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Event-Triggered Multiagent System Rendezvous
With Graph Maintenance in Varied Hybrid

Formulations: A Comparative Study
Federico M. Zegers , Member, IEEE, Dan P. Guralnik , and Warren E. Dixon , Fellow, IEEE

Abstract—This article explores the rendezvous problem
for a multiagent system (MAS) with distance-limited, in-
termittent communication and sensing. Unlike previous
works that provide specific event-triggered controllers, we
provide a framework that characterizes a family of dis-
tributed event-triggered controllers leveraging nonsingular
edge-potentials to achieve approximate rendezvous while
maintaining the initial distance-limited graph. The pro-
posed framework excludes the possibility of Zeno behav-
ior and accommodates the development of self-triggered
controllers. The combination of continuous and impulsive
dynamics results in a hybrid system, where the closed-loop
dynamics of the MAS is presented and analyzed using
hybrid differential inclusions. In particular, three distinct
hybrid system formulations are presented, where the ad-
vantages and disadvantages of each construction are dis-
cussed in terms of their solution spaces. The approximate
rendezvous problem is recast into a set stabilization prob-
lem, and sufficient conditions of the rendezvous set are
obtained through a Lyapunov-based analysis. Simulation
results are provided to validate the development, where a
specific instance of an event trigger mechanism satisfying
the requirements of the proposed design achieves approx-
imate rendezvous while preserving the edges of an initially
connected communication graph.

Index Terms—Consensus control, decentralized control,
hybrid systems, Lyapunov methods, multi-agent systems,
network systems, network theory (graphs).

I. INTRODUCTION

N ETWORK communication is often expressed in terms of
distance-based constraints: two agents may communicate

if they are sufficiently close. Network connectivity is typically
necessary for achieving multiagent system (MAS) objectives.
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Therefore, the network is often assumed to remain connected
so that continuous communication along edges is always possi-
ble [1], [2], [3], [4], [5], [6]. Ensuring connectivity in real time
poses nontrivial challenges, even in the presence of continuous
communication [7]. Centralized and distributed variants of the
connectivity maintenance problem under continuous interagent
communication have been extensively studied [7], [8], [9], [10],
[11], [12], as well as in discrete time [13], where connec-
tivity maintenance can be addressed inductively. Conversely,
few results on distributed event-triggered control (ETC) with
connectivity maintenance are available [14], [15], [16], all based
on some version of consensus dynamics (i.e., ẋ = −Lx, where
L is a weighted graph Laplacian). In general, there is no straight-
forward reduction of the event-triggered version of this problem
to either the smooth or discrete-time settings because variations
in the length of time intervals between communication events
may be necessary. The result in [14] presents an ETC approach
to approximate rendezvous for a MAS. Piecewise continuous
state-dependent gains on the standard (unweighted) consensus
dynamics are used to preserve the edges of a distance-based com-
munication graph. However, the proposed event trigger requires
continuous access to interagent displacements, which implies
continuous demand for sensing and/or communication, where
only the controller updates are intermittent. The result in [15]
investigates formation control with event-triggered connectivity
preservation. The objective is achieved with intermittent sensing
and broadcasting. Maintenance of the initial graph is achieved
using unbounded edge-tension functions, originally presented
in [17], where the Laplacian is weighted by the tension functions.
In practice, unbounded tension functions impose unnecessary
restrictions on the space of initial configurations, due to actuation
limitations. We propose an alternative treatment, inspired by
Boskos and Dimarogonas [12], using new edge tension functions
designed to support the connectivity maintenance argument
while avoiding restrictions on the admissible set of initial con-
figurations. Recently, Dong and Xu [16] developed an event-
triggered controller and observer that achieve leader–follower
consensus while maintaining the edges of an initially connected
graph. Edge preservation is achieved through the use of bounded
edge-potentials and intermittent communication determined by
event triggers.

The results in [15] and [16] provide inroads to MAS coor-
dination with graph maintenance under intermittent feedback.
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These results share an approach of matching specific preselected
time-based triggers to the MAS dynamics as a means to guaran-
tee the desired properties (graph-maintenance, continuous-time
completeness, and stability). In contrast, we derive character-
izations of trigger properties required to guarantee each of
these desiderata directly from the event-triggered consensus
dynamics. In particular, the triggers developed in this article
need not depend on time, unlike methods, such as in [15] and
[16]. This article extends the preliminary result reported in [18],
which studies the event-triggered rendezvous problem while also
seeking to preserve the edges of an initially connected graph for
a MAS consisting of single-integrator agents. Our result differs
from [14], [15], and [16] in that we characterize a family of
distributed event/self-triggered controllers that

1) utilize edge-potentials of classC1 for graph maintenance;
2) ensure completeness of maximal solutions while exclud-

ing Zeno behavior;
3) given a user-defined parameter ν > 0, exponentially drive

the MAS to ν-approximate rendezvous1.
In addition to a more detailed exposition of the results of [18],

this article provides an in-depth analysis of properties of solu-
tions relating to well-posedness and robustness issues arising
from different hybrid differential inclusion (HDI) models of the
same ETC design. Casting the problem within the HDI frame-
work of [19] provides a number of advantages. Using hybrid
time enables a particularly concise analysis of the interactions
between the clocks of the individual agents, event triggers,
and dynamical properties of the overall system. Our theoretical
guarantees are independent of the particular form of the trigger,
allowing for a variety of trigger designs. Three hybrid structure
models are explored in detail, with an emphasis on comparing
their solution spaces. Specifically, this article expands on [18] by
studying how different methods for enforcing jumps (in response
to triggering events) affect nominal well-posedness and robust-
ness to perturbations. A standard way of designing a nominally
well-posed HDI with a robust attractor—in addition to ensuring
certain regularity properties of the flow and jump maps, jointly
known as the hybrid basic conditions (HBCs)—is to design the
flow and jump sets as closed sets.2 Under such a construction,
a flow interval of a solution may only culminate in a jump if
the flow and jump sets intersect. However, an initial condition
lying in the jump set may be viable (for the given flow map),
creating a potential conflict between the notion of a solution and
the use of triggers as tools for stabilizing system behavior: if
triggered jumps are not executed (under some admissible solu-
tion), then the stability analysis based on the provided triggers
may no longer be valid. Moreover, the distributed nature of our
MAS setup introduces additional complexities to this problem.
For example, different agents’ event mechanisms may trigger
synchronously (but independently), raising questions about how
to properly design the jump map to make it stable under small
perturbations. Such perturbations may disrupt the synchrony of

1By ν-approximate rendezvous, we mean a state of the MAS where all agent
states are within a distance of at most ν from each other.

2This component of HBC is necessary for enabling compactness arguments
using graphical convergence.

independent triggers, causing cascades of multiple triggering
events to happen, possibly, in different orders and with different
outcomes. One way of enforcing triggered jumps while satisfy-
ing HBC is to design the triggers to beC1-smooth functions with
nonzero gradients at points of intersection of the flow and jump
sets, while ensuring that jumps occur only on the boundary of the
flow set. Then, a no-flow condition is presented, ensuring that
the flow at such points is not viable. This strategy is compared
with two alternative designs, which, although violating HBC by
requiring an open flow set, result in enforcing jumps without nec-
essarily demanding the imposition of regularity requirements on
the triggers and no-flow conditions on the flow map. Section IV
studies the formal connections between solutions of the three
different hybrid models, with an emphasis on local compactness
properties (nominal well-posedness). This more general analysis
is facilitated by [20, Prop. 2.10], which, under certain conditions
that are satisfied by our design, remains applicable even when
HBC is violated, and may be used to establish meaningful
properties of trajectories, such as continuous-time completeness
and non-Zeno behavior. Furthermore, upon establishing the
ν-approximate rendezvous subset of the system state space as an
attractor of the designed HDIs, a detailed comparative analysis
of the robustness properties of this attractor for the considered
designs is provided in Section VII. The main challenges over-
come in this analysis are the noncompactness of the attractor
combined with the dearth of direct robustness results for HDIs
that do not satisfy HBC. The inherent translation-invariance of
the problem investigated in this work was leveraged to distill
natural and unrestrictive conditions on the design (specifically,
the event triggers must be invariant under translations of the
MAS), guaranteeing the existence of a quotient HDI with a
compact attractor. From there, standard theory is deployed to
deal with the HBC-compliant designs, and Krasovskii regular-
ization is used to analyze the designs, which violate HBC. The
developed methods form a rather general blueprint for adapting
an HBC-noncompliant design H with noncompact attractor A
for use with the standard robustness framework of [19, Ch. 6 and
7], provided sufficient symmetry is present to yield a quotient
H# with a compact attractor A#, and that the original attractor
A is robustly stable (in the applicable sense) for the Krasovskii
regularization Ĥ.

Finally, this article expands the result of [12] in two significant
ways. First, the new proposed edge-tension function removes
the restriction from [12] on the length of the initial edges (which
are required to be significantly shorter than the communica-
tion radius). This change clarifies the tradeoff between how
close an edge is to breaking and the control effort required to
preserve the edge. Second, we relax the need for continuous
communication/sensing by employing an event/self-triggered
control strategy. Simulation results for a specific instance of
an event trigger using our theorems are presented to validate
the development. In addition to a more detailed exposition of
the theoretical results, this extended study provides a more com-
plete analysis of the simulation results published earlier in [18].
The rest of this article is organized as follows. Section II intro-
duces notation, reviews the basics of algebraic graph theory used
in MASs, and recalls notions from the HDI framework necessary
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for the development in Section IV. Section III introduces the
design problem in formal terms, including the control objective,
and discusses three possible HDI-based models of the desired
MAS behavior. Section IV establishes formal properties of the
different HDI designs proposed in Section III, with an emphasis
on similarities between their respective solution spaces. The
designs not satisfying HBC are shown, nevertheless, to have
many of the critical properties enjoyed by the HBC-compliant
design. Section IV is one of the two main contributions of this
article over the preliminary conference result [18]. Section V
establishes criteria for continuous-time completeness and graph
maintenance under the proposed designs, while Section VI
derives additional sufficient conditions for practical exponential
stability of the rendezvous objective. Following these analyses
is the second contribution of this article beyond the conference
version. Section VII establishes conditions for robustness for
the three hybrid designs. Section VIII provides examples of
event- and self-triggered mechanisms satisfying the derived
criteria, and Section IX presents simulation results. Finally,
Section X concludes this article with an overall discussion of the
results.

II. PRELIMINARIES

A. Notation

For any sets A,B, a function f of A with values in B is
denoted by f : A→ B, whereas f : A⇒ B refers to a set-
valued function f : A→ 2B . If A′ ⊆ A, then f|A′ denotes the
restriction of f to the domain A′. The set-complement of A
is denoted by A�. For p, q, n ∈ Z>0, the p× q zero matrix
and the p× 1 zero column vector are denoted by 0p×q and
0p, respectively. The p× p identity matrix and the p× 1 col-
umn vector of 1s are denoted by Ip and 1p, respectively. The
diagonal matrix with main diagonal elements w ∈ Rp is de-
noted by diag(w) ∈ Rp×p. For x ∈ Rp, ‖x‖ always denotes
the Euclidean norm, ‖x‖ =

√
x�x. The inner product between

x, y ∈ Rp is denoted by 〈x, y〉 = x�y. The infinity norm of
x = (xi)i∈S , where S is some finite indexing set and xi ∈ Rp

for each i ∈ S, is denoted by ‖x‖∞ = maxi∈S ‖xi‖. The dis-
tance of a point x ∈ Rp to a nonempty set A ⊂ Rp is given
by |x|A � inf{‖x− y‖ : y ∈ A} ∈ R≥0. Let ek denote the kth
standard basis vector in RN . The closure of a set C ⊂ Rp is
denoted by C, and the tangent cone of C at a point x ∈ Rp is
denoted by TC(x) [19, Def. 5.12].

B. Graphs

Let V be a finite nonempty set of cardinalityN , and let n be a
fixed positive integer. The configuration space over V is defined
as Conf(V) � (Rn)V . We will refer tox � (xp)p∈V ∈ Conf(V)
as a configuration of particles inRn. ForR > 0, theR-threshold
graph GR(x) on a configuration x is the undirected graph with
vertex setV and edge set ER(x) defined by setting pq ∈ ER(x) if
and only if ‖xp − xq‖ ≤ R, where we denote pq � {p, q} for all
p, q ∈ V , p �= q. Recall, for any graph G = (V, E), a path in G
connecting a vertex p to a vertex q is a sequence of vertices
(v0 = p, . . . , vk = q) where k ∈ Z≥0 and vs−1vs ∈ E for all

s = 1, 2, . . ., k. The graph G is connected, if every two vertices
p, q ∈ V may be connected by a path inG. The neighborhoodNp

of a vertex p ∈ V is the set of all q ∈ V with pq ∈ E . The degree
of p is dp � |Np|, and Δ(G) denotes the maximum degree in G.
Let A � [apq] ∈ RV×V denote the adjacency matrix of G, where
apq = 1 if and only if pq ∈ E and apq = 0, otherwise. Within
this work, no self-loops are considered. Therefore, app � 0 for
all p ∈ V . The degree matrix Δ of G is the diagonal matrix
whose pth diagonal entry is

∑
q∈V apq . The Laplacian matrix

of G is defined as L � Δ −A ∈ RV×V . More generally, if c =
[cpq] ∈ RV×V is a nonnegative symmetric matrix, the weighted
Laplacian is defined as Lc � Δc −Ac, where3 Ac � A � c,
Δc � diag(Ac · 1N ), and known to be positive semidefinite. Let
{λi(Lc)}Ni=1 denote the eigenvalues of Lc in a nondecreasing
order, and let λi(G) � λi(L). If G is connected, then λ1(G) = 0
is a simple eigenvalue, and λ2(G), known as the Fiedler value of
G, is positive. Also, λN (Lc) coincides with the operator norm
‖Lc‖, since Lc is self-adjoint.

C. Hybrid Systems

An HDI H takes the form [19]

H :

{
ż ∈ F (z), z ∈ C, (flow constraint)

z+ ∈ G(z), z ∈ D, (jump constraint)

where F : C ⇒ Rn and C ⊂ Rn are the flow map and set, re-
spectively,G : D ⇒ Rn andD ⊂ Rn are the jump map and set,
respectively, and z+ indicates the value of the state after a jump.
Solutions of H evolve continuously over the flow set according
to the dynamics given by the flow map, and are allowed to
execute discrete jumps over the jump set, constrained to the
sets specified by the jump map. Formally, a setA ⊂ R≥0

×Z≥0

is a hybrid time domain, if there is a nondecreasing sequence
of nonnegative reals (tj)

m
j=0, m ∈ Z≥0

∪ {∞}, t0 = 0, tm ∈
R≥0

∪ {∞}, such that A = ∪m
j=1(Ij × {j − 1}), where all the

Ij , j < m are of the form [tj−1, tj ], and Im is of the form4

[tm−1, tm] or [tm−1, tm) when m <∞. We refer to (tj)
m
j=0

as the jump sequence of the time domain A. A hybrid arc φ
is a function φ : domφ→ Rn, where domφ ⊂ R≥0

×Z≥0
is

a hybrid time domain with jump sequence (tj)
m
j=0, and φ is

a locally absolutely continuous function on Ij , for every j.
A solution of H is a hybrid arc φ such that, for all j > 0,
φ(t, j − 1) ∈ C and dφ

dt (t, j − 1) ∈ F (φ(t, j − 1)) for almost
all t ∈ Ij (the flow condition); and φ(tj−1, j − 1) ∈ D and
φ(tj−1, j) ∈ G(φ(tj−1, j − 1)) (the jump condition). A solution
φ to H is called maximal if φ cannot be extended, that is: if ψ
is a solution with domφ ⊆ domψ, which coincides with φ on
domφ, then ψ = φ. A solution φ is called complete if domφ is
unbounded.

Definition 1: A solution φ of H is said to be t-complete if the
sequence (tj) is unbounded.5

3� and ⊗ denote the Hadamard and Kronecker matrix products, respectively.
4Note tm = ∞ is allowed when m <∞; for m = ∞, there is no tm.
5Note that a t-complete solution is complete.
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A formal means of regarding solutions φ of H as functions of
t is required in what follows. Given a solution φ of H, let

φ∗ :
m⋃
j=1

[tj−1, tj) → Rn (1)

be defined via

φ∗(t) = φ(t, j − 1) ⇔ t ∈ [tj−1, tj) . (2)

By construction, φ∗ is an absolutely continuous function of
t except at the jump points {tj}mj=1. Also, φ∗|[tj−1,tj) extends
uniquely to an absolutely continuous function on Ij = [tj−1, tj ],
for all j. Note that φ∗ retains the information about the initial
conditions for all flow intervals ofφ, that is:φ∗(tj−1) is the initial
condition of φ|Ij×{j−1}. The following definitions are presented
to facilitate the discussion of the solutions spaces between the
different hybrid system formulations.

Definition 2: A hybrid system H is said to satisfy the
HBCs [19, Assumption 6.5] if the following holds:

1) the sets C and D are closed;
2) F is outer semicontinuous and locally bounded relative

to C, C ⊂ domF , and F (x) is convex for every x ∈ C;
3) G is outer semicontinuous and locally bounded relative

to D, and D ⊂ domG.
In particular, condition 2) is satisfied when F is a single-

valued continuous mapping, which is the case in this article.
When a system does not satisfy HBC, it can be regularized.
Recall from [19, Def. 4.13] that a hybrid arc φ is called a
Krasovskii solution to H = (C,F,D,G) if φ is a solution to
the system

Ĥ :

{
ż ∈ F̂ (z), z ∈ Ĉ

z+ ∈ Ĝ(z), z ∈ D̂
(3)

where Ĉ � C, D̂ � D, and

F̂ (z) �
⋂
δ>0

conF ((z + δB) ∩ C) for all z ∈ Ĉ (4)

Ĝ(z) �
⋂
δ>0

G((z + δB) ∩D) for all z ∈ D̂. (5)

It is known that Ĥ satisfies HBC [19, Ex. 6.6] whenever F
and G are locally bounded, which will always be the case in
this article. Systems satisfying HBC are important because their
solution spaces are well behaved. In this context, relevant notions
are recalled in the following definitions.

Definition 3: [19, Def. 5.21] A sequence {φi}∞i=1 of hybrid
arcs φi : domφi → Rn converges graphically if the sequence
of sets {gph φi}∞i=1 converges in the sense of set convergence
(see [19, Def. 5.1]). The graphical limit of a graphically conver-
gent sequence {φi}∞i=1 is the mapping M : R2 ⇒ Rn defined
by gph M = limi→∞ gph φi.

Definition 4: A hybrid systemH is said to be nominally well-
posed [19, Def. 6.2] if the following property holds: for every
graphically convergent sequence {φi}∞i=1 of solutions to H with
limi→∞ φi(0, 0) = ξ ∈ Rn:

1) if the sequence {φi}∞i=1 is locally eventually bounded,
then the sequence {length(φi)}∞i=1 converges in [0,∞],
and φ = gph-limi→∞φi is a solution to H with φ(0, 0) =
ξ and length(φ) = limi→∞ length(φi);

2) otherwise, there are m ∈ (0,∞), (ti, ji) ∈ domφi,
such that limi→∞ ‖φi(ti, ji)‖ = ∞, and φ �
gph-limi→∞φi|t+j<m is a maximal solution of H
with length(φ) = m and limt→t∗ ‖φ(t, j∗)‖ = ∞, where
(t∗, j∗) = sup(domφ).

Note that, in a situation where all solutions of H are known to
be t-complete, only the first possibility described in Definition 4
may occur.

III. PROBLEM FORMULATION AND CONTROLLER DESIGN

Consider a cooperative MAS composed of N ∈ Z>0 agents
indexed by a set V , with states xp ∈ Rn and p ∈ V . Any two
agents p, q ∈ V are capable of exchanging information with each
other whenever the distance between them does not exceedR >
0. Then, the possible connections among the agents are encoded
by the R-threshold graph GR(x). For each p ∈ V , the model of
agent p is a single integrator, ẋp = up, where up ∈ Rn denotes
a control input.

Assumption 1: The initialR-threshold graph,G � GR(x(0)),
is connected, and every edge pq in E � ER(x(0)) satisfies ‖xp −
xq‖ < R.

Assumption 2: For each p ∈ V and q ∈ Np, agent p is capable
of measuring xp − xq for all t ≥ 0.

Definition 5: Let ν > 0. The MAS achieves ν-approximate
rendezvous if ‖xp − xq‖ ≤ ν for all p, q ∈ V .

A distributed controller is developed for driving the MAS to
ν-approximate rendezvous while maintaining the initial graph
structure throughout the process, in the sense that E ⊆ ER(x(t))
holds for all t ≥ 0. The developed controller limits communica-
tions and/or sensing to edges of the graph G to remove the need
for continual monitoring of R-neighborhoods. Instead, each
agent can rely on peer-to-peer communication with a fixed set of
neighbors, which was established at time t = 0, as long as this
communication can be guaranteed. In addition, any properties
of the communication graph, such as the spectrum of LG , may
be computed in advance at time t = 0.

A. Potential Functions

Inspired by the work in [12], edge-potentials are employed to
preserve the edges of configurations x, which support a given
graph G = (V, E) in the sense that E ⊆ ER(x). Let r : R≥0 →
R≥0 be a nondecreasing continuous function with r(0) > 0.
Furthermore, let P : R≥0 → R≥0 be given by

P (ρ) �
∫ ρ

0

r(s)sds, ρ ∈ R≥0. (6)

The potential Vpq : Conf(V) → R≥0 for each pq ∈ E is

Vpq(x) � P (‖xp − xq‖) , wpq � r (‖xp − xq‖) (7)

noting Vpq = Vqp, and that w � [wpq] ∈ RV×V
≥0

is a state-
dependent symmetric matrix. The function r is specified as
follows. First, ε ∈ R is selected so that R̃ � R(1− ε) satisfies

R > R̃ >
2

3
R ⇔ 1

3
> ε > 0. (8)

Authorized licensed use limited to: University of Florida. Downloaded on December 07,2024 at 02:22:59 UTC from IEEE Xplore.  Restrictions apply. 



8312 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 12, DECEMBER 2024

Next, let μ, ω > 0, and let r(s) be selected as

r(s) � μ ·

⎧⎪⎨⎪⎩
1, s ∈ [0, R̃]

1 + ω(s2 − R̃2), s ∈ [R̃, R]

1 + ω(R2 − R̃2), s ≥ R.

(9)

After some algebra, we obtain

ω ≥ 2 |E| (1− ε)2

R2ε2(2− ε)2
=⇒ |E|P (R̃) ≤ P (R). (10)

Selecting ω according to (10) is required for graph mainte-
nance (see Th. 1). As in [12, Prop. 3.2], R̃ plays the role of a
safe communication distance below which the edge potential is
the usual square of the distance. The goal is to prove that the
initial graph will be preserved if all its edges are initially safe
in this sense. However, our design differs from those considered
in [12] in that r ramps up quadratically in the unsafe zone [R̃, R],
whereas the latter are either held constant or grow linearly there,
which results in lower bounds on the buffer: ε ≥ 1− |E|−1/2

for constant r and ε ≥ 1− ( 2
3|E|−1 )

1/3 for linearly growing r.
In contrast, our design enables the selection of a small enough
ε at initialization.

B. Hybrid Controller and Closed-Loop Dynamics

Let X � Conf(V)× Conf(V)× [0, T ]V denote the extended
configuration space of the MAS, where T > 0 is a user-defined
parameter. The controller of agent p ∈ V is designed asup � ηp,
where ηp ∈ Rn and τp ∈ [0, T ] are auxiliary variables subject
to the hybrid closed-loop dynamics Hp with flow map⎡⎢⎣ẋpτ̇p

η̇p

⎤⎥⎦ =

⎡⎢⎣ηp1
0n

⎤⎥⎦ , Tp(ξ) > 0 and τp < T (11)

and with jump map⎡⎢⎣x
+
p

τ+p
η+p

⎤⎥⎦ =

⎡⎢⎣ xp

0∑
q∈Np

wpq(xq − xp)

⎤⎥⎦ , Tp(ξ) ≤ 0 or τp = T

(12)

where the following holds:
1) ξ � [x�,η�, τ�]� ∈ X , η � (ηp)p∈V ∈ Conf(V) de-

notes the stacked vector of auxiliary variables ηp, and
τ � (τp)p∈V ∈ [0, T ]V is a vector of personal clocks, each
of which resets whenever agent p triggers (Tp = 0), or
when the flow time limit is reached (τp = T );

2) The triggers,6 Tp : X → R are continuous functions sat-
isfying Tp(ξ

+) > 0 whenever Tp(ξ) ≤ 0 or τp = T , for
every p ∈ V;

and where it is understood that x+p = xp, η+p = ηp, and τ+p = τp
hold for any jump not triggered by the jump condition of agent
p. It will be convenient to define vectors τ+

p ∈ [0, T ]V and η+
p ∈

Conf(V) as

(τ+
p )q �

{
τq, q �= p,

τ+p , q = p,
(η+

p )q �
{
ηq, q �= p

η+p , q = p
(13)

6An example of a distributed trigger function candidate is provided in (36).

corresponding to the updates in the timer and actuation variables
being executed only for agent p.

All functions of x will be regarded as functions of ξ. Also,
for any particular value of ξ, we denote the projection of ξ to
the first component of X by x(ξ) and similarly for the other
components. Since the Tp are continuous, the sets

C �
⋂
p∈V

([Tp > 0] ∩ [τp < T ])

D �
⋃
p∈V

([Tp ≤ 0] ∪ [τp = T ]) (14)

the flow and jump sets of H are open and closed,7 respectively,
withC ⊆ C ∪D. Both the flow and jump maps are single valued
and continuous, and solutions to the flow equations are global
and unique.

Remark 1: From an implementation perspective, as a solution
evolves over time, the hybrid controller constructed in (11)
and (12) is implementable as long as all the edges of the initial
graph G remain unbroken (agent p cannot update ηp if its
G-neighbors are out of communication range). The resulting
closed-loop dynamical system is a valid model of the required
MAS behavior as long as G is maintained. An invariance re-
sult characterizing the set of initial conditions from which all
trajectories maintain G for all time is therefore required and is
provided in Theorem 1.

Using the system for agent p defined in (11) and (12), we can
construct the hybrid system for the entire MAS. Let

H :

{
(ẋ, η̇, τ̇ ) = (η, 0nN ,1N ), ξ ∈ C

(x+,η+, τ+) = (x,η+
sync
, τ+

sync
), ξ ∈ D

(15)

where η+
sync

� (η+p )p∈V and τ+
sync

� (τ+p )p∈V . This formulation
ensures that satisfying a trigger condition results in an appropri-
ate jump in the component of the extended state corresponding
to the triggering agent. The fact that the flow and jump sets are
disjoint forces solutions to jump immediately when a triggering
event occurs, including multiple synchronous triggering events.
This conforms to the requirements of ETC, where indeterminism
regarding whether or not to respond to triggering events is not
allowed. However, the flow set being open in (15) makes it
impossible to apply standard results in hybrid systems theory
requiring HBC, which calls for an alternative analysis, presented
in Section IV. A more standard design, in the spirit of [21], is

K :

{
(ẋ, η̇, τ̇ ) = (η, 0nN ,1N ), ξ ∈ C

(x+,η+, τ+) ∈ {(x,η+
p , τ

+
p ) : p ∈ V(ξ)}, ξ ∈ D

(16)

where V(ξ) is the set of p ∈ V satisfying the jump condition
from (12). Note that H and K share the same single-valued flow
map, F (ξ) � (η, 0nN ,1N ), which is well defined and smooth
throughout X . The jump maps for H and K can be written as

G1(ξ) � (x,η+
sync
, τ+

sync
) (17)

G2(ξ) � {(x,η+
p , τ

+
p ) : p ∈ V(ξ)} (18)

7Continuous preimages of open/closed sets are open/closed, respectively.
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respectively, where G1 inherits the degree of smoothness of r
(9), and G2 is outer semicontinuous while having compact (in
fact, finite) values.

Remark 2: In K, the HBC is satisfied by construction, but at
the cost of indeterminism in the jump structure. Also, for this
design, it is necessary to guarantee that solutions with initial
conditions in the jump set cannot flow8. In the presence of k
distinct synchronous triggering events at hybrid time (t, j), this
property will result in k! distinct solutions, each of which jumps
repeatedly in zero continuous time (k times) until all triggering
events have been addressed at hybrid time (t, j + k). Observe
that the result of the last jump for any such sequence of jumps
does not depend on the order in which updates are carried out
by the individual agents (in discrete hybrid time), and coincides
with the jump map of (15). In other words, the behaviors of so-
lutions of the two systems as (possibly discontinuous) functions
of continuous time are identical except at jump times.

An intermediate design enforcing jumps at triggering events
by keeping the open flow set of H while using the nondetermin-
istic jump map of K is

L :

{
(ẋ, η̇, τ̇ ) = (η, 0nN ,1N ), ξ ∈ C

(x+,η+, τ+) ∈ {(x,η+
p , τ

+
p ) : p ∈ V(ξ)}, ξ ∈ D

(19)

for which the observations of Remark 2 hold true without addi-
tional regularity properties of the triggers. It follows by direct
computation thatK coincides with the Krasovskii regularization
L̂ of L. This fact will be used in Section VII-B. Section IV
explores the differences between H,K, and L in detail.

C. MAS Control Objective

A configuration x is a rendezvous state, if xp = xq for all
p, q ∈ V . The setΔV of all rendezvous states is a linear subspace
of Conf(V). Henceforth, let x = x̃+ x⊥ denote the orthogonal
decomposition of x with x̃ ∈ ΔV and x⊥ ∈ Δ⊥

V , and let Δx �
(xp − xq)pq∈E for an arbitrarily selected orientation on the edges
of E (to eliminate doubles)9. It is well known that

x̃ = 1N ⊗ 1

N

∑
p∈V

xp. (20)

Also, as shown in Appendix A, for all x, one has
1√
N

‖x⊥‖ ≤ ‖Δx‖∞ ≤
√
2‖x⊥‖. (21)

Achieving rendezvous is equivalent to globally10 stabilizing
the set R � {ξ ∈ X : ‖Δx‖∞ = 0}. Moreover, ν-approximate
rendezvous is achieved whenever ‖Δx‖∞ ≤ ν. Therefore, it
suffices to show that every trajectory of H, K, and L satisfying
Assumption 1 is eventually contained in the set

Rν � {ξ ∈ X : ‖Δx‖∞ ≤ ν} . (22)

In addition, we require maintenance of the initial communi-
cation graph. To this end, if G = (V, E) is a connected graph,

8The required guarantee clearly necessitates sufficient regularity of the event
triggers, which we explore in Lemma 2.

9It is well known that weighted Laplacian operators are independent of the
choice of orientation on the edges of the graph [9, Sec. 2.3.3]

10Over the space of configurations with connected communication graphs.

for any ρ > 0, let

Cρ(G) � {ξ ∈ X : E ⊆ Eρ(x)} (23)

and note that Assumption 1 means ξ(0, 0) ∈ int(CR(G)). Given
an initial configuration x(0) satisfying Assumption 1, the initial
condition ξ(0, 0) = φ(0, 0) is set to satisfy

φ(0, 0) = (x(0), (Lw ⊗ In)x(0), 0N ) (24)

and a controller is provided—that is, the values of ε, μ, and ω
are determined—to guarantee ξ(t, j) ∈ CR(G) for all (t, j) ∈
domφ, for the corresponding maximal solution φ of H.

Remark 3: The inequalities in (21) offer an alternative inter-
pretation of ν-approximate rendezvous in terms of the Euclidean
distance to the rendezvous set R in X . Consider the following
sets, defined for θ > 0

R′
θ � {ξ ∈ X : |ξ|R ≤ θ} . (25)

Since |ξ|R = ‖x⊥‖, for any θ, ν > 0, one has

R′
ν/

√
2
⊆ Rν , Rθ/

√
N ⊆ R′

θ. (26)

Thus, sets of the form Rν and R′
θ may be used interchangeably

as targets for stabilization. Neither Rν nor R′
θ are compact, yet

both have compact quotients under translations of the MAS and
projection to the MAS state component.

IV. COMPARISON OF H,K, AND L
The models H, L, and K are different formalizations of the

same desired behavior. This section studies the relative strengths
and weaknesses these models exhibit and establishes basic prop-
erties of the solutions spaces. Much of the analysis is not specific
to the current application and may be applied more broadly to
MASs with individual agent dynamics given by hybrid differ-
ential equations whose flow maps induce globally defined C1

flows and where the agent positions evolve continuously over
time (e.g., see the proof of Lemma 1). Arguments invoking
additional properties specific to our treatment of the rendezvous
problem (as opposed to those applicable in more generality) will
be highlighted. Let the projection to thex component be denoted
by

π : X → Conf(V) , π(x,η, τ ) � x . (27)

An important property of solutions of H, K, and L is that
the x component of a solution φ does not jump, namely:
π(φ(tj+1, j)) = π(φ(tj+1, j + 1)) for all j ≥ 0, where (tj)∞j=1

is the sequence of jump times in domφ. As a result, the ex-
pression x(φ(t, j)) is a well-defined continuous11 function of
t. Moreover, it is crucial to observe that the flow equation
ξ̇ = F (ξ) has global solutions for any initial condition, which
facilitates the following result.

Lemma 1: Every initial condition φ(0, 0) ∈ C determines
one and only one maximal solution φ of the hybrid system H
given in (15). Moreover, every maximal solution of H is either
t-complete or Zeno.

Proof: By [19, Prop. 2.10] and the preceding observation,
maximal solutions of H are complete. The condition on the
triggers gives G(D) ⊂ D�, implying that no solution of H has
a pair of consecutive jumps. �

11In fact, even piecewise smooth.
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A similar result for K, also relating its solutions to those of
H, may be derived from the fact that K satisfies HBC, provided
the following no-flow condition is satisfied:

(†) F (ξ) /∈ TC(ξ) for all ξ ∈ ∂C.

Remark 4: Condition (†) is always satisfied when τp(ξ) =
T . Therefore, from a design perspective, condition (†) may be
enforced by selecting the triggers to satisfy the following criteria.
First, for each p ∈ V , Tp is a C1-smooth function with regular
value 0. Second, for every ξ ∈ ∂C, there is p ∈ V such that
〈F (ξ),∇Tp(ξ)〉 < 0.

Lemma 2: Every initial condition φ(0, 0) ∈ C extends to a
complete solution φ of the hybrid system K given in (16).
Moreover, every maximal solution of K is either t-complete or
Zeno. In addition, if (†) is satisfied, then the x component of any
such solution, regarded as a function of t, coincides with that of
the unique solution for H with the same initial condition.

Proof: Since K satisfies HBC and C \D is open, the re-
sult of [19, Prop. 6.10] applies. Note that G(D) ⊆ C ∪D and
that no flow solutions escape in finite time. Therefore, every
φ(0, 0) ∈ C ∪D extends to a complete solution of K. To show
that every maximal solution is either t-complete or Zeno, it
suffices to verify that K has no complete discrete solutions.
Were φ a complete discrete solution, at least one agent p would
have to experience infinitely many jumps. At most one of these
jumps is due to the flow timer for agent p running out. Consider
two of the remaining jumps, say, at times (0, j) and (0, k),
j < k, with τp = 0 for both. However, in the absence of flow
intervals, one must have Tp(φ(0, k)) = Tp(φ(0, j + 1)) > 0,
in contradiction of the jump condition for agent p at time (0, k).

Now, assuming (†) and applying [22, Prop. 4.2.2] with
P (ξ) = C for every ξ implies that no initial condition in ∂C
extends to a nontrivial solution of ξ̇ = F (ξ) that is contained in
C. Therefore, any nontrivial solution with an initial condition
φ(0, 0) ∈ ∂C must jump. Since K is an autonomous system,
this reasoning extends to initial conditions at arbitrary times
(t, j) ∈ domφ. Suppose that φ(t, j) = (x,η, τ ) ∈ D, and let
k(t, j) � |V(φ(t, j)| �= 0. Note that 1 ≤ k ≤ N . Since (t, j) is
a jump point, (t, j + 1) ∈ domφ, and there is a q ∈ V(φ(t, j)
such that φ(t, j + 1) = (x,η+

q , τ
+
q ). By Property 2 of triggers,

k(t, j + 1) = k(t, j)− 1. By induction, k(t, j + k(t, j)) = 0,
and therefore, φ(t, j + k(t, j)) ∈ C. In other words, once φ
arrives at a jump point φ(t, j), it experiences 1 ≤ k(t, j) ≤ N
jumps before returning into the interior C of the flow set C of
K. Moreover, observe that

φ(t, j + k(t, j)) = (x,η+
sync
, τ+

sync
). (28)

Since the flow dynamics of H and K coincide, we conclude
that solutions of H and K with the same initial conditions in C
coincide, as functions of t, except, possibly at jump points. More
formally, for all ξ0 ∈ C, if φ and ψ are solutions of K and H,
respectively, satisfyingφ(0, 0) = ψ(0, 0) = ξ0, the mapsφ∗ and
ψ∗ coincide. The proof proceeds by induction on the jump index,
j. If ξ0 ∈ C, then both φ and ψ can only flow from ξ0 under
the dynamics ξ̇ = F (ξ). Therefore, φ|[0,t1]×{0} = ψ|[0,t1]×{0}
and hence φ∗|[0,t1) = ψ∗|[0,t1). Applying the observation in (28)
yieldsφ∗|[0,t1] = ψ∗|[0,t1] ∈ C, and now the same argument may
be repeated for the next interval. If ξ0 ∈ ∂C, then (28) is applied

Fig. 1. L may not be nominally well-posed. In this illustration, a puta-
tive sequence φn of jump-free solutions of K contained in C converges
to a solution φ of K contained in ∂C. By Lemma 3 and the fact that the
φn do not reach the jump setD, the φn are also solutions of L. However,
their limit φ is not.

directly to obtain φ∗(0) = ψ∗(0) as the (common) value of the
two solutions after the initial jumps. �

Solutions of the hybrid systemL enjoy a middle-ground status
between those of H and those of K.

Lemma 3: Every initial condition φ(0, 0) ∈ C extends to a
maximal solution φ of the hybrid system L given in (19), which
is also a maximal solution of K. In particular, every maximal
solution of L is either t-complete or Zeno.

Proof: By [19, Prop. 2.10] and the preceding observation,
maximal solutions of L are complete. The jump map G2 does
not provideG2(D) ⊂ D� (compare with the proof of Lemma 1);
however, the fact that the flow and jump sets are disjoint implies
a solution φ of L with φ(t, j) ∈ D must satisfy (t, j + 1) ∈
domφ. In other words, upon arrival in the jump set, any solution
ofLmust execute a jump. Therefore, we may apply the argument
in the second part of the proof of Lemma 2 to conclude that
no solution φ of L executes more than N consecutive jumps,
proving that φmust be either t-complete or Zeno. Finally, every
solution of L is a solution of K, although, possibly not the
other way around unless the no-flow condition of Lemma 2 is
satisfied. �

The preceding analysis has implications for the solutions of
all three systems.

Corollary 1: Suppose that (†) is satisfied. Then, the solution
spaces of L and K coincide. In particular, L is nominally well-
posed.

Proof: The analysis in Lemma 3 implies that a solution ofK is
a solution of L if it executes a jump whenever it arrives at a jump
state. The latter is guaranteed by (†). Nominal well-posedness of
an HDI is a property of the solution space of the HDI. Therefore,
L is nominally well-posed becauseK is nominally well-posed.�

Delicate questions remain regarding designs in which the
triggers Tp do not satisfy the no-flow condition (†). In these
cases, the systemsL andH have the clear advantage of enforcing
the ETC paradigm despite nominally violating HBC (the flow
set C is not closed), while K allows agents to ignore events to
maintain HBC (a solution of K may visit a point of D without
executing a jump at that point). In such a situation, L may not be
nominally well-posed (see Fig. 1). Nevertheless, the connection
between the designs allows for some positive results.

Corollary 2: Bounded solutions ofH,K, andL are non-Zeno.
Proof: All bounded solutions of K are non-Zeno since K is

nominally well-posed: by [23, Th. 1], no bounded solution of K
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Fig. 2. Comparing hybrid time domains before (domφ) and after
(domCφ) crushing (Definition 6) in two cases of interest: φ starts with
a flow segment, and ψ begins with a jump.

could have vanishing time between jumps, because the proof of
Lemma 2 shows K does not have complete discrete solutions.
Any bounded solution of L is a bounded solution of K, and
is, therefore, non-Zeno. Finally, by the proof of Lemma 2, any
bounded solution of H has the same jump times as a bounded
solution ofK, omitting the repetitions corresponding to multiple
jumps being executed at the same continuous time. �

The question remains whether or not anything can be said
about unbounded solutions: since C is not compact, its forward
invariance under either of the hybrid dynamics does not imply
that solutions must be bounded. Addressing this issue is outside
the scope of the discussion in this section, which focuses on
comparing the formal properties of the three designs H, K, and
L.

To discuss the differences between H and L in more detail,
we introduce the following notion.

Definition 6: Let X† denote the space of hybrid arcs in X .
The crushing map C : X† → X† is defined as follows. Given
φ ∈ X†, let (tj)mj=0 denote its sequence of jump times. A map

cφ : Z ∩ [1,m) → N is defined inductively by setting cφ(1) �
1, and, for all j ∈ Z ∩ [1,m)

cφ(j + 1) �
{
cφ(j) + 1, if tj−1 < tj or j = 1
cφ(j), otherwise.

(29)

Then, the hybrid time domain domCφ is obtained from domφ
by eliminating repetitions in the sequence of jump times, see
Fig. 2:

(t, k − 1) ∈ domCφ ⇔ ∃j≥1

{
(t, j − 1) ∈ domφ

k = cφ(j)
(30)

and Cφ is defined on domCφ to ensure (Cφ)∗ = φ∗, namely

(Cφ)(t, k − 1) � φ(t, j(k)− 1) (31)

for all t ∈ [tj(k)−1, tj(k)], where j(k) = max c−1

φ (k).
The considerations in the proofs of Lemmas 2 and 3 motivate

this definition, and are summarized in the following result,

whose main role in this article is to facilitate the robustness
analysis in Section VII.

Corollary 3: Let φ be a maximal solution of H, and ψ be a
maximal solution of L with ψ(0, 0) = φ(0, 0) ∈ C. Then, φ =
Cψ. Similarly, if (†) is satisfied and ψ is, instead, a maximal
solution of K, then also φ = Cψ.

Remark 5: The map C : X† → X† is not continuous. In other
words, it does not, in general, preserve graphical convergence.
For example, consider a sequenceφn of hybrid arcs with domφn
being the union of the sets [0, 1]× {0}, [1, 1 + 1

n ]× {1}, and
[1 + 1

n ,∞)× {2}. If φn → φ, then domφ must be the union
of [0, 1]× {0}, {1} × {1}, and [1,∞)× {2}. In particular,
Cφ �= φ despite the fact that Cφn = φn for all n. This example
illustrates the barrier to H being nominally well-posed, even in
the presence of (†), whenL is nominally well-posed: the limit of
a graphically convergent sequence of H-solutions is necessarily
an L-solution, but may still need to be crushed if one were to
obtain an H-solution. At the same time, the observation that
solutions of H, L, and K with the same initial condition differ
only in their values at isolated jumps suggests the possibility that
a weaker topology (than the topology of graphical convergence)
on the space of hybrid arcs—or possibly a quotient thereof
discounting information about isolated jumps—may be more
suitable for discussing well-posedness and robustness properties
of HDIs. Whether or not such a toolkit exists remains to be seen.

The fact that H does not satisfy HBC additionally motivates
the study of its Krasovskii regularization Ĥ, which, in turn, can
be compared to K, leading to the following results.

Lemma 4: For every ξ ∈ D, let J(ξ) denote the set of all
nonempty subsets P ⊆ V(ξ). Then, the Krasovskii regulariza-
tion Ĥ of H is given by

Ĥ :

{
(ẋ, η̇, τ̇ ) = (η, 0nN ,1N ), ξ ∈ C

(x+,η+, τ+) ∈ Ĝ1(x,η, τ ), ξ ∈ D
(32)

and Ĝ1(ξ) ⊆ {(x,η+
P , τ

+
P )}P∈J(ξ), where τ+

P ∈ [0, T ]V and
η+
P ∈ Conf(V) are defined as

(τ+
P )q �

{
τq, q /∈ P,

τ+p , q ∈ P,
(η+

P )q �
{
ηq, q /∈ P

η+p , q ∈ P.
(33)

Note that the flow set C of H is replaced with its closure C,
the flow map F and the jump setD = D remain unchanged, but
the jump map is altered and becomes nondeterministic. Note
also that J(ξ) �= ∅ if and only if ξ ∈ D.

Proof of Lemma 4: For any ξ, let V(ξ) denote the set of
all p ∈ V such that Tp(ξ) ≤ 0 or τp(ξ) ≥ T . In particular,
the elements of J(ξ) are the nonempty subsets of V(ξ), and
ξ ∈ D if and only if V(ξ) �= ∅. Recall from (17) that the jump
map G1 of H is single valued with x+ = x at all jump points
ξ = (x,η, τ ). Therefore, the regularized map Ĝ1 will satisfy the
same property. It remains to compute the η and τ components
of Ĝ1(ξ). By (5), a point ξ′ = (x,η′, τ ′) lies in Ĝ1(ξ) if and
only if it is the limit of a convergent sequence of points of the
form G1(ξ

k) = (x, η̄k, τ̄ k), where ξk = (x,ηk, τ k) satisfies
ξk ∈ D for all k ∈ Z≥0

and ξk → ξ as k → ∞. Given such a
sequence, let P k � V(ξk) for k ∈ Z≥0

and let p ∈ V . If p ∈ P k

for infinitely many values of k, denote these values by (ks)
∞
s=1,
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in an increasing order. Recall that η̄ks
p = gp(ξ

ks), where gp is the
continuous function given by the expression for η+p in (12). Since
ξks → ξ and η̄ks → η′ as s→ ∞, this implies thatη′

p = gp(ξ).
Similarly, since τ̄ ks = 0 for all s, one has τ ′

p = 0. Otherwise,
if there exists K ∈ Z≥0

such that p /∈ P k for all k ≥ K, then
η̄k
p = ηk

p and τ̄ k
p = τ k

p for all such k, implying that η′
p = ηp

and τ ′
p = τ p. It remains to verify that the set of p ∈ V satisfying

p ∈ P k for infinitely many values of k is contained in V(ξ).
Using the previous notation, if p ∈ P ks , then the points ξks

satisfy the closed conditionTp(ξ
ks) ≤ 0 or τp(ξ

ks) ≥ T , for all
s ∈ Z≥0

. Therefore, so does their limit, ξ, resulting in p ∈ V(ξ),
as desired. �

Remark 6: It follows from the computation in the above proof
that Ĝ1(ξ) ⊇ G2(ξ) for all ξ ∈ D as long as the triggers satisfy
the following weak general position requirement for all ξ ∈ D:
for every agent p ∈ V(ξ), there is a sequence ξk → ξ such that
V(ξk) = {p}. In particular, under this very mild condition on
the triggers, any solution of K becomes a Krasovskii solution
of H, and this connection does not require any transversality
conditions, such as (†).

Most importantly, Lemma 4 makes it possible to apply the
arguments in the proof of Lemma 2 to the system Ĥ instead of
the system K, resulting in the following corollary.

Corollary 4: Every initial condition φ(0, 0) ∈ C extends to
a complete solution φ of the hybrid system Ĥ given in (32).
Moreover, every maximal solution of Ĥ is either t-complete or
Zeno. In addition, if (†) is satisfied, then the x component of
any such solution, regarded as a function of t, coincides with
that of the unique solutions for H and K with the same initial
condition.

V. GRAPH MAINTENANCE AND t-COMPLETENESS

The edge weights wpq in (7) give rise to the weighted graph
Laplacian matrix of the MAS,Lw, defined in Section II-B, using
the weights wpq introduced in (7). Set

ζ � − (Lw ⊗ In)x− η. (34)

Writing ζ = (ζp)p∈V ∈ Conf(V), observe that

ζp =
∑
q∈Np

wpq (xq − xp)− ηp (35)

is the error between the instantaneous consensus term over Np

and the sampled consensus term for agent p.
Definition 7: Let Tp : X → R, p ∈ V be a continuously dif-

ferentiable function, let σ ∈ (0, 1], and let

fp(ξ) � ‖ηp‖2 − ‖ζp‖2 + σKR̃2 , K � λ2
2(G)μ2

2N
. (36)

Tp is an admissible trigger, if Tp ≤ fp throughout X and there
exist h,m > 0 such that (a) Tp(ξ

+) ≥ h at each jump of H, and
(b) 〈∇Tp(ξ), F (ξ)〉 ≥ −m holds for all ξ ∈ X 12.

Note that admissibility implies that agent p must update ηp
and τp at some time earlier than dictated by the condition fp ≤ 0,
which is only state dependent (and not time dependent). Also,

12Condition (b) is equivalent to Ṫp ≥ −m along solutions of H,K,L, and

Ĥ during flows.

the parameterσ, to be determined later, allows the user to control
the degree of rendezvous approximation (see Theorem 2).

Theorem 1: Given R̃ = R(1− ε) satisfying (8) and a con-
nected graphG, if {Tp}p∈V is a collection of admissible triggers,
then every solution ofH,K,L, or Ĥ satisfying (24) and initiating
from C

˜R(G) remains in CR(G) and is t-complete. Moreover, the
controllers up are bounded, with ‖up‖ ≤ Δ(G)Rr(R) for all
time.

Proof: Using (7), define the total potential VG : X → R≥0 as

VG(ξ) �
∑
p∈V

∑
q∈Np

Vpq(x) = 2
∑
pq∈E

Vpq(x). (37)

Note thatVG(ξ) = 0 forξ ∈ R andVG(ξ) > 0 otherwise. Letφ :

domφ→ X be a solution ofH,K,L, or Ĥwith initial condition
φ(0, 0) ∈ C

˜R(G). We will abuse notation by writing ξ = φ(t, j)
for (t, j) ∈ domφ.

First, we show that V̇G(ξ) ≤ 0 whenever ‖xp − xq‖ ≥ R̃
for some pq ∈ E . During flows, the change in VG is given by
V̇G(ξ) = 〈∇VG(ξ), F (ξ)〉, where F is the flow map of H. It
is known [9, Sec. 7.2] that ∇VG(ξ) = 2(Lw ⊗ In)x follows
from (7). Therefore, upon substituting (34) we obtain

V̇G(ξ) = 2x�(Lw ⊗ In)
�η

= −2x� (
L2
w ⊗ In

)
x− 2x� (Lw ⊗ In) ζ.

Splitting the leading term and applying (34) twice yields

V̇G(ξ) = − x� (
L2
w ⊗ In

)
x− ‖ζ‖2 − ‖η‖2

−2η�ζ − 2x� (Lw ⊗ In) ζ

= −x� (
L2
w ⊗ In

)
x− ‖ζ‖2 − ‖η‖2

−2(η + (Lw ⊗ In)x)
�ζ

= −x� (
L2
w ⊗ In

)
x− ‖η‖2 + ‖ζ‖2.

Given (7) and (9), wpq ≥ μ for all pq ∈ E , which implies that
λ2(Lw) ≥ μλ2(G). Together with (21), this yields

V̇G(ξ) ≤ −λ2
2 (G)μ2‖x⊥‖2 − ‖η‖2 + ‖ζ‖2

≤ − (
NK‖Δx‖2∞ + ‖η‖2 − ‖ζ‖2) . (38)

Using ‖Δx‖∞ ≥ R̃, σKR̃2 ≤ KR̃2, and (36), we obtain

V̇G(ξ) ≤ −
∑
p∈V

(σKR̃2 + ‖ηp‖2 − ‖ζp‖2)

≤ −
∑
p∈V

fp(ξ) ≤ −
∑
p∈V

Tp(ξ) ≤ 0 (39)

by the admissibility of the Tp and since all the Tp are nonneg-
ative during flows.

We now show that the edges of G are maintained. Proceeding
by contradiction, let (s1, j1) ∈ domφbe a point withφ(s1, j1) /∈
CR(G), and let

(s0, j0) � sup

{
(t, j) ∈ domφ

∣∣∣∣ (t, j) ≤ (s1, j1)
φ(t, j) ∈ C

˜R(G)
}

using the order on R2 given by a ≤ b ⇔ b− a ∈ R2
≥0

. Since
domφ is closed in R2 under this order, (s0, j0) ∈ domφ. Let
V1 � VG(φ(s1, j1)) and V0 � VG(φ(s0, j0)). Also, note j0 ≤ j1
and s0 ∈ [tj0 , tj0+1). Since x evolves continuously over time,
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the expression z(t) � x(φ(t, j)) is a well-defined function of
t ∈ J � [s0, s1]. Moreover, it is C1-smooth at every t ∈ J ex-
cept for the points t = tj , j0 ≤ j ≤ j1. SinceVG is aC1-function
of x, the function v(t) � VG(z(t)) is C1-smooth at every t ∈
J except for the points t = tj and j0 ≤ j ≤ j1. Therefore,
V1 − V0 = v(s1)− v(s0) =

∫ s1
s0
v̇(t)dt. Since φ(t, j) /∈ C

˜R(G)
for t ∈ (s0, s1], the integrand is nonpositive by (39), which
results in V1 ≤ V0. Since x evolves continuously with t, and
C
˜R(G) is closed, we have φ(s0, j0) ∈ C

˜R(G). Therefore, by (10)

and (37),V0 = 2
∑

pq∈E Vpq(φ(s0, j0)) ≤ 2|E|P (R̃) ≤ 2P (R).
Since x(s1) has at least one edge of length greater than R,
V0 ≤ 2P (R) < V1—contradiction.

To prove the second assertion of the theorem, we sup-
pose that the solution φ is maximal and verify that φ is t-
complete. By Lemmas 1–3 and Corollary 4, a maximal solu-
tion φ : domφ→ X of H,K,L, and Ĥ, respectively, is either
t-complete (and we are done)—or it has an infinite sequence
of jump times tj , j ∈ Z≥0. For each p ∈ V , let Jp denote
the set of indices j > 0 such that agent p experiences a jump
at time tj along φ, with the addition of j = 0. In particular,
Tp(φ(tj , j − 1)) = 0 or τp(φ(tj , j − 1)) = T (but note that this
is not a sufficient condition for a jump when φ is a solution
of K). Since V is finite, we may select p ∈ V such that Jp is
infinite, and denote the hybrid jump times (tj , j − 1), j ∈ Jp
as ((tpi , j

p
i − 1))∞i=1, in an increasing order. Also, let tp0 � 0.

It suffices to find δ > 0 such that tpi+1 − tpi ≥ δ for all i ≥ 0.
We claim that δ = min{h/m, T} satisfies our needs. For each
i ≥ 1, Tp(φ(t

p
i , j

p
i − 1)) = 0 or τp(φ(t

p
i , j

p
i − 1)) = T . Also,

Tp(φ(t
p
i , j

p
i )) ≥ h by Definition 7(a), and τp(φ(t

p
i , j

p
i )) = 0

by (12). Moreover, the continuity of Tp(φ(t, j)) during flows
implies that tpi+1 − tpi > 0 (in other words, the time interval
between tpi and tpi+1 is nondegenerate). Proceeding by contra-
diction, assume that tpi+1 − tpi < δ and denote ξ = φ(tpi+1, j

p
i )

for the rest of the argument. Then, it must be the case that
Tp(ξ) = 0, because tpi+1 − tpi < T . Substituting ξ into Tp,
together with Definition 7(b) and the continuity of Ṫp(φ(s, j

p
i ))

over all but finitely many s ∈ [tpi , t
p
i+1], produces

Tp(ξ) = Tp(φ(t
p
i , j

p
i )) +

∫ tpi+1

tpi

Ṫp(φ(s, j
p
i ))ds

≥ h−m
(
tpi+1 − tpi

)
> 0

contradicting the fact that Tp(ξ) = 0.
Finally, since ‖Δx‖∞ ≤ R for all time, we see wpq ≤ r(R)

by (7), and ‖up‖ = ‖ηp‖ ≤ Δ(G)Rr(R) by (9), for each pq ∈ E
and p ∈ V—hence bounded. �

Remark 7: The result of Theorem 1 for L, as well as for K
in the presence of (†), directly follows from its validity for H,
using Corollary 3. To see this, observe that if φ is an H-solution
satisfying the conclusions of the theorem, then any hybrid arc ψ
with φ = Cψ also satisfies the same conclusion. Rather than
follow this argument in the proof of Theorem 1, a unified
argument was provided that applies also to the K-solutions,
which do not become H-solutions (via the crushing map C) in
the absence of (†).

VI. STABILITY ANALYSIS

With sufficient conditions on the triggers {Tp}p∈V guarantee-
ing graph maintenance now established, additional conditions
guaranteeing the practical stability of the rendezvous set are de-
rived below, using the total potential VG as a Lyapunov function
candidate (in the broader HDI sense [19, Sec. 3.2]). Of note is
the fact that VG is a continuous function ofx alone, and therefore
evolves continuously as a function of t along hybrid trajectories,
no matter which design—H, K, L, or Ĥ—is considered. This
fact enables a stability analysis that is agnostic to the differences
between these designs, focusing on estimating the rate of change
in VG along flow intervals.

Theorem 2: Let ν > 0, R̃ = R(1− ε) satisfy (8), and G be a
connected graph. Let

Aν � Rν ∩ {ξ ∈ X : ∀p∈V ‖ηp‖ ≤ Δ(G)Rr(R)} . (40)

Suppose that 0 < β ≤ σKR̃2, and {Tp}p∈V is a collection of
admissible triggers such that, over solutions of H,K,L, or Ĥ
satisfying (24) and initiating from C

˜R(G),
Tp + σKR̃2 ≤ fp + β (41)

holds for all p ∈ V . Then, any such solution satisfies

‖Δx(t)‖2∞ ≤ r(R) |E|
r(0)

(
‖Δx(0)‖2∞ e−

NKt
r(R)|E| + σR̃2

)
. (42)

In particular, the set A0 is practically exponentially stable for
systems H,K,L, and Ĥ.

Before tackling the proof, we consider a few observations.
Recalling (21), the expressions ‖Δx(t)‖ and ‖Δx(0)‖ may be
replaced with the corresponding Euclidean distances |ξ(t)|A0

and |ξ(0)|A0
, as in Remark 3, yielding a stability bound in

more standard form. However, the definition of ν-approximate
rendezvous makes (42) a more natural statement in the context of
the current problem. Due to the continuous evolution of x under
the dynamics, and noting the fact that the length of a sequence of
consecutive 0-time jumps is bounded above by N , (42) may be
regarded as an exponential stability result for Aν for arbitrarily
small ν—equivalently, practical exponential stability for A0.

Corollary 5 (Approximate rendezvous is achieved): Under
the assumptions of Theorem 2, ν ′-approximate rendezvous is
achieved in finite time for every maximal solution, for any
ν ′ > ν, upon selecting σ � ν2

|E| ˜R2
· r(0)
r(R) . �

Proof of Theorem 2: Let φ : domφ→ X be a maximal solu-
tion of H,K,L, or Ĥ with initial condition φ(0, 0) ∈ C

˜R(G). By
Theorem 1, φ is t-complete. Consider the same total potential
VG(ξ) defined in (37). Using (6), (7), (9), and (37), we can bound
VG as

r(0)‖Δx‖2 ≤ VG(ξ) ≤ r(R)‖Δx‖2. (43)

By (41), ‖ηp‖2 − ‖ζp‖2 ≥ −β +Tp. Then, (38) yields

V̇G(ξ) ≤ −NK‖Δx‖2∞ −
∑
p∈V

(‖ηp‖2 − ‖ζp‖2
)

≤ −NK‖Δx‖2∞ −
∑
p∈V

(−β +Tp)

≤ −NK‖Δx‖2∞ +Nβ. (44)
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Combining (43) with ‖Δx‖ ≤ √|E|‖Δx‖∞ implies VG(ξ) ≤
r(R)|E|‖Δx‖2∞. Then, (44) can be upper bounded as

V̇G(ξ) ≤ − NK
r(R)|E|VG(ξ) +Nβ. (45)

SinceVG only depends onx, andx evolves continuously under
H,K,L, and Ĥ,VG evolves continuously as well. By Theorem 1,
V̇G(ξ), ξ = φ(t, j) has only finitely many discontinuities in any
bounded subinterval of domφ. Therefore, integrating (45) and
recalling that β ≤ σKR̃2 yields

VG(φ(t, j)) ≤ exp

(
− NKt

r(R) |E|
)
VG(φ(0, 0))

+
r(R) |E|β

K

(
1− exp

(
− NKt

r(R) |E|
))

≤ VG(φ(0, 0))e
− NKt
r(R)|E| + σr(R) |E| R̃2,

where using the bounds of VG in (43) and ‖Δx‖∞ ≤ ‖Δx‖ ≤√|E|‖Δx‖∞ produces (42) for any (t, j) ∈ dom φ. �

VII. ANALYSIS OF ROBUSTNESS PROPERTIES

The book [19] develops the theory of compact attractors
for HDIs satisfying HBC. Focusing on K and Ĥ, note that
Theorem 2 presents two examples of HDIs satisfying HBC,
however, with a noncompact attractor Aν . To see this, observe
that in addition to graph maintenance, Theorem 1 shows the set
X# ⊂ X defined as

X# � {ξ ∈ X : ∀p∈V ‖ηp‖ ≤ Δ(G)Rr(R)} (46)

is positively invariant.13 Further, by Theorem 2, the set Aν ⊂
X# is closed and uniformly attractive from the set of initial
conditions in int(CR(G)) ∩ X# satisfying (24) and Corollary 5.
Comparing with [19, Def. 6.24], only the necessary conditions
in the context of a compact attractor are missing from among
the conclusions of Theorem 2.

Had Aν been compact, results from [19, Ch. 7] would imply
its robustness under continuous perturbations of K and Ĥ. In
the noncompact case, analogous results are expected for per-
turbations that are uniformly continuous on the attractor. The
specific cases of K and Ĥ allow an argument (provided in this
section) not requiring the development of such general results.
For perturbations invariant under translations of the MAS con-
figuration, the robustness of the attractor to such perturbations
(ofK or Ĥ) may be derived from the robustness of corresponding
quotient HDIs, K# and Ĥ#, each possessing a compact attractor
as detailed below.

Briefly, we recall notions from [19, Ch. 6] required for the
analyses presented in this section.

Definition 8: [19, Def. 6.27] Given a hybrid system H and
function ρ : Rn → R≥0, the ρ-perturbation of H, denoted by
Hρ, is the hybrid system

Hρ :

{
ż ∈ Fρ(z), z ∈ Cρ

z+ ∈ Gρ(z), z ∈ Dρ,
(47)

where the flow and jump sets are

Cρ � {z ∈ Rn : (z + ρ(z)B) ∩ C �= ∅},

13In fact, positively invariant under H,K,L, and Ĥ.

Dρ � {z ∈ Rn : (z + ρ(z)B) ∩D �= ∅} (48)

and, for z ∈ Cρ, the flow map is defined as

Fρ(z) � ρ(z)B + conF ((z + ρ(z)B) ∩ C) (49)

whereas, for z ∈ Dρ, the jump map is defined as

Gρ(z) �
⋃

g∈G(D∩(z+ρ(z)B))

(g + ρ(g)B) . (50)

For greater specificity, we adapt [19, Def. 7.18(a)] to the
present setting: since all the HDIs being discussed are t-
complete and the attractors A under consideration are noncom-
pact continuous-time semi-globally14 practically asymptotically
stable (ctSGPAS) sets (see [24, Def. 2]), preattractivity may be
replaced with attractivity, and the compactness of the attractor
may be replaced by closedness.

Definition 9: Let A ⊂ Rn be a closed set and U ⊂ Rn be
an open set containing A. Then, A is robustly ctSGPAS on U
for H, if there exists a continuous function ρ : U → R≥0

that is
positive on U \ A such that A is ctSGPAS on U for Hρ.

A. Robustness of K and Ĥ
Consider the linear projection operator S of Conf(V) de-

fined by Sx � x⊥. S maps any configuration x into Δ⊥
V , the

orthogonal complement of the agreement subspace. Consider
the evolution of x⊥ over time. Since

d

dt
(x⊥) =

d

dt
(Sx) = Ṡx+ Sẋ = Sẋ = Sη ∈ Δ⊥

V ,

the flow dynamics of x⊥ evolves parallel to Δ⊥
V . LetC# and D#

be obtained from C and D, respectively, by intersection with
the set Δ⊥

V × Conf(V)× [0, T ]V . Then, the variable ξ# �
[x�,η�, τ�]� ∈ Δ⊥

V × Conf(V)× [0, T ]V evolves according
to the flow dynamics

(ẋ, η̇, τ̇ ) = (Sη, 0nN ,1N ) for ξ# ∈ C#. (51)

The discrete dynamics of ξ# under the systems K and Ĥ evolve
subject to

(x+,η+, τ+) ∈ G2(x,η, τ ), (52)

(x+,η+, τ+) ∈ Ĝ1(x,η, τ ), (53)

respectively, for ξ# ∈ D#. Noting η+p = −(epLw ⊗ In)x
⊥ and

that wpq is determined by ‖xp − xq‖ = ‖x⊥
p − x⊥

q ‖, the jump
equations for ηp are well defined in terms of the variables
composing ξ#.

To ensure that the jump conditions also only depend on ξ#,
one must impose the additional requirement that the triggers
{Tp}p∈V are invariant under translations of the MAS configu-
ration. In other words, the condition

(‡) Tp(x,η, τ ) = Tp(x+ �,η, τ ) for all � ∈ ΔV
must be satisfied over X . The condition (‡) is not overly
restrictive since the triggers need only depend on interagent
measurements, and not on the MAS position in the workspace.
Note that the triggers introduced in Section VIII do satisfy (‡).

14The result is semi-global because the initial configuration of the MAS
dictates the size of R̃, and the user-defined performance parameter ν determines
other controller constants.
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To summarize, (51) and (52) give rise to a quotient K# of K,
whereas (51) and (53) give rise to a quotient Ĥ# of Ĥ. It then
follows from Theorem 2 that the compact set:

A# � {0nN} × {η : ‖η‖∞ ≤ Δ(G)Rr(R)} × [0, T ]V

is ctSGPAS for K# and Ĥ# from the set of initial conditions
in int(CR(G)) ∩ X# satisfying (24). The result [19, Th. 7.21]
guarantees the robustness of A# under continuous perturbations
ofK# as well as Ĥ#, which, in turn, guarantees the robustness of
A under continuous perturbations of K and Ĥ that are invariant
under translations of the MAS15.

B. Robustness of L and H
Recalling that K = L̂, and that the robustness—according to

Definition 9—of the attractor A to translation-invariant pertur-
bations for K and Ĥ is already established, the robustness of A
to the same perturbations for L and H, respectively, follows as
a consequence of the next result.

Lemma 5: LetH be any HDI onRn, and let ρ be a continuous
perturbation. If A ⊂ Rn is a ctSGPAS attractor for Ĥρ, then A
is robustly ctSGPAS for H.

Proof: Any solution φ of Hρ is a solution of Ĥρ. Therefore,
any upper bound on |φ(t, j)|A that is valid for solutions of Ĥρ

remains valid for solutions of Hρ. �
Applying Lemma 5 to the attractor A0 shows that A0 is

robustly ctSGPAS for the HDIs L and H, because it is robustly
ctSGPAS for their respective Krasovskii regularizations, K and
Ĥ. In summary, the fact that the quotient system Ĥ# has the
compact attractor A# and satisfies HBC produces, through
the established theory, a translation-invariant perturbation ρ,
demonstrating the robustness ofA0 for Ĥ, while Lemma 5 shows
the same perturbation certifies the robustness of A0 for H.

VIII. TRIGGER DESIGN

It remains to produce examples of admissible triggers satisfy-
ing the condition (41) of Theorem 2. Recalling that the purpose
of introducing triggers was to limit the deviations {‖ζp‖}p∈V
of the sampled local consensus errors from the actual local
consensus errors, the following result establishes such a bound
for admissible triggers. This enables the design of the desired
examples provided in (56) and (57).

Lemma 6: Let R̃, r, and ω satisfy the requirements in Sec-
tion III-A, and let G be a connected graph. If {Tp}p∈V is a
collection of admissible triggers and φ is a solution of H, K, L,
or Ĥ with φ(0, 0) ∈ C

˜R(G) satisfying (24), then the following
holds over every flow interval of agent p:

‖ζp(φ(t, j))‖ ≤ Zτp(φ(t, j)),

where Z � 2Δ(G)2Rr(R)(2μωR2 + r(R)) > 0.
Proof: Using the notation from the proof of Theorem 1, con-

sider any t ∈ [tpi , t
p
i+1]. By (11), ηp is constant over the interval

15Similarly to Condition (‡), imposing the identity ρ(x,η,τ ) = ρ(x+
�,η,τ ) on a perturbation ρ : X# → R≥0 is not overly restrictive in practice,
since, in the current problem, measurement uncertainties and computational
errors are not expected to depend on the displacement of the MAS relative to
any particular choice of origin for the global coordinate system.

[tpi , t
p
i+1]× {jpi } ⊂ domφ. Furthermore, Theorem 1 and (7)–(9)

imply that ‖xp − xq‖ ≤ R and |wpq| ≤ r(R) for all q ∈ Np,
respectively. It then follows that16

‖ηp‖ ≤ dpRr(R) ≤ Δ(G)Rr(R). (54)

Taking the time derivative of ζp over [tpi , t
p
i+1]× {jpi } yields

ζ̇p =
∑
q∈Np

ẇpq(xq − xp) +
∑
q∈Np

wpq(ηq − ηp). (55)

From (9), it follows that ẇpq = 0 when ‖xq − xp‖ ∈ [0, R̃],
and ẇpq = 2μω(xq − xp)

�(ηq − ηp) for ‖xq − xp‖ ∈ [R̃, R].
Therefore, |ẇpq| ≤ 4μωΔ(G)R2r(R) from (54). Combining
these bounds with (55) implies

‖ζ̇p‖ ≤ dpR · 4μωΔ(G)R2r(R)

+ dpr(R) · 2Δ(G)Rr(R) ≤ Z,

where we recall that dp is the degree of agent p in G, andΔ(G) is
the maximal degree inG. Over the interval [tpi , t

p
i+1]× {jpi }, ζp is

continuous as a function of t, and differentiable everywhere ex-
cept t = tj , jpi ≤ j ≤ jpi+1. Therefore, using ‖ζp(φ(tpi , jpi ))‖ =
0 we may write

‖ζp(t)‖ ≤
∫ t

tpi

‖ζ̇p(s)‖ds ≤ Z (t− tpi ) .

Since τp = t− tpi over [tpi , t
p
i+1]× {jpi }, ‖ζp(t, jpi )‖ ≤ Zτp.�

An immediate consequence of Lemma 6 is the following.
Corollary 6: The trigger Tp = fp is admissible.
Proof: Clearly, fp(ξ

+) ≥ σKR̃2. Also, by the Cauchy–
Schwarz inequality,

d

dt
fp = −2ζ�p ζ̇p ≥ −4Δ(G)Rr(R)Z,

where ‖ζp‖ ≤ 2Δ(G)Rr(R) and ‖ζ̇p‖ ≤ Z. �
Alternative trigger structures are made possible by the task-

informed approach enabled by the combination of Theorems 1
and 2 and Lemma 6. While a self-trigger based on the rate bound
of the ζp is naturally conservative, it is but only one way to
satisfy the sufficient conditions derived herein. To see this, let
0 < β ≤ σKR̃2 and γ > 0. Consider the triggers

Tp,1(ξ) = ‖ηp‖2 − ‖ζp‖2 + α(‖ηp‖),
Tp,2(ξ) = ‖ηp‖2 − Z2τ2p + α(‖ηp‖), (56)

where

α(s) �
{
β − β

γ s, s ∈ [0, γ]

0, s ≥ γ.
(57)

Remark 8: Tp,1 is state based, whereas Tp,2 is a self-trigger.
Corollary 7: Tp,1 and Tp,2 are admissible and satisfy (41).
Proof: Tp,1 and Tp,2 share the same h � mins≥0(s

2 +
α(s)). Indeed, s2 + α(s) coincides with s2 for s ≥ γ, so, being
positive, it has a minimum. By Corollary 6, Tp,1 is admissible
because d

dtTp,1 = d
dtfp. It also trivially satisfies (41). Finally,

d
dtTp,2 = −2Z2τp, whereZ2τ2p ≤ ‖ηp‖2 + α(‖ηp‖)with ‖ηp‖
bounded by (54). Equation (41) holds for Tp,2 because Tp,2 ≤
Tp,1 by Lemma 6. �

16Once again, the choice of systemH,K, orL does not matter, since Lemma 6
only discusses the evolution of solutions over flow intervals.
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Fig. 3. Trajectories of a MAS with N = 9 agents, communication ra-
dius R = 1, a random initial configuration (denoted by the ×’s), and a
connected initial graph G. The nodes and edges of G are represented by
the ×’s and black-dashed lines, respectively. G has |E| = 20 and λ2(G) =
1.578. The final configuration (represented by the •’s) were required
to be in ν-approximate rendezvous with ν = 0.1. The parameter R̃ is
selected as the length of the longest edge of G plus the machine epsilon
of our computer (10−16), which yields R̃ = 0.9392, corresponding to ε =
0.0608. Note that ω = 2541.5 and σ = 1.8863× 10−6 (see Theorem 2).
With the gain μ = 1, approximate rendezvous was achieved within four
time units. The triggers Tp,1 were used with β = 3.8298× 10−13 and γ
set to γ = 0.1 [see (57)]. Note how each cusp along an agent’s trajectory
coincides with a jump time for that agent. The simulation was executed
in MATLAB, using [25]. Also note that the parameter β is well above
machine epsilon for a single-precision float. Moreover, the plots in Figs. 4
and 5 demonstrate that the functions α(‖ηp‖) from (56) repeatedly make
nonnegligible positive contributions to the values of the triggers Tp in
spite of the seemingly small size of β, whose contribution to the trigger
is additive.

Fig. 4. Evolution of the rendezvous error ‖ep‖ = ‖xp − 1
N

∑
q∈V xq‖

for each agent p ∈ V (top), and edge lengths normalized by the commu-
nication radius R for each pq ∈ E (bottom). Note that the ν-approximate
rendezvous objective is achieved, where the steady state values of the
normalized edge lengths are several orders of magnitude smaller than
ν = 0.1. Hence, the control strategy can produce better performance
than the expected theoretical result, highlighting the conservativeness
of the Lyapunov analysis. Observe that all normalized edge lengths are
strictly below 1, implying that no edge of the initial graph is ever broken.
Note that the bottom plot is not color-matched to the other plots: since
the colors correspond to communication edges and not agents.

Fig. 5. Flow intervals and jump times for each agent. Note that “A. 1”
means Agent 1, “A. 2” means Agent 2, etc. Spikes represent jump times,
while white spaces correspond to flow intervals. Recall that, to update
its controller at a jump time, an agent can either measure the positions
of its neighbors and itself simultaneously or the displacement between
itself and its neighbors. In comparison with approximate rendezvous
strategies that require continuous measurements, our result employs
much fewer measurements to achieve approximate rendezvous. Finally,
note how the communication events seem less frequent in the second
half of the simulation, after the objective had been reached. This, too,
points to the fact that the value of β may not be regarded as negligibly
small (see caption to Fig. 3).

On first glance, the event trigger Tp,1 requires agent p to
continuously measure xq − xp for each q ∈ Np. This could be
useful in settings where intermittent actuation is desired and
continuous measurements are inexpensive, such as with satellite
constellations where power is limited and visual measurements
can be made over large distances. For other scenarios, an alter-
native communication protocol can remove the need for contin-
uously monitoring the neighbors’ states. Recalling that ẋp = ηp
is constant over [tpi , t

p
i+1), observe that xp(t) = ηpτp + xp(t

p
i )

for all t ∈ [tpi , t
p
i+1). Under the assumption of instantaneous

communication, it suffices for each agent q ∈ Np to broadcast ηq
and xq at each jump time of agent q. Consequently, agent p can
compute ζp by using the solution for xq(t) over the appropriate
time interval for each q ∈ Np ∪ {p}.

IX. IMPLEMENTATION AND SIMULATION

Putting together the theoretical results, suppose that we are
given N agents with x(0) satisfying Assumption 1, and ν > 0.
At the initial time, G = GR(x(0)), λ2(G), and |E| are computed.
The parameter ε is selected so that R̃ > ‖Δx(0)‖∞, and ω is
selected to satisfy (10). For any choice of μ, γ > 0, σ is se-
lected according to Theorem 2, guaranteeing that any collection
{Tp}p∈V of admissible triggers generates a controller driving the
MAS to ν ′-approximate rendezvous at an exponential rate, uni-
formly over initial conditions φ(0, 0) ∈ C

˜R(G) satisfying (24).
Theorem 1 guarantees that no edges of G are broken at any time
for any of the above initial conditions.

Authorized licensed use limited to: University of Florida. Downloaded on December 07,2024 at 02:22:59 UTC from IEEE Xplore.  Restrictions apply. 



ZEGERS et al.: EVENT-TRIGGERED MAS RENDEZVOUS WITH GRAPH MAINTENANCE IN VARIED HYBRID FORMULATIONS: 8321

Fig. 3 shows the trajectories of a MAS with N = 9 agents in
the Euclidean plane R2, with randomized initial positions and
with Tp,1 (with the default choice of β = σKR̃2) serving as the
event trigger function for each agent. Fig. 4 depicts the evolution
of the rendezvous error for each agent (top plot) and the edge
lengths normalized by the communication radius R for each
edge of the initial graph G (bottom plot). The rendezvous error
of agent p is given by ep � xp − 1

N

∑
q∈V xq . Fig. 5 illustrates

the event times for each agent, i.e., the times agentpupdated their
auxiliary control variableηp for eachp ∈ V . Notice that the event
times are intermittent and occur asynchronously in the MAS.

X. CONCLUSION

Distributed controllers with intermittent distance-limited
communication and communication graph maintenance were
developed for the rendezvous problem. Applying the HDI frame-
work of [19] enables an especially simple and systematic ap-
proach to the analysis of the closed-loop system, tying together
personal clocks, triggering conditions, stability, and topological
properties of solutions. This results in a family of controllers,
which yield complete, Zeno-free solutions while maintaining the
initial graph structure and keeping the prescribed approximate
rendezvous set exponentially stable with respect to continuous
time. In contrast with [12], where the growth of the edge poten-
tials is insufficient for providing a graph maintenance guarantee
for all initial configurations with a connected communication
graph, and where this guarantee shrinks as the number of agents
grows, our design fits any such configuration with a controller
capable of maintaining the initial graph. In addition, a number of
questions regarding the modeling of ETC systems with multiple
independent triggers were considered, in an extension of the
work in [21], establishing the sufficiency of no-flow conditions
for ensuring that jumps do occur at event times. The proposed
alternative models were shown to have many of the desired
characteristics of the [21]-style model (e.g., non-Zeno behavior)
even without introducing no-flow conditions, with solutions
differing only in their jump structures. Namely, the desired
attractor is robustly stable for all the considered designs under
mild conditions, and solutions only differ in whether or not
the corresponding hybrid time domains contain sequences of
zero-time jumps and in the ordering of such sequences, resulting
in solutions (for the different models) that coincide everywhere,
with respect to continuous time, except for the set of jump times.
These differences are, therefore, the only source of the failure of
nominal well-posedness in the alternative models, motivating a
search for a coarser topology17 on the space of maximal solutions
that would treat all the considered models as equivalent models
of the same control design, at least in the presence of no-flow
conditions. Further motivation for such research is provided
by the results of Section VII on the retention of robustness
properties by controller designs modified in the way proposed
in this article (at the expense of satisfying HBC).

Returning to the network control problem, future research
may address less conservative triggers, heterogeneous and

17That is, coarser than the graphical convergence topology.

higher order agent dynamics, as well as modeling exogenous
disturbances by set-valued flow maps.

APPENDIX A
PROOF OF (21)

Proof: Denoting x̃ � (y)p∈V , there exist p, q ∈ E such that

‖Δx‖2∞ = ‖xp − xq‖2 = ‖xp − y + y − xq‖2

≤ (‖xp − y‖+ ‖y − xq‖)2

≤ ‖xp − y‖2 + 2‖xp − y‖‖y − xq‖+ ‖y − xq‖2

≤ 2‖xp − y‖2 + 2‖y − xq‖2 ≤ 2
∑
i∈V

‖xi − y‖2

≤ 2‖x− x̃‖2 = 2‖x⊥‖2.
Next, we prove the claim that y = 1

N

∑
p∈V xp � z. Let L be

the vector Laplacian for the complete graph on V . Then,

(Lx)p =
∑
q∈V

(xp − xq) = Nxp −
∑
q∈V

xq = N(xp − z).

We conclude that Lx = N(x−w), where w = (z)p∈V . There-
fore, since L is self-adjoint, we have that (x−w) ∈ ker(L)⊥.
Since w ∈ ker(L), x = (x−w) +w is the orthogonal decom-
position of x that we seek by the uniqueness of orthogonal
decompositions. In particular, z = y, as required. Finally, to
prove the last inequality, use our formula for x̃:

‖x⊥‖2 = ‖x− x̃‖2 =
∑

p∈V ‖xp − y‖2

=
∑

p∈V
∥∥∥ 1
N

∑
q∈V(xp − xq)

∥∥∥2
= 1

N2

∑
p∈V

∑
q,q∗∈V 〈xp − xq, xp − xq∗ 〉

≤ 1
N2

∑
p∈V

∑
q,q∗∈V |〈xp − xq, xp − xq∗ 〉|

≤ 1
N2

∑
p∈V

∑
q,q∗∈V ‖xp − xq‖‖xp − xq∗‖

= 1
N2

∑
p∈V

∑
q∈V ‖xp − xq‖

∑
q∗∈V ‖xp − xq∗‖

≤ 1
N2

∑
p∈V (N ·maxq∈V ‖xp − xq‖)2

≤ 1
N2 ·N3 ·maxp,q∈V ‖xp − xq‖2

= N‖Δx‖2∞.
�
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