
466 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 71, NO. 1, JANUARY 2026

Adaptive Output Feedback Control Using Lyapunov-Based
Deep Recurrent Neural Networks (Lb-DRNNs)

Emily J. Griffis , Omkar Sudhir Patil , Wanjiku A. Makumi , and Warren E. Dixon , Fellow, IEEE

Abstract—Unlike traditional feedforward neural networks, re-
current neural networks (RNNs) possess a recurrent connection
that allows them to retain past information. This internal memory
enables RNNs to effectively model and capture time-varying and
accumulative effects observed in dynamic systems, which cannot
be achieved by static feedforward neural networks, making RNNs
more suitable for tasks, such as state estimation and output feed-
back (OFB) control. Motivated by the dynamic behavior of RNNs,
this article develops an adaptive Lyapunov-based deep RNN (Lb-
DRNN) OFB controller for uncertain nonlinear systems. Specifi-
cally, an Lb-DRNN observer is designed to adaptively estimate
the unknown states of the system and is integrated into an OFB
control framework. To ensure real-time adaptation and online learn-
ing, the DRNN weights are dynamically adjusted using Lyapunov-
based adaptation laws. A Lyapunov-based stability analysis proves
asymptotic estimation and tracking error convergence. Validation
simulation experiments on an unmanned underwater vehicle sys-
tem yielded a 31.85% and 86.21% improvement in normalized linear
and angular tracking error, respectively, when compared to the
shallow RNN-based OFB controller.

Index Terms—Adaptive control, deep learning, Lyapunov meth-
ods.

I. INTRODUCTION

Neural networks (NNs) have been widely used as a feedforward
estimate of unstructured uncertainties in closed-loop control methods
(cf., results, such as [1], [2], [3], [4], [5], [6], [7], [8], [9], and [10]).
However, typical NN-based control methods rely on full access to
the system states, which can be impractical or impossible for many
real-world systems. Motivated to relax full state feedback requirements,
results, such as [8] and [9], develop adaptive NN-based output feedback
(OFB) controllers, but these results are restricted to feedforward NNs
with a single hidden layer. Feedforward NNs have a static structure
that only has access to current state information. Previous findings
have demonstrated that incorporating a memory component capable of
accessing previous state information reduces the required training data
and accelerates the learning process [10], [11], [12]. Building on these
insights, results, such as [13], augment static NN-based controllers with
an external memory, resulting in faster learning and improved function
approximation. Although this approach introduces a working memory
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to the NN, the NN remains static and feedforward, with the augmented
memory being external to the NN architecture. Recurrent neural net-
works (RNNs) are a dynamic type of NN that are specifically designed
to handle sequential or temporal data. Unlike feedforward NNs, which
process inputs independently and have no internal memory, RNNs have
a recurrent connection that allows them to maintain information from
previous time steps. This internal memory allows RNNs to capture and
model time-varying and cumulative effects present in certain dynamic
systems that feedforward NNs cannot. This ability to capture dynamic
behavior makes RNNs better suited to construct state observers for
OFB control of uncertain nonlinear systems compared to traditional
feedforward NNs.

Motivated by the improved memory capabilities of RNNs, previous
results, such as [14], [15], [16], and [17], develop RNN-based observers
and OFB controllers. While the RNN architectures developed in [15]
and [17] are implemented in observers, these results do not consider an
OFB control architecture. RNN architectures in results, such as [14],
are implemented in an OFB controller, but are trained offline by
minimizing a loss function based on prior collected datasets. Offline
training techniques do not provide explicit guarantees of stability,
and there is a risk that the trained controller may become unstable.
In contrast, stability-driven adaptation ensures stability of the control
system throughout its operation, adapts to changes in the system dy-
namics in real time, and is more robust against system uncertainties
and disturbances compared to offline approaches [18]. Offline training
techniques require a sufficiently rich dataset for training, which may
not always be feasible. Thus, stability-driven adaptive control methods
are particularly advantageous in dynamic and uncertain environments
where accurate modeling and obtaining prior knowledge of the system
dynamics may be challenging or impractical. Results, such as [9]
and [16], focus on the design and analysis of adaptive RNN architectures
that use Lyapunov-based analysis techniques. However, these results,
such as other previous RNN-based OFB controllers developed in [16],
[17], and [19], are restricted to RNNs with a single hidden layer.

While traditional shallow NNs are capable of approximating non-
linear functions, deep NNs (DNNs) have grown in recent popularity
due to their improved performance (cf., [20]). Specifically, DNNs
have been shown to be exponentially more efficient than shallow
NNs regarding the number of total weights required to achieve com-
parable function approximation performance [21]. Thus, motivation
exists to develop an adaptive deep RNN (DRNN) architecture. How-
ever, the more complex structure and nested nonlinearities of DRNNs
make developing stability-driven weight adaptation laws difficult. Our
preliminary work in [15] develops an adaptive DRNN-based observer
using Lyapunov-stability-driven techniques but does not incorporate
the developed adaptive RNN architecture and observer state estimates
into an OFB control input. Constructing an OFB controller using the
DRNN-based observer is technically challenging due to the combined
objectives of state estimation and tracking. As a result, the stability
analysis involves coupling between the estimation and tracking errors,
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Fig. 1. Block diagram of adaptive DRNN-based OFB controller.

which introduces mathematical challenges in deriving the control and
adaptation laws.

In this article, an OFB controller is developed for uncertain nonlinear
systems using adaptive DRNNs. Specifically, the contributions of this
article are as follows.
1) Inspired by the dynamic nature and memory capabilities of RNNs,

a DRNN observer is designed to adaptively estimate the unknown
states of the system and is incorporated into a control framework.

2) Unlike our preliminary work in [15], the developed OFB controller
is designed to achieve a twofold control objective: asymptotic
estimation of the unmeasurable states and asymptotic tracking
control.

3) Lyapunov-based stability-driven adaptation laws are developed to
adjust the DRNN weights online based on the tracking and observer
errors (hence, we will refer to the architecture as Lyapunov-based
(Lb-). The developed adaptation laws allow the Lb-DRNN to adapt,
learn, and control the system based on the system output in real
time.

4) A Lyapunov-based stability analysis shows the developed observer
and the overall control design yield asymptotic estimation and
trajectory tracking.

Validation simulation experiments were performed on an unmanned
underwater vehicle (UUV) system that resulted in a 31.85% and 86.21%
improvement in linear and angular tracking error, respectively, when
compared to the shallow RNN-based OFB controller.

I. Notations and Preliminaries

The space of essentially bounded Lebesgue measurable functions is
denoted by L∞. The Kronecker product is denoted by ⊗. The 1-norm
and the convolution operator are denoted by ‖ · ‖1 and ∗, respectively.
The vectorization operator is denoted by vec(·), i.e., givenA � [ai,j ] ∈
R
n×m, vec(A) � [a1,1, . . . , an,1, . . . , a1,m, . . . , an,m]�. The vector-

ization operator satisfies the following properties [22, Prop. 7.1.9].
Given any A ∈ R

p×a, B ∈ R
a×r , and C ∈ R

r×s

vec(ABC) =
(
C� ⊗A

)
vec(B) (1)

and consequently

∂

∂vec(B)
vec(ABC) = C� ⊗A. (2)

Function compositions are denoted using the symbol ◦, e.g., given
suitable functions g and h, (g ◦ h)(x) = g(h(x)). The right-to-

left matrix product operator is represented by
�∏

, i.e.,
�

Π
m

p=a Ap =

Am . . . Aa+1Aa and
�

Π
m

p=a Ap = I if a > m, where I denotes the
identity matrix. The pseudoinverse of the full row rank matrix A ∈
R
n×m is denoted by A+, where A+ � A�(AA�)−1. The Filippov

set-valued map defined in [23, eq. (2b)] is denoted by K[·]. Consider
a Lebesgue measurable and locally essentially bounded function h :
R
n × R≥0 → R

n. Then, the function y : I → R
n is called a Filippov

solution of ẏ = h(y, t) on the interval I ⊆ R≥0 if y is absolutely

continuous on I and ẏ
a.a.t∈ K[h](y, t), where a.a.t. denotes almost

all time.

II. PROBLEM FORMULATION

A. Model Dynamics

Consider a second-order nonlinear system modeled as1

ẋ1 = x2

ẋ2 = f(x) + g (x1)u

y = x1 (3)

where x � [x�1 x
�
2 ]

� ∈ R
2n and u ∈ R

m denote the generalized state
and control input of the system, respectively, f : R2n → R

n denotes
a continuously differentiable function, g : Rn → R

n×m denotes a
continuous function, and y ∈ R

n denotes the measurable output of
the system. The control objective is to design an adaptive DRNN
controller to track a desired trajectory xd,1 : R≥0 → R

n despite the
system uncertainty and unavailability of the state x2. It is assumed that
the desired trajectory xd,1 is designed to be sufficiently smooth such
that |xd,1(t)| ≤ xd, |ẋd,1(t)| ≤ ẋd, and |ẍd,1(t)| ≤ ẍd for all t ∈ R≥0,
where xd, ẋd, ẍd ∈ R>0 denote known constants. The following as-
sumptions facilitate the subsequent observer development and control
design.

Assumption 1: The function g is known and full row rank.2

Assumption 2: The system in (3) is observable.
Assumption 3: The output state x1 is measurable.

B. DRNN Model

An adaptive DRNN architecture is developed to estimate the un-
known model dynamics in (3) in real time and is implemented in
a subsequently designed OFB-based controller, as shown in Fig. 1.
Analytic, stability-driven weight adaptation laws adjust the weights
of the DRNN in real time using state estimation and tracking errors,
providing a continuous learning method.3

Motivated by estimating continuous-time dynamics, continuous-
time RNN architectures were developed in results, such as [24], by con-
verting existing discrete-time shallow RNNs to continuous-time using
Euler’s method. Using Euler’s method and the discrete-time DRNN
representation in [25], a continuous-time DRNN can be modeled in

1For ease of exposition, a second-order nonlinear system was considered.
However, the error system development in [15] can be used with the developed
adaptive DRNN OFB controller for control of Nth order strict nonlinear systems
with an unmeasurable state xN .

2The control development in [3] can be used to account for an uncertain,
linearly parameterizable control effectiveness g.

3Offline training methods (e.g., Adam and Levenberg–Marquardt algorithm)
could be used to initialize the DRNN if pretraining data are available. If no data
are available, the DRNN can also be initialized with random weights or using
pretraining data taken from a similar system (i.e., transfer learning).
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continuous-time as

ḣ = −bh+W�
k φk ◦ . . . ◦W�

1 φ1 ◦W�
0 y (4)

where b ∈ R>0 denotes a user-selected time constant, y ∈
R
Lk+1+2n+1 denotes a concatenated state vector defined as y �

[h� x�a ]
�

, xa ∈ R
2n+1 denotes the augmented input defined as xa �

[x� 1]
�

, and h ∈ R
Lk+1 denotes the hidden state. The weight matri-

ces and smooth activation functions4 at the jth layer are denoted by
W�
j ∈ R

Lj+1×Lj and φj : RLj → R
Lj for all j ∈ {0, . . ., k} and j ∈

{1, . . ., k}, respectively, where θ � [vec(W0)
� . . . vec(Wk)

�]� ∈
R

∑k

j=0
LjLj+1 andLj ∈ R>0 for all j ∈ {0, . . ., k} denotes the num-

ber of neurons in the jth layer. Since the hidden state is an input to
the first hidden layer, W�

0 ∈ R
L1×(Lk+1+2n+1). To incorporate a bias

term, xa and φj are augmented with 1 for all j ∈ {1, . . ., k}. For DNNs
with multiple types of activation functions at each layer, φj may be
modeled as φj � [ςj,1, ςj,2, . . ., ςj,Lj−1

, 1]�, where ςj,i : R → R for
all j ∈ {1, . . ., k} and i ∈ {1, . . ., Lj} denotes the activation function
at the ith node of the jth layer.

A recursive representation of the adaptive Lb-DRNN architecture
can be modeled as

Φj =

⎧⎨
⎩
W�
j φj (Φj−1) , j = {1, . . ., k}

W�
j y, j = 0

(5)

where Φj(x, θ) ∈ R
Lj+1 denotes the output of the jth layer de-

fined as Φj �W�
j φj ◦W�

j−1φj−1 ◦ . . . ◦W�
1 φ1 ◦W�

0 y for all j ∈
{0, . . ., k}. From (5), the Lb-DRNN in (4) can be represented as
ḣ = −bh+Φ(x, θ), where Φ(x, θ) � Φk(x, θ).

The Lb-DRNN architecture in (4) can then be used to model the
unknown system dynamics in (3) using the unknown state x2 as the
hidden state h. Using [26, Thm. 3.2], the universal function approx-
imation property states that the function space of DNNs given by
(5) is dense in C(X ), where C(X ) denotes the space of continuous
functions over the set X ⊆ R

2n. Therefore, for any prescribed ε ∈
R>0, there exist ideal weight matrices θ ∈ R

∑k

j=0
LjLj+1 such that

‖f(x)− (−bx2 +Φ(x, θ))‖ ≤ ε for all x ∈ X . Thus, the dynamics in
(3) can be modeled using an adaptive DRNN architecture as

ẋ2 = −bx2 +Φ(x, θ) + ε(x) + g (x1)u (6)

where ε : R2n → R
n denotes the function approximation error such

that supx∈X ‖ε(x)‖ ≤ ε. The following typical assumption is made
about the DRNN model in (4).

Assumption 4: The DRNN weights can be bounded as ‖θ‖ ≤ θ,
where θ ∈ R>0 denotes a known constant [4, Assumption 1].5

III. CONTROL DEVELOPMENT

Since the state x2 is not available and the dynamics in (3) are
unknown and unstructured, an adaptive DRNN observer is constructed
to facilitate the control development. Thus, an adaptive DRNN observer
is designed to estimate x2. To quantify the control objectives, the
estimation error x̃1 ∈ R

n and tracking error e1 ∈ R
n are defined as

4The adaptive DRNN architecture in (4) does not consider nonsmooth acti-
vation functions for notational simplicity. However, the switched analysis in [2]
can be used with the developed method to incorporate nonsmooth activation
functions into the RNN architecture.

5Results, such as [27], provide in-roads to robust adaptive extensions for an
uncertain bound θ.

x̃1 � x1 − x̂1

e1 � x1 − xd,1 (7)

respectively, for state estimates x̂ � [x̂�1 x̂
�
2 ]

�
. Using the estimation

and tracking errors, auxiliary estimation and tracking errors ξ, r ∈ R
n

are defined as [28]

ξ � ˙̃x1 + αx̃1 + η

r � ė1 + αe1 + η (8)

respectively, where α ∈ R>0 denotes a user-selected constant and η ∈
R
n denotes the output of a dynamic filter introduced to compensate for

the lack of direct measurements of the state x2. The dynamic filter is
designed as [29]

η � p− (α+ kr) x̃1

ν̇ � p− αν − (α+ kr) x̃1

ṗ � − (kr + 2α) p− ν +
(
(α+ kr)

2 + 1
)
x̃1 + e1 (9)

where kr ∈ R>0 denotes a user-selected constant, p ∈ R
n denotes an

internal filter variable, and ν ∈ R
n denotes the auxiliary output of the

filter. The filter variables p and ν are initialized such that p(0) = (α+
kr)x̃1(0) and ν(0) = 0, respectively.

The filter in (9) uses the estimation error x̃1 and tracking error e1
as inputs and produces the two filter outputs ν and η. The internal
filter variable p is used to generate the signal η without involving the
unavailable derivative of the estimation error ˙̃x1. From (8) and (9), the
dynamic filter can be related to the unknown auxiliary estimation error
ξ and unknown auxiliary tracking error r as

ξ = ėes + αees

r = ėtr + αetr (10)

where ees ∈ R
n and etr ∈ R

n are auxiliary errors defined as ees � x̃1 +
ν and etr � e1 + ν, respectively. Taking the time derivative of η and
using (8) and (9) yield

η̇ = − (α+ kr) ξ − αη + x̃1 + e1 − ν. (11)

A. Observer Design

The adaptive Lb-DRNN observer for the uncertain nonlinear system
in (3) is designed as6

˙̂x1 = x̂2

˙̂x2 = − bx̂2 +Φ
(
x̂, θ̂

)
+ g (x1)u+ β1sgn (ees) + χ (12)

where sgn(·) denotes the elementwise signum function, θ̂ �
[vec(Ŵ0)

�, . . ., vec(Ŵk)
�]

�
, β1 ∈ R0 denotes a user-defined con-

stant, and Ŵ�
j ∈ R

Lj+1×Lj denotes the weight estimates for all j ∈
{0, . . ., k}. The auxiliary term χ ∈ R

n is designed as

χ � − (γ (kr + α) + 2α) η + (γ − α) ν + x̃1 − ν (13)

where γ ∈ R>0 denotes a user-selected constant.

6As is typical in observer design approaches (see [30]), the state x1 is also
approximated, even though it is measurable, as a means to provide feedback for
the construction of the estimate for the unmeasurable state x2.
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Taking the derivative of ξ, substituting (6)–(8), (12), and (13), and
adding and subtracting Φ(x̂, θ) yield

ξ̇ = − b ˙̃x1 +Φ(x̂, θ)− Φ(x̂, θ̂) + Φ (x, θ)− Φ(x̂, θ) + ε(x)

− β1sgn (ees)− χ+ α (ξ − αx̃1 − η) + η̇. (14)

To address the mathematical challenges posed by the nested nonlinear-
ity of the DRNN architecture, a first-order Taylor series approximation-
based error model is evaluated as [4]

Φ(x̂, θ)− Φ
(
x̂, θ̂

)
= Φ̂′θ̃ +O2

(
x̂, θ̃

)
(15)

where O2(x̂, θ̃) denotes high-order terms and θ̃ � θ − θ̂. Substituting
(15) into (14) yields the closed-loop error system

ξ̇ = N1 + Φ̂′θ̃ − β1sgn (ees)− χ

+ α (ξ − αx̃1 − η) + η̇ (16)

where the auxiliary term N1 ∈ R
n is defined as N1 � −b ˙̃x1 +

Φ(x, θ)− Φ(x̂, θ) +O2(x̂, θ̃) + ε(x).

B. Control Design

An OFB controller is designed using the developed adaptive Lb-
DRNN architecture and observed state estimates x̂. The Lb-DRNN
weights are adjusted online using subsequently designed stability-
driven weight adaptation laws that allow the developed OFB control
design to estimate the unknown states and system dynamics in real
time. The control input is designed as

u � g (x1)
+ [− (−bx̂2 +Φ(x̂, θ̂))− β2sgn (etr)

+ ẍd,1 − (kr + α) ( ˙̂e1 + αê1)− α2e1 − ν
]

(17)

where ê1 � x̂1 − xd,1 andβ2 ∈ R0 denotes a user-defined control gain.
Taking the time-derivative of r, substituting (6)–(8) and (17), adding and
subtracting Φ(x̂, θ), and using the Taylor series-based approximation
in (15) yield the closed-loop error system

ṙ = N1 + Φ̂′θ̃ − (kr + α)
(
˙̂e1 + αê1

)
+ η̇

− β2sgn (etr) + α (r − η) + ν. (18)

C. Adaptive Weight Update Laws

In this section, a Lyapunov stability-driven weight adaptation law
is developed for the DRNN architecture. The weight adaptation law
allows the developed OFB controller to adaptively compensate for
the uncertain model dynamics of the system while ensuring stability
guarantees. The DRNN weight adaptation law is designed as

˙̂
θ � ΓΦ̂′� (ees + etr) (19)

where Γ ∈ R

∑k

j=0
LjLj+1×

∑k

j=0
LjLj+1 and Φ̂′ ∈

R
2n×

∑k

j=0
LjLj+1 denote a user-selected positive-definite gain matrix

and a shorthand notation denoting the Jacobian Φ̂′ � [Φ̂′
0, . . ., Φ̂

′
k],

where the shorthand notation Φ̂′
j is defined as Φ̂′

j �
∂Φj(x̂,θ̂)

∂θ̂
, for all

j ∈ {0, . . ., k}. Using the chain rule, the DRNN model in (5), and
the properties of the vectorization operator in (1) and (2), the terms

Φ̂′
0 and Φ̂′

j can be expressed as Φ̂′
0 � (

�∏k
l=1 Ŵ

�
l φ̂

′
l)(IL1

⊗ x̂�a )

and Φ̂′
j � (

�∏k
l=j+1 Ŵ

�
l φ̂

′
l)(ILj+1

⊗ φ̂�
j )∀j ∈ {1, . . ., k}, respec-

tively, where x̂a ∈ R
2n+1 denotes the augmented RNN input

x̂a � [x̂�1]�, and the shorthand notations φ̂j and φ̂′
j are defined as

φ̂j � φj(Φj−1(x̂, θ̂)) and φ̂′
j � φ′

j(Φj−1(x̂, θ̂)) for all j ∈ {1, . . ., k},

respectively, where φ′
j � ∂

∂y
φj(y)∀y ∈ R

l2 .

IV. STABILITY ANALYSIS

Let the function VL : Rψ → R≥0 be defined as

VL (ζ) � γ

2
x̃�1 x̃1 +

1

2
ξ�ξ +

γ

2
e�1 e1 +

1

2
r�r

+
γ

2
η�η +

γ

2
ν�ν + P +

α

2
θ̃�Γ−1θ̃ (20)

where the concatenated state vector ζ ∈ R
ψ is defined as ζ �

[z�
√
P θ̃�]

�
, z � [x̃�1 ξ

� e�1 r
� η� ν�]�, ψ � 6n+ 1+

∑k
j=0 Lj

Lj+1, and α, γ ∈ R>0 and Γ ∈R

∑k

j=0
LjLj+1×

∑k

j=0
LjLj+1 denote

user-selected constants defined in (8), (13), and (19), respectively.
The term P : R≥0 → R≥0 denotes a subsequently designed positive
P-function used to account for mismatches that appear in the function
VL due to the weight adaptation law in (19) being expressed in terms of
the known errors ees and etr rather than the unknown auxiliary estimation
and tracking errors ξ and r. The function VL in (20) satisfies

λ1 ‖ζ‖2 ≤ VL ≤ λ2 ‖ζ‖2 (21)

where the auxiliary constants λ1 and λ2 are defined as λ1 �
1
2

min{1, γ, αλmin{Γ−1}} and λ2 � 1
2

max{1, γ, αλmax{Γ−1}}, respec-
tively. The closed-loop error system has a discontinuous right-hand side
due to the signum function, and therefore, a Filippov regularization is
applied on the system to regularize the discontinuities of the right-hand
side by reformulating it as a differential inclusion [31]. As a result,
it does not have solutions defined in the classical sense of continu-
ously differentiable solutions. However, for systems with discontinuous
right-hand sides given by Lebesgue measurable and locally essentially
bounded functions, absolutely continuous Filippov solutions are known
to exist and can be examined by applying a Filippov regularization [32].
Therefore, let ∂VL denote the Clarke gradient of VL defined in [32,
p. 39]. Since ζ �→ VL(ζ) is continuously differentiable, ∂VL(ζ) =
{∇VL(ζ)}, where ∇ denotes the standard gradient operator. Based on
the chain rule in [33, Thm. 2.2], it can be verified that t→ VL(ζ(t)) sat-

isfies the differential inclusion V̇L
a.a.t.∈ ⋂

μ∈∂VL(ς) μ
�(ψ, t)K[h](ς, t)

for ς � [z� P θ̃�]
�

. Taking the derivative of VL(ζ), substituting in (9),
(11), and (16), and canceling cross-terms yield

V̇L
a.a.t∈ − αγx̃�1 x̃1 + γe�1 ė1 + r�ṙ − αγν�ν − krξ

�ξ

+ ξ�
(
Φ̂′θ̃ − β1K [sgn] (ees) + e1 +N1

)

− γη� (αη + e1) + Ṗ − αθ̃�Γ−1 ˙̂θ.

Substituting in (8) and (11), the closed-loop tracking error system in
(18), and the weight adaptation law in (19) yields

V̇L
a.a.t∈ − αγx̃�1 x̃1 − αγν�ν − αγe�1 e1 − krr

�r + Ṗ

+ ξ�
(
Φ̂′θ̃ − β1K [sgn] (ees) + e1 +N1

)

− krξ
�ξ − γη�αη − αθ̃�Φ̂′� (ees + etr)

+ r�
(
N1 + Φ̂′θ̃ − β2K [sgn] (etr) + x̃1

)
. (22)

Let the sets S ⊂ R
ψ and D ⊂ R

ψ be defined as S � {σ ∈ D : ‖σ‖ ≤√
λ1
λ2
ω} and D � {σ ∈ R

ψ : ‖σ‖ < ω}, respectively, for some bound-

ing constant ω ∈ R>0. The following theorem establishes asymptotic
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tracking and estimation error convergence for the developed adaptive
DRNN observer and overall OFB control design.

Theorem 1: Consider the system in (3) and let Assumptions 1–4
hold. The adaptive Lb-DRNN observer in (12), controller in (17), and
Lb-DRNN weight adaptation law in (19) ensure asymptotic estimation
and tracking error convergence in the sense that ‖etr‖ → 0, ‖ees‖ → 0,
‖x2 − x̂2‖ → 0, and ‖x2 − ẋd,1‖ → 0 as t→ ∞, provided ζ(0) ∈ S ,
and the following sufficient gain conditions are satisfied:

β1, β2 > ξ1 + ξ2 +
1

α− λP
(αξ2 + ξ3)

α ≥ 1

2γkr
. (23)

Proof: Consider the candidate Lyapunov function in (20). The P-
function is designed as

P (t) � e−λP t ∗
(
α (ees + etr)

�N2

+ (α− λP ) (β1 ‖ees‖1 + β2 ‖etr‖1)
− (α− λP ) (ees + etr)

� (N1 +N2)

+ (ees + etr)
�
(
Ṅ1 + Ṅ2

))
+ β1 ‖ees‖1

+ β2 ‖etr‖1 − (ees + etr)
� (N1 +N2) (24)

where λP ∈ R>0 denotes a constant andN2 ∈ R
n denotes an auxiliary

term defined as N2 � Φ̂′θ̃. Using Assumption 4 and the continuous
differentiability of the auxiliary terms N1 and N2, N1 and N2 and the
time-derivative of N1 +N2 can be bounded as ‖N1‖ ≤ ξ1, ‖N2‖ ≤
ξ2, and ‖Ṅ1 + Ṅ2‖ ≤ ξ3, respectively, when ζ ∈ D, for known con-
stants ξ1, ξ2, ξ3 ∈ R>0. Therefore, using similar arguments as in [34,
Lemma 4], it can be shown that P remains positive for all time
t ∈ R≥0 provided the sufficient gain conditions in (23) are satisfied.
The P -function in (24) is a Filippov solution to

Ṗ ∈ − λPP − ξ� (N1 − β1K [sgn] (ees))

− r� (N1 − β2K [sgn] (etr))− (ėes + ėtr)
�N2. (25)

The mappings t→ ξ�K[sgn](ees) and t→ r�K[sgn](etr) are
set-valued only for the set of time instants T1 = {t ∈ [0,∞)|∃i ∈
{1, 2, . . ., n}s.t. ees,i(t) = 0 ∧ ξi(t) �= 0} and T2 = {t ∈ [0,∞)|∃i ∈
{1, 2, . . ., n}s.t. etr,i(t) = 0 ∧ ri(t) �= 0}, respectively. According
to [34, Lemma 1], the sets T1 and T2 have Lebesgue measure zero.
Therefore, using (10), (22), (25), and the definition ofN2 and canceling
like terms yield

V̇L
a.a.t∈ − αγx̃�1 x̃1 − αγν�ν − αγe�1 e1 − αγη�η

− krr
�r − krξ

�ξ − λPP + ξ�e1 + r�x̃1 (26)

when ζ ∈ D. Using Young’s inequality, (26) can be further bounded as

V̇L ≤ −λ3 ‖z‖2 − λPP ∀ζ ∈ D (27)

where λ3 � min{αγ − 1
2kr

, αγ, kr
2
}. Therefore, provided the suffi-

cient gain condition in (23) is satisfied, V̇L ≤ 0, ∀ζ ∈ D.
To show ζ(t) ∈ D for all t ≥ 0, the fact that VL is nonincreasing

can be used to show ‖ζ(t)‖ ≤
√

VL(t)
λ1

≤
√

VL(0)
λ1

≤
√

λ2
λ1
‖ζ(0)‖.

Therefore, if ‖ζ(0)‖ ≤
√

λ1
λ2
ω, then ‖ζ‖ < ω for all t ≥ 0. Thus, the

states ζ should be initialized such that ζ(0) ∈ S in order to guar-
antee that ζ(t) ∈ D for all t ∈ [0,∞). To show x ∈ X so that the
universal function approximation property holds, let the set Υ ⊆ X be

defined as Υ � {ς ∈ X : ‖ς‖ < xd + ẋd + (3 + 2α+ α2)ω}. Thus,
if ‖ζ(0)‖ ∈ S, then ‖ζ(t)‖ ≤ ω, and therefore, ‖e1(t)‖ ≤ ω, ‖η(t)‖ ≤
ω, and ‖r(t)‖ ≤ ω. Hence, using (7) and (8), ‖x‖ can be bounded
as ‖x‖ ≤ xd + ẋd + (3 + 2α+ α2)ω. Therefore, if ζ(0) ∈ S , then
x ∈ Υ ⊆ X , and thus, the universal function approximation property
holds.

Since ζ ∈ L∞, x1, x̂1, etr, ees ∈ L∞. Since etr, ees, Φ̂
′ ∈ L∞ and Φ

is a smooth function, ˙̂θ ∈ L∞. Using (20), (21), and (27), the LaSalle–
Yoshizawa corollary in [35, Corollary 1] can be invoked to show
‖x̃1‖ → 0, ‖e1‖ → 0, ‖ν‖ → 0, ‖η‖ → 0, ‖ξ‖ → 0, and ‖r‖ → 0 as
t→ ∞. From (7) and (8), it can be further shown that ‖etr‖ → 0,
‖ees‖ → 0, ‖x2 − x̂2‖ → 0, and ‖x2 − ẋd,1‖ → 0 as t→ ∞. �

V. SIMULATIONS

To demonstrate the performance and efficacy of the developed
adaptive DRNN-based OFB controller, comparative simulations were
performed with a shallow RNN (henceforth referred to as “SRNN”) [16]
and a central difference observer (henceforth referred to as “CD”) as
baselines for comparison. The simulations were performed on an UUV
system modeled as [36]

ẋ1 = η̇

ẋ2 = −M
−1

(η)
(
C (η, η̇, ν) η̇ +D (η, ν) η̇

)
+M

−1
(η) τn (28)

where x1 = η ∈ R
6 denotes a vector of position and orientation with

coordinates in the Earth-fixed frame, x2 = η̇ ∈ R
6 denotes a vector

of linear and angular velocities with coordinates in the Earth-fixed
frame, and ν ∈ R

6 denotes a vector of linear and angular velocities with
coordinates in the body-fixed frame. The inertial effects, centripetal-
Coriolis effects, hydrodynamic damping effects, and control input in
the Earth-fixed frame can be represented by M : R6 → R

6×6, C :
R

6 × R
6 × R

6 → R
6×6, D : R6 × R

6 → R
6×6, and τn : R≥0 → R

6,
respectively. The velocities in the body-fixed frame can be related to
the velocities in the Earth-fixed frame using the relation

η̇ = J (η) ν (29)

where J : R6 → R
6×6 is a Jacobian transformation matrix relating

the two frames [36, eq. (2)]. Using the kinematic transformation in
(29), the Earth–fixed dynamics in (28) can be expressed using body-
fixed dynamics as M = J−�MJ−1,C = J−�[C(ν)−MJ−1J̇ ]J−1,
D = J−�D(ν)J−1, and τn = J−�τb, where M ∈ R

6×6, C : R6 →
R

6×6,D : R6 → R
6×6, and τb : R≥0 → R

6 denote the inertial effects,
centripetal-Coriolis effects, hydrodynamic damping effects, and con-
trol input in the body-fixed frame, respectively. The inertial effects,
centripetal-Coriolis effects, and hydrodynamic damping effects in the
body-fixed effects can be expressed as [37, eq. (2.246)]

M = diag {m1,m2,m3,m4,m5,m6}
D = diag {d11 + d12 |ν(1)| , d21 + d22 |ν(2)| , d31 + d32 |ν(3)| ,

d41 + d42 |ν(4)| , d51 + d52 |ν(5)| , d61 + d62 |ν(6)|}

Vm =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 m3ν3 −m2ν2
0 0 0 −m3ν3 0 m1ν1
0 0 0 m2ν2 −m1ν1 0
0 m3ν3 −m2ν2 0 m6ν6 −m5ν5

−m3ν3 0 m1ν1 −m6ν6 0 m4ν4
m2ν2 −m1ν1 0 m5ν5 −m4ν4 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where the following numerical values of mass, inertia, and damping
parameters were used (see Table I).
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TABLE I
UUV SYSTEM PARAMETERS [37, EQ. (2.247)]

TABLE II
SIMULATION PERFORMANCE RESULTS FOR 50 RUNS

The desired trajectory was selected as a helical trajectory defined
as x1 = [5cos(0.1t)m, 5sin(0.1t)m,0.1tm, 0 rad, 0 rad,−0.05t rad]�.
The control gains were selected as b = 1, kr = 2, α =
5, β1 = 0.001, β2 = 0.001, and Γ = 0.5 · I592. The simulation
was run for 150 s with a step size of 0.001 s and initial
conditions x1 = [4 m, 0.5 m, 0 m, 0 rad, 0.2 rad, 0 rad]� and
x2 = [0 m, 0 m, 0 m, 0 rad, 0 rad, 0 rad]�.

The DRNN was composed ofk = 8 layers with eight neurons in each
layer and hyperbolic tangent activation functions. The SRNN baseline
used the same controller and observer design, but with k = 2 layers
and L = 17 neurons to ensure that approximately the same number of
individual weights was used for both RNNs. The second comparison
simulation used a central difference observer with the controller in
(17) without the feedforward DNN, i.e., u = g(x1)

+[ẍd,1 − (kr +
α)( ˙̂e1 + αê1)− α2e1]. For a fair comparison, the same robust control
gains were used for all three simulations. The SRNN and DRNN
gains and parameters (e.g., the learning gains, activation functions, and
depth and width of the network) were empirically adjusted to achieve
the best performance for both networks. To better emulate real-world
systems and demonstrate robustness, noise was added to the position
measurements from a uniform distribution of U(−0.001, 0.001), and
the simulations were performed for 50 iterations where the initial
condition of the unknown state was randomly selected from a uniform
distribution of U(−0.5, 0.5).7 The simulations were performed on a
Dell Inspiron 7373 laptop on Windows 10 with 16.0 GB RAM and
a 64-bit operating system. To further emulate a real-world system,
the control input was saturated at 200 N or 200 N/m. To emulate a
worst-case scenario, the RNN weight estimates were initialized from
a uniform distribution of U(−0.5, 0.5). However, for a system where
pretraining is feasible, the weights can be initialized using traditional
machine learning-based offline training methods.

The average and standard deviation performance results of the 50
iterations for the three methods are presented in Table II, and com-
parative plots of an example representative run are shown in Figs.
2–4. The average run times for the three OFB controllers were 46.17,
45.94, and 45.39 s for the CD observer, SRNN, and DRNN-based
OFB controllers, respectively. As evident in Fig. 2, the RNN-based
OFB controllers yield significant improvements in the estimation error

7To demonstrate the worst-case scenario of no prior data, the weights were
randomly initialized. For further optimal tuning, Monte Carlo-based approaches
can be used.

Fig. 2. Plots of the norm of the linear (top) and angular (bottom)
estimation errors over time for one run of the DRNN OFB controller
compared to the SRNN OFB controller and CD observer.

Fig. 3. Plots of the norm of the linear (top) and angular (bottom) track-
ing errors over time for one run of the DRNN OFB controller compared
to the SRNN OFB controller and CD observer.

Fig. 4. Plots of the norm of the linear (top) and angular (bottom) control
input over time for one run of the DRNN OFB controller compared to the
SRNN OFB controller and CD observer.
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performance when compared to the central difference observer. Specif-
ically, the DRNN-based OFB controller on average yielded an 82.17%
and 82.17% improvement in linear and angular estimation errors,
respectively, when compared to the CD observer. The CD observer was
significantly less robust to measurement noise and therefore yielded
chattering, oscillatory behavior in the estimation error, which degraded
steady-state performance. This oscillatory behavior in the estimation
errors led to similar behavior in the control inputs in Fig. 4, and also
created chattering behavior in the tracking error (as shown in Fig. 3).
Thus, the DRNN-based observer design was significantly more robust
to measurement noise with significantly less control effort (50.97% and
67.9% reduction in linear and angular control effort, respectively).

While the SRNN-based OFB controller yielded noticeably better
estimation error performance when compared to the CD observer,
the DRNN-based OFB controller improved the normalized estimation
error by an average of 76.00% and 70.97% for the linear and angular
estimation errors, respectively across the 50 iterations. Moreover, the
DRNN-based OFB controller yielded significant improvements in the
tracking error performance. As shown in Fig. 3, both OFB controllers
yielded similar transient tracking error performance and settled after
approximately 5 s. However, the DRNN architecture significantly im-
proved steady-state behavior and the tracking error for the DRNN
converged to a considerably smaller value than that of the SRNN.
Specifically, the DRNN architecture improved the linear and angular
tracking error by 31.85% and 86.21%, respectively, when compared to
the shallow architecture with a comparable control effort.

VI. CONCLUSION

An adaptive Lb-DRNN-based OFB controller is developed for a class
of uncertain nonlinear systems. Motivated by the dynamic nature and
internal memory structure of RNNs, an Lb-DRNN observer is devel-
oped to adaptively estimate the unknown states of the system, which are
implemented in the developed control design. Stability-driven weight
adaptation laws adjust the weights of the Lb-DRNN architecture online
using Lyapunov-based techniques. A Lyapunov-based stability analysis
ensures asymptotic tracking and estimation error convergence using the
developed observer and OFB controller. Validation simulation experi-
ments on a UUV system yielded a 31.85% and 86.21% improvement
in linear and angular tracking error, respectively, when compared to the
shallow architecture with a comparable control effort.

Potential challenges associated with this work include practical
concerns, such as computational resources, noise sensitivity, and guide-
lines, for sizing the network architecture. While the computational
cost is higher when compared to the CD approach, the CD approach
resulted in significantly worse performance and more noise sensitivity.
Moreover, previous theoretical and empirical evidence indicates that
the structure of the traditional RNN architecture used in the developed
OFB controller inhibits its ability to learn long-term time dependencies.
Therefore, motivation exists to investigate adaptive OFB controllers
using other RNN architecture, such as long short-term memory (LSTM)
networks. Thus, potential future research could include extending the
developed LSTM controller and observer design in [6] and [38] to
develop an OFB controller. Extending the developed OFB control
design to adaptive LSTMs would bring additional challenges because
the developed adaptation laws for the LSTM are more complex due
to the more nonlinear structure of LSTMs compared to traditional
DRNNs. Developing an adaptive LSTM-based OFB controller would
involve incorporating the twofold control objective of the OFB control
design into the online training of the LSTM by integrating both the
tracking and state estimation error into the weight adaptation laws.
Since the estimation error is unknown, a dynamic filter similar to the

one in (9) could be used to construct auxiliary errors that would be
implementable in the weight adaptation law. Thus, the developments in
this article could pave the way for constructing an LSTM-based OFB
controller.
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