An example of a continuous selection
of Kc is κ(x) � −x if x1 ≤ 0 and κ(x) � (x1,−x2) if x1 >
0. Theorem 1 shows that S is forward preinvariant for the
closed-loop dynamics ẋ = κ(x). Fig. 2 displays the closed-loop
dynamics.

Forward preinvariance implies that trajectories do not exit
the safe set, but may terminate on the boundary of the safe set
due to being unable to continue flowing inside the flow set. In
this example, termination of flow may correspond to the agent
crashing into the wall of the room. The issue occurs because
portions of the boundary of S = {x ∈ Π(Cu) : B(x) ≤ 0} are
not defined by the CBF, but rather are defined by Π(Cu). In this
example, we should ensure that the set S is forward invariant.

B. Forward Invariance

The forward preinvariance notion in Definition 4 does not
guarantee that maximal solutions to the closed-loop system are
complete. In addition to terminating on the boundary of the flow
set as illustrated in Example 2, solutions may escape in finite
time inside of S. To select control inputs that prevent solutions
from terminating on the boundary of the flow set, following
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from [27, eq. 31] we define the map

ΘS(x) �

⎧⎪⎨
⎪⎩
{u ∈ Ψ(x) : F (x, u) ∩ TS(x) �= ∅},

if x ∈ ∂Π(Cu) ∩ S,
Ψ(x), otherwise.

(7)

Relative to the assumptions of Theorem 1, it is notable that
in the next result we assume that the controller is continuous
on a set that contains the entire safe set. Doing so provides
regularity of the closed-loop system with which we can establish
completeness of maximal solutions.

Theorem 2 (Forward Invariance): Let Assumption 6 a) hold
for the control system in (1) with data (F,Cu) and suppose
B : Rn → R

d is either a CBF or a t-CBF for (F,Cu) and S ⊂
Π(Cu) onOwith respect to γ whenKc(x) in (5) is replaced with
Kc(x) ∩ΘS(x), meaning that Kc(x) ∩ΘS(x) is nonempty for
every x ∈ O. Suppose κ : Rn → R

m is continuous on O ∪ S
with κ(x) ∈ Kc(x) ∩ΘS(x) for all x ∈ O and κ(x) ∈ Ψ(x) for
all x ∈ S. When B is exclusively a t-CBF, assume additionally
that Assumptions 4 and 6 b) hold, and κ is locally Lipschitz on
O. If S is closed and one of the following conditions hold:

2.1) S is compact,
2.2) Fcl is bounded on S, or
2.3) Fcl has linear growth on S, namely, there exists c > 0

such that, for all x ∈ S, supv∈Fcl(x)
|v| ≤ c(|x|+ 1),

then, S is forward invariant for the closed-loop system
(Fcl, C) defined in (6) by (F,Cu) and κ.

Proof: Forward preinvariance of S for the closed-loop dy-
namics follows from Theorem 1. It remains to show that max-
imal solutions to the closed-loop system starting from S are
complete. Using continuity of κ on S and Lemma 2, the map
Fcl is outer semicontinuous and locally bounded on S with
nonempty, convex values. Since κ(x) ∈ Ψ(x) for all x ∈ S and
C = {x ∈ R

n : κ(x) ∈ Ψ(x)}, we have Π(Cu) ∩ S = C ∩ S.
BecauseS ⊂ C, we have ∂C ∩ S ⊂ ∂S. From the definition of a
CBF (or t-CBF), the setO contains ∂S, from which we conclude
thatκ(x) ∈ ΘS(x) for allx ∈ ∂C ∩ S. Thus, Proposition 3 in [6]
implies that a nontrivial flow exists from every point in ∂C ∩ S,
and thus,S is forward invariant for (Fcl, C) if maximal solutions
cannot escape in finite time inside the set S. Finite-time escape
is eliminated by assuming Condition 1), 2), or 3) (see [28, Th.
10.1.4] and the subsequent discussion, treating S as the viability
domain). �

Due to the tangent cone condition defining the mapping ΘS,
it will generally be difficult to obtain an analytical form of (7)
that can be used to make a selection from the mappingKc ∩ΘS
as required by Theorem 2. Note based on (7) that the compli-
cation is only present if the safe set intersects the boundary of
the flow set (∂Π(Cu) ∩ S �= ∅). The notion of t-CBF offers a
solution to the problem when a CBF candidate is available to
define the portion of the boundary of S that intersects ∂Π(Cu).
Proposition 1 can be combined with Theorem 2 to remove the
complication of selecting inputs from Kc ∩ΘS.

Proposition 1 (Forward Invariance with t-CBFs): Suppose
B : Rn → R

d is a t-CBF for (F,Cu) and S ⊂ Π(Cu) on O

with respect to γ. If S = {x ∈ R
n : B(x) ≤ 0}, then Kc(x) =

Kc(x) ∩ΘS(x) for every x ∈ Π(Cu).
Proof: Pickx ∈ Π(Cu). The claim is trivial ifx /∈ ∂Π(Cu) ∩

S since Kc(x) ⊂ Ψ(x), so assume that x ∈ ∂Π(Cu) ∩ S. For
u ∈ Kc(x), applying Lemma 1 with M = R

n, we find that
F (x, u) ∩ TS(x) �= ∅. Thus, u ∈ ΘS(x), which completes the
proof. �

Example 3: The problem in Example 2 can be remedied
using the tools developed in this section. One solution is to
add the additional CBF candidate B4(x) = x1 − x̄s, in which
case ∂Π(Cu) ∩ S = ∅ and Kc ∩ΘS = Kc so that Theorem 2
can be applied because the original candidate B is both a CBF
and a t-CBF. If one wishes to describe the flow set exactly,
then, it is possible to choose B4(x) = x1 − x̄. In this case,
∂Π(Cu) ∩ S �= ∅, but S = {x ∈ R

2 : B(x) ≤ 0}. Thus, Propo-
sition 1 and Theorem 2 imply that any selection of Kc renders
the compact set S forward invariant.

C. Asymptotic Stability

Comparable notions of CBF in the literature, such as the
zeroing CBFs of [2], are defined so that the safe set is not just
forward invariant, but rather asymptotically stable. Asymptotic
stability implies forward invariance and ensures that complete
solutions starting outside the safe set converge (in distance) to
the set. The following result provides conditions for asymptotic
stability using multiple CBFs. For brevity, we make the simpli-
fying assumption that the safe set is compact. The result is stated
first for pre-asymptotic stability which, like forward preinvari-
ance, enjoys the properties of asymptotic stability except that
maximal solutions need not be complete [7, Definition 3.1]. To
obtain asymptotic stability, we must ensure that solutions do not
terminate on the boundary of the flow set by selecting vectors
according to the mapping ΘΠ(Cu), which is defined as in (7)
with S replaced by Π(Cu). Control inputs in ΘΠ(Cu) could be
included in Kc by using a t-CBF to represent the flow set.

Theorem 3 (Asymptotic Stability): Let Assumptions 6 a) and 6
b) hold for the control system in (1) with data (F,Cu) and
suppose B : Rn → R

d is a CBF for (F,Cu) and S ⊂ Π(Cu)
on O ⊂ Π(Cu) with respect to γ. Suppose that S is compact
and, for every i ∈ [d],γi(x) > 0 for all x ∈ O\Si, where Si =
{x ∈ R

n : Bi(x) ≤ 0}. Suppose κ : Rn → R
m is continuous

on O ∪ S with κ(x) ∈ Kc(x) for all x ∈ O and κ(x) ∈ Ψ(x)
for every x ∈ S. Then S is pre-asymptotically stable for the
closed-loop system (Fcl, C) defined in (6) by (F,Cu) and κ.
If additionally, κ(x) ∈ ΘΠ(Cu)(x) for all x ∈ O, then, S is
asymptotically stable for the closed-loop system.

Proof: Using continuity of κ along with Assumptions 6 a)
and 6 b), Lemma 2 shows that the closed-loop system meets the
basic conditions in [7, Definition 2.18]. Consider the nonsmooth
Lyapunov function candidate Vmax � max{0, B1, . . . , Bd} and
the function γmax � maxi∈[d] γi. The function Vmax is locally
Lipschitz [29, Proposition 7], nonnegative, and Vmax(x) > 0 for
all x ∈ Π(Cu)\S. To prove that S is preasymptotically stable,
we apply case 2a) of Theorem 3.19 in [7], for which it remains
only to show that

V̇max(x) � max
ζ∈∂Vmax(x)

max
f∈F (x,κ(x))

〈ζ, f〉 < 0
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for all x ∈ O\S, where ∂Vmax denotes the generalized gra-
dient of Vmax [29, eq. 37]. Let Imax(x) � {i ∈ {0, 1, . . . , d} :
Bi(x) = Vmax(x)}, where we use the conventionB0 � 0. From
Proposition 7 in [29] and using the fact that each Bi is con-
tinuously differentiable, ∂Vmax(x) ⊂ co ∪i∈Imax(x) {∇Bi(x)},
where co{·} denotes the convex hull. Note that based on conven-
tion, 0 ∈ ∪i∈Imax(x){∇Bi(x)} when Vmax(x) = 0. Since each
ζ ∈ ∂Vmax(x) is a convex combination of the gradients of each
Bi, we have

V̇max(x) ≤ max
λ

max
f∈F (x,κ(x))

∑
i∈Imax(x)

λi 〈∇Bi(x), f〉

= max
λ

∑
i∈Imax(x)

λiΓi (x, κ(x))

where λi ≥ 0 and
∑

i∈Imax(x)
λi = 1. Thus, V̇max(x) ≤

maxi∈Imax(x) Γi(x, κ(x)), where Γ0 = 0. Since κ(x) ∈
Kc(x) = {u :Γ(x, u)≤−γ(x)}, V̇max(x)≤maxi∈Imax(x)−γi(x).
For any x ∈ O\S and i ∈ Imax(x), Vmax(x) = Bi(x) > 0.
Because Bi(x) > 0, we have that x ∈ O\Si and hence,
γi(x) > 0. We conclude that V̇max(x) < 0 for every x ∈ O\S,
from which [7, Th. 3.19] shows that S is preasymptotically
stable for the closed-loop dynamics.

Since S is preasymptotically stable, showing that S is asymp-
totically stable requires showing that there exists δ > 0 such that
every maximal solution to the closed-loop system starting from
Sδ � {x ∈ Π(Cu) : |x|S ≤ δ} is complete. From preasymptotic
stability of S and the fact that O contains U(∂S) ∩Π(Cu)
(via the definition of a CBF), given any ε > 0 such that Sε ⊂
O ∪ S, there exists 0 < δ < ε for which any trajectory of the
closed-loop dynamics starting in Sδ does not exit Sε. In par-
ticular, ε can always be selected so there is a neighborhood
of Sε for which U(Sε) ∩Π(Cu) ⊂ O ∪ S. Since κ(x) ∈ Ψ(x)
for all x ∈ O ∪ S and C = {x ∈ R

n : κ(x) ∈ Ψ(x)}, we have
Π(Cu) ∩ (O ∪ S) = C ∩ (O ∪ S). Because Sε ⊂ C, it follows
that ∂C ∩ Sε ⊂ ∂Sε. The set O contains ∂Sε, from which it
follows that for any x ∈ Sε ∩ ∂C, there is a neighborhood U of
x for which κ(x) ∈ ΘΠ(Cu)(x) for all x ∈ U ∩ C. We conclude
using [7, Proposition 2.34] that a nontrivial flow exists from
every point inSε. Combined with the fact thatSε is compact, this
implies that every maximal solution starting fromSδ is complete,
establishing the asymptotic stability of S for the closed-loop
dynamics. �

Remark 4: Under the assumptions of Theorem 3, supposeKc

is nonempty on LB(β) = {x ∈ Π(Cu) : B(x) ≤ β} for some
β > 0. Then LB(β) is forward pre-invariant for the closed-loop
system, and preasymptotic stability of S then implies that any
complete solution starting from LB(β) converges to S. This
observation motivates verifying that Kc is nonempty on level
sets of B, which will be explored in Section V. The asymptotic
stability of S follows whenever LB(β) is forward invariant for
the closed-loop dynamics via Theorem 2.

IV. DESIGN OF OPTIMAL SAFETY-ENSURING FEEDBACK

In this section, we study the continuity (as a function of the
state) of a class of optimization-based control laws that can be

used to make selections from mappings such as the set of safety
ensuring control inputsKc defined in (5). The results here allow
for a general class of cost functions and an arbitrary number of
constraints. Given a CBF, Theorems 1 and 2 show that contin-
uous selections of the mapping Kc render the safe set forward
(pre)invariant. When working with t-CBFs, Theorems 1 and 2
require selections ofKc that are locally Lipschitz. Unfortunately,
as has been noted in works like [19], studying the local Lipschitz
continuity of the broad class of optimization-based control laws
considered here is more challenging, and is beyond the scope of
this work. A result for the local Lipschitz continuity of a more
restrictive class of quadratic programs with a maximum of two
constraints is available in [2, Th. 3].

To obtain an implementable form for the controller, we impose
the following condition on the set-valued map Ψ of admissible
controls. We emphasize that the set Ψ represents arbitrary, state-
dependent constraints on the control input.

Assumption 7: There exists a function ψ : Π(Cu)× R
m →

R
k such that Ψ(x) = {u ∈ R

m : ψ(x, u) ≤ 0} for all x ∈
Π(Cu).

Assumption 7 is commonly used when input constraints are
present [10], [11]. If B is a CBF for (F,Cu) and S on O with
respect to γ, define the controller κ∗ : O → R

m as3

κ∗(x) � arg min
u∈Rm

Q(x, u)

s.t. Γ(x, u) ≤ −γ(x),
ψ(x, u) ≤ 0 (8)

where Q : O× R
m → R is a cost function and Γ is defined

in (4). Because Kc in (5) is the feasible set for (8), it is clear
that κ∗ is a selection ofKc; we write (8) equivalently as κ∗(x) =
arg minu∈Kc(x)

Q(x, u). WhenKc is nonempty onO as required
in the definition of a CBF in Definition 2, the optimization in (8)
is feasible.

Remark 5: The optimization in (8) is generally a nonlinear
program. While solvers for nonlinear programs exist, they can
be computationally expensive leading to practical difficulties.
However, (8) reduces to a quadratic program if the cost function
Q is quadratic and the constraints are affine in the control input.
The functionsΓi in (4) are affine when the dynamics are affine in
the control input [2], [30]. In the setting of differential inclusions,
the dynamics should have the form F (x) + g(x)u, where F is
set-valued and g is single-valued. Results such as [1] and the
references therein have demonstrated that a significant number
of relevant control problems feature affine constraints and that
quadratic programs can be viably computed online in real-time
applications.

Although κ∗(x) is feasible at x ∈ O if Kc(x) �= ∅, it is not
necessarily continuous. We provide a result for continuity of κ∗

in Lemma 2 of our preliminary work [22], where it is assumed
that the cost function Q in (8) is level-bounded in u, locally
uniformly in x. This property is equivalent to the local bounded-
ness of the mapping x �→ �Q(x, λ) � {u ∈ R

m : Q(x, u) ≤ λ}
3For κ∗ to be well-defined, the function Γ should be extended to points

(x, u) ∈ Π(Cu)× R
m whereu /∈ Ψ(x). This extension can be done arbitrarily

since such points are infeasible.
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for every λ ∈ R, where local boundedness is the same as the
notion of local compactness in [31] and is closely related to
the notion of uniform compactness in [32]. Local boundedness
holds whenever Q is continuous and, for each fixed x, the map-
ping u �→ Q(x, u) is convex and inf-compact (cf. [31, Lemma
5.7]). We thus, can obtain the following simplified form of [22,
Lemma 2]. In comparison to the more commonly-used Berge’s
maximum theorem, Lemma 3 does not require the feasible set
to be compact.

Lemma 3: LetX be a metric space andU a finite-dimensional
normed space. Suppose K : X ⇒ U is lower and outer semi-
continuous with nonempty, convex values, and the function Q :
X × U → R is continuous and, for each x ∈ X , u �→ Q(x, u)
is strictly convex and inf-compact4 onK(x). Then κ∗ : X → U
defined as κ∗(x) � arg minu∈K(x) Q(x, u) is single-valued
and continuous.

Proof: Our proof is based on [32], from which we note that
the notion of closed mappings is equivalent to outer semicon-
tinuity [32, Th. 2], and a mapping is open if and only if it
is lower semicontinuous [32, Corollary 1.1]. Strict convexity
and inf-compactness of u �→ Q(x, u) ensure that the set of
minimizers κ∗(x) contains a single unique element for every
x ∈ O. Thus, Corollary 9.1 in [32] shows thatκ∗(x) is uniformly
compact near x. Corollary 8.1 in [32] then shows that κ∗(x) is
continuous at every x ∈ O. �

Remark 6: Lemma 3 is more general than results that have
previously appeared in the controls literature. The authors in [33]
provide a continuity result that leverages the generalization
of Berge’s maximum theorem in [21, Th. 1.2]. However, the
assumptions imposed on the cost function are restrictive, and
in fact Lemma 3 shows that condition (O2) in [33, Th. 3] is
redundant if the cost function is also inf-compact. The authors
in [34] study the continuity of optimization-based control laws
by leveraging [31, Lemma 5.7], which shows uniform compact-
ness of the level sets of the cost function for convex optimization
problems. Relative to the results in [31], Lemma 3 applies on
a more general class of spaces and allows the convexity of the
cost function to be restricted to the feasible set K(x).

Next, we establish the continuity of the controller in (8). We
impose the following assumptions on the constraints, which
lead to the continuity properties of the mapping Kc required
by Lemma 3.

Assumption 8: For each i ∈ [d] and each j ∈ [k],
a) For each x ∈ O, the functions u �→ Γi(x, u) and u �→

ψj(x, u) are convex on Kc(x).
b) The functions (x, u) �→ Γi(x, u) + γi(x) and (x, u) �→

ψj(x, u) are continuous on Cu ∩ (O× R
m) and O× R

m, re-
spectively.

Theorem 4 (Continuity of κ∗): Let Cu ⊂ R
n × R

m, O ⊂
Π(Cu), Γ : Cu → R

d, and γ : Π(Cu) → R
d be given. Suppose

Assumptions 7 and 8 hold, the cost functionQ : O× R
m → R is

continuous and, for each x ∈ O, u �→ Q(x, u) is strictly convex

4A function f : X → R is inf-compact if for every λ ∈ R, the sublevel set
Lf (λ) � {x ∈ X : f(x) ≤ λ} is compact.

and inf-compact on Kc(x), and the set

K◦
c(x) �

{
u ∈ R

m : Γ(x, u) < −γ(x)
ψ(x, u) < 0

}
(9)

is nonempty for every x ∈ O. Then, κ∗ : O → R
m defined in

(8) is continuous.
Proof: For every x ∈ O, the functions defining Kc are as-

sumed to be continuous and convex on {x} ×Kc(x). Since
K◦

c(x) is nonempty, Theorem 12 in [32] shows that Kc : O ⇒
R

m is lower semicontinuous. We recall that Kc(x) = {u ∈
Ψ(x) : Γ(x, u) ≤ −γ(x)}. From the definition of Ψ, the graph
of Kc is equivalent to GraphO(Kc) =

{
(x, u) ∈ Cu ∩ (O×

R
m) : Γ(x, u) ≤ −γ(x)}, which is relatively closed in Cu ∩

(O× R
m) by continuity of Γ + γ. Using Assumption 7, Cu ∩

(O× R
m) = {(x, u) ∈ O× R

m : ψ(x, u) ≤ 0}, which is rela-
tively closed in O× R

m by continuity of ψ. Thus, GraphO(Kc)
is also relatively closed in O× R

m, i.e., the mapping Kc is
outer semicontinuous. Moreover, Kc(x) is convex for every
x ∈ O since it is a sublevel set of convex functions. Thus, the
assumptions of Lemma 3 are satisfied and κ∗ is continuous. �

Remark 7: By invoking Proposition 2.9 of [35], the functions
Γi in (4) are continuous when the flow mapF : Rn × R

m ⇒ R
n

is locally bounded, outer semicontinuous, and lower semi-
continuous. When the needed regularity is not present in the
dynamics, one can replace Γ with a continuous upper bound
Γ̄ : Cu → R

d such that Γ̄i(x, u) ≥ Γi(x, u) for every (x, u) ∈
Cu ∩ (O× R

m) and i ∈ [d]. It follows that KS
c (x) � {u ∈

Ψ(x) : Γ̄(x, u) ≤ −γ(x)} ⊂ Kc(x) for all x ∈ Π(Cu) ∩ O, so
that redefining κ∗ to be a selection of the subset mapping KS

c

still leads to a selection ofKc. Similar replacements can be made
for the functions γ and ψ.

Remark 8: A common practice in the CBF literature is to
use slack variables [11] or adaptive slack parameters [36] to
improve the feasibility of the safety-ensuring control law. For
example, the performance function γ in (8) could be selected
as γi(x, δi) � δi min{Bi(x), 0}, where δi ≥ 0 is a decision
variable in the optimization problem. The feasible set for this
optimization problem can be modeled in a simpler way by
setting γi(x) = −∞ ifBi(x) < 0 (cf. Remark 2). Moreover, the
continuity of an optimization-based controller featuring slack
variables can be analyzed directly using Theorem 4 by including
δi as a state variable. However, slack variables can lead to abrupt
control action as discussed in Section I-A.

V. FEASIBILITY VERIFICATION WITH SUM OF SQUARES

A challenging aspect of verifying that a given CBF candidate
is a CBF (or a t-CBF) is determining whether the set Kc(x) is
nonempty for every x ∈ O. Since Kc is the feasible set for the
control law κ∗ in (8), checking if a function is a CBF is the same
as checking if the optimization definingκ∗ is feasible. Moreover,
certifying that K◦

c in (9) has nonempty values guarantees conti-
nuity of κ∗ under the assumptions of Theorem 4. In this section,
we develop SoS polynomial optimization tools for certifying
that Kc and K◦

c have nonempty values under more restrictive
assumptions on the constraints defining the mappings. Namely,
we assume that the constraints are polynomials and affine in
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the control input. However, the tools can be used in the case of
nonpolynomial constraints to obtain conservative estimates of
the feasible region by replacing the constraints with polynomial
upper bounds. This procedure is similar to Remark 7 except the
polynomial upper bounds are used only for verification and we
do not need to redefine κ∗.

There are well-characterized computational limitations of
SoS programming [37]. Although we have made efforts to de-
velop SoS programs that are less complex than previous results,
such programs scale poorly with the number of state variables.
Yet, there are many examples of control problems where SoS
techniques have proven useful [14], [15], [16].

Let P[x] be the set of all polynomials in the variables x ∈
R

n. The set of SoS polynomials is Σ[x] � {p ∈ P[x] : p =∑N
i=1 f

2
i , f1, . . . , fN ∈ P[x]}, where p ∈ Σ[x] implies that

p(x) ≥ 0 for all x ∈ R
n. We will also use Pm1×m2 [x] to de-

note the set of matrix-valued functions p : Rn → R
m1×m2 with

polynomial entries.
SoS programming involves a series of relaxations of originally

NP-hard polynomial optimization problems that lead to tractable
semidefinite programs [12]. The class of problems that can be
solved involve optimizing the coefficients of polynomials pi ∈
P[x] subject to constraints of the form a0 +

∑N
i=1 piai ∈ Σ[x],

where a0, a1, . . . , aN ∈ P[x] are given, constant coefficient
polynomials (see [13], SoS Program 2). The aforementioned
constraint is linear in the coefficients of the polynomials pi.

To describe how SoS optimization can be used to certify
whether a given function is a CBF, first consider a global
feasibility problem. LetK : Rn ⇒ R

m be a set-valued mapping
defined by a system of inequalities as

K(x) � {u ∈ R
m : A(x)u+ b(x) ≤ 0} (10)

where A : Rn → R
nc×m and b : Rn → R

nc are polynomial,
i.e., A ∈ Pnc×m[x] and b ∈ Pnc [x]. The assumption that the
constraints are affine is needed to obtain a proper SoS program,
as discussed above. Given constraints of the form in (10),
the following SoS program will certify that K(x) �= ∅ for all
x ∈ R

n.
Problem 1. (Global Feasibility): Given x ∈ R

n and polyno-
mials A ∈ Pnc×m[x] and b ∈ Pnc [x], find a constant ε ≥ 0 and
a polynomial u ∈ Pm[x] such that, for all i ∈ [nc]

−Ai∗(x)u(x)− bi(x)− ε ∈ Σ [x]

where Ai∗(x) denotes that ith row of A(x). The parameter ε
could either be a fixed value or a decision variable. If ε > 0,
then, K◦(x) � {u ∈ R

m : A(x)u+ b(x) < 0} is nonempty.
Although the polynomial controller u found in Problem 1

is a selection of K (i.e., u(x) ∈ K(x)), it is not an optimal
selection likeκ∗ in Section IV. Thus, we useu only for feasibility
verification purposes, while κ∗ is used to define a closed-loop
system for control purposes. To apply the techniques in this
section toKc in Section II, we will need to assume the existence
of a polynomial and affine upper bound of the functions defining
Kc.

Assumption 9: Given Γ : Cu → R
d, γ : Π(Cu) → [−∞,

∞]d, and ψ : Π(Cu)× R
m → R

k, let nc � d+ k and assume

there exists A ∈ Pnc×m[x] and b ∈ Pnc [x] such that A(x)u+
b(x) ≥ (Γ(x, u) + γ(x), ψ(x, u)) for all (x, u) ∈ Cu.

For many practical controls problems, especially those in-
volving constraints on the magnitude of the control input, one
will likely not find (or need) a CBF that exists on the entire state
space. More often, feasibility verification can be restricted to a
particular operating region. Thus, a method is needed to verify
that Kc(x) in (5) is nonempty on a subset of Rn. A natural way
to define the operating region is with sublevel sets of a CBF
candidate B defining S ⊂ Π(Cu), which is especially useful
when convergence to the safe set is desired (see Remark 4).
By certifying that Kc(x) is nonempty on a set LB(β) � {x ∈
R

n : B(x) ≤ β}, with β > 0, we certify that B is a CBF on
LB(β), and that the controller κ∗ in (8) exists on the entire safe
set S ⊂ LB(β). Since working with B in this context requires
assuming that B is polynomial, we subsequently consider a
generic polynomial B̃ ∈ Pnb [x].

While being a SoS polynomial is a global property, there
exist hierarchies of relaxations that have close relationships to
the set of polynomials that are nonnegative only on a particular
subset of Rn [12]. The relaxation that will be most useful for
the feasibility verification problem is the following, based on
Putinar’s Positivstellensatz [38].

Lemma 4: Let B̃ ∈ Pnb [x] and define LB̃(β) � {x ∈ R
n :

B̃(x) ≤ β} for some β ∈ R. A function p ∈ P[x] is nonnegative
on LB̃(β) if there exist s0, s1, . . . , snb

∈ Σ[x] such that, for all
x ∈ R

n

p(x) ≥ s0(x) +

nb∑
j=1

sj(x)
(
β − B̃j(x)

)
. (11)

Proof: The result follows from the facts that sj(x) ≥ 0 for
all x ∈ R

n and β − B̃j(x) ≥ 0 for all x ∈ LB̃(β). �
Putinar’s Positivstellensatz shows that every polynomial that

is strictly positive on LB̃(β) can be decomposed in the form
on the right-hand side of (11) under the assumption that the
functions defining LB̃(β) have an Archimedean property [12,
Th. 3.20]. While results guaranteeing the existence of SoS
decompositions when the Archimedean property is not present
have been applied to controls problems in, e.g., [14], these
methods scale poorly with the number of components in B̃.
In addition, the multiplicative monoid in [14] is known to lead
to multiplicative combinations of decision variables that require
developing complex iterative procedures, thereby, adding con-
servativeness to the problem.

Recalling the definition of the mapping K in (10), the fol-
lowing program certifies that the set K(x) is nonempty for all
x ∈ LB̃(β) = {x ∈ R

n : B̃(x) ≤ β}.
Problem 2 (Feasibility on Level Sets): Given x ∈ R

n, A ∈
Pnc×m[x], b ∈ Pnc [x], B̃ ∈ Pnb [x], and β ∈ R, find polyno-
mials u ∈ Pm[x], s0, s1, . . . , snb

∈ Σ[x], and a constant ε ≥ 0
such that, for all i ∈ [nc],

−Ai∗(x)u(x)− bi(x)− ε

−s0(x)−
nb∑
j=1

sj(x)
(
β − B̃j(x)

)
∈ Σ [x] . (12)
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The main result of this section follows. It states that a CBF
candidate B can be certified as a CBF on a set LB̃(β) ⊃
U(∂S) ∩Π(Cu) by finding a feasible solution to Problem 2. An
identical result can be given for t-CBFs provided the additional
assumptions in Section II-A hold. Unfortunately, the inability to
find a feasible solution to Problem 2 does not mean that no such
feasible solution exists. One major cause for conservativeness
is that the degree of the involved polynomials must be restricted
in practice, and feasible solutions may exist for higher degree
polynomials.

Theorem 5 (Verification of CBF): Consider the dynamical
system (F,Cu) in (1) and a set S ⊂ Π(Cu). Suppose Assump-
tion 7 holds for a function ψ, B : Rn → R

d is a CBF candidate
definingS, andγ : Π(Cu) → [−∞,∞]d satisfies Assumption 2.
Given Γ defined in (4), let Assumption 9 hold for some A ∈
Pnc×m[x] and b ∈ Pnc [x]. If Problem 2 has a solution for some
B̃ and β for which there exists a neighborhood of the boundary
of S such that U(∂S) ∩Π(Cu) ⊂ LB̃(β), then, Kc(x) in (5)
is nonempty for all x ∈ LB̃(β) ∩Π(Cu) and B is a CBF for
(F,Cu) and S on LB̃(β) ∩Π(Cu) with respect to γ. Moreover,
if the solution to Problem 2 is such that ε > 0, then, K◦

c(x) in
(9) is nonempty for all x ∈ LB̃(β) ∩Π(Cu).

Proof: Using Definition 2 and the assumptions of the theo-
rem, we need only show thatKc in (5) is nonempty on LB̃(β) ∩
Π(Cu) to prove that B is a CBF. Problem 2 and Lemma 4 tell
us that there exists u ∈ Pm[x] such that A(x)u(x) + b(x) ≤
−ε for all x ∈ LB̃(β). From Assumption 9, (Γ(x, u(x)) +
γ(x), ψ(x, u(x))) ≤ −ε for all x ∈ LB̃(β) ∩Π(Cu). It follows
by definition that Kc is nonempty on LB̃(β) ∩Π(Cu) and, if
ε > 0, so is K◦

c . �
Remark 9: When LB̃(β)\Π(Cu) �= ∅, the procedure devel-

oped above will be conservative because it is unnecessary to
consider points outside Π(Cu). If we assume that Π(Cu) can be
described by a polynomial π ∈ Pnp [x] as Π(Cu) = {x ∈ R

n :
π(x) ≤ 0}, then, these constraints can be included in Problem 2
to reduce conservativeness.

VI. EXAMPLE: NONPOLYNOMIAL DYNAMICS WITH UNKNOWN

PARAMETERS AND INPUT CONSTRAINTS

In this section, we apply the tools developed in this article to
certify the feasibility of a safety-ensuring control law in the pres-
ence of uncertain dynamics and input constraints. A particular
challenge in this example is that the functions Γi defined by (4)
are not polynomial. Due to this, we develop polynomial upper
bounds of the functions that are used for feasibility verification
purposes, and show that these upper bounds are not overly
conservative. Consider the second-order system

ẋ =

[
x21 sin (x2) 0 0
0 x2 cos (x1) |x1| x1x2

]
︸ ︷︷ ︸

Y (x)

θ +

[
1 3

1/2 −1

]
︸ ︷︷ ︸

g

u

(13)
with u ∈ R

2, θ ∈ R
4 a vector of unknown parameters, and

Cu � {(x, u) ∈ R
4 : |ui| ≤ umax, ∀i ∈ {1, 2}} for some con-

stant umax > 0. We assume that the unknown parameters are
bounded such that θ ∈ Θ � {θ ∈ R

4 : |θi| ≤ θ̄i, ∀i ∈ [4]}, with

each θ̄i > 0. In [9], an adaptive control scheme was developed
for systems of the class in (13) using a CBF-based control
law. It was shown that safety is guaranteed if the pointwise
optimal controller is feasible for the worst-case values of the
parameters. Given the assumption that θ is bounded, the needed
analysis can be performed by treating (13) as a differential
inclusion with θ taking values in the set Θ, given as in (1) with
F (x, u) � {Y (x)θ + gu : θ ∈ Θ} and Cu given above.

Consider a CBF candidate

B(x) =

⎡
⎣ x1 + x2 − c
−x1 + x2 − c
1
cx

2
1 − x2 − c

⎤
⎦ (14)

defining the set S � {x ∈ Π(Cu) : B(x) ≤ 0}, with c = 5 and
Π(Cu) = R

2. The feasibility condition used here is a slight
refinement of the one in [9], which was based on the 2-norm.
Considering that the set Θ is compact, the function Γ in (4) has
components

Γi(x, u) = max
θ∈Θ

{∇BT
i (x)Y (x)θ

}
+∇BT

i (x)gu. (15)

Note that Γ is linear in the control input u. Because of the
expression for Y , the functions Γi are not polynomial. Using the
upper bounds | sin(x)| ≤ 1 and | cos(x)| ≤ 1, it can be shown
that for i ∈ {1, 2},

Γi(x, u) ≤ x21θ̄1 + (1 + |x2|) θ̄2 + |x1| θ̄3
+ |x1x2| θ̄4 +∇BT

i (x)gu

and

Γ3(x, u) ≤ 2

c

∣∣x31∣∣ θ̄1 +
(
2

c
|x1|+ |x2|

)
θ̄2 + |x1| θ̄3

+ |x1x2| θ̄4 +∇BT
3 (x)gu.

The upper bounds above take the form A(x)u+ b(x), where
the function b contains monomials composed with the absolute
value function. Although the absolute value function is not
polynomial, constraints of this form can be replaced with a set of
polynomial constraints (see Appendix B for a description of the
procedure). The upper bounds of Γ are used only for verification
with SoS, while the actual value of Γ in (15) can be used to
compute the controller κ∗.

The feasibility verification was implemented in MATLAB
(2019b). The SOS optimization problems were formulated using
the SPOT toolbox (see [39]). The SoS optimization was solved
on a workstation running Windows 11 with a 2.2 GHz Intel
Core i7-1360P processor and 32 GB of RAM. The program
took approximately 0.2 seconds to solve.

The function γ is selected as γi(x) = KbBi(x) with Kb =
13, which satisfies Assumption 2 since Bi(x) > 0 for all
x ∈ R

2\Si, where Si = {x ∈ R
n : Bi(x) ≤ 0}. The maximum

value of the control input is selected as umax = 40 and the upper
bound of the unknown parameters is θ̄ = (1, 2, 2, 1). As required
by Assumption 7, the set Ψ, in this case not dependent on x, is
the zero-sublevel set of the functions ψi(u) = |ui| − umax for
i ∈ {1, 2}, where the absolute value function can be replaced
by polynomials as described above. With these choices, the
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Fig. 3. Feasible region for Example 1 was approximated by solving
(16) at various points in the state space. A SoS program like Problem 2
certified that B in (14) is a CBF on the region inside the dotted line
representing the boundary of LB(β) = {x ∈ R

n : B(x) ≤ β}. Note that
the problem would not be feasible if β were increased slightly. The
trajectory x is generated by a controller that modifies an unstable nom-
inal controller subject to the safety constraints. The nominal controller
without safety constraints produced the trajectory xnom.

mappingKc is defined in terms ofΓ,γ, andψ, and the constraints
can be implemented in a SoS program like Problem 2. Since B
is polynomial, we defined B̃ � B and performed a search on
the setLB(β) = {x ∈ R

2 : B(x) ≤ β}. The problem is feasible
with β = 1.05. Since LB(β) contains a neighborhood of S,
Theorem 5 shows that B is a CBF for (F,Cu) and S on Lβ(B)
with respect to γ. In fact, the problem is feasible with ε = 0.1,
which implies that K◦

c(x) �= ∅ for all x ∈ LB(β).
Theorem 4 shows that the controller κ∗(x) �

arg minu∈Kc(x)
|u− unom(x)| is continuous on LB(β) when

unom : R2 → R
2 is continuous. In the simulation in Fig. 3,

unom(x) � g−1(Rx− Y (x)θ), where R = [0.15, 1.3;−1, 0.1]
is a 2 × 2 matrix. Without modification for safety, the controller
unom would make the system unstable. Since ∂Π(Cu) ∩ S = ∅,
we have Kc(x) = Kc(x) ∩ΘS(x) for all x ∈ R

n. Since S
is compact and κ∗(x) ∈ Kc(x) ⊂ Ψ for all x ∈ LB(β), we
apply Theorem 2 to conclude that S is forward invariant for the
closed-loop dynamics. In fact, ∂Π(Cu) = ∂R2 = ∅ and, for
each i ∈ [d], γi(x) > 0 for all x ∈ R

2\Si, so that Theorem 3
and Remark 4 show that S is asymptotically stable from LB(β).

Remark 10: For the feasible set K(x) = {u ∈ R
m :

A(x)u+ b(x) ≤ 0}, one can compute the so-called width of
the feasible set w∗ : Rn → R (see [10]) using

w∗(x) = max
(u,w)∈Rm+1

w

s.t. Ai∗(x)u+ bi(x) + w ≤ 0 ∀i ∈ [d] . (16)

The problem in (16) is always feasible, and if w∗(x) ≥ 0, then
K(x) �= ∅. Computing w∗(x) at various points in the state
space provides a useful visual approximation of the feasible
set for problems of low dimension. However, in contrast to
the approach in Section V, the computational approach cannot

verify feasibility on the entire safe set, since this would involve
computing w∗(x) at an uncountable number of points.

Fig. 3 shows an approximation of the feasible region for
Example 1, i.e., the set on which Kc(x) is nonempty. The
feasible region was approximated by solving (16) with the con-
straints (Γ(x, u) + γ(x), ψ(u)). The actual value of the function
Γ was used when solving (16) instead of the polynomial upper
bound. As can be seen, the set LB(β) with β = 1.05 could not
be expanded significantly without including points outside the
feasible region, showing that the SoS program with polynomial
upper bounds was not overly conservative compared to solving
(16) with the actual value of Γ. The feasible region is larger than
the area captured by LB(β) and could be characterized more
fully using the level sets of an alternative function. However, this
characterization would not provide a significant benefit because
forward invariance is only guaranteed on level sets of B. Thus,
trajectories starting at other points in the feasible region may
flow out of the feasible region.

In Fig. 3, the trajectory produced by the safe controller
remains within the set S although the nominal trajectory lies
outside the set. The safe trajectory deviates from the nominal
trajectory only when approaching the boundary of the set S.
The trajectory is not allowed to approach closely to the boundary
of S because the controller is compensating for the worst-case
value of the unknown parameters. In this way, the controller is
robust to parameter uncertainty. The interested reader is referred
to the adaptive technique in [9], which was developed to reduce
uncertainty through estimation and allow trajectories to more
closely approach the safe set boundary.

VII. CONCLUSION

This article defined a notion of vector-valued CBF that is
amenable to problems where the mapping of safety-ensuring
control inputs is defined by multiple constraints. Selections of
the safety-ensuring map render the safe set of states forward
(pre)invariant under mild conditions. Tools for certifying the
continuity and feasibility of optimal selections from the map
were developed.

APPENDIX A
PROOF OF LEMMA 2

Proof: If x ∈ C then (x, κ(x)) ∈ Cu, which, when As-
sumption 6 a) holds, implies that F (x, κ(x)) = Fcl(x) is
nonempty and convex on C. To show that Fcl is outer
semicontinuous, note that Graph(Fcl) = {(x, y) ∈ C × R

n :
y ∈ F (x, κ(x))}. Let (x, y) be a limit point of Graph(Fcl)
and let {xn, yn}n∈N be a sequence from Graph(Fcl) con-
verging to (x, y). Each element of the sequence is such
that (xn, κ(xn), yn) ∈ Graph(F ) = {(x, u, y) ∈ R

n × R
m ×

R
n : y ∈ F (x, u)}. Since limn→∞ xn = x ∈ C and κ is contin-

uous on C, limn→∞ κ(xn) = κ(x). Thus, {xn, κ(xn), yn}n∈N
converges, and since Graph(F ) is closed by outer semiconti-
nuity of F , it converges in Graph(F ). It follows that (x, y) ∈
Graph(Fcl), which shows that Graph(Fcl) is closed and Fcl is
outer semicontinuous. To show local boundedness ofFcl, fixx ∈
R

n. If x /∈ C, then there exists U(x) such that Fcl(U(x)) = ∅.
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Thus, assume that x ∈ C. Since F is locally bounded, there
exists a neighborhood U ⊂ R

n × R
m of (x, κ(x)) such that

F (U) is bounded. Since κ is continuous on C, there exists a
neighborhood U ′(x) such that UC × κ(UC) ⊂ U with UC �
U ′(x) ∩ C. Thus, Fcl(UC) = F (UC , κ(UC)) is bounded and
so is Fcl(U

′(x)) using the emptiness of Fcl outside C.
Suppose that Assumption 6 b) holds, i.e., Cu is closed. Let

x ∈ R
n be a limit point of C = {x ∈ R

n : (x, κ(x)) ∈ Cu}.
Then, there is a sequence {xn}n∈N from C converging to
x. Each element of the sequence (since it lies in C) is such
that (xn, κ(xn)) ∈ Cu. Since limn→∞ xn = x ∈ C and κ is
continuous on C, limn→∞ κ(xn) = κ(x). Since Cu is closed,
(x, κ(x)) ∈ Cu, which shows that x ∈ C. Thus, C is closed.

Let F be locally Lipschitz on A ⊂ C × R
m. Let K ⊂ Π(A)

be compact. Since κ is continuous on Π(A), K × κ(K) is also
compact. Thus, for any z1, z2 ∈ K, the fact that F is locally
Lipschitz on A implies that there exists L > 0 for which

F (z1, κ (z1)) ⊂ F (z2, κ (z2))

+ L |(z1, κ (z1))− (z2, κ (z2))|Bn.

Because Fcl(z) = F (z, κ(z)), to show that Fcl is locally Lips-
chitz it suffices to show that the scalar quantity L|(z1, κ(z1))−
(z2, κ(z2))| can be upper bounded linearly in terms of |z1 − z2|
on K. Since κ is locally Lipschitz on Π(A), there exists Lκ >
0 such that |κ(z1)− κ(z2)| ≤ Lκ|z1 − z2| for every z1, z2 ∈
K. Thus, for any z1, z2 ∈ K, L|(z1, κ(z1))− (z2, κ(z2))| ≤
L|z1 − z2|+ L|κ(z1)− κ(z2)| ≤ L(1 + Lκ)|z1 − z2|, which
completes the proof. �

B. POLYNOMIAL REPLACEMENT OF ABSOLUTE VALUE

As seen in Section VI, constraints in controls applications
often take the form A(x)u+ b(x), where b : Rn → R contains
some monomial expressions composed with the absolute value
function. It has been demonstrated in [41] that upper bounds of
this form are useful for practical applications involving Euler-
Lagrange dynamics. Assume that b is defined by monomials
with integer exponents as

b(x) =

nc∑
i=1

ci

∣∣∣xαi
1 x

βi

2 · · ·xγi
n

∣∣∣

where ci > 0. For every i ∈ [nc], let Ii ⊂ N denote the com-
ponents of x with odd exponents. For example, the monomial
x31x

4
3x5 has index set Ii = {1, 5}. Let E � {(e1, e2, . . . , en) :

ei ∈ {−1, 1}} denote the set of vectors pointing into each or-
thant of R

n. Note that the cardinality of E is 2n. For every
ek ∈ E, we define the polynomial

Pk(x) �
nc∑
i=1

⎡
⎣(cixαi

1 x
βi

2 · · ·xγi
n

)
·
∏
j∈Ii

ekj

⎤
⎦ .

In each orthant, one of the polynomials Pk(x) is dominant
and corresponds to b(x). From this observation, we obtain the
following proposition.

Proposition 2: For any x ∈ R
n, b(x) = maxk∈[2n] Pk(x).

Thus, for any u ∈ R
m, A(x)u+ b(x) ≤ 0 if and only if

A(x)u+ Pk(x) ≤ 0 for every k ∈ [2n].
The proposition shows that all of the 2n polynomial con-

straints A(x)u+ Pk(x) ≤ 0 can be used to replace the con-
straint A(x)u+ b(x) ≤ 0 in a SOS program. As an example,
consider the polynomial b(x) = |x1x2|+ |x32|. The setE isE =
{(1, 1), (−1, 1), (−1,−1), (1,−1)} and the index sets for the
monomials are I1 = {1, 2} and I2 = {2}. Then, the polynomial
replacements are P1(x) = x1x2 + x32, P2(x) = −x1x2 + x32,
P3(x) = x1x2 − x32, and P4(x) = −x1x2 − x32.
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