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Adaptive Control via Lyapunov-Based Deep Long Short-Term
Memory Networks

Xuehui Shen , Emily J. Griffis , Wenyu Wu , and Warren E. Dixon , Fellow, IEEE

Abstract—Motivated by the memory capabilities of long short-
term memory (LSTM) networks and the improved function approx-
imation power of deep learning, this article develops a Lyapunov-
based adaptive controller using a deep LSTM neural network (NN)
architecture. The architecture is made deep by stacking the LSTM
cells on top of each other, and therefore, the overall architecture
is henceforth referred to as a stacked LSTM (SLSTM). Specifically,
an adaptive SLSTM architecture is developed with shortcut con-
nections and is implemented in the controller as a feedforward
estimate. Analytical adaptive laws derived from a Lyapunov-based
stability analysis update the SLSTM weights in real-time and allow
the SLSTM estimate to approximate the unknown drift dynamics. A
Lyapunov-based stability analysis ensures asymptotic tracking er-
ror convergence for the developed Lyapunov-based stacked LSTM
(Lb-SLSTM) controller and weight adaptation law. The Lb-SLSTM
adaptive controller yielded an average improvement of 22.24%
and 70.01% in tracking error performance, as well as 40.16% and
81.32% in function approximation error performance when com-
pared to the baseline Lb-LSTM and Lyapunov-based deep neu-
ral network (Lb-DNN) architectures, respectively. Furthermore, the
Lb-SLSTM model yielded a 96.00% and 98.75% improvement in
maximum steady state error performance when compared to the
Lb-LSTM and Lb-DNN models, respectively.

Index Terms—Adaptive control, long short-term memory net-
works (LSTMs), Lyapunov methods, neural networks, nonlinear
control systems.

I. INTRODUCTION

Deep neural network (DNN)-based control methods have become
increasingly popular due to the improved function approximation per-
formance over shallow neural networks (NNs) (cf., [1] and [2]). How-
ever, the NN architectures in these results are feedforward and static,
and therefore do not have access to previous state information. Results
in [3] augment a feedforward NN with external memory and show
that the addition of external memory to the NN architecture improves
learning and overall function approximation performance. Memory
in NNs significantly enhances function approximation by enabling
dynamic storage and retrieval of past information [4]. This mechanism
allows the network to retain key patterns over time and adapt its
outputs based on historical context, improving learning efficiency and
generalization. Unlike traditional NNs, which rely solely on weights to
encode dependencies, memory modules provide flexibility in handling
complex, nonstationary, or temporally structured data. However, the
NN architecture in [3] is feedforward and the memory is external to the
NN.
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Recurrent NNs (RNNs) [such as long short-term memory (LSTM)
networks] have an internal memory, which significantly enhances func-
tion approximation by enabling dynamic storage and retrieval of past
information. Results, such as [5] and [6], develop LSTM-based methods
using pretrained LSTM networks and show that LSTMs have better
function approximation capabilities when compared to feedforward
NNs and traditional RNNs. LSTMs can maintain an internal memory
to store and retrieve information over long sequences, and the gate
mechanism allows LSTMs to decide which information to keep, which
to forget, and which to output, dynamically improving the flexibility
to adjust the memory based on the sequence. This internal memory
and gating mechanisms can capture the inherent relationships between
inputs at different time steps. However, previous works, such as [7],
[8], [9], [10], [11], [12], [13], [14], further establish that deeper archi-
tectures expedite learning and improve overall function approximation
capabilities. Results, such as [15], [16], [17], [18], develop stacked RNN
architectures, consisting of multiple RNN cells, where each RNN cell
output is used as the input to the subsequent RNN cell. Also, results
in [16], [17], and [18] implement stacked LSTM (SLSTM) architectures
for applications, such as natural language processing and time-series
forecasting, using a series of LSTM cells, and show significant em-
pirical improvements in function approximation performance over a
single LSTM cell. These developments motivate this work to develop an
SLSTM architecture that can be implemented with stability guarantees.

Results, such as [5] and [6], leverage machine learning-based offline
training techniques in an open-loop manner to develop LSTM-based
controllers and show improved function approximation performance
over other NN models. Offline training often requires large, sufficiently
rich datasets and is not robust to real-time changes in the dynamic
system. Moreover, since the LSTM is implemented in an open-loop
manner, the overall control architecture lacks stability guarantees.
Motivated by the desire for a stability guarantee and the advantage of
real-time learning without the requirement for offline training from a
dataset, a class of Lyapunov-based DNNs (Lb-DNNs) have recently
been developed in results, such as [12], [14], and [19], where the
adaptive update laws are analytically derived from the Lyapunov-based
stability analysis. The result in [20] develops a Lyapunov-based LSTM
(Lb-LSTM) and comparative simulations demonstrate improved per-
formance over adaptive shallow and deep feedforward NNs. How-
ever, the developed adaptation law and control design in [20] only
considers one LSTM cell, whereas in practice, LSTM cells are of-
ten implemented stacked in a series as established in results, such
as [21]. Therefore, motivation exists to develop a Lyapunov-based
controller with a stability-driven adaptation method for the SLSTM
architecture.

Motivated by improved function approximation with SLSTM and
real-time adaptive learning with stability guarantees, a Lyapunov-based
adaptive controller is developed using an adaptive SLSTM NN archi-
tecture (Lb-SLSTM). A robustifying signum term is included in the
control law to compensate for uncertain terms in the closed-loop error
system and facilitate the stability analysis. To address the vanishing
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gradient issue with the increasing depth of LSTM cells, the developed
architecture is designed to allow for shortcut connections between the
LSTM cells (similar to results, such as [22]). The complexity of a
stacked structure combined with the dynamical nature of the LSTM
cells poses mathematical challenges that complicate the derivation of
stability-driven adaptation laws. To overcome the resulting mathemat-
ical challenges, we derive the Lb-SLSTM weight adaptation laws by
incorporating the Jacobians of the individual LSTM cells with shortcut
connections into the adaptation law development. The Lb-SLSTM is
implemented in the controller as a feedforward term to adaptively
estimate the unknown system dynamics. The Lb-SLSTM is updated
in real-time using a Lyapunov-based, stability-driven adaptation law,
which ensures asymptotic tracking error convergence. Comparative
simulations are performed on an eight-state nonlinear system using
the DNN model in [14] and the LSTM model in [20]. The Lb-SLSTM
adaptive controller yielded an average improvement of 22.24% and
70.01% in tracking error performance, as well as 40.16% and 81.32% in
function approximation error performance when compared to the base-
line Lb-LSTM and Lb-DNN architectures, respectively. Furthermore,
the Lb-SLSTM model yielded a 96.00% and 98.75% improvement
in maximum steady state error performance when compared to the
Lb-LSTM and Lb-DNN models, respectively.

Notations and Preliminaries: The n× n-dimensional identity ma-
trix is represented by In ∈ Rn×n. The right-to-left matrix product

operator is represented by
�∏

, i.e.,

�

m∏
l−1

Al = Am. . .A2A1 and

�

m∏
l−p

Ap = 1 if p > m. The signum function is represented as sgn(). The
Kronecker product and Hadamard product are denoted by ⊗ and �,
respectively. The function composition operator is denoted as ◦, i.e.,
given functions f(·) and g(·), f ◦ g(x) = f(g(x)). The vectorization
operator is denoted by vec(·), i.e., givenA � [ai,j ] ∈ Rm×n, vec(A) �
[a1,1, . . . , am,1, . . . , a1,n, . . . , am,n]

�. The Hadamard product ad-
heres to the following properties as [23, Fact 7.6.3] and [24, Thm.
3]. Given any a, b ∈ Rn, a� b = diag(a)b and therefore ∂

∂b
(a� b) =

diag(a)where diag(a) ∈ Rn×n denotes a diagonal matrix with its main
diagonal as vector a. Let the functions a(c), b(c) ∈ Rn be continuously
differentiable with respect to c ∈ Rp. Then, ∂

∂c
(a� b) = ∂

∂c
a� b+

a� ∂
∂c
b. The vectorization operator meets the following properties [23,

Prop. 7.1.9]. Given any A ∈ Rn×m, B ∈ Rm×p, and C ∈ Rp×r ,
vec(ABC) = (C� ⊗A)vec(B), and ∂

∂vec(B)
vec(ABC) = C� ⊗A.

The p-norm is denoted by ‖ · ‖p, where the subscript is suppressed
when p = 2. Almost all time is denoted as a.a.t.

II. SYSTEM DYNAMICS AND CONTROL OBJECTIVE

Consider the dynamical system modeled as

ẋ = f(x) + u (1)

where x : R≥0 → Rn denotes the state, u : R≥0 → Rn denotes the
control input, and f : Rn → Rn denotes an unknown differentiable
drift vector field.

The control objective is to design an Lb-SLSTM adaptive controller
that guarantees the statex tracks the desired state trajectoryxd : R≥0 →
Rn. As a means to quantify the tracking objective, the tracking error
e : R≥0 → Rn is defined as

e � x− xd. (2)

It is assumed that xd is designed to be sufficiently smooth, i.e.,
‖xd(t)‖ ≤ xd, ‖ẋd(t)‖ ≤ ẋd, and ‖ẍd(t)‖ ≤ ẍd∀t ∈ R≥0, where
xd, ẋd, ẍd ∈ R>0 are known constants. Taking the time derivative of

(2) and substituting the model dynamics in (1) yields

ė = f(x) + u− ẋd. (3)

III. CONTROL DEVELOPMENT

A. LSTM NN Model

The LSTM NN can be represented in continuous-time1 based on [20]
and Euler’s method [26] as

f ∗ (η, h, θ) = σg ◦
(
V �
f η +W�

f h
)

i (η, h, θ) = σg ◦
(
V �
i η +W�

i h
)

o (η, h, θ) = σg ◦
(
V �
o η +W�

o h
)

c∗ (η, h, θ) = σc ◦
(
V �
c η +W�

c h
)

(4)

where η : R≥0 → Rl1 denotes the LSTM input. The cell state and hid-
den state are denoted by c : R≥0 → Rl2 and h : R≥0 → Rl2 , respec-
tively, whereh(0) = c(0) = 0, l1 ∈ R>0 denotes the size of the LSTM
input, and l2 ∈ R>0 denotes the number of neurons. The forget gate,
input gate, cell gate, and output gate are represented by f ∗(η, h, θ) ∈
Rl2 , i(η, h, θ) ∈ Rl2 , c∗(η, h, θ) ∈ Rl2 , and o(η, h, θ) ∈ Rl2 , respec-
tively. The sigmoid and tanh activation functions are represented by
σg : Rl2 → Rl2 and σc : Rl2 → Rl2 , respectively. The weight ma-
trices are represented by V �

f , V �
c , V �

i , V �
o ∈ Rl2×l1 , V �

h ∈ Rl1×l2 ,
W�

f ,W�
c ,W�

i ,W�
o ∈ Rl2×l2 . The weights can be represented as a

concatenated state vector θ ∈ Rl3 defined as θ � [vec(Vc)
�, vec(Vi)

�,
vec(Vf )

�, vec(Vo)
�, vec(Vh)

�, vec(Wc)
�, vec(Wi)

�, vec(Wf )
�,

vec(Wo)
�]�, where l3 = 5l1l2 + 4l2l2. The cell state and hidden state

dynamics are defined as

ċ = − bcc+ bcΨc (η, c, h, θ)

ḣ = − bhh+ bhΨh (η, c, h, θ)

respectively, where bc, bh ∈ R>0 denote user-selected constants. The
functions Ψc(η, c, h, θ) ∈ Rl2 , Ψh(η, c, h, θ) ∈ Rl2 are defined as

Ψc (η, c, h, θ) = f ∗ (η, h, θ)� c+ i (η, h, θ)� c∗ (η, h, θ)

Ψh (η, c, h, θ) = o (η, h, θ)� (σc ◦Ψc (η, c, h, θ))

respectively. To ensure the LSTM output is the appropriate dimension,
a fully connected layer is added to the LSTM cell in (4). Thus, the
output of the LSTM Ψ(η, c, h, θ) ∈ Rl1 can be modeled as

Ψ(η, c, h, θ) = V �
h Ψh (η, c, h, θ) (5)

where Vh denotes the output weight matrix and l1 = n.

B. Lb-SLSTM Architecture

The SLSTM architecture has grown in popularity due to its ability
to effectively leverage the improved function approximation perfor-
mance of deep architectures and long short-term dependencies in time
sequences. Stacking the LSTM cells and creating a deep architecture

1The LSTM cell in [25] is in discrete-time and is converted into a continuous-
time model as shown in Fig. 1. This conversion of the SLSTM model in (1) to
continuous-time was done to make the architecture better suited for control of
continuous-time systems. Derived from the continuous-time model in (4), bc
and bh can be fine-tuned to improve the performance of the continuous-time
LSTM cell.
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Fig. 1. SLSTM model Φ(η1, C,H,Θ) for the pth LSTM cell is denoted by Ψp ∀p ∈ {1, . . . ,m}, where the input of Ψp is denoted by ηp. Then, the
output of the pth LSTM cell with a shortcut signal is represented by ηp = αηp−1 +Ψp−1 for all p ∈ {2, . . . ,m}, and the output of the SLSTM model
is αηm +Ψm. The symbol × in Fig. 1 denotes the Hadamard product.

yields faster learning and has been empirically shown to improve
function approximation performance [2]. Therefore, the SLSTM in
Fig. 1 is constructed by stacking LSTM cells such that the output of
each LSTM cell works as the input to the subsequent LSTM cell. Since
the SLSTM architecture is deep, a shortcut connection is implemented
across each LSTM cell to address the challenges of vanishing gradi-
ents [22]. Let Ψp refer to the pth LSTM cell modeled in (5) defined
as Ψp � Ψ(ηp, cp, hp, θp) ∀p ∈ {1, . . . ,m}, where ηp : R≥0 → Rl1 ,
cp : R≥0 → Rl2 , hp : R≥0 → Rl2 , and θp ∈ Rl3 denote the input,
cell state, hidden state, and weights vector of Ψp, respectively, and
m ∈ Z>0 denotes the number of LSTM cells. The pth input ηp can be
represented in a recursive relation as

ηp �
{
αηp−1 +Ψp−1, p ∈ {2, . . . ,m}
η1, p = 1

(6)

where α ∈ {0, 1} is a user-selected boolean value that denotes the
existence of shortcut connections across the LSTM cells. As shown in
(6), when α = 0, the SLSTM architecture has no shortcut connections,
and when α = 1, the SLSTM architecture has shortcut connections.
Therefore, using (6), the SLSTM output Φ(η1, C,H,Θ) ∈ Rl1 can be
modeled as

Φ(η1, C,H,Θ) � αηm +Ψm (7)

where Θ � [θ�1 , . . . , θ�m]� ∈ Rml3 denotes the weights for the
entire SLSTM architecture, and the concatenated vectors of the cell
states and hidden states are defined as C � [c�1 , . . . , c

�
m]� ∈ Rml2 and

H � [h�
1 , . . . , h

�
m]� ∈ Rml2 , respectively.

Based on the universal function approximation property [27], let
C(X ) represent the space of continuous functions over the setX ⊆ Rl1 ,
where x ∈ X . The function space of SLSTM is dense in C(X ). There-
fore, for any given ε ∈ R>0, there exist ideal weight matrices Θ such
that‖ε(x)‖ ≤ ε ∀x ∈ X , whereε : Rl1 → Rl1 represents an unknown

function reconstruction error. Then, the unknown drift dynamics f(x)
in (1) can be modeled by the SLSTM architecture in (7) as

f(x) = Φ (x,C,H,Θ) + ε(x) (8)

where the input of the SLSTM model η1 ∈ Rl1 is equal to the system
state x and the dimension l1 = n.

Assumption 1: There exists a known constant Θ ∈ R>0 such that
the ideal weights Θ for (7) can be bounded as ‖Θ‖ ≤ Θ [28, Assump-
tion 1].2

C. Lb-SLSTM Weight Adaptation Law

Using the SLSTM model in (7), an adaptive SLSTM estimate is
constructed in this section and is implemented in the controller as a
feedforward estimate to approximate the unknown drift dynamics f(x).
Since the ideal weights are unknown, adaptive weight estimates are
implemented and updated using a Lyapunov-based weight adaptation
law.

Let Ψ̂p refer to the estimate of pth LSTM cell modeled in (5) de-
fined as Ψ̂p � Ψ(η̂p, ĉp, ĥp, θ̂p)∀p ∈ {1, . . . ,m}, where η̂p : R≥0 →
Rl1 , ĉp : R≥0 → Rl1 , and ĥp : R≥0 → Rl1 denote the input of the
LSTM estimate, cell state estimate, and hidden state estimate of
Ψ̂p, respectively. The weight estimates for the pth LSTM cell θ̂p :

R≥0 → Rl3 are defined as θ̂p � [vec(V̂p,c)
�, vec(V̂p,i)

�, vec(V̂p,f )
�,

vec(V̂p,o)
�, vec(V̂p,h)

�, vec(Ŵp,c)
�, vec(Ŵp,i)

�, vec(Ŵp,f )
�,

vec(Ŵp,o)
�]�∀p ∈ {1, . . . ,m}. Furthermore, let the overall weight

estimates for the SLSTM model Θ̂ : R≥0 → Rml3 be defined as Θ̂ �
[θ̂�1 , . . . , θ̂�m]�, and let the shorthand notation for the SLSTM

adaptive estimate of f(x) be defined as Φ̂ � Φ(x, Ĉ, Ĥ, Θ̂) ∈ Rl1 .

2The robust adaptive work in [29] could provide extensions for an unknown
Θ.
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The overall cell states and hidden states estimates of Φ̂ are defined
as Ĉ � [ĉ�1 , . . . , ĉ

�
m]� ∈ Rml2 and Ĥ � [ĥ�

1 , . . . , ĥ
�
m]� ∈ Rml2 , re-

spectively. Therefore, the input estimate of each LSTM is designed as

η̂p �
{
αη̂p−1 + Ψ̂p−1, p ∈ {2, . . . ,m}
x, p = 1.

(9)

Based on the subsequent stability analysis, the adaptation law for the
weight estimates of the SLSTM in (7) is designed as

˙̂
Θ � ΓΦ̂′�e (10)

where Γ ∈ Rml3×ml3 is a positive-definite adaptation gain matrix, and

Φ̂′ ∈ Rl1×ml3 is a shorthand notation denoting the Jacobian Φ̂′ � ∂Φ̂

∂Θ̂
.

To facilitate the subsequent development, let the shorthand notation Φ̂′
p

be defined as Φ̂′
p � ∂Φ̂

∂θ̂p
∀p ∈ {1, . . . ,m}. Then, the Jacobian Φ̂′ can

be expressed as Φ̂′ � [Φ̂′
1, . . . , Φ̂

′
m]. Using (12) and (15), the term Φ̂′

p

can be expressed as

Φ̂′
p =

⎛⎝ �

m∏
l=p+1

(αIn + Ξl)

⎞⎠Λp ∀p ∈ {1, . . . ,m} (11)

where Λp � ∂Ψ̂p

∂θ̂p
and Ξp � ∂Ψ̂p

∂η̂p
.3

Remark 1: The term Λp can be expressed as Λp �[Λ
p,V̂p,c

, Λ
p,V̂p,i

,

Λ
p,V̂p,f

, Λ
p,V̂p,o

, Λ
p,V̂p,h

, Λ
p,Ŵp,c

, Λ
p,Ŵp,i

, Λ
p,Ŵp,f

, Λ
p,Ŵp,o

] ∀p ∈
{1, . . . ,m}, where Λp,νp � ∂Ψ̂p

∂μp
∀νp ∈ {V̂p,c, V̂p,i, V̂p,f , V̂p,o, V̂p,h,

Ŵp,c, Ŵp,i, Ŵp,f , Ŵp,o}. Using the chain rule and properties of the
vectorization operator, the terms in Λp,νp can be computed as

Λ
p,V̂p,h

= In ⊗ Ψ̂�
p,h

Λp,μp = V̂ �
p,hΨ̂

′
p,h,μp

(12)

∀p ∈ {1, . . . ,m} and ∀μp ∈{V̂p,c, V̂p,i, V̂p,f , V̂p,o, Ŵp,c, Ŵp,i, Ŵp,f ,
Ŵp,o}, where Ψ̂p,h � Ψh(η̂p, ĉp, ĥp, θ̂p)∀p ∈ {1, . . . ,m}, and the

terms in Ψ̂′
p,h,μp

in (12) are defined as Ψ̂′
p,h,μp

� ∂Ψ̂p,h

∂μp
∀μp ∈ {V̂p,c,

V̂p,i, V̂p,f , V̂p,o, Ŵp,c, Ŵp,i, Ŵp,f , Ŵp,o}. Using the chain rule, the
properties of the Hadamard product, and the properties of vectorization,
the terms Ψ̂′

p,h,V̂p,o

, Ψ̂′
p,h,Ŵp,o

, and Ψ̂′
p,h,μp

can be computed as

Ψ̂′
p,h,V̂p,o

=diag
(
σc

(
Ψ̂p,c

))(
σ′
g

(
V̂ �
p,oη̂p+Ŵ�

p,oĥp

)) (
Il2 ⊗ η̂�

p

)
Ψ̂′

p,h,Ŵp,o
=diag

(
σc

(
Ψ̂p,c

))(
σ′
g

(
V̂ �
p,oη̂p+Ŵ�

p,oĥp

))(
Il2 ⊗ ĥ�

p

)
Ψ̂′

p,h,μp
= diag

(
σg

(
V̂ �
p,oη̂p + Ŵ�

p,oĥp

))
σ′
c

(
Ψ̂p,c

)
Ψ̂′

p,c,μp,h

(13)

respectively, ∀μp ∈ {V̂p,c, V̂p,i, V̂p,f , Ŵp,c, Ŵp,i, Ŵp,f} and
∀p ∈ {1, . . . ,m}, where σ′

j � ∂
∂vec(y)σj(y)∈ Rl2×l2∀y ∈ Rl2 ∀j ∈

{c, g}, Ψ̂′
p,c,μp

� ∂Ψ̂p,c

∂μp
∀μp ∈ {V̂p,c, V̂p,i, V̂p,f , Ŵp,c, Ŵp,i, Ŵp,f},

and Ψ̂p,c � Ψc(η̂p, ĉp, ĥp, θ̂p)∀p ∈ {1, . . . ,m}. Similarly, the terms

3When α = 1 and the SLSTM architecture is designed to have shortcut
connections, the term α in (11) is nonzero and therefore, the adaptation law
is less susceptible to vanishing gradient [30].

Ψ̂′
p,c,μp

in (13) can be computed as

Ψ̂′
p,c,V̂p,f

= diag (ĉp)σ
′
g

(
V̂ �
p,f η̂p + Ŵ�

p,f ĥp

) (
Il2 ⊗ η̂�

p

)
Ψ̂′

p,c,V̂p,i

= diag
(
σc

(
V̂ �
p,cη̂p + Ŵ�

p,cĥp

))
σ′
g

(
V̂ �
p,iη̂p + Ŵ�

p,iĥp

)
(
Il2 ⊗ η̂�

p

)
Ψ̂′

p,c,V̂p,c
= diag

(
σg

(
V̂ �
p,iη̂p + Ŵ�

p,iĥp

))
σ′
c

(
V̂ �
p,cη̂p + Ŵ�

p,cĥp

)
(
Il2 ⊗ η̂�

p

)
Ψ̂′

p,c,Ŵp,f

= diag (ĉp)σ
′
g

(
V̂ �
p,f η̂p + Ŵ�

p,f ĥp

)(
Il2 ⊗ ĥ�

p

)
Ψ̂′

p,c,Ŵp,i

= diag
(
σc

(
V̂ �
p,cη̂p + Ŵ�

p,cĥp

))
σ′
g

(
V̂ �
p,iη̂p + Ŵ�

p,iĥp

)
(
Il2 ⊗ ĥ�

p

)
Ψ̂′

p,c,Ŵp,c
= diag

(
σg

(
V̂ �
p,iη̂p + Ŵ�

p,iĥp

))
σ′
c

(
V̂ �
p,cη̂p + Ŵ�

p,cĥp

)
(
Il2 ⊗ ĥ�

p

)
(14)

∀p ∈ {1, . . . ,m}.
Furthermore, using the chain rule, the product rule, the properties of

the Hadamard product, and the properties of vectorization, the term Ξp

in (11) can be computed as

Ξp = V �
h diag

(
σc

(
Ψ̂p,c

))
σ′
g

(
V̂ �
p,oη̂p + Ŵ�

p,oĥp

)
V̂ �
p,o

+ V �
h diag

(
σg

(
V̂ �
p,oη̂p + Ŵ�

p,oĥp

))
σ′
c

(
Ψ̂p,c

)
Ψ̂′

p,c,η̂p

(15)

∀p ∈ {1, . . . ,m}, where Ψ̂′
p,c,η̂p

� ∂Ψ̂c
∂η̂p

. Using the chain rule, the
product rule, the properties of the Hadamard product, and the prop-
erties of vectorization, the term Ψ̂′

p,c,η̂p
in (15) can be computed

as

Ψ̂′
p,c,η̂p

= diag (ĉp)σ
′
g

(
V̂ �
p,f η̂p + Ŵ�

p,f ĥp

)
V̂ �
p,f

+ diag
(
σc

(
V̂ �
p,cη̂p + Ŵ�

p,cĥp

))
σ′
g

(
V̂ �
p,iη̂p + Ŵ�

p,iĥp

)
V̂ �
p,i

+ diag
(
σg

(
V̂ �
p,iη̂p + Ŵ�

p,iĥp

))
σ′
c

(
V̂ �
p,cη̂p + Ŵ�

p,cĥp

)
V̂ �
p,c

(16)

∀p ∈ {1, . . . ,m}.
To deal with technical difficulties raised by the nonlinear structure of

neural networks, such as the SLSTM model in (7), results, such as [14],
[31], and [32] implement first-order Taylor series approximation-based
methods. For the Lb-SLSTM given by (7), we also employ a first-order
Taylor series approximation-based error model given by [28, eq. (22)]

Φ̃ � Φ̂′Θ̃ +O
(∥∥∥Θ̃∥∥∥) (17)

where the weight estimation error Θ̃ : R≥0 → Rml3 is defined as Θ̃ �
Θ− Θ̂, the term O(‖Θ̃‖) ∈ Rl1 denotes the higher order terms, and
the shorthand notation Φ̃ ∈ Rl1 is defined as Φ̃ � Φ(x, Ĉ, Ĥ,Θ)− Φ̂.
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D. Control Design

Based on the following stability analysis and using the developed
adaptive SLSTM estimate, the control input u : R≥0 → Rn is designed
as

u � −Φ̂− kee− kssgn(e) + ẋd (18)

where ke, ks ∈ R>0 denote user-selected constants, and sgn(e) de-
notes a discontinuous sliding mode term, which is designed based on
stability analysis to compensate for system uncertainties. Substituting
the control input in (18) into (3) and adding and subtracting the term
Φ(x, Ĉ, Ĥ,Θ) yields the closed-loop error system

ė = fe + Φ̃ + ε(x)− kee− kssgn(e) (19)

where fe � Φ(x,C,H,Θ)− Φ(x, Ĉ, Ĥ,Θ). Substituting (17) into
(19) yields

ė = fe + Φ̂′Θ̃ +O
(∥∥∥Θ̃∥∥∥)+ ε(x)− kee− kssgn(e). (20)

IV. STABILITY ANALYSIS

In this section, a Lyapunov-based stability analysis is performed for
the developed controller and adaptive SLSTM architecture. Consider
the Lyapunov function candidate VL : Rl4 → R≥0 defined as

VL(z, t) �
1

2
e�e+

1

2
Θ̃�Γ−1Θ̃ (21)

where z : R≥0 → Rl4 is defined as z � [e�, Θ̃�]� and l4 ∈ R>0

is defined as l4 � n+ml3. The candidate Lyapunov function in
(21) can be bounded as β1‖z‖2 ≤ VL(z) ≤ β2‖z‖2, where β1 �
min{ 1

2
, 1
2
λmin{Γ−1}} and β2 � max{ 1

2
, 1
2
λmax{Γ−1}}. Since the

signum term is discontinuous, a generalized time-derivative is used
in the stability analysis. The Filippov set-valued map defined in [33,
eq. (2b)] is denoted by K[·]. Consider a Lebesgue measurable and
locally essentially bounded function h : Rn × R≥0 → Rn. Then, the
function z(t) : I → Rn is called a Filippov solution of ẏ = h(z) on the
interval I ⊆ R≥0 if y is absolutely continuous on I and ẏ ∈ K[h](z)
for almost all t ∈ I. Let the state z(t) denote a Filippov solution to the
differential equation ż ∈ K[h∗](z), where the state h∗ : Rl4 → Rl4 is

defined as h∗(z) � [ė,
˙̃
Θ]�.

The generalized time-derivative ofVL via the Filippov trajectories of

ż = h∗(z) can be expressed as ˙̃VL(z) �
⋂

z∈∂VL(z)

z�[K[h∗]�(z), 1]�,

where ∂VL(z) denotes the Clarke generalized gradient of VL(z). Since
VL(z) is continuously differentiable in z, ∂VL(z) = {∇VL(z)},where
∇ denotes the gradient operator. Taking the generalized time derivative
of VL yields

˙̃VL ⊆
[
e�, Θ̃�

]
K

[
ė

Γ−1 ˙̃
Θ

]
. (22)

Then, the term V̇L yields

V̇L

a.a.t.∈ e�K[ė]− Θ̃�K
[
Γ−1 ˙̂

Θ
]
.

Substituting the weight adaptation law in (10) and the closed-loop error
system in (20) into (22) yields

V̇L

a.a.t.∈ e�
(
fe + Φ̂′Θ̃ +O

(∥∥∥Θ̃∥∥∥)+ ε(x)− kee− ksK [sgn] (e)
)

− Θ̃�Γ−1
(
ΓΦ̂′�e

)
.

Applying K[·] and canceling out the last term yields

V̇L

a.a.t.≤ e�
(
fe + Φ̂′Θ̃ +O

(∥∥∥Θ̃∥∥∥)+ ε(x)− kee− kssgn(e)
)

− Θ̃�Φ̂′�e.

Canceling corresponding terms yields

V̇L

a.a.t.≤ −kee
�e− ks ‖e‖1 + e�

(
ε(x) +O

(∥∥∥Θ̃∥∥∥)+ fe

)
. (23)

To facilitate the subsequent analysis, let the open and connected com-
pact sets D ⊂ Rl4 and S ⊂ Rl4 be defined as S � {ς ∈ Rl4 : ‖ς‖ ≤√

β1
β2

ω} and D � {ς ∈ Rl4 : ‖ς‖ ≤ ω}, respectively, where ω ∈ R>0

denotes a user-selected bounding constant. Lemma 1 in [20] states that
the norms of the hidden and cell states, can be bounded by known
constants. By the design of LSTM and the use of sigmoid and tanh
activation functions, the norms of C, H , Ĉ, and Ĥ can also be bounded
by known constants. Using this and Assumption 1, there exist known
constants O ∈ R>0 and fe ∈ R>0 such that O(‖Θ̃‖) and fe can be
bounded as ‖O(‖Θ̃‖)‖ ≤ O and ‖fe‖ ≤ fe, respectively, when z ∈ D.
Substituting these bounds into (23) yields

V̇L

a.a.t.≤ −kee
�e− ‖e‖ (ks − ε−O − fe

)
(24)

when z ∈ D. Since the universal function approximation property is
only on the compact set X , the following analysis has to guarantee
x ∈ X ∀t ≥ 0. It is shown that x ∈ X ∀t ≥ 0 by proving z lies in a
compact domain, specifically that z ∈ D ∀t ≥ 0 when z is initialized
such that z(0) ∈ S . Then, it can be shown that x ∈ X ∀t ≥ 0, and
therefore, the universal function approximation property holds.

Theorem 1: The controller in (18) and the weight adaptation law
in (10) ensure asymptotic tracking error convergence in the sense that
‖x− xd‖ → 0 as t → ∞ provided z(0) ∈ S and the following gain
condition is satisfied

ks > ε+O + fe. (25)

Proof: Consider the candidate Lyapunov function in (21). Provided
the sufficient gain condition in (25) is met, (24) can be further bounded
as

V̇L

a.a.t.≤ −kee
�e (26)

when z ∈ D. To show z ∈ D ∀t ≥ 0, using (21) and the fact that

V̇L(z(t))
a.a.t.≤ 0 when z ∈ D implies z(t) can be bounded as ‖z(t)‖ ≤√

β2
β1

‖z(0)‖. Thus, if ‖z(0)‖ ≤ ω
√

β1
β2

, then ‖z(t)‖ ≤ ω ∀t ≥ 0, and

e, Θ̃ ∈ L∞. Therefore, if z is initialized such that z(0) ∈ S , then z ∈ D
∀t ≥ 0. To show x ∈ X , let the open and connected set Υ ⊆ X be de-
fined as Υ � {ς ∈ X : ‖ς‖ ≤ ω + xd}. Using the fact that ‖z(t)‖ ≤ ω
∀t ≥ 0, it can be shown that ‖e(t)‖ ≤ ω ∀t ≥ 0. Hence, using (2),
x can be bounded as ‖x‖ ≤ ω + xd. Therefore, if z(0) ∈ S , then

x ∈ Υ ⊆ X . Using (21) and V̇L

a.a.t.≤ 0, e, Θ̃ ∈ L∞. Θ is bounded due to
Assumption 1 and xd is bounded by design. Using e, Θ̃,Θ, xd ∈ L∞
implies x, Θ̂ ∈ L∞. Using [20, Lemma 1], Ĉ, Ĥ ∈ L∞. Using (10),
the fact that Ĉ, Ĥ, Θ̂, x ∈ L∞ and the fact that Φ̂ is smooth implies
˙̂
Θ ∈ L∞. Using (18) and the fact that Ĉ, Ĥ, Θ̂, x, e ∈ L∞ implies
u ∈ L∞. Then, using the extension of LaSalle–Yoshizawa theorem for
nonsmooth systems [34], it can be shown that lim

t→∞
‖e(t)‖ = 0, resulting

in asymptotic tracking error convergence. �
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TABLE I
MEAN AND STANDARD DEVIATION OF PERFORMANCE COMPARISON

RESULTS FOR 50 RUNS

V. SIMULATIONS

The Lb-SLSTM adaptive controller is implemented in simulations
on an eight-state nonlinear system. The two comparative baselines
implement the DNN in [14] and the LSTM in [20] under the same
architecture of controllers, adaptive laws, and dynamic systems. The
Lyapunov-based adaptation eliminates the need for a training set.

For the simulations, the unknown drift vector field in (1) is modeled
as f(x) = Ad(x), where A ∈ R8×64 is a random matrix with all ele-
ments distributed uniformly as U(0, 0.05), and d(x) � [x�, cos(x)�,
sin(x)�, tanh(x)�, (x� x)�, (x� x� x)�, (x� x� x+ x� x
+ x)�, (sin(x) + tanh(x) + x)�]�. The simulations are performed
for 100 s with a 0.001 s step size. The initial state x(0) is selected from
a uniform distribution of U(−3, 3). The initial weights are generated
from a uniform distribution of U(−0.3, 0.3) for each iteration. The
desired trajectory is designed as xd(t) = [sin(πt

2
), . . . , sin(πt

2
)]�. The

SLSTM in (7) is designed with five LSTM cells, with a shortcut
connection across each LSTM cell (i.e., α = 1) and l2 = 5 neurons.
The gains are selected as bc = 1, bh = 1, ke = 11, ks = 0.01, and
Γ = 0.3I1500.

The LSTM and DNN controllers were constructed by replacing the
Lb-SLSTM term in (18) with the adaptive Lb-LSTM model in [20] and
the adaptive Lb-DNN model in [14], respectively. For a fair comparison,
the same learning gain and robust gains were selected for all three
controllers. The Lb-DNN architecture was designed with four hidden
layers with five neurons each and tanh activation functions. Compared
to the Lb-SLSTM architecture in (7), the Lb-LSTM model in [20]
implements only one LSTM cell with the same number of neurons
(i.e., l2 = 5 neurons).

Since the Lb-SLSTM model and baseline models are sensitive to
weight initialization, a Monte Carlo approach was used to initial-
ize the weight estimates. In this method, 1000 simulations are per-
formed, where the initial weights in each simulation are selected from
U(−0.3, 0.3), and the cost J =

∫ 100

0
e�(t)e(t)dt is evaluated in each

simulation. The weights with the lowest cost are selected.
Table I provides the mean and standard deviation of the norm of

the root mean square (rms) tracking error, function approximation
error, and control input for 50 iterations. All three adaptive NN ar-
chitectures compensate for the system uncertainty and accomplish
trajectory tracking. Based on a t-test, the Lb-SLSTM is statistically
significant (p < 0.001) from Lb-LSTM and Lb-DNN for tracking
error, function approximation error, and control input. Based on a
representative run as shown in Figs. 2 and 3, all three models converge
to their final error bounds within approximately 0.5 s. However, the
Lb-SLSTM demonstrates better tracking performance with improved
function approximation performance and less control effort. In the
steady state period, the Lb-DNN and Lb-LSTM models yield periodic
peaks in tracking and function approximation error due to the repetitive
design of the desired trajectory. This behavior is eliminated with the
Lb-SLSTM model. During the steady state period, the error bound for
the Lb-LSTM gradually decreases over time (from approximately 0.25
to 0.08), showing continual learning of the Lb-LSTM model throughout
the entire simulation run time. Conversely, the Lb-DNN controller

Fig. 2. Plots of the norms of rms tracking error ‖e‖ over time for the
Lb-SLSTM, Lb-LSTM, and Lb-DNN adaptive controllers for one repre-
sentative run. The zoomed-in view shows characteristic plot features
from 10 to 20 s.

Fig. 3. Plots of the norms of rms function approximation error ‖f(x)−
̂Φ‖ over time for the Lb-SLSTM, Lb-LSTM, and Lb-DNN adaptive con-
trollers for one representative run. The zoomed-in view shows charac-
teristic plot features from 10 to 20 s.

maintains roughly the same tracking error bound through the simulation
run time (approximately 0.8). The maximum steady state errors for
the Lb-DNN, Lb-LSTM, and Lb-SLSTM architectures were approx-
imately 0.8, 0.25, and 0.01, respectively. Moreover, the Lb-SLSTM
model yielded a 96.00% and 98.75% improvement in maximum steady
state error performance, when compared to the Lb-LSTM and Lb-DNN
models, respectively.

Overall, the SLSTM-based controller and developed weight adap-
tation law resulted in improved tracking error performance. When
compared to the Lb-LSTM and Lb-DNN controllers in Table I, the
Lb-SLSTM controller yielded an average improvement of 22.24%
and 70.01% in tracking error performance, as well as 40.16% and
81.32% in function approximation error performance, respectively,
with comparable control effort.

VI. CONCLUSION

This article introduces an adaptive control framework that leverages
a deep LSTM NN architecture to address real-time learning challenges
in dynamic systems with unknown drift dynamics. The developed
Lb-SLSTM architecture incorporates stacked LSTM cells and shortcut

Authorized licensed use limited to: University of Florida. Downloaded on September 12,2025 at 19:32:21 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 70, NO. 9, SEPTEMBER 2025 6205

connections and is implemented in the controller as a feedforward
estimate to adaptively learn model uncertainties. Stability-driven adap-
tation laws are developed for the weights of the Lb-SLSTM architec-
ture using Lyapunov stability-driven techniques. A Lyapunov-based
stability analysis ensures asymptotic tracking error convergence for
the developed adaptive Lb-SLSTM control framework. In comparative
simulations on an eight-state nonlinear system, the Lb-SLSTM model
yielded an improvement of 96.00% and 98.75% in maximum steady
state error performance, and an average improvement of 22.24% and
70.01% in tracking error performance, as well as 40.16% and 81.32%
in function approximation error performance when compared to the
Lb-LSTM and Lb-DNN models, respectively.
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