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Approximate Dynamic Programming for
Trajectory Tracking of Switched Systems

Max L. Greene , Member, IEEE, Masoud S. Sakha ,
Rushikesh Kamalapurkar , Senior Member, IEEE, and Warren E. Dixon

Abstract—This article develops a technique for online
approximate optimization of tracking control policies for
a family of switched nonlinear dynamical systems. Opti-
mization is realized via approximate dynamic programming,
and integral concurrent learning is used for robustness
to parametric uncertainties. The family of switched sys-
tems is composed of finitely many subsystems, which may
have differing characteristics, such as dynamics and cost
functions. This article develops a new result on the anal-
ysis of switched systems comprised of locally practically
stable subsystems using multiple Lyapunov-like functions.
Local practical stability of the overall switched system and
convergence of the applied tracking control policies to a
neighborhood of the optimal tracking control policies is
then proven for an arbitrary switching sequence provided
that a set of sufficient gain conditions and a minimum
dwell-time condition are satisfied. Simulation results are
presented for the optimal control of an autonomous under-
water vehicle in the presence of a set of discretely varying
irrotational currents to show the efficacy of the developed
technique.

Index Terms—Adaptive control, nonlinear systems, opti-
mal control, switched systems.

I. INTRODUCTION

SWITCHED systems are dynamical systems that can operate
in various modes of operation (also referred to as subsys-

tems) in response to internal and external stimuli [1]. Switching
behaviors can result from changes in control objectives, system
parameters, actuator limitations including saturation and ON/OFF

control, modeling choices where a complex system is composed
of several simpler models, and design choices including gain
scheduling, where a complex control design problem is sepa-
rated into multiple control design problems [2], [3], [4], [5], [6].
Solutions to optimal control problems provide a stabilizing con-
trol policy, which can be used to facilitate a regulation or tracking
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objective [7, Ch. 5]. This article considers the optimal control of
a switched nonlinear system. The control objective is to optimize
the performance of each subsystem and to schedule switch-
ing behaviors to ensure the stability of the overall switched
system.

The performance objective for each subsystem is encoded in
terms of the minimization of a cost functional, which results
in a nonlinear optimal control problem (NOCP) corresponding
to each subsystem. Solutions to a large classes of NOCPs can
be characterized using the Hamilton–Jacobi–Bellman (HJB)
equation, which is generally difficult to solve [7, Ch. 2]. HJB
equations can be solved numerically (e.g., [8] and [9]) given a
dynamic model of the system; however, the resulting feedback
controllers may be rendered ineffective if the model includes
uncertainty.

Reinforcement learning (RL) has been used to approximate
solutions of optimal control problems [10] and [11]. Approxi-
mate dynamic programming (ADP) utilizes an RL-based actor–
critic framework to solve NOCPs in the presence of modeling
uncertainty via value function approximation [12], [13], [14],
[15], [16]. For a class of NOCPs that includes affine-quadratic
NOCPs, once the optimal value function is successfully approx-
imated, a stabilizing optimal control policy can be determined.
The optimal value function of each subsystem is approximated
with a separate single-layer linear-in-the-parameters neural net-
work (NN); the weights of the NN are updated according to the
Bellman error (BE), which is a performance metric that indi-
rectly measures the quality of the value function approximation.
If a system model is available, it can be used to improve learning
efficiency via simulation of experience [17], [18], [19]. If the
system model includes uncertain model parameters, they may
be approximated in real time using techniques such as integral
concurrent learning (ICL) under finite excitation (FE) condi-
tions [20]. Unlike standard concurrent learning results [21], ICL
circumvents the need to compute state derivatives. In a switched
systems context, since ICL relies on historical input–output
data, ICL facilitates exponential identification of a subsystem’s
uncertain parameters regardless of the subsystem’s (in)activity.
The identified parameters enable simulation of experience (i.e.,
to calculate the BE at off-trajectory locations in the state space)
to facilitate value function approximation. While ADP with
simulation of experience has proven to be an effective tool for
approximate optimal control of the subsystems (see, e.g., [15],
[19], [22], [23], [24], [25], and [26]), the optimal control of
switched nonlinear systems remains a challenge.
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The numerical optimal control of switched systems has been
investigated in results such as [27], [28], [29], [30], and [31].
Early results on switched optimal control rely on a simplifying
assumption such as a fixed switching sequence [27], [31], [32]
or a fixed switching surface [33], [34]. Methods to optimize the
switching sequence, under the assumption that the switching
times are fixed, are also developed in [29]. More recently, meth-
ods based on mode insertion [30], dynamic programming [31],
and embedding [35], [36] have addressed simultaneous offline
optimization of switching sequences and switching times. Re-
sults such as [37] and [38] also examine the use of dynamic
programming for offline optimization of switched discrete-
time nonlinear systems. Unlike the aforementioned methods,
the objective in this article is online optimization, where a
Lyapunov-based framework establishes the convergence of sub-
system control policies to a neighborhood of their respective
optimal policies while maintaining the stability of the overall
switched system. Optimization of the switching logic relative to
a system-wide performance metric is not considered in this work
(cf. [30], [31], [35], and [36]) and is a topic for future research.

The Lyapunov-like function for each subsystem includes
its respective optimal value function. Since the optimal value
function is generally different for each subsystem [39, Ch. 3],
the switched system is analyzed using multiple Lyapunov-like
functions [1, Ch. 3.1]. A complication in Lyapunov-based anal-
yses of switched systems is the growth and discontinuity of
Lyapunov-like functions at the switching instances [40]. To
overcome this complication, a minimum dwell-time analysis
is utilized. A minimum dwell-time is a lower bound on the
time required before the scheduler can switch to a different
subsystem. While the value of one Lyapunov-like function may
decrease while the corresponding subsystem is active, its value
may increase when the subsystem becomes inactive. The min-
imum dwell-time accounts for the worst case growth between
multiple Lyapunov-like functions at switching instances [1, Sec.
3.1]. In doing so, overall system stability, when following an
arbitrary switching sequence of subsystems (i.e., the sequence of
active subsystems is arbitrary, but the timing between switching
instances is not arbitrary), can be established provided that
the switching time instances satisfy the minimum dwell-time
condition. This article develops a continuous-time ADP-based
tracking controller for an arbitrary switching sequence between
multiple dynamical subsystems with a time-varying switching
signal, which may be based on environmental conditions or the
user’s discretion.

The online optimal regulation of uncertain linear and nonlin-
ear switched systems is studied in [41], [42], and [43]. In [42],
algorithms for learning the optimal feedback gains in each
subsystem are developed, but stability of the switched system is
analyzed assuming fixed learned feedback gains, and as such,
stability during the learning phase is not analyzed. The result
in [43] concerns safe ADP-based control within a hybrid systems
framework; however, it does not analyze multiple subsystems
that are intermittently activated. In [41], the trajectory tracking
problem is not considered, quadratic bounds on the optimal value
function are assumed, projection operators are required, and
the adaptive parameters (solely the actor–critic weights) of a
subsystem are only updated while that subsystem is active. As

such, the state of each subsystem only includes its respective
state. This approach results in a concatenated state vector that is
unique to each subsystem. Since dwell-time analysis typically
relies on the continuity of the state vector at the switching
instance, the absence of a common state vector between sub-
systems makes the analysis challenging, resulting in overly
conservative assumptions on the Lyapunov-like functions and
overly conservative dwell-time bounds. Another issue noticed
in [41] is that the actor–critic weights only update while their
respective subsystem is active, resulting in piecewise continu-
ous trajectories. Similar sample-and-hold strategies have been
analyzed using a hybrid systems framework [44, Ch. 3], but they
do not consider subsystems that are locally practically stable or
have uniformly ultimately bounded (UUB) or locally practically
stable trajectories.

Unlike [41], the method developed in this article relaxes the
assumptions on the optimal value function, removes the pro-
jection operators on the update policies, considers the optimal
trajectory tracking problem, performs the online system identi-
fication of each subsystem simultaneously, and simultaneously
updates every subsystem’s value function weight estimates.
Furthermore, this article uses model-based ADP to continuously
learn the value functions and system parameters of one subsys-
tem while another subsystem is active. Model-based ADP relies
on the simulation of experience, which enables policy updates
while a subsystem is inactive. The advantage of this simultane-
ous online learning technique is that it results in a common state
that remains continuous at the switching instance (i.e., no reset
map is needed [1, Ch. 1.1.1]). Having a common and continuous
state enables the quantification of the convergence rate and the
ultimate bound of the active Lyapunov-like function and also the
change in value of the active Lyapunov-like functions before and
after a switch. Such quantification enables computation of the
minimum dwell-time needed to maintain local practical stability
(see [45] and [46]) of the switched system. This article develops
a new result on the relationship between the local practical
stability of the subsystems and the local practical stability of
the switched system, which can be applied to general switching
problems with locally practically stable subsystems that must be
analyzed using multiple Lyapunov-like functions.

The rest of this article is organized as follows. Section II
formulates the tracking ADP problem and objectives. Section III
outlines the ICL-based system identifier, which is used to esti-
mate the system dynamics online. Section IV introduces BE
extrapolation, which requires the parametric model from Sec-
tion III. Section V defines the update laws that facilitate the ADP
algorithm and subsequent stability analysis. Section VI outlines
the simultaneous learning that facilitates the subsequent stability
analysis. Section VII presents a Lyapunov-based stability anal-
ysis and dwell-time analysis. Section VIII presents a simulation
result to illustrate the effectiveness of the developed technique.
Finally, Section IX concludes this article.

Notation: For notational brevity, time dependence is omit-
ted while denoting trajectories of the dynamical systems. For
example, the trajectory x(t), where x : R≥0 → Rn, is de-
noted as x ∈ Rn and referred to as x instead of x(t). For
example, an equation of the form f + h(y, t) = g(x) should
be interpreted as f(t) + h(y(t), t) = g(x(t)) ∀t ∈ R≥0. The
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gradient [∂f(x,y)∂x1
, . . . , ∂f(x,y)∂xn

]T , where x ∈ Rn, y ∈ Rp, f :

Rn × Rp → Rm, and ∂f(x,y)
∂xk

∈ Rm, is denoted by ∇xf(x, y).
‖ · ‖ denotes both the Euclidean norm for vectors and the Frobe-
nius norm for matrices. The cardinality of a set A is denoted by
|A|. 1n×m and 0n×m denote matrices of ones and zeros with
n rows and m columns, respectively. In×n denotes an n× n
identity matrix, and diag(v) for a vector v denotes a diagonal
matrix with entries of the vector on the diagonal. Generally, the
subscript p defines the quantity or function belonging to the pth
mode of the overall system.

II. PROBLEM FORMULATION

Let ẋ = fp(x) + gp(x)u denote a family of finitely many
dynamical systems, indexed by p ∈ P ⊂ N with |P| <∞,
where x ∈ Rn denotes the system state and u ∈ Rm denotes
the control input. The function fp : Rn → Rn models the drift
dynamics, and the function gp : Rn → Rn×m models the con-
trol effectiveness of the pth subsystem. The control objective is
to track a time-varying piecewise continuously differentiable
signal xd : R≥t0 → Rn. To quantify the tracking objective,
the tracking error is defined as e � x− xd. Using the technique
in [19] to transform the time-varying tracking problem into an
infinite horizon regulation problem, the control-affine dynamics
are rewritten as

ζ̇ = Fp (ζ) +Gp (ζ)μp (1)

where ζ ∈ R2n is the concatenated state vector ζ � [eT , xTd ]
T ,

μp � u− ud,p(xd) is the feedback portion of the controller,
ud,p : Rn → Rm is the subsequently defined feedforward com-
ponent of the controller that facilitates the trajectory tracking
objective, and Fp : R2n → R2n is defined as

Fp (ζ) �
[
fp (e+ xd)− hd,p (xd) + gp (e+ xd)ud,p (xd)

hd,p (xd)

]
(2)

where hd,p : Rn → Rn is a user-selected desired trajectory gen-
eration function and subsequently defined in Assumption 4, and
Gp : R2n → R2n×m is defined as

Gp (ζ) �
[
gp(x)

T ,0m×n

]T
. (3)

The following assumptions facilitate the development of the
approximate optimal tracking controller (see [19]).

Assumption 1: The function fp is continuously differentiable
and fp(0) = 0 for all p ∈ P .

Assumption 2: The function gp is locally Lipschitz, gp(x)
has full column rank for all (x, p) ∈ Rn × P , and there exists
a known constant gp ∈ R>0 such that ‖gp(x)‖ ≤ gp, for all
(x, p) ∈ Rn × P . It follows that there exists a known constant
Gp ∈ R>0 such that 0 < ‖Gp(ζ)‖ ≤ Gp for all (ζ, p) ∈ R2n ×
P .

Assumption 3: The desired trajectory is bounded from above
by a positive constant xd ∈ R≥t0 such that supt∈R≥0

‖xd(t)‖ ≤
xd.

Assumption 4: The desired trajectory of the pth system
is a solution of ẋd = hd,p(xd), starting from xd(0), where
hd,p : Rn → Rn are user-selected locally Lipschitz contin-
uous trajectory generation functions that satisfy hd,p(0) =

0 and gp(xd)g+p (xd)(hd,p(xd)− fp(xd)) = hd,p(xd)− fp(xd)
for all xd ∈ Rn and p ∈ P , where g+p : Rn → Rm×n is defined

as g+p (x) � (gTp (x)gp(x))
−1gTp (x).

Based on Assumptions 2–4, the controller u can be separated
into two components: a feedback componentμp,which is subse-
quently defined, and a feedforward componentud,p(xd), defined
as ud,p(xd) � g+p (xd)(hd,p(xd)− f(xd)).

A. Control Objectives

Solutions to optimal control problems provide control poli-
cies that facilitate tracking objectives [7, Ch. 11]. Tracking
objectives prescribe the system states to follow a specific, often
user-defined, function of time. The control design problem under
consideration has three objectives. The first objective is to solve
the infinite-horizon optimal tracking problem for each subsys-
tem online and in real time. That is, for each fixed p ∈ P , the
aim is to determine a feedback control policy μp that minimizes
the infinite horizon cost functional, Jp, defined as

Jp (ζ (·) , μp (·))�
∫ ∞

t0

Qp (ζ (τ))+μ
T
p (τ)Rpμp (τ) dτ (4)

subject to (1) while tracking the desired trajectory output by
the pth subsystem’s desired trajectory generator, where Qp ∈
R2n → R≥0 is a positive semidefinite (PSD) user-selected state
cost function of the pth subsystem, and Rp ∈ Rm×m is a user-
selected positive-definite (PD) symmetric input cost matrix for
the pth subsystem. The second objective is to generate an online
estimate of the feedforward controllers ud,p(xd) by learning the
uncertain parameters in the drift models of the subsystems. The
third objective is to characterize the class of allowable switching
signalsσ : R≥0 → P and estimate a set of initial conditions such
that the dynamics of the error between the trajectories of the
switched desired trajectory generator ẋd = hd,σ(t)(xd) and the
switched system ẋ = fσ(t)(x) + gσ(t)(x)u, under the developed
controller, are practically stable.1

To ensure that the optimal controllers in each subsystem are
stabilizing, it is assumed that the state cost function is of the
form Qp(ζ) � Qp(e), where Qp : Rn → R≥0 is a PD function
that is independent of xd. By [47, Lemma 4.3], Qp satisfies
q
p
(‖e‖) ≤ Qp(ζ) ≤ qp(‖e‖) for all (ζ, p) ∈ R2n × P , where

q
p
, qp : R≥0 → R≥0 are class K functions. For example, let

Qp(ζ) = eT e+ xTd 0n×nxd.

B. Exact Solution of Subsystem Optimal Control
Problems

The infinite horizon value function (i.e., the cost to go) for the
pth subsystem V ∗

p : R2n → R≥0 is defined as

V ∗
p (ζ0) � min

μp

∫ ∞

t

Qp (ζ (τ)) + μT
p (ζ (τ))Rpμp (ζ (τ)) dτ

(5)

1In this problem formulation, we consider the case in which xd is continuous
through the switching instances, but due to different desired behaviors in
different modes of operation, modeled by the functions hd,p, the time derivative
ẋd may be piecewise continuous at the switching instances.
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where ζ(·) is the trajectory of (1) starting from some initial
state ζ0 under the feedback policy μp and the minimization is
over the set of admissible feedback policies [15, Ch. 1]. If the
optimal value function V ∗

p is continuously differentiable and

(e, t) �→ V ∗
p (
[

e

xd(t)

]
) is PD, then V ∗

p is the unique stabilizing

solution of the corresponding HJB equation (e.g., [48, Ch. 5])

0 = Qp (ζ) + μ∗T
p (ζ)Rpμ

∗
p (ζ)

+∇ζV
∗
p (ζ)

(
Fp (ζ) +Gp (ζ)μ

∗
p (ζ)

)
(6)

where the optimal feedback policy μ∗
p : R2n → Rm is given by

μ∗
p (ζ) = −1

2
R−1

p Gp (ζ)
T (∇ζV

∗
p (ζ)

)T
. (7)

C. Value Function Approximation

Parametric NN-based methods can be used to approximate
the optimal value function over a compact domain. To facilitate
solving the HJB equation in (6), let Ωp ⊂ R2n be a compact set
and consider the approximation of the optimal value function in
(5) over the set Ωp given by2

V ∗
p (ζ) =WT

p φp (ζ) + εp (ζ) (8)

where Wp ∈ RL is an unknown bounded vector of weights,
φp : R2n → RL is a user-selected vector of basis functions, and
εp : R2n → R is the bounded function approximation error.3

Substituting (8) into (7), the transient optimal control policy of
the pth subsystem μ∗

p can be expressed as

μ∗
p (ζ) = −1

2
R−1

p Gp (ζ)
T (Wp∇ζφp (ζ) +∇ζεp (ζ))

T . (9)

Assumption 5: There exist constants Wp, φp,∇ζφp, εp,
∇ζεp ∈ R>0 such that the unknown weights W , user-defined
vector of basis functionsφp(·), and function approximation error
εp can be bounded such that ‖Wp‖ ≤Wp, supζ∈Ωp

‖φp(ζ)‖ ≤
φp, supζ∈Ωp

‖∇ζφp(ζ)‖ ≤ ∇ζφp, supζ∈Ωp
‖εp(ζ)‖ ≤ εp, and

supζ∈Ωp
‖∇ζεp(ζ)‖ ≤ ∇ζεp [13, Assump. 9.1.c-e].4

The ideal weights Wp in (8) and (9) are unknown; hence, an
approximation of Wp is sought. Specifically, the critic weight
estimate Ŵc,p ∈ RL is substituted to approximate the optimal
value function V̂p : R2n × RL → R denoted as

V̂p

(
ζ, Ŵc,p

)
� ŴT

c,pφp (ζ) . (10)

Similarly, another estimate for Wp, called the actor weight esti-
mate Ŵa,p ∈ RL, is used to provide an approximate version of

2The subsequent stability analysis in Theorem 1 proves that if ζ is initialized
within an appropriately sized subset of Ωp, then it will remain in Ωp for all
t ∈ R≥0.

3Each subsystem p can have finitely many neurons. The number of neurons
in each subsystem’s φp can be different (e.g., L for subsystem 2 need not be the
same as L in subsystem 1). However, to focus the subject of this article and to
minimize the amount of notation, generally, L represents the number of neurons
in φp for all p ∈ P .

4Assumption 5 can be satisfied by selecting φp to be a polynomial basis
function [49, Th. 1.5].

(9); the approximate optimal control policy μ̂p : Rn × RL → R
is

μ̂p

(
ζ, Ŵa,p

)
= −1

2
R−1

p Gp (ζ)
T
(
∇ζφp (ζ)

T Ŵa,p

)
. (11)

III. IDENTIFICATION OF THE FEEDFORWARD COMPONENT

If the drift dynamics contain parametric uncertainties, then
online system identification is needed to learn the unknown
feedforward component ud,p of the controller and for model-
based learning of the unknown feedback component μp of
the controller. To facilitate the system identification objective,
let f̂p : Rn × Rs → Rn be a parametric estimate of the drift
dynamics fp.5 Assume that the drift dynamics are linearly pa-
rameterizable, i.e., fp(x) � Yp(x)θp, where Yp : Rn → Rn×s

is a known regression matrix and θp ∈ Rs denotes the unknown
constant parameters of fp.6 Using an approximation of the
unknown parameter vector θ̂p ∈ Rs, an approximation of the
pth uncertain drift dynamics f̂p : Rn × Rs → Rn is defined
as f̂p(x, θ̂p) � Yp(x)θ̂p. The parameter estimates are updated
using the ICL-based update policy

˙̂
θp � −kp,θΓp,θ

·
Mp∑
j=1

YT
p,j

(
x (tj)− x (tj −Δt)− Up,j − Yp,j θ̂p

)
(12)

based on the result in [20], where kp,θ ∈ R>0 and Γp,θ ∈ Rs×s

are PD learning gains, Mp ∈ Z+ is the user-defined number
of elements in the subsequently defined history stacks, Yp,j �
Yp(tj), Up,j � Up(tj), Yp(t) �

∫ t

max{t−Δt, t0} Yp(x(τ))dτ ,

and Up(t) �
∫ t

max{t−Δt, t0} gp(x(τ))u(τ)dτ , where τ is the
integration variable, and tj ∈ R≥t0 is the time when the
state–input pairs are recorded.

Assumption 6: History stacks containing recorded values of
state and control signals {x(tj), x(tj −Δt), u(tj)}Mp

j=1 that

satisfy Yp � λmin{
∑Mp

j=1 YT
p,jYp,j} > 0 are available a priori

for all subsystems p ∈ P [20, Assumption 1].
Remark 1: For systems without finite escape behaviors and

tuning of the initial values of Ŵc,p and Ŵa,p, the availability of
the history stack a priori is not necessary [19]. Assumption 6 is
used to focus the scope of this article and simplify the subsequent
stability analysis.

Remark 2: To relax the common persistence of excitation
(PE) condition [50, Def. 4.3.1], the update law in (12) uses a
history stack comprised of recorded state and input data. As-
sumption 6, also known as the FE condition, facilitates parameter

5s ∈ N represents the number of uncertain parameters for each subsystem p.
Each subsystem p may have a different number of uncertainties and, therefore,
different value of s. However, to focus the subject of this article and to simplify
the notation, let s = sp represent the number of parametric uncertainties for
each subsystem.

6Linear parameterizations of the drift dynamics fp require partial knowledge
of a system’s dynamics. The developed technique can be extended to include
a larger class of nonlinear systems by using NNs to approximate the drift
dynamics. To focus the scope of this article on switched systems, the drift
dynamics are assumed to be linear in the parameters.
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convergence in the subsequent stability analysis. Assumption 6
requires excitation of the system states and is significantly less
restrictive than the typical PE condition. The advantage of FE
over PE is not due to which mechanism yields the excitation,
but rather the interval of time concerned (finite versus persis-
tent/infinite) and the verifiability of the condition: FE can be
verified online and PE cannot generally be verified a priori or
online for general nonlinear systems. Unlike the typical PE con-
dition, which assumes that α1I ≥ 1

T0

∫ t+T0

t φ (τ)φT (τ)dτ ≥
α0I∀t ≥ t0 over any time interval [t, t+ T0], the FE condition
uses data that are collected online and provide excitation [50,
Def. 4.3.1].

With the parameter estimation error defined as θ̃p � θp − θ̂p,
the update law in (12) can be rewritten in an analytical form as
˙̃
θp = −kp,θΓp,θ

∑Mp

j=1 YT
p,jYp,j θ̃p. If fp is unknown, then the

feedforward control component is approximated using ûd,p :

Rn × Rs → Rm, defined as ûd,p(xd, θ̂) � g+p (xd)(hd,p(xd)−
f̂p(x, θ̂)). Hence, the applied control policy is given by

u � μ̂p

(
ζ, Ŵa,p

)
+ ûd,p

(
xd, θ̂p

)
. (13)

IV. BELLMAN ERROR

The right-hand side of (6) is equal to zero under optimal
conditions; however, substituting (10) and (11) into (6) results
in a residual term δ̂p : R2n × Rs × RL × RL → R, which is
referred to as the BE, defined as

δ̂p

(
ζ, θ̂p, Ŵc,p, Ŵa,p

)
� μ̂p

(
ζ, Ŵa,p

)T
Rpμ̂p

(
ζ, Ŵa,p

)
+Qp (ζ) +∇ζ V̂p

(
ζ, Ŵc,p

)(
Fθ,p

(
ζ, θ̂p

)
+ F1,p (ζ) +Gp (ζ) μ̂p

(
ζ, Ŵa,p

))
(14)

where

Fθ,p

(
ζ, θ̂p

)
�
[
f̂p

(
x, θ̂p

)
− gp(x)g

+
p (xd) f̂p

(
xd, θ̂p

)
0n×1

]
(15)

and

F1,p (ζ) �
[−hd,p (xd) + gp(x)g

+
p (xd)hd,p (xd)

hd,p (xd)

]
. (16)

The BE is an indirect measure of the proximity of the actor
and critic weight estimates to the ideal weights. By defining
the mismatch between the estimates and their ideal values as
W̃c,p �Wp − Ŵc,p and W̃a,p �Wp − Ŵa,p, substituting (10)
and (11) into (6) and subtracting from (14) yields the analytical
form of the BE, which is used in the subsequent stability analysis

δ̂p

(
ζ, θ̂p, Ŵc,p, Ŵa,p

)
= −WT

p ∇ζφp (ζ)

·
(
Fθ,p (ζ, θp)− Fθ,p

(
ζ, θ̂p

))
− ωT

p W̃c,p

+
1

4
W̃T

a,pGφ,pW̃a,p +Op (ζ) (17)

where ωp : R2n × RL × Rs → R2n is defined as ωp(ζ, Ŵa,p,

θ̂p) � ∇ζφp(ζ)(Fp,θ(ζ, θ̂p) + F1,p(ζ) +Gp(ζ)μ̂p(ζ, Ŵa,p)),

Op(ζ)� 1
2∇ζεp(ζ)GR,p∇ζφp(ζ)

TWp+
1
4Gε,p −∇ζεp(ζ)Fp,θ

(ζ, θp)−∇ζεp(ζ)F1,p(ζ), GR,p = GR,p(ζ) � Gp(ζ)R
−1
p Gp

(ζ)T ,Gφ,p = Gφ,p(ζ)�∇ζφp(ζ)GR,p(ζ)∇ζφp(ζ)
T , andGε,p

= Gε,p(ζ) � ∇ζεp(ζ)Gp(ζ)∇ζεp(ζ)
T . Unlike BE definitions

in typical tracking model-based ADP results [19], the definitions
in (14)–(17) differ because the BE δ̂p is specific to each
subsystem. The definitions in (14)–(17) are switched-system
analogs of BE definitions in typical tracking model-based ADP
results such as [19].

A. BE Extrapolation

In this section, the concept of BE extrapolation, developed for
model-based RL results (see [22]), is adapted to the switched
ADP problem. At each time instant, the BE in (14) is calculated
using the current system state, critic weight estimates, and actor
weight estimates. A classical problem in learning-based control
is exploration versus exploitation. Results such as [51] require an
exploration signal to sufficiently explore the operating domain.
However, no analytical methods exist to compute the appropriate
exploration signal. Alternatively, results such as [22] evaluate the
BE along the system trajectory and other desired points in the
state space to avoid using an exploration signal. Specifically,
the BE is computed at a user-specified number and location of
off-trajectory points {ζi : ζi ∈ Ωp}Np

i=1, where Np ∈ N denotes
a user-specified number of points in the compact set Ωp. The
BE extrapolation data are represented by the tuple (Σc,p,Σa,p,

ΣΓ,p), defined as Σc,p � 1
Np

∑Np

i=1
ωi,p

ρi,p
δ̂i,p, Σa,p � 1

Np

∑Np

i=1

GT
σi,pŴa,pω

T
i,p

4ρi,p
, ΣΓ,p � 1

Np

∑Np

i=1

ωi,pω
T
i,p

ρi,p
, where δ̂i,p � δ̂p(ζi,

θ̂p, Ŵc,p, Ŵa,p), ωi,p � ωp(ζi, Ŵa,p, θ̂p), and ρi,p = 1 + νp
ωT
i,pΓpωi,p, νp ∈ R>0 is a user-defined gain, and Γp : R →

RL×L is a time-varying least-squares gain matrix. Generally,
each subsystem, p, has distinct sets of data, history stacks, gain
values, and update laws.7

Assumption 7: A finite set of points {ζi,p}Np

i=1 ⊂ Ωp exists
along with known constants cp such that 0 < cp � inf

t∈R≥0

λmin{ΣΓ,p} for all t ∈ R≥0 and each p ∈ P [22, Assump. 3].
Remark 3: Assumption 7 states that BE extrapolation must

provide a sufficiently exciting data. This assumption facilitates
the convergence of the weight approximation error term in the
subsequent Lyapunov-based analysis. In practice, Assumption 7
is satisfied by selecting a large number of BE extrapolation
trajectories (i.e., Np 
 L [22, Assump. 3]). Assumption 7 can
also be verified online by evaluating λmin{ΣΓ,p}.8

7Since each subsystem has respective data and parameters, they are treated
as unique to that subsystem, which is similar to [52].

8Both BE extrapolation and CL-based system identification (see Assump-
tion 6) are different techniques that relax the PE condition, which is required for
parameter convergence. While the PE condition is traditionally studied within
the context of system identification, ADP-based controllers require similarly
exciting signals for the convergence of the ADP controller to the optimal
controller [13, Ch. 6]. CL system identification provides excitation from stored
input–output data pairs, and BE extrapolation in ADP provides excitation from
the simulation of experience (i.e., simulating the learned system model at
user-selection regions of the state space to simulate policy excitation).
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Fig. 1. Overall switched actor–critic control architecture. The stacked boxes represent the subsystems that are simultaneously online (i.e., always

active). The ICL-based system identification update policy ˙̂
θp, BE extrapolation trajectories, BE evaluation, critic update policy ˙̂

Wc,p, least-squares

gain update policy Γ̇p, and actor update policy ˙̂
Wa,p are simultaneously active for all p ∈ P.

V. UPDATE LAWS FOR ACTOR AND CRITIC WEIGHTS

Using the extrapolated BEs δ̂i,p, the critic and actor weights
are updated according to the following continuous-time update
policies. These update policies are derived from the Lyapunov-
based analysis in Section VII. In the following definitions,
ηc,p, ηa1,p, ηa2,p, λp ∈ R>0 are user-selected constant learning
gains, and Γp, Γp ∈ R>0 are upper and lower bounds of the
least-squares learning gains of subsystem p. The critic update
law of the pth subsystem is

˙̂
Wc,p � −ηc,pΓpΣc,p. (18)

The actor update law of the pth subsystem is

˙̂
Wa,p � −ηa1,p

(
Ŵa,p − Ŵc,p

)
− ηa2,pŴa,p

+ ηc2,pΣa,pŴc,p. (19)

The time-varying least-squares gain matrix update law [53, Sec.
8.7.4] of the pth subsystem is

Γ̇p � (λpΓp − ηc,pΓpΣΓ,pΓp) · 1{Γp≤‖Γp‖≤Γp} (20)

where 1{·} denotes the indicator function, andΓp,Γp ∈ R>0 are
user-selected saturation gains that bound ‖Γp‖ such that Γp ≤
‖Γp(t)‖ ≤ Γp for all t ∈ R>0 and p ∈ P .

VI. SIMULTANEOUS ONLINE LEARNING

In [41], each subsystem’s weights and least-squares gain
matrix (Ŵc,p, Ŵa,p, and Γp) are updated strictly while that
subsystem is active. For example, the (p+ 1)th subsystem’s
parameters are held constant as the pth subsystem’s parameters
are updated. The previous approach introduces a problem in the
switched systems analysis because the system states are not con-
tinuous between switching instances. For example, in [41], the
active state changes from Ŵc,p to Ŵc,p+1 as the pth subsystem
switches to the (p+ 1)th subsystem. To account for the state
discontinuity, the weight update policies in [41] include smooth
projection operators. Due to the projection operators, the bounds
on the instantaneous changes in the values of the Lyapunov-like
functions at the switching instances become overly conservative.

As a result, the minimum dwell-time condition to prove stability
is overly conservative for practical implementation.

In this article, a dwell-time condition that is less conservative
than [41] is obtained by keeping the parameter update policies
in (12) and (18)–(20) simultaneously active for all p ∈ P . Hav-
ing each subsystem active simultaneously enables the creation
of a concatenated state that contains W̃c,p, W̃a,p, θ̃p ∀p ∈ P .
Hence, when the system switches from the pth subsystem to the
(p+ 1)th subsystem, the concatenated state is continuous at the
switching instance.

The family of update laws in (18)–(20) is different from
that of the typical model-based ADP [19]. The result in [19]
includes on-trajectory BE data in the critic update law and an
additional on-trajectory term in the actor update law to compen-
sate for the on-trajectory BE data. Instead, the update laws in
(18)–(20) omit the terms related to on-trajectory BE. Unlike the
update laws in [41], the update laws in (18)–(20) only use the
model-based evaluation of the BE at user-selected points in the
state space.9 The omission of on-trajectory data is motivated
by the need to have a continuous state between all subsystems.
Similarly, the parameter update law in (12) is implemented using
only the history stack {x(tj), x(tj −Δt), u(tj)}Mp

j=1 for each
subsystem, which contains data that were recorded while that
subsystem was active. As shown in the subsequent Lyapunov-
based stability analysis, each subsystem is practically stable
and the state trajectory of the switched system is continuous at
the switching instances. The control system architecture, which
leverages simultaneous online learning, is detailed in Fig. 1.

VII. STABILITY ANALYSIS

First, the ADP-based controllers in each subsystem are an-
alyzed using a Lyapunov-based approach. In comparison to
the analysis in [41, Th. 1], the state vector in the following
analysis includes parameter estimates from every subsystem.

9Depending on the state dimension n, the dimension of the basis functions L,
and number of BE extrapolation pointsNp, it may be computationally expensive
or intractable to compute (18)–(20) in parallel for each subsystem in real time.
Sparse NN BE extrapolation methods in [26] and [54] can be leveraged to reduce
the computational cost associated with (18)–(20) for each subsystem in parallel.
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The resulting dwell-time analysis of the overall switched system
is less restrictive than the result in [41, Th. 1].

A. Subsystem Analysis

To motivate the overall switched systems stability analysis
in Section VII-B, the stability of the system while the pth
subsystem is active must first be analyzed. The development
in this section does not address switching from the pth to the
(p+ 1)th subsystem, as switching between a family of stable
subsystems may not result in a stable switched system [1].

Since the function Q and, therefore, the optimal value func-
tion V ∗

p in (8) is PSD, V ∗
p is not a valid candidate Lyapunov

function. It is shown in [55] that a nonautonomous form of V ∗
p ,

denoted asV ∗
na,p : Rn × R≥0 → R and defined asV ∗

na,p(e, t) �
V ∗
p (ζ), is PD and decrescent. Hence, V ∗

na,p(0, t) = 0, and
there exist class K∞ functions v, v : R≥0 → R≥0 that bound
vp(‖e‖) ≤ V ∗

na,p(e, t) ≤ vp(‖e‖), for all e ∈ Rn and t ∈ R≥0.
Hence, V ∗

na,p(e, t) is a valid candidate Lyapunov function.
Let Z ∈ Rn+|P|(2L+s) denote a concatenated state defined as

Z � [eT , W̃T
c,1, . . . , W̃

T
c,|P|, W̃

T
a,1, . . . , W̃

T
a,|P|, θ̃

T
1 , . . . , θ̃

T
|P|]

T .10

Let VL,p : Z ∈ Rn+|P|(2L+s) × R≥0
→ R be a candidate

Lyapunov function defined as

VL,p(Z, t) � V ∗
na,p(e, t) +

1

2

∑
p∈P

W̃T
c,pΓp(t)

−1W̃c,p

+
1

2

∑
p∈P

W̃T
a,pW̃a,p +

1

2

∑
p∈P

θ̃Tp Γ
−1
θ,pθ̃p. (21)

Using the properties of V ∗
na,p(e, t) and the fact that

Γp is bounded, (21) can be bounded as α1,p(‖Z‖) ≤
VL,p(Z, t) ≤ α2,p(‖Z‖) using class K∞ functions α1,p, α2,p :
R≥0 → R≥0. Using (20), the normalized regressors ωp

ρp

and ωe,p

ρe,p
can be bounded as supt∈R≥0

‖ωp

ρp
‖ ≤ 1

2
√

νpΓp

and

supt∈R≥0
‖ωe,p

ρe,p
‖ ≤ 1

2
√

νpΓp

. The matrices GR,p and Gσ,p

can be bounded as supζp∈Ωp
‖GR‖ ≤ λmax(R

−1
p )Gp

2 � GR,p

and supζp∈Ωp
‖Gσ,p‖ ≤ (∇ζφpGp)

2λmax(R
−1
p ) � Gσ,p, re-

spectively. These facts are leveraged in the subsequent
Lyapunov-based analysis in Theorem 1. The following theo-
rem provides sufficient conditions for the ADP controller with
continuous-time update policies in (18)–(20) to ensure that the
closed-loop subsystems are locally practically stable, uniformly
in t0, in the sense of the following definition.

Definition 1: A system ẋ = f(x, t) is locally practically sta-
ble, uniformly over t0 ∈ R≥0; if there exist constants 0 ≤ ν < r
and β ∈ KL such that for all t0 ≥ 0 and ‖x(t0)‖ ≤ r, the
trajectory x(·) of the system starting from (t0, x0) satisfies
‖x(t)‖ ≤ β(‖x0‖, t− t0) + ν (see [45, Def. 2.2]).

10The inclusion of θ̃p terms in (21) complicates the Lyapunov-based analysis;
cf. [41, Th. 1]. Recall from Section IV-A that δ̂i,p � δ̂p(ζi, θ̂p, Ŵc,p, Ŵa,p),
which includes the parameter estimate θ̂p. The coupling between the actor–critic
and system identification update laws motivates their respective designs and
inclusion in (21).

Subsequently, Theorem 2 provides a minimum dwell-time
condition to ensure that the switched system is also locally
practically stable.

Theorem 1: Provided that Assumptions 1–7 hold, the weight
update laws in (18)–(20) are used, and the conditions

ηa1,p + ηa2,p >
ηc1,p + ηc2,p√

νpΓp

W ∗
pGφ,p (22)

cp >
3η2c,pW

∗
p
2
Gφ,p

2

16νpΓp (ηa1,p + ηa2,p) ηc2,p
+

3ηa1,p
ηc,p

(23)

Lp < α−1
2,p (α1,p (Rp)) (24)

are satisfied11 for all p ∈ P , where Rp is the radius of a ball
contained in Ωp and Lp is a positive constant introduced in
the following; then, the closed-loop system defined by (1),
(12), (18), and (19), with state Z, is locally practically stable,
uniformly over t0 ∈ R≥0.

Proof: Taking the time derivative of the Lyapunov-like
function in (21), the fact d

dtΓ
−1 = Γ−1Γ̇Γ−1, along with As-

sumptions 1–7 and the sufficient conditions in (22)–(24), yields
V̇L,p ≤ −vL,p(‖Z‖) ∀v−1

L,p(Lp) ≤ ‖Z‖ ≤ α−1
2,p(α1,p(Rp)),

where

vL,p (‖Z‖) � 1

2
q
p
(‖e‖) +

|P|∑
p=1

[
ηc,pcp
12

∥∥∥W̃c,p

∥∥∥2

+
ηa1,p + ηa2,p

20

∥∥∥W̃a,p

∥∥∥2 + kICL,pYp

6

∥∥∥θ̃p∥∥∥2
]
(25)

and Lp is a positive constant. While each individual subsys-
tem is active, [47, Th. 4.18] can be invoked to infer the exis-
tence of a class KL function βp such that for all t0 ∈ R≥0, if
‖Z(t0)‖ ≤ α−1

2,p(α1,p(Rp)) then ‖Z(t)‖ ≤ max{βp(‖Z(t0)‖,
t− t0), α

−1
1,p(α2,p(v

−1
L,p(Lp)))} and that the subsystem tra-

jectories are UUB. Using Definition 1, the subsystem is
also locally practically stable. Furthermore, μ̂p converges
to a neighborhood of the optimal policy μ∗

p. Furthermore,

since Z ∈ L∞, it follows that e, W̃c,1 . . . , W̃c,|P|, W̃a,1, . . . ,

W̃a,|P|, θ̃1, . . . , θ̃|P| ∈ L∞, hence x, Ŵc,1, . . . , Ŵc,|P|, Ŵa,1,

. . . , Ŵa,|P|, θ̂1, . . . , θ̂|P| ∈ L∞ and u ∈ L∞. �
Remark 4: Under Assumptions 1–7, the optimal value func-

tion can be shown to be the unique PD solution of the HJB
equation. Convergence to the PD solution of the HJB equation
is guaranteed by appropriately selecting initial weight estimate
values [56].

Remark 5: The result in Theorem 1 improves upon the result
in [41, Th. 1] by relaxing the quadratic bounds on (21), address-
ing the trajectory tracking problem, including an online system
identification term, performing simultaneous online learning of
all subsystems simultaneously, and providing a stability result of
a state that is common between all subsystemsZ (cf. subsystem-
specific states in [41, Th. 1]).

11See [22] for insight into satisfying the conditions in (22)–(24).
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In addition to establishing that the subsystem trajectories
are UUB, Theorem 1 establishes local practical stability of
the individual subsystems. Switching between a family of such
subsystems may not result in an overall locally practically stable
switched system [1]. The candidate Lyapunov-like function for
the pth subsystem in (21) contains the optimal value function
V ∗
p , which is generally unique to each subsystem; hence, the

switched system does not generally admit a common Lyapunov-
like function. As a result, the use of multiple Lyapunov-like
functions is motivated. To the best of the authors’ knowledge,
a general result that provides conditions under which the lo-
cal practical stability of the switched system may be inferred
from the local practical stability of individual subsystems is not
available in the literature. The development of such a result, in
the context of general nonlinear nonautonomous systems, is the
focus of the following section.

B. Switching Between Locally Practically Stable
Subsystems

Consider a family of finitely many nonlinear subsystems of
the form

ẋ = fp(x, t), p ∈ P (26)

where the functions fp : Rn × R≥0 → Rn are locally Lips-
chitz continuous in x, for all t, and piecewise continuous in
t, for all x. Given a piecewise constant right-continuous (i.e.,
σ(t) = limτ↓t+ σ(τ)) switching signal σ : R≥t0 → P , where
σ(t) indicates the active subsystem at time t, the corresponding
switched system can be expressed as

ẋ = fσ(t)(x, t). (27)

The objective of the following theoretical development is to
provide sufficient conditions such that the switched system is
locally practically stable, uniformly over the initial time and over
a suitable set Σ of switching signals, as defined in the following
definition.

Definition 2: A switched system ẋ = fσ(t)(x, t) is locally
practically stable, uniformly over t0 ∈ R≥0 and σ ∈ Σ, if there
exist constants 0 ≤ ν < r and β ∈ KL such that for all t0 ≥ 0,
σ ∈ Σ, and ‖x0‖ ≤ r, the trajectory x(·) of the system starting
from (t0, x0) satisfies ‖x(t)‖ ≤ β(‖x0‖, t− t0) + ν (see [45,
Def. 2.2]).

In this article, the sufficient conditions are derived using a
minimum dwell-time approach [1, Ch. 3.2.1].

Definition 3: Given a switching signal σ and the correspond-
ing sequence of switching times tσ � {t1, . . . , ti, tj , . . .}, the
dwell-time τ ∈ R>0 is defined as the time between switching in-
stances. Specifically, τ(ti, tj) � tj − ti such that σ(ti) �= σ(tj)
[57].

Another objective of the analysis is to infer the size of the
ultimate bound of the trajectories of the switched system from
the ultimate bounds of the trajectories of the subsystems.

The subsequent stability analysis relies on multiple
Lyapunov-like functions Vp, where each Vp, for p ∈ P , estab-
lishes the local practical stability of thepth subsystem, uniformly
in t0. Multiple Lyapunov-like functions are a tool used for

proving the stability of switched systems [1, Sec. 3.1]; for the
subsequent stability analysis, each subsystem has a respective
Lyapunov-like function that is used to determine the behavior
of that system while active. While each Vp is continuous, the
function t �→ Vσ(t)(x(t)), evaluated along the trajectories of the
switched system in (27), is generally discontinuous (i.e., Vp may
instantaneously change its value at the switching instances).
Furthermore, while the pth system is active (i.e., σ(t) = p),
the corresponding Vp, evaluated along the trajectories of the
switched system in (27), decreases or is bounded within an
ultimate bound. However, the functions Vq, corresponding to
all inactive subsystems, may increase when evaluated along the
trajectories of the switched system in (27) (see [1, Ch. 3.1]).

The following theorem provides sufficient conditions on the
switching signal and the initial conditions to ensure that the
Lyapunov-like functions corresponding to all subsystems de-
crease to an ultimate bound. Furthermore, if the sufficient con-
ditions are satisfied, then Theorem 2 can also be used to show that
each μ̂p converges to a neighborhood of the respective optimal
policy μ∗

p for all p ∈ P .
Theorem 2: If D ⊂ Rn is an open and connected set con-

taining the origin, r > 0 is such that Br � {x ∈ Rn | ‖x‖ ≤
r} ⊂ D, ẋ = fp(x, t) is a finite family of subsystems, there ex-
ist continuously differentiable functions Vp : Rn × R≥0 → R,
continuous PD functions Wp : Rn → R≥0, class K functions
α1,p : R≥0 → R≥0, and classK∞ functionsα2,p : R≥0 → R≥0,
such that

α1,p (‖x‖) ≤ Vp(x, t) ≤ α2,p (‖x‖) (28)

for all (p, x, t) ∈ P ×D × R≥0

∂Vp
∂t

+
∂Vp
∂x

fp(x, t) ≤ −Wp(x) (29)

for all (p, x, t) ∈ P × Λp × R≥0, and

max
p,q∈P

{
α2,q

(
α−1
1,p (α2,p (νp))

)} ≤ min
p∈P

{α1,p(r)} (30)

where Λp � {x | 0 ≤ νp ≤ ‖x‖ ≤ r}, α−1
1,p : range(α1,p) →

R≥0 is the inverse of α1,p, and for a given λ ∈ (0, 1), if Σλ is the
set of all switching signals σ such that the resulting sequence of
switching times tσ = {t1, t2, . . .} satisfies the minimum dwell-
time condition

τ (ti−1, ti) >

{
0, ‖x(ti)‖ ≤ νi

τσ (ti) , otherwise
(31)

for all switching instants ti ∈ tσ , where

τσ (ti) � max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0,

(
α2,σ(ti−1) (‖x (ti−1)‖)

−α1,σ(ti−1)

(
α−1
2,σ(ti)

(
λα1,σ(ti−1) (‖x (ti−1)‖)

))
)

κσ(ti−1)
,
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(
α2,σ(ti−1) (‖x (ti−1)‖)

−α1,σ(ti−1)

(
α−1
2,σ(ti)

(
α1,σ(ti)(r)

))
)

κσ(ti−1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(32)

then the switched system ẋ = fσ(t)(x, t) is locally practically
stable, uniformly over t0 ∈ R≥0 and σ ∈ Σλ. In particular, the
trajectories of ẋ = fσ(t)(x, t), with

max
p∈P

{α2,p (‖x(t0)‖)} ≤ min
q∈P

{α1,q(r)} (33)

satisfy

lim sup
t→∞

‖x(t)‖

≤ max
p∈P

{
α−1
1,p

(
max
q,s∈P

{
α2,s

(
α−1
1,q (α2,q (νq))

)})}
. (34)

Proof: The proof relies on the observation that if (30) holds,
then for any p ∈ P, if α2,p(νp) < Vp(x, t) ≤ α1,p(r), then x ∈
Λp, and from (29), V̇p(x, t) < 0. As a result, the α2,p(νp)- and
α1,p(r)-sublevel sets of Vp are forward invariant whenever the
pth subsystem is active.

Let o, p, q ∈ P represent the first three active subsystems,
i.e., σ(t0) = o, σ(t1) = p, and σ(t2) = q. From (29), when-
ever x ∈ Λo, then V̇o(x, t) ≤ −Wo(x) ≤ −κo, where gener-
ally κo = minx∈Λo

Wo(x) > 0. Using forward invariance of
α1,o(r)- and α2,o(νo)-sublevel sets of Vo and (33), it can be
concluded that α2,o(‖x(t0)‖) ≤ α1,o(r), which implies that
Vo(x(t0), t0) ≤ α1,o(r), and as a result

Vo (x(t), t) ≤ max {Vo (x (t0) , t0)− κo (t− t0) , α2,o (νo)}
(35)

for all t ∈ [t0, t1]. From (30), νo satisfies α2,p(α
−1
1,o(α2,o

(νo))) ≤ α1,p(r). From (30) and (31), eitherx(t1) and νp satisfy
‖x(t1)‖ ≤ νp and α2,p(νp) ≤ α1,p(r) or the dwell-time satis-
fies α2,o(‖x(t0)‖)− κo(t1 − t0) ≤ α1,o(α

−1
2,p(α1,p(r))). In ei-

ther case, α2,p(‖x(t1)‖) ≤ α1,p(r), which implies that Vp
(x(t1), t1) ≤ α1,p(r), and as a result

Vp (x(t), t) ≤ max {Vp (x (t1) , t1)− κp (t− t1) , α2,p (νp)}
(36)

for all t ∈ [t1, t2]. Similarly, from (30) and (31), either x(t1)
and νp satisfy ‖x(t1)‖ ≤ νp and α2,p(νp) ≤ α1,p(r) or the
dwell-time τ(t0, t1) satisfies α2,o(‖x(t0)‖)− κo(t1 − t0) ≤
α1,o(α

−1
2,p(λα1,o(‖x(t0)‖))) for some λ ∈ (0, 1). In either case,

(35) implies that

Vp (x (t1) , t1)

≤ max
{
λVo (x (t0) , t0) , α2,p

(
α−1
1,o (α2,o (νo))

)}
. (37)

Let α̃ � maxp,q∈P α2,p(α
−1
1,q(α2,q(νq))). Observe that if

Vo(x(to), to) ≤ α̃, then from (35), Vo(x(t), t) ≤ α̃ for all t ∈
[t0, t1), and from (37), Vp(x(t1), t1) ≤ α̃. An inductive argu-
ment then shows that Vσ(ti)(x(ti), ti) ≤ α̃ for some ti ∈ tσ
implies that Vσ(t)(x(t), t) ≤ α̃ for all t ≥ ti.

Furthermore, given (33), for all switching instances ti ∈ tσ,
the initial condition satisfies

α2,σ(t0) (‖x (t0)‖) ≤ α1,σ(t0)(r) (38)

given (30), the residuals νσ(·) satisfy

α2,σ(ti)

(
α−1
1,σ(ti−1)

(
α2,σ(ti−1)

(
νσ(ti−1)

))) ≤ α1,σ(ti)(r)

(39)
and given (31), either the dwell-time must satisfy

ti − ti−1 ≥ τσ (ti) (40)

or the state at the time of switch must satisfy ‖x(ti)‖ ≤ νσ(ti).
As a result

Vσ(ti) (x (ti) , ti) ≤ max
{
λVσ(ti−1) (x (ti−1) , ti−1) , α̃

}
(41)

and for all t ∈ [ti, ti+1)

Vσ(t) (x(t), t) ≤
max

{
Vσ(ti) (x (ti) , ti)− κσ(ti) (t− ti) , α2,σ(ti)

(
νσ(ti)

)}
.

(42)

Let iσ � min{i ≥ 0 | Vσ(ti+1)(x(ti+1), ti+1) ≤ α̃} denote the
number of switches for which Vσ remains larger than α̃, let tiσ ∈
tσ denote the corresponding switching time, and let Nσ(t) =
max{i | 0 ≤ i ≤ iσ ∧ ti ≤ t} denote the number of switches
up to and including t ≤ tiσ . Since (30) implies that

α2,p

(
α−1
1,o (α2,o (νo))

) ≤ α1,q(r) ∀p, q, o ∈ P (43)

(41) and (42) can be combined to conclude that for all t ≥ t0

Vσ(t) (x(t), t) ≤ max

{(
λNσ(t)Vσ(t0) (x (t0) , t0)

−κσ(t)
(
t− tNσ(t)

)) , α̃} .
(44)

The bound in (44) can be used to establish the local practical
stability of the switched system for a given fixed switching signal
σ. The purpose of the following arguments is to compute a decay
bound on Vσ(t) that holds for all σ ∈ Σλ. For brevity of notation,
let V0 � Vσ(t0)(x(t0), t0). If the initial condition satisfies (33),
then V0 ≤ r∗ � minp α1,p(r). Under the dwell-time restric-
tion, (44) results inVσ(ti+1)(x(ti+1), ti+1) ≤ max{λi+1V0, α̃}.
Therefore, the number of possible switches over the interval
[t0, tiσ ] is bounded, uniformly over σ ∈ Σλ by i∗. That is, for all
σ ∈ Σλ, iσ ≤ min{i | λi+1V0 ≤ α̃} ≤ i∗, where

i∗ � min
{
i | λi+1r∗ ≤ α̃

}
. (45)

Similarly, over the interval [t0, tiσ ], the time between any
two switches can also be shown to be bounded, uniformly
over σ ∈ Σλ. Indeed, since α2,p(νp)-sublevel sets are invari-
ant whenever the pth subsystem is active, t ∈ [t0, tiσ ] im-
plies that Vσ(t)(x(t), t) > α2,σ(t)(νσ(t)). Therefore, if ti and
ti+1 are two switching instances in [t0, tiσ ], then λiV0 −
κσ(ti)(ti+1 − ti) ≥ α2,σ(ti)(νσ(ti)), which results in the bound

ti+1 − ti ≤ V0−minp{α2,p(νp)}
κ ≤ τ ∗ for all σ ∈ Σλ, where κ �

minp∈P{κp} = minp∈P{minx∈Λp
{Wp(x)}} and

τ ∗ � r∗ −minp {α2,p (νp)}
κ

. (46)
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As a result, the last switching time for which Vσ remains larger
than α̃ also admits a bound that is uniform over σ ∈ Σλ. Specif-
ically, tiσ ≤ t∗ � τ ∗i∗.

Consider a closed interval Ii � [t0 + iτ ∗, t0 + (i+ 1)τ ∗],
for 0 ≤ i ≤ i∗. Note that since there are at least i switches
over [t0, t0 + iτ ∗], at the start of the interval, Vσ sat-
isfies Vσ(t0+iτ ∗)(x(t0 + iτ ∗), t0 + iτ ∗) ≤ λiV0. If there are
j ≥ 1 switches over Ii, then at the end of the inter-
val, Vσ satisfies Vσ(t0+(i+1)τ ∗)(x(t0 + (i+ 1)τ ∗), t0 + (i+
1)τ ∗) ≤ λi+jV0 ≤ λi+1V0. Furthermore, Vσ is bounded by an
affine function with slope −κ between switches. As a re-
sult, on Ii, Vσ satisfies an affine decay bound with slope
−min{κ, V0λi(1−λ)

τ ∗ }.
In particular, letting N ∗(t) � � t

τ ∗ �, κ∗(s, t) � min{κ,
sλN∗(t)(1−λ)

τ ∗ }, and

β∗(s, t) �
{
sλN ∗(t) − κ∗(s, t)

(
t− tN ∗(t)

)
, t < t∗

sλi∗e
−κ∗(s,t)

sλi
∗ (t−t∗)

, t ≥ t∗
(47)

it can be concluded that for all σ ∈ Σλ, Vσ satisfies the bound
Vσ(t)(x(t), t) ≤ max{β∗(maxp∈P{Vp(x(t0), t0)}, t), α̃}. As a
result, for all σ ∈ Σλ, the system state is bounded by12

‖x(t)‖ ≤ max

{
max
q∈P

{
α−1
1,q (α̃)

}
,

max
q∈P

{
α−1
1,q

(
β∗
(
max
p∈P

{α2,p (‖x (t0)‖)} , t
))}}

. (48)

Since β∗ ∈ KL, maxq∈P{α−1
1,q} ∈ K, and maxp∈P{α2,p} ∈

K, [47, Lemma 4.2] can be invoked to conclude that
(s, t) �→ maxq∈P{α−1

1,p(β
∗(maxp∈P{α2,p(s)}, t))} ∈ KL and

local practical stability of the closed-loop system is established,
uniformly over t0 ∈ R≥0 and σ ∈ Σλ. �

C. Application to Switched ADP

From Theorem 1, every individual subsystem is locally
practically stable, uniformly over t0 ∈ Rn, i.e., each subsys-
tem satisfies (28)–(30). Hence, Theorem 2 can be invoked
to show that provided that the concatenated state is initial-
ized in the set defined by (33) with r = minp{Rp}, then
the closed-loop switched system is locally practically sta-
ble, uniformly over t0 ∈ Rn and over switching signals that
satisfy σ ∈ Σλ. In particular, the resulting trajectory of the
closed-loop switched system satisfies the ultimate bound in
(34) with νq = v−1

L,q(Lq). Furthermore, each μ̂p converges to
a neighborhood of the respective optimal policy μ∗

p for all

p ∈ P . Furthermore, since Z ∈ L∞, it follows that e, W̃c,1, . . . ,

W̃c,|P|, W̃a,1, . . . , W̃a,|P|, θ̃1, . . . , θ̃|P| ∈ L∞; hence, e, Ŵc,1,

. . . , Ŵc,|P|, Ŵa,1, . . . , Ŵa,|P|, θ̂1, . . . , θ̂|P| ∈ L∞ and u ∈ L∞.

12Note that conditions (30) and (33) imply that α̃ and
maxp∈P{α2,p(‖x(t0)‖)}, respectively, are in the codomain of α1,q for all
q ∈ P . Furthermore, since β∗(s, t) ≤ s, then β∗(maxp∈P{α2,p(‖x(t0)‖)}, t)
is also in the codomain of α1,q for all q ∈ P .

VIII. SIMULATION

The developed switched ADP controller is applied to a fully
actuated autonomous undersea vehicle (AUV), to complete an
earth-fixed position tracking objective. Specifically, the simula-
tion is based on the SubjuGator AUV detailed in [23] and [58].
To focus the scope of this simulation section, it is assumed that
the AUV is neutrally buoyant if submerged, the center of gravity
is located vertically below the center of buoyancy on the z-axis,
and the vehicle model accounts for small roll and pitch angles.
The nonlinear equations of motion for an AUV under the effects
of an irrotational current are given in [59, Sec. 7.5] as

η̇AUV = JE (ηAUV) νAUV (49)

MRBν̇AUV + CRB (νAUV) νAUV +MAν̇r + CA (νr) νr

+DA (νr) νr +G (ηAUV) = τb, (50)

where νAUV ∈ R3 is the body-fixed translational and angular
velocity vector, νc ∈ R3 is the body-fixed irrotational current
velocity vector, νr � νAUV − νc is the relative body-fixed trans-
lational and angular fluid velocity vector, ηAUV ∈ R3 is the
earth-fixed position and orientation vector, JE : R3 → R3×3

is the coordinate transformation between the body-fixed and
earth-fixed coordinates, MRB ∈ R3×3 is the constant rigid body
inertia matrix, CRB : R3 → R3×3 is the rigid body centripetal
and Coriolis matrix, MA ∈ R3×3 is the constant hydrodynamic
added mass matrix, CA : R3 → R3×3 is the unknown hydrody-
namic centripetal and Coriolis matrix, DA : R3 → R3×3 is the
unknown hydrodynamic damping and friction matrix,G : R3 →
R3 is the gravitational and buoyancy force and moment vector,
and τb ∈ R3 is the body-fixed force and moment control input.
Further define ηAUV � [x, y, ψ]T and νAUV � [ub, vb, rb]

T ,
where x, y ∈ R are the earth-fixed position vector components
of the center of mass, ψ ∈ [0, 2π] represents the yaw angle,
ub, vb ∈ R are the body-fixed translational velocities, and rb ∈
R is the body-fixed angular velocity. The constant irrotational
current vector is generally defined as νc � [uc vc 0], where
uc, vc ∈ R are the body-fixed translational, current velocities.
The coordinate transformation JE : R3 → R3×3 is

JE (ηAUV) =

⎡
⎣cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

⎤
⎦ . (51)

Given the previous definitions, the control affine form of the
AUV dynamics is

ξ̇ = Y (ξ, νc) θ + f0 (ξ, ν̇c) + gτb (52)

where ξ � [ηTAUV, ν
T
AUV]

T ∈ R6 is the concatenated state vector,
f0 : R6 × R3 → R6 is the known rigid body drift dynamics,
Y : R6 × R3 → R6×5 is the known regression matrix, θ ∈ R5

is a vector of unknown hydrodynamic parameters and g ∈ R6×3

is the known constant control effectiveness matrix. Furthermore,
let e � ξ − ξd and ζ = [eT , ξTd ]

T .
Each mode of the controller corresponds to a different irro-

tational current vector. The subsystem that each quantity be-
longs to is marked with an appropriate subscript; if there is no
subscript, then that quantity can be identically applied across
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all subsystems. Three irrotational currents, which correspond
to the three different subsystems, are νc1 = [−0.1, 0.1, 0]T ,
νc2 = [0.05,−0.2, 0]T , and νc3 = [−0.15,−0.1, 0]T . The cur-
rent direction and magnitude are switched every 20 s resulting
in the switching signal13

σ(t) =

⎧⎪⎨
⎪⎩
1, 60� t

60� ≤ t < 60� t
60�+ 20

2, 60� t
60�+ 20 ≤ t < 60� t

60�+ 40

3, 60� t
60�+ 40 ≤ t < 60� t

60�+ 60

(53)

where �·� denotes the floor operator. The initial state is ξ(0) =
[−1, 1.5, 3π4 , 0, 0, 0]

T . The initial parameter estimate is θ̂(0) =
06×1. The desired trajectory is generated by

ξd(t) =

[
cos

( π
20
t
)
, cos

( π
30
t
)
, 0

− π sin
(

π
20 t
)

20
,−π sin

(
π
30 t
)

30
, 0

]T
(54)

and is initialized as ξd(0) = [1, 1, 0, 0, 0, 0]T .
The cost function for each subsystem is selected as

r(ζ, μ) = ζTQζ + μTRμ, where Q = diag([100, 100, 200, 10,
10, 50, 0, 0, 0, 0, 0]), and R = I3×3. The learning parameters
are selected as ηc = 0.5, ηa1 = 10, ηa2 = 0.1, ν = 0.025, λ =
0.025,Γ = 5000,Γ = 100, andΓ(0) = 5000 · I27×27. The actor
and critic weights Ŵa(0) and Ŵc(0) were initialized by solving
the ARE for the linearized rigid body AUV dynamics about the
position ξ = 06×1. For each subsystem, the same BE extrapo-
lation trajectories ζi were used, where each element of ζi was
selected from a uniform distribution on the interval [−1, 1]. The
polynomial basis function φ = φp for all p ∈ {1, 2, 3} used for
value function approximation is

φ (ζ) = [ζ1ζ2, ζ1ζ3, ζ1ζ4, ζ1ζ5, ζ1ζ6, ζ2ζ3, ζ2ζ4,

ζ2ζ5, ζ2ζ6, ζ3ζ4, ζ3ζ5, ζ3ζ6, ζ4ζ5, ζ4ζ6, ζ5ζ6, ζ
2
1 , ζ

2
2 ,

ζ23 , ζ
2
4 , ζ

2
5 , ζ

2
6 , ζ3ζ7, ζ3ζ8, ζ

2
3 , ζ3ζ10, ζ3ζ11, ζ3ζ12

]T
.

(55)

To facilitate ICL, a maximum of Mp = 100 state–action
pairs for all p ∈ {1, 2, 3} are recorded and replaced according
to the singular value maximization algorithm defined in [21,
Algorithm 1]. The state–action pairs are not populated a priori;
all data needed for ICL are generated online. The ICL learning
parameters are Γθ = diag(50, 30, 10, 2.5, 1), kθ = 5× 105,
and Δt = 0.25.

Fig. 2 shows the error trajectories of the AUV while switching
between the multiple subsystems every 20 s. Despite the three
distinct currents acting on the AUV, each subsystem’s control
policy approximates the dynamic effect of its respective current
and appropriately compensates for it with a feedforward control
term. The approximation of this feedforward term facilitates
convergence at approximately 120 s.

Fig. 2. Error trajectories e of the AUV. The vertical dashed lines denote
the time at which a switching instance occurred.

Fig. 3. System identification errors θ̃p for the hydrodynamic parame-
ters of the AUV. The vertical dashed lines denote the time at which a
switching instance occurred.

Fig. 3 shows the parameter estimation error θ̃ for the active
subsystem. The parameters are estimated to within a neighbor-
hood of the actual values at approximately 100 s. Parameter
estimation is facilitated by the fact that each subsystem, even
when inactive, continues to learn the uncertain parameters via
the ICL history stack. The error convergence in Fig. 2 occurs ap-
proximately at 120 s, highlighting the fact that error convergence
occurs after the uncertain parameters are identified. Hence, as
predicted by the theoretical analysis, once the parameters, and
therefore the correct feedforward control term for trajectory
tracking, are identified, then the controller is able to drive the
tracking error to zero.

Figs. 4 and 5 show the actor and critic weight approximations,
respectively, for the active subsystem. The weights initially
change to reflect the parameters updated parameter estimates
(see Fig. 3). It may appear that the weights do not change
significantly. This behavior is due to the large magnitude of the

13Future work will investigate detecting and accounting for a sudden change
in the system model.
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Fig. 4. Actor weight estimates Ŵa,p. The vertical dashed lines denote
the time at which a switching instance occurred.

Fig. 5. Critic weight estimates Ŵc,p. The vertical dashed lines denote
the time at which a switching instance occurred.

Fig. 6. Value function approximation value V̂ (ζ, Ŵc,p). The vertical
dashed lines denote the time at which a switching instance occurred.

weights. Hence, a small change in the actor and critic weight
approximation in Figs. 4 and 5 results in a large magnitude
change in the applied control input.

Fig. 6 shows each approximated optimal value function
V̂p(ζ, Ŵc,p) for the active subsystem. Based on the construction

Fig. 7. Transient controller term μ̂p(ζ, Ŵa,p). The vertical dashed lines
denote the time at which a switching instance occurred.

of the cost function rp(ζ, μp), the convergence of the approxima-
tion optimal value function corresponds to the error convergence
in Fig. 2.

Fig. 7 shows each approximated optimal transient con-
trol policy μ̂p(ζ, Ŵa,p) for the active subsystem. μ̂p(ζ, Ŵa,p)
converges to 0 at 120 s because the transient component has been
eliminated. At that point, only the trajectory tracking component
of the controller ûd,p(ζ, θ̂p) is nonzero (i.e., active).

IX. CONCLUSION

In this article, a new Lyapunov-based theorem is developed
to analyze convergence properties of switched systems in the
case where each subsystem has UUB or locally practically
stable trajectories. Sufficient conditions that relate the minimum
dwell-time, the initial conditions, the convergence rates, and the
ultimate bounds of the subsystem to those of the switched system
are developed.

This new theorem aids in the design of an ADP-based con-
troller to optimize the performance of a switched system while
achieving a tracking objective and compensating for parametric
uncertainties in the system’s drift dynamics. Local practical
stability of individual subsystems, along with local practical
stability of the overall switched system, is proven via two
Lyapunov-based stability analyses. Simulations results are pre-
sented for the optimal control of an AUV in the presence of
a discretely varying set of irrotational currents to show the
efficacy of the developed technique. Future research will expand
on the results in this article by compensating for uncertainty
in the control effectiveness matrix and investigating stronger
subsystem stability results.

When applied to the ADP-based design, the sufficient con-
ditions of the developed theorem provide qualitative intuition
as to which parameters affect the needed minimum dwell-time.
Since the sufficient conditions require knowledge of bounds on
the optimal value function, the bounds are difficult to compute
in applications where the estimation of bounds on the optimal
value function is not feasible. The need to estimate bounds on the
optimal value function, while limiting, is typical in ADP-based
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designs for the computation of control gains, ultimate bounds,
and regions of attraction (see [12], [13], [14], [15], and [16]).

In this article, the objective is to optimize the performance
of each subsystem, with respect to given subsystem-specific
performance metrics, while maintaining stability of the switched
system. Optimization of the switched system relative to a
system-wide performance metric is out of the scope of this work
and is also a topic for future research.
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