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Switching of Asymptotically Stable and Uniformly Ultimately Bounded
Systems With Applications to Machine Vision
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Abstract—This article addresses the stability of switching be-
tween a uniformly ultimately bounded (UUB) system and an asymp-
totically stable system with asymptotically decaying perturbation
using multiple Lyapunov functions. It is proven that the switched
system trajectories remain UUB if an average dwell time condition
is satisfied, and the perturbation terms are bounded with a suffi-
ciently small magnitude. The developed switched system stability
results are applied to the state estimation of the perspective dy-
namical system in the presence of intermittent and biased velocity
measurements using switched observers. Numerical simulations
demonstrate the advantages of using the developed switched ob-
server versus the individual observers.

Index Terms—Observers, perspective dynamical system,
switched systems stability.

I. INTRODUCTION

SWITCHED systems are generated by a switching signal from a
collection of dynamical systems such that only a single subsystem

is active at a particular instant. Switching between multiple dynamical
systems can generate desirable behavior and trajectories, which might
not be possible using a single subsystem. This technical note studies
switching between an asymptotically stable subsystem and a uniformly
ultimately bounded (UUB) subsystem. Many systems exhibit asymp-
totic stability, for instance, adaptive control with parameter estimation,
and UUB stability, for example, systems with uncertainties and external
disturbances.

It is well known that arbitrary switching between stable systems
can lead to undesirable and unstable behaviors of the system [1], [2],
[3]. The concept of average dwell time is developed in [4] to relax the
conservative dwell time condition established from a stability analysis
(e.g., a Lyapunov-based analysis). If the average dwell time condition is
satisfied, the switching is sufficiently slow to maintain the boundedness
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of the solution trajectories. Many switched system stability results are
developed for linear systems, few of which are summarized next. A
linear matrix inequality-based sufficient condition is developed in [5]
for the analysis and control synthesis of discrete-time switched systems.
An extension of LaSalle’s invariance principle is provided in [6] for
switched linear systems from multiple Lyapunov functions whose
derivatives are only negative semidefinite. In [7], the stability results are
surveyed for switched linear systems and the problem of stabilizability
of switched systems is analyzed.

Lyapunov stability analysis tools based on multiple Lyapunov func-
tions for nonlinear systems are developed in [1]. In [8], invariance-like
results for nonautonomous nonlinear switched systems are presented.
Switched and hybrid systems have proven to be useful in the analysis
and design tools for output feedback control and state observers of
nonlinear systems. In [9], a combined output feedback controller that
switches between locally and globally asymptotically stable output
feedback controllers is developed. A switching method is developed
in [10] for combining local and global observers of nonlinear systems.
The switching results developed so far for nonlinear systems, for
example, [9], [11], [12], and [13], require the individual systems to be
exponentially stable, input-to-state stable (ISS) or input-output-to-state
stable (IOSS). Many systems, such as adaptive control or observer
design only yield asymptotic stability. This technical note addresses
switched system stability of two perturbed systems, an asymptotically
stable system and a UUB system. The main contribution of the article
is to derive conditions under which the switched system remains stable.
Average dwell time conditions are derived from a Lyapunov-based
stability analysis. It is proved that the asymptotically stable subsystem
enters the region of attraction of the UUB subsystem within a finite time.
It is also proved that if the average dwell time condition is satisfied,
then, the switched system trajectories remain UUB. The switched
system conditions are applied to a practical case of image-based depth
observers when the camera velocities are available and when they are
not for stable switching between two observers.

Switched systems-based analysis is popular in applications, such
as biped locomotion, image-based feedback systems that inherently
involve multiple subsystems. For example, applications of switched
system to biped locomotion are developed in [11] and [14]. In [11], the
boundedness of ISS stable switched systems with multiple equilibria is
proven. For applications in image-feedback systems, an asymptotically
stable visual servo controller is proposed in [15], which switches
between image-based visual servo (IBVS) control and position-based
visual servo control. A switched controller for switching between IBVS
and dynamic movement primitives is proposed in [16]. A switched
controller for active image-based depth estimation is proposed in [17].
Switched systems framework is used to tackle the issues of feature
track losses, occlusions, and limited camera field of view for the image-
based target tracking. In [18] and [19] the switching between a state
predictor and an image-based observer in the presence of intermittent
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image measurements is analyzed using a common Lyapunov function.
In [20], the observer-predictor framework is used for trajectory tracking
in the presence of intermittent state measurements. For image-based
depth estimation application, although results exist that use full camera
motion [21], [22] and part of the camera motion information for depth
estimation [23], a switched observer framework can be useful in scenar-
ios when such measurements are available intermittently due to a faulty
sensor. The switched system analysis result developed in this article is
applied to the problem of depth estimation using switched observers
when intermittent and biased velocity measurements are available.

Notations: The symbols R+ and Z+ denote the set of nonnega-
tive real numbers and nonnegative integers, respectively. The open
ball of radius δ around x is defined as B(x, δ) = {x′ ∈ Rp

∣∣ ‖x−
x′‖ < δ}, where δ > 0 is a constant. For a constant α > 0 and
a continuous nonnegative integrable function γ(t), the shorthand
Gt

t0
(α, γ(t)) =

∫ t

t0
e−α(t−τ)γ(τ)dτ and similarly Gt

t0
(γ(t), α) =∫ t

t0
e−ατγ(t− τ)dτ is used. The symbols ρmax(·) and ρmin(·) denote

the maximum and minimum singular values of a matrix.

II. PROBLEM FORMULATION

This section introduces the subsystems in the continuous-time
switched system considered in this article along with their stability
results.

A. Family of Perturbed Subsystems

Consider the following family of continuous-time subsystems in-
dexed by a finite set P = {1, 2}, such that

ẋ(t) = fp (x(t), t) + gp (x(t), t) (1)

where x(t) ∈ Rn is the state at time t, and p ∈ P denotes the in-
dex of the active subsystem. The functions f1 : D1 × R+ → Rn and
f2 : D2 × R+ → Rn are piecewise continuous in t ∈ R+ and locally
Lipschitz on x ∈ D1 and x ∈ D2, respectively, where D1 ⊂ D2. The
terms g1 : D1 × R+ → G1 and g2 : D2 × R+ → G2 are perturbation
terms, which are piecewise continuous in t ∈ R+ and locally Lipschitz
in x ∈ D1 and x ∈ D2, respectively. The sets G1 and G2 are bounded
sets. The perturbations have certain properties, which will lead to dif-
ferent stability results. In particular, the perturbation terms that satisfy
the following bounds are considered, ‖g1(x, t)‖ ≤ α′‖x‖+ δ1 ∀x ∈
D1, t ≥ 0, and ‖g2(x, t)‖ ≤ ξ(t) ∀x ∈ D2, t ≥ 0, where α′, δ1 > 0
are constants, ξ : R+ → R+ is a nonnegative, continuous, and bounded
signal, such that supt≥0 ξ(t) ≤ δ2 for some δ2 > 0. In addition, the
function ξ(t) satisfies the asymptotic property limt→∞ ξ(t) = 0.

B. Stability of Perturbed Subsystems

In this section, the stability properties of the individual perturbed
systems are stated using the existing results from [24]. Let x = 0 be an
equilibrium point of the nominal subsystems given by

ẋ = fp(x, t), p ∈ P. (2)

The following lemma establishes the stability of the perturbed dy-
namical system when the perturbation term is bounded by the term
α′‖x‖+ δ1.

Lemma 1. (Adapted from [24, Lemma 9.2]): Let x = 0 be an expo-
nentially stable equilibrium point of the nominal system in (2) forp = 1.
Let V1(x, t) : D1 × R+ → R+ be a C1(D1,R+) Lyapunov function
that satisfies

c1‖x‖2 ≤ V1(x, t) ≤ c̄1‖x‖2

∂V1

∂t
+
∂V1

∂x
f1(x, t) ≤ −λ′

1‖x‖2,
∥∥∥∥∂V1

∂x

∥∥∥∥ ≤ λ̄1‖x‖ (3)

∀ (x, t) ∈ D1 × R+ for some c1, c̄1, λ̄1 > 0 and λ′
1 > λ̄1α

′, where
D1 � B(0, r1). Suppose the perturbation term bound in (1) satisfies
δ1 < (λ1/λ̄1)

√
c1/c̄1r1 ∀t ≥ 0, x ∈ D1, where λ1 � λ′

1 − λ̄1α
′ >

0, then ∀ ‖x(t0)‖ <
√
c1/c̄1r1, the Lyapunov function in (3) of the

perturbed system in (1) for p = 1 satisfies the bound

V1 (x(t), t) ≤ V1 (x (t0) , t0) e
−α1(t−t0) +

λ̄2
1

2λ1

Gt
t0

(
α1, δ

2
1

)
(4)

where α1 = λ1/2c̄1. The ultimate bound on ‖x(t)‖ is given by
lim sup

t→∞
‖x(t)‖ ≤

√
c̄1/c1(λ̄1/λ1)δ1.

Stability of the system in (1) when the perturbation term is bounded
by a vanishing time varying function ξ(t) is considered in the following
lemma.

Lemma 2. (Adapted from [24, Lemma 9.5 Case II]): Let x = 0 be an
exponentially stable equilibrium point of the nominal system (2) with
p = 2. Let V2(x, t) : D2 × R+ → R+ be a C1(D2,R+) Lyapunov
function that satisfies

c2‖x‖2 ≤ V2(x, t) ≤ c̄2‖x‖2

∂V2

∂t
+
∂V2

∂x
f2(x, t) ≤ −λ2‖x‖2,

∥∥∥∥∂V2

∂x

∥∥∥∥ ≤ λ̄2‖x‖ (5)

∀ (x, t) ∈ D2 × R+ for some c2, c̄2, λ2, λ̄2 > 0, where D2 �
B(0, r2). Suppose the perturbation term satisfies ‖g2(x, t)‖ ≤
ξ(t) ∀t ≥ 0, x ∈ D2,where ξ(t) satisfies the asymptotic property, then
∀ ‖x(t0)‖ <

√
c2/c̄2r2 and δ2 < (λ2/λ̄2)

√
c2/c̄2r2, the Lyapunov

function of the perturbed system (1) for p = 2 satisfies the bound given
by

V2(x(t), t) ≤ V2(x (t0) , t0)e
−α2(t−t0) +

λ̄2
2

2λ2

Gt
t0

(
α2, ξ

2(t)
)

(6)

where α2 = λ2/2c̄2, and the system is asymptotically stable in the
sense that limt→∞ ‖x(t)‖ = 0. Furthermore, if all assumptions hold
globally, then (6) and asymptotic stability are satisfied for any x(t0)
and any bounded ξ(t).

C. Switched System

Let σ : Rn × R+ → P be a state and time dependent, right-
continuous switching signal, which selects one of the subsystems in
the finite set P to be active at time t, i.e., σ(x, t) ∈ P . Consider the
resulting switched system

ẋ(t) = fσ(x,t) (x(t), t) + gσ(x,t) (x(t), t) (7)

whose solution x(t) � ψ(t, x(t0), σ(x(t), t)) is a concatenation of the
solutions of the individual subsystems depending on the switching
signal. Let {tn}n∈Z+

be a set of strictly increasing switching time
instants. Owing to the continuity of fp(x, t) and gp(x, t) in (1), x(t)
is continuous between switching instances, i.e., the interval (tn, tn+1).
For a switching time tn, the active subsystem fσ(x(tn),tn) over the in-
terval [tn, tn+1) has the initial condition x(tn) = limt↗tn x(t), which
establishes the continuity of x(t) at tn and, thus, for all t ≥ 0.

III. STABILITY RESULTS OF THE SWITCHED SYSTEM

In this section, the stability results of the switched system in (7) for
a right continuous switching signal σ(x, t) are presented. To facilitate
the stability analysis, the following definitions are discussed.
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Definition 1 ([2, Ch. 3, pp. 58]): The switching signal σ(x, t) has
average dwell time τD , if there exist two numbers N0 ∈ Z+ and τD ∈
R+ such that

Nσ (t, t) ≤ N0 +
t− t

τD
(8)

is satisfied, where N0 ≥ 1 is known as the chatter bound and Nσ(t, t)
are the number of discontinuities on the interval [t, t).

Definition 2 (Adapted from [11] and [25]): The system in (7) is
practically stable for the perturbations g1 ∈ G1 and g2 ∈ G2 and the
switching signal σ(x, t) with respect to the sets Ω1 and Ω2 such that
Ω1 ⊂ Ω2 if x(t0) ∈ Ω1 implies x(t) ∈ Ω2 ∀ t ≥ t0.

For analyzing the stability of the switched system using multiple Lya-
punov functions, the following constants are defined c = minp∈P cp,
c̄ = maxp∈P c̄p, μ = c̄/c, where cp and c̄p are defined in (3) and (5). In
addition, define the constants λ = minp∈P λp, λ̄ = maxp∈P λ̄p. From
the definition of the above constants it is clear that min{α1, α2} ≥
λ/2c̄. In the following theorems, it will be shown that for sufficiently
slow switching on average, the solution trajectories of the switched sys-
tem x(t) � ψ(t, x(t0), σ(x(t), t)) in (7) remain bounded. The dwell
time bound

τ̄D =
ln μ

(λ/2c̄)− ε
(9)

where ε ∈ (0, λ/2c̄), will be used as a lower bound for τD to en-
sure stable switching and boundedness of the solution trajectories of
the switched system. The stability of the trajectories is subject to a
hysteresis-based switching condition, which is designed to guarantee
boundedness and eliminate the possibility of Zeno behavior, thereby,
averting a finite escape time. To prove the stability results, consider
the following Lyapunov functions Vp : Dp × R+ → R+ for which
the following relations holdVp ≤ μVq ∀ t ≥ 0, x ∈ D1 ∀ p, q ∈ P, as
D1 = D1 ∩ D2 [2].

Theorem 1: Consider the switched system in (7) with the assumption
that there exist C1(Dp,R+)Lyapunov functions Vp : Dp × R+ → R+

for each p ∈ P with the properties described in Lemmas 1 and 2.
Further, assume that D1 ⊂ D2 and the following sufficient conditions
hold:
1) ∀ x(t) ∈ D2 \ D1 the switching signal satisfies σ(x(t), t) = 2;
2) If σ(x(t−), t−) = 2, then σ(x(t), t) = 1 if x(t) ∈ B(0, κ), where
κ = r1/

√
μN0+2; and

3) The constants r1 and r2 and the perturbation bounds satisfy r2 >√
c̄2/c2 max{r1,

√
δ̄21 + δ̄22}, r1 > δ̄1

where δ̄1 =
√
μN0+1/2λ1εcλ̄1δ1 and δ̄2 =

√
μN0+1/2λ2εcλ̄2δ2.

Then, ∃ τ̄D > 0 such that for the switching signal σ(x, t) satisfying
Conditions 1 and 2 and the average dwell time constraint in (8) with
N0 ≥ 1, τD ≥ τ̄D , and∀ x(0) ∈ B(0,

√
c2/c̄2r2) the following results

hold:
1) ∃ T1(r1, r2, c̄2, λ2, ε1) ∈ R+ for ε1 > 0, such that x(T1) ∈ D1.
2) ∃ T2(ε2) ≥ T1 for ε2 > 0, such that the switched system (7) is

practically stable with respect toΩ1 � B(0, κ) andΩ2 � D1, such
that ∀ t ≥ T2, the solutions x(t) � ψ(t, x(0), σ(x(t), t)) ∈ D1.

3) The trajectories remain UUB in the sense that lim sup
t→∞

‖x(t)‖ ≤ δ̄1.

Furthermore, if D2 = Rn, then, Condition 3 and the Results 1–3
hold for any x(0) and any bounded ξ(t).

Proof: The proof is divided into three parts.
Result 1: Consider the Lyapunov function Vp : Dp × R+ → R+.

If x(0) ∈ D1, then, Result 1 holds trivially for T1 = 0. Using the
definition of the limit, there exists a T1(ε1) for every ε1 ∈ (0, δ2) such
that ∀t ≥ T1(ε1) and ξ(t) ≤ ε1, which implies supt≥T1 ξ(t) ≤ ε1. If

x(T1(ε1)) ∈ B(0,
√
c2/c̄2r2) \ D1 and Condition 1 is satisfied for

t ∈ [T1(ε1), T1) that is σ : Rn × [T1(ε1), T1) → 2 for some T1 >
T1(ε1), then, Vσ(x,t) is differentiable on the interval [T1(ε), T1), and
the derivative of the Lyapunov function satisfies

V̇σ(x,t) ≤ −λ2‖x‖2 + ξ(t)λ̄2‖x‖ ≤ −λ2‖x‖2 + ε1λ̄2‖x‖

≤ − λ2

2c̄2
Vσ(x,t) ∀‖x‖ ≥ 2ε1λ̄2

λ2

, t ∈ [T1(ε1), T1) (10)

which leads to the bound ‖x(t)‖≤r2e−(λ2/4c̄2)(t−T1(ε1))
∀ ‖x‖ ≥ 2ε1λ̄2/λ2, and t ∈ [T1(ε1), T1). Choosing ε1 ∈ (0,min
{λ2r1/2λ̄2, δ2}), it is sufficient to pick T1(r1, r2, c̄2, λ2, ε1) ∈
(T1(ε1) + (4c̄2/λ2)ln(r2/r1),∞) ensuring x(T1) ∈ D1.

Result 2: Let Nσ(t, t) be the number of switching instants on
the interval t ∈ [t, t). Also, let t = inf{t ∈ R+

∣∣‖x(t)‖ < κ} and let
{tn}Nσ

n=0 be a strictly monotonically increasing sequence of switching
times with t0 = t. The existence of such a t can be established using a
similar argument as that of Result 1. Next, a recursion of upper bounds
in (4) and (6) using μ is followed to compute an upper bound on
Vσ(x,t)(x, t). Without loss of generality, assume that the subsystem
1 is active on the interval [tNσ , t), then, the following upper bound is
obtained:

Vσ (x(t), t) ≤ μNσVσ (x(t), t) e−
λ

2c̄ (t−t)

+
λ̄2
1

2λ1

Nσ(t,t)∑
k=0

μNσ−ke−
λ

2c̄ (t−tk+1)G
tk+1
tk

(
α1, δ

2
1

)

+
λ̄2
2

2λ2

Nσ(t,t)∑
k=0

μNσ−ke−
λ

2c̄ (t−tk+1)G
tk+1
tk

(
α2, ξ

2(t)
)

(11)

∀ x ∈ D1, where the arguments of σ are dropped for brevity. Using
the fact that G

tk+1
tk

(min{α1, α2}, ·) ≤ G
tk+1
tk

(λ/2c̄, ·) ≤ G
tk+1
tk

(ε, ·)
for any positive function or constant, the fact Nσ(t, t)− k − 1 ≤
Nσ(t, tk+1), and by substituting (9) and (11) can be simplified and
upper bounded as

Vσ (x(t), t) ≤ μN0+1

(
Vσ (x(t), t) e−ε(t−t) +

λ̄2
1

2λ1

Gt
t

(
ε, δ21

)

+
λ̄2
2

2λ2

Gt
t

(
ε, ξ2(t)

))
. (12)

From (12) it can be concluded that ‖x(t)‖ ≤ max{ r1
κ
‖x(t)‖,√

δ̄21 + δ̄22} ≤
√
c2/c̄2r2. Now, by the definition of the limit,

there exists a T2(ε2) such that ∀t ≥ T2(ε2), ξ
2(t) ≤ ε2 for ev-

ery ε2 ∈ (0, δ22), which implies that supt≥T2 ξ
2(t) ≤ ε2. Pick ε2 ∈

(0,min{
√

2λ2cε(r
2
1 − δ̄21)/μ

N0+1λ̄2
2, δ

2
2}), which leads to ‖x(t)‖ <

r1 if ‖x(T2)‖ < κ ∀ t ≥ T2(ε2). Such an ε2 > 0 exists from Condition
3. Choose T2(ε2) = inf{t ∈ R+

∣∣t ≥ T2(ε2), ‖x(t)‖ < κ}, which en-
sures the practical stability of the switched system with respect to Ω1

and Ω2 ∀ t ≥ T2(ε2).
Result 3: Consider (12) for t ∈ (T2(ε2),∞). Evaluating the

term (λ̄2
1/2λ1)G

t
T2
(ε, δ21) = (λ̄2

1δ
2
1/2λ1ε)(1− e−ε(t−T2(ε2))), taking

limit superior on both sides, using the reverse version of Fatou’s
lemma and the Lebesgue dominated convergence theorem [26] to
obtain lim supt→∞G

t
T2
(ε, ξ2(t)) ≤ Gt

T2
(lim supt→∞(ε, ξ2(t))) = 0.

Result 3 is obtained using the Lyapunov function bounds for switched
system. �

Remark 1: The result of Theorem 1 does not establish the invariance
ofD1 with respect to the switched system trajectories. In general for t ∈
[0, T2), the system trajectories may exitD1 but are always in the interior
ofD2 given that the average dwell time condition in (9) and, Conditions
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1–3 of Theorem 1 are satisfied. If the trajectories exit D1, Subsystem 2
becomes active due to which the vector field is pointing inward, forcing
the trajectory back intoD1. After timeT2 the perturbation term g2(x, t)
becomes small enough so that the trajectories never exit D1. Note that
T2 can be shortened by picking appropriate λ2.

IV. APPLICATION TO OBSERVER DESIGN FOR PERSPECTIVE

DYNAMICAL SYSTEM

Consider a camera in motion with linear and angular veloci-
ties viewing feature points on a static object. Let m̄(t) � [X(t),
Y (t), Z(t)]� ∈ X be the Euclidean coordinates of a feature point
belonging to the static object seen by the camera in the camera
reference frame. The set X ⊆ R3 is bounded and closed. Consider
the state vector z(t) � [y1(t), y2(t), y3(t)]

� ∈ Y , such that Y ⊆ R3

is a closed and bounded set, where y1(t) = X(t)/Z(t), y2(t) =
Y (t)/Z(t), and y3(t) = 1/Z(t).

Remark 2: The image plane coordinatesy1(t) andy2(t) are bounded
by known constants y1 ≤ y1(t) ≤ y1 and y2 ≤ y2(t) ≤ y2 due to the
image size. The inverse depth y3(t) can be lower and upper bounded
using the known constants 0 < y3 < y3(t) ≤ y3 [27].

Assumption 1: The depth of the feature point Z(t) is invertible in
the compact set Y .

The state dynamics and the measurement model can be written as

ż(t)= F (z(t), u(t)) =

[
fm(s)ω +Ω�(s, v)y3

fu (s, y3, v, ω)

]
(13)

s(t) = Hz(t) (14)

where H = [ I2 02×1 ] is the measurement matrix and s(t) ∈ S
are the measurements of the dynamical system, such that S � {s ∈
R2

∣∣y1 ≤ y1(t) ≤ y1, y2 ≤ y2(t) ≤ y2}. The velocity vector u(t) =
[v�(t) ω�(t)]� ∈ U , v(t) = [vX(t) vY (t) vZ(t)]

� ∈ V are the linear
velocities and ω(t) = [ωX(t) ωY (t) ωZ(t)]

� ∈ W are the angular ve-
locities of the camera in the camera body reference frame. The sets
U ⊂ R6, V ⊂ R3 and W ⊂ R3 are bounded. The functions, fm(s) ∈
R2 and Ω(s, v) ∈ R1×2 are defined by

fm(s) =

[
y1y2 − (1 + y21) y2
1 + y22 −y1y2 −y1

]

Ω(s, v) =
[

y1vZ − vX y2vZ − vY
]

fu (s, y3, v, ω) = vZy
2
3 + (y2ωX − y1ωY ) y3. (15)

Assumption 2: The velocities u(t) can be measured intermittently.
The intermittent biased measurements of the velocities are of the
form ud(t) = u(t) + d(t), where d(t) is an unknown disturbance with
supt≥0 ‖d(t)‖ ≤ d̄, where d̄ > 0.

Remark 3: The intermittent availability of the biased velocity mea-
surements can be attributed to a faulty motion sensor, such as the inertial
measurement unit (IMU).

Assumption 3: The functions fm(s), Ω(s, v), and fu(s, y3,
v, ω) are bounded and the observability condition
inft≥0 Ω(s(t), v(t))Ω

�(s(t), v(t)) > k1 is satisfied, where k1 > 0
[28].

For further development of the observers and respective stability
analysis, the state estimation error is defined as e(t) = z(t)− ẑ(t),
where ẑ(t) is the state estimate.

Problem Definition and Solution Approach: Given the feature point
measurementss(t), and the intermittent and biased measurements of the
velocity ud(t), the goal is to estimate the state z(t), such that ‖e(t)‖ ≤
δ̄1 as t→ ∞. A switching-based observer is developed to address this

problem, where an extended Kalman filter (EKF) observer is used,
which yields locally bounded estimation error when the biased velocity
measurement is available and an observer, which yields asymptotically
stable estimation error, when the velocity measurement is not available.

A. Locally Bounded Observer

In this section, a full order nonlinear observer is described, which is
activated when the biased velocity measurements are available. In par-
ticular the EKF is used as a deterministic nonlinear local observer [29].
Consider the EKF as a nonlinear observer described by the following
[30]:

˙̂z(t)=F (ẑ(t), ud(t))+P (t)H�R−1 (s(t)−Hẑ(t)) (16)

Ṗ (t) =
(
A�(t) + ᾱI3

)
P (t) +P (t) (A(t) + ᾱI3) +W

− P (t)H�R−1HP (t) (17)

whereA(t) = ∂F/∂z
∣∣
ẑ(t),ud(t)

andW and R are symmetric positive

definite matrices of appropriate dimensions, P (t0) = P0 > 0 and ᾱ >
0. The modified differential Riccati equation in (17) can be solved
together with the state estimator in (16) using numerical integration
method such as Runge–Kutta method [30], [31].

Assumption 4: The solutionP (t) of (17) exists for all t ≥ 0 and sat-
isfies pI3 = inft≥0 ‖P−1(t)‖I3 ≤ P−1(t) ≤ supt≥0 ‖P−1(t)‖I3 =
p̄I3.

The error dynamics after a Taylor expansion around ẑ(t) and ud(t)
can be written as

ė=
(
A−PH�R−1H

)
e+Δ(ẑ, z, u, ud)−Q (ŝ, ŷ3) d

= f1 (e(t), t) + g1(t) (18)

where Δ(ẑ, z, u, ud)=Δ1(ẑ, z, u, ud)+Δ2(ẑ, z, u, ud) is a function
due to the higher order terms. The matrixQ(ŝ, ŷ3) in (18) is defined as

Q(ŝ, ŷ3)=

⎡
⎣−ŷ3 0 ŷ1ŷ3 ŷ1ŷ2 − (1 + ŷ21) ŷ2

0 −ŷ3 ŷ2ŷ3 1 + ŷ22 −ŷ1ŷ2 −ŷ1
0 0 ŷ23 ŷ2ŷ3 −ŷ1ŷ3 0

⎤
⎦ .

(19)
The separation of Δ into Δ1 and Δ2 is based on the fact

that F is differentiable with respect to z at most twice almost
everywhere (a.e.) and only once a.e. with respect to u for the
particular case of the perspective dynamical system (PDS).
The function Δ1 contains terms from (∂2Fi/∂zj∂zk)ejek
and (∂3Fi/∂zj∂zk∂ul)ejekdl and Δ2 contains the terms from
(∂2Fi/∂zj∂ul)ejdl, where ∀ i, j, k = 1, . . . , 3 and ∀ l = 1, . . . , 6.
Let f1(e, t) = (A(t)− P (t)H�R−1H)e(t) + Δ1(ẑ, z, u, ud) and
let g1(t) = Δ2(ẑ, z, u, ud) +Q(ŝ, ŷ3)d. The terms for the case of
the PDS are bounded as Δ1(ẑ, z, u, ud) ≤ Δ̄1‖e‖2 + Δ̄′

1‖e‖2‖d‖ ≤
(Δ̄1 + Δ̄′

1d̄)‖e‖2 and ‖Δ2(ẑ, z, u, ud) − Q(ŝ, ŷ3)d‖ ≤ Δ̄2

‖e‖‖d‖+ υ‖d‖ ≤ Δ̄2d̄‖e‖+ υd̄ ∀ ‖e‖ ≤ r′1, ‖d‖ ≤ d̄, u ∈ U for
appropriate r′1, d̄ > 0, implying that ẑ ∈ B(z, r′1), where
Δ̄1, Δ̄2, r

′
1 > 0 and υ � supẑ∈B(z,r′

1
) ρmax(Q(ŝ, ŷ3)). Consider

the Lyapunov function V1 : D1 × R+ → R+ defined as

V1(e, t) = e�P−1(t)e (20)

where D1 � B(0, r1) such that r1 = min{r′1, λmin(W )p2/

4(Δ̄1 + Δ̄′
1d̄)p̄}. Given the form of the Lyapunov function it is clear

that c1 = p, c̄1 = p̄, δ1 = υd̄, and λ̄1 = 2p̄. In the next lemma, it is
proved that the estimation error of the EKF remains bounded.

Lemma 3: Suppose the disturbance term satisfies d̄ <√
p/p̄(λ1/2p̄υ)r1, and the adjustable parameter is chosen according
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to the sufficient condition ᾱ > max{0, (4p̄Δ̄2d̄− p2ρmin(W ))/4p}
then ∀ ‖e(t0)‖ <

√
p/p̄r1, the Lyapunov function in (20) satisfies the

bound

V1 (e(t), t) ≤ V1 (e (t0) , t0) e
−α1(t−t0) +

2p̄2

λ1

Gt
t0

(
α1, δ

2
1

)
(21)

whereα1 = λ1/2p̄. Furthermore, the ultimate bound on ‖e(t)‖ is given

by lim sup
t→∞

‖e(t)‖ ≤
√
p̄/p(2p̄/λ1)δ1.

Proof: Under Assumptions 3 and 4, the Lyapunov function in (20)
satisfies

p‖e‖2 ≤ V1(e, t) ≤ p̄‖e‖2

dV1

de
f1(e, t) ≤ −λ′

1‖e‖2,
∥∥∥∥dV1

de

∥∥∥∥ ≤ 2p̄‖e‖ (22)

∀ e ∈ D1, where λ′
1 = 0.5p2ρmin(W ) + 2ᾱp > 0 [30]. Then, us-

ing Lemma 1, λ1 � λ′
1 − 2p̄Δ̄2d̄ > 0 and it is required that δ1 <√

p/p̄(λ1/2p̄)r1. Given the expression of δ1, the bound on d̄ can be

obtained. Then, (21) and the ultimate bound follow from Lemma 1. �

B. Asymptotically Stable Observer

In this section, a full-order nonlinear observer is described, which
is activated when the velocity measurements are unavailable. Consider
an observer of the form

˙̂z =

[
fm(s)ω̂ +Ω� (s, v̂) ŷ3 + Γ(s−Hẑ)
fu (s, ŷ3, v̂, ω̂) + k2Ω(s, v̂) (s−Hẑ)

]
(23)

where Γ ∈ R2×2 is symmetric and Γ > 0 and k2 > 0 are suitable
observer gains. The estimate of the velocity û(t) is obtained using the
method in [32]. It is assumed that four image feature points, which can
be tracked across frames, are available for the velocity estimator along
with the knowledge of the initial rotation between the camera and object
frame and constant coordinates of one feature point in the object frame.
The estimation error of the velocity is defined by ũ(t) = u(t)− û(t).
The velocity observer in [32] guarantees that the velocity estimation
error remains bounded and the velocity is identified asymptotically, i.e.,
‖ũ(t)‖ → 0 as t→ ∞. Using the definition of the velocity estimation
error, the observer error dynamics can be written as

ė = f2(e, t) + g2 (e, ũ, t) (24)

where e(t) ∈ R3 and

f2 =

[
−Γ Ω�(s, v)

−k2Ω(s, v) 0

]
e+

[
0

f̃u(e, t)

]

g2 = (Q (s, ŷ3) + k2B(e, s)) ũ(t) (25)

such that

B(e, s) =

[
02×6

−e1 −e2 y1e1 + y2e2 01×3

]
(26)

e1(t) = y1(t)− ŷ1(t), e2(t) = y2(t)− ŷ2(t), and f̃u(e, t) =
fu(s, y3, v, ω)− fu(s, ŷ3, v, ω) and ‖f̃(e, t)‖ ≤ Lf̃‖y3 − ŷ3‖
for the Lipschitz constant Lf̃ > 0 when ŷ3(t) is bounded.

Remark 4: The estimate ẑ(t) of (23) can be projected on the convex
hypercube Z � {ẑ ∈ R3

∣∣yi − ι ≤ ẑi ≤ yi + ι, i = 1, 2, 3} using the
Lipschitz projection law in [22] where ι > 0.

Remark 5: Since s(t) and v(t) are bounded, the perturbation
term can be bounded as ‖g2(e, t)‖ ≤ δ′2‖ũ(t)‖ = ξ(t) with δ′2 �

sup
e∈D2,ẑ∈B(z,r2)

ρmax(Q(s, ŷ3) +B(e, s)) > 0, ξ(t) → 0 as t→ ∞, and

δ2 � δ′2 supt≥0 ‖ũ(t)‖, where D2 � B(0, r2) is a domain.

Consider the Lyapunov function V2 : D2 → R+, with an arbitrarily
large r2 defined as

V2(e) =
1

2
e�e (27)

where e(0) is contained inD2. Given the form of the Lyapunov function,
it is clear that c2 = c̄2 = 1/2 and λ̄2 = 1. In the next lemma, asymptotic
stability of the error dynamics in (24) using the Lyapunov function in
(27) is proven.

Lemma 4: Under Assumption 3, the Lyapunov function in (27)
satisfies

dV2

de
f2(e, t) ≤ −λ2‖e‖2 (28)

∀e(t) ∈ D2, where λ2=min{ρmin(Γ), ((1− k2)
2/ρmax(Γ)) k1 −

Lf̃} > 0. If the velocity estimation error satisfies the sufficient con-
dition

sup
t≥0

‖ũ(t)‖ < λ2r2
δ′2

(29)

then ∀ ‖e(t0)‖ < r2 the Lyapunov function in (27) satisfies the bound

V2(e(t))≤V2(e (t0))e
−α2(t−t0)+

1

2λ2

Gt
t0

(
α2, ξ

2(t)
)

(30)

whereα2 = λ2 and the system is asymptotically stable in the sense that
limt→∞ ‖e(t)‖ = 0.

Proof: The proof of (28) follows from [21] and by applying the
Schur complement lemma. The results in (30) and the asymptotic
stability follow from Lemma 2. �

Remark 6: The conditions of Lemma 4 can be satisfied by initializ-
ing û(0) sufficiently close to u(0).

C. Switching Between UUB and Asymptotically Stable
Observers

In this section the switching between the UUB observer of
Section IV-A and the asymptotically stable observer of Section IV-B
is discussed based on the framework outlined in Section II-C when
intermittent and biased velocity measurements are available. Consider
the switched error dynamics generated by switching between the error
dynamics in (18) and (24) of the UUB observer and the asymptotically
stable observer, respectively, and denoted by

ė = fσ(e,t)(e, t) + gσ(e,t)(e, t) (31)

where σ : R3 × R+ → P is a suitable switching signal with P =
{1, 2}. The corresponding stability result is described first based on
the result presented in Section III. Later, a switching strategy is
discussed for the two observers. To facilitate the analysis, consider
the following constants c = max{p, 1/2}, c̄ = max{p̄, 1/2}, μ =
c̄/c, λ = min{λ1, λ2}, and λ̄ = max{2p̄, 1}, where λ1 and λ2 are
defined according to the convergence rates of the UUB and the asymp-
totically stable observers defined according to Lemmas 3 and 4, respec-
tively. The following corollary establishes the stability of the switched
observer error system in (31) when the average dwell time condition is
satisfied.

Corollary 1: Let the switched observer error dynamics in (31) satisfy
the conditions of Lemmas 1–4 and Theorem 1 along with Assumption
4. Then, the Results 1 and 2 of Theorem 1 hold for some ε1, ε2 > 0
if the average dwell time condition in (8) is satisfied. In addition, the
estimation error is UUB in the sense that

lim sup
t→∞

‖e(t)‖ ≤
√

2μN0+1

λεc
p̄υd̄. (32)

Authorized licensed use limited to: University of Florida. Downloaded on November 01,2024 at 21:38:44 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024 6251

Fig. 1. Simulation results showing: (a) comparison of observers based
on error norm, (b) state estimation using switched observer.

Proof: The proof follows the proof of Theorem 1. �
The corollary states that the estimation error remains bounded with

an ultimate bound, which is proportional to the disturbance bound d̄
under a suitable switching signal.

Remark 7: Suppose the velocity measurements are available, then,
the EKF in the switched observer can be used. The EKF is robust
to measurement noise [31], but can only be used when the velocity
measurements are available. When the velocity measurements are not
directly available from the motion sensor, the asymptotically stable
observer in Section IV-B can be used to estimate the system state by
estimating the velocities using camera images. However, in practice,
velocity estimation requires the computation and decomposition of the
homography matrix from noisy feature points, which can affect the
velocity estimation. In addition, the velocity estimation errors affect
the convergence bound of the asymptotically stable observer, i.e.,
δ′3 ∈ (supt≥/t′ ξ

2(t)/2λ2
2, V2(t

′)], for some time t′ as seen from the
Lyapunov analysis. Thus, the switched observer is a preferred strategy,
which uses EKF when the velocities can be measured from the sensor
and asymptotically stable observer when the velocities are not available.
The switched observer is also stable over a larger domain than the EKF.

Remark 8: The EKF cannot be used in its original form of Sec-
tion IV-A in the absence of the velocity measurements. If it is used
with a zero-order hold (ZOH) for velocities, the state estimates become
unstable as demonstrated in simulations.

D. Switching Strategy

In this section, a switching strategy is developed to switch between
the observers in Sections IV-A and IV-B. The three criteria considered
for switching between the observers are
1) the norm of the estimation error is less than a given bound, i.e.,

‖e(t)‖ < κ;
2) the availability of the biased velocity measurements, i.e., ud(t);

and
3) satisfaction of the average dwell time constraint τ̄D .

The first condition implies that the local observer, i.e., the EKF,
should only be activated when the norm of the estimation error is
sufficiently small as per Condition 2 of Theorem 1. However, the
norm of the estimation error cannot be computed directly. An alter-
native is to estimate the norm of the estimation error from output
data [10], [33], [34] if supt≥t̄ ‖ũ(t)‖ is sufficiently small for some
suitable t̄ > 0. A norm estimator of the form ḃ = −λ2b+ kb‖s− ŝ‖2
with b(0) ∈ R+, which approximates V2, is used to detect when
‖e‖ ≤ κ′, where κ′ ∈ (0, κ). It can be shown that if the veloci-
ties are available, the first switch to EKF after starting with the
global observer occurs in finite time. Let t̄ � inf{t′ ∈ R+|ξ(t) <
ε′ ∀ t ≥ t′}, where ε′ ∈ (0, λ2κ

′/
√
2]. For kb ∈ (0, λ2/2], � ∈

(ε′2/2λ2
2, (κ

′2/2)− (ε′2/2λ2
2)), and c′ ∈ (�, (κ′2/2)− (ε′2/2λ2

2)],
the switch occurs for t ≥ t̄′ + 1/λ2 ln(bt̄′/(c

′ −�)), where bt̄′ �
b(t̄′) ∈ R+, such that V2(e(t)) ≤ � ∀t ≥ t̄′ ≥ t̄ and the detection con-
dition is b(t) ≤ c′. If (ẑ, t) ∈ S � {(ẑ, t) ∈ Z×R+|ξ(t) < ε′, b(t) ≤
c′, t ≥ tavg, σ(e, t) = 2} and the velocity measurement is available, the
observer switches to the EKF, where tavg = τ̄D(Nσ(t, 0)−N0). The
convergence rate of ξ(t) can be determined empirically for implementa-
tion purposes. After timeT2, defined in Theorem 1, only the second and
third conditions are required for switching due to the practical stability
of the switched system. The asymptotically stable observer and the
norm estimator run at all time steps as a safeguard similar to [10].

V. SIMULATION RESULTS

A simulation study is performed to test the performance of the
switched observer compared with the individual observers in Sections
IV-A and IV-B. Since, the EKF observer requires velocity measure-
ments, a ZOH is assumed for velocities when they are unavailable.
The initial state for simulation is selected as z = [0.2, 0.3, 0.2]�

and the velocities are v = [0.4 c(πt/4), 0.5 s(πt/4),−0.4c(πt/4) +
0.3 s(πt/2)]�, ω = [0, 0.1s(πt/8), 0.1c(πt/4)]�, where c = cos and
s = sin. White Gaussian noise with a mean of 0.001 and standard
deviation 0.005 is added to the velocities and zero mean white Gaus-
sian noise with standard deviation 0.01 is added to the state mea-
surements. Ten randomly sampled times from [0, 25]s are chosen for
the availability of velocity measurements. The initial estimate is se-
lected as ẑ(t0) = [0.2, 0.3, 1.5]�. The constants τ̄ = 5.4 with ln(μ) =
6.53, (λ/2c̄)− ε = 1.2, and kb = 0.01, the EKF gains ᾱ = 1.3, R =
0.003 I2 and W = 2 I3 and the asymptotic observer gains Γ = 2.6 I2,
k2 = 0.93 are tuned empirically to obtain the best performance. The
estimation is started with the asymptotically stable observer and only
switches to the EKF when the velocity measurements are available,
b(t) ≤ 1.5, and the average dwell time condition is satisfied. The
above condition for b(t) is empirically chosen since determining the
region of convergence of the EKF is nontrivial. Fig. 1(a) shows faster
convergence of the switched observer, which converges at t = 9.1s in
comparison to the asymptotically stable observer, which converges at
t = 26.3s. It is also observed that the EKF with ZOH for velocity
measurements becomes unstable at the switching instant when the
velocities are available. In Fig. 1(a), the EKF with ZOH error norm
(solid green line) coincides with the switching dashed line as it becomes
unstable. The dashed gray lines show the switching instants with the
EKF active between t = [5.1, 8.3)s and t = [17, 30]s for the switched
observer. Fig. 1(b) shows the evolution of the state estimate compared
with the ground truth using the switched observer. The steady-state
RMSE for the switched observer is 0.0028 and that of the asymptotically
stable observer is 0.0074 demonstrating the robustness of the switched
observer to measurement noise.

VI. CONCLUSION

The problem of switching between the UUB system and the asymp-
totically stable system with asymptotically decaying perturbation is
considered in this article. The multiple Lyapunov function-based sta-
bility analysis yields UUB stability of the switched system when an
average dwell time condition is satisfied. The developed stability results
are used for state estimation of the PDS using switched observers based
on the availability of velocity measurements. Switching between the
observers is shown to be UUB if the observability and average dwell
time conditions are satisfied.
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