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Abstract—The robust integral of the sign of the error (RISE)
control approach results in a powerful continuous controller that
yields exponential tracking error convergence despite the pres-
ence of time-varying and state-dependent disturbances. However,
designing the RISE controller to yield exponential tracking error
convergence in the presence of actuator saturation has been an
open problem. Although there are existing results that provide a
saturation scheme for RISE controllers, these results only guar-
antee asymptotic tracking error convergence using a Lyapunov-
based analysis. In this article, a new design strategy is developed
using a projection algorithm and auxiliary filters to yield expo-
nential tracking error convergence. This new strategy does not
employ trigonometric or hyperbolic saturation functions inherent
to previous saturated (or amplitude limited) controllers. As a result,
a Lyapunov-based analysis can be constructed that yields expo-
nential convergence of the tracking errors. Comparative simulation
results demonstrate the performance of the developed method in
comparison with a baseline controller. The developed method can
operate at a lower saturation limit than the baseline method while
maintaining stability and achieving exponential tracking error con-
vergence.

Index Terms—Lyapunov-based methods, nonlinear control, pro-
jection algorithms, robust control.

I. INTRODUCTION

The family of robust integral of the sign of the error (RISE) con-
trollers provide a powerful continuous control method that yields
asymptotic tracking error convergence despite the presence of time-
varying and state-dependent disturbances [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11]. In [12], the tracking error convergence is also shown
to be uniform and exponential, and the exponential tracking result is
shown to also hold for systems involving state delays in [13]. The results
in [12] and [13] enable the stability analysis using a specialized function
called the P-function, which is used in the candidate Lyapunov function
to prove exponential tracking.

Although the results in [12] and [13] provide exponential tracking
error convergence, the development and analysis does not account
for actuator saturation, which is a common issue in control systems.
Traditional control methods [14], [15], [16] use passivity-based design
techniques leveraging the small-gain theorem to compensate for the
nonlinearities introduced by the saturation constraints. However, due
to the lack of a high-frequency component like sliding-mode or RISE,
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these passivity-based design techniques typically do not achieve ex-
ponential stability guarantees in the presence of external disturbances.
Therefore, motivation exists to develop continuous control methods
that can achieve exponential stability despite the saturation constraints
and external disturbances. To implement RISE controllers in the pres-
ence of actuator saturation, a dynamic saturation scheme is provided
in [17], and a Lyapunov-based stability analysis is provided to yield
asymptotic tracking guarantees despite the saturation. However, the
stability analysis in [17] only guarantees asymptotic convergence of
the tracking error without guaranteeing exponential convergence. The
novel P-function introduced in [12] cannot be easily applied for the
result in [17] because the candidate Lyapunov function (VL) in [17]
involves a combination of linear, quadratic, logarithmic, and hyperbolic
functions of the state, e.g., ln(cosh(e1)) term, where e1 denotes the
tracking error. Consequently, there are mathematical challenges in
extending the analytical development in [12] for the controller in [17] to
yield an inequality of the form V̇L ≤ −λVL which is essential in [12] to
yield exponential convergence with some constant rate of convergence
λ ∈ R>0. Moreover, the saturation mechanism in [17] involves an
integrator of the form

u = γ tanh(v)

v̇ =
1

γ
cosh2(v) (μ) (1)

whereγ is the saturation bound andμ is a nominal input to the integrator.
This mechanism then yields u̇ = μ, provided v does not escape in finite
time so that cosh2(v) and sech2(v) can cancel. The issue with saturation
mechanisms of the form in (1) is, if v is bounded, they generate solutions
identical to the unsaturated integrator

u̇ = μ. (2)

This is only possible if the solutions to (2) never reach the saturation
limit, in which case it might be preferable to use (2) instead of (1).
Otherwise, a contradiction results, leading to the conclusion that v
must be unbounded when the saturation limit is reached. Although the
result in [17] establishes the boundedness of u, there are difficulties in
finding conditions under which v does not escape in finite time. This is a
common problem with approaches that pass the output of an integrator
through saturating functions like tanh. Instead, it is preferable to modify
the input to the integrator such that the solutions to the integrator would
satisfy the saturation bound.

In this article, we present a new design and stability analysis using
a projection operator-based approach to design a saturated RISE con-
troller with exponential stability guarantees. By projecting the input to
an integrator on the tangent cone to the saturation region, the projection
operator constrains the resulting integral to the saturation region. As
a result, the control input always satisfies the saturation constraints.
Although the projection operator achieves input saturation, it is unclear
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if the projection-based approach would preserve the exponential stabil-
ity guarantees established in [12] and [13]. To answer this question,
we first prove an extension of an important property of projection
operators in [18, Lemma E.1.IV] for closed convex sets involving
nonsmooth boundaries such as componentwise saturation. Based on
this property, we derive conditions under which exponential tracking
error convergence can be achieved using the modified RISE controller,
despite the projection.

Modifying a RISE controller using projection is difficult because
the standard RISE controller contains a state-derivative term in the
integrator, which is difficult to separate from the integrator when a pro-
jection operator is applied. To overcome this challenge, we employ an
auxiliary filter to avoid the use of a state-derivative term in the projected
integrator. Subsequently, we construct a filtered tracking error based
on the auxiliary filter that can be represented as the difference between
the uncertainty and the control input. This representation enables us
to use the properties of the projection operator in the Lyapunov-based
stability analysis to guarantee exponential tracking error convergence,
provided the system uncertainty lies within a compact convex set.
Unlike the method presented in [17], our solution guarantees the
boundedness of all closed-loop signals and exponential tracking error
convergence, provided the system is stabilizable with a saturated control
input. Comparative simulation results are provided to demonstrate the
performance of the developed method, and the results are compared
with the method in [17]. The developed method can operate at a
lower saturation limit than the baseline method while maintaining
stability and achieving exponential tracking error convergence. Upon
selecting a higher saturation limit for the baseline method to avoid
instability, and selecting the parameters for both methods to yield
approximately the same root mean squared (rms) control effort, the
developed method is able to provide 20% reduction in the rms control
effort.

II. NOTATION AND PRELIMINARIES

The Lebesgue measure on R
n is denoted by m. The notation Cm

denotes the space of continuous functions with continuous first m
derivatives. The p-norm is denoted by ‖ · ‖p, and ‖ · ‖ denotes the
2-norm. Given some setsA andB, a set-valued mapF fromA to subsets
of B is denoted by F : A⇒ B. The notation coA denotes the closed
convex hull of the setA. The notationB(x, δ), for x ∈ R

n and δ > 0, is
used to denote the set {y ∈ R

n : ‖x− y‖ < δ}. Consider a Lebesgue
measurable and locally essentially bounded function h : Rn × R≥0 →
R
n. The Filippov regularization of h at (y, t) ∈ R

n × R≥0 is defined
as the intersection of convex closures of values attained by h in every
neighborhood of y omitting sets of measure zero, i.e.,

K [h] (y, t) �
⋂
δ>0

⋂
mSm=0

coh (B (y, δ) \S, t)

where
⋂

mS=0

denotes the intersection over all sets S ⊂ R
n of Lebesgue

measure zero [19, eq. (2b)]. In addition, given any sets A,B ⊂ R, the
notationA ≤ B is used to state a ≤ b for all a ∈ A and b ∈ B. The no-

tation
a.a.t.

(·) implies that the relation (·) holds for almost all t ∈ I, given
some intervalI. A function y : Iy → R

n is called a Filippov solution of
ẏ = h(y, t) on the interval Iy ⊆ R≥0, if y is absolutely continuous on

Iy , and is a solution to the differential inclusion ẏ
a.a.t.∈ K[h](y, t). The

gradient operator is denoted by∇, and Clarke’s generalized gradient for
a locally Lipschitz function V : Rn × R≥0 → R at (x, t) ∈ R

n × R≥0

is defined as the convex closure of its gradients in an arbitrarily small
neighborhood of (x, t) while omitting sets of measure zero where it is

not defined, i.e.,

∂V (x, t) � co{lim∇V (x, t)|(xi, ti) → (x, t), (xi, ti) /∈ ΩV }

where ΩV denotes the set of measure zero wherever ∇V is not de-
fined [20, Def. 2.2].

A. Projection Operator

Given a closed set Θ ⊂ R
n and θ ∈ Θ, a vector v is a tangent vector

to Θ at θ if there exist sequences θk → θ with θk ∈ Θ for all k ∈ Z>0

and δk → 0+ such that θk−θ
δk

→ v. The set of all tangent vectors toΘ atθ
is called the tangent cone at θ and denoted byTθΘ [21]. If the set-valued
map θ 
→ TθΘ is inner semicontinuous (i.e., lim inf

θ̂→θ
Tθ̂Θ ⊃ TθΘ [22,

Def. 5.4]), then the set Θ is termed Clarke regular (or tangentially
regular) [21]. For the set Θ, the projection operator at θ ∈ Θ for any
given argument μ ∈ R

n is defined as [21]

projθΘ (μ) � argmin
v∈TθΘ

‖v − μ‖2 .

In the following lemma, we establish an important property of projec-
tion operators which is used for ensuring exponential stability guaran-
tees in this article. This is essentially a generalization of [18, Lemma
E.1.IV] to nonsmooth projected dynamic systems involving nonsmooth
closed convex sets.

Lemma 1: Given a closed convex Clarke regular setΘ ⊂ R
n and any

point θ∗ ∈ Θ, the inequality−(θ∗ − θ)TK[projθΘ](μ) ≤ −(θ∗ − θ)Tμ
holds for all θ ∈ Θ and μ ∈ R

n.
Proof: Because Θ is convex, the tangent cone TθΘ is also convex.

To establish this fact, recall that by the definition of TθΘ, for all
v1, v2 ∈ TθΘ, there exist sequences θ1,k, θ2,k → θwith θ1,k, θ2,k ∈ Θ

for all k ∈ Z>0 and δk → 0+ such that
θ1,k−θ
δk

→ v1 and
θ2,k−θ
δk

→ v2.
Due to the convexity of Θ, αθ1,k + (1− α)θ2,k ∈ Θ for all α ∈ [0, 1].
Thus, constructing the series θ3,k � αθ1,k + (1− α)θ2,k ∈ Θ yields
θ3,k−θ
δk

= α(
θ1,k−θ
δk

) + (1− α)(
θ2,k−θ
δk

) → αv1 + (1− α)v2 for all
α ∈ [0, 1]; thus, αv1 + (1− α)v2 ∈ TθΘ, implying that TθΘ is con-
vex.

For a given μ, let gμ : Rn → R≥0 be defined gμ(v) � ‖v − μ‖2 for
all v ∈ R

n, and v∗ � projθΘ(μ) = argmin
v∈TθΘ

gμ(v). Due to the convexity

of TθΘ, the inequality −∇gμ(v∗)T (v − v∗) = (μ− v∗)T (v − v∗) ≤
0 holds for all v ∈ TθΘ by the first-order optimality condition [22,
Thm. 6.12]. Moreover, due to the convex cone property of TθΘ,
for any v1, v2 ∈ TθΘ, the relation ω1v1 + ω2v2 ∈ TθΘ holds for all
ω1, ω2 ∈ R>0. Thus, since v∗ ∈ TθΘ, selecting v = w + v∗ yields
(μ− v∗)T (v − v∗) = (μ− v∗)Tw ≤ 0 for all w ∈ TθΘ. From the
definition of tangent cone and convexity ofΘ,θ∗ − θ ∈ TθΘ for allθ∗ ∈
Θ. This fact is shown by selecting θk = δkθ

∗ + (1− δk)θ ∈ Θ, which
yields lim

δk→0+

θk−θ
δk

→ θ∗ − θ. Therefore, (μ− v∗)T (θ∗ − θ) ≤ 0 for

all θ∗ ∈ Θ, which can be rewritten as −(θ∗ − θ)T projθΘ(μ) ≤ −(θ∗ −
θ)Tμ by recalling v∗ = projθΘ(μ). Due to the facts that the aforemen-
tioned inequality is linear in projθΘ(μ) andK[·] is convex, the inequality
−(θ∗ − θ)T v ≤ −(θ∗ − θ)Tμ holds for all v ∈ K[projθΘ](μ). There-
fore,−(θ∗ − θ)TK[projθΘ](μ) ≤ −(θ∗ − θ)Tμ holds for all θ ∈ Θ and
μ ∈ R

n.�
The following lemma states the forward invariance properties of

projected dynamic systems, which will be used for imposing saturation
constraints on the control input.

Lemma 2 (Forward invariance): Consider a closed convex Clarke
regular set Θ ⊂ R

n and a continuous vector field F : Θ× R≥0 →
R
n. Then Filippov solutions to θ̇ = projθΘ(F (θ, t)) initialized with
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θ(0) ∈ Θ exist, and every such Filippov solution satisfies θ(t) ∈ Θ
for all t ∈ R≥0, if i) F is bounded or globally Lipschitz, or ii) Θ is
bounded.

Proof: Under the stated conditions on F and Θ, the result in [21,
Corollary 4.3] guarantees existence and completeness of all Krasovskii
solutions to θ̇ = projθΘ(F (θ, t)) subjected to θ ∈ Θ. Notably, a Filippov
solution is always a Krasovskii solution (see [23, eq. (4) and (5)] for
the differences in their definitions); thus, the completeness can also be
concluded for Filippov solutions.�

Although the projection operator is defined as a solution to a
quadratic program, closed-form expressions can be obtained for var-
ious cases of practical importance. The following example derives a
closed form of the projection operator for sets describing channelwise
saturation.

Example 1: Consider the set Θ = {θ = [θ1, θ2, . . . , θn]
T ∈ R

n :
θi ≤ θi ≤ θi},where θi, θi ∈ R denote the upper and lower bounds
on θi for all i ∈ {1, . . . , n}. Then the tangent cone TθΘ is given
by TθΘ = {v = [v1, v2, . . . , vn]

T ∈ R
n : vi ≥ 0 if θi = θi, vi ≤

0 if θi = θi, vi ∈ R if θi < θi < θi}. Since the tangent cone is
independently defined for each θi, the projection operator can be
applied componentwise. Thus, using the expression for TθΘ and the
definition of the projection operator, the projection projθΘ(μ) is given
by projθΘ(μ)i = max(0, μi) if θi = θi, min(0, μi) if θi = θi, and μi
if θi < θi < θi, where μi and projθΘ(μ)i denote the ith elements of μ
and projθΘ(μ), respectively.

The following example derives the traditional closed-form projection
operator used in adaptive control [18, Appendix E] for sets with
boundaries described by C1 functions, using the tangent cone-based
definition of projection operation.

Example 2: Consider the set Θ = {θ ∈ R
n : h(θ) ≤ 0}, where

h : Rn → R is C1. For points that lie in the interior of Θ, i.e.,
where h(θ) < 0, the tangent cone is the entire space, TθΘ = R

n;
thus projθΘ(μ) = μ if h(θ) < 0. For points on the boundary of Θ,
i.e., where h(θ) = 0, the tangent vector v must point into Θ, i.e.,
∇h(θ)T v ≤ 0; therefore,TθΘ = {v ∈ R

n : ∇h(θ)T v ≤ 0} ifh(θ) =
0. For points on the boundary, projθΘ(μ) is a solution to the optimiza-
tion problem argmin

v
‖v − μ‖2 s.t. ∇h(θ)T v ≤ 0. This is a convex

quadratic optimization problem with a linear constraint, which can be
solved by introducing the Lagrange multiplier Λ ∈ R≥0, where the
Lagrangian is L(v, λ) = ‖v − μ‖2 +Λ∇h(θ)T v. To find the mini-
mizer v∗, Karush–Kuhn–Tucker (KKT) conditions are imposed. By
the stationarity condition, ∇vL(v

∗, λ) = 2(v∗ − μ) + Λ∇h(θ) = 0,
which yields v∗ = μ− Λ

2
∇h(θ). Then using the primal feasibility con-

dition ∇h(θ)T v∗ ≤ 0 yields ∇h(θ)T (μ− Λ
2
∇h(θ)) ≤ 0, therefore,

Λ ≥ 2∇h(θ)T μ
‖∇h(θ)‖2 . Furthermore, imposing the dual feasibility condition

Λ ≥ 0 yields Λ ≥ max(0, 2∇h(θ)T μ
‖∇h(θ)‖2 ). Finally, imposing the comple-

mentary slackness condition Λ∇h(θ)T v∗ ≤ 0 yields Λ(∇h(θ)Tμ−
Λ
2
‖∇h(θ)‖2) = 0, which implies two cases. In the first case, Λ = 0,

which implies Λ = μ. In the second case, ∇h(θ)Tμ− Λ
2
‖∇h(θ)‖2 =

0, implying Λ = 2∇h(θ)T μ
‖∇h(θ)‖2 . These cases together with the condition

Λ ≥ max(0, 2∇h(θ)T μ
‖∇h(θ)‖2 ) implyΛ = max(0, 2∇h(θ)T μ

‖∇h(θ)‖2 ). SubstitutingΛ

back into v∗ yields v∗ = μ−max(0, ∇h(θ)T μ
‖∇h(θ)‖2 )∇h(θ). Therefore, the

projection operator is given by

projθΘ (μ) =

{
μ, h(θ) < 0

μ−max
(
0, ∇h(θ)T μ

‖∇h(θ)‖2
)
∇h(θ), h(θ) = 0

which is the same as the projection operator in [18, Appendix E].

III. CONTROL DESIGN

A. Problem Statement

Consider the nonlinear system

ẍ = f (x, ẋ, t) + d(t) + u (3)

where x ∈ R
n is the state, u ∈ R

n is the control input, f : Rn × R
n ×

R≥0 → R
n is a C2 uncertainty such that the mappings t 
→ f(x, ẋ, t),

t 
→ ∇f(x, ẋ, t), and t 
→ ∇2f(x, ẋ, t) are uniformly bounded, and
d : R≥0 → R

n is a C2 disturbance such that d, ḋ, and d̈ are uniformly
bounded. The control objective is to ensure that the tracking error
e1 � xd − x exponentially converges to zero while ensuring that u
stays saturated within a given closed convex Clarke regular set Ω ⊂ R

n

containing the origin in its interior, where xd : R≥0 → R
n is a C4

reference trajectory such that xd, ẋd, ẍd,
...
xd, and

....
x d are uniformly

bounded.

B. Control Development

Let I = [t0, t1) denote an interval of time during which solutions
to the closed-loop error system in the subsequent development exist
with some t0, t1 ∈ R≥0. To facilitate the control development without
requiring ẍ measurements, an auxiliary term ef ∈ R

n is designed as a
solution to the filter

ėf = −γ1e2 − γ2ef (4)

where γ1, γ2 ∈ R>0 are user-defined constants. In addition, let the
auxiliary errors e2, r ∈ R

n be defined as

e2 = ė1 + α1e1 + ef (5)

r = ė2 + α2e2 (6)

whereα1, α2 ∈ R>0. To ensure the control input stays saturated within
Ω, we design the control input as u = Ŝ using a projection-based
adaptive update law, where the projection operator is used to ensure
Ŝ ∈ Ω. The control input u is designed as u = Ŝ, where Ŝ ∈ R

n is
designed as a Filippov solution to

˙̂
S = projŜΩ

(
α3
1e1 + k1e2 + k2ef + βsgn (e2)

)
(7)

where k1, k2 ∈ R>0 are constant control gains that are designed subse-
quently. Taking the time-derivative of e2 and substituting (3)–(5) into
the resultant expression yields

ė2 = ẍd − f (x, ẋ, t)− d(t)− u− α2
1e1

+ (α1 − γ1) e2 − (α1 + γ2) ef . (8)

Substituting (8) into (6) yields

r = ẍd − f (x, ẋ, t)− d(t)− Ŝ

− α2
1e1 −m1e2 −m2ef (9)

where m1,m2 ∈ R>0 are constants defined as m1 � γ1 − α1 − α2

and m2 � α1 + γ2. In addition, to facilitate the subsequent analysis,

let z ∈ R
4n be defined as z �

[
eT1 eT2 eTf rT

]T
andS(z, t) ∈ R

n

be defined as

S(z, t) � ẍd − f (x, ẋ, t)− d(t)− α2
1e1 −m1e2 −m2ef . (10)

Based on (9) and (10), r can be rewritten as

r = S(z, t)− Ŝ. (11)

This representation of r is useful since it allows for the use of Lemma 1
in the subsequent stability analysis to achieve the exponential stability
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result. The following assumption is made to ensure the existence of a
region of attraction in the subsequent analysis.

Assumption 1: There exists a closed set D ⊂ R
4n such that z ∈ D

implies S(z, t) ∈ Ω for all t ∈ R≥0.
Remark 1: Assumption 1 provides a sufficient feasibility condition

on the region of attraction on how much disturbance or drift can be
tolerated and how much acceleration the desired trajectory can involve
for a given saturation bound on the control input. To illustrate this
fact, let ū � supRu s.t. {ς ∈ R

n : ‖ς‖ ≤ Ru} ⊆ Ω denote the satura-
tion limit, D̄ = sup

t≥0
‖ẍd − f(xd, ẋd, t)− d(t)‖ denote the disturbance

bound, and ρf : R≥0 → R≥0 be a strictly increasing function satisfying
sup
t≥0

‖f(xd, ẋd, t)− f(x, ẋ, t)‖ ≤ ρf (‖z‖)‖z‖, the existence of which

follows from the mean value theorem-based inequality in [24, Lemma
5] and the fact that t 
→ ∇f(x, ẋ, t) is uniformly bounded by definition.
Provided ū > D̄, the set D can be sufficiently computed as D =
{z ∈ R

4n : ρf (‖z‖)‖z‖+ (α2
1 − α2 + γ1 + γ2)‖z‖ ≤ ū− D̄}. This

explicit restriction makes it clear that arbitrary disturbances and arbi-
trary desired trajectories cannot be globally tracked using a saturated
controller, unlike the result in [17].

Taking the time-derivative of both sides in (9), and substituting (4),
(7), and (8) into the resultant expression yields that r is a Filippov
solution to

ṙ = NB + Ñ − e2 −m1r +
(
m2γ1 −m1α2 − α2

1

)
e2

− projŜΩ
(
α3
1e1 + k1e2 + k2ef + βsgn (e2)

)
+
(
m2γ2 + α2

1

)
ef + α3

1e1 (12)

where NB � ...
xd − d

dt
f(xd, ẋd, t)− ḋ(t) and Ñ � d

dt
f(xd, ẋd, t)−

d
dt
f(x, ẋ, t) + e2. Due to the fact thatf isC2 andd, ḋ, d̈,xd, ẋd, ẍd,

...
xd,

....
x d, t 
→ f(x, ẋ, t), t 
→ ∇f(x, ẋ, t), and t 
→ ∇2f(x, ẋ, t) are uni-
formly bounded, it follows that there exist constants χ1, χ2 ∈ R>0

such that:

‖NB‖ ≤ χ1 (13)

and ∥∥∥ṄB∥∥∥ ≤ χ2. (14)

Since t 
→ ∇2f(x, ẋ, t) is uniformly bounded, the term Ñ in (12)
can be bounded using the mean-value theorem-based inequality
in [24, Lemma 5] as ∥∥∥Ñ∥∥∥ ≤ ρ (‖z‖) ‖z‖ (15)

where ρ : R≥0 → R≥0 is a positive strictly increasing function.
Remark 2: The purpose of designing the auxiliary filter in (4) is to

enable the appearance of the term−m1r in (12) without having to use r
(which is unknown because ẍ is unknown) in (7). The presence of−m1r
in (12) enables the exponential convergence result in the subsequent
Lyapunov-based stability analysis by contributing a −m1‖r‖2 term.

The following section provides a Lyapunov-based stability analysis
to show exponential tracking error convergence guarantees with the
developed controller.

IV. STABILITY ANALYSIS

The stability analysis for RISE controllers typically involves the
use of an auxiliary P-function [2]. In [12], a unique P-function was
introduced to show exponential tracking error convergence. Similarly,
we introduce the P-function P : I → R≥0 defined as

P � β ‖e2‖1 − eT2NB + e−λP t ∗
(
eT2 ṄB

)

+ e−λP t ∗ ((α2 − λP )
(
β ‖e2‖1 − eT2NB

))
(16)

where λP ∈ R>0 is a user-selected constant, and the notation “∗”
denotes the convolutional integral e−λP t ∗ q = ∫ t

t0
e−λP (t−σ)q(σ)dσ,

for any given q : [t0,∞) → R. Based on the Leibniz rule,
the following property of convolutional integrals is obtained:
d
dt
(
∫ t
t0
e−λP (t−σ)q(σ)dσ) = q(t)− λP

∫ t
t0
e−λP (t−σ)q(σ)dσ. There-

fore, d
dt
(e−λP t ∗ q) = q(t)− λP e

−λP t ∗ q. Since t 
→ e2(t) is abso-
lutely continuous and ‖ · ‖1 is globally Lipschitz, the mapping t 
→
‖e2(t)‖1 is differentiable for almost all time. Therefore, using the chain

rule in [20, Thm. 2.2] yields d
dt
(‖e2‖1)

a.a.t.∈ ėT2K[sgn](e2). Taking the
time-derivative of (16), using Leibniz’s rule, and substituting (6) and
(16) into the resulting time-derivative yields

Ṗ
a.a.t.∈ −λPP + rTβK[sgn](e2)− rTNB . (17)

Moreover, provided the gain conditions

α2 > λP (18)

and

β > χ1 +
χ2

α2 − λP
(19)

are satisfied, it follows from the bounds in (13) and (14) that β‖e2‖1 −
eT2NB ≥ 0 and (α2 − λP )(β‖e2‖1 − eT2NB) + eT2 ṄB ≥ 0. In addi-
tion, note that the convolution integrals of positive functions are posi-
tive, because for any given positive function q : R≥0 → R≥0, it follows
that e−λP t ∗ q = ∫ t

t0
e−λP (t−σ)q(σ)dσ ≥ 0. Therefore, examining the

expression in (16) yields that P ≥ 0 ∀t ∈ I.
To state the main result of this article, the following definitions are

introduced. Let W : R4n → R≥0 be defined as

W (σ) �
√

‖σ‖2 + 2 (β + χ1) ‖σ‖1 ∀σ ∈ R
4n. (20)

In addition, let kmin ∈ R>0 be a constant gain defined as kmin �
min{α1 − 1, α2 − 1, γ2 − γ2

1
+1

2
,m1,

λP
2
}, λV ∈ R>0 be the desired

rate of convergence, and the setB ⊂ R
4n be defined asB � {σ ∈ R

4n :
ρ(W (σ)) ≤ kmin − λV }.

Theorem 1: All solutions to (4), (5), (8), and (12) with z(t0) ∈ B
satisfy ‖z(t)‖ ≤W (z(t0))e

−λV (t−t0), ∀t ∈ [t0,∞), provided that the
gains α1, α2, γ1, γ2, β, and λP are selected according to the gain
conditions in (18) and (19) and to ensure that B ⊂ D, the gains k1
and k2 are selected as

k1 = m2γ1 −m1α2 − α2
1 (21)

and

k2 = m2γ2 + α2
1. (22)

Proof: Let ψ : I → R
4n+1 be defined as ψ(t) �

[
zT (t) P (t)

]T
,

and G : R4n+1 × R≥0 ⇒ R
4n+1 denote the set-valued map

G(ψ, t) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e2 − α1e1 − ef
r − α2e2

−γ1e2 − γ2ef⎛⎜⎜⎜⎜⎝
NB + Ñ − e2 −m1r + α3

1e1

−βK
[
projŜΩ

]
sgn(e2)

−K
[
projŜΩ

]
(α3

1e1 + k1e2 + k2ef )

+ (m2γ1 −m1α2 − α2
1) e2 + (m2γ2 + α2

1) ef

⎞⎟⎟⎟⎟⎠
−λPP − rTNB + rTβK[sgn](e2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Then using (4), (5), (8), (12), and (17) yields ψ̇
a.a.t.∈ G(ψ, t). Consider

the function VL : R4n+1 → R≥0 defined as

VL (ψ) � 1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
eTf ef +

1

2
rT r + P. (23)

Based on the chain rule for differential inclusions in [20, Thm. 2.2], the
time-derivative of VL along the trajectories t 
→ ψ(t) exists for almost

all time, and satisfies V̇L(ψ, t)
a.a.t.∈ ˙̃

V L(ψ, t), where the set ˙̃
V L(ψ, t)

is defined as ˙̃
V L(ψ, t) �

⋂
ξ∈∂VL(ψ)

ξTG(ψ, t), where ∂VL(ψ) de-

notes Clarke’s generalized gradient. Since the gradient of VL(ψ), i.e.,
∇VL(ψ), exists and is continuous for all ψ ∈ R

4n+1, ∂VL = {∇VL}.

Therefore, ˙̃
V L(ψ, t) = ∇V TL G(ψ, t) =

[
zT 1

]
G(ψ, t). Evaluating

˙̃
V L(ψ, t) yields

˙̃
V L(ψ, t) = eT1 (e2 − α1e1 − ef ) + eT2 (r − α2e2)

+ eTf (−γ1e2 − γ2ef ) + rT
(
NB + Ñ − e2

)
− rTK

[
projŜΩ

] (
α3
1e1 + k1e2 + k2ef

)
+ rT

(−m1r +
(
m2γ1 −m1α2 − α2

1

)
e2
)

+
(
m2γ2 + α2

1

)
rT ef + α3

1r
T e1

− rTβK
[
projŜΩ

]
sgn(e2)

− λPP − rTNB + rTβK[sgn](e2). (24)

Using Young’s inequality yields γ1e
T
f e2 ≤ 1

2
‖e2‖2 + γ2

1
2
‖ef‖2,

eT1 e2 <
1
2
‖e1‖2 + 1

2
‖e2‖2, and eT1 ef <

1
2
‖e1‖2 + 1

2
‖ef‖2. There-

fore

˙̃
V L(ψ, t)

a.a.t.≤ − (α1 − 1) ‖e1‖2 − (α2 − 1) ‖e2‖2

−
(
γ2 − γ2

1 + 1

2

)
‖ef‖2 −m1 ‖r‖2

+ rT
(
NB + Ñ + α3

1e1

)
− rTK

[
projŜΩ

] (
α3
1e1 + k1e2 + k2ef

)
− rTβK

[
projŜΩ

]
sgn(e2)

+ rT
(
m2γ1 −m1α2 − α2

1

)
e2

+ rT
(
m2γ2 + α2

1

)
ef

− λPP − rTNB + rTβK[sgn](e2). (25)

Since z(t0) ∈ D, letID ⊂ I denote the time-interval over which z(t) ∈
D for all t ∈ ID . Based on Assumption 1, z ∈ D implies S(z, t) ∈
Ω; thus S(z, t) ∈ Ω for all t ∈ ID. Therefore, using Lemma 1 and

the fact r = S − Ŝ yields−rTK[projŜΩ](k1e2 + k2ef + βsgn(e2)) ≤
−rT (k1e2 + k2ef + βK[sgn](e2)) for all t ∈ ID. As a result

˙̃
V L(ψ, t)

a.a.t.≤ − (α1 − 1) ‖e1‖2 −m1 ‖r‖2

− (α2 − 1) ‖e2‖2

−
(
γ2 − γ2

1 + 1

2

)
‖ef‖2

+ rT
(
Ñ − (

α3
1e1 + k1e2 + k2ef

))

− rTβK [sgn] (e2) + α3
1r
T e1

+ rT
(
m2γ1 −m1α2 − α2

1

)
e2

+ rT
(
m2γ2 + α2

1

)
ef

− λPP + rTβK[sgn](e2). (26)

Based on [12, Lemma 1], the set of time-instants where the term
rTK[sgn](e2(·)) is set-valued has Lebesgue measure zero. As a result,
rTK[sgn](e2(t)) = {rT sgn(e2(t))} for almost all t ∈ ID . Therefore,
substituting (21) and (22) into (26), and using (15) yields

˙̃
V L(ψ, t)

a.a.t.≤ − (α1 − 1) ‖e1‖2 −m1 ‖r‖2

− (α2 − 1) ‖e2‖2

−
(
γ2 − γ2

1 + 1

2

)
‖ef‖2

+ ρ (‖z‖) ‖z‖2 − λPP

≤ − (kmin − ρ (‖z‖)) ‖z‖2 − λPP

≤ − 2 (kmin − ρ (‖z‖))
(
1

2
‖z‖2

)
− λPP

where kmin is defined above the theorem statement. Since
ρ(‖z‖) ≤ ρ(

√
2VL), selecting λP ≥ 2(kmin − ρ(‖z‖)) and recalling

V̇L(ψ, t)
a.a.t.∈ ˙̃

V L(ψ, t) yields

V̇L
a.a.t.≤ −2 (kmin − ρ (‖z‖))

(
1

2
‖z‖2 + P

)
≤ −2

(
kmin − ρ

(√
2VL

))
VL.

Since z(t0) ∈ B, therefore kmin > λV + ρ(W (z(t0))) >
λV + ρ(

√
2VL(ψ(t0))). As a result

V̇L
a.a.t.≤ −2λV VL ∀t ∈ ID.

Based on the comparison principle [25, Lemma 4.4], it follows that:

VL(ψ(t)) ≤ VL(ψ(t0))e
−2λV (t−t0) ∀t ∈ ID. (27)

Therefore, kmin ≥ λV + ρ(
√

2VL(ψ(t0))) ≥ λV + ρ(
√

2VL(ψ(t)))
for all t ∈ ID, and which implies z ∈ B for all t ∈ ID. Thus, if the gains
are selected to ensureB ⊆ D, then z cannot escapeD, and therefore the
time-interval ID can be extended into the entire interval of existence I.
Furthermore, using (27), ‖z(t)‖ can further be upper-bounded as

‖z(t)‖ ≤
√

2VL(ψ(t0))e
−λV (t−t0) ∀t ∈ I. (28)

Substituting P (t0) = β‖e2(t0)‖1 − eT2 (t0)NB(t0) yields
VL(ψ(t0)) =

1
2
‖z(t0)‖2 + (β‖e2(t0)‖1 − eT2 (t0)NB(t0)). Since the

term NB(t0) is bounded according to (13), using the fact that
‖e2(t0)‖ ≤ ‖e2(t0)‖1 ≤ ‖z(t0)‖1, it follows that:√

2VL(ψ(t0)) ≤
√

‖z(t0)‖2 + 2 (β + χ1) ‖z(t0)‖1
=W (z(t0)) (29)

whereW (·) is defined in (20). In addition, since (ψ, t) 
→ G(ψ, t) is a
locally bounded mapping, and ψ is precompact (i.e., bounded over any
interval I) according to (28), invoking [26, Lemma 3.3 and Remark 3.4]
rules out the possibility of solutions escaping in finite time. Therefore,
I = [t0,∞). Thus, the exponential convergence in (28) holds for all
t ∈ [t0,∞). Therefore, substituting (29) into (28) yields

‖z(t)‖ ≤W (z(t0))e
−λV (t−t0) ∀t ∈ [t0,∞). (30)
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TABLE I
CONTROLLER PARAMETERS

Because β, χ1, and λV are independent of the initial time t0 or
initial condition z(t0), the exponential convergence is uniform [27].
In addition, the convergence and boundedness of ‖z‖ implies the
convergence and boundedness of ‖e1‖, ‖e2‖, ‖ef‖, and ‖r‖. Therefore,
since xd, ẋd, ẍd ∈ L∞, it can be concluded that x, ẋ, ẍ ∈ L∞ [28].
Thus, f(x, ẋ, t) is bounded, and hence from (3), u ∈ L∞.�

Remark 3: To obviate the need to know the bounds χ1 and χ2 for
the gain condition in (19), the dynamic gain scaling approach in [29]
can be used to dynamically estimate the ideal gain β∗ � χ1 +

χ2
α2−λP

using an adaptive estimate β̂ ∈ R. Such an approach can be combined
with the developed saturated RISE method by including an additional
term 1

2
β̃2 in VL, where β̃ � β∗ − β̂ denotes the gain estimation error.

However, since β̃ is unknown, there are challenges in developing an

adaptive update law ˙̂
β that would yield a negative definite V̇L, thus

restricting the result to asymptotic tracking error convergence, rather
than the exponential convergence, if a dynamic gain scaling approach
is used.

V. SIMULATION

An example system was simulated to provide an empirical demon-
stration of the developed controller, and the results are compared with
the baseline saturated RISE controller developed in [17]. Specifically,
the system in (3) is considered with

f(x, ẋ, t) =

[
cos (x2) + 0.1ẋ1 + 0.1x22
sin (x1) + 0.1ẋ2 + 0.1x21

]
and d(t) =

[
sin(2t) cos(3t)

]T
, where x =

[
x1 x2

]T
. The refer-

ence trajectory is xd(t) = 0.5
[
sin(t) cos(t)

]T
. The baseline con-

troller in [17] is given by

u = γ1 tanh (ν)

ν̇ = cosh2 (ν)

(
α2 tanh (e2) + (α3 + γ2) e2
+βsgn (e2)− α1sech2 (e1) e2

)
ėf = cosh2 (ef ) (−γ1e2 − γ2 tanh (ef ) + tanh (e1))

e2 � ė1 + α1 tanh (e1) + tanh (ef )

r � ė2 + α2 tanh (e2) + α3e2

with ν(t0) = ef (t0) = 0. The states are initialized as x(0) = [−1, 2]T

and ẋ(0) = [0, 0]T .The parameters used for the developed and baseline
controllers are selected to yield approximately the same rms control
input norm, and are listed in Table I.

The simulation is performed for 10 s. For the baseline method,
selecting a saturation limit below 6 is found to cause instability in the
simulation results. In contrast to the baseline method, the developed
method results in tracking error convergence even with a saturation
limit as low as 3. Fig. 1 shows the comparative plots of the tracking
error norm ‖e‖ and the individual control inputs u1 and u2 with a
channelwise saturation limit of 3 with the developed method and 6

Fig. 1. Plots of the tracking error norm and control inputs with the
developed saturated RISE controller.

TABLE II
PERFORMANCE COMPARISON

with the baseline method, and the corresponding rms tracking error and
control input norms are shown in Table II. As evident from the control
input plots, the projection operator is able to saturate the control inputs
at the desired saturation limit of 3 between 0 and 2 s. The tracking error
converges in approximately 2.5 s with the developed method whereas
the baseline takes 4.5 s. Despite operating at a lower saturation limit,
the developed method is able to yield almost 1.8 times faster tracking
error convergence than the baseline method. In addition, the developed
method produces a smoother control signal than the baseline in the
transient state. This is likely because the baseline method involves
cosh2(ν)βsgn(e2) term in ν̇,which introduces a larger high frequency
components to the control input when ν becomes larger.

VI. CONCLUSION

A saturated RISE controller is developed using a new design strategy
that includes auxiliary filters and projection algorithm. This new strat-
egy does not employ trigonometric or hyperbolic saturation functions
inherent to previous saturated (or amplitude limited) controllers. As
a result, we were able to construct a Lyapunov-based analysis that
yields exponential convergence of the tracking errors. By leveraging
properties of the projection operator, a Lyapunov-based analysis was
used to show exponential tracking error convergence with the developed
controller. Comparative simulation results are provided to demonstrate
the performance of the developed method, and the results are compared
with the method in [17]. The developed method can operate at a lower
saturation limit than the baseline method. Upon selecting a higher sat-
uration limit for the baseline method to avoid instability, and selecting
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the parameters for both methods to yield approximately the same rms
control effort, the developed method is able to achieve approximately
twofold faster tracking error convergence than the baseline method.

The stability analysis for robust nonlinear control methods such as
RISE relies on conservative bounds on the uncertainty and reference
trajectory. This conservativeness may restrict the sufficient gain con-
ditions and region of attraction to more conservative values than what
may potentially be possible with adaptive methods such as dynamic
gain scaling. Future work may explore a dynamic gain scaling approach
with the developed method that may potentially guarantee exponential
stability.
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